Science.gov

Sample records for improved molecular technique

  1. Improved Molecular Technique for the Differentiation of Neotropical Anopheline Species

    PubMed Central

    Matson, Ryan; Rios, Carlos Tong; Chavez, Cesar Banda; Gilman, Robert H.; Florin, David; Sifuentes, Victor Lopez; Greffa, Roldan Cardenas; Yori, Pablo Peñataro; Fernandez, Roberto; Portocarrero, Daniel Velasquez; Vinetz, Joseph M.; Kosek, Margaret

    2008-01-01

    We evaluated a PCR-RFLP of the ribosomal internal transcribed spacer 2 region (ITS2) to distinguish species of Anopheles commonly reported in the Amazon and validated this method using reared F1 offspring. The following species of Anopheles were used for molecular analysis: An. (Nys.) benarrochi, An. (Nys.) darlingi, An. (Nys.) nuneztovari, An. (Nys.) konderi, An. (Nys.) rangeli, and An. (Nys.) triannulatus sensu lato (s.l.). In addition, three species of the subgenus Anopheles, An. (Ano.) forattini, An. (Ano.) mattogrossensis, and An. (Ano.) peryassui were included for testing. Each of the nine species tested yielded diagnostic banding patterns. The PCR-RFLP method was successful in identifying all life stages including exuviae with small fractions of the sample. The assay is rapid and can be applied as an unbiased confirmatory method for identification of morphologic variants, disputed samples, imperfectly preserved specimens, and life stages from which taxonomic keys do not allow for definitive species determination. PMID:18337348

  2. Resolution improvement of the molecular imaging technique based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ishihara, Yasutoshi; Kusayama, Yusuke

    2009-02-01

    Magnetic particle imaging (MPI) based on the nonlinear interaction between internally administered magnetic nanoparticles and electromagnetic waves that externally irradiate the body has attracted attention for the early diagnosis of diseases such as cancer. In MPI, the local magnetic field distribution is scanned, and the magnetization signals are detected from the magnetic nanoparticles inside a target region. However, interference of the magnetization signals generated from the magnetic nanoparticles outside a target region due to nonlinear responses results in the degradation of image resolution. In this study, we clearly show that the degradation of image resolution is a result of the presence of even harmonics in the magnetization response of magnetic nanoparticles. We propose a new image reconstruction method for reducing these even harmonics and a correction method for suppressing the interference of the signals. This is achieved by taking into account the difference between the saturated waveform of the magnetization signal detected from the magnetic nanoparticles outside a target region and that detected from the magnetic nanoparticles inside a target region. In this study, we perform numerical analyses to prove that the image resolution in the molecular imaging technique can be improved by using our proposed image reconstruction method, which is based on the abovementioned ideas. Furthermore, a fundamental system is constructed and the numerical analyses are experimentally validated by using magnetic nanoparticles with a diameter of ~20 nm.

  3. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique

    PubMed Central

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies. PMID:25470996

  4. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique.

    PubMed

    Raphael, Kathryn A; Shearman, Deborah C A; Gilchrist, A Stuart; Sved, John A; Morrow, Jennifer L; Sherwin, William B; Riegler, Markus; Frommer, Marianne

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies. PMID:25470996

  5. Sensitivity improvement of a molecular imaging technique based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ishihara, Yasutoshi; Kuwabara, Tsuyoshi; Wadamori, Naoki

    2011-03-01

    Magnetic particle imaging (MPI) using the nonlinear interaction between internally administered magnetic nanoparticles (MNPs) and electromagnetic waves irradiated from outside of the body has attracted attention for the early diagnosis of diseases such as cancer. In MPI, the local magnetic field distribution is scanned, and the magnetization signal from MNPs inside an object region is detected. However, the signal sensitivity and image resolution are degraded by interference from the magnetization signal generated by MNPs that exist outside of the desired region, owing to nonlinear responses. Earlier, we proposed an image reconstruction method for suppressing the interference component while emphasizing the signal component using the property of the higher harmonic components generated by the MNPs. However, edge areas in the reconstructed image were emphasized excessively owing to the high-pass-filter effect of this method. Here, we propose a new method based on correlation information between the observed signal and a system function. We performed a numerical analysis and found that, although the image was somewhat blurred, the detection sensitivity can clearly be improved without the inverse-matrix operation used in conventional image reconstruction.

  6. A new technique to improve the mechanical and biological performance of ultra high molecular weight polyethylene using a nylon coating.

    PubMed

    Firouzi, Dariush; Youssef, Aya; Amer, Momen; Srouji, Rami; Amleh, Asma; Foucher, Daniel A; Bougherara, Habiba

    2014-04-01

    A new patent pending technique is proposed in this study to improve the mechanical and biological performance of ultra high molecular weight polyethylene (UHMWPE), i.e., to uniformly coat nylon onto the UHMWPE fiber (Firouzi et al., 2012). Mechanical tests were performed on neat and new nylon coated UHMWPE fibers to examine the tensile strength and creep resistance of the samples at different temperatures. Cytotoxicity and osteolysis induced by wear debris of the materials were investigated using (MTT) assay, and RT-PCR for tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) osteolysis markers. Mechanical test results showed substantial improvement in maximum creep time, maximum breaking force, and toughness values of Nylon 6,6 and Nylon 6,12 coated UHMWPE fibers between average 15% and 60% at 25, 50, and 70°C. Furthermore, cytotoxicity studies have demonstrated significant improvement in cell viability using the nylon coated UHMWPE over the neat one (72.4% vs 54.8%) for 48h and (80.7 vs 5%) for 72h (P<0.01). Osteolysis test results have shown that the expression levels of TNFα and IL-6 markers induced by the neat UHMWPE fiber were significantly higher than those induced by the Nylon 6,6 coated UHMWPE (2.5 fold increase for TNFα at 48h, and three fold increase for IL-6 at 72h (P<0.01)). This study suggests that UHMWPE coated with nylon could be used as a novel material in clinical applications with lower cytotoxicity, less wear debris-induced osteolysis, and superior mechanical properties compared to neat UHMWPE.

  7. Image Improvement Techniques

    NASA Astrophysics Data System (ADS)

    Shine, R. A.

    1997-05-01

    Over the last decade, a repertoire of techniques have been developed and/or refined to improve the quality of high spatial resolution solar movies taken from ground based observatories. These include real time image motion corrections, frame selection, phase diversity measurements of the wavefront, and extensive post processing to partially remove atmospheric distortion. Their practical application has been made possible by the increasing availability and decreasing cost of large CCD's with fast digital readouts and high speed computer workstations with large memories. Most successful have been broad band (0.3 to 10 nm) filtergram movies which can use exposure times of 10 to 30 ms, short enough to ``freeze'' atmospheric motions. Even so, only a handful of movies with excellent image quality for more than a hour have been obtained to date. Narrowband filtergrams (about 0.01 nm), such as those required for constructing magnetograms and Dopplergrams, have been more challenging although some single images approach the quality of the best continuum images. Some promising new techniques and instruments, together with persistence and good luck, should continue the progress made in the last several years.

  8. Improved Search Techniques

    NASA Technical Reports Server (NTRS)

    Albornoz, Caleb Ronald

    2012-01-01

    Thousands of millions of documents are stored and updated daily in the World Wide Web. Most of the information is not efficiently organized to build knowledge from the stored data. Nowadays, search engines are mainly used by users who rely on their skills to look for the information needed. This paper presents different techniques search engine users can apply in Google Search to improve the relevancy of search results. According to the Pew Research Center, the average person spends eight hours a month searching for the right information. For instance, a company that employs 1000 employees wastes $2.5 million dollars on looking for nonexistent and/or not found information. The cost is very high because decisions are made based on the information that is readily available to use. Whenever the information necessary to formulate an argument is not available or found, poor decisions may be made and mistakes will be more likely to occur. Also, the survey indicates that only 56% of Google users feel confident with their current search skills. Moreover, just 76% of the information that is available on the Internet is accurate.

  9. Techniques for Molecular Imaging Probe Design

    PubMed Central

    Reynolds, Fred; Kelly, Kimberly A.

    2011-01-01

    Molecular imaging allows clinicians to visualize disease specific molecules, thereby providing relevant information in the diagnosis and treatment of patients. With advances in genomics and proteomics and underlying mechanisms of disease pathology, the number of targets identified has significantly outpaced the number of developed molecular imaging probes. There has been a concerted effort to bridge this gap with multidisciplinary efforts in chemistry, proteomics, physics, material science, and biology; all essential to progress in molecular imaging probe development. In this review, we will discuss target selection, screening techniques and probe optimization with the aim of developing clinically relevant molecularly targeted imaging agents. PMID:22201532

  10. Computational Improvements to Quantum Wave Packet ab Initio Molecular Dynamics Using a Potential-Adapted, Time-Dependent Deterministic Sampling Technique.

    PubMed

    Jakowski, Jacek; Sumner, Isaiah; Iyengar, Srinivasan S

    2006-09-01

    In a recent publication, we introduced a computational approach to treat the simultaneous dynamics of electrons and nuclei. The method is based on a synergy between quantum wave packet dynamics and ab initio molecular dynamics. Atom-centered density-matrix propagation or Born-Oppenheimer dynamics can be used to perform ab initio dynamics. In this paper, wave packet dynamics is conducted using a three-dimensional direct product implementation of the distributed approximating functional free-propagator. A fundamental computational difficulty in this approach is that the interaction potential between the two components of the methodology needs to be calculated frequently. Here, we overcome this problem through the use of a time-dependent deterministic sampling measure that predicts, at every step of the dynamics, regions of the potential which are important. The algorithm, when combined with an on-the-fly interpolation scheme, allows us to determine the quantum dynamical interaction potential and gradients at every dynamics step in an extremely efficient manner. Numerical demonstrations of our sampling algorithm are provided through several examples arranged in a cascading level of complexity. Starting from a simple one-dimensional quantum dynamical treatment of the shared proton in [Cl-H-Cl](-) and [CH3-H-Cl](-) along with simultaneous dynamical treatment of the electrons and classical nuclei, through a complete three-dimensional treatment of the shared proton in [Cl-H-Cl](-) as well as treatment of a hydrogen atom undergoing donor-acceptor transitions in the biological enzyme, soybean lipoxygenase-1 (SLO-1), we benchmark the algorithm thoroughly. Apart from computing various error estimates, we also compare vibrational density of states, inclusive of full quantum effects from the shared proton, using a novel unified velocity-velocity, flux-flux autocorrelation function. In all cases, the potential-adapted, time-dependent sampling procedure is seen to improve the

  11. Improving School Climate: Leadership Techniques for Principals.

    ERIC Educational Resources Information Center

    Kelley, Edgar A.

    Based on the assumption that a positive environment is an important component of a well-run school, this monograph offers techniques to school principals for evaluating and improving school climate. Topics covered include assessing school climate, planning for climate development, providing leadership for climate improvement, improving classroom…

  12. Molecular techniques for diagnosing prosthetic joint infections.

    PubMed

    Hartley, John C; Harris, Kathryn A

    2014-09-01

    Prosthetic joint infections (PJI) can be broadly classed into two groups: those where there is a strong clinical suspicion of infection and those with clinical uncertainty, including 'aseptic loosening'. Confirmation of infection and identification of the causative organism along with provision of antibiotic susceptibility data are important stages in the management of PJI. Conventional microbiological culture and susceptibility testing is usually sufficient to provide this. However, it may fail due to prior antimicrobial treatment or the presence of unusual and fastidious organisms. Molecular techniques, in particular specific real-time and broad-range PCR, are available for diagnostic use in suspected PJI. In this review, we describe the techniques available, their current strengths, limitations and future development. Real-time pathogen-specific and broad-range PCR (with single sequence determination) are suitable for use as part of the routine diagnostic algorithm for clinically suspected PJI. Further development of broad-range PCR with high-throughput (next-generation) sequencing is necessary to understand the microbiome of the prosthetic joint further before this technique can be used for routine diagnostics in clinically unsuspected PJI, including aseptic loosening. PMID:25135084

  13. Automatic Molecular Design using Evolutionary Techniques

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    Molecular nanotechnology is the precise, three-dimensional control of materials and devices at the atomic scale. An important part of nanotechnology is the design of molecules for specific purposes. This paper describes early results using genetic software techniques to automatically design molecules under the control of a fitness function. The fitness function must be capable of determining which of two arbitrary molecules is better for a specific task. The software begins by generating a population of random molecules. The population is then evolved towards greater fitness by randomly combining parts of the better individuals to create new molecules. These new molecules then replace some of the worst molecules in the population. The unique aspect of our approach is that we apply genetic crossover to molecules represented by graphs, i.e., sets of atoms and the bonds that connect them. We present evidence suggesting that crossover alone, operating on graphs, can evolve any possible molecule given an appropriate fitness function and a population containing both rings and chains. Prior work evolved strings or trees that were subsequently processed to generate molecular graphs. In principle, genetic graph software should be able to evolve other graph representable systems such as circuits, transportation networks, metabolic pathways, computer networks, etc.

  14. Compression Techniques for Improved Algorithm Computational Performance

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Howell, Patricia A.; Winfree, William P.

    2005-01-01

    Analysis of thermal data requires the processing of large amounts of temporal image data. The processing of the data for quantitative information can be time intensive especially out in the field where large areas are inspected resulting in numerous data sets. By applying a temporal compression technique, improved algorithm performance can be obtained. In this study, analysis techniques are applied to compressed and non-compressed thermal data. A comparison is made based on computational speed and defect signal to noise.

  15. Molecular Technique to Understand Deep Microbial Diversity

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2012-01-01

    Current sequencing-based and DNA microarray techniques to study microbial diversity are based on an initial PCR (polymerase chain reaction) amplification step. However, a number of factors are known to bias PCR amplification and jeopardize the true representation of bacterial diversity. PCR amplification of the minor template appears to be suppressed by the exponential amplification of the more abundant template. It is widely acknowledged among environmental molecular microbiologists that genetic biosignatures identified from an environment only represent the most dominant populations. The technological bottleneck has overlooked the presence of the less abundant minority population, and underestimated their role in the ecosystem maintenance. To generate PCR amplicons for subsequent diversity analysis, bacterial l6S rRNA genes are amplified by PCR using universal primers. Two distinct PCR regimes are employed in parallel: one using normal and the other using biotinlabeled universal primers. PCR products obtained with biotin-labeled primers are mixed with streptavidin-labeled magnetic beads and selectively captured in the presence of a magnetic field. Less-abundant DNA templates that fail to amplify in this first round of PCR amplification are subjected to a second round of PCR using normal universal primers. These PCR products are then subjected to downstream diversity analyses such as conventional cloning and sequencing. A second round of PCR amplified the minority population and completed the deep diversity picture of the environmental sample.

  16. An improved infrared technique for sorting pecans

    NASA Astrophysics Data System (ADS)

    Graeve, Thorsten; Dereniak, Eustace L.; Lamonica, John A., Jr.

    1991-10-01

    This paper presents the results of a study of pecan spectral reflectances. It describes an experiment for measuring the contrast between several components of raw pecan product to be sorted. An analysis of the experimental data reveals high contrast ratios in the infrared spectrum, suggesting a potential improvement in sorting efficiency when separating pecan meat from shells. It is believed that this technique has the potential to dramatically improve the efficiency of current sorting machinery, and to reduce the cost of processing pecans for the consumer market.

  17. Improved Chromatographic Techniques for Sulfur Pollutants

    NASA Technical Reports Server (NTRS)

    Hartmann, C. H.

    1971-01-01

    This paper describes several improvements in instrumental techniques for the analysis of low ppb concentrations of sulfur gases using gas chromatography (G.C.). This work has focused on the analytical problem of ambient air monitoring of the two main sulfur gas pollutants, hydrogen sulfide and sulfur dioxide. The most significant technical improvement that will be reported here is the newly developed silica gel column for ppb concentrations of the light sulfur gases (COS, H2S, CS2, SO2, CH3SH). A simplified inlet system will be described which improves reliability of the GC system. The flame photometric detector is used as the means of selectively and sensitively detecting the low concentrations of sulfur gases. Improvements will be described which have yielded better performance than previously reported for this application of the detector. Also included in this paper will be a report of field monitoring using this improved GC system. Reliability and repeatability of performance at the low ppb concentrations of sulfur gases will be demonstrated.

  18. Functional molecular markers for crop improvement.

    PubMed

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered. PMID:26171816

  19. Double-Edge Molecular Technique for Doppler Lidar Wind Measurement

    NASA Technical Reports Server (NTRS)

    Flesia, Cristina; Korb, C. Laurence

    1998-01-01

    The double-edge lidar technique for measuring the wind using molecular backscatter is described. Two high spectral resolution edge filters are located in the wings of the Rayleigh-Brillouin profile. This doubles the signal change per unit Doppler shift, the sensitivity, and gives nearly a factor of two improvement in measurement accuracy. The use of a crossover region is described where the sensitivity of a molecular and aerosol-based measurement are equal. This desensitizes the molecular measurement to the effects of aerosol scattering over a frequency range of +/- 100 m/s. We give methods for correcting for short-term frequency jitter and drift using a laser reference frequency measurement and methods for long-term frequency correction using a servo control system. The effects of Rayleigh-Brillouin scattering on the measurement are shown to be significant and are included in the analysis. Simulations for a conical scanning satellite-based lidar at 355 nm show an accuracy of 2-3 m/s for altitudes of 2 to 15 km for a 1 km vertical resolution, a satellite altitude of 400 km and a 200 km x 200 km spatial resolution. Results of ground based wind measurements are presented.

  20. Airborne myxomycete spores: detection using molecular techniques

    NASA Astrophysics Data System (ADS)

    Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

    2009-01-01

    Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

  1. Hybrid opto-electric techniques for molecular diagnostics

    SciTech Connect

    Haque, Aeraj Ul

    2012-01-01

    Hybrid optoelectric techniques reflect a new paradigm in microfluidics. In essence, these are microfluidic techniques that employ a synergistic combination of optical and electrical forces to enable noninvasive manipulation of fluids and/or particle-type entities at the micro/nano-scale [1]. Synergy between optical and electrical forces bestows these techniques with several unique features that are promising to bring new opportunities in molecular diagnostics. Within the scope of molecular diagnostics, several aspects of optoelectric techniques promise to play a relevant role. These include, but are not limited to, sample preparation, sorting, purification, amplification and detection.

  2. Application of molecular techniques on heterotrophic hydrogen production research.

    PubMed

    Li, R Y; Zhang, T; Fang, H H P

    2011-09-01

    This paper reviews the application of molecular techniques in heterotrophic hydrogen production studies. Commonly used molecular techniques are introduced briefly first, including cloning-sequencing after polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), terminal-restriction fragment length polymorphism (T-RFLP), fluorescence in situ hybridization (FISH) and quantitative real-time PCR. Application of the molecular techniques in heterotrophic hydrogen production studies are discussed in details, focusing on identification of new isolates for hydrogen production, characterization of microbial compositions in bioreactors, monitoring microbial diversity variation, visualization of microbial distribution in hydrogen-producing granular sludge, and quantification of various microbial populations. Some significant findings in recent hydrogen production studies with the application of molecular techniques are discussed, followed by a research outlook of the heterotrophic biohydrogen field.

  3. Improved modeling techniques for turbomachinery flow fields

    SciTech Connect

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-12-31

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbomachinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. This will be accomplished in a cooperative program by Penn State University and the Allison Engine Company. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tenor.

  4. Improved molecular tools for sugar cane biotechnology.

    PubMed

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology. PMID:24150836

  5. Improved molecular tools for sugar cane biotechnology.

    PubMed

    Kinkema, Mark; Geijskes, Jason; Delucca, Paulo; Palupe, Anthony; Shand, Kylie; Coleman, Heather D; Brinin, Anthony; Williams, Brett; Sainz, Manuel; Dale, James L

    2014-03-01

    Sugar cane is a major source of food and fuel worldwide. Biotechnology has the potential to improve economically-important traits in sugar cane as well as diversify sugar cane beyond traditional applications such as sucrose production. High levels of transgene expression are key to the success of improving crops through biotechnology. Here we describe new molecular tools that both expand and improve gene expression capabilities in sugar cane. We have identified promoters that can be used to drive high levels of gene expression in the leaf and stem of transgenic sugar cane. One of these promoters, derived from the Cestrum yellow leaf curling virus, drives levels of constitutive transgene expression that are significantly higher than those achieved by the historical benchmark maize polyubiquitin-1 (Zm-Ubi1) promoter. A second promoter, the maize phosphonenolpyruvate carboxylate promoter, was found to be a strong, leaf-preferred promoter that enables levels of expression comparable to Zm-Ubi1 in this organ. Transgene expression was increased approximately 50-fold by gene modification, which included optimising the codon usage of the coding sequence to better suit sugar cane. We also describe a novel dual transcriptional enhancer that increased gene expression from different promoters, boosting expression from Zm-Ubi1 over eightfold. These molecular tools will be extremely valuable for the improvement of sugar cane through biotechnology.

  6. Optimizing correlation techniques for improved earthquake location

    USGS Publications Warehouse

    Schaff, D.P.; Bokelmann, G.H.R.; Ellsworth, W.L.; Zanzerkia, E.; Waldhauser, F.; Beroza, G.C.

    2004-01-01

    Earthquake location using relative arrival time measurements can lead to dramatically reduced location errors and a view of fault-zone processes with unprecedented detail. There are two principal reasons why this approach reduces location errors. The first is that the use of differenced arrival times to solve for the vector separation of earthquakes removes from the earthquake location problem much of the error due to unmodeled velocity structure. The second reason, on which we focus in this article, is that waveform cross correlation can substantially reduce measurement error. While cross correlation has long been used to determine relative arrival times with subsample precision, we extend correlation measurements to less similar waveforms, and we introduce a general quantitative means to assess when correlation data provide an improvement over catalog phase picks. We apply the technique to local earthquake data from the Calaveras Fault in northern California. Tests for an example streak of 243 earthquakes demonstrate that relative arrival times with normalized cross correlation coefficients as low as ???70%, interevent separation distances as large as to 2 km, and magnitudes up to 3.5 as recorded on the Northern California Seismic Network are more precise than relative arrival times determined from catalog phase data. Also discussed are improvements made to the correlation technique itself. We find that for large time offsets, our implementation of time-domain cross correlation is often more robust and that it recovers more observations than the cross spectral approach. Longer time windows give better results than shorter ones. Finally, we explain how thresholds and empirical weighting functions may be derived to optimize the location procedure for any given region of interest, taking advantage of the respective strengths of diverse correlation and catalog phase data on different length scales.

  7. Improved fabrication techniques for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Lange, A. E.; Kreysa, E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.

    1983-01-01

    Techniques are described for producing improved infrared bolometers from doped germanium. Ion implantation and sputter metalization have been used to make ohmic electrical contacts to Ge:Ga chips. This method results in a high yield of small monolithic bolometers with very little low-frequency noise. When one of these chips is used as the thermometric element of a composite bolometer, it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond has been measured and found to be undesirably large. A procedure for soldering the chip to a metalized portion of the substrate is described which reduced this resistance. The contribution of the metal film absorber to the heat capacity of a composite bolometer has been measured. The heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber has significantly lower heat capacity. A low temperature blackbody calibrator has been built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approx. 0.1 sr sq cm was constructed using the new techniques. In negligible background it has an optical NEP of 3.6 10((exp -15) W/sq root of Hz at 1.0 K with a time constant of 20 ms. The noise in this bolometer is white above 2.5 Hz and is somewhat below the value predicted by thermodynamic equilibrium theory. It is in agreement with calculations based on a recent nonequilibrium theory.

  8. Teaching Molecular Biological Techniques in a Research Content

    ERIC Educational Resources Information Center

    Stiller, John W.; Coggins, T. Chad

    2006-01-01

    Molecular biological methods, such as the polymerase chain reaction (PCR) and gel electrophoresis, are now commonly taught to students in introductory biology courses at the college and even high school levels. This often includes hands-on experience with one or more molecular techniques as part of a general biology laboratory. To assure that most…

  9. Improving feed slurry rheology by colloidal techniques

    SciTech Connect

    Heath, W.O.; Ternes, R.L.

    1984-06-01

    Pacific Northwest Laboratory (PSN) has investigated three colloidal techniques in the laboratory to improve the sedimentation and flowability of Hanford simulated (nonradioactive) current acid waste (CAW) melter feed slurry: polymer-induced bridging flocculation; manipulating glass former (raw SiO/sub 2/ or frit) particle size; and alteration of nitric acid content. All three methods proved successful in improving the rheology of the simulated CAW feed. This initially had exhibited nearly worst-case flow and clogging properties, but was transformed into a flowable, resuspendable (nonclogging) feed. While each has advantages and disadvantages, the following three specific alternatives proved successful: addition of a polyelectrolyte in 2000 ppM concentration to feed slurry; substitution of a 49 wt % SiO/sub 2/ colloidal suspension (approx. 10-micron particle size) for the -325 mesh (less than or equal to 44-micron particle size) raw-chemical SiO/sub 2/; and increase of nitric acid content from the reference 1.06 M to optimum 1.35 M. The first method, polymer-induced bridging flocculation, results in a high sediment volume, nonclogging CAW feed. The second method, involving the use of colloidal silica particles results in a nonsedimenting feed that when left unagitated forms a gel. The third method, increase in feed acidity, results in a highly resuspendable (nonclogging) melter feed. Further research is therefore required to determine which of the three alternatives is the preferred method of achieving rheological control of CAW melter feeds.

  10. Improved modeling techniques for turbomachinery flow fields

    SciTech Connect

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-10-01

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.

  11. Improved Hanle effect measurement technique for fast ions.

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Gardiner, R. B.; Church, D. A.

    1973-01-01

    An improved averaging technique for use with foil-excited fast ions is applied to a Hanle-effect measurement of the mean life of some fast ions. With improved data analysis, the employed technique is expected to be more precise, as well as experimentally simpler than previously used techniques.

  12. Improving Maladaptive Behaviors Using Sensory Integration Techniques.

    ERIC Educational Resources Information Center

    Shuman, Theresa

    A study examined the use of sensory integration techniques to reduce the maladaptive behaviors that interfered with the learning of nine high school students with mental impairments attending a special school. Maladaptive behaviors identified included rocking, toe walking, echolalia, resistance to change, compulsive behaviors, aggression,…

  13. Engineering molecular mechanics: an efficient static high temperature molecular simulation technique.

    PubMed

    Subramaniyan, Arun K; Sun, C T

    2008-07-16

    Inspired by the need for an efficient molecular simulation technique, we have developed engineering molecular mechanics (EMM) as an alternative molecular simulation technique to model high temperature (T>0 K) phenomena. EMM simulations are significantly more computationally efficient than conventional techniques such as molecular dynamics simulations. The advantage of EMM is achieved by converting the dynamic atomistic system at high temperature (T>0 K) into an equivalent static system. Fundamentals of the EMM methodology are derived using thermal expansion to modify the interatomic potential. Temperature dependent interatomic potentials are developed to account for the temperature effect. The efficiency of EMM simulations is demonstrated by simulating the temperature dependence of elastic constants of copper and nickel and the thermal stress developed in a confined copper system.

  14. [An Improved Retrospective Respiratory Navigator Gating Technique].

    PubMed

    Shi, Zhongqiang; Du, Yiping

    2015-12-01

    Abdominal imaging is one of the important clinical applications of magnetic resonance imagining, but image degradation due to respiratory motion remains a major problem. Retrospective respiratory navigator gating technique is an effective approach to alleviate such degradation but is subject to long scan time and low signal-to-noise ratio (SNR) efficiency. In this study, a modified retrospective navigator gating technique with variable over-sampling ratio acquisition and weighted average reconstruction algorithm is presented. Experiments in phantom and the imaging results of seven volunteers demonstrated that the proposed method provided an enhanced SNR and reduced ghost-to-image ratio compared to the conventional method. The proposed method can also be used to reduce imaging time while maintaining comparable image quality. PMID:27079107

  15. An improved technique for pulmonary endarterectomy.

    PubMed

    Azari, Ali; Moravvej, Zahra; Afshar, Sara; Bigdelu, Leila

    2014-06-01

    We report a modified technique for pulmonary endarterectomy (PEA) on a 67-year-old man with chronic thromboembolic pulmonary hypertension (CTEPH) who presented with dyspnea. He was referred to our medical center for coronary artery bypass grafting. CTEPH had not been detected in his first visit to another medical center, but upon re-evaluation, the diagnosis was confirmed. PEA was performed with a modified method, which seems to be safe and suitable for the removal of clot and fibrotic materials. Iatrogenic dissection was performed with normal saline injection in the pulmonary artery, and then, the clot was removed completely. Although the technique may not be applicable for all cases, it can be used as an alternative to using an aspirating dissector and a pair of forceps. PMID:25207229

  16. Phase behaviors of polymer solutions using molecular simulation technique.

    PubMed

    Yang, Jung Ho; Bae, Young Chan

    2008-08-14

    Phase behaviors of polymer solutions are estimated using a combination of thermodynamic models and molecular simulation technique. In general, many parameters of binary systems are determined by fitting a thermodynamic model with experimental data. In this study, we obtained all parameters using molecular simulation. To take the specific interaction into account, we assume that it only occurs between a solvent molecule and a specific group. Our results show that the theoretical treatment accounting for the specific interaction gives more accurate predictions than those without consideration of specific interaction. Also, our approach describes the phase equilibria of various polymer solutions over the entire concentration remarkably well.

  17. Improved dosimetry techniques for intravascular brachytherapy

    NASA Astrophysics Data System (ADS)

    Sehgal, Varun

    Coronary artery disease leads to the accumulation of atheromatous plaque leading to coronary stenosis. Coronary intervention techniques such as balloon angioplasty and atherectomy are used to address coronary stenosis and establish a stable lumen thus enhancing blood flow to the myocardium. Restenosis or re-blockage of the arteries is a major limitation of the above mentioned interventional techniques. Neointimal hyperplasia or proliferation of cells in response to the vascular injury as a result of coronary intervention is considered to be one of the major causes of restenosis. Recent studies indicated that irradiation of the coronary lesion site, with radiation doses ranging from 15 to 30 Gy, leads to diminishing neointimal hyperplasia with subsequent reduction in restenosis. The radiation dose is given by catheter-based radiation delivery systems using beta-emitters 90Sr/90Y, 32P and gamma-emitting 192Ir among others. However the dose schema used for dose prescription for these sources are relatively simplistic, and are based on calculations using uniform homogenous water or tissue media and simple cylinder geometry. Stenotic coronary vessels are invariably lined with atheromatous plaque of heterogeneous composition, the radiation dose distribution obtained from such dosimetry data can cause significant variations in the actual dose received by a given patient. Such discrepancies in dose calculation can introduce relatively large uncertainties in the limits of dose window for effective and safe application of intravascular brachytherapy, and consequently in the clinical evaluation of the efficacy of this modality. In this research study we investigated the effect of different geometrical and material heterogeneities, including residual plaque, catheter non-centering, lesion eccentricity and cardiac motion on the radiation dose delivered at the lesion site. Correction factors including dose perturbation factors and dose variation factors have been calculated

  18. Umbilical connect techniques improvement-technology study

    NASA Technical Reports Server (NTRS)

    Valkema, D. C.

    1972-01-01

    The objective of this study was to develop concepts, specifications, designs, techniques, and procedures capable of significantly reducing the time required to connect and verify umbilicals for ground services to the space shuttle. The desired goal was to reduce the current time requirement of several shifts for the Saturn 5/Apollo to an elapsed time of less than one hour to connect and verify all of the space shuttle ground service umbilicals. The study was conducted in four phases: (1) literature and hardware examination, (2) concept development, (3) concept evaluation and tradeoff analysis, and (4) selected concept design. The final product of this study was a detail design of a rise-off disconnect panel prototype test specimen for a LO2/LH2 booster (or an external oxygen/hydrogen tank for an orbiter), a detail design of a swing-arm mounted preflight umbilical carrier prototype test specimen, and a part 1 specification for the umbilical connect and verification design for the vehicles as defined in the space shuttle program.

  19. Improved fabrication techniques for infrared bolometers

    NASA Technical Reports Server (NTRS)

    Lange, A. E.; Mcbride, S. E.; Richards, P. L.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Ion implantation and sputter metallization are used to produce ohmic electrical contacts to Ge:Ga chips. The method is shown to give a high yield of small monolithic bolometers with very little low-frequency noise. It is noted that when one of the chips is used as the thermometric element of a composite bolometer it must be bonded to a dielectric substrate. The thermal resistance of the conventional epoxy bond is measured and found to be undesirably large. A procedure for soldering the chip to a metallized portion of the substrate in such a way as to reduce this resistance is outlined. An evaluation is made of the contribution of the metal film absorber to the heat capacity of a composite bolometer. It is found that the heat capacity of a NiCr absorber at 1.3 K can dominate the bolometer performance. A Bi absorber possesses significantly lower heat capacity. A low-temperature blackbody calibrator is built to measure the optical responsivity of bolometers. A composite bolometer system with a throughput of approximately 0.1 sr sq cm is constructed using the new techniques. The noise in this bolometer is white above 2.5 Hz and is slightly below the value predicted by thermodynamic equilibrium theory.

  20. Improvement of Rocket Engine Plume Analysis Techniques

    NASA Technical Reports Server (NTRS)

    Smith, S. D.

    1982-01-01

    A nozzle plume flow field code was developed. The RAMP code which was chosen as the basic code is of modular construction and has the following capabilities: two phase with two phase transonic solution; a two phase, reacting gas (chemical equilibrium reaction kinetics), supersonic inviscid nozzle/plume solution; and is operational for inviscid solutions at both high and low altitudes. The following capabilities were added to the code: a direct interface with JANNAF SPF code; shock capturing finite difference numerical operator; two phase, equilibrium/frozen, boundary layer analysis; a variable oxidizer to fuel ratio transonic solution; an improved two phase transonic solution; and a two phase real gas semiempirical nozzle boundary layer expansion.

  1. Improving transition voltage spectroscopy of molecular junctions

    NASA Astrophysics Data System (ADS)

    Markussen, Troels; Chen, Jingzhe; Thygesen, Kristian S.

    2011-04-01

    Transition voltage spectroscopy (TVS) is a promising spectroscopic tool for molecular junctions. The principles in TVS is to find the minimum on a Fowler-Nordheim plot where ln(I/V2) is plotted against 1/V and relate the voltage at the minimum Vmin to the closest molecular level. Importantly, Vmin is approximately half the voltage required to see a peak in the dI/dV curve. Information about the molecular level position can thus be obtained at relatively low voltages. In this work we show that the molecular level position can be determined at even lower voltages, Vmin(α), by finding the minimum of ln(I/Vα) with α<2. On the basis of a simple Lorentzian transmission model we analyze theoretical ab initio as well as experimental I-V curves and show that the voltage required to determine the molecular levels can be reduced by ~30% as compared to conventional TVS. As for conventional TVS, the symmetry/asymmetry of the molecular junction needs to be taken into account in order to gain quantitative information. We show that the degree of asymmetry may be estimated from a plot of Vmin(α) vs α.

  2. Improving Molecular Level Chemical Speciation of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Worton, D. R.; Decker, M.; Isaacman, G. A.; Chan, A.; Wilson, K. R.; Goldstein, A. H.

    2013-12-01

    A substantial fraction of fine mode aerosols are organic with the majority formed in the atmosphere through oxidation of gas phase compounds emitted from a variety of natural and man-made sources. As a result, organic aerosols are comprised of thousands of individual organic species whose complexity increases exponentially with carbon number and degree of atmospheric oxidation. Chemical characterization of individual compounds present in this complex mixture provides information on sources and transformation processes that are critical for apportioning organic carbon from an often convoluted mixture of sources and to constrain oxidation mechanisms needed for atmospheric models. These compounds also affect the physical and optical properties of the aerosol but the vast majority remain unidentified and missing from published mass spectral libraries because of difficulties in separating and identifying them. We have developed improved methodologies for chemical identification in order to better understand complex environmental mixtures. Our approach has been to combine two-dimensional gas chromatography with high resolution time of flight mass spectrometry (GC×GC-HRTOFMS) and both traditional electron ionization (EI) and vacuum ultraviolet (VUV) photoionization. GC×GC provides improved separation of individual compounds over traditional one dimensional GC and minimizes co-elution of peaks resulting in mass spectra that are virtually free of interferences. VUV ionization is a ';soft' ionization technique that reduces fragmentation and enhances the abundance of the parent or molecular ion, which when combined with high resolution mass spectrometry can provide molecular formulas for chromatographic peaks. We demonstrate our methodology by applying it to identify more than 500 individual compounds in aerosol filter samples collected at Blodgett Forest, a rural site in the Sierra Nevada Mountains. Using the EI NIST mass spectral library and molecular formulas determined

  3. Molecular marker technologies for plant improvement.

    PubMed

    Winter, P; Kahl, G

    1995-07-01

    The exploitation of DNA polymorphisms by an ever-increasing number of molecular marker technologies has begun to have an impact on plant genome research and breeding. Restriction fragment length polymorphisms, micro- and mini-satellites and PCR-based approaches are used to determine inter- and intra-specific genetic diversity and construct molecular maps of crops using specially designed mapping populations. Resistance genes and other agronomically important loci are tagged with tightly linked DNA markers and the genes isolated by magabase DNA technology and cloning into yeast artificial chromosomes (YAC). This review discusses some recent developments and results in this field.

  4. Molecular technology: improving strategies for controlling hydatid disease and cysticercosis.

    PubMed

    McManus, D P

    1990-06-01

    Recombinant DNA and related technologies are providing valuable, novel reagents for application in control strategies against the major parasitic diseases, including hydatid disease and cysticercosis. The impact of these powerful techniques for improving diagnosis and identification of various life cycle stages of Echinococcus spp. and Taenia solium, essential pre-requisites for epidemiological studies and for evaluating control programs, is beyond question. Furthermore, the use of molecular technology for characterizing sub-specific variants of strains of both Echinococcus and T. solium has led to important revisions of our understanding of the diseases they cause. In light of the recent remarkable development of a recombinant vaccine against T. ovis, the first practical parasite vaccine to be produced, the prospects for rapid development of similar vaccines against the medically important taeniids appear to be very encouraging.

  5. Molecular genetics, recombinant DNA techniques, and genetic neurological disease.

    PubMed

    Rosenberg, R N

    1984-06-01

    The molecular defects responsible for Huntington's disease, the spinocerebellar degenerations, myotonic muscular dystrophy, neurofibromatosis, and tuberous sclerosis, among other major dominant inherited diseases of the nervous system, will be identified using the new techniques of molecular genetics. With synthesized nucleic acid segments complementary to portions of the patient's DNA, known as complementary DNA probes, it will be possible to identify and isolate the mutant gene responsible for a particular disease. These events are referred to as gene cloning. In addition, complex genetic regulatory mechanisms involved in cell differentiation during neuroembryogenesis will be elucidated with the application of these strategies. It is important for the clinician to become familiar with the precision and potential of these new methodologies, because they will soon influence significantly the practice of neurology.

  6. Hybrid molecular-continuum techniques for micro and nano flows

    NASA Astrophysics Data System (ADS)

    Reese, Jason; Ritos, Konstantinos; Borg, Matthew; Lockerby, Duncan

    2015-11-01

    Nano- and micro-confined fluid flows are often characterised by non-continuum effects that require special treatment beyond the scope of conventional continuum-fluid modelling. However, if the flow system has high-aspect-ratio components (e.g. long narrow channels) the computational cost of a fully molecular-based simulation can be prohibitive. In this talk we present some important elements of a heterogeneous molecular-continuum method that exploits the various degrees of scale separation in both time and space that are very often present in these types of flows. We demonstrate the ability of these techniques to predict the flow of water in aligned carbon nanotube (CNT) membranes: the tube diameters are 1-2 nm and the tube lengths (i.e. the membrane thicknesses) are 2-6 orders of magnitude larger. We compare our results with experimental data. We also find very good agreement with experimental results for a 1 mm thick membrane that has CNTs of diameter 1.59 nm. In this case, our hybrid multiscale simulation is orders of magnitude faster than a full molecular dynamics simulation.

  7. Improved internal control for molecular diagnosis assays.

    PubMed

    Vinayagamoorthy, T; Maryanski, Danielle; Vinayagamoorthy, Dilanthi; Hay, Katie S L; Yo, Jacob; Carter, Mark; Wiegel, Joseph

    2015-01-01

    The two principal determining steps in molecular diagnosis are the amplification and the identification steps. Accuracy of DNA amplification is primarily determined by the annealing sequence of the PCR primer to the analyte DNA. Accuracy for identification is determined either by the annealing region of a labelled probe for the real time PCR analysis, or the annealing of a sequencing primer for DNA sequencing analysis, that binds to the respective analyte (amplicon). Presently, housekeeping genes (Beta globin, GAPDH) are used in molecular diagnosis to verify that the PCR conditions are optimum, and are thus known as amplification controls [1-4]. Although these genes have been useful as amplification controls, they lack the true definition of an internal control because the primers and annealing conditions are not identical to the analyte being assayed. This may result in a false negative report [5]. The IC-Code platform technology described here provides a true internal control where the internal control and analyte share identical PCR primers annealing sequences for the amplification step and identical sequencing primer annealing sequence for the identification step. •The analyte and internal control have the same PCR and sequencing annealing sequences.•This method assures for little or no false negatives and false positives due to the method's design of using identical annealing conditions for the internal control and analyte, and by using DNA sequencing analysis for the identification step of the analyte, respectively.•This method also allows for a set lower limit of detection to be used by varying the amount of internal control used in the assay.

  8. Improved molecular sorbent trap for high-vacuum systems

    NASA Technical Reports Server (NTRS)

    Knechtel, E. D.; Pitts, W. C.

    1971-01-01

    Closed cycle refrigeration loop in which trays holding molecular sorbent are made to serve as cooling baffles improves the performance of high vacuum systems. High performance is obtained with almost no decrease in pumping speed.

  9. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect

    Terralog Technologies

    2002-11-25

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  10. Techniques To Improve Subharmonic Emission From Encapsulated Microbubbles

    NASA Astrophysics Data System (ADS)

    Xi, Dong Zhang Xiaoyu; Gong, Yanjun; Gong, Xiufen

    2008-06-01

    Subharmonic contrast imaging promises to improve ultrasound imaging quality by taking advantage of increased contrast to tissue signal. However, acoustic pressures beyond the subharmonic generation threshold using common ultrasound pulses may induce significant contrast microbubble destruction. In this work, we propose two techniques to improve the subharmonic emission from encapsulated microbubbles, i.e. chirp excitation technique and dual-frequency excitation techniques. For the first technique, chirp signals with center frequency 5 MHz are employed to drive microbubbles in numerical simulation and experimental studies. For the second technique, both theoretical simulation and experimental verification are also presented. The simulation uses a modified mathematical model developed by Church and experimental work uses microbubbles sonicated by dual frequencies (2 MHz and 4 MHz) superimposed to simulate a truncated saw-tooth wave.

  11. An improved switching converter model using discrete and average techniques

    NASA Technical Reports Server (NTRS)

    Shortt, D. J.; Lee, F. C.

    1982-01-01

    The nonlinear modeling and analysis of dc-dc converters has been done by averaging and discrete-sampling techniques. The averaging technique is simple, but inaccurate as the modulation frequencies approach the theoretical limit of one-half the switching frequency. The discrete technique is accurate even at high frequencies, but is very complex and cumbersome. An improved model is developed by combining the aforementioned techniques. This new model is easy to implement in circuit and state variable forms and is accurate to the theoretical limit.

  12. Improving "lab-on-a-chip" techniques using biomedical nanotechnology: a review.

    PubMed

    Gorjikhah, Fatemeh; Davaran, Soodabeh; Salehi, Roya; Bakhtiari, Mohsen; Hasanzadeh, Arash; Panahi, Yunes; Emamverdy, Masumeh; Akbarzadeh, Abolfazl

    2016-11-01

    Nanotechnology and its applications in biomedical sciences principally in molecular nanodiagnostics are known as nanomolecular diagnostics, which provides new options for clinical nanodiagnostic techniques. Molecular nanodiagnostics are a critical role in the development of personalized medicine, which features point-of care performance of diagnostic procedure. This can to check patients at point-of-care facilities or in remote or resource-poor locations, therefore reducing checking time from days to minutes. In this review, applications of nanotechnology suited to biomedicine are discussed in two main class: biomedical applications for use inside (such as drugs, diagnostic techniques, prostheses, and implants) and outside the body (such as "lab-on-a-chip" techniques). A lab-on-a-chip (LOC) is a tool that incorporates numerous laboratory tasks onto a small device, usually only millimeters or centimeters in size. Finally, are discussed the applications of biomedical nanotechnology in improving "lab-on-a-chip" techniques.

  13. Diagnosis of Whipple's disease using molecular biology techniques.

    PubMed

    Cosme, Ángel; Ojeda, Evelia; Muñagorri, Ana I; Gaminde, Eduardo; Bujanda, Luis; Larzabal, Mikel; Gil, Inés

    2011-04-01

    The diagnosis of Whipple's disease (WD) is based on the existence of clinical signs and symptoms compatible with the disease and in the presence of PAS-positive diastase-resistant granules in the macrophages of the small intestine. If there is suspicion of the disease but no histological findings or only isolated extraintestinal manifestations, species-specific PCR using different sequences of the T. whippleii genome from different tissue types and biological fluids is recommended.This study reports two cases: the first patient had diarrhea and the disease was suspected after an endoscopic examination of the ileum, while the second patient had multi-systemic manifestations,particularly abdominal, thoracic, and peripheral lymphadenopathies. In both cases, the diagnosis was confirmed using molecular biology techniques to samples from the small intestine or from a retroperineal lymph node, respectively. PMID:21526877

  14. Molecular Genetic Tools and Techniques for Marchantia polymorpha Research.

    PubMed

    Ishizaki, Kimitsune; Nishihama, Ryuichi; Yamato, Katsuyuki T; Kohchi, Takayuki

    2016-02-01

    Liverworts occupy a basal position in the evolution of land plants, and are a key group to address a wide variety of questions in plant biology. Marchantia polymorpha is a common, easily cultivated, dioecious liverwort species, and is emerging as an experimental model organism. The haploid gametophytic generation dominates the diploid sporophytic generation in its life cycle. Genetically homogeneous lines in the gametophyte generation can be established easily and propagated through asexual reproduction, which aids genetic and biochemical experiments. Owing to its dioecy, male and female sexual organs are formed in separate individuals, which enables crossing in a fully controlled manner. Reproductive growth can be induced at the desired times under laboratory conditions, which helps genetic analysis. The developmental process from a single-celled spore to a multicellular body can be observed directly in detail. As a model organism, molecular techniques for M. polymorpha are well developed; for example, simple and efficient protocols of Agrobacterium-mediated transformation have been established. Based on them, various strategies for molecular genetics, such as introduction of reporter constructs, overexpression, gene silencing and targeted gene modification, are available. Herein, we describe the technologies and resources for reverse and forward genetics in M. polymorpha, which offer an excellent experimental platform to study the evolution and diversity of regulatory systems in land plants. PMID:26116421

  15. Molecular Techniques for Detection, Species Differentiation, and Phylogenetic Analysis of Microsporidia

    PubMed Central

    Franzen, Caspar; Müller, Andreas

    1999-01-01

    Microsporidia are obligate intracellular protozoan parasites that infect a broad range of vertebrates and invertebrates. These parasites are now recognized as one of the most common pathogens in human immunodeficiency virus-infected patients. For most patients with infectious diseases, microbiological isolation and identification techniques offer the most rapid and specific determination of the etiologic agent. This is not a suitable procedure for microsporidia, which are obligate intracellular parasites requiring cell culture systems for growth. Therefore, the diagnosis of microsporidiosis currently depends on morphological demonstration of the organisms themselves. Although the diagnosis of microsporidiosis and identification of microsporidia by light microscopy have greatly improved during the last few years, species differentiation by these techniques is usually impossible and transmission electron microscopy may be necessary. Immunfluorescent-staining techniques have been developed for species differentiation of microsporidia, but the antibodies used in these procedures are available only at research laboratories at present. During the last 10 years, the detection of infectious disease agents has begun to include the use of nucleic acid-based technologies. Diagnosis of infection caused by parasitic organisms is the last field of clinical microbiology to incorporate these techniques and molecular techniques (e.g., PCR and hybridization assays) have recently been developed for the detection, species differentiation, and phylogenetic analysis of microsporidia. In this paper we review human microsporidial infections and describe and discuss these newly developed molecular techniques. PMID:10194459

  16. Improved techniques for thermomechanical testing in support of deformation modeling

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.; Ellis, John R.

    1992-01-01

    The feasibility of generating precise thermomechanical deformation data to support constitutive model development was investigated. Here, the requirement is for experimental data that is free from anomalies caused by less than ideal equipment and procedures. A series of exploratory tests conducted on Hastelloy X showed that generally accepted techniques for strain controlled tests were lacking in at least three areas. Specifically, problems were encountered with specimen stability, thermal strain compensation, and temperature/mechanical strain phasing. The source of these difficulties was identified and improved thermomechanical testing techniques to correct them were developed. These goals were achieved by developing improved procedures for measuring and controlling thermal gradients and by designing a specimen specifically for thermomechanical testing. In addition, innovative control strategies were developed to correctly proportion and phase the thermal and mechanical components of strain. Subsequently, the improved techniques were used to generate deformation data for Hastelloy X over the temperature range, 200 to 1000 C.

  17. Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome.

    PubMed

    Jinkerson, Robert E; Jonikas, Martin C

    2015-05-01

    The success of the green alga Chlamydomonas reinhardtii as a model organism is to a large extent due to the wide range of molecular techniques that are available for its characterization. Here, we review some of the techniques currently used to modify and interrogate the C. reinhardtii nuclear genome and explore several technologies under development. Nuclear mutants can be generated with ultraviolet (UV) light and chemical mutagens, or by insertional mutagenesis. Nuclear transformation methods include biolistic delivery, agitation with glass beads, and electroporation. Transforming DNA integrates into the genome at random sites, and multiple strategies exist for mapping insertion sites. A limited number of studies have demonstrated targeted modification of the nuclear genome by approaches such as zinc-finger nucleases and homologous recombination. RNA interference is widely used to knock down expression levels of nuclear genes. A wide assortment of transgenes has been successfully expressed in the Chlamydomonas nuclear genome, including transformation markers, fluorescent proteins, reporter genes, epitope tagged proteins, and even therapeutic proteins. Optimized expression constructs and strains help transgene expression. Emerging technologies such as the CRISPR/Cas9 system, high-throughput mutant identification, and a whole-genome knockout library are being developed for this organism. We discuss how these advances will propel future investigations.

  18. New implantation techniques for improved solar cell junctions

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Bunker, S. N.

    1982-01-01

    Ion implantation techniques offering improved cell performance and reduced cost have been studied. These techniques include non-mass-analyzed phosphorus implantation, argon implantation gettering, and low temperature boron annealing. It is found that cells produced by non-mass-analyzed implantation perform as well as mass-analyzed controls, and that the cell performance is largely independent of process parameters. A study of argon implantation gettering shows no improvement over non-gettered controls. Results of low temperature boron annealing experiments are presented.

  19. Small fenestra stapedectomy technique: reducing risk and improving hearing.

    PubMed

    Bailey, H A; Pappas, J J; Graham, S S

    1983-10-01

    During the past 25 years many variations have emerged in stapedectomy, most of which centered around either a change in the prosthesis itself or in the type of oval window seal. The small fenestra stapedectomy technique (SFT) represents a change in surgical procedure rather than in prosthetic design. This technique offers the opportunity to improve hearing results while reducing risks in stapedectomy surgery. Four areas of significant improvement are seen in patients in whom the SFT was used: (1) improved hearing in the high frequencies of 2000, 4000, and 8000 Hz, (2) improved speech discrimination scores, (3) a significant reduction in the number of reported vestibular complaints, and (4) a reduction in the number of serious postoperative sensorineural hearing losses.

  20. New technologies and techniques to improve adenoma detection in colonoscopy

    PubMed Central

    Bond, Ashley; Sarkar, Sanchoy

    2015-01-01

    Adenoma detection rate (ADR) is a key component of colonoscopy quality assessment, with a direct link between itself and future mortality from colorectal cancer. There are a number of potential factors, both modifiable and non-modifiable that can impact upon ADR. As methods, understanding and technologies advance, so should our ability to improve ADRs, and thus, reduce colorectal cancer mortality. This article will review new technologies and techniques that improve ADR, both in terms of the endoscopes themselves and adjuncts to current systems. In particular it focuses on effective techniques and behaviours, developments in image enhancement, advancement in endoscope design and developments in accessories that may improve ADR. It also highlights the key role that continued medical education plays in improving the quality of colonoscopy and thus ADR. The review aims to present a balanced summary of the evidence currently available and does not propose to serve as a guideline. PMID:26265990

  1. How Students Learn: Improving Teaching Techniques for Business Discipline Courses

    ERIC Educational Resources Information Center

    Cluskey, Bob; Elbeck, Matt; Hill, Kathy L.; Strupeck, Dave

    2011-01-01

    The focus of this paper is to familiarize business discipline faculty with cognitive psychology theories of how students learn together with teaching techniques to assist and improve student learning. Student learning can be defined as the outcome from the retrieval (free recall) of desired information. Student learning occurs in two processes.…

  2. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  3. Applications of molecular physics 'biotechnology' to the rational design of an improved phenytoin analogue.

    PubMed

    Weaver, D F

    1992-12-01

    This study exploits molecular physics, in conjunction with a large scale computing environment, as a tool for understanding the clinical phenomenology of phenytoin (PHT) toxicology at a molecular level and for employing this understanding in an attempt to design improved drugs. The application of molecular physics techniques, such as quantum mechanics and molecular force field calculations, to the process of rational anticonvulsant drug design remains virtually unexplored. A 3-step strategy for applying these techniques to the design of an improved PHT molecule is presented. Step 1 employs quantitative structure-activity relationship calculations on 80 PHT analogues to ascertain the portion of the PHT molecule necessary for bioactivity (i.e. the 'bioactive face' of PHT); the N3-C4(O)-C5-R fragment of PHT was identified as the bioactive face. Step 2 employs molecular modelling studies to determine the portion of the PHT molecule necessary for the teratogenic, mutagenic and connective tissue toxicities of PHT (i.e. the 'biotoxic face'); the C2(O)-N3 fragment of PHT was identified as the biotoxic face. Step 3 experiments design an 'improved' PHT analogue, which maintains the bioactive face while eliminating the integrity of the biotoxic face; 2-deoxy-5,5-diphenylhydantoin was designed and synthesized as the improved PHT analogue. This compound had biological activity equivalent to PHT, but was unable to bind to nucleic acids or to chelate metals involved in connective tissue metabolism. PMID:1344772

  4. Applications of molecular physics 'biotechnology' to the rational design of an improved phenytoin analogue.

    PubMed

    Weaver, D F

    1992-12-01

    This study exploits molecular physics, in conjunction with a large scale computing environment, as a tool for understanding the clinical phenomenology of phenytoin (PHT) toxicology at a molecular level and for employing this understanding in an attempt to design improved drugs. The application of molecular physics techniques, such as quantum mechanics and molecular force field calculations, to the process of rational anticonvulsant drug design remains virtually unexplored. A 3-step strategy for applying these techniques to the design of an improved PHT molecule is presented. Step 1 employs quantitative structure-activity relationship calculations on 80 PHT analogues to ascertain the portion of the PHT molecule necessary for bioactivity (i.e. the 'bioactive face' of PHT); the N3-C4(O)-C5-R fragment of PHT was identified as the bioactive face. Step 2 employs molecular modelling studies to determine the portion of the PHT molecule necessary for the teratogenic, mutagenic and connective tissue toxicities of PHT (i.e. the 'biotoxic face'); the C2(O)-N3 fragment of PHT was identified as the biotoxic face. Step 3 experiments design an 'improved' PHT analogue, which maintains the bioactive face while eliminating the integrity of the biotoxic face; 2-deoxy-5,5-diphenylhydantoin was designed and synthesized as the improved PHT analogue. This compound had biological activity equivalent to PHT, but was unable to bind to nucleic acids or to chelate metals involved in connective tissue metabolism.

  5. Applications of process improvement techniques to improve workflow in abdominal imaging.

    PubMed

    Tamm, Eric Peter

    2016-03-01

    Major changes in the management and funding of healthcare are underway that will markedly change the way radiology studies will be reimbursed. The result will be the need to deliver radiology services in a highly efficient manner while maintaining quality. The science of process improvement provides a practical approach to improve the processes utilized in radiology. This article will address in a step-by-step manner how to implement process improvement techniques to improve workflow in abdominal imaging.

  6. Molecular Genetics Techniques to Develop New Treatments for Brain Cancers

    SciTech Connect

    Fox, Jacob; Fathallan-Shaykh, Hassan

    2006-09-22

    The objectives of this report are: (1) to devise novel molecular gene therapies for malignant brain tumors, (2) advance our understanding of the immune system in the central nervous system; and (3) apply genomics to find molecular probes to diagnose brain tumors, predict prognosis, biological behavior and their response to treatment.

  7. Challenges in determining causation in structure-function studies using molecular biological techniques.

    PubMed

    de los Reyes, Francis L

    2010-09-01

    The use of molecular biological techniques for determining the levels and types of different microbial populations in bioreactors has led to the emergence of the microbial community 'structure-function' paradigm that is often used in research. Typically, lab- or full-scale systems are monitored for the relevant parameters, and these parameters are related to the changes in microbial populations. Research in activated sludge phenomena, such as filamentous bulking, filamentous foaming, nitrogen removal, and phosphorus removal, are replete with many examples of this 'structure-function' paradigm, most commonly those that involve 16S rRNA gene-based analysis of the microbial populations. In many cases, such studies assume a causal microbial population (e.g., a species that causes bulking or foaming), or conclude in identifying a causal population. However, assigning cause to specific organisms and populations is problematic in a complex environment such as wastewater bioreactors. The Koch-Henle postulates, the gold standard in evaluating causation of disease, have limitations when applied to systems with mixed microbial communities with complex interactions, particularly if pure cultures are not available. Molecular techniques that allow specific identification and quantification of organisms have been used by researchers to overcome the limitations of culture-based techniques, and at the same time, raised new questions on the applicability of causation postulates in environmental systems. In this paper, various causation criteria improving on the Koch-Henle postulates are presented. Complicating issues in assigning cause in wastewater bioreactors are identified. Approaches for determining cause-effect relationships are illustrated using 16S rDNA-based investigations of filaments that cause bulking and foaming in activated sludge. The hope is that a causation framework that accounts for the assumptions in molecular studies, as applied to wastewater treatment research

  8. Theory of the double-edge molecular technique for Doppler lidar wind measurement.

    PubMed

    Flesia, C; Korb, C L

    1999-01-20

    The theory of the double-edge lidar technique for measuring the wind with molecular backscatter is described. Two high-spectral-resolution edge filters are located in the wings of the Rayleigh-Brillouin profile. This doubles the signal change per unit Doppler shift, the sensitivity, and improves measurement accuracy relative to the single-edge technique by nearly a factor of 2. The use of a crossover region where the sensitivity of a molecular- and an aerosol-based measurement is equal is described. Use of this region desensitizes the molecular measurement to the effects of aerosol scattering over a velocity range of +/-100 m/s. We give methods for correcting short-term, shot-to-shot, frequency jitter and drift with a laser reference frequency measurement and methods for long-term frequency correction with a servo control system. The effects of Rayleigh-Brillouin scattering on the measurement are shown to be significant and are included in the analysis. Simulations for a conical scanning satellite-based lidar at 355 nm show an accuracy of 2-3 m/s for altitudes of 2-15 km for a 1-km vertical resolution, a satellite altitude of 400 km, and a 200 km x 200 km spatial resolution. PMID:18305631

  9. Somatic Embryogenesis: Still a Relevant Technique in Citrus Improvement.

    PubMed

    Omar, Ahmad A; Dutt, Manjul; Gmitter, Frederick G; Grosser, Jude W

    2016-01-01

    The genus Citrus contains numerous fresh and processed fruit cultivars that are economically important worldwide. New cultivars are needed to battle industry threatening diseases and to create new marketing opportunities. Citrus improvement by conventional methods alone has many limitations that can be overcome by applications of emerging biotechnologies, generally requiring cell to plant regeneration. Many citrus genotypes are amenable to somatic embryogenesis, which became a key regeneration pathway in many experimental approaches to cultivar improvement. This chapter provides a brief history of plant somatic embryogenesis with focus on citrus, followed by a discussion of proven applications in biotechnology-facilitated citrus improvement techniques, such as somatic hybridization, somatic cybridization, genetic transformation, and the exploitation of somaclonal variation. Finally, two important new protocols that feature plant regeneration via somatic embryogenesis are provided: protoplast transformation and Agrobacterium-mediated transformation of embryogenic cell suspension cultures.

  10. On improving storm surge forecasting using an adjoint optimal technique

    NASA Astrophysics Data System (ADS)

    Li, Yineng; Peng, Shiqiu; Yan, Jing; Xie, Lian

    2013-12-01

    A three-dimensional ocean model and its adjoint model are used to simultaneously optimize the initial conditions (IC) and the wind stress drag coefficient (Cd) for improving storm surge forecasting. To demonstrate the effect of this proposed method, a number of identical twin experiments (ITEs) with a prescription of different error sources and two real data assimilation experiments are performed. Results from both the idealized and real data assimilation experiments show that adjusting IC and Cd simultaneously can achieve much more improvements in storm surge forecasting than adjusting IC or Cd only. A diagnosis on the dynamical balance indicates that adjusting IC only may introduce unrealistic oscillations out of the assimilation window, which can be suppressed by the adjustment of the wind stress when simultaneously adjusting IC and Cd. Therefore, it is recommended to simultaneously adjust IC and Cd to improve storm surge forecasting using an adjoint technique.

  11. Improved parallel solution techniques for the integral transport matrix method

    SciTech Connect

    Zerr, Robert J; Azmy, Yousry Y

    2010-11-23

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution by up to {approx}50% when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing case are opticaUy thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block preconditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient preconditioner.

  12. Mass spectrometric techniques for characterizing low-molecular-weight resins used as paint varnishes.

    PubMed

    Bonaduce, I; Colombini, M P; Degano, I; Di Girolamo, F; La Nasa, J; Modugno, F; Orsini, S

    2013-01-01

    The molecular structure of three low-molecular-weight resins used as paint varnishes has been characterized by use of an approach based on three different mass spectrometric techniques. We investigated the ketone resin MS2A, the aldehyde resin Laropal A81, and the hydrocarbon resin Regalrez 1094, now commonly used in restoration. To date, the molecular structures of these resins have not been completely elucidated. To improve current knowledge of the chemical composition of these materials, information obtained by gas chromatography-mass spectrometry (GC/MS), pyrolysis-gas chromatography-mass spectrometry (Py/GC/MS), and electrospray ionization mass spectrometry (ESI-Q-ToF) was combined. Analysis, in solution, of the whole polymeric fraction of the resins by flow-injection ESI-Q-ToF, and of the non-polymeric fraction by GC-MS, enabled us to identify previously unreported features of the polymer structures. In addition, the Py-GC/MS profiles that we obtained will help to enhance the databases currently available in the literature. The proposed approach can be extended to other low-molecular-weight resins used as varnishes in conservation.

  13. Effective colonoscopy training techniques: strategies to improve patient outcomes

    PubMed Central

    Papanikolaou, Ioannis S; Karatzas, Pantelis S; Varytimiadis, Lazaros T; Tsigaridas, Athanasios; Galanopoulos, Michail; Viazis, Nikos; Karamanolis, Dimitrios G

    2016-01-01

    Colonoscopy has substantially evolved during the last 20 years and many different training techniques have been developed in order to improve the performance of endoscopists. The most known are mechanical simulators, virtual reality simulators, computer-simulating endoscopy, magnetic endoscopic imaging, and composite and explanted animal organ simulators. Current literature generally indicates that the use of simulators improves performance of endoscopists and enhances safety of patients, especially during the initial phase of training. Moreover, newer endoscopes and imaging techniques such as high-definition colonoscopes, chromocolonoscopy with dyes spraying, and third-eye retroscope have been incorporated in everyday practice, offering better visualization of the colon and detection of polyps. Despite the abundance of these different technological features, training devices are not widely used and no official guideline or specified training algorithm or technique for lower gastrointestinal endoscopy has been evolved. In this review, we present the most important training methods currently available and evaluate these using existing literature. We also try to propose a training algorithm for novice endoscopists. PMID:27099542

  14. Improving Sensitivity in Ultrasound Molecular Imaging by Tailoring Contrast Agent Size Distribution: In Vivo Studies

    PubMed Central

    Streeter, Jason E.; Gessner, Ryan; Miles, Iman; Dayton, Paul A.

    2010-01-01

    Molecular imaging with ultrasound relies on microbubble contrast agents (MCAs) selectively adhering to a ligand-specific target. Prior studies have shown that only small quantities of microbubbles are retained at their target sites, therefore, enhancing contrast sensitivity to low concentrations of microbubbles is essential to improve molecular imaging techniques. In order to assess the effect of MCA diameter on imaging sensitivity, perfusion and molecular imaging studies were performed with microbubbles of varying size distributions. To assess signal improvement and MCA circulation time as a function of size and concentration, blood perfusion was imaged in rat kidneys using nontargeted size-sorted MCAs with a Siemens Sequoia ultrasound system (Siemans, Mountain View, CA) in cadence pulse sequencing (CPS) mode. Molecular imaging sensitivity improvements were studied with size-sorted αvβ3-targeted bubbles in both fibrosarcoma and R3230 rat tumor models. In perfusion imaging studies, video intensity and contrast persistence was ≈8 times and ≈3 times greater respectively, for “sorted 3-micron” MCAs (diameter, 3.3 ± 1.95 μm) when compared to “unsorted” MCAs (diameter, 0.9 ± 0.45 μm) at low concentrations. In targeted experiments, application of sorted 3-micron MCAs resulted in a ≈20 times video intensity increase over unsorted populations. Tailoring size-distributions results in substantial imaging sensitivity improvement over unsorted populations, which is essential in maximizing sensitivity to small numbers of MCAs for molecular imaging. PMID:20236606

  15. CELLULAR, BIOCHEMICAL, AND MOLECULAR TECHNIQUES IN DEVELOPMENTAL TOXICOLOGY

    EPA Science Inventory

    Cellular, molecular and biochemical approaches vastly expand the possibilities for revealing the underlying mechanisms of developmental toxicity. The increasing interest in embryonic development as a model system for the study of gene expression has resulted in a cornucopia of i...

  16. Physiotherapy in cystic fibrosis: optimising techniques to improve outcomes.

    PubMed

    Rand, S; Hill, L; Prasad, S A

    2013-12-01

    Optimisation of physiotherapy techniques to improve outcomes is an area of cystic fibrosis (CF) care, which has developed considerably over the last two decades. With the introduction of newborn screening and an increase in median life expectancy, the management of individuals with CF has needed to adapt to a more dynamic and individualised approach. It is essential that CF physiotherapy management reflects the needs of a changing cohort of paediatric CF patients and it is no longer justifiable to adopt a 'blanket' prescriptive approach to care. The areas of physiotherapy management which are reviewed and discussed in this paper include inhalation therapy, airway clearance techniques, the management of newborn screened infants, physical activity and exercise. PMID:24209461

  17. Strain mapping accuracy improvement using super-resolution techniques.

    PubMed

    Bárcena-González, G; Guerrero-Lebrero, M P; Guerrero, E; Fernández-Reyes, D; González, D; Mayoral, A; Utrilla, A D; Ulloa, J M; Galindo, P L

    2016-04-01

    Super-resolution (SR) software-based techniques aim at generating a final image by combining several noisy frames with lower resolution from the same scene. A comparative study on high-resolution high-angle annular dark field images of InAs/GaAs QDs has been carried out in order to evaluate the performance of the SR technique. The obtained SR images present enhanced resolution and higher signal-to-noise (SNR) ratio and sharpness regarding the experimental images. In addition, SR is also applied in the field of strain analysis using digital image processing applications such as geometrical phase analysis and peak pairs analysis. The precision of the strain mappings can be improved when SR methodologies are applied to experimental images.

  18. Improving the accuracy of canal seepage detection through geospatial techniques

    NASA Astrophysics Data System (ADS)

    Arshad, Muhammad

    With climatic change, many western states in the United States are experiencing drought conditions. Numerous irrigation districts are losing significant amount of water from their canal systems due to leakage. Every year, on the average 2 million acres of prime cropland in the US is lost to soil erosion, waterlogging and salinity. Lining of canals could save enormous amount of water for irrigating crops but in present time due to soaring costs of construction and environmental mitigation, adopting such program on a large scale would be excessive. Conventional techniques of seepage detection are expensive, time consuming and labor intensive besides being not very accurate. Technological advancements in remote sensing have made it possible to investigate irrigation canals for seepage sites identification. In this research, band-9 in the [NIR] region and band-45 in the [TIR] region of an airborne MASTER data has been utilized to highlight anomalies along irrigation canal at Phoenix, Arizona. High resolution (1 to 4 meter pixels) satellite images provided by private companies for scientific research and made available by Google to the public on Google Earth is then successfully used to separate those anomalies into water activity sites, natural vegetation, and man-made structures and thereby greatly improving the seepage detection ability of airborne remote sensing. This innovative technique is much faster and cost effective as compared to conventional techniques and past airborne remote sensing techniques for verification of anomalies along irrigation canals. This technique also solves one of the long standing problems of discriminating false impression of seepage sites due to dense natural vegetation, terrain relief and low depressions of natural drainages from true water related activity sites.

  19. Historical shoreline mapping (I): improving techniques and reducing positioning errors

    USGS Publications Warehouse

    Thieler, E. Robert; Danforth, William W.

    1994-01-01

    A critical need exists among coastal researchers and policy-makers for a precise method to obtain shoreline positions from historical maps and aerial photographs. A number of methods that vary widely in approach and accuracy have been developed to meet this need. None of the existing methods, however, address the entire range of cartographic and photogrammetric techniques required for accurate coastal mapping. Thus, their application to many typical shoreline mapping problems is limited. In addition, no shoreline mapping technique provides an adequate basis for quantifying the many errors inherent in shoreline mapping using maps and air photos. As a result, current assessments of errors in air photo mapping techniques generally (and falsely) assume that errors in shoreline positions are represented by the sum of a series of worst-case assumptions about digitizer operator resolution and ground control accuracy. These assessments also ignore altogether other errors that commonly approach ground distances of 10 m. This paper provides a conceptual and analytical framework for improved methods of extracting geographic data from maps and aerial photographs. We also present a new approach to shoreline mapping using air photos that revises and extends a number of photogrammetric techniques. These techniques include (1) developing spatially and temporally overlapping control networks for large groups of photos; (2) digitizing air photos for use in shoreline mapping; (3) preprocessing digitized photos to remove lens distortion and film deformation effects; (4) simultaneous aerotriangulation of large groups of spatially and temporally overlapping photos; and (5) using a single-ray intersection technique to determine geographic shoreline coordinates and express the horizontal and vertical error associated with a given digitized shoreline. As long as historical maps and air photos are used in studies of shoreline change, there will be a considerable amount of error (on the

  20. Lidar signal-to-noise ratio improvements: Considerations and techniques

    NASA Astrophysics Data System (ADS)

    Hassebo, Yasser Y.

    The primary objective of this study is to improve lidar signal-to-noise ratio (SNR) and hence extend attainable lidar ranges through reduction of the sky background noise (BGP), which dominates other sources of noise in daytime operations. This is particularly important for Raman lidar techniques where the Raman backscattered signal of interest is relatively weak compared with the elastic backscatter lidars. Two approaches for reduction of sky background noise are considered: (1) Improvements in lidar SNR by optimization of the design of the lidar receiver were examined by a series of simulations. This part of the research concentrated on biaxial lidar systems, where overlap between laser beam and receiver field of view (FOV) is an important aspect of noise considerations. The first optimized design evolved is a wedge shaped aperture. While this design has the virtue of greatly reducing background light, it is difficult to implement practically, requiring both changes in area and position with lidar range. A second more practical approach, which preserves some of the advantages of the wedge design, was also evolved. This uses a smaller area circular aperture optimally located in the image plane for desired ranges. Simulated numerical results for a biaxial lidar have shown that the best receiver parameters selection is one using a small circular aperture (field stop) with a small telescope focal length f, to ensure the minimum FOV that accepts all return signals over the entire lidar range while at the same time minimizing detected BGP and hence maximizing lidar SNR and attainable lidar ranges. The improvement in lidar SNR was up to 18%. (2) A polarization selection technique was implemented to reduce sky background signal for linearly polarized monostatic elastic backscatter lidar measurements. The technique takes advantage of naturally occurring polarization properties in scattered sky light, and then ensures that both the lidar transmitter and receiver track and

  1. Molecular alignment and orientation with a hybrid Raman scattering technique

    NASA Astrophysics Data System (ADS)

    Bustard, Philip J.; Lausten, R.; Sussman, Benjamin J.

    2012-11-01

    We demonstrate a scheme for the preparation of molecular alignment and angular momentum orientation using a hybrid combination of two limits of Raman scattering. First a weak, impulsive pump pulse initializes the system via the nonresonant dynamic Stark effect. Then, having overcome the influence of the vacuum fluctuations, an amplification pulse selectively enhances the initial coherences by transient stimulated Raman scattering, generating alignment and angular momentum orientation of molecular hydrogen. The amplitude and phase of the resulting coherent dynamics are experimentally probed, indicating an amplification factor of 4.5. An analytic theory is developed to model the dynamics.

  2. Improving face image extraction by using deep learning technique

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; Antani, Sameer; Long, L. R.; Demner-Fushman, Dina; Thoma, George R.

    2016-03-01

    The National Library of Medicine (NLM) has made a collection of over a 1.2 million research articles containing 3.2 million figure images searchable using the Open-iSM multimodal (text+image) search engine. Many images are visible light photographs, some of which are images containing faces ("face images"). Some of these face images are acquired in unconstrained settings, while others are studio photos. To extract the face regions in the images, we first applied one of the most widely-used face detectors, a pre-trained Viola-Jones detector implemented in Matlab and OpenCV. The Viola-Jones detector was trained for unconstrained face image detection, but the results for the NLM database included many false positives, which resulted in a very low precision. To improve this performance, we applied a deep learning technique, which reduced the number of false positives and as a result, the detection precision was improved significantly. (For example, the classification accuracy for identifying whether the face regions output by this Viola- Jones detector are true positives or not in a test set is about 96%.) By combining these two techniques (Viola-Jones and deep learning) we were able to increase the system precision considerably, while avoiding the need to manually construct a large training set by manual delineation of the face regions.

  3. The Use of Molecular Techniques at Hazardous Waste Sites

    EPA Science Inventory

    It is clear that typical protocols used for soil analysis would certainly fail to adequately interrogate ground-water treatment systems unless they were substantially modified. The modifications found necessary to compensate for the low biomass include molecular tools and techniq...

  4. Improved LWR Cladding Performance by EPD Surface Modification Technique

    SciTech Connect

    Corradini, Michael; Sridharan, Kumar

    2012-11-26

    This project will utilize the electro-phoretic deposition technique (EPD) in conjunction with nanofluids to deposit oxide coatings on prototypic zirconium alloy cladding surfaces. After demonstrating that this surface modification is reproducible and robust, the team will subject the modified surface to boiling and corrosion tests to characterize the improved nucleate boiling behavior and superior corrosion performance. The scope of work consists of the following three tasks: The first task will employ the EPD surface modification technique to coat the surface of a prototypic set of zirconium alloy cladding tube materials (e.g. Zircaloy and advanced alloys such as M5) with a micron-thick layer of zirconium oxide nanoparticles. The team will characterize the modified surface for uniformity using optical microscopy and scanning-electron microscopy, and for robustness using standard hardness measurements. After zirconium alloy cladding samples have been prepared and characterized using the EPD technique, the team will begin a set of boiling experiments to measure the heat transfer coefficient and critical heat flux (CHF) limit for each prepared sample and its control sample. This work will provide a relative comparison of the heat transfer performance for each alloy and the surface modification technique employed. As the boiling heat transfer experiments begin, the team will also begin corrosion tests for these zirconium alloy samples using a water corrosion test loop that can mimic light water reactor (LWR) operational environments. They will perform extended corrosion tests on the surface-modified zirconium alloy samples and control samples to examine the robustness of the modified surface, as well as the effect on surface oxidation

  5. Improving human object recognition performance using video enhancement techniques

    NASA Astrophysics Data System (ADS)

    Whitman, Lucy S.; Lewis, Colin; Oakley, John P.

    2004-12-01

    Atmospheric scattering causes significant degradation in the quality of video images, particularly when imaging over long distances. The principle problem is the reduction in contrast due to scattered light. It is known that when the scattering particles are not too large compared with the imaging wavelength (i.e. Mie scattering) then high spatial resolution information may be contained within a low-contrast image. Unfortunately this information is not easily perceived by a human observer, particularly when using a standard video monitor. A secondary problem is the difficulty of achieving a sharp focus since automatic focus techniques tend to fail in such conditions. Recently several commercial colour video processing systems have become available. These systems use various techniques to improve image quality in low contrast conditions whilst retaining colour content. These systems produce improvements in subjective image quality in some situations, particularly in conditions of haze and light fog. There is also some evidence that video enhancement leads to improved ATR performance when used as a pre-processing stage. Psychological literature indicates that low contrast levels generally lead to a reduction in the performance of human observers in carrying out simple visual tasks. The aim of this paper is to present the results of an empirical study on object recognition in adverse viewing conditions. The chosen visual task was vehicle number plate recognition at long ranges (500 m and beyond). Two different commercial video enhancement systems are evaluated using the same protocol. The results show an increase in effective range with some differences between the different enhancement systems.

  6. Multi-level overlay techniques for improving DPL overlay control

    NASA Astrophysics Data System (ADS)

    Chen, Charlie; Pai, Y. C.; Yu, Dennis; Pang, Peter; Yu, Chun Chi; Wu, Robert (Hsing-Chien); Huang, Eros (Chien Jen); Chen, Marson (Chiun-Chieh); Tien, David; Choi, Dongsub

    2012-03-01

    Overlay continues to be one of the key challenges for lithography in semiconductor manufacturing, especially in light of the accelerated pace of device node shrinks. This reality will be especially evident at 20nm node where DPL and multi-layer overlay will require 4nm or less in overlay control across many critical layers in order to meet device yield entitlements. The motivation for this paper is based on improving DPL overlay control in face of the high complexity involved with multi-layer overlay requirements. For example, the DPL-2nd-litho layer will need to achieve tight registration with the DPL-1st-litho layer, and at the same time, it will need to achieve tight overlay to the reference-litho layer, which in some cases can also be a DPL layer. Of course, multi-level overlay measurements are not new, but the combination of increased complexity of multi-DPL layers and extremely challenging overlay specifications for 20nm node together will necessitate a better understanding of multi-level overlay control, specifically in terms of root cause analysis of multi-layer related overlay errors and appropriate techniques for improvement In this paper, we start with the identification of specific overlay errors caused by multi-layer DPL processing on full film stack product wafers. After validation of these findings with inter-lot and intra-lot controlled experiments, we investigate different advanced control techniques to determine how to optimize overlay control and minimize both intra-lot and inter-lot sources of error. A new approach to overlay data analysis will also be introduced that combines empirical data with target image quality data to more accurately determine and better explain the root cause error mechanism as well as provide effective strategies for improved overlay control.

  7. Improved molecular imaging contrast agent for detection of human thrombus.

    PubMed

    Winter, Patrick M; Caruthers, Shelton D; Yu, Xin; Song, Sheng-Kwei; Chen, Junjie; Miller, Brad; Bulte, Jeff W M; Robertson, J David; Gaffney, Patrick J; Wickline, Samuel A; Lanza, Gregory M

    2003-08-01

    Molecular imaging of microthrombus within fissures of unstable atherosclerotic plaques requires sensitive detection with a thrombus-specific agent. Effective molecular imaging has been previously demonstrated with fibrin-targeted Gd-DTPA-bis-oleate (BOA) nanoparticles. In this study, the relaxivity of an improved fibrin-targeted paramagnetic formulation, Gd-DTPA-phosphatidylethanolamine (PE), was compared with Gd-DTPA-BOA at 0.05-4.7 T. Ion- and particle-based r(1) relaxivities (1.5 T) for Gd-DTPA-PE (33.7 (s*mM)(-1) and 2.48 x 10(6) (s*mM)(-1), respectively) were about twofold higher than for Gd-DTPA-BOA, perhaps due to faster water exchange with surface gadolinium. Gd-DTPA-PE nanoparticles bound to thrombus surfaces via anti-fibrin antibodies (1H10) induced 72% +/- 5% higher change in R(1) values at 1.5 T (deltaR(1) = 0.77 +/- 0.02 1/s) relative to Gd-DTPA-BOA (deltaR(1) = 0.45 +/- 0.02 1/s). These studies demonstrate marked improvement in a fibrin-specific molecular imaging agent that might allow sensitive, early detection of vascular microthrombi, the antecedent to stroke and heart attack.

  8. Protocols, practices, and the reproduction of technique in molecular biology.

    PubMed

    Lynch, Michael

    2002-06-01

    Protocols are one of the main organizational resources in molecular biology. They are written instructions that specify ingredients, equipment, and sequences of steps for making technical preparations. Some protocols are published in widely used manuals, while others are hand-written variants used by particular laboratories and individual technicians. It is widely understood, both in molecular biology and in social studies of science, that protocols do not describe exactly what practitioners do in the laboratory workplace. In social studies of science, the difference between protocols and the actual practices of doing them often is used to set up ironic contrasts between 'messy' laboratory practices and the appearance of technical order. Alternatively, in ethnomethodological studies of work, the difference is examined as a constitutive feature, both of the lived-work of doing technical projects, and of the administrative work of regulating and evaluating such projects. The present article takes its point of departure from ethnomethodology, and begins with a discussion of local problems with performing molecular biology protocols on specific occasions. The discussion then moves to particular cases in criminal law in which defense attorneys cross-examine forensic technicians and lab administrators. In these interrogations, the distinction between protocols and actual practices animates the dialogue and becomes consequential for judgments in the case at hand. The article concludes with a discussion of administrative science: the work of treating protocols and paper trails as proxies for actual 'scientific' practices.

  9. Improved Filtration Technique for Concentrating and Harvesting Bacteria

    PubMed Central

    Tanny, Gerald B.; Mirelman, David; Pistole, Thomas

    1980-01-01

    An improved technique is described for the filtrative concentration and harvesting of bacterial cultures. A pleated tangential flow filtration unit containing 1,000 cm2 of 0.2-μm-pore-size microporous membrane was used to rapidly (30 to 50 min) reduce the volume of 5 liters of bacterial culture of approximately 109 cells per ml to 0.2 to 0.5 liters of concentrated bacterial suspension. The effects of cell concentration, filtration pressure, and tangential flow rate were examined with respect to the rate of concentration and cell viability. Recovery efficiencies were between 60 and 75%, with no apparent impairment of organism viability. Cell concentration exerted the predominant effect on the filtration rate. Images PMID:16345606

  10. Improved filtration technique for concentrating and harvesting bacteria.

    PubMed

    Tanny, G B; Mirelman, D; Pistole, T

    1980-08-01

    An improved technique is described for the filtrative concentration and harvesting of bacterial cultures. A pleated tangential flow filtration unit containing 1,000 cm of 0.2-mum-pore-size microporous membrane was used to rapidly (30 to 50 min) reduce the volume of 5 liters of bacterial culture of approximately 10 cells per ml to 0.2 to 0.5 liters of concentrated bacterial suspension. The effects of cell concentration, filtration pressure, and tangential flow rate were examined with respect to the rate of concentration and cell viability. Recovery efficiencies were between 60 and 75%, with no apparent impairment of organism viability. Cell concentration exerted the predominant effect on the filtration rate.

  11. Biochemistry and Molecular Biology Techniques for Person Characterization

    ERIC Educational Resources Information Center

    Herrero, Salvador; Ivorra, Jose Luis; Garcia-Sogo, Magdalena; Martinez-Cortina, Carmen

    2008-01-01

    Using the traditional serological tests and the most novel techniques for DNA fingerprinting, forensic scientists scan different traits that vary from person to person and use the data to include or exclude suspects based on matching with the evidence obtained in a criminal case. Although the forensic application of these methods is well known,…

  12. Optimization techniques in molecular structure and function elucidation.

    PubMed

    Sahinidis, Nikolaos V

    2009-12-01

    This paper discusses recent optimization approaches to the protein side-chain prediction problem, protein structural alignment, and molecular structure determination from X-ray diffraction measurements. The machinery employed to solve these problems has included algorithms from linear programming, dynamic programming, combinatorial optimization, and mixed-integer nonlinear programming. Many of these problems are purely continuous in nature. Yet, to this date, they have been approached mostly via combinatorial optimization algorithms that are applied to discrete approximations. The main purpose of the paper is to offer an introduction and motivate further systems approaches to these problems. PMID:20160866

  13. X-ray Constrained Extremely Localized Molecular Orbitals: Theory and Critical Assessment of the New Technique.

    PubMed

    Genoni, Alessandro

    2013-07-01

    Following the X-ray constrained wave function approach proposed by Jayatilaka, we have devised a new technique that allows to extract molecular orbitals strictly localized on small molecular fragments from sets of experimental X-ray structure factors amplitudes. Since the novel strategy enables to obtain electron distributions that have quantum mechanical features and that can be easily interpreted in terms of traditional chemical concepts, the method can be also considered as a new useful tool for the determination and the analysis of charge densities from high-resolution X-ray experiments. In this paper, we describe in detail the theory of the new technique, which, in comparison to our preliminary work, has been improved both treating the effects of isotropic secondary extinctions and introducing a new protocol to halt the fitting procedure against the experimental X-ray scattering data. The performances of the novel strategy have been studied both in function of the basis-sets flexibility and in function of the quality of the considered crystallographic data. The tests performed on four different systems (α-glycine, l-cysteine, (aminomethyl)phosphonic acid and N-(trifluoromethyl)formamide) have shown that the achievement of good statistical agreements with the experimental measures mainly depends on the quality of the crystal structures (i.e., geometry positions and thermal parameters) used in the X-ray constrained calculations. Finally, given the reliable transferability of the obtained Extremely Localized Molecular Orbitals (ELMOs), we envisage to exploit the novel approach to construct new ELMOs databases suited to the development of linear-scaling methods for the refinement of macromolecular crystal structures.

  14. Improved mesh based photon sampling techniques for neutron activation analysis

    SciTech Connect

    Relson, E.; Wilson, P. P. H.; Biondo, E. D.

    2013-07-01

    The design of fusion power systems requires analysis of neutron activation of large, complex volumes, and the resulting particles emitted from these volumes. Structured mesh-based discretization of these problems allows for improved modeling in these activation analysis problems. Finer discretization of these problems results in large computational costs, which drives the investigation of more efficient methods. Within an ad hoc subroutine of the Monte Carlo transport code MCNP, we implement sampling of voxels and photon energies for volumetric sources using the alias method. The alias method enables efficient sampling of a discrete probability distribution, and operates in 0(1) time, whereas the simpler direct discrete method requires 0(log(n)) time. By using the alias method, voxel sampling becomes a viable alternative to sampling space with the 0(1) approach of uniformly sampling the problem volume. Additionally, with voxel sampling it is straightforward to introduce biasing of volumetric sources, and we implement this biasing of voxels as an additional variance reduction technique that can be applied. We verify our implementation and compare the alias method, with and without biasing, to direct discrete sampling of voxels, and to uniform sampling. We study the behavior of source biasing in a second set of tests and find trends between improvements and source shape, material, and material density. Overall, however, the magnitude of improvements from source biasing appears to be limited. Future work will benefit from the implementation of efficient voxel sampling - particularly with conformal unstructured meshes where the uniform sampling approach cannot be applied. (authors)

  15. Molecular approaches in pig breeding to improve meat quality.

    PubMed

    Davoli, Roberta; Braglia, Silvia

    2007-12-01

    This article reviews the advances in molecular genetics that have led to the identification of genes and markers associated with meat quality in pig. The development of a considerable number of annotated livestock genome sequences represents an incredibly rich source of information that can be used to identify candidate genes responsible for complex traits and quantitative trait loci effects. In pig, the huge amount of information emerging from the study of the genome has helped in the acquisition of new knowledge concerning biological systems and it is opening new opportunities for the genetic selection of this specie. Among the new fields of genomics recently developed, functional genomics and proteomics that allow considering many genes and proteins at the same time are very useful tools for a better understanding of the function and regulation of genes, and how these participate in complex networks controlling the phenotypic characteristics of a trait. In particular, global gene expression profiling at the mRNA and protein level can provide a better understanding of gene regulation that underlies biological functions and physiology related to the delivery of a better pig meat quality. Moreover, the possibility to realize an integrated approach of genomics and proteomics with bioinformatics tools is essential to obtain a complete exploitation of the available molecular genetics information. The development of this knowledge will benefit scientists, industry and breeders considering that the efficiency and accuracy of the traditional pig selection schemes will be improved by the implementation of molecular data into breeding programs. PMID:18208864

  16. Improving structure-based function prediction using molecular dynamics

    PubMed Central

    Glazer, Dariya S.; Radmer, Randall J.; Altman, Russ B.

    2009-01-01

    Summary The number of molecules with solved three-dimensional structure but unknown function is increasing rapidly. Particularly problematic are novel folds with little detectable similarity to molecules of known function. Experimental assays can determine the functions of such molecules, but are time-consuming and expensive. Computational approaches can identify potential functional sites; however, these approaches generally rely on single static structures and do not use information about dynamics. In fact, structural dynamics can enhance function prediction: we coupled molecular dynamics simulations with structure-based function prediction algorithms that identify Ca2+ binding sites. When applied to 11 challenging proteins, both methods showed substantial improvement in performance, revealing 22 more sites in one case and 12 more in the other, with a modest increase in apparent false positives. Thus, we show that treating molecules as dynamic entities improves the performance of structure-based function prediction methods. PMID:19604472

  17. Molecular Breeding for Improved Second Generation Bioenergy Crops.

    PubMed

    Allwright, Mike R; Taylor, Gail

    2016-01-01

    There is increasing urgency to develop and deploy sustainable sources of energy to reduce our global dependency on finite, high-carbon fossil fuels. Lignocellulosic feedstocks, used in power and liquid fuel generation, are valuable sources of non-food plant biomass. They are cultivated with minimal inputs on marginal or degraded lands to prevent competition with arable agriculture and offer significant potential for sustainable intensification (the improvement of yield without the necessity for additional inputs) through advanced molecular breeding. This article explores progress made in next generation sequencing, advanced genotyping, association genetics, and genetic modification in second generation bioenergy production. Using poplar as an exemplar where most progress has been made, a suite of target traits is also identified giving insight into possible routes for crop improvement and deployment in the immediate future. PMID:26541073

  18. Molecular Breeding for Improved Second Generation Bioenergy Crops.

    PubMed

    Allwright, Mike R; Taylor, Gail

    2016-01-01

    There is increasing urgency to develop and deploy sustainable sources of energy to reduce our global dependency on finite, high-carbon fossil fuels. Lignocellulosic feedstocks, used in power and liquid fuel generation, are valuable sources of non-food plant biomass. They are cultivated with minimal inputs on marginal or degraded lands to prevent competition with arable agriculture and offer significant potential for sustainable intensification (the improvement of yield without the necessity for additional inputs) through advanced molecular breeding. This article explores progress made in next generation sequencing, advanced genotyping, association genetics, and genetic modification in second generation bioenergy production. Using poplar as an exemplar where most progress has been made, a suite of target traits is also identified giving insight into possible routes for crop improvement and deployment in the immediate future.

  19. Detection of Molecular signatures of life using immunoassay techniques

    NASA Astrophysics Data System (ADS)

    McKay, D.; Steele, A.; Warmflash, D.; Maule, J.; Lynch, K.

    The Miniaturized Array for Solar System Exploration (MASSE) will use a microarray of antibody assays to search for biomarkers in extraterrestrial environments. We have now used enzyme linked immunosorbent assay (ELISA) to demonstrate the feasibility of immuno-detection of biomarkers in terrestrial soil, JSC-1 Mars regolith simulant, and terrestrial polar permafrost as analogues f ro extraterrestrial materials. We have also demonstrated that the technique works at microgravity and Martian gravity. Studies are now underway to test immunoassay techniques and antibody arrays at varying pressures and temperatures. It is expected that these studies will lead to a flight ready biomarker detection instrument that will be landed and operated on the Martian surface in 2009.

  20. Monitoring disease in lymphoma and CLL patients using molecular techniques.

    PubMed

    Gribben, John G

    2002-03-01

    Over the past decade considerable advances have been made in the sensitivity of detection of residual lymphoma and leukaemia cells. Assays based on the polymerase chain reaction (PCR) can detect one tumour cell in up to 10(5) to 10(6) normal cells. The identification and cloning of breakpoints associated with specific chromosomal translocations has made possible the application of these techniques to a variety of lymphoid malignancies. In parallel, B cell malignancies exhibit rearrangements of their immunoglobulin genes that are also suitable targets for PCR amplification to identify residual cells. Although these techniques provide a useful adjunct to standard methods of detection and diagnosis, their role in determining disease outcome remains investigational. There is confusion as to whether it is necessary to eradicate PCR-detectable lymphoma cells for cure, so it is not yet possible to determine whether the detection of residual lymphoma cells by PCR is an indication to continue therapy. PMID:11987923

  1. Advanced techniques for constrained internal coordinate molecular dynamics.

    PubMed

    Wagner, Jeffrey R; Balaraman, Gouthaman S; Niesen, Michiel J M; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-04-30

    Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle, and torsional coordinates instead of a Cartesian coordinate representation. Freezing high-frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed to make the CICMD method robust and widely usable. In this article, we have designed a new framework for (1) initializing velocities for nonindependent CICMD coordinates, (2) efficient computation of center of mass velocity during CICMD simulations, (3) using advanced integrators such as Runge-Kutta, Lobatto, and adaptive CVODE for CICMD simulations, and (4) cancelling out the "flying ice cube effect" that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this article, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse-graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided "freezing and thawing" of degrees of freedom in the molecule on the fly during molecular dynamics simulations and is shown to fold four proteins to their native topologies. With these advancements, we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion.

  2. Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates

    ERIC Educational Resources Information Center

    Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang

    2009-01-01

    We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students a chance…

  3. Techniques for studying protein trafficking and molecular motors in neurons

    PubMed Central

    Feng, Shanxi; Arnold, Don B.

    2016-01-01

    This review focuses on techniques that facilitate the visualization of protein trafficking. In the mid-1990’s the cloning of GFP allowed fluorescently tagged proteins to be expressed in cells and then visualized in real time. This advance allowed a glimpse, for the first time, of the complex system within cells for distributing proteins. It quickly became apparent, however, that time-lapse sequences of exogenously expressed GFP-labeled proteins can be difficult to interpret. Reasons for this include the relatively low signal that comes from moving proteins and high background rates from stationary proteins and other sources, as well as the difficulty of identifying the origins and destinations of specific vesicular carriers. In this review we will examine a range of techniques that have overcome these issues to varying degrees and discuss the insights into protein trafficking that they have enabled. We will concentrate on neurons, as they are highly polarized and, thus, their trafficking systems tend to be accessible for study. PMID:26800506

  4. Detecting Molecular Properties by Various Laser-Based Techniques

    SciTech Connect

    Hsin, Tse-Ming

    2007-01-01

    Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is ~6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

  5. Improved Space Surveillance Network (SSN) Scheduling using Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Stottler, D.

    There are close to 20,000 cataloged manmade objects in space, the large majority of which are not active, functioning satellites. These are tracked by phased array and mechanical radars and ground and space-based optical telescopes, collectively known as the Space Surveillance Network (SSN). A better SSN schedule of observations could, using exactly the same legacy sensor resources, improve space catalog accuracy through more complementary tracking, provide better responsiveness to real-time changes, better track small debris in low earth orbit (LEO) through efficient use of applicable sensors, efficiently track deep space (DS) frequent revisit objects, handle increased numbers of objects and new types of sensors, and take advantage of future improved communication and control to globally optimize the SSN schedule. We have developed a scheduling algorithm that takes as input the space catalog and the associated covariance matrices and produces a globally optimized schedule for each sensor site as to what objects to observe and when. This algorithm is able to schedule more observations with the same sensor resources and have those observations be more complementary, in terms of the precision with which each orbit metric is known, to produce a satellite observation schedule that, when executed, minimizes the covariances across the entire space object catalog. If used operationally, the results would be significantly increased accuracy of the space catalog with fewer lost objects with the same set of sensor resources. This approach inherently can also trade-off fewer high priority tasks against more lower-priority tasks, when there is benefit in doing so. Currently the project has completed a prototyping and feasibility study, using open source data on the SSN's sensors, that showed significant reduction in orbit metric covariances. The algorithm techniques and results will be discussed along with future directions for the research.

  6. Improved Detection Technique for Solvent Rinse Cleanliness Verification

    NASA Technical Reports Server (NTRS)

    Hornung, S. D.; Beeson, H. D.

    2001-01-01

    The NASA White Sands Test Facility (WSTF) has an ongoing effort to reduce or eliminate usage of cleaning solvents such as CFC-113 and its replacements. These solvents are used in the final clean and cleanliness verification processes for flight and ground support hardware, especially for oxygen systems where organic contaminants can pose an ignition hazard. For the final cleanliness verification in the standard process, the equivalent of one square foot of surface area of parts is rinsed with the solvent, and the final 100 mL of the rinse is captured. The amount of nonvolatile residue (NVR) in the solvent is determined by weight after the evaporation of the solvent. An improved process of sampling this rinse, developed at WSTF, requires evaporation of less than 2 mL of the solvent to make the cleanliness verification. Small amounts of the solvent are evaporated in a clean stainless steel cup, and the cleanliness of the stainless steel cup is measured using a commercially available surface quality monitor. The effectiveness of this new cleanliness verification technique was compared to the accepted NVR sampling procedures. Testing with known contaminants in solution, such as hydraulic fluid, fluorinated lubricants, and cutting and lubricating oils, was performed to establish a correlation between amount in solution and the process response. This report presents the approach and results and discusses the issues in establishing the surface quality monitor-based cleanliness verification.

  7. Improving default risk prediction using Bayesian model uncertainty techniques.

    PubMed

    Kazemi, Reza; Mosleh, Ali

    2012-11-01

    Credit risk is the potential exposure of a creditor to an obligor's failure or refusal to repay the debt in principal or interest. The potential of exposure is measured in terms of probability of default. Many models have been developed to estimate credit risk, with rating agencies dating back to the 19th century. They provide their assessment of probability of default and transition probabilities of various firms in their annual reports. Regulatory capital requirements for credit risk outlined by the Basel Committee on Banking Supervision have made it essential for banks and financial institutions to develop sophisticated models in an attempt to measure credit risk with higher accuracy. The Bayesian framework proposed in this article uses the techniques developed in physical sciences and engineering for dealing with model uncertainty and expert accuracy to obtain improved estimates of credit risk and associated uncertainties. The approach uses estimates from one or more rating agencies and incorporates their historical accuracy (past performance data) in estimating future default risk and transition probabilities. Several examples demonstrate that the proposed methodology can assess default probability with accuracy exceeding the estimations of all the individual models. Moreover, the methodology accounts for potentially significant departures from "nominal predictions" due to "upsetting events" such as the 2008 global banking crisis. PMID:23163724

  8. Improving default risk prediction using Bayesian model uncertainty techniques.

    PubMed

    Kazemi, Reza; Mosleh, Ali

    2012-11-01

    Credit risk is the potential exposure of a creditor to an obligor's failure or refusal to repay the debt in principal or interest. The potential of exposure is measured in terms of probability of default. Many models have been developed to estimate credit risk, with rating agencies dating back to the 19th century. They provide their assessment of probability of default and transition probabilities of various firms in their annual reports. Regulatory capital requirements for credit risk outlined by the Basel Committee on Banking Supervision have made it essential for banks and financial institutions to develop sophisticated models in an attempt to measure credit risk with higher accuracy. The Bayesian framework proposed in this article uses the techniques developed in physical sciences and engineering for dealing with model uncertainty and expert accuracy to obtain improved estimates of credit risk and associated uncertainties. The approach uses estimates from one or more rating agencies and incorporates their historical accuracy (past performance data) in estimating future default risk and transition probabilities. Several examples demonstrate that the proposed methodology can assess default probability with accuracy exceeding the estimations of all the individual models. Moreover, the methodology accounts for potentially significant departures from "nominal predictions" due to "upsetting events" such as the 2008 global banking crisis.

  9. Temperature and leakage aware techniques to improve cache reliability

    NASA Astrophysics Data System (ADS)

    Akaaboune, Adil

    Decreasing power consumption in small devices such as handhelds, cell phones and high-performance processors is now one of the most critical design concerns. On-chip cache memories dominate the chip area in microprocessors and thus arises the need for power efficient cache memories. Cache is the simplest cost effective method to attain high speed memory hierarchy and, its performance is extremely critical for high speed computers. Cache is used by the microprocessor for channeling the performance gap between processor and main memory (RAM) hence the memory bandwidth is frequently a bottleneck which can affect the peak throughput significantly. In the design of any cache system, the tradeoffs of area/cost, performance, power consumption, and thermal management must be taken into consideration. Previous work has mainly concentrated on performance and area/cost constraints. More recent works have focused on low power design especially for portable devices and media-processing systems, however fewer research has been done on the relationship between heat management, Leakage power and cost per die. Lately, the focus of power dissipation in the new generations of microprocessors has shifted from dynamic power to idle power, a previously underestimated form of power loss that causes battery charge to drain and shutdown too early due the waste of energy. The problem has been aggravated by the aggressive scaling of process; device level method used originally by designers to enhance performance, conserve dissipation and reduces the sizes of digital circuits that are increasingly condensed. This dissertation studies the impact of hotspots, in the cache memory, on leakage consumption and microprocessor reliability and durability. The work will first prove that by eliminating hotspots in the cache memory, leakage power will be reduced and therefore, the reliability will be improved. The second technique studied is data quality management that improves the quality of the data

  10. Bioluminescence: a versatile technique for imaging cellular and molecular features

    PubMed Central

    Paley, Miranda A.

    2016-01-01

    Bioluminescence is a ubiquitous imaging modality for visualizing biological processes in vivo. This technique employs visible light and interfaces readily with most cell and tissue types, making it a versatile technology for preclinical studies. Here we review basic bioluminescence imaging principles, along with applications of the technology that are relevant to the medicinal chemistry community. These include noninvasive cell tracking experiments, analyses of protein function, and methods to visualize small molecule metabolites. In each section, we also discuss how bioluminescent tools have revealed insights into experimental therapies and aided drug discovery. Last, we highlight the development of new bioluminescent tools that will enable more sensitive and multi-component imaging experiments and, thus, expand our broader understanding of living systems. PMID:27594981

  11. Exploitation of molecular profiling techniques for GM food safety assessment.

    PubMed

    Kuiper, Harry A; Kok, Esther J; Engel, Karl-Heinz

    2003-04-01

    Several strategies have been developed to identify unintended alterations in the composition of genetically modified (GM) food crops that may occur as a result of the genetic modification process. These include comparative chemical analysis of single compounds in GM food crops and their conventional non-GM counterparts, and profiling methods such as DNA/RNA microarray technologies, proteomics and metabolite profiling. The potential of profiling methods is obvious, but further exploration of specificity, sensitivity and validation is needed. Moreover, the successful application of profiling techniques to the safety evaluation of GM foods will require linked databases to be built that contain information on variations in profiles associated with differences in developmental stages and environmental conditions.

  12. Application of molecular techniques to the diagnosis of microsporidial infection.

    PubMed Central

    Fedorko, D. P.; Hijazi, Y. M.

    1996-01-01

    Microsporidia are now recognized as important pathogens of AIDS patients; the ability of these parasites to cause disease in immunocompetent persons is still being elucidated. Improved diagnostic tests for microsporidial infection are continually being sought for establishing diagnosis in order to avoid laborious electron microscopy studies that require invasively acquired biopsy specimens. Modified trichrome or chemofluorescent stains are useful for detecting microsporidia in bodily fluids and stool specimens, but they do not allow for speciation of microsporidia. Polymerase chain reaction with specific primers will allow the detection and speciation of microsporidia in biopsy tissue, bodily fluids, and stool specimens. PMID:8903228

  13. Achieving molecular selectivity in imaging using multiphoton Raman spectroscopy techniques

    SciTech Connect

    Holtom, Gary R. ); Thrall, Brian D. ); Chin, Beek Yoke ); Wiley, H Steven ); Colson, Steven D. )

    2000-12-01

    In the case of most imaging methods, contrast is generated either by physical properties of the sample (Differential Image Contrast, Phase Contrast), or by fluorescent labels that are localized to a particular protein or organelle. Standard Raman and infrared methods for obtaining images are based upon the intrinsic vibrational properties of molecules, and thus obviate the need for attached flurophores. Unfortunately, they have significant limitations for live-cell imaging. However, an active Raman method, called Coherent Anti-Stokes Raman Scattering (CARS), is well suited for microscopy, and provides a new means for imaging specific molecules. Vibrational imaging techniques, such as CARS, avoid problems associated with photobleaching and photo-induced toxicity often associated with the use of fluorescent labels with live cells. Because the laser configuration needed to implement CARS technology is similar to that used in other multiphoton microscopy methods, such as two -photon fluorescence and harmonic generation, it is possible to combine imaging modalities, thus generating simultaneous CARS and fluorescence images. A particularly powerful aspect of CARS microscopy is its ability to selectively image deuterated compounds, thus allowing the visualization of molecules, such as lipids, that are chemically indistinguishable from the native species.

  14. Exponential repulsion improves structural predictability of molecular docking.

    PubMed

    Bazgier, Václav; Berka, Karel; Otyepka, Michal; Banáš, Pavel

    2016-10-30

    Molecular docking is a powerful tool for theoretical prediction of the preferred conformation and orientation of small molecules within protein active sites. The obtained poses can be used for estimation of binding energies, which indicate the inhibition effect of designed inhibitors, and therefore might be used for in silico drug design. However, the evaluation of ligand binding affinity critically depends on successful prediction of the native binding mode. Contemporary docking methods are often based on scoring functions derived from molecular mechanical potentials. In such potentials, nonbonded interactions are typically represented by electrostatic interactions between atom-centered partial charges and standard 6-12 Lennard-Jones potential. Here, we present implementation and testing of a scoring function based on more physically justified exponential repulsion instead of the standard Lennard-Jones potential. We found that this scoring function significantly improved prediction of the native binding modes in proteins bearing narrow active sites such as serine proteases and kinases. © 2016 Wiley Periodicals, Inc. PMID:27620738

  15. Correcting for Purifying Selection: An Improved Human Mitochondrial Molecular Clock

    PubMed Central

    Soares, Pedro; Ermini, Luca; Thomson, Noel; Mormina, Maru; Rito, Teresa; Röhl, Arne; Salas, Antonio; Oppenheimer, Stephen; Macaulay, Vincent; Richards, Martin B.

    2009-01-01

    There is currently no calibration available for the whole human mtDNA genome, incorporating both coding and control regions. Furthermore, as several authors have pointed out recently, linear molecular clocks that incorporate selectable characters are in any case problematic. We here confirm a modest effect of purifying selection on the mtDNA coding region and propose an improved molecular clock for dating human mtDNA, based on a worldwide phylogeny of > 2000 complete mtDNA genomes and calibrating against recent evidence for the divergence time of humans and chimpanzees. We focus on a time-dependent mutation rate based on the entire mtDNA genome and supported by a neutral clock based on synonymous mutations alone. We show that the corrected rate is further corroborated by archaeological dating for the settlement of the Canary Islands and Remote Oceania and also, given certain phylogeographic assumptions, by the timing of the first modern human settlement of Europe and resettlement after the Last Glacial Maximum. The corrected rate yields an age of modern human expansion in the Americas at ∼15 kya that—unlike the uncorrected clock—matches the archaeological evidence, but continues to indicate an out-of-Africa dispersal at around 55–70 kya, 5–20 ky before any clear archaeological record, suggesting the need for archaeological research efforts focusing on this time window. We also present improved rates for the mtDNA control region, and the first comprehensive estimates of positional mutation rates for human mtDNA, which are essential for defining mutation models in phylogenetic analyses. PMID:19500773

  16. Improved Experimental Techniques for Analyzing Nucleic Acid Transport Through Protein Nanopores in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Costa, Justin A.

    The translocation of nucleic acid polymers across cell membranes is a fundamental requirement for complex life and has greatly contributed to genomic molecular evolution. The diversity of pathways that have evolved to transport DNA and RNA across membranes include protein receptors, active and passive transporters, endocytic and pinocytic processes, and various types of nucleic acid conducting channels known as nanopores. We have developed a series of experimental techniques, collectively known as "Wicking", that greatly improves the biophysical analysis of nucleic acid transport through protein nanopores in planar lipid bilayers. We have verified the Wicking method using numerous types of classical ion channels including the well-studied chloride selective channel, CLIC1. We used the Wicking technique to reconstitute α-hemolysin and found that DNA translocation events of types A and B could be routinely observed using this method. Furthermore, measurable differences were observed in the duration of blockade events as DNA length and composition was varied, consistent with previous reports. Finally, we tested the ability of the Wicking technology to reconstitute the dsRNA transporter Sid-1. Exposure to dsRNAs of increasing length and complexity showed measurable differences in the current transitions suggesting that the charge carrier was dsRNA. However, the translocation events occurred so infrequently that a meaningful electrophysiological analysis was not possible. Alterations in the lipid composition of the bilayer had a minor effect on the frequency of translocation events but not to such a degree as to permit rigorous statistical analysis. We conclude that in many instances the Wicking method is a significant improvement to the lipid bilayer technique, but is not an optimal method for analyzing transport through Sid-1. Further refinements to the Wicking method might have future applications in high throughput DNA sequencing, DNA computation, and

  17. Integrating fossils with molecular phylogenies improves inference of trait evolution.

    PubMed

    Slater, Graham J; Harmon, Luke J; Alfaro, Michael E

    2012-12-01

    Comparative biologists often attempt to draw inferences about tempo and mode in evolution by comparing the fit of evolutionary models to phylogenetic comparative data consisting of a molecular phylogeny with branch lengths and trait measurements from extant taxa. These kinds of approaches ignore historical evidence for evolutionary pattern and process contained in the fossil record. In this article, we show through simulation that incorporation of fossil information dramatically improves our ability to distinguish among models of quantitative trait evolution using comparative data. We further suggest a novel Bayesian approach that allows fossil information to be integrated even when explicit phylogenetic hypotheses are lacking for extinct representatives of extant clades. By applying this approach to a comparative dataset comprising body sizes for caniform carnivorans, we show that incorporation of fossil information not only improves ancestral state estimates relative to those derived from extant taxa alone, but also results in preference of a model of evolution with trend toward large body size over alternative models such as Brownian motion or Ornstein-Uhlenbeck processes. Our approach highlights the importance of considering fossil information when making macroevolutionary inference, and provides a way to integrate the kind of sparse fossil information that is available to most evolutionary biologists.

  18. Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology

    PubMed Central

    Donner, Erica; Punshon, Tracy; Guerinot, Mary Lou; Lombi, Enzo

    2013-01-01

    Functional characterisation of the genes regulating metal(loid) homeostasis in plants is a major focus of crop biofortification, phytoremediation, and food security research. This paper focuses on the potential for advancing plant metal(loid) research by combining molecular biology and synchrotron-based techniques. Recent advances in x-ray focussing optics and fluorescence detection have greatly improved the potential of synchrotron techniques for plant science research, allowing metal(loids) to be imaged in vivo in hydrated plant tissues at sub-micron resolution. Laterally resolved metal(loid) speciation can also be determined. By using molecular techniques to probe the location of gene expression and protein localisation and combining it with this synchrotron-derived data, functional information can be effectively and efficiently assigned to specific genes. This paper provides a review of the state of the art in this field, and provides examples as to how synchrotron-based methods can be combined with molecular techniques to facilitate functional characterisation of genes in planta. PMID:22200921

  19. Improved sparse reconstruction for fluorescence molecular tomography with L1/2 regularization

    PubMed Central

    Guo, Hongbo; Yu, Jingjing; He, Xiaowei; Hou, Yuqing; Dong, Fang; Zhang, Shuling

    2015-01-01

    Fluorescence molecular tomography (FMT) is a promising imaging technique that allows in vivo visualization of molecular-level events associated with disease progression and treatment response. Accurate and efficient 3D reconstruction algorithms will facilitate the wide-use of FMT in preclinical research. Here, we utilize L1/2-norm regularization for improving FMT reconstruction. To efficiently solve the nonconvex L1/2-norm penalized problem, we transform it into a weighted L1-norm minimization problem and employ a homotopy-based iterative reweighting algorithm to recover small fluorescent targets. Both simulations on heterogeneous mouse model and in vivo experiments demonstrated that the proposed L1/2-norm method outperformed the comparative L1-norm reconstruction methods in terms of location accuracy, spatial resolution and quantitation of fluorescent yield. Furthermore, simulation analysis showed the robustness of the proposed method, under different levels of measurement noise and number of excitation sources. PMID:26137370

  20. Development of radiation dose reduction techniques for cadmium zinc telluride detectors in molecular breast imaging

    NASA Astrophysics Data System (ADS)

    O'Connor, Michael K.; Hruska, Carrie B.; Weinmann, Amanda; Manduca, Armando; Rhodes, Deborah J.

    2010-08-01

    Background: Molecular breast imaging (MBI) is a novel breast imaging technique that uses Cadmium Zinc Telluride (CZT) gamma cameras to detect the uptake of Tc-99m sestamibi in breast tumors. Current techniques employ an administered dose of 20-30 mCi Tc-99m, delivering an effective dose of 6.5-10 mSv to the body. This is ~ 5-10 times that of mammography. The goal of this study was to reduce the radiation dose by a factor of 5-10, while maintaining image quality. Methods: A total of 4 dose reduction schemes were evaluated - a) optimized collimation, b) improved utilization of the energy spectrum below the photopeak, c) adaptive geometric mean algorithm developed for combination of images from opposing detectors, and d) non local means filtering (NLMF) for noise reduction and image enhancement. Validation of the various schemes was performed using a breast phantom containing a variety of tumors and containing activity matched to that observed in clinical studies. Results: Development of tungsten collimators with holes matched to the CZT pixels yielded a 2.1-2.9 gain in system sensitivity. Improved utilization of the energy spectra yielded a 1.5-2.0 gain in sensitivity. Development of a modified geometric mean algorithm yielded a 1.4 reduction in image noise, while retaining contrast. Images of the breast phantom demonstrated that a factor of 5 reduction in dose was achieved. Additional refinements to the NLMF should enable an additional factor of 2 reduction in dose. Conclusion: Significant dose reduction in MBI to levels comparable to mammography can be achieved while maintaining image quality.

  1. Improved technique for CT-guided celiac ganglia block

    SciTech Connect

    Haaga, J.R.; Kori, S.H.; Eastwood, D.W.; Borowski, G.P.

    1984-06-01

    Celiac nerve blocks have been performed without radiologic guidance, but recently several groups have reported computed tomography (CT)-guided techniques. The authors present a new technique of CT-guided celiac nerve block using an 18 gauge Teflon catheter, which permits a test block dose and permanent alcohol block with one procedure. The results of this new technique were very encouraging. Of nine cancer patients who had the test block, seven had good pain relief; these same patients had good pain control with the permanent block. Of six patients with pancreatitis, six had good pain relief from the test block, and three had some long-term relief from the permanent block.

  2. Improved estimates of coordinate error for molecular replacement

    SciTech Connect

    Oeffner, Robert D.; Bunkóczi, Gábor; McCoy, Airlie J.; Read, Randy J.

    2013-11-01

    A function for estimating the effective root-mean-square deviation in coordinates between two proteins has been developed that depends on both the sequence identity and the size of the protein and is optimized for use with molecular replacement in Phaser. A top peak translation-function Z-score of over 8 is found to be a reliable metric of when molecular replacement has succeeded. The estimate of the root-mean-square deviation (r.m.s.d.) in coordinates between the model and the target is an essential parameter for calibrating likelihood functions for molecular replacement (MR). Good estimates of the r.m.s.d. lead to good estimates of the variance term in the likelihood functions, which increases signal to noise and hence success rates in the MR search. Phaser has hitherto used an estimate of the r.m.s.d. that only depends on the sequence identity between the model and target and which was not optimized for the MR likelihood functions. Variance-refinement functionality was added to Phaser to enable determination of the effective r.m.s.d. that optimized the log-likelihood gain (LLG) for a correct MR solution. Variance refinement was subsequently performed on a database of over 21 000 MR problems that sampled a range of sequence identities, protein sizes and protein fold classes. Success was monitored using the translation-function Z-score (TFZ), where a TFZ of 8 or over for the top peak was found to be a reliable indicator that MR had succeeded for these cases with one molecule in the asymmetric unit. Good estimates of the r.m.s.d. are correlated with the sequence identity and the protein size. A new estimate of the r.m.s.d. that uses these two parameters in a function optimized to fit the mean of the refined variance is implemented in Phaser and improves MR outcomes. Perturbing the initial estimate of the r.m.s.d. from the mean of the distribution in steps of standard deviations of the distribution further increases MR success rates.

  3. Low-mass molecular dynamics simulation: A simple and generic technique to enhance configurational sampling

    SciTech Connect

    Pang, Yuan-Ping

    2014-09-26

    Highlights: • Reducing atomic masses by 10-fold vastly improves sampling in MD simulations. • CLN025 folded in 4 of 10 × 0.5-μs MD simulations when masses were reduced by 10-fold. • CLN025 folded as early as 96.2 ns in 1 of the 4 simulations that captured folding. • CLN025 did not fold in 10 × 0.5-μs MD simulations when standard masses were used. • Low-mass MD simulation is a simple and generic sampling enhancement technique. - Abstract: CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal–isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277 K and 1 atm with the first folding event occurring as early as 66.1 ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal–isobaric MD simulations performed on commodity computers—an important step forward in quantitative biology.

  4. Improved molecular collision models for nonequilibrium rarefied gases

    NASA Astrophysics Data System (ADS)

    Parsons, Neal

    The Direct Simulation Monte Carlo (DSMC) method typically used to model thermochemical nonequilibrium rarefied gases requires accurate total collision cross sections, reaction probabilities, and molecular internal energy exchange models. However, the baseline total cross sections are often determined from extrapolations of relatively low-temperature viscosity data, reaction probabilities are defined such that experimentally determined equilibrium reaction rates are replicated, and internal energy relaxation models are phenomenological in nature. Therefore, these models have questionable validity in modeling strongly nonequilibrium gases with temperatures greater than those possible in experimental test facilities. To rectify this deficiency, the Molecular Dynamics/Quasi-Classical Trajectories (MD/QCT) method can be used to accurately compute total collision cross sections, reaction probabilities, and internal energy exchange models based on first principles for hypervelocity collision conditions. In this thesis, MD/QCT-based models were used to improve simulations of two unique nonequilibrium rarefied gas systems: the Ionian atmosphere and hypersonic shocks in Earth's atmosphere. The Jovian plasma torus flows over Io at ≈ 57 km/s, inducing high-speed collisions between atmospheric SO2 and the hypervelocity plasma's O atoms and ions. The DSMC method is well-suited to model the rarefied atmosphere, so MD/QCT studies are therefore conducted to improve DSMC collision models of the critical SO2-O collision pair. The MD/QCT trajectory simulations employed a new potential energy surface that was developed using a ReaxFF fit to a set of ab initio calculations. Compared to the MD/QCT results, the baseline DSMC models are found to significantly under-predict total cross sections, use reaction probabilities that are unrealistically high, and give unphysical internal energies above the dissociation energy for non-reacting inelastic collisions and under-predicts post

  5. New insight into biodegradation of polylactide (PLA)/clay nanocomposites using molecular ecological techniques.

    PubMed

    Sangwan, Parveen; Way, Cameron; Wu, Dong-Yang

    2009-07-01

    Novel molecular ecological techniques were used to study changes in microbial community structure and population during degradation of polylactide (PLA)/organically modified layered silicates (OMLS) nanocomposites. Cloned gene sequences belonging to members of the phyla Actinobacteria and Ascomycota comprized the most dominant groups of microorganisms during biodegradation of PLA/OMLS nanocomposites. Due to their numerical abundance, members of these microbial groups are likely to play an important role during biodegradation process. This paper presents new insights into the biodegradability of PLA/OMLS nanocomposites and highlights the importance of using novel molecular ecological techniques for in situ identification of new microorganisms involved in biodegradation of polymeric materials.

  6. Improving Examination Performance through the Clenched Fist Technique.

    ERIC Educational Resources Information Center

    Stanton, Harry E.

    1988-01-01

    The literature on the use of hypnosis in an educational setting is briefly reviewed, and a hypnotic approach involving the use of the clenched fist as a conditioned trigger to improve examination performance is described. A study of 60 high school students indicates that the approach can improve test outcomes. (TJH)

  7. Insights into the molecular interactions between aminopeptidase and amyloid beta peptide using molecular modeling techniques.

    PubMed

    Dhanavade, Maruti J; Sonawane, Kailas D

    2014-08-01

    Amyloid beta (Aβ) peptides play a central role in the pathogenesis of Alzheimer's disease. The accumulation of Aβ peptides in AD brain was caused due to overproduction or insufficient clearance and defects in the proteolytic degradation of Aβ peptides. Hence, Aβ peptide degradation could be a promising therapeutic approach in AD treatment. Recent experimental report suggests that aminopeptidase from Streptomyces griseus KK565 (SGAK) can degrade Aβ peptides but the interactive residues are yet to be known in detail at the atomic level. Hence, we developed the three-dimensional model of aminopeptidase (SGAK) using SWISS-MODEL, Geno3D and MODELLER. Model built by MODELLER was used for further studies. Molecular docking was performed between aminopeptidase (SGAK) with wild-type and mutated Aβ peptides. The docked complex of aminopeptidase (SGAK) and wild-type Aβ peptide (1IYT.pdb) shows more stability than the other complexes. Molecular docking and MD simulation results revealed that the residues His93, Asp105, Glu139, Glu140, Asp168 and His255 are involved in the hydrogen bonding with Aβ peptide and zinc ions. The interactions between carboxyl oxygen atoms of Glu139 of aminopeptidase (SGAK) with water molecule suggest that the Glu139 may be involved in the nucleophilic attack on Ala2-Glu3 peptide bond of Aβ peptide. Hence, amino acid Glu139 of aminopeptidase (SGAK) might play an important role to degrade Aβ peptides, a causative agent of Alzheimer's disease.

  8. [Molecular techniques for cyanobacteria detection at Riogrande II and La Fe water reservoirs, Colombia].

    PubMed

    Hurtado-Alarcón, Julio César; Polanía-Vorenberg, Jaime

    2014-03-01

    In lentic water bodies as reservoirs occur eutrophication processes, originated mainly from human activities (i.e. agriculture, animal exploitation). This influx of nutrients in aquatic ecosystems could promote blooms of potentially toxic cyanobacteria. The purpose of this work is to detect the presence of cyanobacteria strains in water samples, using molecular techniques to help in preventive management of reservoirs dedicated to water purification. We used two molecular techniques to detect genes implied with the synthesis of hepatotoxic microcystins from potentially toxic cyanobacteria strains, and to evaluate the molecular diversity of cyanobacteria in water samples from two high-mountain reservoirs used for purification of drinking water for the metropolitan area of Medellin, Colombia. Between 2010-2011 collections of 12 water samples were taken and DNA extraction together with PCR and DGGE analyses where carried out. We amplified 22 sequences between 250-300bp of the genes mcyA and mcyE, and these sequences were related with several strains and cyanobacteria genera accessions from NCBI-GenBank databases. Moreover, sequence amplifications of the 16S small ribosomal RNA subunit - 16S rRNA- between 400-800bp were also performed in order to use them for the DGGE technique. The amplification products of DGGE were set in polyacrilamide gel with posterior denaturing electrophoresis, and the scanned images of the gel bands were analysed with the software GelCompar II. For Riogrande II and La Fe reservoirs we found 35 and 30 different DGGE bands, respectively, as a measurement of molecular diversity in these artificial ecosystems. Here, we demonstrated the utility of two molecular techniques for the detection of genes associated with toxicity and molecular diversity of cyanobacteria in reservoirs destined for drinking water in urban centers. We recommend strongly following with periodically molecular biology studies in these ecosystems combined with limnological and

  9. Improved wax mold technique forms complex passages in solid structures

    NASA Technical Reports Server (NTRS)

    Hellbaum, R. F.; Page, A. D.; Phillips, A. R.

    1971-01-01

    Low-cost fabricating technique produces minute, complex air passages in fluidic devices. Air jet interactions in these function as electronic and electromechanical control systems. Wax cores are fabricated without distortion by two-wax process using nonsoluble pattern-wax and water-soluble wax. Significant steps in fabrication process are discussed.

  10. Improved Techniques for Automatic Chord Recognition from Music Audio Signals

    ERIC Educational Resources Information Center

    Cho, Taemin

    2014-01-01

    This thesis is concerned with the development of techniques that facilitate the effective implementation of capable automatic chord transcription from music audio signals. Since chord transcriptions can capture many important aspects of music, they are useful for a wide variety of music applications and also useful for people who learn and perform…

  11. Integrative Teaching Techniques and Improvement of German Speaking Learning Skills

    ERIC Educational Resources Information Center

    Litualy, Samuel Jusuf

    2016-01-01

    This research ist a Quasi-Experimental research which only applied to one group without comparison group. It aims to prove whether the implementation of integrative teaching technique has influenced the speaking skill of the students in German Education Study Program of FKIP, Pattimura University. The research was held in the German Education…

  12. Improving Word Learning in Children Using an Errorless Technique

    ERIC Educational Resources Information Center

    Warmington, Meesha; Hitch, Graham J.; Gathercole, Susan E.

    2013-01-01

    The current experiment examined the relative advantage of an errorless learning technique over an errorful one in the acquisition of novel names for unfamiliar objects in typically developing children aged between 7 and 9 years. Errorless learning led to significantly better learning than did errorful learning. Processing speed and vocabulary…

  13. Discriminating coastal rangeland production and improvements with computer aided techniques

    NASA Technical Reports Server (NTRS)

    Reeves, C. A.; Faulkner, D. P.

    1975-01-01

    The feasibility and utility of using satellite data and computer-aided remote sensing analysis techniques to conduct range inventories were tested. This pilot study was focused over a 250,000 acre site in Galveston and Brazoria Counties along the Texas Gulf Coast. Rectified enlarged aircraft color infrared photographs of this site were used as the ground truth base. The different land categories were identified, delineated, and measured. Multispectral scanner (MSS) bulk data from LANDSAT-1 was received and analyzed with the Image 100 pattern recognition system. Features of interest were delineated on the image console giving the number of picture elements classified; the picture elements were converted to acreages and the accuracy of the technique was evaluated by comparison with data base results for three test sites. The accuracies for computer aided classification of coastal marshes ranged from 89% to 96%.

  14. Molecular techniques in the biotechnological fight against halogenated compounds in anoxic environments

    PubMed Central

    Ding, Chang; He, Jianzhong

    2012-01-01

    Summary Microbial treatment of environmental contamination by anthropogenic halogenated organic compounds has become popular in recent decades, especially in the subsurface environments. Molecular techniques such as polymerase chain reaction‐based fingerprinting methods have been extensively used to closely monitor the presence and activities of dehalogenating microbes, which also lead to the discovery of new dehalogenating bacteria and novel functional genes. Nowadays, traditional molecular techniques are being further developed and optimized for higher sensitivity, specificity, and accuracy to better fit the contexts of dehalogenation. On the other hand, newly developed high throughput techniques, such as microarray and next‐generation sequencing, provide unsurpassed detection ability, which has enabled large‐scale comparative genomic and whole‐genome transcriptomic analysis. The aim of this review is to summarize applications of various molecular tools in the field of microbially mediated dehalogenation of various halogenated organic compounds. It is expected that traditional molecular techniques and nucleic‐acid‐based biomarkers will still be favoured in the foreseeable future because of relative low costs and high flexibility. Collective analyses of metagenomic sequencing data are still in need of information from individual dehalogenating strains and functional reductive dehalogenase genes in order to draw reliable conclusions. PMID:22070763

  15. Development and validation of techniques for improving software dependability

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    1992-01-01

    A collection of document abstracts are presented on the topic of improving software dependability through NASA grant NAG-1-1123. Specific topics include: modeling of error detection; software inspection; test cases; Magnetic Stereotaxis System safety specifications and fault trees; and injection of synthetic faults into software.

  16. Improving Attendance of Kindergarten Students through Behavior Modification Techniques.

    ERIC Educational Resources Information Center

    Schofield, Betty D.

    A behavior modification program was implemented to improve attendance and punctuality patterns of kindergarten students attending a small, rural elementary school. Also incorporated into the intervention were self-esteem and parent involvement components. Motivational strategies used were: a token economy; group-oriented behavior management…

  17. An improved version of the Green's function molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Kong, Ling Ti; Denniston, Colin; Müser, Martin H.

    2011-02-01

    This work presents an improved version of the Green's function molecular dynamics method (Kong et al., 2009; Campañá and Müser, 2004 [1,2]), which enables one to study the elastic response of a three-dimensional solid to an external stress field by taking into consideration only atoms near the surface. In the previous implementation, the effective elastic coefficients measured at the Γ-point were altered to reduce finite size effects: their eigenvalues corresponding to the acoustic modes were set to zero. This scheme was found to work well for simple Bravais lattices as long as only atoms within the last layer were treated as Green's function atoms. However, it failed to function as expected in all other cases. It turns out that a violation of the acoustic sum rule for the effective elastic coefficients at Γ (Kong, 2010 [3]) was responsible for this behavior. In the new version, the acoustic sum rule is enforced by adopting an iterative procedure, which is found to be physically more meaningful than the previous one. In addition, the new algorithm allows one to treat lattices with bases and the Green's function slab is no longer confined to one layer. New version program summaryProgram title: FixGFC/FixGFMD v1.12 Catalogue identifier: AECW_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECW_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 206 436 No. of bytes in distributed program, including test data, etc.: 4 314 850 Distribution format: tar.gz Programming language: C++ Computer: All Operating system: Linux Has the code been vectorized or parallelized?: Yes. Code has been parallelized using MPI directives. RAM: Depends on the problem Classification: 7.7 External routines: LAMMPS ( http://lammps.sandia.gov/), MPI ( http

  18. Molecular tagging techniques and their applications to the study of complex thermal flow phenomena

    NASA Astrophysics Data System (ADS)

    Chen, Fang; Li, Haixing; Hu, Hui

    2015-08-01

    This review article reports the recent progress in the development of a new group of molecule-based flow diagnostic techniques, which include molecular tagging velocimetry (MTV) and molecular tagging thermometry (MTT), for both qualitative flow visualization of thermally induced flow structures and quantitative whole-field measurements of flow velocity and temperature distributions. The MTV and MTT techniques can also be easily combined to result in a so-called molecular tagging velocimetry and thermometry (MTV&T) technique, which is capble of achieving simultaneous measurements of flow velocity and temperature distribution in fluid flows. Instead of using tiny particles, the molecular tagging techniques (MTV, MTT, and MTV&T) use phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, as the tracers for the flow velocity and temperature measurements. The unique attraction and implementation of the molecular tagging techniques are demonstrated by three application examples, which include: (1) to quantify the unsteady heat transfer process from a heated cylinder to the surrounding fluid flow in order to examine the thermal effects on the wake instabilities behind the heated cylinder operating in mixed and forced heat convection regimes, (2) to reveal the time evolution of unsteady heat transfer and phase changing process inside micro-sized, icing water droplets in order to elucidate the underlying physics pertinent to aircraft icing phenomena, and (3) to achieve simultaneous droplet size, velocity and temperature measurements of "in-flight" droplets to characterize the dynamic and thermodynamic behaviors of flying droplets in spray flows.

  19. Improved analysis techniques for cylindrical and spherical double probes

    SciTech Connect

    Beal, Brian; Brown, Daniel; Bromaghim, Daron; Johnson, Lee; Blakely, Joseph

    2012-07-15

    A versatile double Langmuir probe technique has been developed by incorporating analytical fits to Laframboise's numerical results for ion current collection by biased electrodes of various sizes relative to the local electron Debye length. Application of these fits to the double probe circuit has produced a set of coupled equations that express the potential of each electrode relative to the plasma potential as well as the resulting probe current as a function of applied probe voltage. These equations can be readily solved via standard numerical techniques in order to determine electron temperature and plasma density from probe current and voltage measurements. Because this method self-consistently accounts for the effects of sheath expansion, it can be readily applied to plasmas with a wide range of densities and low ion temperature (T{sub i}/T{sub e} Much-Less-Than 1) without requiring probe dimensions to be asymptotically large or small with respect to the electron Debye length. The presented approach has been successfully applied to experimental measurements obtained in the plume of a low-power Hall thruster, which produced a quasineutral, flowing xenon plasma during operation at 200 W on xenon. The measured plasma densities and electron temperatures were in the range of 1 Multiplication-Sign 10{sup 12}-1 Multiplication-Sign 10{sup 17} m{sup -3} and 0.5-5.0 eV, respectively. The estimated measurement uncertainty is +6%/-34% in density and +/-30% in electron temperature.

  20. Improved analysis techniques for cylindrical and spherical double probes.

    PubMed

    Beal, Brian; Johnson, Lee; Brown, Daniel; Blakely, Joseph; Bromaghim, Daron

    2012-07-01

    A versatile double Langmuir probe technique has been developed by incorporating analytical fits to Laframboise's numerical results for ion current collection by biased electrodes of various sizes relative to the local electron Debye length. Application of these fits to the double probe circuit has produced a set of coupled equations that express the potential of each electrode relative to the plasma potential as well as the resulting probe current as a function of applied probe voltage. These equations can be readily solved via standard numerical techniques in order to determine electron temperature and plasma density from probe current and voltage measurements. Because this method self-consistently accounts for the effects of sheath expansion, it can be readily applied to plasmas with a wide range of densities and low ion temperature (T(i)/T(e) ≪ 1) without requiring probe dimensions to be asymptotically large or small with respect to the electron Debye length. The presented approach has been successfully applied to experimental measurements obtained in the plume of a low-power Hall thruster, which produced a quasineutral, flowing xenon plasma during operation at 200 W on xenon. The measured plasma densities and electron temperatures were in the range of 1 × 10(12)-1 × 10(17) m(-3) and 0.5-5.0 eV, respectively. The estimated measurement uncertainty is +6%∕-34% in density and +∕-30% in electron temperature.

  1. Using ICT techniques for improving mechatronic systems' dependability

    NASA Astrophysics Data System (ADS)

    Miron, Emanuel; Silva, João P. M. A.; Machado, José; Olaru, Dumitru; Prisacaru, Gheorghe

    2013-10-01

    The use of analysis techniques for industrial controller's analysis, such as Simulation and Formal Verification, is complex on industrial context. This complexity is due to the fact that such techniques require sometimes high investment in specific skilled human resources that have sufficient theoretical knowledge in those domains. This paper aims, mainly, to show that it is possible to obtain a timed automata model for formal verification purposes, considering the CAD model of a mechanical component. This systematic approach can be used, by companies, for the analysis of industrial controllers programs. For this purpose, it is discussed, in the paper, the best way to systematize these procedures, and this paper describes, only, the first step of a complex process and promotes a discussion of the main difficulties that can be found and a possibility for handle those difficulties. A library for formal verification purposes is obtained from original 3D CAD models using Software as a Service platform (SaaS) that, nowadays, has become a common deliverable model for many applications, because SaaS is typically accessed by users via internet access.

  2. RNAi screening comes of age: improved techniques and complementary approaches

    PubMed Central

    Mohr, Stephanie E.; Smith, Jennifer A.; Shamu, Caroline E.; Neumüller, Ralph A.; Perrimon, Norbert

    2014-01-01

    Gene silencing through sequence-specific targeting of mRNAs by RNAi has enabled genome-wide functional screens in cultured cells and in vivo in model organisms. These screens have resulted in the identification of new cellular pathways and potential drug targets. Considerable progress has been made to improve the quality of RNAi screen data through the development of new experimental and bioinformatics approaches. The recent availability of genome-editing strategies, such as the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system, when combined with RNAi, could lead to further improvements in screen data quality and follow-up experiments, thus promoting our understanding of gene function and gene regulatory networks. PMID:25145850

  3. Improved ceramic slip casting technique. [application to aircraft model fabrication

    NASA Technical Reports Server (NTRS)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  4. Improved memory loading techniques for the TSRV display system

    NASA Technical Reports Server (NTRS)

    Easley, W. C.; Lynn, W. A.; Mcluer, D. G.

    1986-01-01

    A recent upgrade of the TSRV research flight system at NASA Langley Research Center retained the original monochrome display system. However, the display memory loading equipment was replaced requiring design and development of new methods of performing this task. This paper describes the new techniques developed to load memory in the display system. An outdated paper tape method for loading the BOOTSTRAP control program was replaced by EPROM storage of the characters contained on the tape. Rather than move a tape past an optical reader, a counter was implemented which steps sequentially through EPROM addresses and presents the same data to the loader circuitry. A cumbersome cassette tape method for loading the applications software was replaced with a floppy disk method using a microprocessor terminal installed as part of the upgrade. The cassette memory image was transferred to disk and a specific software loader was written for the terminal which duplicates the function of the cassette loader.

  5. Improving transesterification acitvity of CaO with hydration technique.

    PubMed

    Yoosuk, Boonyawan; Udomsap, Parncheewa; Puttasawat, Buppa; Krasae, Pawnprapa

    2010-05-01

    An efficient technique for increasing the transesterification activity of CaO obtained from calcination of CaCO(3) was proposed in order to make them highly suitable for use as heterogeneous catalysts for biodiesel production. CaO was refluxed in water followed by the synthesis of the oxide from hydroxide species. The characterization results indicate that this procedure substantially increases both the specific surface area and the amount of basic site. Hydration and subsequent calcination also generates a new calcium oxide with less crystalline. Transesterification of palm olein was used to determine the activity of catalysts to show that the decomposed-hydrated CaO exhibits higher catalytic activity than CaO generated from calcination of CaCO(3). The methyl ester content was enhanced 18.4 wt.%. PMID:20089395

  6. Advanced Measurement and Modeling Techniques for Improved SOFC Cathodes

    SciTech Connect

    Stuart Adler; L. Dunyushkina; S. Huff; Y. Lu; J. Wilson

    2006-12-31

    The goal of this project was to develop an improved understanding of factors governing performance and degradation of mixed-conducting SOFC cathodes. Two new diagnostic tools were developed to help achieve this goal: (1) microelectrode half-cells for improved isolation of cathode impedance on thin electrolytes, and (2) nonlinear electrochemical impedance spectroscopy (NLEIS), a variant of traditional impedance that allows workers to probe nonlinear rates as a function of frequency. After reporting on the development and efficacy of these tools, this document reports on the use of these and other tools to better understand performance and degradation of cathodes based on the mixed conductor La{sub 1-x}Sr{sub x}CoO{sub 3-{delta}} (LSC) on gadolinia or samaria-doped ceria (GDC or SDC). We describe the use of NLEIS to measure O{sub 2} exchange on thin-film LSC electrodes, and show that O{sub 2} exchange is most likely governed by dissociative adsorption. We also describe parametric studies of porous LSC electrodes using impedance and NLEIS. Our results suggest that O{sub 2} exchange and ion transport co-limit performance under most relevant conditions, but it is O{sub 2} exchange that is most sensitive to processing, and subject to the greatest degradation and sample-to-sample variation. We recommend further work that focuses on electrodes of well-defined or characterized geometry, and probes the details of surface structure, composition, and impurities. Parallel work on primarily electronic conductors (LSM) would also be of benefit to developers, and to improved understanding of surface vs. bulk diffusion.

  7. Applying program comprehension techniques to improve software inspections

    NASA Technical Reports Server (NTRS)

    Rifkin, Stan; Deimel, Lionel

    1994-01-01

    Software inspections are widely regarded as a cost-effective mechanism for removing defects in software, though performing them does not always reduce the number of customer-discovered defects. We present a case study in which an attempt was made to reduce such defects through inspection training that introduced program comprehension ideas. The training was designed to address the problem of understanding the artifact being reviewed, as well as other perceived deficiencies of the inspection process itself. Measures, both formal and informal, suggest that explicit training in program understanding may improve inspection effectiveness.

  8. Improving pyroelectric energy harvesting using a sandblast etching technique.

    PubMed

    Hsiao, Chun-Ching; Siao, An-Shen

    2013-01-01

    Large amounts of low-grade heat are emitted by various industries and exhausted into the environment. This heat energy can be used as a free source for pyroelectric power generation. A three-dimensional pattern helps to improve the temperature variation rates in pyroelectric elements by means of lateral temperature gradients induced on the sidewalls of the responsive elements. A novel method using sandblast etching is successfully applied in fabricating the complex pattern of a vortex-like electrode. Both experiment and simulation show that the proposed design of the vortex-like electrode improved the electrical output of the pyroelectric cells and enhanced the efficiency of pyroelectric harvesting converters. A three-dimensional finite element model is generated by commercial software for solving the transient temperature fields and exploring the temperature variation rate in the PZT pyroelectric cells with various designs. The vortex-like type has a larger temperature variation rate than the fully covered type, by about 53.9%.The measured electrical output of the vortex-like electrode exhibits an obvious increase in the generated charge and the measured current, as compared to the fully covered electrode, by of about 47.1% and 53.1%, respectively. PMID:24025557

  9. Improving Pyroelectric Energy Harvesting Using a Sandblast Etching Technique

    PubMed Central

    Hsiao, Chun-Ching; Siao, An-Shen

    2013-01-01

    Large amounts of low-grade heat are emitted by various industries and exhausted into the environment. This heat energy can be used as a free source for pyroelectric power generation. A three-dimensional pattern helps to improve the temperature variation rates in pyroelectric elements by means of lateral temperature gradients induced on the sidewalls of the responsive elements. A novel method using sandblast etching is successfully applied in fabricating the complex pattern of a vortex-like electrode. Both experiment and simulation show that the proposed design of the vortex-like electrode improved the electrical output of the pyroelectric cells and enhanced the efficiency of pyroelectric harvesting converters. A three-dimensional finite element model is generated by commercial software for solving the transient temperature fields and exploring the temperature variation rate in the PZT pyroelectric cells with various designs. The vortex-like type has a larger temperature variation rate than the fully covered type, by about 53.9%.The measured electrical output of the vortex-like electrode exhibits an obvious increase in the generated charge and the measured current, as compared to the fully covered electrode, by of about 47.1% and 53.1%, respectively. PMID:24025557

  10. Machine learning for molecular scattering dynamics: Gaussian Process models for improved predictions of molecular collision observables

    NASA Astrophysics Data System (ADS)

    Krems, Roman; Cui, Jie; Li, Zhiying

    2016-05-01

    We show how statistical learning techniques based on kriging (Gaussian Process regression) can be used for improving the predictions of classical and/or quantum scattering theory. In particular, we show how Gaussian Process models can be used for: (i) efficient non-parametric fitting of multi-dimensional potential energy surfaces without the need to fit ab initio data with analytical functions; (ii) obtaining scattering observables as functions of individual PES parameters; (iii) using classical trajectories to interpolate quantum results; (iv) extrapolation of scattering observables from one molecule to another; (v) obtaining scattering observables with error bars reflecting the inherent inaccuracy of the underlying potential energy surfaces. We argue that the application of Gaussian Process models to quantum scattering calculations may potentially elevate the theoretical predictions to the same level of certainty as the experimental measurements and can be used to identify the role of individual atoms in determining the outcome of collisions of complex molecules. We will show examples and discuss the applications of Gaussian Process models to improving the predictions of scattering theory relevant for the cold molecules research field. Work supported by NSERC of Canada.

  11. Improved Battery State Estimation Using Novel Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Abdul Samad, Nassim

    Lithium-ion batteries have been considered a great complement or substitute for gasoline engines due to their high energy and power density capabilities among other advantages. However, these types of energy storage devices are still yet not widespread, mainly because of their relatively high cost and safety issues, especially at elevated temperatures. This thesis extends existing methods of estimating critical battery states using model-based techniques augmented by real-time measurements from novel temperature and force sensors. Typically, temperature sensors are located near the edge of the battery, and away from the hottest core cell regions, which leads to slower response times and increased errors in the prediction of core temperatures. New sensor technology allows for flexible sensor placement at the cell surface between cells in a pack. This raises questions about the optimal locations of these sensors for best observability and temperature estimation. Using a validated model, which is developed and verified using experiments in laboratory fixtures that replicate vehicle pack conditions, it is shown that optimal sensor placement can lead to better and faster temperature estimation. Another equally important state is the state of health or the capacity fading of the cell. This thesis introduces a novel method of using force measurements for capacity fade estimation. Monitoring capacity is important for defining the range of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Current capacity estimation techniques require a full discharge to monitor capacity. The proposed method can complement or replace current methods because it only requires a shallow discharge, which is especially useful in EVs and PHEVs. Using the accurate state estimation accomplished earlier, a method for downsizing a battery pack is shown to effectively reduce the number of cells in a pack without compromising safety. The influence on the battery performance (e

  12. Improving gated cardiac scanning using limited-angle reconstruction technique

    SciTech Connect

    Tam, K.C.; Perez-Mendez, V.

    1983-02-01

    Selected phases of the cardiac cycle can be imaged by the method of gated cardiac scanning using whole body scanners. However, since there is no synchronization between the random heart beats and the CT machine, the output will have gaps in the angular coverage of each scan. The missing projections in these gaps result in artifacts in the reconstructed images. In this paper, the technique of limited-angle reconstruction is employed to fill in the missing projections to remove the artifacts. The object is transformed back and forth between the object space and the projection space, being corrected in each step by the constraints of the finite spatial extent and of the upper and lower bounds of the object in the object space, and the known projections in the projection space. It is found that by using the proposed algorithm the rms errors of the limited-angle images are reduced to a level comparable to those of the complete-angle images. The same iteration algorithm can also be used to reduce the fan beam scanning angle from 360 degree to 180 degree without sacrificing much image quality.

  13. An improved technique for immediate retropectoral reconstruction after subcutaneous mastectomy.

    PubMed

    Maillard, G F; Garey, L J

    1987-09-01

    Subcutaneous mastectomy is becoming an operation of choice in certain cases of premalignant and other breast pathology. We describe a technique for simultaneous subcutaneous mastectomy and retropectoral implantation of a silicone prosthesis. Gentle blunt prepectoral, retromammary dissection is performed through an axillary incision as far inferiorly as the inframammary fold, where a fibrous bridge between the anterior surface of the pectoralis major muscle and the skin prevents dissection any lower. Through the same incision, the retropectoral space is dissected to about 5 cm below the inframammary fold. A second incision is made in the inframammary fold to join the retromammary plane of the first dissection. The gland is then dissected subcutaneously and removed through the inframammary incision. A silicone implant is introduced retropectorally through the axillary incision, thus avoiding splitting the pectoralis major. Satisfactory results have been obtained in 23 bilateral and 14 unilateral cases; it is important that the dissection be performed carefully in order to prevent the implant from riding up too high in its musculoaponeurotic sling.

  14. Improved techniques for examining rapid dopamine signaling with iontophoresis.

    PubMed

    Herr, Natalie Rios; Wightman, Robert Mark

    2013-01-01

    Dopamine is a neurotransmitter that is utilized in brain circuits associated with reward processing and motor activity. Advances in microelectrode techniques and cyclic voltammetry have enabled its extracellular concentration fluctuations to be examined on a subsecond time scale in the brain of anesthetized and freely moving animals. The microelectrodes can be attached to micropipettes that allow local drug delivery at the site of measurement. Drugs that inhibit dopamine uptake or its autoreceptors can be evaluated while only affecting the brain region directly adjacent to the electrode. The drugs are ejected by iontophoresis in which an electrical current forces the movement of molecules by a combination of electrical migration and electroosmosis. Using electroactive tracer molecules, the amount ejected can be measured with cyclic voltammetry. In this review we will give an introduction to the basic principles of iontophoresis, including a historical account on the development of iontophoresis. It will also include an overview of the use of iontophoresis to study neurotransmission of dopamine in the rat brain. It will close by summarizing the advantages of iontophoresis and how the development of quantitative iontophoresis will facilitate future studies.

  15. Applying total quality management techniques to improve software development.

    PubMed

    Mezher, T; Assem Abdul Malak, M; el-Medawar, H

    1998-01-01

    Total Quality Management (TQM) is a new management philosophy and a set of guiding principles that represent the basis of a continuously improving organization. This paper sheds light on the application of TQM concepts for software development. A fieldwork study was conducted on a Lebanese software development firm and its customers to determine the major problems affecting the organization's operation and to assess the level of adoption of TQM concepts. Detailed questionnaires were prepared and handed out to the firm's managers, programmers, and customers. The results of the study indicate many deficiencies in applying TQM concepts, especially in the areas of planning, defining customer requirements, teamwork, relationship with suppliers, and adopting standards and performance measures. One of the major consequences of these deficiencies is considerably increased programming errors and delays in delivery. Recommendations on achieving quality are discussed.

  16. Techniques to improve the economics of limestone FGDS

    SciTech Connect

    Bresowar, G.E.; Klingspor, J.

    1995-12-31

    Many utilities have evaluated the cost of scrubbing versus fuel switching in various plans and scenarios to determine the most economical means for meeting the requirements of the new law. Presently, the future cost of removing a ton of SO{sub 2} is based on fuel switching, and the market values are in the range of $150 - $250 per ton. The perceived cost of FGDS retrofits is $250 - $400 per ton for eastern medium to high sulfur coal. ABB has studied the overall costs of FGDS and has developed a series of cost reducing improvements. and innovations. The improvements are manifested in ABBs new limestone FGDS technology known by the code phrase {open_quote}Stealth FGDS{close_quotes}. Stealth promises low capital and operating cost, high removal efficiencies for SO{sub 2} and other pollutants, little or positive environmental and economic impact on the local community, salable or non-hazardous by-products, ease of retrofit, and exceptionally short installation schedules. The concepts are being demonstrated in one system at the Miles Generating Station of Ohio Edison Company. Bearing the name {open_quote}LS-2 Advanced SO, Scrubbing{close_quotes}, the Stealth scrubber at Niles is a 110 MWe turnkey, retrofit unit to be completed 20 months after the release of engineering. It will remove 20,000 or more tons per year of SO{sub 2} from the flue gases generated by both Unit 1 and Unit 2 boilers, producing wallboard-grade gypsum. Upon completion of a four month test program, the plant will be operated by Ohio Edison for a four to five year reliability demonstration period. The performance and economic projections for LS-2 scrubbers show the technology to be quite attractive relative to projections for fuel switching when installed in a manner similar to the installation plan for Niles. The description and basis for these economic projections are described in this paper.

  17. On Eliminating Synchronous Communication in Molecular Simulations to Improve Scalability

    SciTech Connect

    Straatsma, TP; Chavarría-Miranda, Daniel

    2013-12-01

    Molecular dynamics simulation, as a complementary tool to experimentation, has become an important methodology for the understanding and design of molecular systems as it provides access to properties that are difficult, impossible or prohibitively expensive to obtain experimentally. Many of the available software packages have been parallelized to take advantage of modern massively concurrent processing resources. The challenge in achieving parallel efficiency is commonly attributed to the fact that molecular dynamics algorithms are communication intensive. This paper illustrates how an appropriately chosen data distribution and asynchronous one-sided communication approach can be used to effectively deal with the data movement within the Global Arrays/ARMCI programming model framework. A new put_notify capability is presented here, allowing the implementation of the molecular dynamics algorithm without any explicit global or local synchronization or global data reduction operations. In addition, this push-data model is shown to very effectively allow hiding data communication behind computation. Rather than data movement or explicit global reductions, the implicit synchronization of the algorithm becomes the primary challenge for scalability. Without any explicit synchronous operations, the scalability of molecular simulations is shown to depend only on the ability to evenly balance computational load.

  18. On eliminating synchronous communication in molecular simulations to improve scalability

    NASA Astrophysics Data System (ADS)

    Straatsma, T. P.; Chavarría-Miranda, Daniel G.

    2013-12-01

    Molecular dynamics simulation, as a complementary tool to experimentation, has become an important methodology for the understanding and design of molecular systems as it provides access to properties that are difficult, impossible or prohibitively expensive to obtain experimentally. Many of the available software packages have been parallelized to take advantage of modern massively concurrent processing resources. The challenge in achieving parallel efficiency is commonly attributed to the fact that molecular dynamics algorithms are communication intensive. This paper illustrates how an appropriately chosen data distribution and asynchronous one-sided communication approach can be used to effectively deal with the data movement within the Global Arrays/ARMCI programming model framework. A new put_notify capability is presented here, allowing the implementation of the molecular dynamics algorithm without any explicit global or local synchronization or global data reduction operations. In addition, this push-data model is shown to very effectively allow hiding data communication behind computation. Rather than data movement or explicit global reductions, the implicit synchronization of the algorithm becomes the primary challenge for scalability. Without any explicit synchronous operations, the scalability of molecular simulations is shown to depend only on the ability to evenly balance computational load.

  19. Performance Improvement of Algorithms Based on the Synthetic Aperture Focusing Technique

    NASA Astrophysics Data System (ADS)

    Acevedo, P.; Sotomayor, A.; Moreno, E.

    An analysis to improve the performance of the ultrasonic synthetic aperture focusing technique (SAFT) on a PC platform is presented in this paper. Some useful processing techniques like apodization, dynamic focusing, envelope detection and image composition are used to improve the quality of the image. Finally, results of the algorithm implemented using MATLAB and C/C++ and the respective images are presented

  20. Improved techniques for fluid diversion in oil recovery. Final report

    SciTech Connect

    Seright, R.

    1996-01-01

    This three-year project had two technical objectives. The first objective was to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes were compared, including those using gels, foams, emulsions, particulates, and microorganisms. The ultimate goals of these comparisons were to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments were performed to verify which materials are the most effective in entering and blocking high-permeability zones. The second objective of the project was to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. A capacity to reduce water permeability much more than oil or gas permeability is critical to the success of gel treatments in production wells if zones cannot be isolated during gel placement. Topics covered in this report include (1) determination of gel properties in fractures, (2) investigation of schemes to optimize gel placement in fractured systems, (3) an investigation of why some polymers and gels can reduce water permeability more than oil permeability, (4) consideration of whether microorganisms and particulates can exhibit placement properties that are superior to those of gels, and (5) examination of when foams may show placement properties that are superior to those of gels.

  1. Geocoding coronial data: tools and techniques to improve data quality.

    PubMed

    Freestone, Darren; Williamson, Dianne; Wollersheim, Dennis

    2012-01-01

    Clinical, administrative and demographic health information is fundamental to understanding the nature of health and evaluating the effectiveness of efforts to reduce morbidity and mortality of the population. The demographic data item 'location' is an integral part of any injury surveillance tool or injury prevention strategy. The true value of location data can only be realised once these data have been appropriately classified and quality assured. Geocoding as a means of classifying location is increasingly used in various health fields to enable spatial analysis of data. This article reports on research carried out in Australia at the National Coroners Information System (NCIS). Trends in the use of NCIS location-based data by researchers were identified. The research also aimed to establish the factors that impacted on the quality of geocoded data and the extent of this impact. A systematic analysis of the geocoding process identified source documentation, data cleaning, and software settings as key factors impacting on data quality. Understanding and application of these processes can improve data quality and therefore inform the analysis and interpretation of these data by researchers. PMID:23087078

  2. Improved vapor-phase deposition technique for antistiction monolayers

    NASA Astrophysics Data System (ADS)

    Ashurst, Robert W.; Carraro, Carlo; Chinn, Jeff D.; Fuentes, Victor; Kobrin, Boris; Maboudian, Roya; Nowak, Romuald; Yi, Richard

    2004-01-01

    We have developed an improved vapor-phase deposition method and an apparatus for the wafer-scale coating of monolayer films typically used in anti-stiction applications. The method consists of a surface preparation step using an O2 plasma followed by the tunable deposition of a monolayer film in the same reactor. This process has been successfully applied to MEMS test structures and has demonstrated superior anti-stiction performance. The deposition process allows tuning of the film properties by the precise metering of the precursor and a catalyst as part of the process control scheme. The anti-stiction monolayer film deposited from dimethyldichlorosilane (DDMS), tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS), and heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane (FDTS) were characterized using contact angle analysis, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The coefficient of static friction was measured using a sidewall test device and the work of adhesion using a cantilever beam array. The results showed that excellent quality, uniformity, and reproducibility could be achieved across a whole wafer using this method and equipment.

  3. Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development

    PubMed Central

    Quillard, Thibaut; Libby, Peter

    2012-01-01

    Despite recent progress, cardiovascular and allied metabolic disorders remain a worldwide health challenge. We need to identify new targets for therapy, develop new agents for clinical use, and deploy them in a clinically-effective and cost-effective manner. Molecular imaging of atherosclerotic lesions has become a major experimental tool in the last decade, notably by providing a direct gateway to the processes involved in atherogenesis and its complications. This review summarizes the current status of molecular imaging approaches that target the key processes implicated in plaque formation, development, and disruption, and highlights how the refinement and application of such tools might aid the development and evaluation of novel therapeutics. PMID:22773426

  4. Nonlinear Raman Techniques in Femtosecond Time Resolved Spectroscopy for the Analysis and Control of Molecular Dynamics

    SciTech Connect

    Materny, Arnulf; Konradi, Jakow; Namboodiri, Vinu; Namboodiri, Mahesh; Scaria, Abraham

    2008-11-14

    The use of four-wave mixing techniques in femtosecond time-resolved spectroscopy has considerable advantages. Due to the many degrees of freedom offered e.g. by coherent anti-Stokes Raman scattering (CARS), the dynamics even of complex systems can be analyzed in detail. Using pulse shaping techniques in combination with a self-learning loop approach, molecular mode excitation can be controlled very efficiently in a multi-photon excitation process. Results obtained from the optimal control of CARS on {beta}-carotene are discussed.

  5. SPECT and PET serve as molecular imaging techniques and in vivo biomarkers for brain metastases.

    PubMed

    Palumbo, Barbara; Buresta, Tommaso; Nuvoli, Susanna; Spanu, Angela; Schillaci, Orazio; Fravolini, Mario Luca; Palumbo, Isabella

    2014-06-03

    Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed.

  6. SPECT and PET Serve as Molecular Imaging Techniques and in Vivo Biomarkers for Brain Metastases

    PubMed Central

    Palumbo, Barbara; Buresta, Tommaso; Nuvoli, Susanna; Spanu, Angela; Schillaci, Orazio; Fravolini, Mario Luca; Palumbo, Isabella

    2014-01-01

    Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed. PMID:24897023

  7. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    PubMed

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber.

  8. Fiber optic profenofos sensor based on surface plasmon resonance technique and molecular imprinting.

    PubMed

    Shrivastav, Anand M; Usha, Sruthi P; Gupta, Banshi D

    2016-05-15

    A successful approach for the fabrication and characterization of an optical fiber sensor for the detection of profenofos based on surface plasmon resonance (SPR) and molecular imprinting is introduced. Molecular imprinting technology is used for the creation of three dimensional binding sites having complementary shape and size of the specific template molecule over a polymer for the recognition of the same. Binding of template molecule with molecularly imprinted polymer (MIP) layer results in the change in the dielectric nature of the sensing surface (polymer) and is identified by SPR technique. Spectral interrogation method is used for the characterization of the sensing probe. The operating profenofos concentration range of the sensor is from 10(-4) to 10(-1)µg/L. A red shift of 18.7 nm in resonance wavelength is recorded for this profenofos concentration range. The maximum sensitivity of the sensor is 12.7 nm/log (µg/L) at 10(-4)µg/L profenofos concentration. Limit of detection (LOD) of the sensor is found to be 2.5×10(-6)µg/L. Selectivity measurements predict the probe highly selective for the profenofos molecule. Besides high sensitivity due to SPR technique and selectivity due to molecular imprinting, proposed sensor has numerous other advantages like immunity to electromagnetic interference, fast response, low cost and capability of online monitoring and remote sensing of analyte due to the fabrication of the probe on optical fiber. PMID:26706813

  9. Charge transport in molecular junctions: From tunneling to hopping with the probe technique

    SciTech Connect

    Kilgour, Michael; Segal, Dvira

    2015-07-14

    We demonstrate that a simple phenomenological approach can be used to simulate electronic conduction in molecular wires under thermal effects induced by the surrounding environment. This “Landauer-Büttiker’s probe technique” can properly replicate different transport mechanisms, phase coherent nonresonant tunneling, ballistic behavior, and hopping conduction. Specifically, our simulations with the probe method recover the following central characteristics of charge transfer in molecular wires: (i) the electrical conductance of short wires falls off exponentially with molecular length, a manifestation of the tunneling (superexchange) mechanism. Hopping dynamics overtakes superexchange in long wires demonstrating an ohmic-like behavior. (ii) In off-resonance situations, weak dephasing effects facilitate charge transfer, but under large dephasing, the electrical conductance is suppressed. (iii) At high enough temperatures, k{sub B}T/ϵ{sub B} > 1/25, with ϵ{sub B} as the molecular-barrier height, the current is enhanced by a thermal activation (Arrhenius) factor. However, this enhancement takes place for both coherent and incoherent electrons and it does not readily indicate on the underlying mechanism. (iv) At finite-bias, dephasing effects may impede conduction in resonant situations. We further show that memory (non-Markovian) effects can be implemented within the Landauer-Büttiker’s probe technique to model the interaction of electrons with a structured environment. Finally, we examine experimental results of electron transfer in conjugated molecular wires and show that our computational approach can reasonably reproduce reported values to provide mechanistic information.

  10. The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses.

    PubMed

    Davey, Peter A; Pernice, Mathieu; Sablok, Gaurav; Larkum, Anthony; Lee, Huey Tyng; Golicz, Agnieszka; Edwards, David; Dolferus, Rudy; Ralph, Peter

    2016-09-01

    Seagrass meadows are disappearing at alarming rates as a result of increasing coastal development and climate change. The emergence of omics and molecular profiling techniques in seagrass research is timely, providing a new opportunity to address such global issues. Whilst these applications have transformed terrestrial plant research, they have only emerged in seagrass research within the past decade; In this time frame we have observed a significant increase in the number of publications in this nascent field, and as of this year the first genome of a seagrass species has been sequenced. In this review, we focus on the development of omics and molecular profiling and the utilization of molecular markers in the field of seagrass biology. We highlight the advances, merits and pitfalls associated with such technology, and importantly we identify and address the knowledge gaps, which to this day prevent us from understanding seagrasses in a holistic manner. By utilizing the powers of omics and molecular profiling technologies in integrated strategies, we will gain a better understanding of how these unique plants function at the molecular level and how they respond to on-going disturbance and climate change events. PMID:27443314

  11. The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses.

    PubMed

    Davey, Peter A; Pernice, Mathieu; Sablok, Gaurav; Larkum, Anthony; Lee, Huey Tyng; Golicz, Agnieszka; Edwards, David; Dolferus, Rudy; Ralph, Peter

    2016-09-01

    Seagrass meadows are disappearing at alarming rates as a result of increasing coastal development and climate change. The emergence of omics and molecular profiling techniques in seagrass research is timely, providing a new opportunity to address such global issues. Whilst these applications have transformed terrestrial plant research, they have only emerged in seagrass research within the past decade; In this time frame we have observed a significant increase in the number of publications in this nascent field, and as of this year the first genome of a seagrass species has been sequenced. In this review, we focus on the development of omics and molecular profiling and the utilization of molecular markers in the field of seagrass biology. We highlight the advances, merits and pitfalls associated with such technology, and importantly we identify and address the knowledge gaps, which to this day prevent us from understanding seagrasses in a holistic manner. By utilizing the powers of omics and molecular profiling technologies in integrated strategies, we will gain a better understanding of how these unique plants function at the molecular level and how they respond to on-going disturbance and climate change events.

  12. Molecular Dynamics and Monte Carlo simulations in the microcanonical ensemble: Quantitative comparison and reweighting techniques.

    PubMed

    Schierz, Philipp; Zierenberg, Johannes; Janke, Wolfhard

    2015-10-01

    Molecular Dynamics (MD) and Monte Carlo (MC) simulations are the most popular simulation techniques for many-particle systems. Although they are often applied to similar systems, it is unclear to which extent one has to expect quantitative agreement of the two simulation techniques. In this work, we present a quantitative comparison of MD and MC simulations in the microcanonical ensemble. For three test examples, we study first- and second-order phase transitions with a focus on liquid-gas like transitions. We present MD analysis techniques to compensate for conservation law effects due to linear and angular momentum conservation. Additionally, we apply the weighted histogram analysis method to microcanonical histograms reweighted from MD simulations. By this means, we are able to estimate the density of states from many microcanonical simulations at various total energies. This further allows us to compute estimates of canonical expectation values.

  13. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  14. Diagnostic procedures in tularaemia with special focus on molecular and immunological techniques.

    PubMed

    Splettstoesser, W D; Tomaso, H; Al Dahouk, S; Neubauer, H; Schuff-Werner, P

    2005-08-01

    Tularaemia is a severe bacterial zoonosis caused by the highly infectious agent Francisella tularensis. It is endemic in countries of the northern hemisphere ranging from North America to Europe, Asia and Japan. Very recently, Francisella-like strains causing disease in humans were described from tropical northern Australia. In the last decade, efforts have been made to develop sensitive and specific immunological and molecular techniques for the laboratory diagnosis of tularaemia and also for the definite identification of members of the species F. tularensis and its four subspecies. Screening for the keyword 'Francisella' a Medline search over the last decade was performed and articles describing diagnostic methods for tularaemia and its causative agent were selected. Besides classical microbiological techniques (cultivation, biochemical profiling, susceptibility testing) several new immunological and molecular approaches to identify F. tularensis have been introduced employing highly specific antibodies and various polymerase chain reaction (PCR)-based methods. Whereas direct antigen detection by enzyme-linked immunosorbent assay (ELISA) or immunofluorescence might allow early presumptive diagnosis of tularaemia, these methods--like all PCR techniques--still await further evaluation. Therefore, diagnosis of tularaemia still relies mainly on the demonstration of specific antibodies in the host. ELISA and immunoblot methods started to replace the standard tube or micro-agglutination assays. However, the diagnostic value of antibody detection in the very early clinical phase of tularaemia is limited. Francisella tularensis is regarded as a 'highest priority' biological agent (category 'A' according to the CDC, Atlanta, GA, USA), thus rapid and reliable diagnosis of tularaemia is required not only for a timely onset of therapy, the handling of outbreak investigations but also for the surveillance of endemic foci. Only very recently, evaluated test kits for

  15. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques

    PubMed Central

    Hammond, G. Denise; Vojta, Adam L.; Grant, Sheila A.; Hunt, Heather K.

    2016-01-01

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 106. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397

  16. Integrating Nanostructured Artificial Receptors with Whispering Gallery Mode Optical Microresonators via Inorganic Molecular Imprinting Techniques.

    PubMed

    Hammond, G Denise; Vojta, Adam L; Grant, Sheila A; Hunt, Heather K

    2016-01-01

    The creation of label-free biosensors capable of accurately detecting trace contaminants, particularly small organic molecules, is of significant interest for applications in environmental monitoring. This is achieved by pairing a high-sensitivity signal transducer with a biorecognition element that imparts selectivity towards the compound of interest. However, many environmental pollutants do not have corresponding biorecognition elements. Fortunately, biomimetic chemistries, such as molecular imprinting, allow for the design of artificial receptors with very high selectivity for the target. Here, we perform a proof-of-concept study to show how artificial receptors may be created from inorganic silanes using the molecular imprinting technique and paired with high-sensitivity transducers without loss of device performance. Silica microsphere Whispering Gallery Mode optical microresonators are coated with a silica thin film templated by a small fluorescent dye, fluorescein isothiocyanate, which serves as our model target. Oxygen plasma degradation and solvent extraction of the template are compared. Extracted optical devices are interacted with the template molecule to confirm successful sorption of the template. Surface characterization is accomplished via fluorescence and optical microscopy, ellipsometry, optical profilometry, and contact angle measurements. The quality factors of the devices are measured to evaluate the impact of the coating on device sensitivity. The resulting devices show uniform surface coating with no microstructural damage with Q factors above 10⁶. This is the first report demonstrating the integration of these devices with molecular imprinting techniques, and could lead to new routes to biosensor creation for environmental monitoring. PMID:27314397

  17. A multiscale modeling technique for bridging molecular dynamics with finite element method

    SciTech Connect

    Lee, Yongchang Basaran, Cemal

    2013-11-15

    In computational mechanics, molecular dynamics (MD) and finite element (FE) analysis are well developed and most popular on nanoscale and macroscale analysis, respectively. MD can very well simulate the atomistic behavior, but cannot simulate macroscale length and time due to computational limits. FE can very well simulate continuum mechanics (CM) problems, but has the limitation of the lack of atomistic level degrees of freedom. Multiscale modeling is an expedient methodology with a potential to connect different levels of modeling such as quantum mechanics, molecular dynamics, and continuum mechanics. This study proposes a new multiscale modeling technique to couple MD with FE. The proposed method relies on weighted average momentum principle. A wave propagation example has been used to illustrate the challenges in coupling MD with FE and to verify the proposed technique. Furthermore, 2-Dimensional problem has also been used to demonstrate how this method would translate into real world applications. -- Highlights: •A weighted averaging momentum method is introduced for bridging molecular dynamics (MD) with finite element (FE) method. •The proposed method shows excellent coupling results in 1-D and 2-D examples. •The proposed method successfully reduces the spurious wave reflection at the border of MD and FE regions. •Big advantages of the proposed method are simplicity and inexpensive computational cost of multiscale analysis.

  18. Control of molecular weight of polystyrene using the reverse iodine transfer polymerization (RITP)-emulsion technique.

    PubMed

    Oh, Hyeong Geun; Shin, Hongcheol; Jung, Hyejun; Lee, Byung Hyung; Choe, Soonja

    2011-01-15

    The RITP-emulsion polymerization of styrene in the presence of molecular iodine has been successfully performed using potassium persulfate (KPS) as an initiator and 1-hexadecanesulfonate as an emulsifier under argon atmosphere at 80°C for 7 hrs in the absence of light. The effects of the iodine concentration, molar ratio between KPS and iodine, and solid contents on the molecular weight of polystyrene (PS) were studied. As the iodine concentration increased from 0.05 to 0.504 mmol under the fixed [KPS]/[I(2)] ratio at 4.5, the weight-average molecular weight of PS substantially decreased from 126,120 to 35,690 g/mol, the conversion increased from 85.0% to 95.2%, and the weight-average particle diameter decreased from 159 to 103 nm. In addition, as the ratio of [KPS]/[I(2)] increased from 0.5 to 6.0 at the fixed [I(2)] of 0.504 mmol, the weight-average molecular weight of PS decreased from 72,170 to 30,640 g/mol with high conversion between 81.7% and 96.5%. Moreover, when the styrene solid content increased from 10 to 40 wt.% at the fixed [KPS]/[I(2)] ratio of 4.5, the weight-average molecular weight of PS varied between 33,500 and 37,200 g/mol, the conversion varied between 94.9% and 89.7% and the weight-average diameter varied from 122 to 205 nm. Thus, the control of molecular weight of PS less than 100,000g/mol with high conversion (95%) and particle stability of up to 40 wt.% solid content were easily achieved through the usage of iodine with suitable ratio of [KPS]/[I(2)] in the RITP-emulsion polymerization technique, which is of great industrial importance.

  19. Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.

    2013-01-01

    High-speed laminar-to-turbulent transition and turbulence affect the control of flight vehicles, the heat transfer rate to a flight vehicle's surface, the material selected to protect such vehicles from high heating loads, the ultimate weight of a flight vehicle due to the presence of thermal protection systems, the efficiency of fuel-air mixing processes in high-speed combustion applications, etc. Gaining a fundamental understanding of the physical mechanisms involved in the transition process will lead to the development of predictive capabilities that can identify transition location and its impact on parameters like surface heating. Currently, there is no general theory that can completely describe the transition-to-turbulence process. However, transition research has led to the identification of the predominant pathways by which this process occurs. For a truly physics-based model of transition to be developed, the individual stages in the paths leading to the onset of fully turbulent flow must be well understood. This requires that each pathway be computationally modeled and experimentally characterized and validated. This may also lead to the discovery of new physical pathways. This document is intended to describe molecular based measurement techniques that have been developed, addressing the needs of the high-speed transition-to-turbulence and high-speed turbulence research fields. In particular, we focus on techniques that have either been used to study high speed transition and turbulence or techniques that show promise for studying these flows. This review is not exhaustive. In addition to the probe-based techniques described in the previous paragraph, several other classes of measurement techniques that are, or could be, used to study high speed transition and turbulence are excluded from this manuscript. For example, surface measurement techniques such as pressure and temperature paint, phosphor thermography, skin friction measurements and

  20. Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy for Improving the Detection of Molecular Bands

    NASA Astrophysics Data System (ADS)

    Koral, Can; De Giacomo, Alessandro; Mao, Xianglei; Zorba, Vassilia; Russo, Richard E.

    2016-11-01

    Enhancement of molecular band emission in laser-induced plasmas is important for improving sensitivity and limits of detection in molecular sensing and molecular isotope analysis. In this work we introduce the use of Nanoparticle Enhanced Laser Induced Breakdown (NELIBS) for the enhancement of molecular band emission in laser-induced plasmas, and study the underlying mechanisms responsible for the observed enhancement. The use of Ag nanoparticles leads to an order of magnitude enhancement for AlO (B2Σ+ → Χ+ Σ+) system emission from an Al-based alloy. We demonstrate that the mechanism responsible for the enhancement of molecular bands differs from that of atomic emission, and can be traced down to the increased number of atomic species in NELIBS which lead to AlO molecular formation. These findings showcase the potential of NELIBS as a simple and viable technology for enhancing molecular band emission in laser-induced plasmas.

  1. Molecular Weight Determination by an Improved Temperature-Monitored Vapor-Density Method.

    ERIC Educational Resources Information Center

    Grider, Douglas J.; And Others

    1988-01-01

    Recommends determining molecular weights of liquids by use of a thermocouple. Utilizing a mathematical gas equation, the molecular weight can be determined from the measurement of the vapor temperature upon complete evaporation. Lists benefits as reduced time and cost, and improved safety factors. (ML)

  2. Molecular approaches to improve rice abiotic stress tolerance.

    PubMed

    Mizoi, Junya; Yamaguchi-Shinozaki, Kazuko

    2013-01-01

    Abiotic stress is a major factor limiting productivity of rice crops in large areas of the world. Because plants cannot avoid abiotic stress by moving, they have acquired various mechanisms for stress tolerance in the course of their evolution. Enhancing or introducing such mechanisms in rice is one effective way to develop stress-tolerant cultivars. Based on physiological studies on stress responses, recent progress in plant molecular biology has enabled discovery of many genes involved in stress tolerance. These genes include regulatory genes, which regulate stress response (e.g., transcription factors and protein kinases), and functional genes, which protect the cell (e.g., enzymes for generating protective metabolites and proteins). Both kinds of genes are used to increase stress tolerance in rice. In addition, several quantitative trait loci (QTLs) associated with higher stress tolerance have been cloned, contributing to the discovery of significantly important genes for stress tolerance.

  3. Photo-metalorganic molecular-beam epitaxy: A new epitaxial growth technique

    SciTech Connect

    Tokumitsu, E.; Yamada, T.; Konagai, M.; Takahashi, K.

    1989-05-01

    Metalorganic molecular-beam epitaxy (MOMBE) combines many important advantages of molecular-beam epitaxy and metalorganic chemical vapor deposition. One of the most important features of MOMBE is that photochemical reaction can be used and we can call this new technique ''photo-MOMBE.'' Triisobutylaluminum (TIBA) has been used in photo-MOMBE instead of triethylaluminum (TEA) as a new aluminum source in order to enhance the photodecomposition. The optical absorption coefficient of TIBA for 193 nm was found to be three times greater than that of TEA. Selective deposition of Al, AlAs, and GaAlAs was carried out by using an ArF excimer laser. The Al mole fraction of GaAlAs ternary alloy grown with the excimer laser irradiation was greater than that of the film grown without the laser irradiation.

  4. Novel cytogenetic and molecular techniques in the diagnosis of congenital anomalies in newborns.

    PubMed

    Szczałuba, Krzysztof; Śmigiel, Robert

    2015-01-01

    Knowledge of what causes developmental disorders, including congenital structural defects/anomalies, in the newborn population, facilitates the choice of further investigations, therapy and rehabilitation, allows the use of appropriate prophylaxis against comorbidities, makes it possible to specify prognosis, as well as provide reliable family counselling (both pre- and postnatal). Attempting to formulate a clinical diagnosis of a specific congenital anomaly syndrome, with or without dysmorphic features, based on history and detailed physical examination, remains crucial for the selection of the right genetic testing. Modern methods of molecular cytogenetics and molecular biology are targeted in nature (microdeletion MLPA, single gene sequencing) or are capable of analyzing the genome as a whole (array CGH, newgeneration sequencing). Especially the latter techniques are now causing a rapid increase of diagnostic efficacy across different age groups, including newborns.

  5. Future Directions in Pain Management: Integrating Anatomically Selective Delivery Techniques With Novel Molecularly Selective Agents.

    PubMed

    Pleticha, Josef; Maus, Timothy P; Beutler, Andreas S

    2016-04-01

    Treatment for chronic, locoregional pain ranks among the most prevalent unmet medical needs. The failure of systemic analgesic drugs, such as opioids, is often due to their off-target toxicity, development of tolerance, and abuse potential. Interventional pain procedures provide target specificity but lack pharmacologically selective agents with long-term efficacy. Gene therapy vectors are a new tool for the development of molecularly selective pain therapies, which have already been proved to provide durable analgesia in preclinical models. Taken together, advances in image-guided delivery and gene therapy may lead to a new class of dual selective analgesic treatments integrating the molecular selectivity of analgesic genes with the anatomic selectivity of interventional delivery techniques.

  6. A Survey of Techniques for Modeling and Improving Reliability of Computing Systems

    DOE PAGESBeta

    Mittal, Sparsh; Vetter, Jeffrey S.

    2015-04-24

    Recent trends of aggressive technology scaling have greatly exacerbated the occurrences and impact of faults in computing systems. This has made `reliability' a first-order design constraint. To address the challenges of reliability, several techniques have been proposed. In this study, we provide a survey of architectural techniques for improving resilience of computing systems. We especially focus on techniques proposed for microarchitectural components, such as processor registers, functional units, cache and main memory etc. In addition, we discuss techniques proposed for non-volatile memory, GPUs and 3D-stacked processors. To underscore the similarities and differences of the techniques, we classify them based onmore » their key characteristics. We also review the metrics proposed to quantify vulnerability of processor structures. Finally, we believe that this survey will help researchers, system-architects and processor designers in gaining insights into the techniques for improving reliability of computing systems.« less

  7. A Survey of Techniques for Modeling and Improving Reliability of Computing Systems

    SciTech Connect

    Mittal, Sparsh; Vetter, Jeffrey S.

    2015-04-24

    Recent trends of aggressive technology scaling have greatly exacerbated the occurrences and impact of faults in computing systems. This has made `reliability' a first-order design constraint. To address the challenges of reliability, several techniques have been proposed. In this study, we provide a survey of architectural techniques for improving resilience of computing systems. We especially focus on techniques proposed for microarchitectural components, such as processor registers, functional units, cache and main memory etc. In addition, we discuss techniques proposed for non-volatile memory, GPUs and 3D-stacked processors. To underscore the similarities and differences of the techniques, we classify them based on their key characteristics. We also review the metrics proposed to quantify vulnerability of processor structures. Finally, we believe that this survey will help researchers, system-architects and processor designers in gaining insights into the techniques for improving reliability of computing systems.

  8. Applied Protein and Molecular Techniques for Characterization of B Cell Neoplasms in Horses

    PubMed Central

    Badial, Peres R.; Tallmadge, Rebecca L.; Miller, Steven; Stokol, Tracy; Richards, Kristy; Borges, Alexandre S.

    2015-01-01

    Mature B cell neoplasms cover a spectrum of diseases involving lymphoid tissues (lymphoma) or blood (leukemia), with an overlap between these two presentations. Previous studies describing equine lymphoid neoplasias have not included analyses of clonality using molecular techniques. The objective of this study was to use molecular techniques to advance the classification of B cell lymphoproliferative diseases in five adult equine patients with a rare condition of monoclonal gammopathy, B cell leukemia, and concurrent lymphadenopathy (lymphoma/leukemia). The B cell neoplasms were phenotypically characterized by gene and cell surface molecule expression, secreted immunoglobulin (Ig) isotype concentrations, Ig heavy-chain variable (IGHV) region domain sequencing, and spectratyping. All five patients had hyperglobulinemia due to IgG1 or IgG4/7 monoclonal gammopathy. Peripheral blood leukocyte immunophenotyping revealed high proportions of IgG1- or IgG4/7-positive cells and relative T cell lymphopenia. Most leukemic cells lacked the surface B cell markers CD19 and CD21. IGHG1 or IGHG4/7 gene expression was consistent with surface protein expression, and secreted isotype and Ig spectratyping revealed one dominant monoclonal peak. The mRNA expression of the B cell-associated developmental genes EBF1, PAX5, and CD19 was high compared to that of the plasma cell-associated marker CD38. Sequence analysis of the IGHV domain of leukemic cells revealed mutated Igs. In conclusion, the protein and molecular techniques used in this study identified neoplastic cells compatible with a developmental transition between B cell and plasma cell stages, and they can be used for the classification of equine B cell lymphoproliferative disease. PMID:26311245

  9. Molecular Breeding Strategy and Challenges Towards Improvement of Blast Disease Resistance in Rice Crop.

    PubMed

    Ashkani, Sadegh; Rafii, Mohd Y; Shabanimofrad, Mahmoodreza; Miah, Gous; Sahebi, Mahbod; Azizi, Parisa; Tanweer, Fatah A; Akhtar, Mohd Sayeed; Nasehi, Abbas

    2015-01-01

    Rice is a staple and most important security food crop consumed by almost half of the world's population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improving blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges towards improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control.

  10. Molecular Breeding Strategy and Challenges Towards Improvement of Blast Disease Resistance in Rice Crop

    PubMed Central

    Ashkani, Sadegh; Rafii, Mohd Y.; Shabanimofrad, Mahmoodreza; Miah, Gous; Sahebi, Mahbod; Azizi, Parisa; Tanweer, Fatah A.; Akhtar, Mohd Sayeed; Nasehi, Abbas

    2015-01-01

    Rice is a staple and most important security food crop consumed by almost half of the world’s population. More rice production is needed due to the rapid population growth in the world. Rice blast caused by the fungus, Magnaporthe oryzae is one of the most destructive diseases of this crop in different part of the world. Breakdown of blast resistance is the major cause of yield instability in several rice growing areas. There is a need to develop strategies providing long-lasting disease resistance against a broad spectrum of pathogens, giving protection for a long time over a broad geographic area, promising for sustainable rice production in the future. So far, molecular breeding approaches involving DNA markers, such as QTL mapping, marker-aided selection, gene pyramiding, allele mining and genetic transformation have been used to develop new resistant rice cultivars. Such techniques now are used as a low-cost, high-throughput alternative to conventional methods allowing rapid introgression of disease resistance genes into susceptible varieties as well as the incorporation of multiple genes into individual lines for more durable blast resistance. The paper briefly reviewed the progress of studies on this aspect to provide the interest information for rice disease resistance breeding. This review includes examples of how advanced molecular method have been used in breeding programs for improving blast resistance. New information and knowledge gained from previous research on the recent strategy and challenges towards improvement of blast disease such as pyramiding disease resistance gene for creating new rice varieties with high resistance against multiple diseases will undoubtedly provide new insights into the rice disease control. PMID:26635817

  11. Improving Health Promotion Using Quality Improvement Techniques in Australian Indigenous Primary Health Care

    PubMed Central

    Percival, Nikki; O’Donoghue, Lynette; Lin, Vivian; Tsey, Komla; Bailie, Ross Stewart

    2016-01-01

    Although some areas of clinical health care are becoming adept at implementing continuous quality improvement (CQI) projects, there has been limited experimentation of CQI in health promotion. In this study, we examined the impact of a CQI intervention on health promotion in four Australian Indigenous primary health care centers. Our study objectives were to (a) describe the scope and quality of health promotion activities, (b) describe the status of health center system support for health promotion activities, and (c) introduce a CQI intervention and examine the impact on health promotion activities and health centers systems over 2 years. Baseline assessments showed suboptimal health center systems support for health promotion and significant evidence-practice gaps. After two annual CQI cycles, there were improvements in staff understanding of health promotion and systems for planning and documenting health promotion activities had been introduced. Actions to improve best practice health promotion, such as community engagement and intersectoral partnerships, were inhibited by the way health center systems were organized, predominately to support clinical and curative services. These findings suggest that CQI can improve the delivery of evidence-based health promotion by engaging front line health practitioners in decision-making processes about the design/redesign of health center systems to support the delivery of best practice health promotion. However, further and sustained improvements in health promotion will require broader engagement of management, senior staff, and members of the local community to address organizational and policy level barriers. PMID:27066470

  12. Molecular pathology in lung cancer: a guide to the techniques used in clinical practice.

    PubMed

    Walsh, Kathy; Wallace, William A

    2014-12-01

    Five year survival rates for lung cancer patients are poor; however the development of new therapeutic options, which benefit subsets of the population, offer hope of improvement. These novel therapies frequently rely upon the analysis of biomarkers in pathology samples; in lung cancer patients, testing is now routinely carried out to identify small mutations and chromosomal rearrangements in order to predict response to treatment. The recent increase in biomarker analyses in pathology samples has lead to the development of a new specialty, molecular pathology. The use of molecular pathology assays in clinical samples is largely under the control of the histopathologist; who is likely to be asked, as a minimum, to select tissue sections for molecular analysis and mark areas of H&E stained slides for macro or microdissection. Many histopathologists will also be involved in the sourcing and implementation of new assays. This review aims to provide a guide to some of the most commonly used molecular pathology methods - their advantages and their limitations.

  13. A modified staining technique for arbuscular mycorrhiza compatible with molecular probes.

    PubMed

    Pitet, M; Camprubí, A; Calvet, C; Estaún, V

    2009-02-01

    The effects of the different steps of the root staining on the arbuscular mycorrhizal (AM) fungal rDNA extraction and amplification have been assessed. The results obtained using molecular techniques are compared with those obtained from fresh, non-stained leek roots. A modified staining procedure that eliminates heating, the use of hydrochloric acid and trypan blue, has been proved to be the most adequate to observe the AM colonisation in different plant species with/without lignified roots allowing at the same time the subsequent rDNA extraction and amplification from the stained roots. The staining technique decreased the sensitivity of the process and a higher number of roots had to be used to obtain enough material for a positive amplification. The extraction and amplification process was reliable up to 3 days after staining. A week after staining, the amplification was not dependable and after 2 weeks there was no amplification from stained material.

  14. Gender identification of Grasshopper Sparrows comparing behavioral, morphological, and molecular techniques

    USGS Publications Warehouse

    Ammer, F.K.; Wood, P.B.; McPherson, R.J.

    2008-01-01

    Correct gender identification in monomorphic species is often difficult especially if males and females do not display obvious behavioral and breeding differences. We compared gender specific morphology and behavior with recently developed DNA techniques for gender identification in the monomorphic Grasshopper Sparrow (Ammodramus savannarum). Gender was ascertained with DNA in 213 individuals using the 2550F/2718R primer set and 3% agarose gel electrophoresis. Field observations using behavior and breeding characteristics to identify gender matched DNA analyses with 100% accuracy for adult males and females. Gender was identified with DNA for all captured juveniles that did not display gender specific traits or behaviors in the field. The molecular techniques used offered a high level of accuracy and may be useful in studies of dispersal mechanisms and winter assemblage composition in monomorphic species.

  15. Implementing and Improving Automated Electronic Tumor Molecular Profiling.

    PubMed

    Rioth, Matthew J; Staggs, David B; Hackett, Lauren; Haberman, Erich; Tod, Mike; Levy, Mia; Warner, Jeremy

    2016-03-01

    Oncology practice increasingly requires the use of molecular profiling of tumors to inform the use of targeted therapeutics. However, many oncologists use third-party laboratories to perform tumor genomic testing, and these laboratories may not have electronic interfaces with the provider's electronic medical record (EMR) system. The resultant reporting mechanisms, such as plain-paper faxing, can reduce report fidelity, slow down reporting procedures for a physician's practice, and make reports less accessible. Vanderbilt University Medical Center and its genomic laboratory testing partner have collaborated to create an automated electronic reporting system that incorporates genetic testing results directly into the clinical EMR. This system was iteratively tested, and causes of failure were discovered and addressed. Most errors were attributable to data entry or typographical errors that made reports unable to be linked to the correct patient in the EMR. By providing direct feedback to providers, we were able to significantly decrease the rate of transmission errors (from 6.29% to 3.84%; P < .001). The results and lessons of 1 year of using the system and transmitting 832 tumor genomic testing reports are reported. PMID:26813927

  16. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes.

    PubMed

    Justé, A; Thomma, B P H J; Lievens, B

    2008-09-01

    In the last two decades major changes have occurred in how microbial ecologists study microbial communities. Limitations associated with traditional culture-based methods have pushed for the development of culture-independent techniques, which are primarily based on the analysis of nucleic acids. These methods are now increasingly applied in food microbiology as well. This review presents an overview of current community profiling techniques with their (potential) applications in food and food-related ecosystems. We critically assessed both the power and limitations of these techniques and present recent advances in the field of food microbiology attained by their application. It is unlikely that a single approach will be universally applicable for analyzing microbial communities in unknown matrices. However, when screening samples for well-defined species or functions, techniques such as DNA arrays and real-time PCR have the potential to overtake current culture-based methods. Most importantly, molecular methods will allow us to surpass our current culturing limitations, thus revealing the extent and importance of the 'non-culturable' microbial flora that occurs in food matrices and production.

  17. An efficient and accurate molecular alignment and docking technique using ab initio quality scoring

    PubMed Central

    Füsti-Molnár, László; Merz, Kenneth M.

    2008-01-01

    An accurate and efficient molecular alignment technique is presented based on first principle electronic structure calculations. This new scheme maximizes quantum similarity matrices in the relative orientation of the molecules and uses Fourier transform techniques for two purposes. First, building up the numerical representation of true ab initio electronic densities and their Coulomb potentials is accelerated by the previously described Fourier transform Coulomb method. Second, the Fourier convolution technique is applied for accelerating optimizations in the translational coordinates. In order to avoid any interpolation error, the necessary analytical formulas are derived for the transformation of the ab initio wavefunctions in rotational coordinates. The results of our first implementation for a small test set are analyzed in detail and compared with published results of the literature. A new way of refinement of existing shape based alignments is also proposed by using Fourier convolutions of ab initio or other approximate electron densities. This new alignment technique is generally applicable for overlap, Coulomb, kinetic energy, etc., quantum similarity measures and can be extended to a genuine docking solution with ab initio scoring. PMID:18624561

  18. Improved low molecular weight Myc-Max inhibitors.

    PubMed

    Wang, Huabo; Hammoudeh, Dalia I; Follis, Ariele Viacava; Reese, Brian E; Lazo, John S; Metallo, Steven J; Prochownik, Edward V

    2007-09-01

    Compounds that selectively prevent or disrupt the association between the c-Myc oncoprotein and its obligate heterodimeric partner Max (Myc-Max compounds) have been identified previously by high-throughput screening of chemical libraries. Although these agents specifically inhibit the growth of c-Myc-expressing cells, their clinical applicability is limited by their low potency. We describe here several chemical modifications of one of these original compounds, 10058-F4, which result in significant improvements in efficacy. Compared with the parent structure, these analogues show enhanced growth inhibition of c-Myc-expressing cells in a manner that generally correlates with their ability to disrupt c-Myc-Max association and DNA binding. Furthermore, we show by use of a sensitive fluorescence polarization assay that both 10058-F4 and its active analogues bind specifically to monomeric c-Myc. These studies show that improved Myc-Max compounds can be generated by a directed approach involving deliberate modification of an index compound. They further show that the compounds specifically target c-Myc, which exists in a dynamic and relatively unstructured state with only partial and transient alpha-helical content.

  19. Drug efficiency indices for improvement of molecular docking scoring functions.

    PubMed

    García-Sosa, Alfonso T; Hetényi, Csaba; Maran, Uko

    2010-01-15

    A dataset of protein-drug complexes with experimental binding energy and crystal structure were analyzed and the performance of different docking engines and scoring functions (as well as components of these) for predicting the free energy of binding and several ligand efficiency indices were compared. The aim was not to evaluate the best docking method, but to determine the effect of different efficiency indices on the experimental and predicted free energy. Some ligand efficiency indices, such as DeltaG/W (Wiener index), DeltaG/NoC (number of carbons), and DeltaG/P (partition coefficient), improve the correlation between experimental and calculated values. This effect was shown to be valid across the different scoring functions and docking programs. It also removes the common bias of scoring functions in favor of larger ligands. For all scoring functions, the efficiency indices effectively normalize the free energy derived indices, to give values closer to experiment. Compound collection filtering can be done prior or after docking, using pharmacokinetic as well as pharmacodynamic profiles. Achieving these better correlations with experiment can improve the ability of docking scoring functions to predict active molecules in virtual screening.

  20. Recent applications of boxed molecular dynamics: a simple multiscale technique for atomistic simulations

    PubMed Central

    Booth, Jonathan; Vazquez, Saulo; Martinez-Nunez, Emilio; Marks, Alison; Rodgers, Jeff; Glowacki, David R.; Shalashilin, Dmitrii V.

    2014-01-01

    In this paper, we briefly review the boxed molecular dynamics (BXD) method which allows analysis of thermodynamics and kinetics in complicated molecular systems. BXD is a multiscale technique, in which thermodynamics and long-time dynamics are recovered from a set of short-time simulations. In this paper, we review previous applications of BXD to peptide cyclization, solution phase organic reaction dynamics and desorption of ions from self-assembled monolayers (SAMs). We also report preliminary results of simulations of diamond etching mechanisms and protein unfolding in atomic force microscopy experiments. The latter demonstrate a correlation between the protein's structural motifs and its potential of mean force. Simulations of these processes by standard molecular dynamics (MD) is typically not possible, because the experimental time scales are very long. However, BXD yields well-converged and physically meaningful results. Compared with other methods of accelerated MD, our BXD approach is very simple; it is easy to implement, and it provides an integrated approach for simultaneously obtaining both thermodynamics and kinetics. It also provides a strategy for obtaining statistically meaningful dynamical results in regions of configuration space that standard MD approaches would visit only very rarely. PMID:24982247

  1. An improved molecular diagnostic assay for canine and feline dermatophytosis.

    PubMed

    Cafarchia, Claudia; Gasser, Robin B; Figueredo, Luciana A; Weigl, Stefania; Danesi, Patrizia; Capelli, Gioia; Otranto, Domenico

    2013-02-01

    The few studies attempting to specifically characterize dermatophytes from hair samples of dogs and cats using PCR-based methodology relied on sequence-based analysis of selected genetic markers. The aim of the present investigation was to establish and evaluate a PCR-based approach employing genetic markers of nuclear DNA for the specific detection of dermatophytes on such specimens. Using 183 hair samples, we directly compared the test results of our one-step and nested-PCR assays with those based on conventional microscopy and in vitro culture techniques (using the latter as the reference method). The one step-PCR was highly accurate (AUC > 90) for the testing of samples from dogs, but only moderately accurate (AUC = 78.6) for cats. A nested-PCR was accurate (AUC = 93.6) for samples from cats, and achieved higher specificity (94.1 and 94.4%) and sensitivity (100 and 94.9%) for samples from dogs and cats, respectively. In addition, the nested-PCR allowed the differentiation of Microsporum canis from Trichophyton interdigitale (zoophilic) and geophilic dermatophytes (i.e., Microsporum gypseum or Trichophyton terrestre), which was not possible using the one step-assay. The PCRs evaluated here provide practical tools for diagnostic applications to support clinicians in initiating prompt and targeted chemotherapy of dermatophytoses. PMID:22686247

  2. Molecular approaches for improved clotting factors for hemophilia

    PubMed Central

    Powell, Jerry S.

    2013-01-01

    Hemophilia is caused by a functional deficiency of one of the coagulation proteins. Therapy for no other group of genetic diseases has seen the progress that has been made for hemophilia over the past 40 years, from a life expectancy in 1970 of ∼20 years for a boy born with severe hemophilia to essentially a normal life expectancy in 2013 with current prophylaxis therapy. However, these therapies are expensive and require IV infusions 3 to 4 times each week. These are exciting times for hemophilia because several new technologies that promise extended half-lives for factor products, with potential for improvements in quality of life for persons with hemophilia, are in late-phase clinical development. PMID:24065241

  3. Cryotherapy for chronic vasomotor rhinitis: technique and patient selection for improved results.

    PubMed

    Bumsted, R M

    1984-04-01

    Current methods of therapy of chronic vasomotor (non-allergic) rhinitis are frequently unsuccessful. This led to the development of a standardized technique of intranasal cryotherapy (longer freeze duration and larger area of therapy than previously reported) which was utilized in 50 patients. Indications for cryotherapy included: failure of medical therapy in anatomically normal patients with mucosal disease caused only by vasomotor rhinitis. Minimal follow-up was 2 years. Obstructive symptoms (subjective and objective evaluation) were eliminated in 92% and markedly improved in the remaining 8%. Excessive drainage (subjective) was relieved in 47%, markedly improved in 41%, and minimally improved (therapeutic failure) in 12%. Complications were minor; however, increased postoperative pain, drainage and healing duration (compared to prior series) were encountered. This cryotherapy technique provides significantly improved results in the treatment of vasomotor rhinitis when proper patient selection and technique are utilized.

  4. Application of different molecular techniques for characterization of catalase-positive cocci isolated from sucuk.

    PubMed

    Kesmen, Zülal; Yarimcam, Burcu; Aslan, Hakiye; Ozbekar, Esra; Yetim, Hasan

    2014-02-01

    This study was carried out for the characterization and discrimination of the indigenous Gram positive, catalase-positive cocci (GCC) population in sucuk, a traditional Turkish dry-fermented sausage. Sucuk samples, produced by the traditional method without starter culture were collected from 8 local producers in Kayseri/Turkey and a total of 116 GCC isolates were identified by using different molecular techniques. Two different molecular fingerprinting methods; namely, randomly amplified polymorphic DNA-PCR (RAPD-PCR) and repetitive extragenic palindrome-PCR (rep-PCR), were used for the clustering of isolates and identification at species level was carried out by full length sequencing of 16S rDNA. Combining the results obtained from molecular fingerprinting and 16S rDNA sequencing showed that the dominant GCC species isolated from the sucuk samples was Staphylococcus saprophyticus followed by Staphylococcus succinus and Staphylococcus equorum belonging to the Staphylococcus genus. Real-time PCR DNA melting curve analysis and high-resolution melting (HRM) analysis targeting the V1 + V3 regions of 16S rDNA were also applied for the discrimination of isolates belonging to different species. It was observed statistically different Tm values and species-specific HRM profiles for all except 2 species (S. saprophyticus and Staphylococcus xylosus) that have high 16S rDNA sequence similarity. The combination of rep-PCR and/or PCR-RAPD with 16S rRNA gene sequencing was an efficient approach for the characterization and identification of the GCC population in spontaneously fermented sucuk. On the other hand, intercalating dye assays were found to be a simple and very promising technique for the differentiation of the GCC population at species level.

  5. Application of different molecular techniques for characterization of catalase-positive cocci isolated from sucuk.

    PubMed

    Kesmen, Zülal; Yarimcam, Burcu; Aslan, Hakiye; Ozbekar, Esra; Yetim, Hasan

    2014-02-01

    This study was carried out for the characterization and discrimination of the indigenous Gram positive, catalase-positive cocci (GCC) population in sucuk, a traditional Turkish dry-fermented sausage. Sucuk samples, produced by the traditional method without starter culture were collected from 8 local producers in Kayseri/Turkey and a total of 116 GCC isolates were identified by using different molecular techniques. Two different molecular fingerprinting methods; namely, randomly amplified polymorphic DNA-PCR (RAPD-PCR) and repetitive extragenic palindrome-PCR (rep-PCR), were used for the clustering of isolates and identification at species level was carried out by full length sequencing of 16S rDNA. Combining the results obtained from molecular fingerprinting and 16S rDNA sequencing showed that the dominant GCC species isolated from the sucuk samples was Staphylococcus saprophyticus followed by Staphylococcus succinus and Staphylococcus equorum belonging to the Staphylococcus genus. Real-time PCR DNA melting curve analysis and high-resolution melting (HRM) analysis targeting the V1 + V3 regions of 16S rDNA were also applied for the discrimination of isolates belonging to different species. It was observed statistically different Tm values and species-specific HRM profiles for all except 2 species (S. saprophyticus and Staphylococcus xylosus) that have high 16S rDNA sequence similarity. The combination of rep-PCR and/or PCR-RAPD with 16S rRNA gene sequencing was an efficient approach for the characterization and identification of the GCC population in spontaneously fermented sucuk. On the other hand, intercalating dye assays were found to be a simple and very promising technique for the differentiation of the GCC population at species level. PMID:24410408

  6. New Molecular Techniques to Study the Skin Microbiota of Diabetic Foot Ulcers

    PubMed Central

    Lavigne, Jean-Philippe; Sotto, Albert; Dunyach-Remy, Catherine; Lipsky, Benjamin A.

    2015-01-01

    Significance: Diabetic foot ulcers (DFU) are a major and growing public health problem. They pose difficulties in clinical practice in both diagnosis and management. Bacterial interactions on the skin surface are important in the pathophysiology of DFU and may contribute to a delay in healing. Fully identifying bacteria present in these wounds is difficult with traditional culture methods. New molecular tools, however, have greatly contributed to our understanding of the role of the cutaneous microbiota in DFU. Recent Advances: Molecular technologies revealed new information concerning how bacteria are organized in DFU. This has led to the concept of “functionally equivalent pathogroups,” meaning that certain bacterial species which are usually nonpathogenic (or at least incapable of maintaining a chronic infection on their own) may coaggregate symbiotically in a pathogenic biofilm and act synergistically to cause a chronic infection. The distribution of pathogens in multispecies biofilms is nonrandom. The high bacterial diversity is probably related to the development of a microbial biofilm that is irreversibly attached to the wound matrix. Critical Issues: Using molecular techniques requires a financial outlay for high-cost equipment. They are still too time-consuming to perform and reporting is too delayed for them to be used in routine practice. Finally, they do not differentiate live from dead or pathogenic from nonpathogenic microorganisms. Future Directions: Molecular tools have better documented the composition and organization of the skin flora. Further advances are required to elucidate which among the many bacteria in the DFU flora are likely to be pathogens, rather than colonizers. PMID:25566413

  7. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques.

    PubMed Central

    Katchalski-Katzir, E; Shariv, I; Eisenstein, M; Friesem, A A; Aflalo, C; Vakser, I A

    1992-01-01

    A geometric recognition algorithm was developed to identify molecular surface complementarity. It is based on a purely geometric approach and takes advantage of techniques applied in the field of pattern recognition. The algorithm involves an automated procedure including (i) a digital representation of the molecules (derived from atomic coordinates) by three-dimensional discrete functions that distinguishes between the surface and the interior; (ii) the calculation, using Fourier transformation, of a correlation function that assesses the degree of molecular surface overlap and penetration upon relative shifts of the molecules in three dimensions; and (iii) a scan of the relative orientations of the molecules in three dimensions. The algorithm provides a list of correlation values indicating the extent of geometric match between the surfaces of the molecules; each of these values is associated with six numbers describing the relative position (translation and rotation) of the molecules. The procedure is thus equivalent to a six-dimensional search but much faster by design, and the computation time is only moderately dependent on molecular size. The procedure was tested and validated by using five known complexes for which the correct relative position of the molecules in the respective adducts was successfully predicted. The molecular pairs were deoxyhemoglobin and methemoglobin, tRNA synthetase-tyrosinyl adenylate, aspartic proteinase-peptide inhibitor, and trypsin-trypsin inhibitor. A more realistic test was performed with the last two pairs by using the structures of uncomplexed aspartic proteinase and trypsin inhibitor, respectively. The results are indicative of the extent of conformational changes in the molecules tolerated by the algorithm. Images PMID:1549581

  8. Vaccine adjuvants--understanding molecular mechanisms to improve vaccines.

    PubMed

    Egli, Adrian; Santer, Deanna; Barakat, Khaled; Zand, Martin; Levin, Aviad; Vollmer, Madeleine; Weisser, Maja; Khanna, Nina; Kumar, Deepali; Tyrrell, Lorne; Houghton, Michael; Battegay, Manuel; O'Shea, Daire

    2014-01-01

    Infectious pathogens are responsible for high utilisation of healthcare resources globally. Attributable morbidity and mortality remains exceptionally high. Vaccines offer the potential to prime a pathogen-specific immune response and subsequently reduce disease burden. Routine vaccination has fundamentally altered the natural history of many frequently observed and serious infections. Vaccination is also recommended for persons at increased risk of severe vaccine-preventable disease. Many current nonadjuvanted vaccines are poorly effective in the elderly and immunocompromised populations, resulting in nonprotective postvaccine antibody titres, which serve as surrogate markers for protection. The vaccine-induced immune response is influenced by: (i.) vaccine factors i.e., type and composition of the antigen(s), (ii.) host factors i.e., genetic differences in immune-signalling or senescence, and (iii.) external factors such as immunosuppressive drugs or diseases. Adjuvanted vaccines offer the potential to compensate for a lack of stimulation and improve pathogen-specific protection. In this review we use influenza vaccine as a model in a discussion of the different mechanisms of action of the available adjuvants. In addition, we will appraise new approaches using "vaccine-omics" to discover novel types of adjuvants.

  9. Vaccine adjuvants--understanding molecular mechanisms to improve vaccines.

    PubMed

    Egli, Adrian; Santer, Deanna; Barakat, Khaled; Zand, Martin; Levin, Aviad; Vollmer, Madeleine; Weisser, Maja; Khanna, Nina; Kumar, Deepali; Tyrrell, Lorne; Houghton, Michael; Battegay, Manuel; O'Shea, Daire

    2014-01-01

    Infectious pathogens are responsible for high utilisation of healthcare resources globally. Attributable morbidity and mortality remains exceptionally high. Vaccines offer the potential to prime a pathogen-specific immune response and subsequently reduce disease burden. Routine vaccination has fundamentally altered the natural history of many frequently observed and serious infections. Vaccination is also recommended for persons at increased risk of severe vaccine-preventable disease. Many current nonadjuvanted vaccines are poorly effective in the elderly and immunocompromised populations, resulting in nonprotective postvaccine antibody titres, which serve as surrogate markers for protection. The vaccine-induced immune response is influenced by: (i.) vaccine factors i.e., type and composition of the antigen(s), (ii.) host factors i.e., genetic differences in immune-signalling or senescence, and (iii.) external factors such as immunosuppressive drugs or diseases. Adjuvanted vaccines offer the potential to compensate for a lack of stimulation and improve pathogen-specific protection. In this review we use influenza vaccine as a model in a discussion of the different mechanisms of action of the available adjuvants. In addition, we will appraise new approaches using "vaccine-omics" to discover novel types of adjuvants. PMID:24844935

  10. An improved technique for the 2H/1H analysis of urines from diabetic volunteers

    USGS Publications Warehouse

    Coplen, T.B.; Harper, I.T.

    1994-01-01

    The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, ~ 1-2???, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.The H2-H2O ambient-temperature equilibration technique for the determination of 2H/1H ratios in urinary waters from diabetic subjects provides improved accuracy over the conventional Zn reduction technique. The standard deviation, approximately 1-2%, is at least a factor of three better than that of the Zn reduction technique on urinary waters from diabetic volunteers. Experiments with pure water and solutions containing glucose, urea and albumen indicate that there is no measurable bias in the hydrogen equilibration technique.

  11. Comparison of JAK2V617F mutation assessment employing different molecular diagnostic techniques

    PubMed Central

    Veneri, Dino; Capuzzo, Enrico; de Matteis, Giovanna; Franchini, Massimo; Baritono, Elisabetta; Benati, Marco; Solero, G. Pietro; Ambrosetti, Achille; Quaresmini, Giulia; Pizzolo, Giovanni

    2009-01-01

    Background The JAK2V617F mutation is present in the majority of patients with polycythaemia vera and in approximately half of patients with essential thrombocythaemia and primary myelofibrosis. In this study we compare the results of JAK2V617F mutation detection using three different molecular techniques in the same group of patients affected by essential thrombocythaemia. Patients and methods The JAK2 mutation was investigated with a qualitative method in 115 consecutive outpatients with a diagnosis of essential thrombocythaemia made according to WHO 2001 criteria. In 48/115 (41.7%) the allele burden was also evaluated with two different qualitative methods, of which one was a method developed in-house and the other was a commercially available method. Results The JAK2V617F mutation was detected by the qualitative method in 81/115 (69.6%) of the patients. Among the 48/115 patients in whom all three methods were applied, the qualitative method detected the mutation in 38 (79%). According to the quantitative method developed in-house, the mutation was present in 35/48 (73%) of the patients: of these, 2/35 (5.7%) patients were homozygous for the JAK2V617F mutation. The commercial quantitative method showed the mutation in 37/48 (77%) patients: of these, 9/37 (18%) patients were homozygous. Three of the 13 patients in whom no mutation was detected by the in-house method were positive for the JAK2V617F according to the commercial method. In one patient the search for the JAK2V617F mutation was positive with the in-house method but negative with the commercial kit. Conclusion Detection of the JAK2V617F mutation may depend on the molecular technique used. Considering that detection of this mutation will not only have a diagnostic value, but also a role in treatment given the development of JAK2V617F pathway inhibiting drugs, indications on a reference molecular diagnostic technique for JAK2V617F assessment and quantification of its allele burden from a panel of experts

  12. A Research Project-Based and Self-Determined Teaching System of Molecular Biology Techniques for Undergraduates

    ERIC Educational Resources Information Center

    Zhang, Shuping

    2008-01-01

    Molecular biology techniques play a very important role in understanding the biological activity. Students who major in biology should know not only how to perform experiments, but also the reasons for performing them. Having the concept of conducting research by integrating various techniques is especially important. This paper introduces a…

  13. Improved Hidden Markov Models for Molecular Motors, Part 2: Extensions and Application to Experimental Data

    PubMed Central

    Syed, Sheyum; Müllner, Fiona E.; Selvin, Paul R.; Sigworth, Fred J.

    2010-01-01

    Unbiased interpretation of noisy single molecular motor recordings remains a challenging task. To address this issue, we have developed robust algorithms based on hidden Markov models (HMMs) of motor proteins. The basic algorithm, called variable-stepsize HMM (VS-HMM), was introduced in the previous article. It improves on currently available Markov-model based techniques by allowing for arbitrary distributions of step sizes, and shows excellent convergence properties for the characterization of staircase motor timecourses in the presence of large measurement noise. In this article, we extend the VS-HMM framework for better performance with experimental data. The extended algorithm, variable-stepsize integrating-detector HMM (VSI-HMM) better models the data-acquisition process, and accounts for random baseline drifts. Further, as an extension, maximum a posteriori estimation is provided. When used as a blind step detector, the VSI-HMM outperforms conventional step detectors. The fidelity of the VSI-HMM is tested with simulations and is applied to in vitro myosin V data where a small 10 nm population of steps is identified. It is also applied to an in vivo recording of melanosome motion, where strong evidence is found for repeated, bidirectional steps smaller than 8 nm in size, implying that multiple motors simultaneously carry the cargo. PMID:21112294

  14. Chemical modification of proteins to improve the accuracy of their relative molecular mass determination by electrophoresis.

    PubMed

    Dolnik, Vladislav; Gurske, William A

    2011-10-01

    We studied the electrophoretic behavior of basic proteins (cytochrome c and histone III) and developed a carbamylation method that normalizes their electrophoretic size separation and improves the accuracy of their relative molecular mass determined electrophoretically. In capillary zone electrophoresis with cationic hitchhiking, native cytochrome c does not sufficiently bind cationic surfactants due to electrostatic repulsion between the basic protein and cationic surfactant. Carbamylation suppresses the strong positive charge of the basic proteins and results in more accurate relative molecular masses.

  15. Improved isolation protocol to detect high molecular weight polysaccharide structures of Campylobacter jejuni.

    PubMed

    Kovács, Judit K; Felső, Péter; Emődy, Levente; Schneider, György; Kocsis, Béla

    2014-12-01

    Simple detection of high molecular weight, LPS-like structures of Campylobacter jejuni is still an unsolved problem. A phenol-free extraction method for the detection of HMW polysaccharide was developed without the need for Western blot. This method provides a reliable technique for large-scale screening and comparative characterization study of different isolates.

  16. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

  17. Synthesis and Bioconjugation of Gold Nanoparticles as Potential Molecular Probes for Light-Based Imaging Techniques

    PubMed Central

    Rayavarapu, Raja Gopal; Petersen, Wilma; Ungureanu, Constantin; Post, Janine N.; van Leeuwen, Ton G.; Manohar, Srirang

    2007-01-01

    We have synthesized and characterized gold nanoparticles (spheres and rods) with optical extinction bands within the “optical imaging window.” The intense plasmon resonant driven absorption and scattering peaks of these nanoparticles make them suitable as contrast agents for optical imaging techniques. Further, we have conjugated these gold nanoparticles to a mouse monoclonal antibody specific to HER2 overexpressing SKBR3 breast carcinoma cells. The bioconjugation protocol uses noncovalent modes of binding based on a combination of electrostatic and hydrophobic interactions of the antibody and the gold surface. We discuss various aspects of the synthesis and bioconjugation protocols and the characterization results of the functionalized nanoparticles. Some proposed applications of these potential molecular probes in the field of biomedical imaging are also discussed. PMID:18354723

  18. A Coupled Meshless Technique/Molecular Dynamics Approach for Deformation Characterization of Mono-crystalline Metal

    SciTech Connect

    Gu, Y. T.; Yarlagadda, Prasad K. D. V.

    2010-05-21

    This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M{sup 2}) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M{sup 2}, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic potentials and Cauchy-Born rule. The key parameters used in M{sup 2} are firstly investigated using a benchmark problem. Then, M{sup 2} is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.

  19. Operation mechanism of rotary molecular motor F1 probed by single-molecule techniques

    NASA Astrophysics Data System (ADS)

    Iino, Ryota

    2013-03-01

    F1 is a rotary motor protein. Three catalytic β - subunitsinthestator 33ring are torque generators, and rotate the rotor γ-subunit by sequential and cooperative conformational changes coupled with adenosine triphosphate (ATP) hydrolysis reaction. F1 shows remarkable performances such as rotation rate faster than 10,000 rpm, high reversibility and efficiency in chemo-mechanical energy conversion. I will introduce basic characteristics of F1 revealed by single-molecule imaging and manipulation techniques based on optical microscopy and high-speed atomic force microscopy. I will also discuss the possible operation mechanism behind the F1, along with structurally-related hexameric ATPases, also mentioning the possibility of generating hybrid molecular motors.

  20. Alternative procedure to improve the stability of mandibular complete dentures: a modified neutral zone technique.

    PubMed

    Rehmann, Peter; Zenginel, Martha; Wostmann, Bernd

    2012-01-01

    The aim of this report is to describe an alternative technique to record the neutral zone. An acrylic resin base with posterior occlusal rims was applied using a thermoplastic denture adhesive. After being worn for 2 days, the base was transferred into an acrylic resin complete denture. Most patients reported an improvement in denture stability and a reduction of pressure sores. This procedure seems to be helpful to improve denture function, especially in the mandible, in patients who cannot be treated with implants. However, because of its complexity, this neutral zone technique cannot be recommended for routine clinical use.

  1. Improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Bao, Xiao-qing; Zhu, Jing; Shi, Hong-Min

    2005-07-01

    Objective: To observe and study the improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser and evaluate the effective rate. Methods: 60 patients of internal hemorrhoids were treated with Nd:YAG laser (10-15mw) irradiating on the mucosa of the lesions. Results: Among 60 patients, 57 patients were primarily cured with one treatment, 3 patients were primarily cured with two treatments. The effective rate was 95% with one treatment, and it reached to 100% with two treatments. Conclusions: the improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser is effective and easy to operate.

  2. Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects.

    PubMed

    Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata

    2014-01-01

    As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important if the strategy relates to microbial communities that cause biodeterioration of materials that constitute our cultural heritage. Until recently, the detection and identification of microorganisms inhabiting objects of cultural value was based only on cultivation-dependent methods. In spite of many advantages, these methods provide limited information because they identify only viable organisms capable of growth under standard laboratory conditions. However, in order to carry out proper conservation and renovation, it is necessary to know the complete composition of microbial communities and their activity. This paper presents and characterizes modern techniques such as genetic fingerprinting and clone library construction for the assessment of microbial diversity based on molecular biology. Molecular methods represent a favourable alternative to culture-dependent methods and make it possible to assess the biodiversity of microorganisms inhabiting technical materials and cultural heritage objects.

  3. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases.

    PubMed

    França, R F O; da Silva, C C; De Paula, S O

    2013-06-01

    In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival. PMID:23339016

  4. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases.

    PubMed

    França, R F O; da Silva, C C; De Paula, S O

    2013-06-01

    In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival.

  5. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets

    NASA Astrophysics Data System (ADS)

    Hsu, Po Jen; Lai, S. K.; Rapallo, Arnaldo

    2014-03-01

    Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit

  6. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets

    SciTech Connect

    Hsu, Po Jen; Lai, S. K.; Rapallo, Arnaldo

    2014-03-14

    Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit

  7. Peptide dynamics by molecular dynamics simulation and diffusion theory method with improved basis sets.

    PubMed

    Hsu, Po Jen; Lai, S K; Rapallo, Arnaldo

    2014-03-14

    Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit

  8. Intelligibility improvement of analog communication systems using an amplitude control technique.

    NASA Technical Reports Server (NTRS)

    Wishna, S.

    1973-01-01

    An amplitude control technique has been employed for use with analog voice communication systems, which improves low-level phoneme reception and eliminates the received noise between words and syllables. Tests were conducted on a narrow-band frequency-modulation simplex voice communication channel employing the amplitude control technique. Presented for both the modified rhyme word tests and the phonetically balanced word tests are a series of graphical plots of the tests' score distribution, mean, and standard deviation as a function of received carrier-to-noise power density ratio. At low received carrier-to-noise power density ratios, a significant improvement in the intelligibility was obtained. A voice intelligibility improvement of more than 2 dB was obtained for the modified rhyme test words, and a voice intelligibility improvement in excess of 4 dB was obtained for the phonetically balanced word tests.

  9. Development of Ultra-High Molecular Weight Polyethylene (UHMWPE) Coating by Cold Spray Technique

    NASA Astrophysics Data System (ADS)

    Ravi, Kesavan; Ichikawa, Yuji; Deplancke, Tiana; Ogawa, Kazuhiro; Lame, Olivier; Cavaille, Jean-Yves

    2015-08-01

    Ultra-high molecular weight polyethylene or UHMWPE is an extremely difficult material to coat with, as it is rubbery and chemically very inert. The Cold Spray process appears to be a promising alternative processing technique but polymers are in general difficult to deposit using this method. So, attempts to develop UHMWPE coatings were made using a downstream injection cold spray technique incorporating a few modifications. A conventional cold spray machine yielded only a few deposited particles of UHMWPE on the substrate surface, but with some modifications in the nozzle geometry (especially the length and inner geometry) a thin coating of 45 μm on Al substrate was obtained. Moreover, experiments with the addition of fumed nano-alumina to the feedstock yielded a coating of 1-4 mm thickness on Al and polypropylene substrates. UHMWPE was seen to be melt crystallized during the coating formation, as can be seen from the differential calorimetry curves. Influence of nano-ceramic particles was explained by observing the creation of a bridge bond between UHMWPE particles.

  10. Chloride molecular doping technique on 2D materials: WS2 and MoS2.

    PubMed

    Yang, Lingming; Majumdar, Kausik; Liu, Han; Du, Yuchen; Wu, Heng; Hatzistergos, Michael; Hung, P Y; Tieckelmann, Robert; Tsai, Wilman; Hobbs, Chris; Ye, Peide D

    2014-11-12

    Low-resistivity metal-semiconductor (M-S) contact is one of the urgent challenges in the research of 2D transition metal dichalcogenides (TMDs). Here, we report a chloride molecular doping technique which greatly reduces the contact resistance (Rc) in the few-layer WS2 and MoS2. After doping, the Rc of WS2 and MoS2 have been decreased to 0.7 kΩ·μm and 0.5 kΩ·μm, respectively. The significant reduction of the Rc is attributed to the achieved high electron-doping density, thus a significant reduction of Schottky barrier width. As a proof-of-concept, high-performance few-layer WS2 field-effect transistors (FETs) are demonstrated, exhibiting a high drain current of 380 μA/μm, an on/off ratio of 4 × 10(6), and a peak field-effect mobility of 60 cm(2)/(V·s). This doping technique provides a highly viable route to diminish the Rc in TMDs, paving the way for high-performance 2D nanoelectronic devices.

  11. Grand-Canonical-like Molecular-Dynamics Simulations by Using an Adaptive-Resolution Technique

    NASA Astrophysics Data System (ADS)

    Wang, Han; Hartmann, Carsten; Schütte, Christof; Delle Site, Luigi

    2013-01-01

    In this work, we provide a detailed theoretical analysis, supported by numerical tests, of the reliability of the adaptive-resolution-simulation (AdResS) technique in sampling the grand-canonical ensemble. We demonstrate that the correct density and radial distribution functions in the hybrid region, where molecules change resolution, are two necessary conditions for considering the atomistic and coarse-grained regions in AdResS to be equivalent to subsystems of a full atomistic system with an accuracy up to the second order with respect to the probability distribution of the system. Moreover, we show that the work done by the thermostat and a thermodynamic force in the transition region is formally equivalent to balancing the chemical potential difference between the different resolutions. From these results follows the main conclusion that the atomistic region exchanges molecules with the coarse-grained region in a grand-canonical fashion with an accuracy up to (at least) second order. Numerical tests, for the relevant case of liquid water at ambient conditions, are carried out to strengthen the conclusions of the theoretical analysis. Finally, in order to show the computational convenience of AdResS as a grand-canonical setup, we compare our method to the insertion particle method in its most efficient computational implementation. This fruitful combination of theoretical principles and numerical evidence makes the adaptive-resolution technique a candidate for a natural, general, and efficient protocol for grand-canonical molecular dynamics for the case of large systems.

  12. New AFM Techniques for Investigating Molecular Growth Mechanisms of Protein Crystals

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

    1998-01-01

    Atomic Force Microscopy (AFM) has emerged as a powerful technique for investigating protein crystal growth. Earlier AFM studies were among the first to demonstrate that these crystals grew by dislocation and 2D nucleation growth mechanisms [1]. These investigations were restricted to the micron range where only surface features, such as dislocation hillocks and 2D islands are visible. Most AFM instruments can scan at higher resolutions and have the potential to resolve individual protein molecules at nanometer ranges. Such scans are essential for determining the molecular packing arrangements on crystal faces and for probing the growth process at the molecular level. However, at this resolution the AFM tip influences the image produced, with the resulting image being a convolution of the tip shape and the surface morphology [2]. In most studies this problem is resolved by deconvoluting the image to obtain the true surface morphology. Although deconvolution routines work reasonably well for simple one- dimensional shapes, for complex surfaces this approach does not produce accurate results. In this study we devised a new approach which takes advantage of the precise molecular order of crystal surfaces, combined with the knowledge of individual molecular shapes from the crystallographic data of the protein and the AFM tip shape. This information is used to construct expected theoretical AFM images by convoluting the tip shape with the constructed crystal surface shape for a given surface packing arrangement. By comparing the images from actual AFM scans with the constructed ones for different possible surface packing arrangements, the correct packing arrangement can be conclusively determined. This approach was used in this study to determine the correct one from two possible packing arrangements on (I 10) faces of tetragonal lysozyme crystals. Another novel AFM technique was also devised to measure the dimension of individual growth units of the crystal faces

  13. The Ticket to Retention: A Classroom Assessment Technique Designed to Improve Student Learning

    ERIC Educational Resources Information Center

    Divoll, Kent A.; Browning, Sandra T.; Vesey, Winona M.

    2012-01-01

    Classroom assessment techniques (CATs) or other closure activities are widely promoted for use in college classrooms. However, research on whether CATs improve student learning are mixed. The authors posit that the results are mixed because CATs were designed to "help teachers find out what students are learning in the classroom and how well…

  14. After-School Toolkit: Tips, Techniques and Templates for Improving Program Quality

    ERIC Educational Resources Information Center

    Gutierrez, Nora; Bradshaw, Molly; Furano, Kathryn

    2008-01-01

    This toolkit offers program managers a hands-on guide for implementing quality programming in the after-school hours. The kit includes tools and techniques that increased the quality of literacy programming and helped improve student reading gains in the Communities Organizing Resources to Advance Learning (CORAL) initiative of The James Irvine…

  15. Improvement of color reproduction in color digital holography by using spectral estimation technique.

    PubMed

    Xia, Peng; Shimozato, Yuki; Ito, Yasunori; Tahara, Tatsuki; Kakue, Takashi; Awatsuji, Yasuhiro; Nishio, Kenzo; Ura, Shogo; Kubota, Toshihiro; Matoba, Osamu

    2011-12-01

    We propose a color digital holography by using spectral estimation technique to improve the color reproduction of objects. In conventional color digital holography, there is insufficient spectral information in holograms, and the color of the reconstructed images depend on only reflectances at three discrete wavelengths used in the recording of holograms. Therefore the color-composite image of the three reconstructed images is not accurate in color reproduction. However, in our proposed method, the spectral estimation technique was applied, which has been reported in multispectral imaging. According to the spectral estimation technique, the continuous spectrum of object can be estimated and the color reproduction is improved. The effectiveness of the proposed method was confirmed by a numerical simulation and an experiment, and, in the results, the average color differences are decreased from 35.81 to 7.88 and from 43.60 to 25.28, respectively. PMID:22193005

  16. Optical implementation of improved resolution with intermediate-view reconstruction technique based on integral imaging

    NASA Astrophysics Data System (ADS)

    Lee, Keong-Jin; Lee, Sang-Tae; Oh, Yong-Seok; Hong, Suk-Pyo; Kim, Chang-Keun; Kim, Eun-Soo

    2008-02-01

    To overcome the viewing resolution limit defined by the Nyquist sampling theorem for a given lenslet pitch, a Moving Array-Lens Technique (MALT) was developed in 3-D integral imaging technique. Even though the MALT is an effective method for resolution improvement of Integral Imaging, this cannot be applied to a real-time 3-D integral imaging display system because of its mechanical movement. In this paper, we propose an integral imaging display using a computational pick-up method based on Intermediate-View Reconstruction Technique instead of optical moving pickup. We show that the proposed system can provide optically resolution-improved 3-D images of integral imaging by use of EIs generated by the IVRT through the optical experiments.

  17. TWT efficiency improvement by a low-cost technique for deposition of carbon on MDC electrodes

    NASA Technical Reports Server (NTRS)

    Ebihara, Ben T.; Ramins, Peter; Peet, Shelly

    1987-01-01

    A simple method of improving the TWT and multistage depressed collector (MDC) efficiency has been demonstrated. The efficiency improvement was produced by the application of a thin layer of carbon to the copper electrodes of the MDC by means of a rapid low-cost technique involving the pyrolysis of hydrocarbon oil in electric arc discharges. Experimental results with a representative TWT and MDC showed an 11 percent improvement in both the TWT and MDC efficiencies as compared to those of the same TWT and MDC with machined copper electrode surfaces. An extended test with a 550-W CW TWT indicated good durability of the carbon-coated electrode surfaces.

  18. Improved importance sampling technique for efficient simulation of digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, Dingqing; Yao, Kung

    1988-01-01

    A new, improved importance sampling (IIS) approach to simulation is considered. Some basic concepts of IS are introduced, and detailed evolutions of simulation estimation variances for Monte Carlo (MC) and IS simulations are given. The general results obtained from these evolutions are applied to the specific previously known conventional importance sampling (CIS) technique and the new IIS technique. The derivation for a linear system with no signal random memory is considered in some detail. For the CIS technique, the optimum input scaling parameter is found, while for the IIS technique, the optimum translation parameter is found. The results are generalized to a linear system with memory and signals. Specific numerical and simulation results are given which show the advantages of CIS over MC and IIS over CIS for simulations of digital communications systems.

  19. An efficient technique for nuclei segmentation based on ellipse descriptor analysis and improved seed detection algorithm.

    PubMed

    Xu, Hongming; Lu, Cheng; Mandal, Mrinal

    2014-09-01

    In this paper, we propose an efficient method for segmenting cell nuclei in the skin histopathological images. The proposed technique consists of four modules. First, it separates the nuclei regions from the background with an adaptive threshold technique. Next, an elliptical descriptor is used to detect the isolated nuclei with elliptical shapes. This descriptor classifies the nuclei regions based on two ellipticity parameters. Nuclei clumps and nuclei with irregular shapes are then localized by an improved seed detection technique based on voting in the eroded nuclei regions. Finally, undivided nuclei regions are segmented by a marked watershed algorithm. Experimental results on 114 different image patches indicate that the proposed technique provides a superior performance in nuclei detection and segmentation.

  20. Improved error separation technique for on-machine optical lens measurement

    NASA Astrophysics Data System (ADS)

    Fu, Xingyu; Bing, Guo; Zhao, Qingliang; Rao, Zhimin; Cheng, Kai; Mulenga, Kabwe

    2016-04-01

    This paper describes an improved error separation technique (EST) for on-machine surface profile measurement which can be applied to optical lenses on precision and ultra-precision machine tools. With only one precise probe and a linear stage, improved EST not only reduces measurement costs, but also shortens the sampling interval, which implies that this method can be used to measure the profile of small-bore lenses. The improved EST with stitching method can be applied to measure the profile of high-height lenses as well. Since the improvement is simple, most of the traditional EST can be modified by this method. The theoretical analysis and experimental results in this paper show that the improved EST eliminates the slide error successfully and generates an accurate lens profile.

  1. Utility of magnetic cell separation as a molecular sperm preparation technique.

    PubMed

    Said, Tamer M; Agarwal, Ashok; Zborowski, Maciej; Grunewald, Sonja; Glander, Hans-Juergen; Paasch, Uwe

    2008-01-01

    Assisted reproductive techniques (ARTs) have become the treatment of choice in many cases of infertility; however, the current success rates of these procedures remain suboptimal. Programmed cell death (apoptosis) most likely contributes to failed ART and to the decrease in sperm quality after cryopreservation. There is a likelihood that some sperm selected for ART will display features of apoptosis despite their normal appearance, which may be partially responsible for the low fertilization and implantation rates seen with ART. One of the features of apoptosis is the externalization of phosphatidylserine (PS) residues, which are normally present on the inner leaflet of the sperm plasma membrane. Colloidal superparamagnetic microbeads ( approximately 50 nm in diameter) conjugated with annexin V bind to PS and are used to separate dead and apoptotic spermatozoa by magnetic-activated cell sorting (MACS). Cells with externalized PS will bind to these microbeads, whereas nonapoptotic cells with intact membranes do not bind and could be used during ARTs. We have conducted a series of experiments to investigate whether the MACS technology could be used to improve ART outcomes. Our results clearly indicate that integrating MACS as a part of sperm preparation techniques will improve semen quality and cryosurvival rates by eliminating apoptotic sperm. Nonapoptotic spermatozoa prepared by MACS display higher quality in terms of routine sperm parameters and apoptosis markers. The higher sperm quality is represented by an increased oocyte penetration potential and cryosurvival rates. Thus, the selection of nonapoptotic spermatozoa by MACS should be considered to enhance ART success rates. PMID:18077822

  2. Acanthamoeba keratitis: improving the Scottish diagnostic service for the rapid molecular detection of Acanthamoeba species.

    PubMed

    Alexander, Claire Low; Coyne, Michael; Jones, Brian; Anijeet, Deepa

    2015-07-01

    Acanthamoeba species are responsible for causing the potentially sight-threatening condition, Acanthamoeba keratitis, which is commonly associated with contact lens use. In this report, we highlight the challenges faced using conventional laboratory identification methods to identify this often under-reported pathogen, and discuss the reasons for introducing the first national service in Scotland for the rapid and sensitive molecular identification of Acanthamoeba species. By comparing culture and molecular testing data from a total of 63 patients (n = 80 samples) throughout Scotland presenting with ocular eye disease, we describe the improvement in detection rates where an additional four positive cases were identified using a molecular assay versus culture. The testing of a further ten patients by confocal imaging is also presented. This report emphasizes the importance of continuing to improve clinical laboratory services to ensure a prompt, correct diagnosis and better prognosis, in addition to raising awareness of this potentially debilitating opportunistic pathogen.

  3. State-of-the-art applications of cyclodextrins as functional monomers in molecular imprinting techniques: a review.

    PubMed

    Lay, Sovichea; Ni, Xiaofeng; Yu, Haining; Shen, Shengrong

    2016-06-01

    As a versatile tool in separation science, cyclodextrins and their derivatives, known as emerging functional monomers, have been used extensively in molecular imprinting techniques. The attributes of cyclodextrins and their derivatives are widely known to form host-guest inclusion complex processes between the polymer and template. The exploitation of the imprinting technique could produce a product of molecularly imprinted polymers, which are very robust with long-term stability, reliability, cost-efficiency, and selectivity. Hence, molecularly imprinted polymers have gained popularity in chemical separation and analysis. Molecularly imprinted polymers containing either cyclodextrin or its derivatives demonstrate superior binding effects for a target molecule. As noted in the previous studies, the functional monomers of cyclodextrins and their derivatives have been used in molecular imprinting for selective separation with a wide range of chemical compounds, including steroidals, amino acids, polysaccharides, drugs, plant hormones, proteins, pesticides, and plastic additives. Therefore, the main goal of this review is to illustrate the exotic applications of imprinting techniques employing cyclodextrins and their derivatives as single or binary functional monomers in synthesizing molecularly imprinted polymers in areas of separation science by reviewing some of the latest studies reported in the literature. PMID:27324352

  4. Signal Amplification Technique (SAT): an approach for improving resolution and reducing image noise in computed tomography

    SciTech Connect

    Phelps, M.E.; Huang, S.C.; Hoffman, E.J.; Plummer, D.; Carson, R.

    1981-01-01

    Spatial resolution improvements in computed tomography (CT) have been limited by the large and unique error propagation properties of this technique. The desire to provide maximum image resolution has resulted in the use of reconstruction filter functions designed to produce tomographic images with resolution as close as possible to the intrinsic detector resolution. Thus, many CT systems produce images with excessive noise with the system resolution determined by the detector resolution rather than the reconstruction algorithm. CT is a rigorous mathematical technique which applies an increasing amplification to increasing spatial frequencies in the measured data. This mathematical approach to spatial frequency amplification cannot distinguish between signal and noise and therefore both are amplified equally. We report here a method in which tomographic resolution is improved by using very small detectors to selectively amplify the signal and not noise. Thus, this approach is referred to as the signal amplification technique (SAT). SAT can provide dramatic improvements in image resolution without increases in statistical noise or dose because increases in the cutoff frequency of the reconstruction algorithm are not required to improve image resolution. Alternatively, in cases where image counts are low, such as in rapid dynamic or receptor studies, statistical noise can be reduced by lowering the cutoff frequency while still maintaining the best possible image resolution. A possible system design for a positron CT system with SAT is described.

  5. A new technique to improve the accuracy of LDA tracker measurements

    NASA Astrophysics Data System (ADS)

    Vonka, V.; Hoornstra, J.; Oldengarm, J.

    1981-08-01

    A new technique that improves the measurement accuracy of a tracker type laser Doppler anemometer for time averaged velocity measurements in a stationary flow is presented. It is shown that the accuracy of the demodulation system is affected by a systematic error, which can be eliminated. The principle of the technique is based on taking two independent but coupled measurements such that the error appears in both results but with opposite sign. This is achieved by up- and down-shifting the Doppler frequency using a bidirectional optical frequency shifting device.

  6. Cryoanalgesia after thoracotomy. Improvement of technique and review of 600 cases.

    PubMed

    Maiwand, M O; Makey, A R; Rees, A

    1986-08-01

    The efficacy of cryoanalgesia for the control of post-thoracotomy pain has led to the acceptance of the technique as a routine procedure in this unit. A study of 600 consecutive patients in whom an improved technique was used is not reported. The freezing time for each intercostal nerve in this group was reduced to one 30 second exposure instead of the two 30 second exposures previously used. This reduced the duration of cutaneous numbness, with no loss of pain control. Freezing above the fifth intercostal nerve is no longer practiced in women. Modification to the probe has simplified the procedure. Pulmonary function studies and blood-gas analysis are also described.

  7. Improved Quantitative 19F MR Molecular Imaging With Flip Angle Calibration and B1-Mapping Compensation

    PubMed Central

    Goette, Matthew J.; Lanza, Gregory M.; Caruthers, Shelton D.; Wickline, Samuel A.

    2014-01-01

    Purpose To improve 19F flip angle calibration and compensate for B1 inhomogeneities in quantitative 19F MRI of sparse molecular epitopes with perfluorocarbon (PFC) nanoparticle (NP) emulsion contrast agents. Materials and Methods Flip angle sweep experiments on PFC-NP point source phantoms with three custom-designed 19F/1H dual-tuned coils revealed a difference in required power settings for 19F and 1H nuclei, which was used to calculate a calibration ratio specific for each coil. An image-based correction technique was developed using B1-field mapping on 1H to correct for 19F and 1H images in two phantom experiments. Results Optimized 19F peak power differed significantly from that of 1H power for each coil (p<0.05). A ratio of 19F/1H power settings yielded a coil-specific and spatially independent calibration value (surface: 1.48±0.06; semi-cylindrical: 1.71±0.02, single-turn-solenoid: 1.92±0.03). 1H-image-based B1 correction equalized the signal intensity of 19F images for two identical 19F PFC-NP samples placed in different parts of the field, which were offset significantly by ~66% (p<0.001) before correction. Conclusion 19F flip angle calibration and B1-mapping compensations to the 19F images employing the more abundant 1H signal as a basis for correction result in a significant change in the quantification of sparse 19F MR signals from targeted PFC NP emulsions. PMID:25425244

  8. The Henry Ford Production System: LEAN Process Redesign Improves Service in the Molecular Diagnostic Laboratory

    PubMed Central

    Cankovic, Milena; Varney, Ruan C.; Whiteley, Lisa; Brown, Ron; D'Angelo, Rita; Chitale, Dhananjay; Zarbo, Richard J.

    2009-01-01

    Accurate and timely molecular test results play an important role in patient management; consequently, there is a customer expectation of short testing turnaround times. Baseline data analysis revealed that the greatest challenge to timely result generation occurred in the preanalytic phase of specimen collection and transport. Here, we describe our efforts to improve molecular testing turnaround times by focusing primarily on redesign of preanalytic processes using the principles of LEAN production. Our goal was to complete greater than 90% of the molecular tests in less than 3 days. The project required cooperation from different laboratory disciplines as well as individuals outside of the laboratory. The redesigned processes involved defining and standardizing the protocols and approaching blood and tissue specimens as analytes for molecular testing. The LEAN process resulted in fewer steps, approaching the ideal of a one-piece flow for specimens through collection/retrieval, transport, and different aspects of the testing process. The outcome of introducing the LEAN process has been a 44% reduction in molecular test turnaround time for tissue specimens, from an average of 2.7 to 1.5 days. In addition, extending LEAN work principles to the clinician suppliers has resulted in a markedly increased number of properly collected and shipped blood specimens (from 50 to 87%). These continuous quality improvements were accomplished by empowered workers in a blame-free environment and are now being sustained with minimal management involvement. PMID:19661386

  9. [Review of two Japanese cases with tinea faciei identified by molecular biological techniques as Arthroderma vanbreuseghemii].

    PubMed

    Noguchi, Hiromitsu; Sakae, Hitoko; Hattori, Mariko; Hiruma, Masataro

    2010-01-01

    A 26-year-old female (Case 1) presented with scaly erythema on the left cheek. Positive direct microscopic examination results indicated a diagnosis of tinea faciei. Colonies were isolated after incubation on Mycosel agar medium. Trichophyton mentagrophytes was morphologically identified based on giant colony formation and slide culture. Furthermore, nucleotide sequence analysis of the internal transcribed spacer 1 (ITS1) region of the rDNA gene identified Arthroderma vanbreuseghemii. The patient had 9 cats in her home, and similar colonies were isolated from 2 of these 9 cats by the hairbrush culture method. The isolated organism was identified as A. vanbreuseghemii , suggesting the cats to be the source of infection. An 11-year-old boy (Case 2) had palm-sized erythematous plaques from the nasal base to the area around the left eye and on the left cheek. Positive direct microscopic examination results indicated a diagnosis of tinea faciei. The patient had been treated with topical steroids for 6 weeks before the onset of these manifestations. The isolated organism was identified as A. vanbreuseghemii . His dog and two cats were tested but did not appear to be the source of infection. Since 2000, there have been 25 cases of tinea in Japan, identified as A. vanbreuseghemii by molecular biological techniques. Twelve cases had tinea on the face, and 11 had used topical steroids. A. vanbreuseghemii was found to be one of the important pathogens in tinea faciei.

  10. Quantum and Molecular Mechanical (QM/MM) Monte Carlo Techniques for Modeling Condensed-Phase Reactions

    PubMed Central

    Jorgensen, Wiliiam L.

    2014-01-01

    A recent review (Acc. Chem. Res. 2010, 43:142–151) examined our use and development of a combined quantum and molecular mechanical (QM/MM) technique for modelling organic and enzymatic reactions. Advances included the PDDG/PM3 semiempirical QM (SQM) method, computation of multi-dimensional potentials of mean force (PMF), incorporation of on-the-fly QM in Monte Carlo simulations, and a polynomial quadrature method for rapidly treating proton-transfer reactions. The current article serves as a follow up on our progress. Highlights include new reactions, alternative SQM methods, a polarizable OPLS force field, and novel solvent environments, e.g., “on water” and room temperature ionic liquids. The methodology is strikingly accurate across a wide range of condensed-phase and antibody-catalyzed reactions including substitution, decarboxylation, elimination, isomerization, and pericyclic classes. Comparisons are made to systems treated with continuum-based solvents and ab initio or density functional theory (DFT) methods. Overall, the QM/MM methodology provides detailed characterization of reaction paths, proper configurational sampling, several advantages over implicit solvent models, and a reasonable computational cost. PMID:25431625

  11. Probing the interaction of anthraquinone with DNA by spectroscopy, molecular modeling and cancer cell imaging technique.

    PubMed

    Yang, Lei; Fu, Zheng; Niu, Xiaoqing; Zhang, Guisheng; Cui, Fengling; Zhou, Chunwu

    2015-05-25

    A new anthraquinone derivative, (E)-2-(1-(4,5-dihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yloxyimino)ethyl)-1,4-dihydroxyanthracene-9,10-dione (AODGlc), was synthesized and its binding properties towards DNA were explored under physiological conditions by fluorescence spectroscopy, DNA melting as well as docking techniques. The experimental results revealed that AODGlc could bind to calf thymus DNA (ctDNA) through intercalation between DNA base pairs. The values of thermodynamic parameters at different temperatures including ΔG, ΔH, and ΔS and the molecular modeling study implied that hydrophobic interactions and hydrogen bonds were the main interactions in the AODGlc-ctDNA system. Cervical cancer cells (HepG2 cells) were used in cell viability assay and cell imaging experiment. AODGlc could interact with HepG2 cells and kill HepG2 cells under high concentration with nice curative effect, indicating its potential bioapplication in the future.

  12. Sensing picornaviruses using molecular imprinting techniques on a quartz crystal microbalance.

    PubMed

    Jenik, Michael; Schirhagl, Romana; Schirk, Christian; Hayden, Oliver; Lieberzeit, Peter; Blaas, Dieter; Paul, Guntram; Dickert, Franz L

    2009-07-01

    Molecular imprinting techniques were adapted to design a sensor for the human rhinovirus (HRV) and the foot-and-mouth disease virus (FMDV), which are two representatives of picornaviruses. Stamp imprinting procedures lead to patterned polyurethane layers that depict the geometrical features of the template virus, as confirmed by AFM for HRV. Quartz crystal microbalance (QCM) measurements show that the resulting layers incorporate the template viruses reversibly and lead to mass effects that are almost an order of magnitude higher than those of nonspecific adsorption. Thus, for example, the sensor yields a net frequency effect of -300 Hz when applying a virus suspension with a concentration of approximately 100 microg/mL with an excellent signal-to-noise ratio. The cavities are not only selective to shape but also to surface chemistry: different HRV serotypes (HRV1A, HRV2, HRV14, and HRV16, respectively) can be distinguished with the sensor materials by a selectivity factor of 3, regardless of the group (major/minor) to which they belong. The same selectivity factor can be observed between HRV and FMDV. Hence, imprinting leads to an "artificial antibody" toward viruses, which does not only recognize their receptor binding sites, but rather detects the whole virus as an entity. Brunauer-Emmett-Teller (BET) studies allow simulation of the sensor characteristics and reveal the number of favorable binding sites in the coatings. PMID:19469532

  13. Investigation of Nalidixic Acid Resistance Mechanism in Salmonella enterica Using Molecular Simulation Techniques.

    PubMed

    Preethi, B; Shanthi, V; Ramanathan, K

    2015-09-01

    The emergence of nalidixic acid-resistant strains of Salmonella typhimurium remains to be a major public health problem. In particular, the substitution of Asn in place of Asp at the 87 loci in the GyrA of S. typhimurium was experimentally stated for nalidixic acid resistance. However, the data on the possible mechanism of nalidixic acid resistance are limited. In this study, I-Mutant2.0 and DUET program were employed to explore the impact of mutation on the stability of GyrA protein. Subsequently, molecular simulation techniques were employed to provide detailed information on the nalidixic acid-resistant associates with the D87N mutation in the GyrA of S. typhimurium. The binding free energy data depicts that nalidixic acid forms stable complex only with native-type GyrA than mutant (D87N) type GyrA protein. Moreover, our results theoretically suggest that hydrogen bonding formed by the Arg91 is certainly responsible for the GyrA of S. typhimurium drug selectivity. It is hoped that these evidences are immensely important for the development of new antibiotic and to overcome the nalidixic acid resistance in the near future. PMID:26208690

  14. Quantum and Molecular Mechanical (QM/MM) Monte Carlo Techniques for Modeling Condensed-Phase Reactions.

    PubMed

    Acevedo, Orlando; Jorgensen, Wiliiam L

    2014-09-01

    A recent review (Acc. Chem. Res. 2010, 43:142-151) examined our use and development of a combined quantum and molecular mechanical (QM/MM) technique for modelling organic and enzymatic reactions. Advances included the PDDG/PM3 semiempirical QM (SQM) method, computation of multi-dimensional potentials of mean force (PMF), incorporation of on-the-fly QM in Monte Carlo simulations, and a polynomial quadrature method for rapidly treating proton-transfer reactions. The current article serves as a follow up on our progress. Highlights include new reactions, alternative SQM methods, a polarizable OPLS force field, and novel solvent environments, e.g., "on water" and room temperature ionic liquids. The methodology is strikingly accurate across a wide range of condensed-phase and antibody-catalyzed reactions including substitution, decarboxylation, elimination, isomerization, and pericyclic classes. Comparisons are made to systems treated with continuum-based solvents and ab initio or density functional theory (DFT) methods. Overall, the QM/MM methodology provides detailed characterization of reaction paths, proper configurational sampling, several advantages over implicit solvent models, and a reasonable computational cost. PMID:25431625

  15. Real-time single cell analysis of molecular mechanism of apoptosis and proliferation using FRET technique

    NASA Astrophysics Data System (ADS)

    Chen, Tongsheng; Xing, Da; Gao, Xuejuan; Wang, Fang

    2006-09-01

    Bcl-2 family proteins (such as Bid and Bak/Bax) and 14-3-3 proteins play a key role in the mitochondria-mediated cell apoptosis induced by cell death factors such as TNF-α and lower power laser irradiation (LPLI). In this report, fluorescence resonance energy transfer (FRET) has been used to study the molecular mechanism of apoptosis in living cells on a fluorescence scanning confocal microscope. Based on the genetic code technique and the green fluorescent proteins (GFPs), single-cell dynamic analysis of caspase3 activation, caspase8 activation, and PKCs activation are performed during apoptosis induced by laser irradiation in real-time. To investigate the cellular effect and mechanism of laser irradiation, human lung adenocarcinoma cells (ASTC-a-1) transfected with plasmid SCAT3 (pSCAT3)/ CKAR FRET reporter, were irradiated and monitored noninvasively with both FRET imaging. Our results show that high fluence lower power laser irradiation (HFLPLI) can induce an increase of caspase3 activation and a decrease of PKCs activation, and that LPLI induces the ASTC-a-1 cell proliferation by specifically activating PKCs.

  16. Fast molecular beacon hybridization in organic solvents with improved target specificity.

    PubMed

    Dave, Neeshma; Liu, Juewen

    2010-12-01

    DNA hybridization is of tremendous importance in biology, bionanotechnology, and biophysics. Molecular beacons are engineered DNA hairpins with a fluorophore and a quencher labeled on each of the two ends. A target DNA can open the hairpin to give an increased fluorescence signal. To date, the majority of molecular beacon detections have been performed only in aqueous buffers. We describe herein DNA detection in nine different organic solvents, methanol, ethanol, isopropanol, acetonitrile, formamide, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ethylene glycol, and glycerol, varying each up to 75% (v/v). In comparison with detection in water, the detection in organic solvents showed several important features. First, the molecular beacon hybridizes to its target DNA in the presence of all nine solvents up to a certain percentage. Second, the rate of this hybridization was significantly faster in most organic solvents compared with water. For example, in 56% ethanol, the beacon showed a 70-fold rate enhancement. Third, the ability of the molecular beacon to discriminate single-base mismatch is still maintained. Lastly, the DNA melting temperature in the organic solvents showed a solvent concentration-dependent decrease. This study suggests that molecular beacons can be used for applications where organic solvents must be involved or organic solvents can be intentionally added to improve the molecular beacon performance.

  17. Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop.

    PubMed

    Sudhakar Johnson, T; Eswaran, Nalini; Sujatha, M

    2011-09-01

    With the increase in crude oil prices, climate change concerns and limited reserves of fossil fuel, attention has been diverted to alternate renewable energy sources such as biofuel and biomass. Among the potential biofuel crops, Jatropha curcas L, a non-domesticated shrub, has been gaining importance as the most promising oilseed, as it does not compete with the edible oil supplies. Economic relevance of J. curcas for biodiesel production has promoted world-wide prospecting of its germplasm for crop improvement and breeding. However, lack of adequate genetic variation and non-availability of improved varieties limited its prospects of being a successful energy crop. In this review, we present the progress made in molecular breeding approaches with particular reference to tissue culture and genetic transformation, genetic diversity assessment using molecular markers, large-scale transcriptome and proteome studies, identification of candidate genes for trait improvement, whole genome sequencing and the current interest by various public and private sector companies in commercial-scale cultivation, which highlights the revival of Jatropha as a sustainable energy crop. The information generated from molecular markers, transcriptome profiling and whole genome sequencing could accelerate the genetic upgradation of J. curcas through molecular breeding.

  18. Clinical and molecular analyses of Beckwith-Wiedemann syndrome: Comparison between spontaneous conception and assisted reproduction techniques.

    PubMed

    Tenorio, Jair; Romanelli, Valeria; Martin-Trujillo, Alex; Fernández, García-Moya; Segovia, Mabel; Perandones, Claudia; Pérez Jurado, Luis A; Esteller, Manel; Fraga, Mario; Arias, Pedro; Gordo, Gema; Dapía, Irene; Mena, Rocío; Palomares, María; Pérez de Nanclares, Guiomar; Nevado, Julián; García-Miñaur, Sixto; Santos-Simarro, Fernando; Martinez-Glez, Víctor; Vallespín, Elena; Monk, David; Lapunzina, Pablo

    2016-10-01

    Beckwith-Wiedemann syndrome (BWS) is an overgrowth syndrome characterized by an excessive prenatal and postnatal growth, macrosomia, macroglossia, and hemihyperplasia. The molecular basis of this syndrome is complex and heterogeneous, involving genes located at 11p15.5. BWS is correlated with assisted reproductive techniques. BWS in individuals born following assisted reproductive techniques has been found to occur four to nine times higher compared to children with to BWS born after spontaneous conception. Here, we report a series of 187 patients with to BWS born either after assisted reproductive techniques or conceived naturally. Eighty-eight percent of BWS patients born via assisted reproductive techniques had hypomethylation of KCNQ1OT1:TSS-DMR in comparison with 49% for patients with BWS conceived naturally. None of the patients with BWS born via assisted reproductive techniques had hypermethylation of H19/IGF2:IG-DMR, neither CDKN1 C mutations nor patUPD11. We did not find differences in the frequency of multi-locus imprinting disturbances between groups. Patients with BWS born via assisted reproductive techniques had an increased frequency of advanced bone age, congenital heart disease, and decreased frequency of earlobe anomalies but these differences may be explained by the different molecular background compared to those with BWS and spontaneous fertilization. We conclude there is a correlation of the molecular etiology of BWS with the type of conception. © 2016 Wiley Periodicals, Inc.

  19. Improvement in Automatic Postural Coordination Following Alexander Technique Lessons in a Person With Low Back Pain

    PubMed Central

    Cacciatore, Timothy W; Horak, Fay B; Henry, Sharon M

    2006-01-01

    Background and Purpose The relationship between abnormal postural coordination and back pain is unclear. The Alexander Technique (AT) aims to improve postural coordination by using conscious processes to alter automatic postural coordination and ongoing muscular activity, and it has been reported to reduce low back pain. This case report describes the use of the AT with a client with low back pain and the observed changes in automatic postural responses and back pain. Case Description The client was a 49-year-old woman with a 25-year history of left-sided, idiopathic, lumbrosacral back pain. Automatic postural coordination was measured using a force plate during horizontal platform translations and one-legged standing. Outcomes The client was tested monthly for 4 months before AT lessons and for 3 months after lessons. Before lessons, she consistently had laterally asymmetric automatic postural responses to translations. After AT lessons, the magnitude and asymmetry of her responses and balance improved and her low back pain decreased. Discussion Further research is warranted to study whether AT lessons improve low back pain–associated abnormalities in automatic postural coordination and whether improving automatic postural coordination helps to reduce low back pain. [Cacciatore TW, Horak FB, Henry SM. Improvement in automatic postural coordination following Alexander Technique lessons in a person with low back pain. PMID:15921477

  20. A knowledge-based approach to improving optimization techniques in system planning

    NASA Technical Reports Server (NTRS)

    Momoh, J. A.; Zhang, Z. Z.

    1990-01-01

    A knowledge-based (KB) approach to improve mathematical programming techniques used in the system planning environment is presented. The KB system assists in selecting appropriate optimization algorithms, objective functions, constraints and parameters. The scheme is implemented by integrating symbolic computation of rules derived from operator and planner's experience and is used for generalized optimization packages. The KB optimization software package is capable of improving the overall planning process which includes correction of given violations. The method was demonstrated on a large scale power system discussed in the paper.

  1. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Morgan, C.D.

    1997-05-09

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and perforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.

  2. [Discoveries and techniques that have contributed to improving the treatment of pancreatic diseases].

    PubMed

    Navarro, Salvador

    2015-05-01

    Due to its retroperitoneal location, the pancreas has historically been a mysterious organ that is difficult to examine and which complicates treatment. The discovery of anesthesia and asepsis in the mid-19th century allowed laparotomic diagnosis, which was previously only possible at autopsy. The expectations of surgery were improved by the detection of blood groups, vitamin K synthesis, and the development of intensive care units. In addition, high levels of presurgical diagnosis and an unquestionable improvement of its results were enabled by advances in laboratory methods (serum quantification of amylase and lipase, tumoral markers, genetics, and techniques for measuring exocrine pancreatic function), imaging and endoscopic modalities, and fine tuning of surgical techniques. In this article, we review the history of the main milestones that have allowed progress in all these aspects.

  3. Improvements in sparse matrix/vector technique applications for on-line load flow calculation

    SciTech Connect

    Ristanovic, P.; Bjelogrlic, M.; Babic, B.S.

    1989-02-01

    Sparsity technique is applied to a wide range of problems in power systems analysis. In this paper the authors propose several analytical and computational improvements in sparsity applications. The new partial matrix refactorization method and ordering algorithm are presented. The proposed method is very efficient when applied to various kinds of programs, such as: on-line load flow, optimal power flow and steady-state security analysis. The proposed methodology is applied in a fast decoupled load flow program which include the treatment of tap violations on under-load tap changing (ULTC) transformers and reactive power generation on PV buses. Effects of proposed improvements are well tested and documented on the three networks: 118 bus IEEE test network and two utility networks with 209 and 519 buses, respectively. Keywords: sparsity technique, load flow analysis, security analysis.

  4. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Morgan, Craig D.

    1999-11-01

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.

  5. Improvement in cardioplegic perfusion technique in single aortic clamping - initial results

    PubMed Central

    Sobral, Marcelo Luiz Peixoto; dos Santos Júnior, Sérgio Francisco; de Sá, Juliano Cavalcante; Terrazas, Anderson da Silva; Trompieri, Daniel Francisco de Mendonça; de Sousa, Thierry Araújo Nunes; dos Santos, Gilmar Geraldo; Stolf, Noedir Antonio Groppo

    2014-01-01

    Introduction The most common method used for myocardial protection is administering cardioplegic solution in the coronary circulation. Nevertheless, protection may be achieved by intermittent perfusion of the coronary system with patient's own blood. The intermittent perfusion may be performed by multiple sequences of clamping and opening of the aortic clamp or due single clamping and accessory cannulation of the aortic root as in the improved technique proposed in this study, reperfusion without the need for multiple clamping of the aorta. Objective To evaluate the clinical outcome and the occurrence of neurological events in in-hospital patients submitted to myocardial revascularization surgery with the "improved technique" of intermittent perfusion of the aortic root with single clamping. Methods This is a prospective, cross-sectional, observational study that describes a myocardial management technique that consists of intermittent perfusion of the aortic root with single clamping in which 50 patients (mean age 58.5±7.19 years old) have been submitted to the myocardial revasculrization surgery under the proposed technique. Clinical and laboratory variables, pre- and post-surgery, have been assessed. Results The mean peak level of post-surgery CKMB was 51.64±27.10 U/L in the second post-surgery and of troponin I was 3.35±4.39 ng/ml in the fourth post-surgery, within normal limits. No deaths have occurred and one patient presented mild neurological disorder. Hemodynamic monitoring has not indicated any changes. Conclusion The myocardial revascularization surgery by perfusion with the improved technique with intermittent aortic root with single clamping proved to be safe, enabling satisfactory clinical results. PMID:25140473

  6. Improved Signal Processing Technique Leads to More Robust Self Diagnostic Accelerometer System

    NASA Technical Reports Server (NTRS)

    Tokars, Roger; Lekki, John; Jaros, Dave; Riggs, Terrence; Evans, Kenneth P.

    2010-01-01

    The self diagnostic accelerometer (SDA) is a sensor system designed to actively monitor the health of an accelerometer. In this case an accelerometer is considered healthy if it can be determined that it is operating correctly and its measurements may be relied upon. The SDA system accomplishes this by actively monitoring the accelerometer for a variety of failure conditions including accelerometer structural damage, an electrical open circuit, and most importantly accelerometer detachment. In recent testing of the SDA system in emulated engine operating conditions it has been found that a more robust signal processing technique was necessary. An improved accelerometer diagnostic technique and test results of the SDA system utilizing this technique are presented here. Furthermore, the real time, autonomous capability of the SDA system to concurrently compensate for effects from real operating conditions such as temperature changes and mechanical noise, while monitoring the condition of the accelerometer health and attachment, will be demonstrated.

  7. Eddy current signal deconvolution technique for the improvement of steam generator tubing burst pressure predictions.

    SciTech Connect

    Petri, M. C.; Wei, T. Y. C.; Kupperman, D. S.; Reifman, J.; Morman, J. A.

    2000-01-01

    Eddy current techniques are extremely sensitive to the presence of axial cracks in nuclear power plant steam generator tube walls, but they are equally sensitive to the presence of dents, fretting, support structures, corrosion products, and other artifacts. Eddy current signal interpretation is further complicated by cracking geometries more complex than a single axial crack. Although there has been limited success in classifying and sizing defects through artificial neural networks, the ability to predict tubing integrity has, so far, eluded modelers. In large part, this lack of success stems from an inability to distinguish crack signals from those arising from artifacts. We present here a new signal processing technique that deconvolves raw eddy current voltage signals into separate signal contributions from different sources, which allows signals associated with a dominant crack to be identified. The signal deconvolution technique, combined with artificial neural network modeling, significantly improves the prediction of tube burst pressure from bobbin-coil eddy current measurements of steam generator tubing.

  8. A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device.

    PubMed

    Lambropoulos, Nicholas A; Reimers, Jeffrey R; Crossley, Maxwell J; Hush, Noel S; Silverbrook, Kia

    2013-12-20

    A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and μ-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.

  9. An improved technique of expanding metal ring experiment under high explosive loading.

    PubMed

    Tang, Tiegang; Ren, Guowu; Guo, Zhaoliang; Li, Qingzhong

    2013-04-01

    An experimental technique for metal expanding ring subjected to high explosive loading is conducted to significantly improve the loading stability compared with the traditional setup of two-end detonator initiation. Aspects of the circuit design, experimental arrangement, and initiation principle are illustrated in great detail. In terms of this experimental platform, we examine the velocity response of an individual ring, which demonstrates the experimental reproducibility. Moreover, fragmentation of multiple rings stacked on a metal driver is discussed.

  10. The use of artificial intelligence techniques to improve the multiple payload integration process

    NASA Technical Reports Server (NTRS)

    Cutts, Dannie E.; Widgren, Brian K.

    1992-01-01

    A maximum return of science and products with a minimum expenditure of time and resources is a major goal of mission payload integration. A critical component then, in successful mission payload integration is the acquisition and analysis of experiment requirements from the principal investigator and payload element developer teams. One effort to use artificial intelligence techniques to improve the acquisition and analysis of experiment requirements within the payload integration process is described.

  11. Stable adaptive PI control for permanent magnet synchronous motor drive based on improved JITL technique.

    PubMed

    Zheng, Shiqi; Tang, Xiaoqi; Song, Bao; Lu, Shaowu; Ye, Bosheng

    2013-07-01

    In this paper, a stable adaptive PI control strategy based on the improved just-in-time learning (IJITL) technique is proposed for permanent magnet synchronous motor (PMSM) drive. Firstly, the traditional JITL technique is improved. The new IJITL technique has less computational burden and is more suitable for online identification of the PMSM drive system which is highly real-time compared to traditional JITL. In this way, the PMSM drive system is identified by IJITL technique, which provides information to an adaptive PI controller. Secondly, the adaptive PI controller is designed in discrete time domain which is composed of a PI controller and a supervisory controller. The PI controller is capable of automatically online tuning the control gains based on the gradient descent method and the supervisory controller is developed to eliminate the effect of the approximation error introduced by the PI controller upon the system stability in the Lyapunov sense. Finally, experimental results on the PMSM drive system show accurate identification and favorable tracking performance.

  12. Edge printability: techniques used to evaluate and improve extreme wafer edge printability

    NASA Astrophysics Data System (ADS)

    Roberts, Bill; Demmert, Cort; Jekauc, Igor; Tiffany, Jason P.

    2004-05-01

    The economics of semiconductor manufacturing have forced process engineers to develop techniques to increase wafer yield. Improvements in process controls and uniformities in all areas of the fab have reduced film thickness variations at the very edge of the wafer surface. This improved uniformity has provided the opportunity to consider decreasing edge exclusions, and now the outermost extents of the wafer must be considered in the yield model and expectations. These changes have increased the requirements on lithography to improve wafer edge printability in areas that previously were not even coated. This has taxed all software and hardware components used in defining the optical focal plane at the wafer edge. We have explored techniques to determine the capabilities of extreme wafer edge printability and the components of the systems that influence this printability. We will present current capabilities and new detection techniques and the influence that the individual hardware and software components have on edge printability. We will show effects of focus sensor designs, wafer layout, utilization of dummy edge fields, the use of non-zero overlay targets and chemical/optical edge bead optimization.

  13. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Deo, M.D.; Morgan, C.D.

    1999-04-28

    The objective of the project is to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Uinta Basin, Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that stage-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance. In the first demonstration well (Michelle Ute well discussed in the previous technical report), dipole shear anisotropy (anisotropy) and dual-burst thermal decay time (TDT) logs were run before and isotope tracer log was run after the treatment. The logs were very helpful in characterizing the remaining hydrocarbon potential in the well. But, mechanical failure resulted in a poor recompletion and did not result in a significant improvement in the oil production from the well.

  14. A Biochemistry and Molecular Biology Experiment and Evaluation System for Biotechnology Specialty Students: An Effective Evaluation System to Improve the Biochemistry and Molecular Biology Experiment Teaching

    ERIC Educational Resources Information Center

    Li, Suxia; Wu, Haizhen; Zhao, Jian; Ou, Ling; Zhang, Yuanxing

    2010-01-01

    In an effort to achieve high success in knowledge and technique acquisition as a whole, a biochemistry and molecular biology experiment was established for high-grade biotechnology specialty students after they had studied essential theory and received proper technique training. The experiment was based on cloning and expression of alkaline…

  15. Development of RAPD-SCAR markers for different Ganoderma species authentication by improved RAPD amplification and molecular cloning.

    PubMed

    Fu, J J; Mei, Z Q; Tania, M; Yang, L Q; Cheng, J L; Khan, M A

    2015-05-25

    The sequence-characterized amplified region (SCAR) is a valuable molecular technique for the genetic identification of any species. This method is mainly derived from the molecular cloning of the amplified DNA fragments achieved from the random amplified polymorphic DNA (RAPD). In this study, we collected DNA from 10 species of Ganoderma mushroom and amplified the DNA using an improved RAPD technique. The amplified fragments were then cloned into a T-vector, and positive clones were screened, indentified, and sequenced for the development of SCAR markers. After designing PCR primers and optimizing PCR conditions, 4 SCAR markers, named LZ1-4, LZ2-2, LZ8-2, and LZ9-15, were developed, which were specific to Ganoderma gibbosum (LZ1-4 and LZ8-2), Ganoderma sinense (LZ2-2 and LZ8-2), Ganoderma tropicum (LZ8-2), and Ganoderma lucidum HG (LZ9-15). These 4 novel SCAR markers were deposited into GenBank with the accession Nos. KM391935, KM391936, KM391937, and KM391938, respectively. Thus, in this study we developed specific SCAR markers for the identification and authentication of different Ganoderma species.

  16. Improving image classification in a complex wetland ecosystem through image fusion techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit; Sinha, Priyakant; Taylor, Subhashni

    2014-01-01

    The aim of this study was to evaluate the impact of image fusion techniques on vegetation classification accuracies in a complex wetland system. Fusion of panchromatic (PAN) and multispectral (MS) Quickbird satellite imagery was undertaken using four image fusion techniques: Brovey, hue-saturation-value (HSV), principal components (PC), and Gram-Schmidt (GS) spectral sharpening. These four fusion techniques were compared in terms of their mapping accuracy to a normal MS image using maximum-likelihood classification (MLC) and support vector machine (SVM) methods. Gram-Schmidt fusion technique yielded the highest overall accuracy and kappa value with both MLC (67.5% and 0.63, respectively) and SVM methods (73.3% and 0.68, respectively). This compared favorably with the accuracies achieved using the MS image. Overall, improvements of 4.1%, 3.6%, 5.8%, 5.4%, and 7.2% in overall accuracies were obtained in case of SVM over MLC for Brovey, HSV, GS, PC, and MS images, respectively. Visual and statistical analyses of the fused images showed that the Gram-Schmidt spectral sharpening technique preserved spectral quality much better than the principal component, Brovey, and HSV fused images. Other factors, such as the growth stage of species and the presence of extensive background water in many parts of the study area, had an impact on classification accuracies.

  17. LastingNVCache: A Technique for Improving the Lifetime of Non-volatile Caches

    SciTech Connect

    Mittal, Sparsh; Vetter, Jeffrey S; Li, Dong

    2014-01-01

    Use of NVM (Non-volatile memory) devices such as ReRAM (resistive RAM) and STT-RAM (spin transfer torque RAM) for designing on-chip caches holds the promise of providing a high-density, low-leakage alternative to SRAM. However, low write endurance of NVMs, along with the write-variation introduced by existing cache management schemes may significantly limit the lifetime of NVM caches. We present LastingNVCache, a technique for improving lifetime of NVM caches by mitigating the intra-set write variation. LastingNVCache works on the key idea that by periodically flushing a frequently-written data-item, the next time the block can be made to load into a cold block in the set. Through this, the future writes to that data-item can be redirected from a hot block to a cold block, which leads to improvement in the cache lifetime. Microarchitectural simulations have shown that LastingNVCache provides 6.36X, 9.79X, and 10.94X improvement in lifetime for single, dual and quad-core systems. Also, its implementation overhead is small and it outperforms a recently proposed technique for improving lifetime of NVM caches.

  18. Implementation of quality improvement techniques for management and technical processes in the ACRV project

    NASA Technical Reports Server (NTRS)

    Raiman, Laura B.

    1992-01-01

    Total Quality Management (TQM) is a cooperative form of doing business that relies on the talents of everyone in an organization to continually improve quality and productivity, using teams and an assortment of statistical and measurement tools. The objective of the activities described in this paper was to implement effective improvement tools and techniques in order to build work processes which support good management and technical decisions and actions which are crucial to the success of the ACRV project. The objectives were met by applications in both the technical and management areas. The management applications involved initiating focused continuous improvement projects with widespread team membership. The technical applications involved applying proven statistical tools and techniques to the technical issues associated with the ACRV Project. Specific activities related to the objective included working with a support contractor team to improve support processes, examining processes involved in international activities, a series of tutorials presented to the New Initiatives Office and support contractors, a briefing to NIO managers, and work with the NIO Q+ Team. On the technical side, work included analyzing data from the large-scale W.A.T.E.R. test, landing mode trade analyses, and targeting probability calculations. The results of these efforts will help to develop a disciplined, ongoing process for producing fundamental decisions and actions that shape and guide the ACRV organization .

  19. Improved Results in the Development of Large Silicon Grisms using New Techniques

    NASA Astrophysics Data System (ADS)

    McDavitt, D.; Ge, J.; Bernecker, J.; Miller, S.

    2001-12-01

    We present new results in the development of large silicon grisms ( ~ 25x25 mm2). Using photolithography, new etching techniques and post-processing steps we have obtained greatly improved results. Experiments were performed adding ammonium persulfate to the TMAH etching solution. This new method reduced the surface roughness up to ~30% (from rms 32 nm to 22 nm), eliminated all hillock formations and helped maintain constant etch rates. This combined with improved lithography processes has reduced the large-scale defects to less than a few per square inch. Other experiments in post-processing were also carried out. Thin layers of dry silicon dioxide were repeatedly added to and removed from the grating surface producing an additional improvement of ~20% to the surface roughness (from rms roughness of 22 nm to 16 nm) or a ~50% total improvement over previous results. Optical testing of a grating with rms roughness of 16 nm shows less than 1% integrated scattered light at 0.6328 um. We are applying the new techniques in etching an 80x40 mm2 grating on a ~ 30 mm thick substrate to make an anamorphic silicon immersion grating, which can provide a diffraction-limited spectral resolution (R = 200,000) at 2.2 micron.

  20. A technique to improve the accuracy of Earth orientation prediction algorithms based on least squares extrapolation

    NASA Astrophysics Data System (ADS)

    Guo, J. Y.; Li, Y. B.; Dai, C. L.; Shum, C. K.

    2013-10-01

    We present a technique to improve the least squares (LS) extrapolation of Earth orientation parameters (EOPs), consisting of fixing the last observed data point on the LS extrapolation curve, which customarily includes a polynomial and a few sinusoids. For the polar motion (PM), a more sophisticated two steps approach has been developed, which consists of estimating the amplitude of the more stable one of the annual (AW) and Chandler (CW) wobbles using data of longer time span, and then estimating the other parameters using a shorter time span. The technique is studied using hindcast experiments, and justified using year-by-year statistics of 8 years. In order to compare with the official predictions of the International Earth Rotation and Reference Systems Service (IERS) performed at the U.S. Navy Observatory (USNO), we have enforced short-term predictions by applying the ARIMA method to the residuals computed by subtracting the LS extrapolation curve from the observation data. The same as at USNO, we have also used atmospheric excitation function (AEF) to further improve predictions of UT1-UTC. As results, our short-term predictions are comparable to the USNO predictions, and our long-term predictions are marginally better, although not for every year. In addition, we have tested the use of AEF and oceanic excitation function (OEF) in PM prediction. We find that use of forecasts of AEF alone does not lead to any apparent improvement or worsening, while use of forecasts of AEF + OEF does lead to apparent improvement.

  1. Implementation of quality improvement techniques for management and technical processes in the ACRV project

    NASA Astrophysics Data System (ADS)

    Raiman, Laura B.

    1992-12-01

    Total Quality Management (TQM) is a cooperative form of doing business that relies on the talents of everyone in an organization to continually improve quality and productivity, using teams and an assortment of statistical and measurement tools. The objective of the activities described in this paper was to implement effective improvement tools and techniques in order to build work processes which support good management and technical decisions and actions which are crucial to the success of the ACRV project. The objectives were met by applications in both the technical and management areas. The management applications involved initiating focused continuous improvement projects with widespread team membership. The technical applications involved applying proven statistical tools and techniques to the technical issues associated with the ACRV Project. Specific activities related to the objective included working with a support contractor team to improve support processes, examining processes involved in international activities, a series of tutorials presented to the New Initiatives Office and support contractors, a briefing to NIO managers, and work with the NIO Q+ Team. On the technical side, work included analyzing data from the large-scale W.A.T.E.R. test, landing mode trade analyses, and targeting probability calculations. The results of these efforts will help to develop a disciplined, ongoing process for producing fundamental decisions and actions that shape and guide the ACRV organization .

  2. Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii

    PubMed Central

    Galindo, Enrique; Peña, Carlos; Núñez, Cinthia; Segura, Daniel; Espín, Guadalupe

    2007-01-01

    Several aspects of alginate and PHB synthesis in Azotobacter vinelandii at a molecular level have been elucidated in articles published during the last ten years. It is now clear that alginate and PHB synthesis are under a very complex genetic control. Genetic modification of A. vinelandii has produced a number of very interesting mutants which have particular traits for alginate production. One of these mutants has been shown to produce the alginate with the highest mean molecular mass so far reported. Recent work has also shed light on the factors determining molecular mass distribution; the most important of these being identified as; dissolved oxygen tension and specific growth rate. The use of specific mutants has been very useful for the correct analysis and interpretation of the factors affecting polymerization. Recent scale-up/down work on alginate production has shown that oxygen limitation is crucial for producing alginate of high molecular mass, a condition which is optimized in shake flasks and which can now be reproduced in stirred fermenters. It is clear that the phenotypes of mutants grown on plates are not necessarily reproducible when the strains are tested in lab or bench scale fermenters. In the case of PHB, A. vinelandii has shown itself able to produce relatively large amounts of this polymer of high molecular weight on cheap substrates, even allowing for simple extraction processes. The development of fermentation strategies has also shown promising results in terms of improving productivity. The understanding of the regulatory mechanisms involved in the control of PHB synthesis, and of its metabolic relationships, has increased considerably, making way for new potential strategies for the further improvement of PHB production. Overall, the use of a multidisciplinary approach, integrating molecular and bioengineering aspects is a necessity for optimizing alginate and PHB production in A. vinelandii. PMID:17306024

  3. Molecular Technique to Reduce PCR Bias for Deeper Understanding of Microbial Diversity

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2012-01-01

    Current planetary protection policies require that spacecraft targeted to sensitive solar system bodies be assembled and readied for launch in controlled cleanroom environments. A better understanding of the distribution and frequency at which high-risk contaminant microbes are encountered on spacecraft surfaces would significantly aid in assessing the threat of forward contamination. However, despite a growing understanding of the diverse microbial populations present in cleanrooms, less abundant microbial populations are probably not adequately taken into account due to technological limitations. This novel approach encompasses a wide spectrum of microbial species and will represent the true picture of spacecraft cleanroom-associated microbial diversity. All of the current microbial diversity assessment techniques are based on an initial PCR amplification step. However, a number of factors are known to bias PCR amplification and jeopardize the true representation of bacterial diversity. PCR amplification of a minor template appears to be suppressed by the amplification of a more abundant template. It is widely acknowledged among environmental molecular microbiologists that genetic biosignatures identified from an environment only represent the most dominant populations. The technological bottleneck overlooks the presence of the less abundant minority population and may underestimate their role in the ecosystem maintenance. DNA intercalating agents such as propidium monoazide (PMA) covalently bind with DNA molecules upon photolysis using visible light, and make it unavailable for DNA polymerase enzyme during polymerase chain reaction (PCR). Environmental DNA samples will be treated with suboptimum PMA concentration, enough to intercalate with 90 99% of the total DNA. The probability of PMA binding with DNA from abundant bacterial species will be much higher than binding with DNA from less abundant species. This will increase the relative DNA concentration of

  4. Active transport improves the precision of linear long distance molecular signalling

    NASA Astrophysics Data System (ADS)

    Godec, Aljaž; Metzler, Ralf

    2016-09-01

    Molecular signalling in living cells occurs at low copy numbers and is thereby inherently limited by the noise imposed by thermal diffusion. The precision at which biochemical receptors can count signalling molecules is intimately related to the noise correlation time. In addition to passive thermal diffusion, messenger RNA and vesicle-engulfed signalling molecules can transiently bind to molecular motors and are actively transported across biological cells. Active transport is most beneficial when trafficking occurs over large distances, for instance up to the order of 1 metre in neurons. Here we explain how intermittent active transport allows for faster equilibration upon a change in concentration triggered by biochemical stimuli. Moreover, we show how intermittent active excursions induce qualitative changes in the noise in effectively one-dimensional systems such as dendrites. Thereby they allow for significantly improved signalling precision in the sense of a smaller relative deviation in the concentration read-out by the receptor. On the basis of linear response theory we derive the exact mean field precision limit for counting actively transported molecules. We explain how intermittent active excursions disrupt the recurrence in the molecular motion, thereby facilitating improved signalling accuracy. Our results provide a deeper understanding of how recurrence affects molecular signalling precision in biological cells and novel medical-diagnostic devices.

  5. Advances in molecular techniques for the detection and quantification of genetically modified organisms.

    PubMed

    Elenis, Dimitrios S; Kalogianni, Despina P; Glynou, Kyriaki; Ioannou, Penelope C; Christopoulos, Theodore K

    2008-10-01

    Progress in genetic engineering has led to the introduction of genetically modified organisms (GMOs) whose genomes have been altered by the integration of a novel sequence conferring a new trait. To allow consumers an informed choice, many countries require food products to be labeled if the GMO content exceeds a certain threshold. Consequently, the development of analytical methods for GMO screening and quantification is of great interest. Exponential amplification by the polymerase chain reaction (PCR) remains a central step in molecular methods of GMO detection and quantification. In order to meet the challenge posed by the continuously increasing number of GMOs, various multiplex assays have been developed for the simultaneous amplification and/or detection of several GMOs. Classical agarose gel electrophoresis is being replaced by capillary electrophoresis (CE) systems, including CE chips, for the rapid and automatable separation of amplified fragments. Microtiter well-based hybridization assays allow high-throughput analysis of many samples in a single plate. Microarrays have been introduced in GMO screening as a technique for the simultaneous multianalyte detection of amplified sequences. Various types of biosensors, including surface plasmon resonance sensors, quartz crystal microbalance piezoelectric sensors, thin-film optical sensors, dry-reagent dipstick-type sensors and electrochemical sensors were introduced in GMO screening because they offer simplicity and lower cost. GMO quantification is performed by real-time PCR (rt-QPCR) and competitive PCR. New endogenous reference genes have been validated. rt-QPCR is the most widely used approach. Multiplexing is another trend in this field. Strategies for high-throughput multiplex competitive quantitative PCR have been reported.

  6. [Evaluation of discriminatory power of molecular epidemiology techniques in Mycobacterium tuberculosis Venezuelan isolates].

    PubMed

    Méndez, Marìa Victoria; León, Cristy; Escalona, Arnelly; Abadia, Edgar; Da Mata, Omaira; de Waard, Jacobus; Takiff, Howard Eugene

    2016-03-01

    The techniques of spoligotyping and mycobacterial interspersed repetitive unit and variable-number tandem repeat typing with 24 loci (MIRU-VNTR-24), have been used to study the molecular epidemiology of tuberculosis. The aim of this study was: to evaluate the discriminative power of MIRU-VNTR 24 loci alone and in association with spoligotyping in clinical isolates of M tuberculosis in Venezuela; the allelic diversity of the 24 loci; and the discriminative power for the combination of 24 and 15 loci, 12 traditional loci (12t), those with higher allelic diversity and a new combination named 12inv. We analyzed one set of 104 strains of different lineages and a second set of 431 strains belonging to the Latin-America and Mediterranean lineage (LAM) that is predominant in Venezuela. The determination of allelic diversity showed that 4052, 2163b, 424 y 2996 are highly discriminative. Clustering rates of MIRU-VNTR 24 loci, spoligotyping and MIRU-VNTR combined with spoligotyping for 104 isolates were 18.27%, 71.15% and 14.4%, respectively, whereas with the 431 LAM strains the values were 43.2 %, 95.8% and 37.4%. MIRU-VNTR combinations of 15, 12inv and 4 loci were more discriminatory than 12t. Clustering rates for MIRU-VNTR 15 and 12inv loci coupled with spoligotyping in the 104 isolated was 21% and 23%, while for LAM strains was 52% and 46% respectively. The number of different genetics patterns for 15 and 12inv loci were similar. In conclusion, we propose the use of a small number of informative loci MIRU-VNTR coupled to spoligotyping to investigate the transmission of tuberculosis in Venezuela.

  7. Dual-microphone and binaural noise reduction techniques for improved speech intelligibility by hearing aid users

    NASA Astrophysics Data System (ADS)

    Yousefian Jazi, Nima

    Spatial filtering and directional discrimination has been shown to be an effective pre-processing approach for noise reduction in microphone array systems. In dual-microphone hearing aids, fixed and adaptive beamforming techniques are the most common solutions for enhancing the desired speech and rejecting unwanted signals captured by the microphones. In fact, beamformers are widely utilized in systems where spatial properties of target source (usually in front of the listener) is assumed to be known. In this dissertation, some dual-microphone coherence-based speech enhancement techniques applicable to hearing aids are proposed. All proposed algorithms operate in the frequency domain and (like traditional beamforming techniques) are purely based on the spatial properties of the desired speech source and does not require any knowledge of noise statistics for calculating the noise reduction filter. This benefit gives our algorithms the ability to address adverse noise conditions, such as situations where interfering talker(s) speaks simultaneously with the target speaker. In such cases, the (adaptive) beamformers lose their effectiveness in suppressing interference, since the noise channel (reference) cannot be built and updated accordingly. This difference is the main advantage of the proposed techniques in the dissertation over traditional adaptive beamformers. Furthermore, since the suggested algorithms are independent of noise estimation, they offer significant improvement in scenarios that the power level of interfering sources are much more than that of target speech. The dissertation also shows the premise behind the proposed algorithms can be extended and employed to binaural hearing aids. The main purpose of the investigated techniques is to enhance the intelligibility level of speech, measured through subjective listening tests with normal hearing and cochlear implant listeners. However, the improvement in quality of the output speech achieved by the

  8. On the Improvement of Free-Energy Calculation from Steered Molecular Dynamics Simulations Using Adaptive Stochastic Perturbation Protocols

    PubMed Central

    Perišić, Ognjen; Lu, Hui

    2014-01-01

    The potential of mean force (PMF) calculation in single molecule manipulation experiments performed via the steered molecular dynamics (SMD) technique is a computationally very demanding task because the analyzed system has to be perturbed very slowly to be kept close to equilibrium. Faster perturbations, far from equilibrium, increase dissipation and move the average work away from the underlying free energy profile, and thus introduce a bias into the PMF estimate. The Jarzynski equality offers a way to overcome the bias problem by being able to produce an exact estimate of the free energy difference, regardless of the perturbation regime. However, with a limited number of samples and high dissipation the Jarzynski equality also introduces a bias. In our previous work, based on the Brownian motion formalism, we introduced three stochastic perturbation protocols aimed at improving the PMF calculation with the Jarzynski equality in single molecule manipulation experiments and analogous computer simulations. This paper describes the PMF reconstruction results based on full-atom molecular dynamics simulations, obtained with those three protocols. We also want to show that the protocols are applicable with the second-order cumulant expansion formula. Our protocols offer a very noticeable improvement over the simple constant velocity pulling. They are able to produce an acceptable estimate of PMF with a significantly reduced bias, even with very fast perturbation regimes. Therefore, the protocols can be adopted as practical and efficient tools for the analysis of mechanical properties of biological molecules. PMID:25232859

  9. Improved Performance of Photomultiplication Polymer Photodetectors by Adjustment of P3HT Molecular Arrangement.

    PubMed

    Wang, Wenbin; Zhang, Fujun; Li, Lingliang; Gao, Mile; Hu, Bin

    2015-10-14

    A series of photomultiplication (PM)-type polymer photodetectors (PPDs) were fabricated with polymer poly(3-hexylthiophene)-[6,6]-phenyl-C71-butyric acid methyl ester (P3HT-PC71BM) (100:1, w/w) as the active layers, the only difference being the self-assembly time of the active layers for adjusting the P3HT molecular arrangement. The grazing incidence X-ray diffraction (GIXRD) results exhibit that P3HT molecular arrangement can be adjusted between face-on and edge-on structures by controlling the self-assembly time. The champion EQE value of PPDs, based on the active layers without the self-assembly process, arrives at 6380% under 610 nm light illumination at -10 V bias, corresponding to the face-on molecular arrangement of P3HT in the active layers. The EQE values of PPDs were markedly decreased to 1600%, along with the self-assembly time up to 12 min, which should be attributed to the variation of absorption and hole transport ability of the active layers induced by the change of P3HT molecular arrangement. This finding provides an effective strategy for improving the performance of PM-type PPDs by adjusting the molecular arrangement, in addition to the enhanced trap-assisted charge-carrier tunneling injection.

  10. An Improved Simulated Annealing Technique for Enhanced Mobility in Smart Cities.

    PubMed

    Amer, Hayder; Salman, Naveed; Hawes, Matthew; Chaqfeh, Moumena; Mihaylova, Lyudmila; Mayfield, Martin

    2016-06-30

    Vehicular traffic congestion is a significant problem that arises in many cities. This is due to the increasing number of vehicles that are driving on city roads of limited capacity. The vehicular congestion significantly impacts travel distance, travel time, fuel consumption and air pollution. Avoidance of traffic congestion and providing drivers with optimal paths are not trivial tasks. The key contribution of this work consists of the developed approach for dynamic calculation of optimal traffic routes. Two attributes (the average travel speed of the traffic and the roads' length) are utilized by the proposed method to find the optimal paths. The average travel speed values can be obtained from the sensors deployed in smart cities and communicated to vehicles via the Internet of Vehicles and roadside communication units. The performance of the proposed algorithm is compared to three other algorithms: the simulated annealing weighted sum, the simulated annealing technique for order preference by similarity to the ideal solution and the Dijkstra algorithm. The weighted sum and technique for order preference by similarity to the ideal solution methods are used to formulate different attributes in the simulated annealing cost function. According to the Sheffield scenario, simulation results show that the improved simulated annealing technique for order preference by similarity to the ideal solution method improves the traffic performance in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO₂ emissions as compared to other algorithms; also, similar performance patterns were achieved for the Birmingham test scenario.

  11. Delta Modulation Technique for Improving the Sensitivity of Monobit Subsamplers in Radar and Coherent Receiver Applications

    SciTech Connect

    Rodenbeck, Christopher T.; Tracey, Keith J.; Barkley, Keith R.; DuVerneay, Brian B.

    2014-08-01

    This paper introduces a technique for improving the sensitivity of RF subsamplers in radar and coherent receiver applications. The technique, referred to herein as “delta modulation” (DM), feeds the time-average output of a monobit analog-to-digital converter (ADC) back to the ADC input, but with opposite polarity. Assuming pseudo-stationary modulation statistics on the sampled RF waveform, the feedback signal corrects for aggregate DC offsets present in the ADC that otherwise degrade ADC sensitivity. Two RF integrated circuits (RFICs) are designed to demonstrate the approach. One uses analog DM to create the feedback signal; the other uses digital DM to achieve the same result. A series of tests validates the designs. The dynamic time-domain response confirms the feedback loop’s basic operation. Measured output quantization imbalance, under noise-only input drive, significantly improves with the use of the DM circuit, even for large, deliberately induced DC offsets and wide temperature variation from -55°C to +85 °C. Examination of the corrected vs. uncorrected baseband spectrum under swept input signal-tonoise ratio (SNR) conditions demonstrates the effectiveness of this approach for realistic radar and coherent receiver applications. In conclusion, two-tone testing shows no impact of the DM technique on ADC linearity.

  12. Delta Modulation Technique for Improving the Sensitivity of Monobit Subsamplers in Radar and Coherent Receiver Applications

    DOE PAGESBeta

    Rodenbeck, Christopher T.; Tracey, Keith J.; Barkley, Keith R.; DuVerneay, Brian B.

    2014-08-01

    This paper introduces a technique for improving the sensitivity of RF subsamplers in radar and coherent receiver applications. The technique, referred to herein as “delta modulation” (DM), feeds the time-average output of a monobit analog-to-digital converter (ADC) back to the ADC input, but with opposite polarity. Assuming pseudo-stationary modulation statistics on the sampled RF waveform, the feedback signal corrects for aggregate DC offsets present in the ADC that otherwise degrade ADC sensitivity. Two RF integrated circuits (RFICs) are designed to demonstrate the approach. One uses analog DM to create the feedback signal; the other uses digital DM to achieve themore » same result. A series of tests validates the designs. The dynamic time-domain response confirms the feedback loop’s basic operation. Measured output quantization imbalance, under noise-only input drive, significantly improves with the use of the DM circuit, even for large, deliberately induced DC offsets and wide temperature variation from -55°C to +85 °C. Examination of the corrected vs. uncorrected baseband spectrum under swept input signal-tonoise ratio (SNR) conditions demonstrates the effectiveness of this approach for realistic radar and coherent receiver applications. In conclusion, two-tone testing shows no impact of the DM technique on ADC linearity.« less

  13. Unsupervised change detection based on improved Markov random field technique using multichannel synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Salehi, Sara; Valadan Zoej, Mohammad Javad

    2014-01-01

    Change detection represents an important remote sensing tool in environmental monitoring and disaster management. In this respect, multichannel synthetic aperture radar (SAR) data offer great potential because of their insensitivity to atmospheric and sun-illumination conditions (over optical multispectral data) and the improved discrimination capability they may provide compared to single-channel SAR. The problem of detecting the changes caused by flooding is addressed by a contextual unsupervised technique based on a Markovian data fusion approach. However, the isotropic formulation of Markov random field (MRF) models causes oversmoothing of spatial boundaries in the final change maps. In order to reduce this drawback, an edge-preserving MRF model is proposed and formulated by using energy functions that combine the edge information extracted from the produced edge maps using competitive fuzzy rules and Canny technique, the information conveyed by each SAR channel, and the spatial contextual information. The proposed technique is experimentally validated with semisimulated data and real ASAR-ENVISAT images. Change detection results obtained by the improved MRF model exhibited a higher accuracy than its predecessors for both semisimulated (average 12%) and real (average 6%) data.

  14. Increased Oil Production and Reserves From Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah

    SciTech Connect

    Morgan, C.D.; Deo, M.D.

    1998-04-01

    The Bluebell field is productive from the Tertiary lower Green River and Colton (Wasatch) Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in the ancestral Lake Uinta. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1000 to 3000 vertical ft (300-900 m), then stimulating the entire interval with hydrochloric acid. This technique is often referred to as the shot gun completion. Completion techniques used in the Bluebell field were discussed in detail in the Second Annual Report (Curtice, 1996). The shot-gun technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The study was intended to improve the geologic characterization of the producing formations and thereby develop completion techniques specific to the producing beds or facies instead of a shot gun approach to stimulating all the beds. The characterization did not identify predictable-facies or predictable-fracture trends within the vertical stratigraphic column as originally hoped. Advanced logging techniques can identify productive beds in individual wells. A field-demonstration program was developed to use cased-hole advanced logging techniques in two wells and recompletion the wells at two different scales based on the logging. The first well was going to be completed at the interval scale using a multiple stage completion technique (about 500 ft [150 m] per stage). The second well will be recompleted at the bed-scale using bridge plug and packer to isolate three or more

  15. Molecular Breeding Algae For Improved Traits For The Conversion Of Waste To Fuels And Commodities.

    SciTech Connect

    Bagwell, C.

    2015-10-14

    This Exploratory LDRD aimed to develop molecular breeding methodology for biofuel algal strain improvement for applications in waste to energy / commodity conversion technologies. Genome shuffling technologies, specifically protoplast fusion, are readily available for the rapid production of genetic hybrids for trait improvement and have been used successfully in bacteria, yeast, plants and animals. However, genome fusion has not been developed for exploiting the remarkable untapped potential of eukaryotic microalgae for large scale integrated bio-conversion and upgrading of waste components to valued commodities, fuel and energy. The proposed molecular breeding technology is effectively sexual reproduction in algae; though compared to traditional breeding, the molecular route is rapid, high-throughput and permits selection / improvement of complex traits which cannot be accomplished by traditional genetics. Genome fusion technologies are the cutting edge of applied biotechnology. The goals of this Exploratory LDRD were to 1) establish reliable methodology for protoplast production among diverse microalgal strains, and 2) demonstrate genome fusion for hybrid strain production using a single gene encoded trait as a proof of the concept.

  16. Improvement of DNA recognition through molecular imprinting: hybrid oligomer imprinted polymeric nanoparticles (oligoMIP NPs).

    PubMed

    Brahmbhatt, H; Poma, A; Pendergraff, H M; Watts, J K; Turner, N W

    2016-02-01

    High affinity and specific binding are cardinal properties of nucleic acids in relation to their biological function and their role in biotechnology. To this end, structural preorganization of oligonucleotides can significantly improve their binding performance, and numerous examples of this can be found in Nature as well as in artificial systems. Here we describe the production and characterization of hybrid DNA-polymer nanoparticles (oligoMIP NPs) as a system in which we have preorganized the oligonucleotide binding by molecular imprinting technology. Molecularly imprinted polymers (MIPs) are cost-effective "smart" polymeric materials capable of antibody-like detection, but characterized by superior robustness and the ability to work in extreme environmental conditions. Especially in the nanoparticle format, MIPs are dubbed as one of the most suitable alternatives to biological antibodies due to their selective molecular recognition properties, improved binding kinetics as well as size and dispersibility. Nonetheless, there have been very few attempts at DNA imprinting in the past due to structural complexity associated with these templates. By introducing modified thymine bases into the oligonucleotide sequences, which allow establishing covalent bonds between the DNA and the polymer, we demonstrate that such hybrid oligoMIP NPs specifically recognize their target DNA, and that the unique strategy of incorporating the complementary DNA strands as "preorganized selective monomers" improves the recognition properties without affecting the NPs physical properties such as size, shape or dispersibility. PMID:26509192

  17. Improving predictive mapping of deep-water habitats: Considering multiple model outputs and ensemble techniques

    NASA Astrophysics Data System (ADS)

    Robert, Katleen; Jones, Daniel O. B.; Roberts, J. Murray; Huvenne, Veerle A. I.

    2016-07-01

    In the deep sea, biological data are often sparse; hence models capturing relationships between observed fauna and environmental variables (acquired via acoustic mapping techniques) are often used to produce full coverage species assemblage maps. Many statistical modelling techniques are being developed, but there remains a need to determine the most appropriate mapping techniques. Predictive habitat modelling approaches (redundancy analysis, maximum entropy and random forest) were applied to a heterogeneous section of seabed on Rockall Bank, NE Atlantic, for which landscape indices describing the spatial arrangement of habitat patches were calculated. The predictive maps were based on remotely operated vehicle (ROV) imagery transects high-resolution autonomous underwater vehicle (AUV) sidescan backscatter maps. Area under the curve (AUC) and accuracy indicated similar performances for the three models tested, but performance varied by species assemblage, with the transitional species assemblage showing the weakest predictive performances. Spatial predictions of habitat suitability differed between statistical approaches, but niche similarity metrics showed redundancy analysis and random forest predictions to be most similar. As one statistical technique could not be found to outperform the others when all assemblages were considered, ensemble mapping techniques, where the outputs of many models are combined, were applied. They showed higher accuracy than any single model. Different statistical approaches for predictive habitat modelling possess varied strengths and weaknesses and by examining the outputs of a range of modelling techniques and their differences, more robust predictions, with better described variation and areas of uncertainties, can be achieved. As improvements to prediction outputs can be achieved without additional costly data collection, ensemble mapping approaches have clear value for spatial management.

  18. Improved electron ionization ion source for the detection of supersonic molecular beams

    NASA Astrophysics Data System (ADS)

    Amirav, Aviv; Fialkov, Alexander; Gordin, Alexander

    2002-08-01

    An improved electron ionization (EI) ion source is described, based on the modification of a Brink-type EI ion source through the addition of a second cage with a fine mesh outside the ion chamber. The added outer cage shields the inner ion cage (ionization zone) against the penetration of the filament and electron repeller potentials, and thus results in the provision of ions with narrower ion energy distribution, hence improved ion-beam quality. The closer to zero electrical field inside the ion cage enables improved filtration (rejection) of ions that are produced from vacuum background compounds, based on difference in ion energies of beam and background species. The improved background ion filtration and ion-beam quality resulted in 2.6 times higher mass spectrometric ion signal, combined with 6.4 times better signal to noise ratio, in comparison with the same ion source having a single cage. The dual cage ion source further provides a smaller or no reduction of the electron emission current upon lowering the electron energy for achieving softer EI and/or electron attachment ionization. It also improves the long-term mass spectral and signal reproducibility and enables fast, automated change of the electron energy. Consequently, the dual cage EI ion source is especially effective for use with gas chromatography mass spectrometry with supersonic molecular beams (SMB), liquid chromatography mass spectrometry with SMB, ion guns with SMB, and any other experimental systems with SMB or nonthermal molecular beams.

  19. Improved Re-Crystallization of p+ Poly-Si Gates with Molecular Ion Implantation

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Ku; Ju, Min-Ae; Oh, Jae-Geun; Hwang, Sun-Hwan; Jeon, Seung-Joon; Ku, Ja-Chun; Park, Sungki; Lee, Kyung-Won; Kim, Steve; Ra, Geum-Joo; Reece, Ron; Rubin, Leonard M.; Krull, W. A.; Cho, H. T.

    2008-11-01

    Implantation of B18H22 molecules at 80 keV and doses up to 4×1016 cm-2 were evaluated for the application of p-type counterdoping of in situ n-type doped polysilicon gates. Compared to conventional B implants, molecular implantation provides greatly improved throughput without the risk of energy contamination. Implants at these high doses resulted in poor re-crystallization of the polysilicon layer due to the formation of excessive cluster-type defects. Subjecting the polysilicon to either UV-curing or low temperature soak annealing prior to dopant activation was not effective in improving the re-crystallization process. However, breaking the dose into two portions at two different energies was shown to significantly improve re-crystallization of the polysilicon layer. Improved dopant activation was confirmed by a >90% reduction in ring oscillator delay time on a 60 nm PMOSFET.

  20. A simplified technique for delivering total body irradiation (TBI) with improved dose homogeneity

    SciTech Connect

    Yao Rui; Bernard, Damian; Turian, Julius; Abrams, Ross A.; Sensakovic, William; Fung, Henry C.; Chu, James C. H.

    2012-04-15

    Purpose: Total body irradiation (TBI) with megavoltage photon beams has been accepted as an important component of management for a number of hematologic malignancies, generally as part of bone marrow conditioning regimens. The purpose of this paper is to present and discuss the authors' TBI technique, which both simplifies the treatment process and improves the treatment quality. Methods: An AP/PA TBI treatment technique to produce uniform dose distributions using sequential collimator reductions during each fraction was implemented, and a sample calculation worksheet is presented. Using this methodology, the dosimetric characteristics of both 6 and 18 MV photon beams, including lung dose under cerrobend blocks was investigated. A method of estimating midplane lung doses based on measured entrance and exit doses was proposed, and the estimated results were compared with measurements. Results: Whole body midplane dose uniformity of {+-}10% was achieved with no more than two collimator-based beam modulations. The proposed model predicted midplane lung doses 5% to 10% higher than the measured doses for 6 and 18 MV beams. The estimated total midplane doses were within {+-}5% of the prescribed midplane dose on average except for the lungs where the doses were 6% to 10% lower than the prescribed dose on average. Conclusions: The proposed TBI technique can achieve dose uniformity within {+-}10%. This technique is easy to implement and does not require complicated dosimetry and/or compensators.

  1. Improving synthetic aperture focusing technique for thick concrete specimens via frequency banding

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.

    2016-04-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. While standard Synthetic Aperture Focusing Technique (SAFT) is adequate for many defects with shallow concrete cover, some defects located under deep concrete cover are not easily identified using the standard SAFT. For many defects, particularly defects under deep cover, the use of frequency banded SAFT improves the detectability over standard SAFT. In addition to the improved detectability, the frequency banded SAFT also provides improved scan depth resolution that can be important in determining the suitability of a particular structure to perform its designed safety function. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To validate the advantages of frequency banded SAFT on thick concrete, a 2.134 m x 2.134 m x 1.016 m concrete test specimen with twenty deliberately embedded defects was fabricated.

  2. Application of powder metallurgy techniques to produce improved bearing elements for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.

    1992-01-01

    The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.

  3. Estimation of root zone storage capacity at the catchment scale using improved Mass Curve Technique

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Xu, Zongxue; Singh, Vijay P.

    2016-09-01

    The root zone storage capacity (Sr) greatly influences runoff generation, soil water movement, and vegetation growth and is hence an important variable for ecological and hydrological modelling. However, due to the great heterogeneity in soil texture and structure, there seems to be no effective approach to monitor or estimate Sr at the catchment scale presently. To fill the gap, in this study the Mass Curve Technique (MCT) was improved by incorporating a snowmelt module for the estimation of Sr at the catchment scale in different climatic regions. The "range of perturbation" method was also used to generate different scenarios for determining the sensitivity of the improved MCT-derived Sr to its influencing factors after the evaluation of plausibility of Sr derived from the improved MCT. Results can be showed as: (i) Sr estimates of different catchments varied greatly from ∼10 mm to ∼200 mm with the changes of climatic conditions and underlying surface characteristics. (ii) The improved MCT is a simple but powerful tool for the Sr estimation in different climatic regions of China, and incorporation of more catchments into Sr comparisons can further improve our knowledge on the variability of Sr. (iii) Variation of Sr values is an integrated consequence of variations in rainfall, snowmelt water and evapotranspiration. Sr values are most sensitive to variations in evapotranspiration of ecosystems. Besides, Sr values with a longer return period are more stable than those with a shorter return period when affected by fluctuations in its influencing factors.

  4. A power ramped pulsed mode laser piercing technique for improved CO 2 laser profile cutting

    NASA Astrophysics Data System (ADS)

    Tirumala Rao, B.; Ittoop, M. O.; Kukreja, L. M.

    2009-11-01

    Laser piercing is one of the inevitable requirements of laser profile cutting process and it has a direct bearing on the quality of the laser cut profiles. We have developed a novel power ramped pulsed mode (PRPM) laser piercing technique to produce much finer pierced holes and to achieve a better control on the process parameters compared to the existing methodology based on normal pulsed mode (NPM). Experiments were carried out with both PRPM and NPM laser piercing on 1.5-mm-thick mild steel using an in-house developed high-power transverse flow continuous wave (CW)-CO 2 laser. Significant improvements in the spatter, circularity of the pierced hole and reproducibility were achieved through the PRPM technique. We studied, in detail, the dynamics of processes involved in PRPM laser piercing and compared that with those of the NPM piercing.

  5. Backstroke technique: an effective way to improve the healing of tibia fracture.

    PubMed

    Lee, Qi; Zeng, Bing-Fang; Luo, Cong-Feng; Wang, Jin-Wu; Lu, Nan-Ji

    2006-10-01

    To assess the method and results of applying a backstroke technique, we treated 43 patients with tibial shaft fracture using unreamed tibial nails (UTN). Of these patients, 27 suffered a closed fracture and 16 an open fracture. After the operation, the effect of treatment was evaluated: 42 of 43 cases were followed up from four to 18 months, averaging 13.6 months. The four-month and 12-month healing rates of open fracture were 54.6 and 80.9%, respectively, the former of which is significantly higher than the average rate of the AO/ASIF multicentre study. Our results indicate that applying a backstroke technique in treating tibial shaft fracture with UTN can improve the healing rate and reduce complications. PMID:16628441

  6. Cryoanalgesia after thoracotomy. Improvement of technique and review of 600 cases.

    PubMed

    Maiwand, M O; Makey, A R; Rees, A

    1986-08-01

    The efficacy of cryoanalgesia for the control of post-thoracotomy pain has led to the acceptance of the technique as a routine procedure in this unit. A study of 600 consecutive patients in whom an improved technique was used is not reported. The freezing time for each intercostal nerve in this group was reduced to one 30 second exposure instead of the two 30 second exposures previously used. This reduced the duration of cutaneous numbness, with no loss of pain control. Freezing above the fifth intercostal nerve is no longer practiced in women. Modification to the probe has simplified the procedure. Pulmonary function studies and blood-gas analysis are also described. PMID:3736085

  7. Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis

    SciTech Connect

    Araujo, Marcos A. de; Silva, Rubens; Lima, Emerson de; Pereira, Daniel P.; Oliveira, Paulo C. de

    2009-01-10

    We revisited the well known Khosrofian and Garetz inversion algorithm [Appl. Opt.22, 3406-3410 (1983)APOPAI0003-6935] that was developed to analyze data obtained by the application of the traveling knife-edge technique. We have analyzed the approximated fitting function that was used for adjusting their experimental data and have found that it is not optimized to work with a full range of the experimentally-measured data. We have numerically calculated a new set of coefficients, which makes the approximated function suitable for a full experimental range, considerably improving the accuracy of the measurement of a radius of a focused Gaussian laser beam.

  8. A fiber-optic cure monitoring technique with accuracy improvement of distorted embedded sensors

    NASA Astrophysics Data System (ADS)

    Sampath, Umesh; Kim, Hyunjin; Kim, Dae-gil; Song, Minho

    2015-07-01

    A fiber-optic epoxy cure monitoring technique for efficient wind turbine blade manufacturing and monitoring is presented. To optimize manufacturing cycle, fiber-optic sensors are embedded in composite materials of wind turbine blades. The reflection spectra of the sensors indicate the onset of gelification and the completion of epoxy curing. After manufacturing process, the same sensors are utilized for in-field condition monitoring. Because of residual stresses and strain gradients from the curing process, the embedded sensors may experience distortions in reflection spectra, resulting in measurement errors. We applied a Gaussian curve-fitting algorithm to the distorted spectra, which substantially improved the measurement accuracy.

  9. A technique to improve the esthetic aspects of CAD/CAM composite resin restorations.

    PubMed

    Rocca, Giovanni Tommaso; Bonnafous, François; Rizcalla, Nicolas; Krejci, Ivo

    2010-10-01

    Bonded indirect computer-aided design/computer-aided manufacturing (CAD/CAM) restorations are increasingly gaining popularity for the restoration of large defects in posterior teeth. In addition to ceramic blocks, composite resin blocks have been developed. Composite resins blocks may have improved mechanical properties, but have poor esthetics. Thus, an esthetic modification of the restoration after machine milling may be necessary. A step-by-step procedure for the external esthetic layering of a composite CAD/CAM restoration is described. This technique can be used to repair or modify any composite resin restoration.

  10. Advanced Technologies for the Improvement of Spray Application Techniques in Spanish Viticulture: An Overview

    PubMed Central

    Gil, Emilio; Arnó, Jaume; Llorens, Jordi; Sanz, Ricardo; Llop, Jordi; Rosell-Polo, Joan R.; Gallart, Montserrat; Escolà, Alexandre

    2014-01-01

    Spraying techniques have been undergoing continuous evolution in recent decades. This paper presents part of the research work carried out in Spain in the field of sensors for characterizing vineyard canopies and monitoring spray drift in order to improve vineyard spraying and make it more sustainable. Some methods and geostatistical procedures for mapping vineyard parameters are proposed, and the development of a variable rate sprayer is described. All these technologies are interesting in terms of adjusting the amount of pesticides applied to the target canopy. PMID:24451462

  11. Adjunctive technique for the use of ProGlide vascular closure device to improve hemostasis.

    PubMed

    Furlough, Courtney L; Desai, Sapan S; Azizzadeh, Ali

    2014-12-01

    The Perclose ProGlide (Abbott Vascular, Santa Clara, Calif) is indicated for the closure of 5F to 21 F femoral artery access sites. We describe an adjunctive technique for the use of the ProGlide vascular closure device to improve hemostasis. After routine use of the device, a hollow tube (cut from the injection port of an introducer sheath) is placed over the free tails of suture. These tubes are secured in place by a hemostat that grasps the free suture tails, creating a Rummel-style tourniquet that compresses the arteriotomy, improving hemostasis. The tubes doubly serve as a conduit for the administration of prothrombotic agents directly in the event that hemostasis is not adequately achieved. PMID:25282692

  12. How to improve the performance of a good medical practice team: twelve techniques.

    PubMed

    Hills, Laura

    2013-01-01

    It is incredibly easy to ignore the medical practice team that is doing a good job. However, when we allow good performers to continue as they are, they probably won't improve. Their performance may even worsen. This is unfortunate because with a little bit of effort and support, good performers can often learn to excel. This article offers 12 techniques medical practice managers can use to bring their team members from good performance to excellent. It describes how to use goal-setting, work assignments, modeling, confidence building, team retreats, rewards, incentives, and reinforcement to ratchet up a good medical practice team's performance. This article also identifies the signs of medical employee mediocrity. It describes why setting higher expectations of your medical practice employees will ultimately improve their performance. Finally, this article suggests 10 practical and affordable strategies that medical practice managers can use to reinforce excellent performance in their good employees. PMID:23866656

  13. Image Quality Improvement Performance Using the Synthetic Aperture Focusing Technique Data

    NASA Astrophysics Data System (ADS)

    Acevedo, P.; Durán, A.; Rubio, E.

    A wavelet application to improve image quality using the Synthetic Aperture Focusing Technique (SAFT) Data is presented. This Application is based on a wavelet package analysis applied to RF signals sensed by transducers in a scanning process. SAFT is performed for each level in the wavelet package decomposition tree. For image forming, an addition and delay algorithm with focusing on pixels has been implemented, and calculations have been carried out using the Matlab toolbox. This method has been applied to image forming for a point reflector simulated using the Field II toolbox and for a phantom constructed using nine acrylic reflectors. Obtained results show that axial resolution is improved and formed images have a better signal-noise ratio.

  14. How to improve the performance of a good medical practice team: twelve techniques.

    PubMed

    Hills, Laura

    2013-01-01

    It is incredibly easy to ignore the medical practice team that is doing a good job. However, when we allow good performers to continue as they are, they probably won't improve. Their performance may even worsen. This is unfortunate because with a little bit of effort and support, good performers can often learn to excel. This article offers 12 techniques medical practice managers can use to bring their team members from good performance to excellent. It describes how to use goal-setting, work assignments, modeling, confidence building, team retreats, rewards, incentives, and reinforcement to ratchet up a good medical practice team's performance. This article also identifies the signs of medical employee mediocrity. It describes why setting higher expectations of your medical practice employees will ultimately improve their performance. Finally, this article suggests 10 practical and affordable strategies that medical practice managers can use to reinforce excellent performance in their good employees.

  15. Improvement of sub-20nm pattern quality with dose modulation technique for NIL template production

    NASA Astrophysics Data System (ADS)

    Yagawa, Keisuke; Ugajin, Kunihiro; Suenaga, Machiko; Kanamitsu, Shingo; Motokawa, Takeharu; Hagihara, Kazuki; Arisawa, Yukiyasu; Kobayashi, Sachiko; Saito, Masato; Ito, Masamitsu

    2016-04-01

    Nanoimprint lithography (NIL) technology is in the spotlight as a next-generation semiconductor manufacturing technique for integrated circuits at 22 nm and beyond. NIL is the unmagnified lithography technique using template which is replicated from master templates. On the other hand, master templates are currently fabricated by electron-beam (EB) lithography[1]. In near future, finer patterns less than 15nm will be required on master template and EB data volume increases exponentially. So, we confront with a difficult challenge. A higher resolution EB mask writer and a high performance fabrication process will be required. In our previous study, we investigated a potential of photomask fabrication process for finer patterning and achieved 15.5nm line and space (L/S) pattern on template by using VSB (Variable Shaped Beam) type EB mask writer and chemically amplified resist. In contrast, we found that a contrast loss by backscattering decreases the performance of finer patterning. For semiconductor devices manufacturing, we must fabricate complicated patterns which includes high and low density simultaneously except for consecutive L/S pattern. Then it's quite important to develop a technique to make various size or coverage patterns all at once. In this study, a small feature pattern was experimentally formed on master template with dose modulation technique. This technique makes it possible to apply the appropriate exposure dose for each pattern size. As a result, we succeed to improve the performance of finer patterning in bright field area. These results show that the performance of current EB lithography process have a potential to fabricate NIL template.

  16. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, Thomas M.; Hammons, B. Eugene; Tsao, Jeffrey Y.

    1992-01-01

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

  17. Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy

    DOEpatents

    Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

    1992-12-15

    A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

  18. DNA extraction methods and multiple sampling to improve molecular diagnosis of Sarcocystis spp. in cattle hearts.

    PubMed

    Bräunig, Patrícia; Portella, Luiza Pires; Cezar, Alfredo Skrebsky; Libardoni, Felipe; Sangioni, Luis Antonio; Vogel, Fernanda Silveira Flores; Gonçalves, Paulo Bayard Dias

    2016-10-01

    Molecular detection of Sarcocystis spp. in tissue samples can be useful for experimental and diagnostic purposes. However, the parasite spreads unevenly through tissues, forming tissue cysts, and the cystic wall is an obstacle in DNA extraction protocols. Therefore, adequate sampling and effective disruption of the cysts are essential to improve the accuracy of DNA detection by PCR. The aims of this study were to evaluate the suitability of four protocols for DNA extraction from cysts of Sarcocystis spp. present in bovine myocardium samples or after their harvest in phosphate-buffered saline (PBS) solution as well as determine the effects of single or multiple sampling on the accuracy of molecular diagnosis of sarcocystosis in cattle hearts. Cysts and myocardium samples from nine bovine hearts were randomly distributed to four DNA extraction protocols: kit, kit with modification, DNAzol, and cetyl-trimethyl ammonium bromide (CTAB). Samples were submitted to DNA extraction and PCR as replicates of each heart (simplicate, duplicate, and triplicate), and the probability of a true positive diagnostic was calculated. Among the protocols tested, the kit with modification was determined to be the most suitable for DNA extraction from cysts in PBS solution (92.6 % of DNA detection by PCR); DNAzol resulted in higher DNA detection frequency from bovine myocardium samples (48.1 %). Multiple sampling improved the molecular diagnosis of Sarcocystis spp. infection in cattle hearts, increasing at 22.2 % the rate of true positive diagnostic.

  19. Intra-molecular Triplet Energy Transfer is a General Approach to Improve Organic Fluorophore Photostability

    PubMed Central

    Zheng, Qinsi; Jockusch, Steffen; Rodríguez-Calero, Gabriel G.; Zhou, Zhou; Zhao, Hong; Altman, Roger B.; Abruña, Héctor D.; Blanchard, Scott C.

    2015-01-01

    Bright, long-lasting and non-phototoxic organic fluorophores are essential to the continued advancement of biological imaging. Traditional approaches towards achieving photostability, such as the removal of molecular oxygen and the use of small-molecule additives in solution, suffer from potentially toxic side effects, particularly in the context of living cells. The direct conjugation of small-molecule triplet state quenchers, such as cyclooctatetraene (COT), to organic fluorophores has the potential to bypass these issues by restoring reactive fluorophore triplet states to the ground state through intra-molecular triplet energy transfer. Such methods have enabled marked improvement in cyanine fluorophore photostability spanning the visible spectrum. However, the generality of this strategy to chemically and structurally diverse fluorophore species has yet to be examined. Here, we show that the proximal linkage of COT increases the photon yield of a diverse range of organic fluorophores widely used in biological imaging applications, demonstrating that the intra-molecular triplet energy transfer mechanism is a potentially general approach for improving organic fluorophore performance and photostability. PMID:26700693

  20. Personalized medicine: from genotypes, molecular phenotypes and the quantified self, towards improved medicine.

    PubMed

    Dudley, Joel T; Listgarten, Jennifer; Stegle, Oliver; Brenner, Steven E; Parts, Leopold

    2015-01-01

    Advances in molecular profiling and sensor technologies are expanding the scope of personalized medicine beyond genotypes, providing new opportunities for developing richer and more dynamic multi-scale models of individual health. Recent studies demonstrate the value of scoring high-dimensional microbiome, immune, and metabolic traits from individuals to inform personalized medicine. Efforts to integrate multiple dimensions of clinical and molecular data towards predictive multi-scale models of individual health and wellness are already underway. Improved methods for mining and discovery of clinical phenotypes from electronic medical records and technological developments in wearable sensor technologies present new opportunities for mapping and exploring the critical yet poorly characterized "phenome" and "envirome" dimensions of personalized medicine. There are ambitious new projects underway to collect multi-scale molecular, sensor, clinical, behavioral, and environmental data streams from large population cohorts longitudinally to enable more comprehensive and dynamic models of individual biology and personalized health. Personalized medicine stands to benefit from inclusion of rich new sources and dimensions of data. However, realizing these improvements in care relies upon novel informatics methodologies, tools, and systems to make full use of these data to advance both the science and translational applications of personalized medicine.

  1. Improvement in the assessment of wear of total knee replacements using coordinate-measuring machine techniques.

    PubMed

    Blunt, L A; Bills, P J; Jiang, X-Q; Chakrabarty, G

    2008-04-01

    Total joint replacement is one of the most common elective surgical procedures performed worldwide, with an estimate of 1.5x 10(6) operations performed annually. Currently joint replacements are expected to function for 10-15 years; however, with an increase in life expectancy, and a greater call for knee replacement due to increased activity levels, there is a requirement to improve their function to offer longer-term improved quality of life for patients. Wear analysis of total joint replacements has long been an important means in determining failure mechanisms and improving longevity of these devices. The effectiveness of the coordinate-measuring machine (CMM) technique for assessing volumetric material loss during simulated life testing of a replacement knee joint has been proved previously by the present authors. The purpose of the current work is to present an improvement to this method for situations where no pre-wear data are available. To validate the method, simulator tests were run and gravimetric measurements taken throughout the test, such that the components measured had a known wear value. The implications of the results are then discussed in terms of assessment of joint functionality and development of standardized CMM-based product standards. The method was then expanded to allow assessment of clinically retrieved bearings so as to ascertain a measure of true clinical wear.

  2. ENVIROSUITE: USING STATE-OF-THE-ART SYNCHROTRON TECHNIQUES TO UNDERSTAND ENVIRONMENTAL REMEDIATION SCIENCE ISSUES AT THE MOLECULAR LEVEL.

    SciTech Connect

    FITTS,J.P.; KALB,P.D.; FRANCIS,A.J.; FUHRMANN,M.; DODGE,C.J.; GILLOW,J.B.

    2004-03-01

    Although DOE's Environmental Management program has made steady progress in cleaning up environmental legacies throughout the DOE complex, there are still significant remediation issues that remain to be solved. For example, DOE faces difficult challenges related to potential mobilization of radionuclides (e.g., actinides) and other hazardous contaminants in soils, removal and final treatment of high-level waste and residuals from leaking tanks, and the long-term stewardship of remediated sites and engineered disposal facilities, to name just a few. In some cases, new technologies and technology applications will be required based on current engineering expertise. In others, however, basic scientific research is needed to understand the mechanisms of how contaminants behave under specific conditions and how they interact with the environment, from which new engineering solutions can emerge. At Brookhaven National Laboratory (BNL) and Stony Brook University, scientists have teamed to use state-of-the-art synchrotron techniques to help understand the basic interactions of contaminants in the environment. Much of this work is conducted at the BNL National Synchrotron Light Source (NSLS), which is a user facility that provides high energy X-ray and ultraviolet photon beams to facilitate the examination of contaminants and materials at the molecular level. These studies allow us to determine how chemical speciation and structure control important parameters such as solubility, which in turn drive critical performance characteristics such as leaching. In one study for example, we are examining the effects of microbial activity on actinide contaminants under conditions anticipated at the Waste Isolation Pilot Plant. One possible outcome of this research is the identification of specific microbes that can trap uranium or other contaminants within the intracellular structure and help mitigate mobility. In another study, we are exploring the interaction of contaminants with

  3. Molecular dynamics in azobenzene liquid crystal polymer films measured by time-resolved techniques.

    PubMed

    Fujii, T; Kuwahara, S; Katayama, K; Takado, K; Ube, T; Ikeda, T

    2014-06-14

    Photo-induced molecular motion in a liquid crystal polymer film including azobenzene was studied by the heterodyne transient grating method. The film was confined in a liquid crystal cell, where it is a photomobile film under free-standing conditions. By observation of the refractive index change induced by a laser pulse, contraction of the film was observed on the order of several hundreds of nanoseconds, and the subsequent reorientation and molecular rotation dynamics were observed from a few microseconds to a hundred milliseconds. Finally, the cis isomer of azobenzene was thermally returned back to the trans isomer in about ten seconds because the film could not be bent in the liquid crystal cell. Since the contraction, reorientation and molecular rotation took place before the cis to trans back-transformation, these processes correspond to the preliminary molecular motion preceding the macroscopic bending of the film. PMID:24736859

  4. Improved Fab presentation on phage surface with the use of molecular chaperone coplasmid system.

    PubMed

    Loh, Qiuting; Leong, Siew Wen; Tye, Gee Jun; Choong, Yee Siew; Lim, Theam Soon

    2015-05-15

    The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display.

  5. Using Interior Point Method Optimization Techniques to Improve 2- and 3-Dimensional Models of Earth Structures

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Gutierrez, A. E.; Velasco, A. A.

    2014-12-01

    2- and 3-Dimensional models obtained from the inversion of geophysical data are widely used to represent the structural composition of the Earth and to constrain independent models obtained from other geological data (e.g. core samples, seismic surveys, etc.). However, inverse modeling of gravity data presents a very unstable and ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting model. Through the implementation of an interior-point method constrained optimization technique, we improve the 2-D and 3-D models of Earth structures representing known density contrasts mapping anomalous bodies in uniform regions and boundaries between layers in layered environments. The proposed techniques are applied to synthetic data and gravitational data obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. Specifically, we improve the 2- and 3-D Earth models by getting rid of unacceptable solutions (those that do not satisfy the required constraints or are geologically unfeasible) given the reduction of the solution space.

  6. Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds

    PubMed Central

    Freire, Carmen S. R.; Coutinho, João A. P.; Silvestre, Armando J. D.; Freire, Mara G.

    2016-01-01

    Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction–separation processes using IL aqueous solutions are suggested within a green chemistry perspective. PMID:27667965

  7. Synthesis of Ag-coated polystyrene colloids by an improved surface seeding and shell growth technique

    SciTech Connect

    Tian Chungui; Wang Enbo . E-mail: wangenbo@public.cc.jl.cn; Kang Zhenhui; Mao Baodong; Zhang Chao; Lan Yang; Wang Chunlei; Song Yanli

    2006-11-15

    In this paper, an improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. Polyethyleneimine (PEI) could act as the linker between Ag ions (Ag nanoparticles) and polystyrene (PS) colloids and the reducing agent in the formation of Ag nanoparticles. Due to the multi-functional characteristic of PEI, Ag seeds formed in-situ and were immobilized on the surface of PEI-modified PS colloids and no free Ag clusters coexist with the Ag 'seeding' PS colloids in the system. Then, the additional agents could be added into the resulting dispersions straightly to produce a thick Ag nanoshell. The Ag nanoshell with controllable thickness was formed on the surface of PS by the 'one-pot' surface seeding and shell growth method. The Ag-coverage increased gradually with the increasing of mass ratio of AgNO{sub 3}/PS. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. - Graphical abstract: An improved surface seeding and shell growth technique was developed to prepare Ag-polystyrene core shell composite. The optical properties of the Ag-PS colloids could be tailored by changing the coverage of Ag. Display Omitted.

  8. Improving flow and spillage characteristics of range hoods by using an inclined air-curtain technique.

    PubMed

    Huang, Rong Fung; Nian, You-Cyun; Chen, Jia-Kun; Peng, Kuan-Lin

    2011-03-01

    The current study developed a new type of range hood, which was termed an 'inclined air-curtain range hood', in order to improve the flow and performance of the conventionally used wall-mounted range hood. The flow characteristics and oil mist spillages of air-curtain and conventional range hoods under the influences of both a mannequin presence and a simulated walk-by motion were experimentally examined. The study examined flow patterns by using a laser-light-sheet-assisted smoke-flow visualization technique and diagnosed spillages by using the tracer gas concentration test method. A mannequin presented in front of the conventional hood induced turbulent dispersion of oil mists toward the chest and nose of the mannequin owing to the complex interaction among the suction, wake, and wall effect, while the inclined air-curtain hood presented excellent hood performance by isolating the oil mists from the mannequin with an air curtain and therefore could reduce spillages out into the atmosphere and the mannequin's breathing zone. Both flow visualization and the tracer gas test indicated that the air-curtain hood had excellent 'robustness' over the conventional hood in resisting the influence of walk-by motion. The air-curtain technique could drastically improve the flow characteristics and performance of the range hood by consuming less energy.

  9. Lyophilization monophase solution technique for improvement of the solubility and dissolution of piroxicam

    PubMed Central

    Dixit, M.; Kulkarni, P.K.

    2012-01-01

    Piroxicam (PX), an anti-inflammatory drug, exhibits poor water solubility, dissolution and flow properties. Thus, the aim of the present study was to improve the solubility and dissolution rate of PX by freeze drying technique using dimethylformamide (DMF), chloroform and water as co-solvent system. The prepared crystals containing PX were evaluated for DMF and chloroform solvent residual by gas chromatography and solubility and in vitro dissolution. The prepared formulations were characterized by scanning electron microscopy, differential scanning calorimeter; X-ray diffraction and fourier transform infrared spectroscopy. Dissolution profile of the freeze dried crystals was compared with its recrystallized and pure samples. The samples were stored in stability chamber to investigate their physical stability. Solvent residual of DMF and chloroform was found to be within the toxic level. Freeze dried crystals exhibited decreased crystallinity and the solubility and dissolution of the PX crystals were significantly improved compared to its recrystallized and pure samples. In stability test, the release profile of the freeze dried crystals was almost unchanged as compared with the freshly prepared freeze dried crystals stored at 40°C and 75% relative humidity for 90 days. Hence, this technique can be used for formulation of PX tablets by direct compression with directly compressible tablet excipients. PMID:23181075

  10. Can the attention training technique turn one marshmallow into two? Improving children's ability to delay gratification.

    PubMed

    Murray, Joanne; Theakston, Anna; Wells, Adrian

    2016-02-01

    The seminal Marshmallow Test (Mischel & Ebbesen, 1970) has reliably demonstrated that children who can delay gratification are more likely to be emotionally stable and successful later in life. However, this is not good news for those children who can't delay. Therefore, this study aimed to explore whether a metacognitive therapy technique, Attention Training (ATT: Wells, 1990) can improve young children's ability to delay gratification. One hundred children participated. Classes of 5-6 year olds were randomly allocated to either the ATT or a no-intervention condition and were tested pre and post-intervention on ability to delay gratification, verbal inhibition (executive control), and measures of mood. The ATT intervention significantly increased (2.64 times) delay of gratification compared to the no-intervention condition. After controlling for age and months in school, the ATT intervention and verbal inhibition task performance were significant independent predictors of delay of gratification. These results provide evidence that ATT can improve children's self-regulatory abilities with the implication that this might reduce psychological vulnerability later in life. The findings highlight the potential contribution that the Self-Regulatory Executive Function (S-REF) model could make to designing techniques to enhance children's self-regulatory processes.

  11. Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds

    PubMed Central

    Freire, Carmen S. R.; Coutinho, João A. P.; Silvestre, Armando J. D.; Freire, Mara G.

    2016-01-01

    Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction–separation processes using IL aqueous solutions are suggested within a green chemistry perspective.

  12. A Novel Technique to Improve Photometry in Confused Images Using Graphs and Bayesian Priors

    NASA Astrophysics Data System (ADS)

    Safarzadeh, Mohammadtaher; Ferguson, Henry C.; Lu, Yu; Inami, Hanae; Somerville, Rachel S.

    2015-01-01

    We present a new technique for overcoming confusion noise in deep far-infrared Herschel space telescope images making use of prior information from shorter λ < 2 μm wavelengths. For the deepest images obtained by Herschel, the flux limit due to source confusion is about a factor of three brighter than the flux limit due to instrumental noise and (smooth) sky background. We have investigated the possibility of de-confusing simulated Herschel PACS 160 μm images by using strong Bayesian priors on the positions and weak priors on the flux of sources. We find the blended sources and group them together and simultaneously fit their fluxes. We derive the posterior probability distribution function of fluxes subject to these priors through Monte Carlo Markov Chain (MCMC) sampling by fitting the image. Assuming we can predict the FIR flux of sources based on the ultraviolet-optical part of their SEDs to within an order of magnitude, the simulations show that we can obtain reliable fluxes and uncertainties at least a factor of three fainter than the confusion noise limit of 3σ c = 2.7 mJy in our simulated PACS-160 image. This technique could in principle be used to mitigate the effects of source confusion in any situation where one has prior information of positions and plausible fluxes of blended sources. For Herschel, application of this technique will improve our ability to constrain the dust content in normal galaxies at high redshift.

  13. Improving of the photovoltaic / thermal system performance using water cooling technique

    NASA Astrophysics Data System (ADS)

    Hussien, Hashim A.; Numan, Ali H.; Abdulmunem, Abdulmunem R.

    2015-04-01

    This work is devoted to improving the electrical efficiency by reducing the rate of thermal energy of a photovoltaic/thermal system (PV/T).This is achieved by design cooling technique which consists of a heat exchanger and water circulating pipes placed at PV module rear surface to solve the problem of the high heat stored inside the PV cells during the operation. An experimental rig is designed to investigate and evaluate PV module performance with the proposed cooling technique. This cooling technique is the first work in Iraq to dissipate the heat from PV module. The experimental results indicated that due to the heat loss by convection between water and the PV panel's upper surface, an increase of output power is achieved. It was found that without active cooling, the temperature of the PV module was high and solar cells could only achieve a conversion efficiency of about 8%. However, when the PV module was operated under active water cooling condition, the temperature was dropped from 76.8°C without cooling to 70.1°C with active cooling. This temperature dropping led to increase in the electrical efficiency of solar panel to 9.8% at optimum mass flow rate (0.2L/s) and thermal efficiency to (12.3%).

  14. A NOVEL TECHNIQUE TO IMPROVE PHOTOMETRY IN CONFUSED IMAGES USING GRAPHS AND BAYESIAN PRIORS

    SciTech Connect

    Safarzadeh, Mohammadtaher; Ferguson, Henry C.; Lu, Yu; Inami, Hanae; Somerville, Rachel S.

    2015-01-10

    We present a new technique for overcoming confusion noise in deep far-infrared Herschel space telescope images making use of prior information from shorter λ < 2 μm wavelengths. For the deepest images obtained by Herschel, the flux limit due to source confusion is about a factor of three brighter than the flux limit due to instrumental noise and (smooth) sky background. We have investigated the possibility of de-confusing simulated Herschel PACS 160 μm images by using strong Bayesian priors on the positions and weak priors on the flux of sources. We find the blended sources and group them together and simultaneously fit their fluxes. We derive the posterior probability distribution function of fluxes subject to these priors through Monte Carlo Markov Chain (MCMC) sampling by fitting the image. Assuming we can predict the FIR flux of sources based on the ultraviolet-optical part of their SEDs to within an order of magnitude, the simulations show that we can obtain reliable fluxes and uncertainties at least a factor of three fainter than the confusion noise limit of 3σ {sub c} = 2.7 mJy in our simulated PACS-160 image. This technique could in principle be used to mitigate the effects of source confusion in any situation where one has prior information of positions and plausible fluxes of blended sources. For Herschel, application of this technique will improve our ability to constrain the dust content in normal galaxies at high redshift.

  15. An improved DPSM technique for modelling ultrasonic fields in cracked solids

    NASA Astrophysics Data System (ADS)

    Banerjee, Sourav; Kundu, Tribikram; Placko, Dominique

    2007-04-01

    In recent years Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic field modelling problems. In conventional DPSM several point sources are placed near the transducer face, interface and anomaly boundaries. The ultrasonic or the electromagnetic field at any point is computed by superimposing the contributions of different layers of point sources strategically placed. The conventional DPSM modelling technique is modified in this paper so that the contributions of the point sources in the shadow region can be removed from the calculations. For this purpose the conventional point sources that radiate in all directions are replaced by Controlled Space Radiation (CSR) sources. CSR sources can take care of the shadow region problem to some extent. Complete removal of the shadow region problem can be achieved by introducing artificial interfaces. Numerically synthesized fields obtained by the conventional DPSM technique that does not give any special consideration to the point sources in the shadow region and the proposed modified technique that nullifies the contributions of the point sources in the shadow region are compared. One application of this research can be found in the improved modelling of the real time ultrasonic non-destructive evaluation experiments.

  16. DSMC simulation of hypersonic flows using an improved SBT-TAS technique

    NASA Astrophysics Data System (ADS)

    Goshayeshi, Bijan; Roohi, Ehsan; Stefanov, Stefan

    2015-12-01

    The current paper examines a new DSMC approach to hypersonic flow simulation consisting of a combination between the Simplified Bernoulli Trials (SBT) collision algorithm and the transient adaptive subcell (TAS) selection procedure. The SBT collision algorithm has already been introduced as a scheme that provides accurate results with a quite small number of particles per cells and its combination with the transient adaptive subcell (TAS) technique will enable SBT to have coarser grid sizes as well. In the current research, the no-time-counter (NTC) collision algorithm and nearest neighbor (NN) pair selection procedure of Bird DS2V code are substituted by the SBT-TAS and comparisons between the new algorithm and NTC-NN are made considering appropriate test cases including hypersonic cylinder flow and axisymmetric biconic flow. Hypersonic cylinder flow is a well-known benchmark problem with a wide collision frequency range while the biconic flow exhibits laminar shock/shock and shock/boundary-layer interactions. Improvements implemented in the SBT-TAS technique, including subcell volume estimation, surface properties filter, and time controller, are discussed in detail. The simulations of these hypersonic test cases demonstrated that from the viewpoint of consumed sample-size, SBT-TAS is an efficient collision technique.

  17. An improved technique for computing permeability from NMR measurements in mudstones

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Dugan, Brandon

    2011-08-01

    We develop a technique for extending nuclear magnetic resonance (NMR) permeability estimation to clay-rich sediments. Our technique builds on the Schlumberger-Doll Research (SDR) equation by using porosity, grain size, specific surface, and magnetic susceptibility data to yield more accurate permeability estimation in mudstones with large pore surface areas and complex mineralogies. Based on measurements of natural sediments as well as resedimented laboratory mixtures of silica, bentonite, and kaolinite powders, we find that our method predicts permeability values that match measured values over four orders of magnitude and among lithologies that vary widely in grain size, mineralogy, and surface area. Our results show that the relationship between NMR data and permeability is a function of mineralogy and grain geometry, and that permeability predictions in clay-rich sediments can be improved with insights regarding the nature of the pore system made by the Kozeny theory. This technique extends the utility of NMR measurements beyond typical reservoir-quality rocks to a wide range of lithologies.

  18. Conformational Sampling by Ab Initio Molecular Dynamics Simulations Improves NMR Chemical Shift Predictions.

    PubMed

    Dračínský, Martin; Möller, Heiko M; Exner, Thomas E

    2013-08-13

    Car-Parrinello molecular dynamics simulations were performed for N-methyl acetamide as a small test system for amide groups in protein backbones, and NMR chemical shifts were calculated based on the generated ensemble. If conformational sampling and explicit solvent molecules are taken into account, excellent agreement between the calculated and experimental chemical shifts is obtained. These results represent a landmark improvement over calculations based on classical molecular dynamics (MD) simulations especially for amide protons, which are predicted too high-field shifted based on the latter ensembles. We were able to show that the better results are caused by the solute-solvents interactions forming shorter hydrogen bonds as well as by the internal degrees of freedom of the solute. Inspired by these results, we propose our approach as a new tool for the validation of force fields due to its power of identifying the structural reasons for discrepancies between the experimental and calculated data. PMID:26584127

  19. Improving the Description of Nonmagnetic and Magnetic Molecular Crystals via the van der Waals Density Functional

    NASA Astrophysics Data System (ADS)

    Obata, Masao; Nakamura, Makoto; Hamada, Ikutaro; Oda, Tatsuki

    2015-02-01

    We have derived and implemented a stress tensor formulation for the van der Waals density functional (vdW-DF) with spin-polarization-dependent gradient correction (GC) recently proposed by the authors [J. Phys. Soc. Jpn. 82, 093701 (2013)] and applied it to nonmagnetic and magnetic molecular crystals under ambient condition. We found that the cell parameters of the molecular crystals obtained with vdW-DF show an overall improvement compared with those obtained using local density and generalized gradient approximations. In particular, the original vdW-DF with GC gives the equilibrium structural parameters of solid oxygen in the α-phase, which are in good agreement with the experiment.

  20. SU-E-I-07: An Improved Technique for Scatter Correction in PET

    SciTech Connect

    Lin, S; Wang, Y; Lue, K; Lin, H; Chuang, K

    2014-06-01

    Purpose: In positron emission tomography (PET), the single scatter simulation (SSS) algorithm is widely used for scatter estimation in clinical scans. However, bias usually occurs at the essential steps of scaling the computed SSS distribution to real scatter amounts by employing the scatter-only projection tail. The bias can be amplified when the scatter-only projection tail is too small, resulting in incorrect scatter correction. To this end, we propose a novel scatter calibration technique to accurately estimate the amount of scatter using pre-determined scatter fraction (SF) function instead of the employment of scatter-only tail information. Methods: As the SF depends on the radioactivity distribution and the attenuating material of the patient, an accurate theoretical relation cannot be devised. Instead, we constructed an empirical transformation function between SFs and average attenuation coefficients based on a serious of phantom studies with different sizes and materials. From the average attenuation coefficient, the predicted SFs were calculated using empirical transformation function. Hence, real scatter amount can be obtained by scaling the SSS distribution with the predicted SFs. The simulation was conducted using the SimSET. The Siemens Biograph™ 6 PET scanner was modeled in this study. The Software for Tomographic Image Reconstruction (STIR) was employed to estimate the scatter and reconstruct images. The EEC phantom was adopted to evaluate the performance of our proposed technique. Results: The scatter-corrected image of our method demonstrated improved image contrast over that of SSS. For our technique and SSS of the reconstructed images, the normalized standard deviation were 0.053 and 0.182, respectively; the root mean squared errors were 11.852 and 13.767, respectively. Conclusion: We have proposed an alternative method to calibrate SSS (C-SSS) to the absolute scatter amounts using SF. This method can avoid the bias caused by the insufficient

  1. An Improved Simulated Annealing Technique for Enhanced Mobility in Smart Cities

    PubMed Central

    Amer, Hayder; Salman, Naveed; Hawes, Matthew; Chaqfeh, Moumena; Mihaylova, Lyudmila; Mayfield, Martin

    2016-01-01

    Vehicular traffic congestion is a significant problem that arises in many cities. This is due to the increasing number of vehicles that are driving on city roads of limited capacity. The vehicular congestion significantly impacts travel distance, travel time, fuel consumption and air pollution. Avoidance of traffic congestion and providing drivers with optimal paths are not trivial tasks. The key contribution of this work consists of the developed approach for dynamic calculation of optimal traffic routes. Two attributes (the average travel speed of the traffic and the roads’ length) are utilized by the proposed method to find the optimal paths. The average travel speed values can be obtained from the sensors deployed in smart cities and communicated to vehicles via the Internet of Vehicles and roadside communication units. The performance of the proposed algorithm is compared to three other algorithms: the simulated annealing weighted sum, the simulated annealing technique for order preference by similarity to the ideal solution and the Dijkstra algorithm. The weighted sum and technique for order preference by similarity to the ideal solution methods are used to formulate different attributes in the simulated annealing cost function. According to the Sheffield scenario, simulation results show that the improved simulated annealing technique for order preference by similarity to the ideal solution method improves the traffic performance in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO2 emissions as compared to other algorithms; also, similar performance patterns were achieved for the Birmingham test scenario. PMID:27376289

  2. An Improved Simulated Annealing Technique for Enhanced Mobility in Smart Cities.

    PubMed

    Amer, Hayder; Salman, Naveed; Hawes, Matthew; Chaqfeh, Moumena; Mihaylova, Lyudmila; Mayfield, Martin

    2016-01-01

    Vehicular traffic congestion is a significant problem that arises in many cities. This is due to the increasing number of vehicles that are driving on city roads of limited capacity. The vehicular congestion significantly impacts travel distance, travel time, fuel consumption and air pollution. Avoidance of traffic congestion and providing drivers with optimal paths are not trivial tasks. The key contribution of this work consists of the developed approach for dynamic calculation of optimal traffic routes. Two attributes (the average travel speed of the traffic and the roads' length) are utilized by the proposed method to find the optimal paths. The average travel speed values can be obtained from the sensors deployed in smart cities and communicated to vehicles via the Internet of Vehicles and roadside communication units. The performance of the proposed algorithm is compared to three other algorithms: the simulated annealing weighted sum, the simulated annealing technique for order preference by similarity to the ideal solution and the Dijkstra algorithm. The weighted sum and technique for order preference by similarity to the ideal solution methods are used to formulate different attributes in the simulated annealing cost function. According to the Sheffield scenario, simulation results show that the improved simulated annealing technique for order preference by similarity to the ideal solution method improves the traffic performance in the presence of congestion by an overall average of 19.22% in terms of travel time, fuel consumption and CO₂ emissions as compared to other algorithms; also, similar performance patterns were achieved for the Birmingham test scenario. PMID:27376289

  3. Development and application of DNA techniques for validating and improving pinniped diet estimates.

    PubMed

    Tollit, Dominic J; Schulze, Angela D; Trites, Andrew W; Olesiuk, Peter F; Crockford, Susan J; Gelatt, Thomas S; Ream, Rolf R; Miller, Kristina M

    2009-06-01

    Atlantic salmon (Salmo salar) that likely originated from a distant fish farm was also detected in two scats from one site in the eastern Aleutian Islands. Overall, molecular techniques are valuable for identifying prey in the fecal remains of marine predators. Combining DNA and hard-part identification will effectively alleviate certain predicted biases and will ultimately enhance measures of diet richness, fisheries interactions (especially salmon-related ones), and the ecological role of pinnipeds and other marine predators, to the benefit of marine wildlife conservationists and fisheries managers. PMID:19544732

  4. Path integral molecular dynamics within the grand canonical-like adaptive resolution technique: Simulation of liquid water

    SciTech Connect

    Agarwal, Animesh Delle Site, Luigi

    2015-09-07

    Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics (MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of atoms; however, computationally this technique is very demanding. The above mentioned limitation implies the restriction of PIMD applications to relatively small systems and short time scales. One of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small region treated at path integral level and embeds it into a large molecular reservoir consisting of generic spherical coarse grained molecules. It was previously shown that the realization of the idea above, at a simple level, produced reasonable results for toy systems or simple/test systems like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the literature. The comparison of our results with those reported in the literature and/or with those obtained from full PIMD simulations shows a highly satisfactory agreement.

  5. Three dimensional imaging technique suitable for the measurements of the internal energies of asymmetrical diatomic molecular ions

    NASA Astrophysics Data System (ADS)

    Sauza, J. B.; Panchenko, D. I.; Duot, A. C.; Strom, R. A.; Andrianarijaona, V. M.

    2015-05-01

    We propose a three dimensional imaging technique that could be used to measure the internal energy of asymmetrical diatomic molecular ions such as HeH+ and CO+. The detection scheme is similar to the one used for symmetrical diatomic molecular ions, which accesses the internal energy of the ion through the kinetic energy release in a resonant dissociative charge transfer (see for instance). In that technique, the fragments hit two detectors which send the positions of the impacts along with the difference between the times of impacts to a computer. The computed kinetic energy release is related to the vibrational excitation level of the initial molecular ion. In the case of an asymmetrical ion, the lighter fragment has a higher recoil velocity and goes further away transversally from the center of mass direction. The heavier fragment would not hit the first detector if the beam is judiciously misaligned. Therefore, we make distinction between the two particles. Details of the technique will be presented. Authors wish to give special thanks to Pacific Union College Student Senate for their financial support.

  6. Molecular genetics of the sickling syndromes: evolution of new strategies for improved diagnosis.

    PubMed

    Benz, E J

    1984-01-01

    This survey is intended to illustrate some major areas relevant to the diagnosis and treatment of sickle cell syndromes that have benefited by the input of molecular genetic approaches. The development of gene mapping techniques has permitted the direct examination of the effect of co-inheritance of alpha-thalassemia and sickle cell anemia on clinical severity, providing, for the first time, a direct strategy for investigation of the clinical heterogeneity of these syndromes. In addition, antenatal diagnosis of these disorders is now best done by direct gene mapping whenever appropriate facilities are available. Treatment by manipulation of gamma-globin gene expression has been shown to be an effective means of achieving at least partial reversal of the hemoglobin F to hemoglobin A switch. Whether the magnitude of this reversal is sufficient to interfere with the clinical phenotype of sickle cell disease remains to be determined. Moreover, the agent currently available to accomplish this goal, 5-azacytidine, remains unsuitable for wide-spread clinical application for a variety of reasons. Nonetheless, the molecular geneticist has already demonstrated that desirable effects can be achieved by building on the knowledge of globin gene physiology. This knowledge is best acquired by application of the concepts and methodologies of molecular genetics.

  7. Improved synthetic aperture focusing technique results of thick concrete specimens through frequency banding

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Barker, Alan; Albright, Austin; Santos-Villalobos, Hector

    2016-02-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on ultrasonic data collected from thick, complex concrete structures such as in NPPs. Towards these goals, we apply the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply this enhanced SAFT technique to a 2.134 m × 2.134 m × 1.016 m concrete

  8. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data

    USGS Publications Warehouse

    Chavez, P.S.

    1988-01-01

    Digital analysis of remotely sensed data has become an important component of many earth-science studies. These data are often processed through a set of preprocessing or "clean-up" routines that includes a correction for atmospheric scattering, often called haze. Various methods to correct or remove the additive haze component have been developed, including the widely used dark-object subtraction technique. A problem with most of these methods is that the haze values for each spectral band are selected independently. This can create problems because atmospheric scattering is highly wavelength-dependent in the visible part of the electromagnetic spectrum and the scattering values are correlated with each other. Therefore, multispectral data such as from the Landsat Thematic Mapper and Multispectral Scanner must be corrected with haze values that are spectral band dependent. An improved dark-object subtraction technique is demonstrated that allows the user to select a relative atmospheric scattering model to predict the haze values for all the spectral bands from a selected starting band haze value. The improved method normalizes the predicted haze values for the different gain and offset parameters used by the imaging system. Examples of haze value differences between the old and improved methods for Thematic Mapper Bands 1, 2, 3, 4, 5, and 7 are 40.0, 13.0, 12.0, 8.0, 5.0, and 2.0 vs. 40.0, 13.2, 8.9, 4.9, 16.7, and 3.3, respectively, using a relative scattering model of a clear atmosphere. In one Landsat multispectral scanner image the haze value differences for Bands 4, 5, 6, and 7 were 30.0, 50.0, 50.0, and 40.0 for the old method vs. 30.0, 34.4, 43.6, and 6.4 for the new method using a relative scattering model of a hazy atmosphere. ?? 1988.

  9. Achieving crop stress tolerance and improvement--an overview of genomic techniques.

    PubMed

    Rasool, Saiema; Ahmad, Parvaiz; Rehman, Muneeb U; Arif, Ahmad; Anjum, Naser A

    2015-12-01

    The inexorable exposure of plants to the combinations of abiotic stresses has affected the worldwide food supply. The crop improvement against these abiotic stresses has been captivating approach to increase the yield and enhance the stress tolerance. By using traditional and modern breeding methods, the characters that confer tolerance to these stresses were accomplished. No doubt genetic engineering and molecular breeding have helped in comprehending the intricate nature of stress response. Understanding of abiotic stress-involved cellular pathways provides vital information on such responses. On the other hand, genomic research for crop improvement has raised new assessments in breeding new varieties against abiotic stresses. Interpretation of responses of the crop plants under stress is of great significance by studying the main role of crops in food and biofuel production. This review presents genomic-based approaches revealing the complex networks controlling the mechanisms of abiotic stress tolerance, and the possible modes of assimilating information attained by genomic-based approaches due to the advancement in isolation and functional analysis of genes controlling the yield and abiotic stress tolerance are discussed. PMID:26440315

  10. Modulating Molecular Chaperones Improves Mitochondrial Bioenergetics and Decreases the Inflammatory Transcriptome in Diabetic Sensory Neurons.

    PubMed

    Ma, Jiacheng; Pan, Pan; Anyika, Mercy; Blagg, Brian S J; Dobrowsky, Rick T

    2015-09-16

    We have previously demonstrated that modulating molecular chaperones with KU-32, a novobiocin derivative, ameliorates physiologic and bioenergetic deficits of diabetic peripheral neuropathy (DPN). Replacing the coumarin core of KU-32 with a meta-fluorinated biphenyl ring system created KU-596, a novobiocin analogue (novologue) that showed neuroprotective activity in a cell-based assay. The current study sought to determine whether KU-596 offers similar therapeutic potential for treating DPN. Administration of 2-20 mg/kg of KU-596 improved diabetes induced hypoalgesia and sensory neuron bioenergetic deficits in a dose-dependent manner. However, the drug could not improve these neuropathic deficits in diabetic heat shock protein 70 knockout (Hsp70 KO) mice. To gain further insight into the mechanisms by which KU-596 improved DPN, we performed transcriptomic analysis of sensory neuron RNA obtained from diabetic wild-type and Hsp70 KO mice using RNA sequencing. Bioinformatic analysis of the differentially expressed genes indicated that diabetes strongly increased inflammatory pathways and that KU-596 therapy effectively reversed these increases independent of Hsp70. In contrast, the effects of KU-596 on decreasing the expression of genes regulating the production of reactive oxygen species were more Hsp70-dependent. These data indicate that modulation of molecular chaperones by novologue therapy offers an effective approach toward correcting nerve dysfunction in DPN but that normalization of inflammatory pathways alone by novologue therapy seems to be insufficient to reverse sensory deficits associated with insensate DPN. PMID:26161583

  11. Improving the convergence of closed and open path integral molecular dynamics via higher order Trotter factorization schemes

    NASA Astrophysics Data System (ADS)

    Pérez, Alejandro; Tuckerman, Mark E.

    2011-08-01

    Higher order factorization schemes are developed for path integral molecular dynamics in order to improve the convergence of estimators for physical observables as a function of the Trotter number. The methods are based on the Takahashi-Imada and Susuki decompositions of the Boltzmann operator. The methods introduced improve the averages of the estimators by using the classical forces needed to carry out the dynamics to construct a posteriori weighting factors for standard path integral molecular dynamics. The new approaches are straightforward to implement in existing path integral codes and carry no significant overhead. The Suzuki higher order factorization was also used to improve the end-to-end distance estimator in open path integral molecular dynamics. The new schemes are tested in various model systems, including an ab initio path integral molecular dynamics calculation on the hydrogen molecule and a quantum water model. The proposed algorithms have potential utility for reducing the cost of path integral molecular dynamics calculations of bulk systems.

  12. Improving the replica-exchange molecular-dynamics method for efficient sampling in the temperature space.

    PubMed

    Chen, Changjun; Xiao, Yi; Huang, Yanzhao

    2015-05-01

    Replica-exchange molecular dynamics (REMD) is a popular sampling method in the molecular simulation. By frequently exchanging the replicas at different temperatures, the molecule can jump out of the minima and sample efficiently in the conformational space. Although REMD has been shown to be practical in a lot of applications, it does have a critical limitation. All the replicas at all the temperatures must be simulated for a period between the replica-exchange steps. This may be problematic for the reaction with high free energy barriers. In that case, too many replicas are required in the simulation. To reduce the calculation quantity and improve its performance, in this paper we propose a modified REMD method. During the simulation, each replica at each temperature can stay in either the active or inactive state and only switch between the states at the exchange step. In the active state, the replica moves freely in the canonical ensemble by the normal molecular dynamics, and in the inactive state, the replica is frozen temporarily until the next exchange step. The number of the replicas in the active states (active replicas) depends on the number of CPUs in the computer. Using the additional inactive replicas, one can perform an REMD simulation in a wider temperature space. The practical applications show that the modified REMD method is reliable. With the same number of active replicas, this REMD method can produce a more reasonable free energy surface around the free energy minima than the standard REMD method. PMID:26066200

  13. Improvement of SVM-Based Speech/Music Classification Using Adaptive Kernel Technique

    NASA Astrophysics Data System (ADS)

    Lim, Chungsoo; Chang, Joon-Hyuk

    In this paper, we propose a way to improve the classification performance of support vector machines (SVMs), especially for speech and music frames within a selectable mode vocoder (SMV) framework. A myriad of techniques have been proposed for SVMs, and most of them are employed during the training phase of SVMs. Instead, the proposed algorithm is applied during the test phase and works with existing schemes. The proposed algorithm modifies a kernel parameter in the decision function of SVMs to alter SVM decisions for better classification accuracy based on the previous outputs of SVMs. Since speech and music frames exhibit strong inter-frame correlation, the outputs of SVMs can guide the kernel parameter modification. Our experimental results show that the proposed algorithm has the potential for adaptively tuning classifications of support vector machines for better performance.

  14. Improved cost-benefit techniques in the US Nuclear Regulatory Commission

    SciTech Connect

    Cronin, F.J.; Nesse, R.J.; Vaeth, M.; Wusterbarth, A.R.; Currie, J.W.

    1983-06-01

    The major objective of this report is to help the US Nuclear Regulatory Commission (NRC) in its regulatory mission, particularly with respect to improving the use of cost-benefit analysis and the economic evaluation of resources within the NRC. The objectives of this effort are: (1) to identify current and future NRC requirements (e.g., licensing) for valuing nonmarket goods; (2) to identify, highlight, and present the relevant efforts of selected federal agencies, some with over two decades of experience in valuing nonmarket goods, in this area; and (3) to review methods for valuing nonmarket impacts and to provide estimats of their magnitudes. Recently proposed legislation may result in a requirement for not only more sophisticated valuation analyses, but more extensive applications of these techniques to issues of concern to the NRC. This paper is intended to provide the NRC with information to more efficiently meet such requirements.

  15. Use of system identification techniques for improving airframe finite element models using test data

    NASA Technical Reports Server (NTRS)

    Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.

    1991-01-01

    A method for using system identification techniques to improve airframe finite element models was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.

  16. Use of system identification techniques for improving airframe finite element models using test data

    NASA Technical Reports Server (NTRS)

    Hanagud, Sathya V.; Zhou, Weiyu; Craig, James I.; Weston, Neil J.

    1993-01-01

    A method for using system identification techniques to improve airframe finite element models using test data was developed and demonstrated. The method uses linear sensitivity matrices to relate changes in selected physical parameters to changes in the total system matrices. The values for these physical parameters were determined using constrained optimization with singular value decomposition. The method was confirmed using both simple and complex finite element models for which pseudo-experimental data was synthesized directly from the finite element model. The method was then applied to a real airframe model which incorporated all of the complexities and details of a large finite element model and for which extensive test data was available. The method was shown to work, and the differences between the identified model and the measured results were considered satisfactory.

  17. Improved lead recovery and sulphate removal from used lead acid battery through electrokinetic technique.

    PubMed

    Soundarrajan, C; Sivasankar, A; Maruthamuthu, S; Veluchamy, A

    2012-05-30

    This paper presents improvement in lead (Pb) recovery and sulphate removal from used Pb acid battery (ULAB) through Electrokinetic technique, a process aimed to eliminate environmental pollution that arises due to emission of gases and metal particles from the existing high temperature pyrometallurgical process. Two different cell configurations, (1) one with Nafion membrane placed between anode and middle compartments and Agar membrane between cathode and middle compartments and (2) another with only Agar membrane placed between both sides of the middle compartments were designed for the Pb and sulphate separation from ULAB. This paper concludes that the cell with only Agar membranes performed better than the cell with Nafion and Agar membranes in combinations and also explains the mechanism underlying the chemical and electrochemical processes in the cell.

  18. Improved technique for retrieval of forest parameters from hyperspectral remote sensing data.

    PubMed

    Kozoderov, Vladimir V; Dmitriev, Egor V; Sokolov, Anton A

    2015-11-30

    This paper describes an approach of machine-learning pattern recognition procedures for the land surface objects using their spectral and textural features on remotely sensed hyperspectral images together with the biological parameters retrieval for the recognized classes of forests. Modified Bayesian classifier is used to improve the related procedures in spatial and spectral domains. Direct and inverse problems of atmospheric optics are solved based on modeling results of the projective cover and density of the forest canopy for the selected classes of forests of different species and ages. Applying the proposed techniques to process images of high spectral and spatial resolution, we have detected object classes including forests within their contours on a particular image and can retrieve the phytomass amount of leaves/needles as well as the relevant total biomass amount for the forest canopy. PMID:26698785

  19. Electrical noise reduction techniques contributing to improved data quality at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Mcphee, J. R.

    1988-01-01

    In initial use, the high-speed digital data acquisition systems at Langley Research Center's National Transonic Facility produced data containing unacceptably high noise levels. Described is a process whereby the contributing noise sources were identified and eliminated. The effects of 60 Hz power, system grounding, EMI/RFI, and other problems are discussed and the corrective action taken is outlined. The overall effort resulted in an improvement of greater than 5:1 in system performance. Although the report describes a system specifically used for wind tunnel data acquisition, the corrective techniques employed are generally applicable to large scale high-speed data systems where signal resolution in the low microvolts range is important.

  20. Improvement in Aqueous Solubility of Retinoic Acid Receptor (RAR) Agonists by Bending the Molecular Structure.

    PubMed

    Hiramatsu, Michiaki; Ichikawa, Yuki; Tomoshige, Shusuke; Makishima, Makoto; Muranaka, Atsuya; Uchiyama, Masanobu; Yamaguchi, Takao; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-08-01

    Aqueous solubility is a key requirement for many functional molecules, e. g., drug candidates. Decrease of the partition coefficient (log P) by chemical modification, i.e., introduction of hydrophilic group(s) into molecules, is a classical strategy for improving aqueous solubility. We have been investigating alternative strategies for improving the aqueous solubility of pharmaceutical compounds by disrupting intermolecular interactions. Here, we show that introducing a bend into the molecular structure of retinoic acid receptor (RAR) agonists by changing the substitution pattern from para to meta or ortho dramatically enhances aqueous solubility by up to 890-fold. We found that meta analogs exhibit similar hydrophobicity to the parent para compound, and have lower melting points, supporting the idea that the increase of aqueous solubility was due to decreased intermolecular interactions in the solid state as a result of the structural changes.

  1. Improving the sampling efficiency of Monte Carlo molecular simulations: an evolutionary approach

    NASA Astrophysics Data System (ADS)

    Leblanc, Benoit; Braunschweig, Bertrand; Toulhoat, Hervé; Lutton, Evelyne

    We present a new approach in order to improve the convergence of Monte Carlo (MC) simulations of molecular systems belonging to complex energetic landscapes: the problem is redefined in terms of the dynamic allocation of MC move frequencies depending on their past efficiency, measured with respect to a relevant sampling criterion. We introduce various empirical criteria with the aim of accounting for the proper convergence in phase space sampling. The dynamic allocation is performed over parallel simulations by means of a new evolutionary algorithm involving 'immortal' individuals. The method is bench marked with respect to conventional procedures on a model for melt linear polyethylene. We record significant improvement in sampling efficiencies, thus in computational load, while the optimal sets of move frequencies are liable to allow interesting physical insights into the particular systems simulated. This last aspect should provide a new tool for designing more efficient new MC moves.

  2. Improvement in Aqueous Solubility of Retinoic Acid Receptor (RAR) Agonists by Bending the Molecular Structure.

    PubMed

    Hiramatsu, Michiaki; Ichikawa, Yuki; Tomoshige, Shusuke; Makishima, Makoto; Muranaka, Atsuya; Uchiyama, Masanobu; Yamaguchi, Takao; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-08-01

    Aqueous solubility is a key requirement for many functional molecules, e. g., drug candidates. Decrease of the partition coefficient (log P) by chemical modification, i.e., introduction of hydrophilic group(s) into molecules, is a classical strategy for improving aqueous solubility. We have been investigating alternative strategies for improving the aqueous solubility of pharmaceutical compounds by disrupting intermolecular interactions. Here, we show that introducing a bend into the molecular structure of retinoic acid receptor (RAR) agonists by changing the substitution pattern from para to meta or ortho dramatically enhances aqueous solubility by up to 890-fold. We found that meta analogs exhibit similar hydrophobicity to the parent para compound, and have lower melting points, supporting the idea that the increase of aqueous solubility was due to decreased intermolecular interactions in the solid state as a result of the structural changes. PMID:27378357

  3. Prospectives for applying molecular and genetic methodology to improve wheat cultivars in drought environments.

    PubMed

    Zhao, Chang-Xing; Guo, Ling-Yu; Jaleel, Cheruth Abdul; Shao, Hong-Bo; Yang, Hong-Bing

    2008-08-01

    With the advent of molecular biotechnologies, new opportunities are available for plant physiologists to study the relationships between wheat traits and their genetic control. The functional determinations of all genes that participate in drought adaptation or tolerance reactions are expected to provide an integrated understanding of the biochemical and physiological basis of stress responses in wheat. However, despite all the recent technological breakthroughs, the overall contribution of genomics-assisted breeding to the release of drought-resilient wheat cultivars has so far been marginal. This paper critically analyses how biotechnological, genetic and information tools can contribute to accelerating the release of improved, drought-tolerant wheat cultivars. Armed with such information from established models, it will be possible to elucidate the physiological basis of drought tolerance and to select genotypes with an improved yield under water-limited conditions.

  4. SCIENCE RESULTS INTEGRATION. BRINGING MOLECULAR BIOLOGY TECHNIQUES TO REGIONAL WATER MONITORING PROGRAMS

    EPA Science Inventory

    EPA's Office of Research and Development (ORD) develops innovative methods for use in environmental monitoring and assessment by scientists in Regions, states, and Tribes. Molecular-biology-based methods are not yet established in the environmental monitoring "tool box". SRI (Sci...

  5. The need for improved brain lesion segmentation techniques for children with cerebral palsy: A review.

    PubMed

    Pagnozzi, Alex M; Gal, Yaniv; Boyd, Roslyn N; Fiori, Simona; Fripp, Jurgen; Rose, Stephen; Dowson, Nicholas

    2015-12-01

    Cerebral palsy (CP) describes a group of permanent disorders of posture and movement caused by disturbances in the developing brain. Accurate diagnosis and prognosis, in terms of motor type and severity, is difficult to obtain due to the heterogeneous appearance of brain injury and large anatomical distortions commonly observed in children with CP. There is a need to optimise treatment strategies for individual patients in order to lead to lifelong improvements in function and capabilities. Magnetic resonance imaging (MRI) is critical to non-invasively visualizing brain lesions, and is currently used to assist the diagnosis and qualitative classification in CP patients. Although such qualitative approaches under-utilise available data, the quantification of MRIs is not automated and therefore not widely performed in clinical assessment. Automated brain lesion segmentation techniques are necessary to provide valid and reproducible quantifications of injury. Such techniques have been used to study other neurological disorders, however the technical challenges unique to CP mean that existing algorithms require modification to be sufficiently reliable, and therefore have not been widely applied to MRIs of children with CP. In this paper, we present a review of a subset of available brain injury segmentation approaches that could be applied to CP, including the detection of cortical malformations, white and grey matter lesions and ventricular enlargement. Following a discussion of strengths and weaknesses, we suggest areas of future research in applying segmentation techniques to the MRI of children with CP. Specifically, we identify atlas-based priors to be ineffective in regions of substantial malformations, instead propose relying on adaptive, spatially consistent algorithms, with fast initialisation mechanisms to provide additional robustness to injury. We also identify several cortical shape parameters that could be used to identify cortical injury, and shape

  6. Improving carbon cycle models using inverse modelling techniques with in-situ measurements and satellite observations

    NASA Astrophysics Data System (ADS)

    Delahaies, Sylvain; Roulstone, Ian; Nichols, Nancy

    2014-05-01

    Improving our understanding of the carbon cycle is an important component of modelling climate and the Earth system, and a variety of inverse modelling techniques have been used to combine process models with different types of observational data. Model data fusion, or inverse modelling, is the process of best combining our under- standing of the dynamics of a system, observations and our prior knowledge of the state of the system. We consider a simple model for the carbon budget allocation for terrestrial ecosystems, the Data Assimilation-Linked Ecosystem model (DALEC). DALEC is a box model simulating a large range of processes occurring at different time scales from days to millennia. Eddy covariance measurements of net ecosystem exchange of CO2 have been used intensively for over a decade to confront DALEC with real data to estimate model parameters and quantify uncertainty of the model predictions. The REgional FLux Estimation eXperiment (REFLEX), compared the strengths and weaknesses of various inverse modelling strategies (MCMC, ENKF) to estimate parameters and initial stocks for DALEC; most results agreed on the fact that parameters and initial stocks directly related to fast processes were best estimated with narrow confidence intervals, whereas those related to slow processes were poorly estimated with very large uncertainties. While other studies have tried to overcome this difficulty by adding complementary data streams or by considering longer observation windows no systematic analysis has been carried out so far to explain the large differences among results of REFLEX. One of the merits of DALEC is its simplicity that facilitates close mathematical scrutiny. Using variational techniques we quantify the ill-posedness of the inverse problem and we discuss various regularisation techniques. Using the tangent linear model we study the information content of multiple data sources and show how these multiple data sources help constraining initial carbon

  7. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  8. An improved exploratory search technique for pure integer linear programming problems

    NASA Technical Reports Server (NTRS)

    Fogle, F. R.

    1990-01-01

    The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.

  9. An improved phase shift reconstruction algorithm of fringe scanning technique for X-ray microscopy

    SciTech Connect

    Lian, S.; Yang, H.; Kudo, H.; Momose, A.; Yashiro, W.

    2015-02-15

    The X-ray phase imaging method has been applied to observe soft biological tissues, and it is possible to image the soft tissues by using the benefit of the so-called “Talbot effect” by an X-ray grating. One type of the X-ray phase imaging method was reported by combining an X-ray imaging microscope equipped by a Fresnel zone plate with a phase grating. Using the fringe scanning technique, a high-precision phase shift image could be obtained by displacing the grating step by step and measuring dozens of sample images. The number of the images was selected to reduce the error caused by the non-sinusoidal component of the Talbot self-image at the imaging plane. A larger number suppressed the error more but increased radiation exposure and required higher mechanical stability of equipment. In this paper, we analyze the approximation error of fringe scanning technique for the X-ray microscopy which uses just one grating and proposes an improved algorithm. We compute the approximation error by iteration and substitute that into the process of reconstruction of phase shift. This procedure will suppress the error even with few sample images. The results of simulation experiments show that the precision of phase shift image reconstructed by the proposed algorithm with 4 sample images is almost the same as that reconstructed by the conventional algorithm with 40 sample images. We also have succeeded in the experiment with real data.

  10. A simple and effective method to improve bioavailability of glimepiride by utilizing hydrotropy technique.

    PubMed

    Li, Haiying; Ma, Lilan; Li, Xiaxia; Cui, Xin; Yang, Wenzhi; Shen, Shigang; Chen, Mingmao

    2015-09-18

    The purpose of this study was to improve the solubility and bioavailability of glimepiride (GLMP) by utilizing hydrotropy technique. Meglumine (MU) as a hydrotrope could form the stable complex with glimepiride. The optimal glimepiride and meglumine (GLMP-MU) complex powder was obtained by using lyophilization. GLMP-MU powder was characterized by Fourier transform infrared spectroscopy (FT IR), X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). The formation of hydrogen bond between glimepiride and meglumine was confirmed by FT IR. The XRD studies indicated the amorphous state of glimepiride was appeared in the GLMP-MU. The DSC results were further confirmed GLMP-MU complex was prepared successfully. Moreover, the in vitro drug release rate of GLMP-MU powder was dramatically faster than that of glimepiride. Meanwhile, the AUC of GLMP-MU solution at an i.g./or i.v. dose of 5mg/kg in rat was significantly higher than that of the glimepiride suspensions. Together our results showed that hydrotropy technique was a simple and effective method to increase the solubility of glimepiride. PMID:26093052

  11. Pheromone-assisted techniques to improve the efficacy of insecticide sprays against Linepithema humile (Hymenoptera: Formicidae).

    PubMed

    Choe, Dong-Hwan; Tsai, Kasumi; Lopez, Carlos M; Campbell, Kathleen

    2014-02-01

    Outdoor residual sprays are among the most common methods for targeting pestiferous ants in urban pest management programs. If impervious surfaces such as concrete are treated with these insecticides, the active ingredients can be washed from the surface by rain or irrigation. As a result, residual sprays with fipronil and pyrethroids are found in urban waterways and aquatic sediments. Given the amount of insecticides applied to urban settings for ant control and their possible impact on urban waterways, the development of alternative strategies is critical to decrease the overall amounts of insecticides applied, while still achieving effective control of target ant species. Herein we report a "pheromone-assisted technique" as an economically viable approach to maximize the efficacy of conventional sprays targeting the Argentine ant. By applying insecticide sprays supplemented with an attractive pheromone compound, (Z)-9-hexadecenal, Argentine ants were diverted from nearby trails and nest entrances and subsequently exposed to insecticide residues. Laboratory experiments with fipronil and bifenthrin sprays indicated that the overall kill of the insecticides on Argentine ant colonies was significantly improved (57-142% increase) by incorporating (Z)-9-hexadecenal in the insecticide sprays. This technique, once it is successfully implemented in practical pest management programs, has the potential of providing maximum control efficacy with reduced amount of insecticides applied in the environment. PMID:24665716

  12. Accuracy improvement techniques in Precise Point Positioning method using multiple GNSS constellations

    NASA Astrophysics Data System (ADS)

    Vasileios Psychas, Dimitrios; Delikaraoglou, Demitris

    2016-04-01

    The future Global Navigation Satellite Systems (GNSS), including modernized GPS, GLONASS, Galileo and BeiDou, offer three or more signal carriers for civilian use and much more redundant observables. The additional frequencies can significantly improve the capabilities of the traditional geodetic techniques based on GPS signals at two frequencies, especially with regard to the availability, accuracy, interoperability and integrity of high-precision GNSS applications. Furthermore, highly redundant measurements can allow for robust simultaneous estimation of static or mobile user states including more parameters such as real-time tropospheric biases and more reliable ambiguity resolution estimates. This paper presents an investigation and analysis of accuracy improvement techniques in the Precise Point Positioning (PPP) method using signals from the fully operational (GPS and GLONASS), as well as the emerging (Galileo and BeiDou) GNSS systems. The main aim was to determine the improvement in both the positioning accuracy achieved and the time convergence it takes to achieve geodetic-level (10 cm or less) accuracy. To this end, freely available observation data from the recent Multi-GNSS Experiment (MGEX) of the International GNSS Service, as well as the open source program RTKLIB were used. Following a brief background of the PPP technique and the scope of MGEX, the paper outlines the various observational scenarios that were used in order to test various data processing aspects of PPP solutions with multi-frequency, multi-constellation GNSS systems. Results from the processing of multi-GNSS observation data from selected permanent MGEX stations are presented and useful conclusions and recommendations for further research are drawn. As shown, data fusion from GPS, GLONASS, Galileo and BeiDou systems is becoming increasingly significant nowadays resulting in a position accuracy increase (mostly in the less favorable East direction) and a large reduction of convergence

  13. Improved tumor identification using dual tracer molecular imaging in fluorescence guided brain surgery

    NASA Astrophysics Data System (ADS)

    Xu, Xiaochun; Torres, Veronica; Straus, David; Brey, Eric M.; Byrne, Richard W.; Tichauer, Kenneth M.

    2015-03-01

    Brain tumors represent a leading cause of cancer death for people under the age of 40 and the probability complete surgical resection of brain tumors remains low owing to the invasive nature of these tumors and the consequences of damaging healthy brain tissue. Molecular imaging is an emerging approach that has the potential to improve the ability for surgeons to correctly discriminate between healthy and cancerous tissue; however, conventional molecular imaging approaches in brain suffer from significant background signal in healthy tissue or an inability target more invasive sections of the tumor. This work presents initial studies investigating the ability of novel dual-tracer molecular imaging strategies to be used to overcome the major limitations of conventional "single-tracer" molecular imaging. The approach is evaluated in simulations and in an in vivo mice study with animals inoculated orthotopically using fluorescent human glioma cells. An epidermal growth factor receptor (EGFR) targeted Affibody-fluorescent marker was employed as a targeted imaging agent, and the suitability of various FDA approved untargeted fluorescent tracers (e.g. fluorescein & indocyanine green) were evaluated in terms of their ability to account for nonspecific uptake and retention of the targeted imaging agent. Signal-to-background ratio was used to measure and compare the amount of reporter in the tissue between targeted and untargeted tracer. The initial findings suggest that FDA-approved fluorescent imaging agents are ill-suited to act as untargeted imaging agents for dual-tracer fluorescent guided brain surgery as they suffer from poor delivery to the healthy brain tissue and therefore cannot be used to identify nonspecific vs. specific uptake of the targeted imaging agent where current surgery is most limited.

  14. Low molecular weight PEIs modified by hydrazone-based crosslinker and betaine as improved gene carriers.

    PubMed

    Fang, Gang; Zeng, Fang; Yu, Changmin; Wu, Shuizhu

    2014-10-01

    Low-molecular-weight polyethyleneimine (LMW PEI) exhibits poorer transfection efficiency but lower cytotoxicity compared to high-molecular-weight polyethyleneimine (such as PEI 25kDa). To enhance the gene transfection performance of LMW PEI, we herein demonstrate a new strategy for modifying LMW PEI. A crosslinker containing an acid-labile hydrazone bond (hydrazone-based crosslinker) was synthesized and used to crosslink PEI 1.8kDa and convert it into higher-molecular-weight polycations. And the crosslinked polycations were further modified by incorporating a betaine monomer [N,N-dimethyl(acrylamidopropyl)ammonium propane sulfonate, DMAAPS] onto their surfaces. The molar percentages of the incorporated betaine molecules to amino groups on the polycations were determined as 21.2%, 36.0% and 77.2%, respectively. Molecular weights of the modified polycations were measured using capillary viscometry at pH 7.4 and 5.0, respectively, and the degradation of the polymers in acidic solution was confirmed. The PEIs modified with hydrazone and betaine (PEI-Hdz-DMAAPS) exhibit much lower cytotoxicity than PEI 25K, and they also show no or little hemolytic effect with their hemolysis rates around 5%. PEI-Hdz-DMAAPS21.2%/DNA and PEI-Hdz-DMAAPS36.0%/DNA complexes exhibit high transfection efficiencies, which are comparable to or higher than that of PEI 25K/DNA complex in the absence or presence of 10% serum. With these improved gene delivery properties, the PEI-Hdz-DMAAPS samples have great potential for serving as efficient gene carriers. This strategy may provide some insights for constructing some other biocompatible materials.

  15. Towards the design of new and improved drilling fluid additives using molecular dynamics simulations.

    PubMed

    Anderson, Richard L; Greenwel, H Christopher; Suter, James L; Jarvis, Rebecca M; Coveney, Peter V

    2010-03-01

    During exploration for oil and gas, a technical drilling fluid is used to lubricate the drill bit, maintain hydrostatic pressure, transmit sensor readings, remove rock cuttings and inhibit swelling of unstable clay based reactive shale formations. Increasing environmental awareness and resulting legislation has led to the search for new, improved biodegradable drilling fluid components. In the case of additives for clay swelling inhibition, an understanding of how existing effective additives interact with clays must be gained to allow the design of improved molecules. Owing to the disordered nature and nanoscopic dimension of the interlayer pores of clay minerals, computer simulations have become an increasingly useful tool for studying clay-swelling inhibitor interactions. In this work we briefly review the history of the development of technical drilling fluids, the environmental impact of drilling fluids and the use of computer simulations to study the interactions between clay minerals and swelling inhibitors. We report on results from some recent large-scale molecular dynamics simulation studies on low molecular weight water-soluble macromolecular inhibitor molecules. The structure and interactions of poly(propylene oxide)-diamine, poly(ethylene glycol) and poly(ethylene oxide)-diacrylate inhibitor molecules with montmorillonite clay are studied.

  16. Improvement on Fermionic properties and new isotope production in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Wu, Tong; Zeng, Jie; Yang, Yongxu; Ou, Li

    2016-06-01

    By considering momentum transfer in the Fermi constraint procedure, the stability of the initial nuclei and fragments produced in heavy-ion collisions can be further improved in quantum molecular dynamics simulations. The case of a phase-space occupation probability larger than one is effectively reduced with the proposed procedure. Simultaneously, the energy conservation can be better described for both individual nuclei and heavy-ion reactions. With the revised version of the improved quantum molecular dynamics model, the fusion excitation functions of 16O+186W and the central collisions of Au+Au at 35 AMeV are re-examined. The fusion cross sections at sub-barrier energies and the charge distribution of fragments are relatively better reproduced due to the reduction of spurious nucleon emission. The charge and isotope distribution of fragments in Xe+Sn, U+U and Zr+Sn at intermediate energies are also predicted. More unmeasured extremely neutron-rich fragments with Z = 16-28 are observed in the central collisions of 238U+238U than that of 96Zr+124Sn, which indicates that multi-fragmentation of U+U may offer a fruitful pathway to new neutron-rich isotopes.

  17. Improvement on Fermionic properties and new isotope production in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Wu, Tong; Zeng, Jie; Yang, Yongxu; Ou, Li

    2016-06-01

    By considering momentum transfer in the Fermi constraint procedure, the stability of the initial nuclei and fragments produced in heavy-ion collisions can be further improved in quantum molecular dynamics simulations. The case of a phase-space occupation probability larger than one is effectively reduced with the proposed procedure. Simultaneously, the energy conservation can be better described for both individual nuclei and heavy-ion reactions. With the revised version of the improved quantum molecular dynamics model, the fusion excitation functions of 16O+186W and the central collisions of Au+Au at 35 AMeV are re-examined. The fusion cross sections at sub-barrier energies and the charge distribution of fragments are relatively better reproduced due to the reduction of spurious nucleon emission. The charge and isotope distribution of fragments in Xe+Sn, U+U and Zr+Sn at intermediate energies are also predicted. More unmeasured extremely neutron-rich fragments with Z = 16–28 are observed in the central collisions of 238U+238U than that of 96Zr+124Sn, which indicates that multi-fragmentation of U+U may offer a fruitful pathway to new neutron-rich isotopes.

  18. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy: An analytical technique to understand therapeutic responses at the molecular level

    PubMed Central

    Kalmodia, Sushma; Parameswaran, Sowmya; Yang, Wenrong; Barrow, Colin J.; Krishnakumar, Subramanian

    2015-01-01

    Rapid monitoring of the response to treatment in cancer patients is essential to predict the outcome of the therapeutic regimen early in the course of the treatment. The conventional methods are laborious, time-consuming, subjective and lack the ability to study different biomolecules and their interactions, simultaneously. Since; mechanisms of cancer and its response to therapy is dependent on molecular interactions and not on single biomolecules, an assay capable of studying molecular interactions as a whole, is preferred. Fourier Transform Infrared (FTIR) spectroscopy has become a popular technique in the field of cancer therapy with an ability to elucidate molecular interactions. The aim of this study, was to explore the utility of the FTIR technique along with multivariate analysis to understand whether the method has the resolution to identify the differences in the mechanism of therapeutic response. Towards achieving the aim, we utilized the mouse xenograft model of retinoblastoma and nanoparticle mediated targeted therapy. The results indicate that the mechanism underlying the response differed between the treated and untreated group which can be elucidated by unique spectral signatures generated by each group. The study establishes the efficiency of non-invasive, label-free and rapid FTIR method in assessing the interactions of nanoparticles with cellular macromolecules towards monitoring the response to cancer therapeutics. PMID:26568521

  19. Eigensolution techniques, their applications and Fisherʼs information entropy of the Tietz-Wei diatomic molecular model

    NASA Astrophysics Data System (ADS)

    Falaye, B. J.; Oyewumi, K. J.; Ikhdair, S. M.; Hamzavi, M.

    2014-11-01

    In this study, the approximate analytical solutions of Schrödinger, Klein-Gordon and Dirac equations under the Tietz-Wei (TW) diatomic molecular potential are represented by using an approximation for the centrifugal term. We have applied three types of eigensolution techniques: the functional analysis approach, supersymmetry quantum mechanics and the asymptotic iteration method to solve the Klein-Gordon, Dirac and Schrödinger equations, respectively. The energy eigenvalues and the corresponding eigenfunctions for these three wave equations are obtained, and some numerical results and figures are reported. It has been shown that these techniques yielded exactly the same results. some expectation values of the TW diatomic molecular potential within the framework of the Hellmann-Feynman theorem have been presented. The probability distributions that characterize the quantum mechanical states of TW diatomic molecular potential are analyzed by means of complementary information measures of a probability distribution called Fisher's information entropy. This distribution has been described in terms of Jacobi polynomials, whose characteristics are controlled by quantum numbers.

  20. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    NASA Astrophysics Data System (ADS)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are

  1. Thermal Processing Techniques to Improve Metal Sulfide Mixed Alcohol Catalyst Performance

    SciTech Connect

    Hensley, J.; Menart, M.; Costelow, K.; Thibodeaux, J.; Yung, M.

    2011-01-01

    Research over several decades by several institutions has shown that alkali-promoted metal sulfide catalysts are capable of producing mixed alcohols from syngas with high selectivity and yield. Unfortunately, process models suggest that syngas to mixed alcohol processes, and especially thermochemical biomass to mixed alcohol processes, require improvements to sulfide catalyst activity and/or selectivity for acceptable economics. These improvements, if incremental, cannot result in increased process complexity, capital expenditure, or catalyst costs. It is well accepted among catalyst researchers that thermal processing techniques like calcining and reduction can have profound effects on the properties and performance of finished catalysts, and that small variations in thermal processing do not usually affect the overall cost of the catalyst. Metal sulfide catalysts are no exception but surprisingly, little attention has been given to the effects of thermal treatment on bulk metal sulfide mixed alcohol catalysts. This presentation will discuss how parameters like temperature, dwell time, metal ratios, and purge gas affect the performance and physical properties of K-Co/Mo catalysts.

  2. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer

    SciTech Connect

    Kishigami, Satoshi . E-mail: kishigami@cdb.riken.jp; Mizutani, Eiji; Ohta, Hiroshi; Hikichi, Takafusa; Thuan, Nguyen Van; Wakayama, Sayaka; Bui, Hong-Thuy; Wakayama, Teruhiko

    2006-02-03

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) is believed to be associated with epigenetic errors including abnormal DNA hypermethylation. Recently, we elucidated by using round spermatids that, after nuclear transfer, treatment of zygotes with trichostatin A (TSA), an inhibitor of histone deacetylase, can remarkably reduce abnormal DNA hypermethylation depending on the origins of transferred nuclei and their genomic regions [S. Kishigami, N. Van Thuan, T. Hikichi, H. Ohta, S. Wakayama. E. Mizutani, T. Wakayama, Epigenetic abnormalities of the mouse paternal zygotic genome associated with microinsemination of round spermatids, Dev. Biol. (2005) in press]. Here, we found that 5-50 nM TSA-treatment for 10 h following oocyte activation resulted in more efficient in vitro development of somatic cloned embryos to the blastocyst stage from 2- to 5-fold depending on the donor cells including tail tip cells, spleen cells, neural stem cells, and cumulus cells. This TSA-treatment also led to more than 5-fold increase in success rate of mouse cloning from cumulus cells without obvious abnormality but failed to improve ES cloning success. Further, we succeeded in establishment of nuclear transfer-embryonic stem (NT-ES) cells from TSA-treated cloned blastocyst at a rate three times higher than those from untreated cloned blastocysts. Thus, our data indicate that TSA-treatment after SCNT in mice can dramatically improve the practical application of current cloning techniques.

  3. Advanced real-time dynamic scene generation techniques for improved performance and fidelity

    NASA Astrophysics Data System (ADS)

    Bowden, Mark H.; Buford, James A.; Mayhall, Anthony J.

    2000-07-01

    Recent advances in real-time synthetic scene generation for Hardware-in-the-loop (HWIL) testing at the U.S. Army Aviation and Missile Command (AMCOM) Aviation and Missile Research, Development, and Engineering Center (AMRDEC) improve both performance and fidelity. Modeling ground target scenarios requires tradeoffs because of limited texture memory for imagery and limited main memory for elevation data. High- resolution insets have been used in the past to provide better fidelity in specific areas, such as in the neighborhood of a target. Improvements for ground scenarios include smooth transitions for high-resolution insets to reduce high spatial frequency artifacts at the borders of the inset regions and dynamic terrain paging to support large area databases. Transport lag through the scene generation system, including sensor emulation and interface components, has been dealt with in the past through the use of sub-window extraction from oversize scenes. This compensates for spatial effects of transport lag but not temporal effects. A new system has been developed and used successfully to compensate for a flashing coded beacon in the scene. Other techniques have been developed to synchronize the scene generator with the seeker under test (SUT) and to model atmospheric effects, sensor optic and electronics, and angular emissivity attenuation.

  4. Binary classification of chalcone derivatives with LDA or KNN based on their antileishmanial activity and molecular descriptors selected using the Successive Projections Algorithm feature-selection technique.

    PubMed

    Goodarzi, Mohammad; Saeys, Wouter; de Araujo, Mario Cesar Ugulino; Galvão, Roberto Kawakami Harrop; Vander Heyden, Yvan

    2014-01-23

    Chalcones are naturally occurring aromatic ketones, which consist of an α-, β-unsaturated carbonyl system joining two aryl rings. These compounds are reported to exhibit several pharmacological activities, including antiparasitic, antibacterial, antifungal, anticancer, immunomodulatory, nitric oxide inhibition and anti-inflammatory effects. In the present work, a Quantitative Structure-Activity Relationship (QSAR) study is carried out to classify chalcone derivatives with respect to their antileishmanial activity (active/inactive) on the basis of molecular descriptors. For this purpose, two techniques to select descriptors are employed, the Successive Projections Algorithm (SPA) and the Genetic Algorithm (GA). The selected descriptors are initially employed to build Linear Discriminant Analysis (LDA) models. An additional investigation is then carried out to determine whether the results can be improved by using a non-parametric classification technique (One Nearest Neighbour, 1NN). In a case study involving 100 chalcone derivatives, the 1NN models were found to provide better rates of correct classification than LDA, both in the training and test sets. The best result was achieved by a SPA-1NN model with six molecular descriptors, which provided correct classification rates of 97% and 84% for the training and test sets, respectively.

  5. Comparison of the detection of periodontal pathogens in bacteraemia after tooth brushing by culture and molecular techniques

    PubMed Central

    Figuero, Elena; González, Itziar; O´Connor, Ana; Diz, Pedro; Álvarez, Maximiliano; Herrera, David; Sanz, Mariano

    2016-01-01

    Background The prevalence and amounts of periodontal pathogens detected in bacteraemia samples after tooth brushing-induced by means of four diagnostic technique, three based on culture and one in a molecular-based technique, have been compared in this study. Material and Methods Blood samples were collected from thirty-six subjects with different periodontal status (17 were healthy, 10 with gingivitis and 9 with periodontitis) at baseline and 2 minutes after tooth brushing. Each sample was analyzed by three culture-based methods [direct anaerobic culturing (DAC), hemo-culture (BACTEC), and lysis-centrifugation (LC)] and one molecular-based technique [quantitative polymerase chain reaction (qPCR)]. With culture any bacterial isolate was detected and quantified, while with qPCR only Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans were detected and quantified. Descriptive analyses, ANOVA and Chi-squared tests, were performed. Results Neither BACTEC nor qPCR detected any type of bacteria in the blood samples. Only LC (2.7%) and DAC (8.3%) detected bacteraemia, although not in the same patients. Fusobacterium nucleatum was the most frequently detected bacterial species. Conclusions The disparity in the results when the same samples were analyzed with four different microbiological detection methods highlights the need for a proper validation of the methodology to detect periodontal pathogens in bacteraemia samples, mainly when the presence of periodontal pathogens in blood samples after tooth brushing was very seldom. Key words:Bacteraemia, periodontitis, culture, PCR, tooth brushing. PMID:26946197

  6. Improving NMR Protein Structure Quality by Rosetta Refinement: a Molecular Replacement Study

    SciTech Connect

    Ramelot, T.; Raman, S; Kuzin, A; Hunt, J; Baker, D; Kennedy, M

    2009-01-01

    The structure of human protein HSPC034 has been determined by both solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography. Refinement of the NMR structure ensemble, using a Rosetta protocol in the absence of NMR restraints, resulted in significant improvements not only in structure quality, but also in molecular replacement (MR) performance with the raw X-ray diffraction data using MOLREP and Phaser. This method has recently been shown to be generally applicable with improved MR performance demonstrated for eight NMR structures refined using Rosetta (Qian et al., Nature 2007;450:259-264). Additionally, NMR structures of HSPC034 calculated by standard methods that include NMR restraints have improvements in the RMSD to the crystal structure and MR performance in the order DYANA, CYANA, XPLOR-NIH, and CNS with explicit water refinement (CNSw). Further Rosetta refinement of the CNSw structures, perhaps due to more thorough conformational sampling and/or a superior force field, was capable of finding alternative low energy protein conformations that were equally consistent with the NMR data according to the Recall, Precision, and F-measure (RPF) scores. On further examination, the additional MR-performance shortfall for NMR refined structures as compared with the X-ray structure were attributed, in part, to crystal-packing effects, real structural differences, and inferior hydrogen bonding in the NMR structures. A good correlation between a decrease in the number of buried unsatisfied hydrogen-bond donors and improved MR performance demonstrates the importance of hydrogen-bond terms in the force field for improving NMR structures. The superior hydrogen-bond network in Rosetta-refined structures demonstrates that correct identification of hydrogen bonds should be a critical goal of NMR structure refinement. Inclusion of nonbivalent hydrogen bonds identified from Rosetta structures as additional restraints in the structure calculation results in

  7. Improving NMR Protein Structure Quality by Rosetta Refinement: A Molecular Replacement Study

    SciTech Connect

    Ramelot, Theresa A.; Raman, Srivatsan; Kuzin, Alexander P.; Xiao, Rong; Ma, LiChung; Acton, Thomas; Hunt, John F.; Montelione, Gaetano; Baker, David; Kennedy, Michael A.

    2009-04-01

    The structure of human protein HSPC034 has been determined by both solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography. Refinement of the NMR structure ensemble, using a Rosetta protocol in the absence of NMR restraints, resulted in significant improvements not only in structure quality, but also in molecular replacement (MR) performance with the raw X-ray diffraction data using MOLREP and Phaser. This method has recently been shown to be generally applicable with improved MR performance demonstrated for eight NMR structures refined using Rosetta (Qian et al., Nature 2007;450:259–264). Additionally, NMR structures of HSPC034 calculated by standard methods that include NMR restraints have improvements in the RMSD to the crystal structure and MR performance in the order DYANA, CYANA, XPLOR-NIH, and CNS with explicit water refinement (CNSw). Further Rosetta refinement of the CNSw structures, perhaps due to more thorough conformational sampling and/or a superior force field, was capable of finding alternative low energy protein conformations that were equally consistent with the NMR data according to the Recall, Precision, and F-measure (RPF) scores. On further examination, the additional MR-performance shortfall for NMR refined structures as compared with the X-ray structure were attributed, in part, to crystal-packing effects, real structural differences, and inferior hydrogen bonding in the NMR structures. A good correlation between a decrease in the number of buried unsatisfied hydrogen-bond donors and improved MR performance demonstrates the importance of hydrogen-bond terms in the force field for improving NMR structures. The superior hydrogen-bond network in Rosetta-refined structures demonstrates that correct identification of hydrogen bonds should be a critical goal of NMR structure refinement. Inclusion of nonbivalent hydrogen bonds identified from Rosetta structures as additional restraints in the structure calculation results

  8. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique

    SciTech Connect

    Fry-Petit, A. M. E-mail: afry@fullerton.edu; Sheckelton, J. P.; McQueen, T. M. E-mail: afry@fullerton.edu; Rebola, A. F.; Fennie, C. J.; Mourigal, M.; Valentine, M.; Drichko, N.

    2015-09-28

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn{sub 2}Mo{sub 3}O{sub 8}, this approach allows direct assignment of the constrained rotational mode of Mo{sub 3}O{sub 13} clusters and internal modes of MoO{sub 6} polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems.

  9. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique.

    PubMed

    Fry-Petit, A M; Rebola, A F; Mourigal, M; Valentine, M; Drichko, N; Sheckelton, J P; Fennie, C J; McQueen, T M

    2015-09-28

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn2Mo3O8, this approach allows direct assignment of the constrained rotational mode of Mo3O13 clusters and internal modes of MoO6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems.

  10. Molecular Techniques for the Detection and Differentiation of Host and Parasitoid Species and the Implications for Fruit Fly Management

    PubMed Central

    Jenkins, Cheryl; Chapman, Toni A.; Micallef, Jessica L.; Reynolds, Olivia L.

    2012-01-01

    Parasitoid detection and identification is a necessary step in the development and implementation of fruit fly biological control strategies employing parasitoid augmentive release. In recent years, DNA-based methods have been used to identify natural enemies of pest species where morphological differentiation is problematic. Molecular techniques also offer a considerable advantage over traditional morphological methods of fruit fly and parasitoid discrimination as well as within-host parasitoid identification, which currently relies on dissection of immature parasitoids from the host, or lengthy and labour-intensive rearing methods. Here we review recent research focusing on the use of molecular strategies for fruit fly and parasitoid detection and differentiation and discuss the implications of these studies on fruit fly management. PMID:26466628

  11. Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique

    NASA Astrophysics Data System (ADS)

    Fry-Petit, A. M.; Rebola, A. F.; Mourigal, M.; Valentine, M.; Drichko, N.; Sheckelton, J. P.; Fennie, C. J.; McQueen, T. M.

    2015-09-01

    For over a century, vibrational spectroscopy has enhanced the study of materials. Yet, assignment of particular molecular motions to vibrational excitations has relied on indirect methods. Here, we demonstrate that applying group theoretical methods to the dynamic pair distribution function analysis of neutron scattering data provides direct access to the individual atomic displacements responsible for these excitations. Applied to the molecule-based frustrated magnet with a potential magnetic valence-bond state, LiZn2Mo3O8, this approach allows direct assignment of the constrained rotational mode of Mo3O13 clusters and internal modes of MoO6 polyhedra. We anticipate that coupling this well known data analysis technique with dynamic pair distribution function analysis will have broad application in connecting structural dynamics to physical properties in a wide range of molecular and solid state systems.

  12. Comparison of molecular and microscopic technique for detection of Theileria annulata from the field cases of cattle

    PubMed Central

    Chauhan, H. C.; Patel, B. K.; Bhagat, A. G.; Patel, M. V.; Patel, S. I.; Raval, S. H.; Panchasara, H. H.; Shrimali, M. D.; Patel, A. C.; Chandel, B. S.

    2015-01-01

    Aim: Tropical theileriosis is fatal hemoprotozoal disease of dairy animals caused by Theileria annulata. The aim of the present study was to detect the T. annulata and comparison of results of molecular and microscopic techniques. Materials and Methods: A total of 52 blood samples were collected from the cattle suspected for theileriosis across the Banaskantha district. All the samples were screened for theileriosis using Giemsa’s staining technique and polymerase chain reaction (PCR). Results: Total of 17 (32.69%) and 24 (46.15%) samples were found positive for theileriosis by microscopic examination and PCR test, respectively. It revealed that the study area is endemic for theileriosis, and the microscopic technique has 70.83% sensitivity and 100% specificity with respect to PCR technique. Conclusion: It may be concluded from the present study that the PCR is comparatively sensitive technique than microscopic examination and may be recommended to use in the field for screening of theileriosis in the study area, where a high prevalence of diseases have been reported due to intensive dairy farming. PMID:27047045

  13. Ultrasound guided fluorescence molecular tomography with improved quantification by an attenuation compensated born-normalization and in vivo preclinical study of cancer

    NASA Astrophysics Data System (ADS)

    Li, Baoqiang; Berti, Romain; Abran, Maxime; Lesage, Frédéric

    2014-05-01

    Ultrasound imaging, having the advantages of low-cost and non-invasiveness over MRI and X-ray CT, was reported by several studies as an adequate complement to fluorescence molecular tomography with the perspective of improving localization and quantification of fluorescent molecular targets in vivo. Based on the previous work, an improved dual-modality Fluorescence-Ultrasound imaging system was developed and then validated in imaging study with preclinical tumor model. Ultrasound imaging and a profilometer were used to obtain the anatomical prior information and 3D surface, separately, to precisely extract the tissue boundary on both sides of sample in order to achieve improved fluorescence reconstruction. Furthermore, a pattern-based fluorescence reconstruction on the detection side was incorporated to enable dimensional reduction of the dataset while keeping the useful information for reconstruction. Due to its putative role in the current imaging geometry and the chosen reconstruction technique, we developed an attenuation compensated Born-normalization method to reduce the attenuation effects and cancel off experimental factors when collecting quantitative fluorescence datasets over large area. Results of both simulation and phantom study demonstrated that fluorescent targets could be recovered accurately and quantitatively using this reconstruction mechanism. Finally, in vivo experiment confirms that the imaging system associated with the proposed image reconstruction approach was able to extract both functional and anatomical information, thereby improving quantification and localization of molecular targets.

  14. Ultrasound guided fluorescence molecular tomography with improved quantification by an attenuation compensated born-normalization and in vivo preclinical study of cancer

    SciTech Connect

    Li, Baoqiang; Berti, Romain; Abran, Maxime; Lesage, Frédéric

    2014-05-15

    Ultrasound imaging, having the advantages of low-cost and non-invasiveness over MRI and X-ray CT, was reported by several studies as an adequate complement to fluorescence molecular tomography with the perspective of improving localization and quantification of fluorescent molecular targets in vivo. Based on the previous work, an improved dual-modality Fluorescence-Ultrasound imaging system was developed and then validated in imaging study with preclinical tumor model. Ultrasound imaging and a profilometer were used to obtain the anatomical prior information and 3D surface, separately, to precisely extract the tissue boundary on both sides of sample in order to achieve improved fluorescence reconstruction. Furthermore, a pattern-based fluorescence reconstruction on the detection side was incorporated to enable dimensional reduction of the dataset while keeping the useful information for reconstruction. Due to its putative role in the current imaging geometry and the chosen reconstruction technique, we developed an attenuation compensated Born-normalization method to reduce the attenuation effects and cancel off experimental factors when collecting quantitative fluorescence datasets over large area. Results of both simulation and phantom study demonstrated that fluorescent targets could be recovered accurately and quantitatively using this reconstruction mechanism. Finally, in vivo experiment confirms that the imaging system associated with the proposed image reconstruction approach was able to extract both functional and anatomical information, thereby improving quantification and localization of molecular targets.

  15. Increased Oil Production and Reserves from Improved Completion Techniques in the Bluebell Field, Uinta Basin, Utah, Class I

    SciTech Connect

    Morgan, Craig D.; Gwynn, Wallace; Deo, Milind D.; Jarrard, Richard; Curtice, Richard; Morris, Thomas H.; Smouse, DeForrest; Tripp, Carol N.

    2000-01-20

    The objective of this project was to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Unita Basin Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that staged-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance.

  16. Some interesting aspects of physisorption stay-time measurements obtained using molecular-beam techniques. [on Ni surface

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.; Fisher, S. S.

    1974-01-01

    Stay-time distributions have been obtained for Xe physisorbing on polycrystalline nickel as a function of the target temperature using a pulsed molecular-beam technique. Some interesting effects due to ion bombardment of the surface using He, Ar, and Xe ions are presented. Measured detector signal shapes are found to deviate from those predicted for first-order desorption with velocities corresponding to Maxwellian effusion at the surface temperature. Evidence is found for interaction between beam pulse adsorption and steady-state adsorption of beam species background atoms.

  17. Fabrication of IrSi(3)/p-Si Schottky diodes by a molecular beam epitaxy technique

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Iannelli, J. M.

    1990-01-01

    IrSi(3)/p-Si Schottky diodes have been fabricated by a molecular beam epitaxy technique at 630 C. Good surface morphology was observed for IrSi(3) layers grown at temperatures below 680 C, and an increasing tendency to form islands is observed in samples grown at higher temperatures. Good diode current-voltage characteristics were observed and Schottky barrier heights of 0.14-0.18 eV were determined by activation energy analysis and spectral response measurement.

  18. Preparation of an ochre suppressor tRNA recognizing exclusively UAA codon by using the molecular surgery technique.

    PubMed

    Yokogawa, Takashi; Hassan, Hanim Munirah Binti Che; Yokota, Yukiko; Ohno, Satoshi; Nishikawa, Kazuya

    2009-01-01

    In order to create an ochre suppressor tRNA which exclusively recognizes UAA codon, we replaced the G34 at the first position of yeast tRNA(Tyr)[GPsiA] anticodon with pseudouridine34 (Psi34) by using the molecular surgery technique. This tRNA(Tyr)[PsiPsiA] recognized only the UAA codon as expectedly, but tRNA(Tyr)[UPsiA] made as a control also behaved similarly. This result may suggest that U34 must be somehow modified to facilitate the wobble-pairing to G at the third position of codon. PMID:19749377

  19. Improving Sterile Insect Technique (SIT) for tsetse flies through research on their symbionts and pathogens

    PubMed Central

    Abd-Alla, Adly M.M.; Bergoin, Max; Parker, Andrew G.; Maniania, Nguya K.; Vlak, Just M.; Bourtzis, Kostas; Boucias, Drion G.; Aksoy, Serap

    2013-01-01

    Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the trypanosomes, which cause human African trypanosomosis (HAT) or sleeping sickness in humans and African animal trypanosomosis (AAT) or nagana in animals. Due to the lack of effective vaccines and inexpensive drugs for HAT, and the development of resistance of the trypanosomes against the available trypanocidal drugs, vector control remains the most efficient strategy for sustainable management of these diseases. Among the control methods used for tsetse flies, Sterile Insect Technique (SIT), in the frame of area-wide integrated pest management (AW-IPM), represents an effective tactic to suppress and/or eradicate tsetse flies. One constraint in implementing SIT is the mass production of target species. Tsetse flies harbor obligate bacterial symbionts and salivary gland hypertrophy virus which modulate the fecundity of the infected flies. In support of the future expansion of the SIT for tsetse fly control, the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture implemented a six year Coordinated Research Project (CRP) entitled “Improving SIT for Tsetse Flies through Research on their Symbionts and Pathogens”. The consortium focused on the prevalence and the interaction between the bacterial symbionts and the virus, the development of strategies to manage virus infections in tsetse colonies, the use of entomopathogenic fungi to control tsetse flies in combination with SIT, and the development of symbiont-based strategies to control tsetse flies and trypanosomosis. The results of the CRP and the solutions envisaged to alleviate the constraints of the mass rearing of tsetse flies for SIT are presented in this special issue. PMID:22841636

  20. Improved Vote Aggregation Techniques for the Geo-Wiki Cropland Capture Crowdsourcing Game

    NASA Astrophysics Data System (ADS)

    Baklanov, Artem; Fritz, Steffen; Khachay, Michael; Nurmukhametov, Oleg; Salk, Carl; See, Linda; Shchepashchenko, Dmitry

    2016-04-01

    Crowdsourcing is a new approach for solving data processing problems for which conventional methods appear to be inaccurate, expensive, or time-consuming. Nowadays, the development of new crowdsourcing techniques is mostly motivated by so called Big Data problems, including problems of assessment and clustering for large datasets obtained in aerospace imaging, remote sensing, and even in social network analysis. By involving volunteers from all over the world, the Geo-Wiki project tackles problems of environmental monitoring with applications to flood resilience, biomass data analysis and classification of land cover. For example, the Cropland Capture Game, which is a gamified version of Geo-Wiki, was developed to aid in the mapping of cultivated land, and was used to gather 4.5 million image classifications from the Earth's surface. More recently, the Picture Pile game, which is a more generalized version of Cropland Capture, aims to identify tree loss over time from pairs of very high resolution satellite images. Despite recent progress in image analysis, the solution to these problems is hard to automate since human experts still outperform the majority of machine learning algorithms and artificial systems in this field on certain image recognition tasks. The replacement of rare and expensive experts by a team of distributed volunteers seems to be promising, but this approach leads to challenging questions such as: how can individual opinions be aggregated optimally, how can confidence bounds be obtained, and how can the unreliability of volunteers be dealt with? In this paper, on the basis of several known machine learning techniques, we propose a technical approach to improve the overall performance of the majority voting decision rule used in the Cropland Capture Game. The proposed approach increases the estimated consistency with expert opinion from 77% to 86%.

  1. Zinc ion implantation-deposition technique improves the osteoblast biocompatibility of titanium surfaces

    PubMed Central

    LIANG, YONGQIANG; XU, JUAN; CHEN, JING; QI, MENGCHUN; XIE, XUEHONG; HU, MIN

    2015-01-01

    The plasma immersion ion implantation and deposition (PIIID) technique was used to implant zinc (Zn) ions into smooth surfaces of pure titanium (Ti) disks for investigation of tooth implant surface modification. The aim of the present study was to evaluate the surface structure and chemical composition of a modified Ti surface following Zn ion implantation and deposition and to examine the effect of such modification on osteoblast biocompatibility. Using the PIIID technique, Zn ions were deposited onto the smooth surface of pure Ti disks. The physical structure and chemical composition of the modified surface layers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. In vitro culture assays using the MG-63 bone cell line were performed to determine the effects of Zn-modified Ti surfaces following PIIID on cellular function. Acridine orange staining was used to detect cell attachment to the surfaces and cell cycle analysis was performed using flow cytometry. SEM revealed a rough ‘honeycomb’ structure on the Zn-modified Ti surfaces following PIIID processing and XPS data indicated that Zn and oxygen concentrations in the modified Ti surfaces increased with PIIID processing time. SEM also revealed significantly greater MG-63 cell growth on Zn-modified Ti surfaces than on pure Ti surfaces (P<0.05). Flow cytometric analysis revealed increasing percentages of MG-63 cells in S phase with increasing Zn implantation and deposition, suggesting that MG-63 apoptosis was inhibited and MG-63 proliferation was promoted on Zn-PIIID-Ti surfaces. The present results suggest that modification with Zn-PIIID may be used to improve the osteoblast biocompatibility of Ti implant surfaces. PMID:25673139

  2. Zinc ion implantation‑deposition technique improves the osteoblast biocompatibility of titanium surfaces.

    PubMed

    Liang, Yongqiang; Xu, Juan; Chen, Jing; Qi, Mengchun; Xie, Xuehong; Hu, Min

    2015-06-01

    The plasma immersion ion implantation and deposition (PIIID) technique was used to implant zinc (Zn) ions into smooth surfaces of pure titanium (Ti) disks for investigation of tooth implant surface modification. The aim of the present study was to evaluate the surface structure and chemical composition of a modified Ti surface following Zn ion implantation and deposition and to examine the effect of such modification on osteoblast biocompatibility. Using the PIIID technique, Zn ions were deposited onto the smooth surface of pure Ti disks. The physical structure and chemical composition of the modified surface layers were characterized by scanning electron microscopy (SEM) and X‑ray photoelectron spectroscopy (XPS), respectively. In vitro culture assays using the MG‑63 bone cell line were performed to determine the effects of Zn‑modified Ti surfaces following PIIID on cellular function. Acridine orange staining was used to detect cell attachment to the surfaces and cell cycle analysis was performed using flow cytometry. SEM revealed a rough 'honeycomb' structure on the Zn‑modified Ti surfaces following PIIID processing and XPS data indicated that Zn and oxygen concentrations in the modified Ti surfaces increased with PIIID processing time. SEM also revealed significantly greater MG‑63 cell growth on Zn‑modified Ti surfaces than on pure Ti surfaces (P<0.05). Flow cytometric analysis revealed increasing percentages of MG‑63 cells in S phase with increasing Zn implantation and deposition, suggesting that MG‑63 apoptosis was inhibited and MG‑63 proliferation was promoted on Zn‑PIIID‑Ti surfaces. The present results suggest that modification with Zn‑PIIID may be used to improve the osteoblast biocompatibility of Ti implant surfaces.

  3. Development of a molecular beam technique to study early solar system silicon reactions

    NASA Technical Reports Server (NTRS)

    Dong, Q. W.; Thiemens, M. H.

    1993-01-01

    Silicon monoxide is one of the major gas phase silicon bearing components observed in astronomical environments. Silicon oxide serves as the major rock forming material for terrestrial and meteoritic bodies. It is known that several gas phase reactions produce mass independent isotopic fractionations which possess the same delta(O-17)/delta(O-18) ratio observed in Allende inclusions. The general symmetry dependence of the chemically produced mass independent isotopic fractionation process suggests that there are several plausible reactions which could occur in the early solar system which may lead to production of the observed meteoritic oxygen isotopic anomalies. An important component in exploring the role of such processes is the need to experimentally determine the isotopic fractionations for specific reactions of relevance to the early solar system. It has already been demonstrated that atomic oxygen reaction with CO, a major nebular oxygen bearing species, produces a large (approximately 90 percent), mass independent isotopic fractionation. The next hurdle regarding assessing the involvement of symmetry dependent isotopic fractionation processes in the pre-solar nebula is to determine isotopic fractionation factors associated with gas phase reactions of metallic oxides. In particular, a reaction such as O + SiO yields SiO2 is a plausible nebular reaction which could produce a delta(O-17) is approximately delta(O-18) fractionation based upon molecular symmetry considerations. While the isotopic fractionations during silicate evaporation and condensation have been determined, there are no isotopic studies of controlled, gas phase nucleation processes. In order to carefully control the reaction kinetics, a molecular beam apparatus has been constructed. This system produces a supersonic, collimated beam of SiO molecules which is reacted with a second beam of oxygen atoms. An important feature of molecular beams is that they operate at sufficiently low pressures

  4. Geometrical splitting technique to improve the computational efficiency in Monte Carlo calculations for proton therapy

    PubMed Central

    Ramos-Méndez, José; Perl, Joseph; Faddegon, Bruce; Schümann, Jan; Paganetti, Harald

    2013-01-01

    simulations done with and without particle splitting were within the accepted clinical tolerance of 2%, with a 0.4% statistical uncertainty. For the two patient geometries considered, head and prostate, the efficiency gain was 20.9 and 14.7, respectively, with the percentages of voxels with gamma indices lower than unity 98.9% and 99.7%, respectively, using 2% and 2 mm criteria. Conclusions: The authors have implemented an efficient variance reduction technique with significant speed improvements for proton Monte Carlo simulations. The method can be transferred to other codes and other treatment heads. PMID:23556888

  5. Geometrical splitting technique to improve the computational efficiency in Monte Carlo calculations for proton therapy

    SciTech Connect

    Ramos-Mendez, Jose; Perl, Joseph; Faddegon, Bruce; Schuemann, Jan; Paganetti, Harald

    2013-04-15

    done with and without particle splitting were within the accepted clinical tolerance of 2%, with a 0.4% statistical uncertainty. For the two patient geometries considered, head and prostate, the efficiency gain was 20.9 and 14.7, respectively, with the percentages of voxels with gamma indices lower than unity 98.9% and 99.7%, respectively, using 2% and 2 mm criteria. Conclusions: The authors have implemented an efficient variance reduction technique with significant speed improvements for proton Monte Carlo simulations. The method can be transferred to other codes and other treatment heads.

  6. Nonequilibrium molecular dynamics calculation of the thermal conductivity based on an improved relaxation scheme.

    PubMed

    Cao, Bing-Yang

    2008-08-21

    A nonequilibrium molecular dynamics (NEMD) method using stochastic energy injection and removal as uniform heat sources and sinks is developed to calculate the thermal conductivity. The stochastic energy is generated by a Maxwell function generator and is imposed on only a few individual molecules each time step. The relaxation of the thermal perturbation is improved compared to other NEMD algorithms because there are no localized heat source and sink slab regions in the system. The heat sources are uniformly distributed in the right half of the system while the sinks are in the left half, which leads to a periodically quadratic temperature distribution that is almost sinusoidal. The thermal conductivity is then easily calculated from the mean temperatures of the right and left half systems rather than by fitting the temperature profiles. This improved relaxation NEMD scheme is used to calculate the thermal conductivities of liquid and solid argons. It shows that the present algorithm gives accurate results with fast convergence and small size effects. Other stochastic energy perturbation, e.g., thermal noise, can be used to replace the Maxwell-type perturbation used in this paper to make the improved relaxation scheme more effective. PMID:19044759

  7. Improved Spectroscopy of Molecular Ions in the Mid-Infrared with Up-Conversion Detection

    NASA Astrophysics Data System (ADS)

    Markus, Charles R.; Perry, Adam J.; Hodges, James N.; McCall, Benjamin J.

    2016-06-01

    Heterodyne detection, velocity modulation, and cavity enhancement are useful tools for observing rovibrational transitions of important molecular ions. We have utilized these methods to investigate a number of molecular ions, such as H_3^+, CH_5^+, HeH^+, and OH^+. In the past, parasitic etalons and the lack of fast and sensitive detectors in the mid-infrared have limited the number of transitions we could measure with MHz-level precision. Recently, we have significantly reduced the amplitude of unwanted interference fringes with a Brewster-plate spoiler. We have also developed a detection scheme which up-converts the mid-infrared light with difference frequency generation which allows the use of a faster and more sensitive avalanche photodetector. The higher detection bandwidth allows for optimized heterodyne detection at higher modulation frequencies. The overall gain in signal-to-noise from both improvements will enable extensive high-precision line lists of molecular ions and searches for previously unobserved transitions. K.N. Crabtree, J.N. Hodges, B.M. Siller, A.J. Perry, J.E. Kelly, P.A. Jenkins II, and B.J. McCall, Chem. Phys. Lett. 551 (2012) 1-6. A.J. Perry, J.N. Hodges, C.R. Markus, G.S. Kocheril, and B.J. McCall, J. Mol. Spec. 317 (2015) 71-73. J.N. Hodges, A.J. Perry, P.A. Jenkins II, B.M. Siller, and B.J. McCall, J. Chem. Phys. 139 (2013) 164291. A.J. Perry, J.N. Hodges, C.R. Markus, G.S. Kocheril, and B.J. McCall. 2014, J. Chem. Phys. 141, 101101 C.R. Markus, J.N. Hodges, A.J. Perry, G.S. Kocheril, H.S.P. Muller, and B.J. McCall, Astrophys. J. 817 (2016) 138.

  8. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Araghi, Houshang; Zabihi, Zabiholah; Nayebi, Payman; Ehsani, Mohammad Mahdi

    2016-10-01

    II-VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  9. CT reconstruction techniques for improved accuracy of lung CT airway measurement

    SciTech Connect

    Rodriguez, A.; Ranallo, F. N.; Judy, P. F.; Gierada, D. S.; Fain, S. B.

    2014-11-01

    FBP. Veo reconstructions showed slight improvement over STD FBP reconstructions (4%–9% increase in accuracy). The most improved ID and WA% measures were for the smaller airways, especially for low dose scans reconstructed at half DFOV (18 cm) with the EDGE algorithm in combination with 100% ASIR to mitigate noise. Using the BONE + ASIR at half BONE technique, measures improved by a factor of 2 over STD FBP even at a quarter of the x-ray dose. Conclusions: The flexibility of ASIR in combination with higher frequency algorithms, such as BONE, provided the greatest accuracy for conventional and low x-ray dose relative to FBP. Veo provided more modest improvement in qCT measures, likely due to its compatibility only with the smoother STD kernel.

  10. Robust Requirements Tracing via Internet Search Technology: Improving an IV and V Technique. Phase 2

    NASA Technical Reports Server (NTRS)

    Hayes, Jane; Dekhtyar, Alex

    2004-01-01

    There are three major objectives to this phase of the work. (1) Improvement of Information Retrieval (IR) methods for Independent Verification and Validation (IV&V) requirements tracing. Information Retrieval methods are typically developed for very large (order of millions - tens of millions and more documents) document collections and therefore, most successfully used methods somewhat sacrifice precision and recall in order to achieve efficiency. At the same time typical IR systems treat all user queries as independent of each other and assume that relevance of documents to queries is subjective for each user. The IV&V requirements tracing problem has a much smaller data set to operate on, even for large software development projects; the set of queries is predetermined by the high-level specification document and individual requirements considered as query input to IR methods are not necessarily independent from each other. Namely, knowledge about the links for one requirement may be helpful in determining the links of another requirement. Finally, while the final decision on the exact form of the traceability matrix still belongs to the IV&V analyst, his/her decisions are much less arbitrary than those of an Internet search engine user. All this suggests that the information available to us in the framework of the IV&V tracing problem can be successfully leveraged to enhance standard IR techniques, which in turn would lead to increased recall and precision. We developed several new methods during Phase II; (2) IV&V requirements tracing IR toolkit. Based on the methods developed in Phase I and their improvements developed in Phase II, we built a toolkit of IR methods for IV&V requirements tracing. The toolkit has been integrated, at the data level, with SAIC's SuperTracePlus (STP) tool; (3) Toolkit testing. We tested the methods included in the IV&V requirements tracing IR toolkit on a number of projects.

  11. Fostering low-cost soil moisture monitoring techniques to improve irrigation efficiency in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Bouleau, Clémence; Baracchini, Theo; Razurel, Pierre; Gorla, Lorenzo; Bolay, Jean-Claude; Perona, Paolo

    2015-04-01

    Irrigated agriculture is a significant activity in water stressed semi-arid (e.g., the Sahel) regions, thereby yield and water management are fundamental aspects of irrigation success. Small farmers have often difficulties in managing crops and in evaluating water needs resulting in low yield with excessive water consumption, elevated pumping costs and soil degradation. In different proportions, this overuse of water concerns all irrigation techniques: gravity flows from reservoirs, watering cans irrigation from groundwater wells, micro- or drip irrigation. Baseline requirements for supporting sustainable technology are low costs, easy installation, minimal maintenance, and local production. We present and discuss results from the Info4Dourou2.0 explorative project in Burkina Faso, the main goal of which is to improve small-scale agriculture by the use of sensing and communication technologies. In particular, a support system that couples autonomous and continuous measurements of meteorological variables and soil matrix potential as well as soil humidity with agronomic models has been tested in drip-irrigated fields over a three-year period. In particular, the system is collecting data from three water potential sensors at different locations per field and informs the farmers through a simple interface of the correct amount of water needed by the plant. In its simplicity this system provides an easy to use and install irrigation management setup, and is therefore an ideal candidate in favor of sustainability. Info4Dourou2.0 pilot experiments have shown that farmers can obtain significantly higher yields using lower amounts of water. Overall, this methodology allows facing multiple urgent problems such as the use of environmental data to improve agricultural production towards ecosystem conservation, food security issues and adaptation to climatic change scenarios.

  12. Absolute molecular transition frequencies measured by three cavity-enhanced spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Cygan, A.; Wójtewicz, S.; Kowzan, G.; Zaborowski, M.; Wcisło, P.; Nawrocki, J.; Krehlik, P.; Śliwczyński, Ł.; Lipiński, M.; Masłowski, P.; Ciuryło, R.; Lisak, D.

    2016-06-01

    Absolute frequencies of unperturbed 12C16O transitions from the near-infrared (3-0) band were measured with uncertainties five-fold lower than previously available data. The frequency axis of spectra was linked to the primary frequency standard. Three different cavity enhanced absorption and dispersion spectroscopic methods and various approaches to data analysis were used to estimate potential systematic instrumental errors. Except for a well established frequency-stabilized cavity ring-down spectroscopy, we applied the cavity mode-width spectroscopy and the one-dimensional cavity mode-dispersion spectroscopy for measurement of absorption and dispersion spectra, respectively. We demonstrated the highest quality of the dispersion line shape measured in optical spectroscopy so far. We obtained line positions of the Doppler-broadened R24 and R28 transitions with relative uncertainties at the level of 10-10. The pressure shifting coefficients were measured and the influence of the line asymmetry on unperturbed line positions was analyzed. Our dispersion spectra are the first demonstration of molecular spectroscopy with both axes of the spectra directly linked to the primary frequency standard, which is particularly desirable for the future reference-grade measurements of molecular spectra.

  13. Continuous distribution model for the investigation of complex molecular architectures near interfaces with scattering techniques

    NASA Astrophysics Data System (ADS)

    Shekhar, Prabhanshu; Nanda, Hirsh; Lösche, Mathias; Heinrich, Frank

    2011-11-01

    Biological membranes are composed of a thermally disordered lipid matrix and therefore require non-crystallographic scattering approaches for structural characterization with x-rays or neutrons. Here we develop a continuous distribution (CD) model to refine neutron or x-ray reflectivity data from complex architectures of organic molecules. The new model is a flexible implementation of the composition-space refinement of interfacial structures to constrain the resulting scattering length density profiles. We show this model increases the precision with which molecular components may be localized within a sample, with a minimal use of free model parameters. We validate the new model by parameterizing all-atom molecular dynamics (MD) simulations of bilayers and by evaluating the neutron reflectivity of a phospholipid bilayer physisorbed to a solid support. The determination of the structural arrangement of a sparsely-tethered bilayer lipid membrane (stBLM) comprised of a multi-component phospholipid bilayer anchored to a gold substrate by a thiolated oligo(ethylene oxide) linker is also demonstrated. From the model we extract the bilayer composition and density of tether points, information which was previously inaccessible for stBLM systems. The new modeling strategy has been implemented into the ga_refl reflectivity data evaluation suite, available through the National Institute of Standards and Technology (NIST) Center for Neutron Research (NCNR).

  14. Novel Molecular Architectures Developed for Improved Solid Polymer Electrolytes for Lithium Polymer Batteries

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2002-01-01

    Lithium-based polymer batteries for aerospace applications need the ability to operate in temperatures ranging from -70 to 70 C. Current state-of-the-art solid polymer electrolytes (based on amorphous polyethylene oxide, PEO) have acceptable ionic conductivities (10-4 to 10-3 S/cm) only above 60 C. Higher conductivity can be achieved in the current systems by adding solvent or plasticizers to the solid polymer to improve ion transport. However, this can compromise the dimensional and thermal stability of the electrolyte, as well as compatibility with electrode materials. One of NASA Glenn Research Center's objectives in the PERS program is to develop new electrolytes having unique molecular architectures and/or novel ion transport mechanisms, leading to good ionic conductivity at room temperature and below without solvents or plasticizers.

  15. Phospholipid Membrane Protection by Sugar Molecules during Dehydration-Insights into Molecular Mechanisms Using Scattering Techniques

    SciTech Connect

    Garvey, Christopher J.; Lenné, Thomas; Koster, Karen L.; Kent, Ben; Bryant, Gary

    2014-09-24

    Scattering techniques have played a key role in our understanding of the structure and function of phospholipid membranes. These techniques have been applied widely to study how different molecules (e.g., cholesterol) can affect phospholipid membrane structure. However, there has been much less attention paid to the effects of molecules that remain in the aqueous phase. One important example is the role played by small solutes, particularly sugars, in protecting phospholipid membranes during drying or slow freezing. In this paper, we present new results and a general methodology, which illustrate how contrast variation small angle neutron scattering (SANS) and synchrotron-based X-ray scattering (small angle (SAXS) and wide angle (WAXS)) can be used to quantitatively understand the interactions between solutes and phospholipids. Specifically, we show the assignment of lipid phases with synchrotron SAXS and explain how SANS reveals the exclusion of sugars from the aqueous region in the particular example of hexagonal II phases formed by phospholipids.

  16. Molecular dynamics in azobenzene liquid crystal polymer films studied by transient grating technique

    NASA Astrophysics Data System (ADS)

    Katayama, Kenji; Fujii, Tomomi; Kuwahara, Shota; Takado, Kiyohide; Ikeda, Tomiki

    2014-10-01

    We studied the effect of the ratio between the monomer and cross-linker molecules in the azobenene included liquid crystal polymer films by using the heterodyne transient grating (HD-TG) technique, which is one of the time-resolved measurement techniques. Depending on the ratio, the magnitude of the refractive index change, its anisotropy, and the lifetime of the cis isomer of azobenzene, generated by a UV pulse irradiation. By increasing the cross-linker ratio, the refractive index change and its anisotropy was reduced, indicating less ability for the motion, while slower lifetime was observed by increasing the monomer ratio, indicating that the film is difficult to return the original shape by a visiblelight irradiation. The obtained dynamics was consistent with the functionality of the films.

  17. Nitric Oxide Improves Molecular Imaging of Inflammatory Atheroma using Targeted Echogenic Immunoliposomes

    PubMed Central

    Kim, Hyunggun; Kee, Patrick H.; Rim, Yonghoon; Moody, Melanie R.; Klegerman, Melvin E.; Vela, Deborah; Huang, Shao-Ling; McPherson, David D.; Laing, Susan T.

    2013-01-01

    Objective: This study aimed to demonstrate whether pretreatment with nitric oxide (NO) loaded into echogenic immunoliposomes (ELIP) plus ultrasound, applied before injection of molecularly targeted ELIP can promote penetration of the targeted contrast agent and improve visualization of atheroma components. Methods: ELIP were prepared using the pressurization-freeze method. Atherosclerosis was induced in Yucatan miniswine by balloon denudation and a hyperlipidemic diet. The animals were randomized to receive anti-intercellular adhesion molecule-1 (ICAM-1) ELIP or immunoglobulin (IgG)-ELIP, and were subdivided to receive pretreatment with standard ELIP plus ultrasound, NO-loaded ELIP, or NO-loaded ELIP plus ultrasound. Intravascular ultrasound (IVUS) data were collected before and after treatment. Results: Pretreatment with standard ELIP plus ultrasound or NO-loaded ELIP without ultrasound resulted in 9.2 ± 0.7% and 9.2 ± 0.8% increase in mean gray scale values, respectively, compared to baseline (p<0.001 vs. control). Pretreatment with NO-loaded ELIP plus ultrasound activation resulted in a further increase in highlighting with a change in mean gray scale value to 14.7 ± 1.0% compared to baseline (p<0.001 vs. control). These differences were best appreciated when acoustic backscatter data values (RF signal) were used [22.7 ± 2.0% and 22.4 ± 2.2% increase in RF signals for pretreatment with standard ELIP plus ultrasound and NO-loaded ELIP without ultrasound respectively (p<0.001 vs. control), and 40.0 ± 2.9% increase in RF signal for pretreatment with NO-loaded ELIP plus ultrasound (p<0.001 vs. control)]. Conclusion: NO-loaded ELIP plus ultrasound activation can facilitate anti-ICAM-1 conjugated ELIP delivery to inflammatory components in the arterial wall. This NO pretreatment strategy has potential to improve targeted molecular imaging of atheroma for eventual true tailored and personalized management of cardiovascular diseases. PMID:24267236

  18. A New Search for Elementary Particles with Fractional Electric Charge Using an Improved Millikan Technique

    SciTech Connect

    Mar, Nancy

    2003-08-18

    The authors have devised and demonstrated the successful operation of a low cost, high mass throughput technique capable of performing bulk matter searches for fractionally charged particles based on an improved Millikan liquid drop method. The method uses a stroboscopic lamp and a CCD video camera to image the trajectories of silicone oil drops falling through air in the presence of a vertical, alternating electric field. The images of the trajectories are computer processed in real time, the electric charge on a drop being measured with an rms error of 0.025 of an electron charge. This error is dominated by Brownian motion. In the first use of this method, they have looked at 5,974,941 drops and found no evidence for fractional charges in 1.07 mg of oil. With 95% confidence, the concentration of isolated quarks with {+-} 1/3e or {+-} 2/3e in silicone oil is less than one per 2.14 x 10{sup 20} nucleons.

  19. A technique to derive improved proper motions for Kepler objects of interest

    SciTech Connect

    Benedict, G. Fritz; Tanner, Angelle M.; Cargile, Phillip A.; Ciardi, David R.

    2014-12-01

    We outline an approach yielding proper motions with higher precision than exists in present catalogs for a sample of stars in the Kepler field. To increase proper-motion precision, we combine first-moment centroids of Kepler pixel data from a single season with existing catalog positions and proper motions. We use this astrometry to produce improved reduced-proper-motion diagrams, analogous to a Hertzsprung-Russell (H-R) diagram, for stars identified as Kepler objects of interest. The more precise the relative proper motions, the better the discrimination between stellar luminosity classes. Using UCAC4 and PPMXL epoch 2000 positions (and proper motions from those catalogs as quasi-Bayesian priors), astrometry for a single test Channel (21) and Season (0) spanning 2 yr yields proper motions with an average per-coordinate proper-motion error of 1.0 mas yr{sup –1}, which is over a factor of three better than existing catalogs. We apply a mapping between a reduced-proper-motion diagram and an H-R diagram, both constructed using Hubble Space Telescope parallaxes and proper motions, to estimate Kepler object of interest K-band absolute magnitudes. The techniques discussed apply to any future small-field astrometry as well as to the rest of the Kepler field.

  20. Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae)

    PubMed Central

    Schetelig, Marc F; Caceres, Carlos; Zacharopoulou, Antigone; Franz, Gerald; Wimmer, Ernst A

    2009-01-01

    Background The sterile insect technique (SIT) is an environment-friendly method used in area-wide pest management of the Mediterranean fruit fly Ceratitis capitata (Wiedemann; Diptera: Tephritidae). Ionizing radiation used to generate reproductive sterility in the mass-reared populations before release leads to reduction of competitiveness. Results Here, we present a first alternative reproductive sterility system for medfly based on transgenic embryonic lethality. This system is dependent on newly isolated medfly promoter/enhancer elements of cellularization-specifically-expressed genes. These elements act differently in expression strength and their ability to drive lethal effector gene activation. Moreover, position effects strongly influence the efficiency of the system. Out of 60 combinations of driver and effector construct integrations, several lines resulted in larval and pupal lethality with one line showing complete embryonic lethality. This line was highly competitive to wildtype medfly in laboratory and field cage tests. Conclusion The high competitiveness of the transgenic lines and the achieved 100% embryonic lethality causing reproductive sterility without the need of irradiation can improve the efficacy of operational medfly SIT programs. PMID:19173707

  1. Extended canonical Monte Carlo methods: Improving accuracy of microcanonical calculations using a reweighting technique

    NASA Astrophysics Data System (ADS)

    Velazquez, L.; Castro-Palacio, J. C.

    2015-03-01

    Velazquez and Curilef [J. Stat. Mech. (2010) P02002, 10.1088/1742-5468/2010/02/P02002; J. Stat. Mech. (2010) P04026, 10.1088/1742-5468/2010/04/P04026] have proposed a methodology to extend Monte Carlo algorithms that are based on canonical ensemble. According to our previous study, their proposal allows us to overcome slow sampling problems in systems that undergo any type of temperature-driven phase transition. After a comprehensive review about ideas and connections of this framework, we discuss the application of a reweighting technique to improve the accuracy of microcanonical calculations, specifically, the well-known multihistograms method of Ferrenberg and Swendsen [Phys. Rev. Lett. 63, 1195 (1989), 10.1103/PhysRevLett.63.1195]. As an example of application, we reconsider the study of the four-state Potts model on the square lattice L ×L with periodic boundary conditions. This analysis allows us to detect the existence of a very small latent heat per site qL during the occurrence of temperature-driven phase transition of this model, whose size dependence seems to follow a power law qL(L ) ∝(1/L ) z with exponent z ≃0 .26 ±0 .02. Discussed is the compatibility of these results with the continuous character of temperature-driven phase transition when L →+∞ .

  2. Noise Smoothing for Structural Vibration Test Signals Using an Improved Wavelet Thresholding Technique

    PubMed Central

    Yi, Ting-Hua; Li, Hong-Nan; Zhao, Xiao-Yan

    2012-01-01

    In structural vibration tests, one of the main factors which disturb the reliability and accuracy of the results are the noise signals encountered. To overcome this deficiency, this paper presents a discrete wavelet transform (DWT) approach to denoise the measured signals. The denoising performance of DWT is discussed by several processing parameters, including the type of wavelet, decomposition level, thresholding method, and threshold selection rules. To overcome the disadvantages of the traditional hard- and soft-thresholding methods, an improved thresholding technique called the sigmoid function-based thresholding scheme is presented. The procedure is validated by using four benchmarks signals with three degrees of degradation as well as a real measured signal obtained from a three-story reinforced concrete scale model shaking table experiment. The performance of the proposed method is evaluated by computing the signal-to-noise ratio (SNR) and the root-mean-square error (RMSE) after denoising. Results reveal that the proposed method offers superior performance than the traditional methods no matter whether the signals have heavy or light noises embedded. PMID:23112652

  3. Spectroscopic technique with wide range of wavelength information improves near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Eda, Hideo; Aoki, Hiromichi; Eura, Shigeru; Ebe, Kazutoshi

    2009-02-01

    Near-infrared spectroscopy (NIRS) calculates hemoglobin parameters, such as oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) using the near-infrared light around the wavelength of 800nm. This is based on the modified-Lambert-Beer's law that changes in absorbance are proportional to changes in hemoglobin parameters. Many conventional measurement methods uses only a few wavelengths, however, in this research, basic examination of NIRS measurement was approached by acquiring wide range of wavelength information. Venous occlusion test was performed by using the blood pressure cuff around the upper arm. Pressure of 100mmHg was then applied for about 3 minutes. During the venous occlusion, the spectrum of the lower arm muscles was measured every 15 seconds, within the range of 600 to 1100nm. It was found that other wavelength bands hold information correlating to this venous occlusion task. Technique of improving the performance of NIRS measurement using the Spectroscopic Method is very important for Brain science.

  4. Improvement of the phase measurement of an optoelectronic rangefinder with double referent mixing technique

    NASA Astrophysics Data System (ADS)

    Skala, Karolj

    1995-09-01

    The analysis of realisibility and feasibility of small, lightweight noncoherent infrared LED rangefinder for mass application as a distance telemeter system for moving traffic objects are given. The proposed short-range rangefinder, suitable for measuring distances from fixed and moving objects, in the range from 1 m to 20 m, with significantly increased accuracy is presented in the paper. These measuring methods, with double referent mixing technique, improves the distance resolution when the phase measurement principle is applied. A phase difference still detectable is +/- 1/4, at symmetrically double frequency conversion from 0.5 MHz to 100 Hz, and enables distance resolution +/- 0.1 m. The detection process is completely independent of the signal amplitude. That means that the reflectivity of target does not disturb the distance measurement results. The possible applications are in traffic control and traffic safety systems as a proximity switch in contest of alarm systems. This paper describes the optimum characteristics of the rangefinder regarding the cost/performance parameter. The description of the method with analytical analysis and the results of experimental realization are also given. The discussion is presented as the experimental support of theoretical analysis.

  5. The utilization of six sigma and statistical process control techniques in surgical quality improvement.

    PubMed

    Sedlack, Jeffrey D

    2010-01-01

    Surgeons have been slow to incorporate industrial reliability techniques. Process control methods were applied to surgeon waiting time between cases, and to length of stay (LOS) after colon surgery. Waiting times between surgeries were evaluated by auditing the operating room records of a single hospital over a 1-month period. The medical records of 628 patients undergoing colon surgery over a 5-year period were reviewed. The average surgeon wait time between cases was 53 min, and the busiest surgeon spent 291/2 hr in 1 month waiting between surgeries. Process control charting demonstrated poor overall control of the room turnover process. Average LOS after colon resection also demonstrated very poor control. Mean LOS was 10 days. Weibull's conditional analysis revealed a conditional LOS of 9.83 days. Serious process management problems were identified in both analyses. These process issues are both expensive and adversely affect the quality of service offered by the institution. Process control mechanisms were suggested or implemented to improve these surgical processes. Industrial reliability and quality management tools can easily and effectively identify process control problems that occur on surgical services. PMID:20946422

  6. Improved ITOS attitude control system with Hall generator brushless motor and earth-splitting technique

    NASA Technical Reports Server (NTRS)

    Peacock, W. M.

    1971-01-01

    The ITOS with an improved attitude control system is described. A Hall generator brushless dc torque motor will replace the brush dc torque motor on ITOS-I and ITOS-A (NOAA-1). The four attitude horizon sensors will be replaced with two CO2 sensors for better horizon definition. An earth horizon splitting technique will be used to keep the earth facing side of the satellite toward earth even if the desired circular orbit is not achieved. The external appearance of the pitch control subsystem differs from TIROS-M (ITOS-1) and ITOS-A (NOAA-1) in that two instead of one pitch control electronics (PCE) boxes are used. Two instead of four horizon sensors will be used and one instead of two mirrors will be used for sensor scanning. The brushless motor will eliminate the requirement for brushes, strain gages and the telemetry for the brush wear. A single rotating flywheel, supported by a single bearing provides the gyroscopic stability and the required momentum interchange to keep one side of the satellite facing the earth. Magnetic torquing against the earth's magnetic field eliminates the requirement for expendable propellants which would limit satellite life in orbit.

  7. Extended canonical Monte Carlo methods: Improving accuracy of microcanonical calculations using a reweighting technique.

    PubMed

    Velazquez, L; Castro-Palacio, J C

    2015-03-01

    Velazquez and Curilef [J. Stat. Mech. (2010); J. Stat. Mech. (2010)] have proposed a methodology to extend Monte Carlo algorithms that are based on canonical ensemble. According to our previous study, their proposal allows us to overcome slow sampling problems in systems that undergo any type of temperature-driven phase transition. After a comprehensive review about ideas and connections of this framework, we discuss the application of a reweighting technique to improve the accuracy of microcanonical calculations, specifically, the well-known multihistograms method of Ferrenberg and Swendsen [Phys. Rev. Lett. 63, 1195 (1989)]. As an example of application, we reconsider the study of the four-state Potts model on the square lattice L×L with periodic boundary conditions. This analysis allows us to detect the existence of a very small latent heat per site qL during the occurrence of temperature-driven phase transition of this model, whose size dependence seems to follow a power law qL(L)∝(1/L)z with exponent z≃0.26±0.02. Discussed is the compatibility of these results with the continuous character of temperature-driven phase transition when L→+∞. PMID:25871247

  8. A Frequency-based Technique to Improve the Spelling Suggestion Rank in Medical Queries

    PubMed Central

    Crowell, Jonathan; Zeng, Qing; Ngo, Long; Lacroix, Eve-Marie

    2004-01-01

    Objective: There is an abundance of health-related information online, and millions of consumers search for such information. Spell checking is of crucial importance in returning pertinent results, so the authors propose a technique for increasing the effectiveness of spell-checking tools used for health-related information retrieval. Design: A sample of incorrectly spelled medical terms was submitted to two different spell-checking tools, and the resulting suggestions, derived under two different dictionary configurations, were re-sorted according to how frequently each term appeared in log data from a medical search engine. Measurements: Univariable analysis was carried out to assess the effect of each factor (spell-checking tool, dictionary type, re-sort, or no re-sort) on the probability of success. The factors that were statistically significant in the univariable analysis were then used in multivariable analysis to evaluate the independent effect of each of the factors. Results: The re-sorted suggestions proved to be significantly more accurate than the original list returned by the spell-checking tool. The odds of finding the correct suggestion in the number one rank were increased by 63% after re-sorting using the authors' method. This effect was independent of both the dictionary and the spell-checking tools that were used. Conclusion: Using knowledge about the frequency of a given word's occurrence in the medical domain can significantly improve spelling correction for medical queries. PMID:14764616

  9. Microcapsule-based techniques for improving the safety of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Baginska, Marta

    Lithium-ion batteries are vital energy storage devices due to their high specific energy density, lack of memory effect, and long cycle life. While they are predominantly used in small consumer electronics, new strategies for improving battery safety and lifetime are critical to the successful implementation of high-capacity, fast-charging materials required for advanced Li-ion battery applications. Currently, the presence of a volatile, combustible electrolyte and an oxidizing agent (Lithium oxide cathodes) make the Li-ion cell susceptible to fire and explosions. Thermal overheating, electrical overcharging, or mechanical damage can trigger thermal runaway, and if left unchecked, combustion of battery materials. To improve battery safety, autonomic, thermally-induced shutdown of Li-ion batteries is demonstrated by depositing thermoresponsive polymer microspheres onto battery anodes. When the internal temperature of the cell reaches a critical value, the microspheres melt and conformally coat the anode and/or separator with an ion insulating barrier, halting Li-ion transport and shutting down the cell permanently. Charge and discharge capacity is measured for Li-ion coin cells containing microsphere-coated anodes or separators as a function of capsule coverage. Scanning electron microscopy images of electrode surfaces from cells that have undergone autonomic shutdown provides evidence of melting, wetting, and re-solidification of polyethylene (PE) into the anode and polymer film formation at the anode/separator interface. As an extension of this autonomic shutdown approach, a particle-based separator capable of performing autonomic shutdown, but which reduces the shorting hazard posed by current bi- and tri-polymer commercial separators, is presented. This dual-particle separator is composed of hollow glass microspheres acting as a physical spacer between electrodes, and PE microspheres to impart autonomic shutdown functionality. An oil-immersion technique is

  10. Movies of molecular motions and reactions: the single-molecule, real-time transmission electron microscope imaging technique.

    PubMed

    Nakamura, Eiichi

    2013-01-01

    "The truth is, the Science of Nature has been already too long made only a work of the Brain and the Fancy: It is now high time that it should return to the plainness and soundness of Observations on material and obvious things," proudly declared Robert Hooke in his highly successful picture book of microscopic and telescopic images, "Micrographia" in 1665. Hooke's statement has remained true in chemistry, where a considerable work of the brain and the fancy is still necessary. Single-molecule, real-time transmission electron microscope (SMRT-TEM) imaging at an atomic resolution now allows us to learn about molecules simply by watching movies of them. Like any dream come true, the new analytical technique challenged the old common sense of the communities, and offers new research opportunities that are unavailable by conventional methods. With its capacity to visualize the motions and the reactions of individual molecules and molecular clusters, the SMRT-TEM technique will become an indispensable tool in molecular science and the engineering of natural and synthetic substances, as well as in science education. PMID:23280645

  11. Molecular Imaging in Preclinical Models of IBD with Nuclear Imaging Techniques: State-of-the-Art and Perspectives.

    PubMed

    Kaaru, Eric; Bianchi, Andrea; Wunder, Andreas; Rasche, Volker; Stiller, Detlef

    2016-10-01

    Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is characterized by chronic unregulated inflammation of the intestinal mucosa of the gastrointestinal tract. To date, this pathology has no cure. Colonoscopy and biopsies are the current gold standard diagnostic tools. However, being a chronic disease, IBD requires continuous follow-up to check for disease progress, treatment response, and remission. Unfortunately, these 2 diagnostic procedures are invasive and generally unable to show the cellular and molecular changes that take place in vivo. In this context, it is clear that there is a strong need for optimized noninvasive imaging techniques able to overcome the aforementioned limitations. This review aims to bring to light the scientific advancements that have been achieved so far in nuclear medicine in relation to tracking of immune cells involved in the preclinical models of IBD. In particular, this review will explore the advantages and limitations of the radiopharmaceuticals that aim to track whole cells like neutrophils, those that involve the radiolabeling of immune cell substrates or available human IBD medical therapies, and those that aim to track cell signaling molecules (e.g., cytokines and cell adhesion molecules). After a detailed critical summary of the state-of-the art, the challenges and perspectives of molecular imaging applied to IBD studies will be analyzed. Special attention will be paid to the translational potential of the described techniques and on the potential impact of these innovative approaches on the drug discovery pipelines and their contribution to the evolution of personalized medicine.

  12. Movies of molecular motions and reactions: the single-molecule, real-time transmission electron microscope imaging technique.

    PubMed

    Nakamura, Eiichi

    2013-01-01

    "The truth is, the Science of Nature has been already too long made only a work of the Brain and the Fancy: It is now high time that it should return to the plainness and soundness of Observations on material and obvious things," proudly declared Robert Hooke in his highly successful picture book of microscopic and telescopic images, "Micrographia" in 1665. Hooke's statement has remained true in chemistry, where a considerable work of the brain and the fancy is still necessary. Single-molecule, real-time transmission electron microscope (SMRT-TEM) imaging at an atomic resolution now allows us to learn about molecules simply by watching movies of them. Like any dream come true, the new analytical technique challenged the old common sense of the communities, and offers new research opportunities that are unavailable by conventional methods. With its capacity to visualize the motions and the reactions of individual molecules and molecular clusters, the SMRT-TEM technique will become an indispensable tool in molecular science and the engineering of natural and synthetic substances, as well as in science education.

  13. [Which molecular biology techniques must conform to the armamentarium for basic research in uro-oncology?].

    PubMed

    Oriola, Josep

    2013-06-01

    Molecular biology has been one of the scientific disciplines in which there has been more advances in the last years. The first impulse in the study of genetic alterations came from the discovery of DNA structure, followed by elucidation of the genetic code, the discovery of restriction enzymes and subsequently the invention of PCR, not forgetting the exponential development of computer science. All of them have allowed us to know much more about our genome and its regulation than we could imagine. The impulse in proteomics has been especially in tune up of soft methods of ionization coupled with mass spectrometry. Nevertheless, this seems to be only the beginning since today there are continuous methodological advances that will increase more, without doubt, the knowledge and applications in this discipline. PMID:23793758

  14. Synthesizing a Cellulase like Chimeric Protein by Recombinant Molecular Biology Techniques

    PubMed Central

    Banerjee, Hirendra Nath; Krauss, Christopher; Smith, Valerie; Mahaffey, Kelly; Boston, Ava

    2016-01-01

    In order to meet the Renewable Fuels Standard demands for 30 billion gallons of biofuels by the end of 2020, new technologies for generation of cellulosic ethanol must be exploited. Breaking down cellulose by cellulase enzyme is very important for this purpose but this is not thermostable and degrades at higher temperatures in bioreactors. Towards creation of a more ecologically friendly method of rendering bioethanol from cellulosic waste, we attempted to produce recombinant higher temperature resistant cellulases for use in bioreactors. The project involved molecular cloning of genes for cellulose-degrading enzymes based on bacterial source, expressing the recombinant proteins in E. coli and optimizing enzymatic activity. We were able to generate in vitro bacterial expression systems to produce recombinant His-tag purified protein which showed cellulase like activity. PMID:27468362

  15. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.

    PubMed

    Fan, Wen; Yan, Wei; Xu, Zushun; Ni, Hong

    2012-02-01

    Chitosan nanoparticles have been extensively studied for drug and gene delivery. In this paper, monodisperse, low molecular weight (LMW) chitosan nanoparticles were prepared by a novel method based on ionic gelation using sodium tripolyphosphate (TPP) as cross-linking agent. The objective of this study was to solve the problem of preparation of chitosan/TPP nanoparticles with high degree of monodispersity and stability, and investigate the effect of various parameters on the formation of LMW chitosan/TPP nanoparticles. It was found that the particle size distribution of the nanoparticles could be significantly narrowed by a combination of decreasing the concentration of acetic acid and reducing the ambient temperature during cross-linking process. The optimized nanoparticles exhibited a mean hydrodynamic diameter of 138 nm with a polydispersity index (PDI) of 0.026 and a zeta potential of +35 mV, the nanoparticles had good storage stability at room temperature up to at least 20 days.

  16. Improving Skill Development: An Exploratory Study Comparing a Philosophical and an Applied Ethical Analysis Technique

    ERIC Educational Resources Information Center

    Al-Saggaf, Yeslam; Burmeister, Oliver K.

    2012-01-01

    This exploratory study compares and contrasts two types of critical thinking techniques; one is a philosophical and the other an applied ethical analysis technique. The two techniques analyse an ethically challenging situation involving ICT that a recent media article raised to demonstrate their ability to develop the ethical analysis skills of…

  17. Optimizing molecular properties using a relative index of thermodynamic stability and global optimization techniques.

    PubMed

    Fournier, René; Mohareb, Amir

    2016-01-14

    We devised a global optimization (GO) strategy for optimizing molecular properties with respect to both geometry and chemical composition. A relative index of thermodynamic stability (RITS) is introduced to allow meaningful energy comparisons between different chemical species. We use the RITS by itself, or in combination with another calculated property, to create an objective function F to be minimized. Including the RITS in the definition of F ensures that the solutions have some degree of thermodynamic stability. We illustrate how the GO strategy works with three test applications, with F calculated in the framework of Kohn-Sham Density Functional Theory (KS-DFT) with the Perdew-Burke-Ernzerhof exchange-correlation. First, we searched the composition and configuration space of CmHnNpOq (m = 0-4, n = 0-10, p = 0-2, q = 0-2, and 2 ≤ m + n + p + q ≤ 12) for stable molecules. The GO discovered familiar molecules like N2, CO2, acetic acid, acetonitrile, ethane, and many others, after a small number (5000) of KS-DFT energy evaluations. Second, we carried out a GO of the geometry of CumSnn (+) (m = 1, 2 and n = 9-12). A single GO run produced the same low-energy structures found in an earlier study where each CumSnn (+) species had been optimized separately. Finally, we searched bimetallic clusters AmBn (3 ≤ m + n ≤ 6, A,B= Li, Na, Al, Cu, Ag, In, Sn, Pb) for species and configurations having a low RITS and large highest occupied Molecular Orbital (MO) to lowest unoccupied MO energy gap (Eg). We found seven bimetallic clusters with Eg > 1.5 eV. PMID:26772561

  18. Molecularly Imprinted Polymer Integrated with a Surface Acoustic Wave Technique for Detection of Sulfamethizole.

    PubMed

    Ayankojo, Akinrinade George; Tretjakov, Aleksei; Reut, Jekaterina; Boroznjak, Roman; Öpik, Andres; Rappich, Jörg; Furchner, Andreas; Hinrichs, Karsten; Syritski, Vitali

    2016-01-19

    The synergistic effect of combining molecular imprinting and surface acoustic wave (SAW) technologies for the selective and label-free detection of sulfamethizole as a model antibiotic in aqueous environment was demonstrated. A molecularly imprinted polymer (MIP) for sulfamethizole (SMZ) selective recognition was prepared in the form of a homogeneous thin film on the sensing surfaces of SAW chip by oxidative electropolymerization of m-phenylenediamine (mPD) in the presence of SMZ, acting as a template. Special attention was paid to the rational selection of the functional monomer using computational and spectroscopic approaches. SMZ template incorporation and its subsequent release from the polymer was supported by IR microscopic measurements. Precise control of the thicknesses of the SMZ-MIP and respective nonimprinted reference films (NIP) was achieved by correlating the electrical charge dosage during electrodeposition with spectroscopic ellipsometry measurements in order to ensure accurate interpretation of label-free responses originating from the MIP modified sensor. The fabricated SMZ-MIP films were characterized in terms of their binding affinity and selectivity toward the target by analyzing the binding kinetics recorded using the SAW system. The SMZ-MIPs had SMZ binding capacity approximately more than eight times higher than the respective NIP and were able to discriminate among structurally similar molecules, i.e., sulfanilamide and sulfadimethoxine. The presented approach for the facile integration of a sulfonamide antibiotic-sensing layer with SAW technology allowed observing the real-time binding events of the target molecule at nanomolar concentration levels and could be potentially suitable for cost-effective fabrication of a multianalyte chemosensor for analysis of hazardous pollutants in an aqueous environment. PMID:26704414

  19. Genomic imbalances in esophageal squamous cell carcinoma identified by molecular cytogenetic techniques

    PubMed Central

    2010-01-01

    This review summarizes the chromosomal changes detected by molecular cytogenetic approaches in esophageal squamous cell carcinoma (ESCC), the ninth most common malignancy in the world. Whole genome analyses of ESCC cell lines and tumors indicated that the most frequent genomic gains occurred at 1, 2q, 3q, 5p, 6p, 7, 8q, 9q, 11q, 12p, 14q, 15q, 16, 17, 18p, 19q, 20q, 22q and X, with focal amplifications at 1q32, 2p16-22, 3q25-28, 5p13-15.3, 7p12-22, 7q21-22, 8q23-24.2, 9q34, 10q21, 11p11.2, 11q13, 13q32, 14q13-14, 14q21, 14q31-32, 15q22-26, 17p11.2, 18p11.2-11.3 and 20p11.2. Recurrent losses involved 3p, 4, 5q, 6q, 7q, 8p, 9, 10p, 12p, 13, 14p, 15p, 18, 19p, 20, 22, Xp and Y. Gains at 5p and 7q, and deletions at 4p, 9p, and 11q were significant prognostic factors for patients with ESCC. Gains at 6p and 20p, and losses at 10p and 10q were the most significant imbalances, both in primary carcinoma and in metastases, which suggested that these regions may harbor oncogenes and tumor suppressor genes. Gains at 12p and losses at 3p may be associated with poor relapse-free survival. The clinical applicability of these changes as markers for the diagnosis and prognosis of ESCC, or as molecular targets for personalized therapy should be evaluated. PMID:21637470

  20. Molecularly Imprinted Polymer Integrated with a Surface Acoustic Wave Technique for Detection of Sulfamethizole.

    PubMed

    Ayankojo, Akinrinade George; Tretjakov, Aleksei; Reut, Jekaterina; Boroznjak, Roman; Öpik, Andres; Rappich, Jörg; Furchner, Andreas; Hinrichs, Karsten; Syritski, Vitali

    2016-01-19

    The synergistic effect of combining molecular imprinting and surface acoustic wave (SAW) technologies for the selective and label-free detection of sulfamethizole as a model antibiotic in aqueous environment was demonstrated. A molecularly imprinted polymer (MIP) for sulfamethizole (SMZ) selective recognition was prepared in the form of a homogeneous thin film on the sensing surfaces of SAW chip by oxidative electropolymerization of m-phenylenediamine (mPD) in the presence of SMZ, acting as a template. Special attention was paid to the rational selection of the functional monomer using computational and spectroscopic approaches. SMZ template incorporation and its subsequent release from the polymer was supported by IR microscopic measurements. Precise control of the thicknesses of the SMZ-MIP and respective nonimprinted reference films (NIP) was achieved by correlating the electrical charge dosage during electrodeposition with spectroscopic ellipsometry measurements in order to ensure accurate interpretation of label-free responses originating from the MIP modified sensor. The fabricated SMZ-MIP films were characterized in terms of their binding affinity and selectivity toward the target by analyzing the binding kinetics recorded using the SAW system. The SMZ-MIPs had SMZ binding capacity approximately more than eight times higher than the respective NIP and were able to discriminate among structurally similar molecules, i.e., sulfanilamide and sulfadimethoxine. The presented approach for the facile integration of a sulfonamide antibiotic-sensing layer with SAW technology allowed observing the real-time binding events of the target molecule at nanomolar concentration levels and could be potentially suitable for cost-effective fabrication of a multianalyte chemosensor for analysis of hazardous pollutants in an aqueous environment.

  1. Optimizing molecular properties using a relative index of thermodynamic stability and global optimization techniques

    NASA Astrophysics Data System (ADS)

    Fournier, René; Mohareb, Amir

    2016-01-01

    We devised a global optimization (GO) strategy for optimizing molecular properties with respect to both geometry and chemical composition. A relative index of thermodynamic stability (RITS) is introduced to allow meaningful energy comparisons between different chemical species. We use the RITS by itself, or in combination with another calculated property, to create an objective function F to be minimized. Including the RITS in the definition of F ensures that the solutions have some degree of thermodynamic stability. We illustrate how the GO strategy works with three test applications, with F calculated in the framework of Kohn-Sham Density Functional Theory (KS-DFT) with the Perdew-Burke-Ernzerhof exchange-correlation. First, we searched the composition and configuration space of CmHnNpOq (m = 0-4, n = 0-10, p = 0-2, q = 0-2, and 2 ≤ m + n + p + q ≤ 12) for stable molecules. The GO discovered familiar molecules like N2, CO2, acetic acid, acetonitrile, ethane, and many others, after a small number (5000) of KS-DFT energy evaluations. Second, we carried out a GO of the geometry of Cu m Snn + (m = 1, 2 and n = 9-12). A single GO run produced the same low-energy structures found in an earlier study where each Cu m S nn + species had been optimized separately. Finally, we searched bimetallic clusters AmBn (3 ≤ m + n ≤ 6, A,B= Li, Na, Al, Cu, Ag, In, Sn, Pb) for species and configurations having a low RITS and large highest occupied Molecular Orbital (MO) to lowest unoccupied MO energy gap (Eg). We found seven bimetallic clusters with Eg > 1.5 eV.

  2. Improving the Accuracy of Demographic and Molecular Clock Model Comparison While Accommodating Phylogenetic Uncertainty

    PubMed Central

    Baele, Guy; Lemey, Philippe; Bedford, Trevor; Rambaut, Andrew; Suchard, Marc A.; Alekseyenko, Alexander V.

    2012-01-01

    Recent developments in marginal likelihood estimation for model selection in the field of Bayesian phylogenetics and molecular evolution have emphasized the poor performance of the harmonic mean estimator (HME). Although these studies have shown the merits of new approaches applied to standard normally distributed examples and small real-world data sets, not much is currently known concerning the performance and computational issues of these methods when fitting complex evolutionary and population genetic models to empirical real-world data sets. Further, these approaches have not yet seen widespread application in the field due to the lack of implementations of these computationally demanding techniques in commonly used phylogenetic packages. We here investigate the performance of some of these new marginal likelihood estimators, specifically, path sampling (PS) and stepping-stone (SS) sampling for comparing models of demographic change and relaxed molecular clocks, using synthetic data and real-world examples for which unexpected inferences were made using the HME. Given the drastically increased computational demands of PS and SS sampling, we also investigate a posterior simulation-based analogue of Akaike's information criterion (AIC) through Markov chain Monte Carlo (MCMC), a model comparison approach that shares with the HME the appealing feature of having a low computational overhead over the original MCMC analysis. We confirm that the HME systematically overestimates the marginal likelihood and fails to yield reliable model classification and show that the AICM performs better and may be a useful initial evaluation of model choice but that it is also, to a lesser degree, unreliable. We show that PS and SS sampling substantially outperform these estimators and adjust the conclusions made concerning previous analyses for the three real-world data sets that we reanalyzed. The methods used in this article are now available in BEAST, a powerful user

  3. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty.

    PubMed

    Baele, Guy; Lemey, Philippe; Bedford, Trevor; Rambaut, Andrew; Suchard, Marc A; Alekseyenko, Alexander V

    2012-09-01

    Recent developments in marginal likelihood estimation for model selection in the field of Bayesian phylogenetics and molecular evolution have emphasized the poor performance of the harmonic mean estimator (HME). Although these studies have shown the merits of new approaches applied to standard normally distributed examples and small real-world data sets, not much is currently known concerning the performance and computational issues of these methods when fitting complex evolutionary and population genetic models to empirical real-world data sets. Further, these approaches have not yet seen widespread application in the field due to the lack of implementations of these computationally demanding techniques in commonly used phylogenetic packages. We here investigate the performance of some of these new marginal likelihood estimators, specifically, path sampling (PS) and stepping-stone (SS) sampling for comparing models of demographic change and relaxed molecular clocks, using synthetic data and real-world examples for which unexpected inferences were made using the HME. Given the drastically increased computational demands of PS and SS sampling, we also investigate a posterior simulation-based analogue of Akaike's information criterion (AIC) through Markov chain Monte Carlo (MCMC), a model comparison approach that shares with the HME the appealing feature of having a low computational overhead over the original MCMC analysis. We confirm that the HME systematically overestimates the marginal likelihood and fails to yield reliable model classification and show that the AICM performs better and may be a useful initial evaluation of model choice but that it is also, to a lesser degree, unreliable. We show that PS and SS sampling substantially outperform these estimators and adjust the conclusions made concerning previous analyses for the three real-world data sets that we reanalyzed. The methods used in this article are now available in BEAST, a powerful user

  4. Absolute vacuum ultraviolet photoabsorption cross section studies of atomic and molecular species: Techniques and observational data

    NASA Technical Reports Server (NTRS)

    Judge, D. L.; Wu, C. Y. R.

    1990-01-01

    Absorption of a high energy photon (greater than 6 eV) by an isolated molecule results in the formation of highly excited quasi-discrete or continuum states which evolve through a wide range of direct and indirect photochemical processes. These are: photoionization and autoionization, photodissociation and predissociation, and fluorescence. The ultimate goal is to understand the dynamics of the excitation and decay processes and to quantitatively measure the absolute partial cross sections for all processes which occur in photoabsorption. Typical experimental techniques and the status of observational results of particular interest to solar system observations are presented.

  5. Simulation of macromolecular liquids with the adaptive resolution molecular dynamics technique

    NASA Astrophysics Data System (ADS)

    Peters, J. H.; Klein, R.; Delle Site, L.

    2016-08-01

    We extend the application of the adaptive resolution technique (AdResS) to liquid systems composed of alkane chains of different lengths. The aim of the study is to develop and test the modifications of AdResS required in order to handle the change of representation of large molecules. The robustness of the approach is shown by calculating several relevant structural properties and comparing them with the results of full atomistic simulations. The extended scheme represents a robust prototype for the simulation of macromolecular systems of interest in several fields, from material science to biophysics.

  6. Simulation of macromolecular liquids with the adaptive resolution molecular dynamics technique.

    PubMed

    Peters, J H; Klein, R; Delle Site, L

    2016-08-01

    We extend the application of the adaptive resolution technique (AdResS) to liquid systems composed of alkane chains of different lengths. The aim of the study is to develop and test the modifications of AdResS required in order to handle the change of representation of large molecules. The robustness of the approach is shown by calculating several relevant structural properties and comparing them with the results of full atomistic simulations. The extended scheme represents a robust prototype for the simulation of macromolecular systems of interest in several fields, from material science to biophysics. PMID:27627414

  7. A genetic algorithm based molecular modeling technique for RNA stem-loop structures.

    PubMed Central

    Ogata, H; Akiyama, Y; Kanehisa, M

    1995-01-01

    A new modeling technique for arriving at the three dimensional (3-D) structure of an RNA stem-loop has been developed based on a conformational search by a genetic algorithm and the following refinement by energy minimization. The genetic algorithm simultaneously optimizes a population of conformations in the predefined conformational space and generates 3-D models of RNA. The fitness function to be optimized by the algorithm has been defined to reflect the satisfaction of known conformational constraints. In addition to a term for distance constraints, the fitness function contains a term to constrain each local conformation near to a prepared template conformation. The technique has been applied to the two loops of tRNA, the anticodon loop and the T-loop, and has found good models with small root mean square deviations from the crystal structure. Slightly different models have also been found for the anticodon loop. The analysis of a collection of alternative models obtained has revealed statistical features of local variations at each base position. Images PMID:7533901

  8. Evaluation of molecular techniques for identification and enumeration of Raoultella terrigena ATCC 33257 in water purifier efficacy testing.

    PubMed

    Saha, Ratul; Bechanko, Robin; Bestervelt, Lorelle L; Donofrio, Robert S

    2011-09-01

    Raoultella terrigena ATCC 33257, a representative of the coliform group, is commonly used as a challenge organism in water purifier efficacy testing. In addition to being time consuming, traditional culturing techniques and metabolic identification systems (including automated systems) also fail to accurately differentiate this organism from its closely related neighbors belonging to the Enterobacteriaceae group. Molecular-based techniques, such as real-time quantitative polymerase chain reaction (qPCR) and enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting, are preferred methods of detection because of their accuracy, reproducibility, specificity, and sensitivity, along with shorter turnaround time. ERIC-PCR performed with the 1R primer set demonstrated stable unique banding patterns (~800, ~300 bp) for R. terrigena ATCC 33257 different from patterns observed for R. planticola and R. ornithinolytica. The primer pair developed from gyraseA (gyrA) sequence of R. terrigena for the SYBR Green qPCR assay using the AlleleID(®) 7.0 primer probe design software was highly specific and sensitive for the target organism. The sensitivity of the assay was 10(1) colony forming units (CFU)/ml for whole cells and 4.7 fg with genomic DNA. The primer pair was successful in determining the concentration (5.5 ± 0.3 × 10(6) CFU/ml) of R. terrigena from water samples spiked with equal concentration of Escherichia coli and R. terrigena. Based on these results from the ERIC-PCR and the SYBR Green qPCR assay, these molecular techniques can be efficiently used for rapid identification and quantification of R. terrigena during water purifier testing. PMID:21132347

  9. Evaluation of molecular techniques for identification and enumeration of Raoultella terrigena ATCC 33257 in water purifier efficacy testing.

    PubMed

    Saha, Ratul; Bechanko, Robin; Bestervelt, Lorelle L; Donofrio, Robert S

    2011-09-01

    Raoultella terrigena ATCC 33257, a representative of the coliform group, is commonly used as a challenge organism in water purifier efficacy testing. In addition to being time consuming, traditional culturing techniques and metabolic identification systems (including automated systems) also fail to accurately differentiate this organism from its closely related neighbors belonging to the Enterobacteriaceae group. Molecular-based techniques, such as real-time quantitative polymerase chain reaction (qPCR) and enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprinting, are preferred methods of detection because of their accuracy, reproducibility, specificity, and sensitivity, along with shorter turnaround time. ERIC-PCR performed with the 1R primer set demonstrated stable unique banding patterns (~800, ~300 bp) for R. terrigena ATCC 33257 different from patterns observed for R. planticola and R. ornithinolytica. The primer pair developed from gyraseA (gyrA) sequence of R. terrigena for the SYBR Green qPCR assay using the AlleleID(®) 7.0 primer probe design software was highly specific and sensitive for the target organism. The sensitivity of the assay was 10(1) colony forming units (CFU)/ml for whole cells and 4.7 fg with genomic DNA. The primer pair was successful in determining the concentration (5.5 ± 0.3 × 10(6) CFU/ml) of R. terrigena from water samples spiked with equal concentration of Escherichia coli and R. terrigena. Based on these results from the ERIC-PCR and the SYBR Green qPCR assay, these molecular techniques can be efficiently used for rapid identification and quantification of R. terrigena during water purifier testing.

  10. Dissolution Improvement of Atorvastatin Calcium using Modified Locust Bean Gum by the Solid Dispersion Technique.

    PubMed

    Panghal, Dharmila; Nagpal, Manju; Thakur, Gurjeet Singh; Arora, Sandeep

    2014-03-01

    The present research was aimed at the enhancement of the dissolution rate of atorvastatin calcium by the solid dispersion technique using modified locust bean gum. Solid dispersions (SD) using modified locust bean gum were prepared by the modified solvent evaporation method. Other mixtures were also prepared by physical mixing, co-grinding, and the kneading method. The locust bean gum was subjected to heat for modification. The prepared solid dispersions and other mixtures were evaluated for equilibrium solubility studies, content uniformity, FTIR, DSC, XRD, in vitro drug release, and in vivo pharmacodynamic studies. The equilibrium solubility was enhanced in the solid dispersions (in a drug:polymer ratio of 1:6) and other mixtures such as the co-grinding mixture (CGM) and kneading mixture (KM). Maximum dissolution rate was observed in the solid dispersion batch SD3 (i.e. 50% within 15 min) with maximum drug release after 2 h (80%) out of all solid dispersions. The co-grinding mixture also exhibited a significant enhancement in the dissolution rate among the other mixtures. FTIR studies revealed the absence of drug-polymer interaction in the solid dispersions. Minor shifts in the endothermic peaks of the DSC thermograms of SD3 and CGM indicated slight changes in drug crystallinity. XRD studies further confirmed the results of DSC and FTIR. Topological changes were observed in SEM images of SD3 and CGM. In vivo pharmacodynamic studies indicated an improved efficacy of the optimized batch SD3 as compared to the pure drug at a dose of 3 mg/kg/day. Modified locust bean gum can be a promising carrier for solubility enhancement of poorly water-soluble drugs. The lower viscosity and wetting ability of MLBG, reduction in particle size, and decreased crystallinity of the drug are responsible for the dissolution enhancement of atorvastatin. The co-grinding mixture can be a good alternative to solid dispersions prepared by modified solvent evaporation due to its ease of

  11. Dissolution Improvement of Atorvastatin Calcium using Modified Locust Bean Gum by the Solid Dispersion Technique

    PubMed Central

    Panghal, Dharmila; Nagpal, Manju; Thakur, Gurjeet Singh; Arora, Sandeep

    2014-01-01

    The present research was aimed at the enhancement of the dissolution rate of atorvastatin calcium by the solid dispersion technique using modified locust bean gum. Solid dispersions (SD) using modified locust bean gum were prepared by the modified solvent evaporation method. Other mixtures were also prepared by physical mixing, co-grinding, and the kneading method. The locust bean gum was subjected to heat for modification. The prepared solid dispersions and other mixtures were evaluated for equilibrium solubility studies, content uniformity, FTIR, DSC, XRD, in vitro drug release, and in vivo pharmacodynamic studies. The equilibrium solubility was enhanced in the solid dispersions (in a drug:polymer ratio of 1:6) and other mixtures such as the co-grinding mixture (CGM) and kneading mixture (KM). Maximum dissolution rate was observed in the solid dispersion batch SD3 (i.e. 50% within 15 min) with maximum drug release after 2 h (80%) out of all solid dispersions. The co-grinding mixture also exhibited a significant enhancement in the dissolution rate among the other mixtures. FTIR studies revealed the absence of drug-polymer interaction in the solid dispersions. Minor shifts in the endothermic peaks of the DSC thermograms of SD3 and CGM indicated slight changes in drug crystallinity. XRD studies further confirmed the results of DSC and FTIR. Topological changes were observed in SEM images of SD3 and CGM. In vivo pharmacodynamic studies indicated an improved efficacy of the optimized batch SD3 as compared to the pure drug at a dose of 3 mg/kg/day. Modified locust bean gum can be a promising carrier for solubility enhancement of poorly water-soluble drugs. The lower viscosity and wetting ability of MLBG, reduction in particle size, and decreased crystallinity of the drug are responsible for the dissolution enhancement of atorvastatin. The co-grinding mixture can be a good alternative to solid dispersions prepared by modified solvent evaporation due to its ease of

  12. Using NDA Techniques to Improve Safeguards Metrics on Burnup Quantification and Plutonium Content in LWR SNF

    SciTech Connect

    Saavedra, Steven F; Charlton, William S; Solodov, Alexander A; Ehinger, Michael H

    2010-01-01

    Globally, there exists a long history in reprocessing in evaluation of the shipper/receiver difference (SRD) on spent nuclear fuel (SNF) received and processed. Typically, the declared shipper s values for uranium and plutonium in SNF (based on calculations involving the initial manufacturer s data and reactor operating history) are used as the input quantities to the head-end process of the facility. Problems have been encountered when comparing these values with measured results of the input accountability tank contents. A typical comparison yields a systematic bias indicated as a loss of 5 7 percent of the plutonium (Pu) and approximately 1 percent for the uranium (U). Studies suggest that such deviation can be attributed to the non-linear nature of the axial burnup values of the SNF. Oak Ridge National Laboratory and Texas A&M University are co-investigating the development of a new method, via Nondestructive Assay (NDA) techniques, to improve the accuracy in burnup and Pu content quantification. Two major components have been identified to achieve this objective. The first component calculates a measurement-based burnup profile along the axis of a fuel rod. Gamma-ray data is collected at numerous locations along the axis of the fuel rod using a High Purity Germanium (HPGe) detector designed for a wide range of gamma-ray energies. Using two fission products, 137Cs and 134Cs, the burnup is calculated at each measurement location and a profile created along the axis of the rod based on the individual measurement locations. The second component measures the U/Pu ratio using an HPGe detector configured for relatively low-energy gamma-rays including x-rays. Fluorescence x-rays from U and Pu are measured and compared to the U/Pu ratio determined from a destructive analysis of the sample. This will be used to establish a relationship between the measured and actual values. This relationship will be combined with the burnup analysis results to establish a relationship

  13. Improving the image and quantitative data of magnetic resonance imaging through hardware and physics techniques

    NASA Astrophysics Data System (ADS)

    Kaggie, Joshua D.

    In Chapter 1, an introduction to basic principles or MRI is given, including the physical principles, basic pulse sequences, and basic hardware. Following the introduction, five different published and yet unpublished papers for improving the utility of MRI are shown. Chapter 2 discusses a small rodent imaging system that was developed for a clinical 3 T MRI scanner. The system integrated specialized radiofrequency (RF) coils with an insertable gradient, enabling 100 microm isotropic resolution imaging of the guinea pig cochlea in vivo, doubling the body gradient strength, slew rate, and contrast-to-noise ratio, and resulting in twice the signal-to-noise (SNR) when compared to the smallest conforming birdcage. Chapter 3 discusses a system using BOLD MRI to measure T2* and invasive fiberoptic probes to measure renal oxygenation (pO2). The significance of this experiment is that it demonstrated previously unknown physiological effects on pO2, such as breath-holds that had an immediate (<1 sec) pO2 decrease (˜6 mmHg), and bladder pressure that had pO2 increases (˜6 mmHg). Chapter 4 determined the correlation between indicators of renal health and renal fat content. The R2 correlation between renal fat content and eGFR, serum cystatin C, urine protein, and BMI was less than 0.03, with a sample size of ˜100 subjects, suggesting that renal fat content will not be a useful indicator of renal health. Chapter 5 is a hardware and pulse sequence technique for acquiring multinuclear 1H and 23Na data within the same pulse sequence. Our system demonstrated a very simple, inexpensive solution to SMI and acquired both nuclei on two 23Na channels using external modifications, and is the first demonstration of radially acquired SMI. Chapter 6 discusses a composite sodium and proton breast array that demonstrated a 2-5x improvement in sodium SNR and similar proton SNR when compared to a large coil with a linear sodium and linear proton channel. This coil is unique in that sodium

  14. Improved sample preparation and counting techniques for enhanced tritium measurement sensitivity

    NASA Astrophysics Data System (ADS)

    Moran, J.; Aalseth, C.; Bailey, V. L.; Mace, E. K.; Overman, C.; Seifert, A.; Wilcox Freeburg, E. D.

    2015-12-01

    Tritium (T) measurements offer insight to a wealth of environmental applications including hydrologic tracking, discerning ocean circulation patterns, and aging ice formations. However, the relatively short half-life of T (12.3 years) limits its effective age dating range. Compounding this limitation is the decrease in atmospheric T content by over two orders of magnitude (from 1000-2000 TU in 1962 to < 10 TU currently) since the cessation of above ground nuclear testing in the 1960's. We are developing sample preparation methods coupled to direct counting of T via ultra-low background proportional counters which, when combined, offer improved T measurement sensitivity (~4.5 mmoles of H2 equivalent) and will help expand the application of T age dating to smaller sample sizes linked to persistent environmental questions despite the limitations above. For instance, this approach can be used to T date ~ 2.2 mmoles of CH4 collected from sample-limited systems including microbial communities, soils, or subsurface aquifers and can be combined with radiocarbon dating to distinguish the methane's formation age from C age in a system. This approach can also expand investigations into soil organic C where the improved sensitivity will permit resolution of soil C into more descriptive fractions and provide direct assessments of the stability of specific classes of organic matter in soils environments. We are employing a multiple step sample preparation system whereby organic samples are first combusted with resulting CO2 and H2O being used as a feedstock to synthesize CH4. This CH4 is mixed with Ar and loaded directly into an ultra-low background proportional counter for measurement of T β decay in a shallow underground laboratory. Analysis of water samples requires only the addition of geologic CO2 feedstock with the sample for methane synthesis. The chemical nature of the preparation techniques enable high sample throughput with only the final measurement requiring T decay

  15. Improved Discontinuity-capturing Finite Element Techniques for Reaction Effects in Turbulence Computation

    NASA Astrophysics Data System (ADS)

    Corsini, A.; Rispoli, F.; Santoriello, A.; Tezduyar, T. E.

    2006-09-01

    Recent advances in turbulence modeling brought more and more sophisticated turbulence closures (e.g. k-ɛ, k-ɛ - v 2- f, Second Moment Closures), where the governing equations for the model parameters involve advection, diffusion and reaction terms. Numerical instabilities can be generated by the dominant advection or reaction terms. Classical stabilized formulations such as the Streamline Upwind/Petrov Galerkin (SUPG) formulation (Brook and Hughes, comput methods Appl Mech Eng 32:199 255, 1982; Hughes and Tezduyar, comput methods Appl Mech Eng 45: 217 284, 1984) are very well suited for preventing the numerical instabilities generated by the dominant advection terms. A different stabilization however is needed for instabilities due to the dominant reaction terms. An additional stabilization term, called the diffusion for reaction-dominated (DRD) term, was introduced by Tezduyar and Park (comput methods Appl Mech Eng 59:307 325, 1986) for that purpose and improves the SUPG performance. In recent years a new class of variational multi-scale (VMS) stabilization (Hughes, comput methods Appl Mech Eng 127:387 401, 1995) has been introduced, and this approach, in principle, can deal with advection diffusion reaction equations. However, it was pointed out in Hanke (comput methods Appl Mech Eng 191:2925 2947) that this class of methods also need some improvement in the presence of high reaction rates. In this work we show the benefits of using the DRD operator to enhance the core stabilization techniques such as the SUPG and VMS formulations. We also propose a new operator called the DRDJ (DRD with the local variation jump) term, targeting the reduction of numerical oscillations in the presence of both high reaction rates and sharp solution gradients. The methods are evaluated in the context of two stabilized methods: the classical SUPG formulation and a recently-developed VMS formulation called the V-SGS (Corsini et al. comput methods Appl Mech Eng 194:4797 4823, 2005

  16. Dissolution Improvement of Atorvastatin Calcium using Modified Locust Bean Gum by the Solid Dispersion Technique.

    PubMed

    Panghal, Dharmila; Nagpal, Manju; Thakur, Gurjeet Singh; Arora, Sandeep

    2014-03-01

    The present research was aimed at the enhancement of the dissolution rate of atorvastatin calcium by the solid dispersion technique using modified locust bean gum. Solid dispersions (SD) using modified locust bean gum were prepared by the modified solvent evaporation method. Other mixtures were also prepared by physical mixing, co-grinding, and the kneading method. The locust bean gum was subjected to heat for modification. The prepared solid dispersions and other mixtures were evaluated for equilibrium solubility studies, content uniformity, FTIR, DSC, XRD, in vitro drug release, and in vivo pharmacodynamic studies. The equilibrium solubility was enhanced in the solid dispersions (in a drug:polymer ratio of 1:6) and other mixtures such as the co-grinding mixture (CGM) and kneading mixture (KM). Maximum dissolution rate was observed in the solid dispersion batch SD3 (i.e. 50% within 15 min) with maximum drug release after 2 h (80%) out of all solid dispersions. The co-grinding mixture also exhibited a significant enhancement in the dissolution rate among the other mixtures. FTIR studies revealed the absence of drug-polymer interaction in the solid dispersions. Minor shifts in the endothermic peaks of the DSC thermograms of SD3 and CGM indicated slight changes in drug crystallinity. XRD studies further confirmed the results of DSC and FTIR. Topological changes were observed in SEM images of SD3 and CGM. In vivo pharmacodynamic studies indicated an improved efficacy of the optimized batch SD3 as compared to the pure drug at a dose of 3 mg/kg/day. Modified locust bean gum can be a promising carrier for solubility enhancement of poorly water-soluble drugs. The lower viscosity and wetting ability of MLBG, reduction in particle size, and decreased crystallinity of the drug are responsible for the dissolution enhancement of atorvastatin. The co-grinding mixture can be a good alternative to solid dispersions prepared by modified solvent evaporation due to its ease of

  17. Analogue models of subduction megathrust earthquakes: improving rheology and monitoring technique

    NASA Astrophysics Data System (ADS)

    Brizzi, Silvia; Corbi, Fabio; Funiciello, Francesca; Moroni, Monica

    2015-04-01

    Most of the world's great earthquakes (Mw > 8.5, usually known as mega-earthquakes) occur at shallow depths along the subduction thrust fault (STF), i.e., the frictional interface between the subducting and overriding plates. Spatiotemporal occurrences of mega-earthquakes and their governing physics remain ambiguous, as tragically demonstrated by the underestimation of recent megathrust events (i.e., 2011 Tohoku). To help unravel seismic cycle at STF, analogue modelling has become a key-tool. First properly scaled analogue models with realistic geometries (i.e., wedge-shaped) suitable for studying interplate seismicity have been realized using granular elasto-plastic [e.g., Rosenau et al., 2009] and viscoelastic materials [i.e., Corbi et al., 2013]. In particular, viscoelastic laboratory experiments realized with type A gelatin 2.5 wt% simulate, in a simplified yet robust way, the basic physics governing subduction seismic cycle and related rupture process. Despite the strength of this approach, analogue earthquakes are not perfectly comparable to their natural prototype. In this work, we try to improve subduction seismic cycle analogue models by modifying the rheological properties of the analogue material and adopting a new image analysis technique (i.e., PEP - ParticlE and Prediction velocity). We test the influence of lithosphere elasticity by using type A gelatin with greater concentration (i.e., 6 wt%). Results show that gelatin elasticity plays important role in controlling seismogenic behaviour of STF, tuning the mean and the maximum magnitude of analogue earthquakes. In particular, by increasing gelatin elasticity, we observe decreasing mean magnitude, while the maximum magnitude remains the same. Experimental results therefore suggest that lithosphere elasticity could be one of the parameters that tunes seismogenic behaviour of STF. To increase gelatin elasticity also implies improving similarities with their natural prototype in terms of coseismic

  18. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    . One source of light for shading does show all morphologic features needed for description. Additionally, more details such as fault lines, overlaps and characteristic edges of complex shell structures are clearly detected by simply changing the illumination on the shaded digital surface model. In a further study, the potential of edge detection of the individual shells will be analyzed based on statistical analysis by keeping track of the local accumulative shading gradient. The results are compared to manually identified edges. In a following study phase, the detected edges will be improved by graph cut segmentation. We assume that this technique can lead to automatically extracted teaching set for object segmentation on a complex environment. The project is supported by the Austrian Science Fund (FWF P 25883-N29).

  19. The FADE mass-stat: a technique for inserting or deleting particles in molecular dynamics simulations.

    PubMed

    Borg, Matthew K; Lockerby, Duncan A; Reese, Jason M

    2014-02-21

    The emergence of new applications of molecular dynamics (MD) simulation calls for the development of mass-statting procedures that insert or delete particles on-the-fly. In this paper we present a new mass-stat which we term FADE, because it gradually "fades-in" (inserts) or "fades-out" (deletes) molecules over a short relaxation period within a MD simulation. FADE applies a time-weighted relaxation to the intermolecular pair forces between the inserting/deleting molecule and any neighbouring molecules. The weighting function we propose in this paper is a piece-wise polynomial that can be described entirely by two parameters: the relaxation time scale and the order of the polynomial. FADE inherently conserves overall system momentum independent of the form of the weighting function. We demonstrate various simulations of insertions of atomic argon, polyatomic TIP4P water, polymer strands, and C60 Buckminsterfullerene molecules. We propose FADE parameters and a maximum density variation per insertion-instance that restricts spurious potential energy changes entering the system within desired tolerances. We also demonstrate in this paper that FADE compares very well to an existing insertion algorithm called USHER, in terms of accuracy, insertion rate (in dense fluids), and computational efficiency. The USHER algorithm is applicable to monatomic and water molecules only, but we demonstrate that FADE can be generally applied to various forms and sizes of molecules, such as polymeric molecules of long aspect ratio, and spherical carbon fullerenes with hollow interiors.

  20. The FADE mass-stat: A technique for inserting or deleting particles in molecular dynamics simulations

    SciTech Connect

    Borg, Matthew K.; Lockerby, Duncan A.; Reese, Jason M.

    2014-02-21

    The emergence of new applications of molecular dynamics (MD) simulation calls for the development of mass-statting procedures that insert or delete particles on-the-fly. In this paper we present a new mass-stat which we term FADE, because it gradually “fades-in” (inserts) or “fades-out” (deletes) molecules over a short relaxation period within a MD simulation. FADE applies a time-weighted relaxation to the intermolecular pair forces between the inserting/deleting molecule and any neighbouring molecules. The weighting function we propose in this paper is a piece-wise polynomial that can be described entirely by two parameters: the relaxation time scale and the order of the polynomial. FADE inherently conserves overall system momentum independent of the form of the weighting function. We demonstrate various simulations of insertions of atomic argon, polyatomic TIP4P water, polymer strands, and C{sub 60} Buckminsterfullerene molecules. We propose FADE parameters and a maximum density variation per insertion-instance that restricts spurious potential energy changes entering the system within desired tolerances. We also demonstrate in this paper that FADE compares very well to an existing insertion algorithm called USHER, in terms of accuracy, insertion rate (in dense fluids), and computational efficiency. The USHER algorithm is applicable to monatomic and water molecules only, but we demonstrate that FADE can be generally applied to various forms and sizes of molecules, such as polymeric molecules of long aspect ratio, and spherical carbon fullerenes with hollow interiors.

  1. The application of rarefaction techniques to molecular inventories of microbial diversity.

    PubMed

    Hughes, Jennifer B; Hellmann, Jessica J

    2005-01-01

    With the growing capacity to inventory microbial community diversity, the need for statistical methods to compare community inventories is also growing. Several approaches have been proposed for comparing the diversity of microbial communities: some adapted from traditional ecology and others designed specifically for molecular inventories of microbes. Rarefaction is one statistical method that is commonly applied in microbial studies, and this chapter discusses the procedure and its advantages and disadvantages. Rarefaction compares observed taxon richness at a standardized sampling effort using confidence intervals. Special emphasis is placed here on the need for precise, rather than unbiased, estimation methods in microbial ecology, but precision can be judged only with a very large sample or with multiple samples drawn from a single community. With low sample sizes, rarefaction curves also have the potential to lead to incorrect rankings of relative species richness, but this chapter discusses a new method with the potential to address this problem. Finally, this chapter shows how rarefaction can be applied to the comparison of the taxonomic similarity of microbial communities.

  2. The Clinical Urine Culture: Enhanced Techniques Improve Detection of Clinically Relevant Microorganisms

    PubMed Central

    Price, Travis K.; Dune, Tanaka; Hilt, Evann E.; Thomas-White, Krystal J.; Kliethermes, Stephanie; Brincat, Cynthia; Brubaker, Linda; Wolfe, Alan J.

    2016-01-01

    Enhanced quantitative urine culture (EQUC) detects live microorganisms in the vast majority of urine specimens reported as “no growth” by the standard urine culture protocol. Here, we evaluated an expanded set of EQUC conditions (expanded-spectrum EQUC) to identify an optimal version that provides a more complete description of uropathogens in women experiencing urinary tract infection (UTI)-like symptoms. One hundred fifty adult urogynecology patient-participants were characterized using a self-completed validated UTI symptom assessment (UTISA) questionnaire and asked “Do you feel you have a UTI?” Women responding negatively were recruited into the no-UTI cohort, while women responding affirmatively were recruited into the UTI cohort; the latter cohort was reassessed with the UTISA questionnaire 3 to 7 days later. Baseline catheterized urine samples were plated using both standard urine culture and expanded-spectrum EQUC protocols: standard urine culture inoculated at 1 μl onto 2 agars incubated aerobically; expanded-spectrum EQUC inoculated at three different volumes of urine onto 7 combinations of agars and environments. Compared to expanded-spectrum EQUC, standard urine culture missed 67% of uropathogens overall and 50% in participants with severe urinary symptoms. Thirty-six percent of participants with missed uropathogens reported no symptom resolution after treatment by standard urine culture results. Optimal detection of uropathogens could be achieved using the following: 100 μl of urine plated onto blood (blood agar plate [BAP]), colistin-nalidixic acid (CNA), and MacConkey agars in 5% CO2 for 48 h. This streamlined EQUC protocol achieved 84% uropathogen detection relative to 33% detection by standard urine culture. The streamlined EQUC protocol improves detection of uropathogens that are likely relevant for symptomatic women, giving clinicians the opportunity to receive additional information not currently reported using standard urine culture

  3. Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms.

    PubMed

    Cassilhas, R C; Lee, K S; Fernandes, J; Oliveira, M G M; Tufik, S; Meeusen, R; de Mello, M T

    2012-01-27

    A growing body of scientific evidence indicates that exercise has a positive impact on human health, including neurological health. Aerobic exercise, which is supposed to enhance cardiovascular functions and metabolism, also induces neurotrophic factors that affect hippocampal neurons, thereby improving spatial learning and memory. Alternatively, little is known about the effect of resistance exercise on hippocampus-dependent memory, although this type of exercise is increasingly recommended to improve muscle strength and bone density and to prevent age-related disabilities. Therefore, we evaluated the effects of resistance training on spatial memory and the signaling pathways of brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1), comparing these effects with those of aerobic exercise. Adult male Wistar rats underwent 8 weeks of aerobic training on a treadmill (AERO group) or resistance training on a vertical ladder (RES group). Control and sham groups were also included. After the training period, both AERO and RES groups showed improved learning and spatial memory in a similar manner. However, both groups presented distinct signaling pathways. Although the AERO group showed increased level of IGF-1, BDNF, TrkB, and β-CaMKII (calcium/calmodulin-dependent kinase II) in the hippocampus, the RES group showed an induction of peripheral and hippocampal IGF-1 with concomitant activation of receptor for IGF-1 (IGF-1R) and AKT in the hippocampus. These distinct pathways culminated in an increase of synapsin 1 and synaptophysin expression in both groups. These findings demonstrated that both aerobic and resistance exercise can employ divergent molecular mechanisms but achieve similar results on learning and spatial memory.

  4. Improving molecular diagnosis in epilepsy by a dedicated high-throughput sequencing platform.

    PubMed

    Della Mina, Erika; Ciccone, Roberto; Brustia, Francesca; Bayindir, Baran; Limongelli, Ivan; Vetro, Annalisa; Iascone, Maria; Pezzoli, Laura; Bellazzi, Riccardo; Perotti, Gianfranco; De Giorgis, Valentina; Lunghi, Simona; Coppola, Giangennaro; Orcesi, Simona; Merli, Pietro; Savasta, Salvatore; Veggiotti, Pierangelo; Zuffardi, Orsetta

    2015-03-01

    We analyzed by next-generation sequencing (NGS) 67 epilepsy genes in 19 patients with different types of either isolated or syndromic epileptic disorders and in 15 controls to investigate whether a quick and cheap molecular diagnosis could be provided. The average number of nonsynonymous and splice site mutations per subject was similar in the two cohorts indicating that, even with relatively small targeted platforms, finding the disease gene is not an univocal process. Our diagnostic yield was 47% with nine cases in which we identified a very likely causative mutation. In most of them no interpretation would have been possible in absence of detailed phenotype and familial information. Seven out of 19 patients had a phenotype suggesting the involvement of a specific gene. Disease-causing mutations were found in six of these cases. Among the remaining patients, we could find a probably causative mutation only in three. None of the genes affected in the latter cases had been suspected a priori. Our protocol requires 8-10 weeks including the investigation of the parents with a cost per patient comparable to sequencing of 1-2 medium-to-large-sized genes by conventional techniques. The platform we used, although providing much less information than whole-exome or whole-genome sequencing, has the advantage that can also be run on 'benchtop' sequencers combining rapid turnaround times with higher manageability.

  5. An improved microfluidics approach for monitoring real-time interaction profiles of ultrafast molecular recognition

    NASA Astrophysics Data System (ADS)

    Batabyal, Subrata; Rakshit, Surajit; Kar, Shantimoy; Pal, Samir Kumar

    2012-04-01

    Our study illustrates the development of a microfluidics (MF) platform combining fluorescence microscopy and femtosecond/picosecond-resolved spectroscopy to investigate ultrafast chemical processes in liquid-phase diffusion-controlled reactions. By controlling the flow rates of two reactants in a specially designed MF chip, sub-100 ns time resolution for the exploration of chemical intermediates of the reaction in the MF channel has been achieved. Our system clearly rules out the possibility of formation of any intermediate reaction product in a so-called fast ionic reaction between sodium hydroxide and phenolphthalein, and reveals a microsecond time scale associated with the formation of the reaction product. We have also used the developed system for the investigation of intermediate states in the molecular recognition of various macromolecular self-assemblies (micelles) and genomic DNA by small organic ligands (Hoechst 33258 and ethidium bromide). We propose our MF-based system to be an alternative to the existing millisecond-resolved "stopped-flow" technique for a broad range of time-resolved (sub-100 ns to minutes) experiments on complex chemical/biological systems.

  6. Improving molecular diagnosis in epilepsy by a dedicated high-throughput sequencing platform

    PubMed Central

    Mina, Erika Della; Ciccone, Roberto; Brustia, Francesca; Bayindir, Baran; Limongelli, Ivan; Vetro, Annalisa; Iascone, Maria; Pezzoli, Laura; Bellazzi, Riccardo; Perotti, Gianfranco; De Giorgis, Valentina; Lunghi, Simona; Coppola, Giangennaro; Orcesi, Simona; Merli, Pietro; Savasta, Salvatore; Veggiotti, Pierangelo; Zuffardi, Orsetta

    2015-01-01

    We analyzed by next-generation sequencing (NGS) 67 epilepsy genes in 19 patients with different types of either isolated or syndromic epileptic disorders and in 15 controls to investigate whether a quick and cheap molecular diagnosis could be provided. The average number of nonsynonymous and splice site mutations per subject was similar in the two cohorts indicating that, even with relatively small targeted platforms, finding the disease gene is not an univocal process. Our diagnostic yield was 47% with nine cases in which we identified a very likely causative mutation. In most of them no interpretation would have been possible in absence of detailed phenotype and familial information. Seven out of 19 patients had a phenotype suggesting the involvement of a specific gene. Disease-causing mutations were found in six of these cases. Among the remaining patients, we could find a probably causative mutation only in three. None of the genes affected in the latter cases had been suspected a priori. Our protocol requires 8–10 weeks including the investigation of the parents with a cost per patient comparable to sequencing of 1–2 medium-to-large-sized genes by conventional techniques. The platform we used, although providing much less information than whole-exome or whole-genome sequencing, has the advantage that can also be run on ‘benchtop' sequencers combining rapid turnaround times with higher manageability. PMID:24848745

  7. Evaluation and comparison of molecular techniques for epidemiological typing of Salmonella enterica subsp. enterica serovar dublin.

    PubMed Central

    Liebisch, B; Schwarz, S

    1996-01-01

    A total of 28 unrelated isolates of the Salmonella enterica subsp. enterica serovar dublin (S. dublin) collected during a 6-year period, as well as four samples of the S. dublin live vaccine strain Bovisaloral and its prototype strain S. dublin 442/039, were investigated by different molecular typing methods for the following reasons: (i) to find the most discriminatory method for the epidemiological typing of isolates belonging to this Salmonella serovar and (ii) to evaluate these methods for their capacity to discriminate among the live vaccine strain Bovisaloral, its prototype strain S. dublin 442/039, and field isolates of the serovar dublin. Five different plasmid profiles were observed; a virulence plasmid of 76 kbp as identified by hybridization with an spvB-spvC gene probe was present in all isolates. The detection of 16S rRNA genes and that of IS200 elements proved to be unsuitable for the epidemiological typing of S. dublin; only one hybridization pattern could be observed with each of these methods. The results obtained from macrorestriction analysis strongly depended on the choice of restriction enzyme. While the enzyme NotI yielded the lowest discriminatory index among all enzymes tested, it was the only enzyme that allowed discrimination between the Bovisaloral vaccine strain and its prototype strain. In contrast to the enzymes XbaI and SpeI, which only differentiated among the S. dublin field isolates, XhoI as well as AvrII also produced restriction fragment patterns of the Bovisaloral strain and of its prototype strain that were not shared by any of the S. dublin field isolates. Macrorestriction analysis proved to be the most discriminatory method not only for the epidemiological typing of S. dublin field isolates but also for the identification of the S. dublin live vaccine strain Bovisaloral. PMID:8904430

  8. Preliminary Investigation of a Translating Cowl Technique for Improving Take-off Performance of a Sharp-lip Supersonic Diffuser

    NASA Technical Reports Server (NTRS)

    Cortright, Edgar M , Jr

    1951-01-01

    A preliminary investigation was conducted in quiescent air on a translating cowl technique for improving the take-off performance of a sharp-lip supersonic diffuser. The technique consists of cutting the cowling in a plane normal to its axis and then translating the forepart of the cowling in the forward direction. The leading edge of the fixed portion of the cowling is rounded. Appreciable improved inlet performance was obtained with a cowling translation corresponding to a gap of only 1/4 inlet radius.

  9. Beam-shaping technique for improving the beam quality of a high-power laser-diode stack.

    PubMed

    Gao, Xin; Ohashi, Hiroyuki; Okamoto, Hiroshi; Takasaka, Masaomi; Shinoda, Kazunori

    2006-06-01

    We report a beam-shaping technique that reconfigures the beams to improve the beam quality and enhance the power density for a ten-array high-power laser-diode stack by using two optical rectangular cubes and two stripe-mirror plates. The reshaped beam has threefold improvement in beam quality, and its power density is effectively enhanced. On the basis of this technique, we focus the beam of the high-power laser-diode stack to effectively end pump a high-power fiber laser.

  10. Measurement of surface stay times for physical adsorption of gases. Ph.D. Thesis - Va. Univ.; [using molecular beam time of flight technique

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1973-01-01

    A molecular beam time-of-flight technique is studied as a means of determining surface stay times for physical adsorption. The experimental approach consists of pulsing a molecular beam, allowing the pulse to strike an adsorbing surface and detecting the molecular pulse after it has subsequently desorbed. The technique is also found to be useful for general studies of adsorption under nonequilibrium conditions including the study of adsorbate-adsorbate interactions. The shape of the detected pulse is analyzed in detail for a first-order desorption process. For mean stay times, tau, less than the mean molecular transit times involved, the peak of the detected pulse is delayed by an amount approximately equal to tau. For tau much greater than these transit times, the detected pulse should decay as exp(-t/tau). However, for stay times of the order of the transit times, both the molecular speed distributions and the incident pulse duration time must be taken into account.

  11. Columnar and subsurface silicide growth with novel molecular beam epitaxy techniques

    NASA Technical Reports Server (NTRS)

    Fathauer, R. W.; George, T.; Pike, W. T.

    1992-01-01

    We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800 C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.

  12. Airborne Fungi in Sahara Dust Aerosols Reaching the Eastern Caribbean: II. Species Identification Using Molecular Techniques

    NASA Astrophysics Data System (ADS)

    de La Mota, A.; Betancourt, C.; Detres, Y.; Armstrong, R.

    2003-12-01

    Fungi samples from filters collected in Castle Bruce, Dominica from March through July 2002, were previously purified and identified to genus level using classic macroscopic and microscopic techniques. A total of 105 isolated colonies were cultured in liquid media and the mycelial mats used for DNA extraction. PCR was used to amplify the ITS region of the rDNA using the ITS1 and ITS4 primers. Both strands of the amplified products were sequenced and the final identification to species level was completed by a GenBank search. Fourteen different species and one fungal endophyte were identified from genders Aspergillus,Penicillium, Fusarium, Cladosporium, Curvularia and Phanerochaete. Some of these species such as A. fumigatus, A. japonicus, P. citrinum and C. cladosporoides are known to cause respiratory disorders in humans. A. fumigatus causes an aggressive pulmonary allergic response that might result in allergic bronchopulmonary aspergillosis. Other species such as F. equiseti and C. brachyspora are plant pathogens affecting economically important crops. Sahara dust is an important source of fungal spores of species that are not common in the Caribbean region.

  13. Improved ultrasonic TV images achieved by use of Lamb-wave orientation technique

    NASA Technical Reports Server (NTRS)

    Berger, H.

    1967-01-01

    Lamb-wave sample orientation technique minimizes the interference from standing waves in continuous wave ultrasonic television imaging techniques used with thin metallic samples. The sample under investigation is oriented such that the wave incident upon it is not normal, but slightly angled.

  14. Techniques for Improving Student Writing and Thinking Skills in Text-Heavy Courses.

    ERIC Educational Resources Information Center

    Marra, James L.; And Others

    After an introduction by James L. Marra explaining the Intellectual Heritage Program at the College of Art and Sciences at Temple University (Philadelphia, Pennsylvania), this paper presents four brief faculty essays describing various techniques that the writers use in their classes in the program. The techniques discussed in the paper are…

  15. An improved technique for preparing polished thin sections of stony-iron meteorites

    NASA Astrophysics Data System (ADS)

    Kunstler, F.; Arndt, N. T.

    1990-03-01

    Polished thin sections of stony-iron meteorites can be prepared easily and quickly using a new technique in which the cooling water to the polishing machine is refrigerated. When using this technique, the silicate and sulfide phases do not heat up and expand differentially, as is often the case when normal procedures are used, and do not pluck out during the polishing process.

  16. Pulmonary embolization of immature Fascioloides magna causing fatal hemothorax confirmed by molecular technique in a heifer in the United States.

    PubMed

    Lee, Jung Keun; Rosser, Thomas Graham; Cooley, Jim

    2016-09-01

    The current report describes the use of a molecular technique to identify immature Fascioloides magna An 18-month-old Brangus heifer was found dead in the field without any prior clinical signs. The cause of death was exsanguination into the thoracic cavity associated with pulmonary embolization and infection by immature Fascioloides magna resulting in 2 large foci of pulmonary necrosis and focal arteriolar and lung rupture. The liver had a few random migratory tracts with typical iron and porphyrin fluke exhaust, but no identified fluke larvae. A single immature fluke was found in the lungs, and species level identification as F. magna was confirmed by DNA sequence analysis of the ribosomal internal transcribed spacer regions (ITS1 region, 5.8S rRNA gene, and ITS2) and of partial 28S rRNA gene sequence. This is one of only a few pulmonary fascioloidiasis cases associated with hemothorax in the veterinary literature. PMID:27423736

  17. Determination of acetamiprid partial-intercalative binding to DNA by use of spectroscopic, chemometrics, and molecular docking techniques.

    PubMed

    Zhang, Yue; Zhang, Guowen; Zhou, Xiaoyue; Li, Yu

    2013-11-01

    Acetamiprid (ACT) is an insecticide widely used for controlling a variety of insect pests. The binding mode associated with calf thymus DNA (ctDNA) upon interaction with ACT was determined using spectroscopic, chemometrics, and molecular docking techniques to clarify the interaction mechanism at the molecular level. Fluorescence titration suggested that the fluorescence quenching of ACT by ctDNA is a static procedure. The binding constants between ACT and ctDNA at different temperatures were calculated to be of the order 10(3)-10(4) L mol(-1). The positive values of enthalpy and entropy change suggested that the binding process is primarily driven by hydrophobic interactions. Multivariate curve resolution-alternating least squares (MCR-ALS), a chemometrics approach, was used to resolve the expanded UV-visible spectral data matrix. The concentration profiles and the spectra for the three reaction components (ACT, ctDNA, and ACT-ctDNA complex) of the system, which formed a highly overlapping composite response, were then successfully obtained and used to evaluate the progress of ACT interacting with ctDNA. The results of the single-stranded ctDNA and iodide quenching experiments, ctDNA-melting investigations, and viscosity measurements indicated that ACT binds to ctDNA by means of a partial intercalation. Molecular docking studies showed that the specific binding site is mainly located between the ACT and G-C base pairs of ctDNA. This docking prediction was confirmed by use of Fourier-transform infrared (FT-IR) spectral analysis. Results from circular dichroism (CD) spectroscopy revealed that ACT induced a conformational change from the B-ctDNA form to the A-ctDNA form. PMID:23975088

  18. Molecular Imaging in Preclinical Models of IBD with Nuclear Imaging Techniques: State-of-the-Art and Perspectives.

    PubMed

    Kaaru, Eric; Bianchi, Andrea; Wunder, Andreas; Rasche, Volker; Stiller, Detlef

    2016-10-01

    Inflammatory bowel disease (IBD), which includes ulcerative colitis and Crohn's disease, is characterized by chronic unregulated inflammation of the intestinal mucosa of the gastrointestinal tract. To date, this pathology has no cure. Colonoscopy and biopsies are the current gold standard diagnostic tools. However, being a chronic disease, IBD requires continuous follow-up to check for disease progress, treatment response, and remission. Unfortunately, these 2 diagnostic procedures are invasive and generally unable to show the cellular and molecular changes that take place in vivo. In this context, it is clear that there is a strong need for optimized noninvasive imaging techniques able to overcome the aforementioned limitations. This review aims to bring to light the scientific advancements that have been achieved so far in nuclear medicine in relation to tracking of immune cells involved in the preclinical models of IBD. In particular, this review will explore the advantages and limitations of the radiopharmaceuticals that aim to track whole cells like neutrophils, those that involve the radiolabeling of immune cell substrates or available human IBD medical therapies, and those that aim to track cell signaling molecules (e.g., cytokines and cell adhesion molecules). After a detailed critical summary of the state-of-the art, the challenges and perspectives of molecular imaging applied to IBD studies will be analyzed. Special attention will be paid to the translational potential of the described techniques and on the potential impact of these innovative approaches on the drug discovery pipelines and their contribution to the evolution of personalized medicine. PMID:27580387

  19. Development of Laser Spectroscopic Techniques and Their Application to the Study of Self-Organizing Molecular Assemblies.

    NASA Astrophysics Data System (ADS)

    Reed, Wayne Frederick

    Laser spectroscopic techniques have been developed and adapted to computer based data gathering, reduction and analysis. The systems implemented are a laser flash photolysis and transient dichroism spectrometer, a single photon counting spectrometer for determination of fluorescence lifetimes and time-resolved fluorescence polarization anisotropy, and a light scattering system for both static and dynamic measurements. These techniques have been concerted to study self-organizing molecular assemblies, particularly surfactant vesicles. Quaternary ammonium surfactant monomers with polymerizable styrene moieties on the headgroup have been sonicated into unilamellar vesicles and these in turn have been photopolymerized by both steady state and pulsed laser irradiation. The detailed kinetics of photopolymerization have been determined and a model developed which permits, in conjunction with the laser spectroscopic data, the characterization of the process in terms of average polymer chain length, quantum efficiency of free radical formation, free radical lifetime, and a characteristic rate parameter. Subsequent to characterizing and modelling the photopolymerization process the consequences of it on vesicle surface properties have been investigated with molecular probes. Strong evidence has been obtained that indicates that photopolymerization leads to the formation of clefts or pockets on the vesicle surface and to extensive surface inhomogeneity. Based on the experimental data, a computer simulation has been developed to help graphically visualize the photopolymerization process and to semi-quantitatively characterize the resulting surface inhomogeneity. As a first step in exploring the possibilities opened up by the discovery of clefts in the vesicle surface, the interaction between a photoexcitable proton transfer agent, 8-hydroxy-1,3,6 - pyrenetrisulfonate (POH), and vesicles has been studied. In unpolymerized vesicles POH loses its proton ejection capacity after

  20. Study on the interaction of the epilepsy drug, zonisamide with human serum albumin (HSA) by spectroscopic and molecular docking techniques

    NASA Astrophysics Data System (ADS)

    Shahabadi, Nahid; Khorshidi, Aref; Moghadam, Neda Hossinpour

    2013-10-01

    In the present investigation, an attempt has been made to study the interaction of zonisamide (ZNS) with the transport protein, human serum albumin (HSA) employing UV-Vis, fluorometric, circular dichroism (CD) and molecular docking techniques. The results indicated that binding of ZNS to HSA caused strong fluorescence quenching of HSA through static quenching mechanism, hydrogen bonds and van der Waals contacts are the major forces in the stability of protein ZNS complex and the process of the binding of ZNS with HSA was driven by enthalpy (ΔH = -193.442 kJ mol-1). The results of CD and UV-Vis spectroscopy showed that the binding of this drug to HSA induced conformational changes in HSA. Furthermore, the study of molecular docking also indicated that zonisamide could strongly bind to the site I (subdomain IIA) of HSA mainly by hydrophobic interaction and there were hydrogen bond interactions between this drug and HSA, also known as the warfarin binding site.

  1. Bacterial community structure and activity of sulfate reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques.

    PubMed

    Liu, Hong; Tan, Shuying; Sheng, Zhiya; Liu, Yang; Yu, Tong

    2014-11-01

    The activities and vertical spatial distribution of sulfate reducing bacteria (SRB) in an oxygen (O2 )-based membrane aerated biofilm (MAB) were investigated using microsensor (O2 and H2 S) measurements and molecular techniques (polymerase chain reaction-denaturing gradient gel electrophoresis [PCR-DGGE] and fluorescence in situ hybridization [FISH]). The O2 concentration profile revealed that O2 penetrated from the bottom (substratum) of the gas permeable membrane, and was gradually consumed within the biofilm until it was completely depleted near the biofilm/bulk liquid interface, indicating oxic and anoxic zone in the MAB. The H2 S concentration profile showed that H2 S production was found in the upper 285 µm of the biofilm, indicating a high activity of SRB in this region. The results from DGGE of the PCR-amplified dissimilatory sulfite reductase subunit B (dsrB) gene and FISH showed an uneven spatial distribution of SRB. The maximum SRB biomass was located in the upper biofilm. The information from the molecular analysis can be supplemented with that from microsensor measurements to better understand the microbial community and activity of SRB in the MAB.

  2. First prokaryotic biodiversity assessment using molecular techniques of an acidic river in Neuquén, Argentina.

    PubMed

    Urbieta, M Sofía; González Toril, E; Aguilera, A; Giaveno, M Alejandra; Donati, E

    2012-07-01

    Two acidic hot springs close to the crater of Copahue Volcano (Neuquén, Argentina) are the source of the Río Agrio. The river runs several kilometres before flowing into Caviahue Lake. Along the river, temperature, iron, other metal and proton concentrations decrease gradually with distance downstream. From the source to the lake and depending on the season, pH can rise from 1.0 (or even less) to about 4.0, while temperature values decrease from 70°C to 15°C. Water samples were taken from different stations on the river selected according to their physicochemical parameters. In order to assess prokaryotic biodiversity throughout the water column, different and complementary molecular biology techniques were used, mainly in situ hybridisation and 16S rRNA gene cloning and sequencing. All microorganisms found are typical of acidic environments. Sulphur-oxidizing bacteria like Acidithiobacillus thiooxidans and Acidithiobacillus albertensis were detected in every station. Moderately thermophile iron- and sulphur-oxidizing bacteria like members of Alicyclobacillus and Sulfobacillus genera were also ubiquitous. Strict iron-oxidizing bacteria like Leptospirillum and Ferrimicrobium were present at the source of the river, but disappeared downstream where iron concentrations were much lower. Iron-oxidizing, mesophilic Ferroplasma spp. were the main archaea found. The data presented in this work represent the first molecular assessment of this rare natural acidic environment.

  3. Preparing systems engineering and computing science students in disciplined methods, quantitative, and advanced statistical techniques to improve process performance

    NASA Astrophysics Data System (ADS)

    McCray, Wilmon Wil L., Jr.

    The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization

  4. Identification of Mycobacterium shimoidei by molecular techniques: case report and summary of the literature.

    PubMed

    Mayall, B; Gurtler, V; Irving, L; Marzec, A; Leslie, D

    1999-02-01

    A 53-year-old woman from Melbourne, Australia, with squamous cell carcinoma of the oesophagus was shown by computed tomography (CT) scan to have a left apical cavity and inflammatory changes in the right lung consistent with aspiration. Acid-fast bacilli isolated from bronchial washings were identified biochemically first as Mycobacterium terrae, but later as M. shimoidei on the basis of 1) restriction fragment analysis and 2) sequencing of polymerase chain reaction (PCR) amplified 16S rDNA. Nine other descriptions of patients with M. shimoidei isolates were collated. The salient feature of isolates considered to be pathogenic was pulmonary cavitation. Most patients had underlying lung disease, including past tuberculosis or malignancy. Six of eight patients died of progressive respiratory illness, although the contribution of M. shimoidei was not always clear, and two patients improved. One patient with the acquired immune-deficiency syndrome (AIDS) died with Salmonella enteritidis and M. shimoidei isolated from blood cultures. One isolate was regarded as a coloniser. There are insufficient clinical or sensitivity data on which to base recommendations for therapy, but a combination of ethambutol, rifabutin and pyrazinamide could be considered.

  5. Trace element determination by combining solid-phase microextraction hyphenated to elemental and molecular detection techniques.

    PubMed

    Díez, Sergi; Bayona, Josep M

    2006-08-01

    The state of the art of analytical procedures based on solid-phase microextraction (SPME) and its applications to tin, mercury, arsenic, antimony, chromium, selenium, and lead determination in abiotic and biotic matrixes are critically reviewed from 1994 to present. First, sample pretreatment prior to SPME is evaluated, including a description of the most usual leaching procedures for sediment, soil, and biological samples. Because most organometallic species lack volatility, a derivatization step is mandatory prior to gas chromatographic (GC) determination, except for the volatile organometallics that can be directly extracted from the sample headspace or liquid phase by SPME. The most common derivatization procedures used in alkylation and hydridization reactions used for mercury, lead, and tin, as well as other procedures for the determination of total chromium and arsenic [i.e., trifluoroacetylacetonates for chromium (III) and thioglycol methylate for organic arsenic species] are reviewed. Critical variables usually evaluated along with the method development to improve the sensitivity of the extraction methods based on SPME, such as sampling size, stirring procedures, sampling temperature and pressure, polymer coating, and thermal desorption are reviewed. In addition, figures of merit of the different detection systems used in SPME combined with GC are evaluated. The validation of the reported analytical procedures with reference materials are also discussed in terms of precision and accuracy. Finally, future developments in the application of SPME to speciation are highlighted. Moreover, the capability of SPME automation for the derivatization-extraction procedures are also presented. PMID:16925944

  6. Molecular Markers and Cotton Genetic Improvement: Current Status and Future Prospects

    PubMed Central

    Malik, Waqas; Iqbal, Muhammad Zaffar; Ali Khan, Asif; Qayyum, Abdul; Ali Abid, Muhammad; Noor, Etrat; Qadir Ahmad, Muhammad; Hasan Abbasi, Ghulam

    2014-01-01

    Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutum L.) is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence of G. raimondii and G. arboreum and next generation sequencing (NGS) technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS) are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i) comparative analysis of low- and high-throughput marker technologies available in cotton, (ii) genetic diversity in the available wild and improved gene pools of cotton, (iii) identification of the genomic regions within cotton genome underlying economic traits, and (iv) marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands. PMID:25401149

  7. Low molecular weight heparin improves healing of chronic venous ulcers especially in the elderly.

    PubMed

    Serra, Raffaele; Buffone, Gianluca; Molinari, Vincenzo; Montemurro, Rossella; Perri, Paolo; Stillitano, Domenico M; Amato, Bruno; de Franciscis, Stefano

    2015-04-01

    Venous ulcers are common, especially in the elderly, accounting for more than 50% of all lower extremity ulcers with important socioeconomic problems. Improving extracellular matrix functioning, by heparin administration, seems to be a way to support wound healing. A total of 284 patients with venous ulcers were recruited in a 4-year period. All patients were subjected to the most appropriate treatment after considering their preference (compression therapy followed or not by vein surgery). Patients were randomised into two groups of 142 persons in each (group A and group B as cases and controls, respectively). Patients of group A, in addition to the basic treatment as described earlier, received administration of nadroparin 2850 IU/0.3 ml through subcutaneous injection once a day for 12 months, whereas group B patients received basic treatment alone. Healing was assessed by means of direct ulcer tracing with computerised planimetry. Group A showed a healing rate of 83·80% at 12 months, whereas that of group B was 60·56%. Results by age group surprisingly showed that the group of older patients took the most advantage from long-term treatment with low molecular weight heparin; this group also had lowest recurrence rate.

  8. Can coenzyme q10 improve clinical and molecular parameters in fibromyalgia?

    PubMed

    Cordero, Mario D; Alcocer-Gómez, Elísabet; de Miguel, Manuel; Culic, Ognjen; Carrión, Angel M; Alvarez-Suarez, José Miguel; Bullón, Pedro; Battino, Maurizio; Fernández-Rodríguez, Ana; Sánchez-Alcazar, José Antonio

    2013-10-20

    Fibromyalgia (FM) is a complex disorder that affects up to 5% of the general population worldwide. Its pathophysiological mechanisms are difficult to identify and current drug therapies demonstrate limited effectiveness. Both mitochondrial dysfunction and coenzyme Q10 (CoQ10) deficiency have been implicated in FM pathophysiology. We have investigated the effect of CoQ10 supplementation. We carried out a randomized, double-blind, placebo-controlled trial to evaluate clinical and gene expression effects of forty days of CoQ10 supplementation (300 mg/day) on 20 FM patients. This study was registered with controlled-trials.com (ISRCTN 21164124). An important clinical improvement was evident after CoQ10 versus placebo treatment showing a reduction of FIQ (p<0.001), and a most prominent reduction in pain (p<0.001), fatigue, and morning tiredness (p<0.01) subscales from FIQ. Furthermore, we observed an important reduction in the pain visual scale (p<0.01) and a reduction in tender points (p<0.01), including recovery of inflammation, antioxidant enzymes, mitochondrial biogenesis, and AMPK gene expression levels, associated with phosphorylation of the AMPK activity. These results lead to the hypothesis that CoQ10 have a potential therapeutic effect in FM, and indicate new potential molecular targets for the therapy of this disease. AMPK could be implicated in the pathophysiology of FM.

  9. Using Computer-Based Visualization Strategies to Improve Students' Understanding of Molecular Polarity and Miscibility

    NASA Astrophysics Data System (ADS)

    Sanger, Michael J.; Badger, Steven M., II

    2001-10-01

    This study reports how instruction including visualization strategies associated with computer animations and electron density plots affected students' conceptual understanding of two chemistry topics. Two sets of students responded to several conceptual questions about molecular polarities and miscibilities and these responses were compared. One group received instruction including the use of wooden model kits and physical demonstrations; the other received similar instruction with the additional use of computer animations and electron-density plots. Students who viewed electron-density plots were more likely to identify symmetric molecules with polar bonds as being nonpolar and provided more complete descriptions of how soap molecules help remove grease from an object. Students who viewed computer animations and electron density plots were also more likely to explain that the intermolecular attractions among water molecules are responsible for the immiscibility of oil and water, and were more likely to recognize that water molecules are attracted to each other and to sodium and chloride ions but are not strongly attracted to hydrogen molecules. Although other studies have shown that computer animations can improve students' conceptual understanding of chemistry, this is the first to demonstrate that electron-density plots mapped with electrostatic potentials can also be an effective visualization strategy.

  10. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density

    PubMed Central

    Balasundaram, Ganesan; Storey, Daniel M; Webster, Thomas J

    2015-01-01

    In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA) and coat it on titanium (Ti) using molecular plasma deposition (MPD). NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA) were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells) on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. PMID:25609958

  11. Molecular plasma deposition: biologically inspired nanohydroxyapatite coatings on anodized nanotubular titanium for improving osteoblast density.

    PubMed

    Balasundaram, Ganesan; Storey, Daniel M; Webster, Thomas J

    2015-01-01

    In order to begin to prepare a novel orthopedic implant that mimics the natural bone environment, the objective of this in vitro study was to synthesize nanocrystalline hydroxyapatite (NHA) and coat it on titanium (Ti) using molecular plasma deposition (MPD). NHA was synthesized through a wet chemical process followed by a hydrothermal treatment. NHA and micron sized hydroxyapatite (MHA) were prepared by processing NHA coatings at 500°C and 900°C, respectively. The coatings were characterized before and after sintering using scanning electron microscopy, atomic force microscopy, and X-ray diffraction. The results revealed that the post-MPD heat treatment of up to 500°C effectively restored the structural and topographical integrity of NHA. In order to determine the in vitro biological responses of the MPD-coated surfaces, the attachment and spreading of osteoblasts (bone-forming cells) on the uncoated, NHA-coated, and MHA-coated anodized Ti were investigated. Most importantly, the NHA-coated substrates supported a larger number of adherent cells than the MHA-coated and uncoated substrates. The morphology of these cells was assessed by scanning electron microscopy and the observed shapes were different for each substrate type. The present results are the first reports using MPD in the framework of hydroxyapatite coatings on Ti to enhance osteoblast responses and encourage further studies on MPD-based hydroxyapatite coatings on Ti for improved orthopedic applications. PMID:25609958

  12. Theoretical and Experimental Studies of Designed Molecular Interfaces for Improved Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Kerr, Alex; Mullen, Kieran; Glatzhofer, Daniel; Houck, Matthew; Huang, Paul

    Certain molecular structures such as carbon nanotubes (CNTs) can potentially improve the thermal conductivity of composite materials. However, their thermal boundary resistance is an obstacle to their effective implementation as a medium for heat flow. We are concerned with overcoming this Kapitza resistance with the aid of chemical functional groups. These functional groups will, in principal, eliminate phonon mismatch between our structures and their matrix. The result will maximize the transmission of thermal vibrations to and from their surrounding medium. We develop a method to predict the thermal properties of our functionalized materials through the calculation of vibrational normal modes and Green's functions. We show how the configuration of attached functional groups affect the samples' thermal conductivity (κ) and attempt to find the arrangement in which κ is maximized. We will make explicit comparisons with thermal conductivity experiments done on nanocomposites of functionalized and pristine CNTs. We will discuss how the bonds connecting the functional groups to the CNT affects κ. We compare these results to measurements on our particular synthesized materials and discuss how to better optimize their design. This work was supported by supported by NSF Grant DMR-1310407.

  13. Indirect orthodontic bonding - a modified technique for improved efficiency and precision

    PubMed Central

    Nojima, Lincoln Issamu; Araújo, Adriele Silveira; Alves, Matheus

    2015-01-01

    INTRODUCTION: The indirect bonding technique optimizes fixed appliance installation at the orthodontic office, ensuring precise bracket positioning, among other advantages. In this laboratory clinical phase, material and methods employed in creating the transfer tray are decisive to accuracy. OBJECTIVE: This article describes a simple, efficient and reproducible indirect bonding technique that allows the procedure to be carried out successfully. Variables influencing the orthodontic bonding are analyzed and discussed in order to aid professionals wishing to adopt the indirect bonding technique routinely in their clinical practice. PMID:26154464

  14. Improving skill development: an exploratory study comparing a philosophical and an applied ethical analysis technique

    NASA Astrophysics Data System (ADS)

    Al-Saggaf, Yeslam; Burmeister, Oliver K.

    2012-09-01

    This exploratory study compares and contrasts two types of critical thinking techniques; one is a philosophical and the other an applied ethical analysis technique. The two techniques analyse an ethically challenging situation involving ICT that a recent media article raised to demonstrate their ability to develop the ethical analysis skills of ICT students and professionals. In particular the skill development focused on includes: being able to recognise ethical challenges and formulate coherent responses; distancing oneself from subjective judgements; developing ethical literacy; identifying stakeholders; and communicating ethical decisions made, to name a few.

  15. Cocculus hirsutus: Molecular Docking to Identify Suitable Targets for Hepatocellular Carcinoma by In silico Technique

    PubMed Central

    Thavamani, B. Samuel; Mathew, Molly; Dhanabal, S. P.

    2016-01-01

    Background: Protein–ligand interaction plays a major role in identification of the possible mechanism by which a ligand can bind with the target and exerts the pharmacological action. Objective: The aim is to identify the best candidate of Cocculus hirsutus which binds with the hepatocellular carcinoma (HCC) targets by docking studies. Materials and Methods: The reported phytoconstituents such as coclaurine, hirsutine, cohirsine, cohirsinine, lirioresinol, cohirsitinine, haiderine, jamtinine, isotrilobine, shaheenine, jamtine, and cocsoline present in the plant, C. hirsutus were docked with the HCC targets such as Aurora kinase, c-Kit, fibroblast growth factor, nuclear factor kappa B (NF-kB), B-cell lymphoma-extra large, and vascular endothelial growth factor (VEGF) using in silico technique with the software Grid-Based Ligand Docking with Energies. Results: Haiderine, shaheenine, and coclaurine had good interaction with Aurora kinase with the glide score and glide energy of − 7.632, −7.620, −7.464; and − 56.536, −55.203, −52,822, respectively. Coclaurine, lirioresinol, and haiderine possess good binding with c-Kit with the glide score and glide energy of − 8.572, −6.640, −6.478; and − 56.527, −57.138, −20,522, respectively. Lirioresinol, hirsutine, and coclaurine exhibit good binding with c-Kit with the glide score and glide energy of − 5.702, −5.694, −5.678; and − 48.666, −35.778, −41,673, respectively. Similarly, coclaurine, haiderine, and hisutine had good interaction with NF-kB. Haiderine, jamtinine, and coclaurine had good binding with VEGF receptors (VEGFR) and coclaurine, lirioresinol, and haiderine exhibit good bonding with VEGFR. Conclusion: Coclaurine, haiderine, and lirioresinol exibited good hydrogen bonding interactions and binding energy with the select targets. Hence, these compounds have to be taken up for experimental work against hepatocellular carcinoma. SUMMARY Compounds of interest showed good interaction

  16. Cerenkov Luminescence Endoscopy: Improved Molecular Sensitivity with β−-Emitting Radiotracers

    PubMed Central

    Carpenter, Colin M.; Ma, Xiaowei; Liu, Hongguang; Sun, Conroy; Pratx, Guillem; Wang, Jing; Gambhir, Sanjiv S.; Xing, Lei; Cheng, Zhen

    2015-01-01

    Cerenkov luminescence endoscopy (CLE) is an optical technique that captures the Cerenkov photons emitted from highly energetic moving charged particles (β+ or β−) and can be used to monitor the distribution of many clinically available radioactive probes. A main limitation of CLE is its limited sensitivity to small concentrations of radiotracer, especially when used with a light guide. We investigated the improvement in the sensitivity of CLE brought about by using a β− radiotracer that improved Cerenkov signal due to both higher β-particle energy and lower γ noise in the imaging optics because of the lack of positron annihilation. Methods The signal-to-noise ratio (SNR) of 90Y was compared with that of 18F in both phantoms and small-animal tumor models. Sensitivity and noise characteristics were demonstrated using vials of activity both at the surface and beneath 1 cm of tissue. Rodent U87MG glioma xenograft models were imaged with radiotracers bound to arginine-glycine-aspartate (RGD) peptides to determine the SNR. Results γ noise from 18F was demonstrated by both an observed blurring across the field of view and a more pronounced fall-off with distance. A decreased γ background and increased energy of the β particles resulted in a 207-fold improvement in the sensitivity of 90Y compared with 18F in phantoms. 90Y-bound RGD peptide produced a higher tumor-to-background SNR than 18F in a mouse model. Conclusion The use of 90Y for Cerenkov endoscopic imaging enabled superior results compared with an 18F radiotracer. PMID:25300598

  17. JAK2 V617F in myeloid disorders: molecular diagnostic techniques and their clinical utility: a paper from the 2005 William Beaumont Hospital Symposium on Molecular Pathology.

    PubMed

    Steensma, David P

    2006-09-01

    In early 2005, several groups of investigators studying myeloid malignancies described a novel somatic point mutation (V617F) in the conserved autoinhibitory pseudokinase domain of the Janus kinase 2 (JAK2) protein, which plays an important role in normal hematopoietic growth factor signaling. The V617F mutation is present in blood and marrow from a large proportion of patients with classic BCR/ABL-negative chronic myeloproliferative disorders and of a few patients with other clonal hematological diseases such as myelodysplastic syndrome, atypical myeloproliferative disorders, and acute myeloid leukemia. The JAK2 V617F mutation causes constitutive activation of the kinase, with deregulated intracellular signaling that mimics continuous hematopoietic growth factor stimulation. Within 7 months of the first electronic publication describing this new mutation, clinical molecular diagnostic laboratories in the United States and Europe began offering JAK2 mutation testing on a fee-for-service basis. Here, I review the various techniques used by research groups and clinical laboratories to detect the genetic mutation underlying JAK2 V617F, including fluorescent dye chemistry sequencing, allele-specific polymerase chain reaction (PCR), real-time PCR, DNA-melting curve analysis, pyrosequencing, and others. I also discuss diagnostic sensitivity, performance, and other practical concerns relevant to the clinical laboratorian in addition to the potential diagnostic utility of JAK2 mutation tests.

  18. Preparation of Supported Metal Catalysts by Atomic and Molecular Layer Deposition for Improved Catalytic Performance

    NASA Astrophysics Data System (ADS)

    Gould, Troy D.

    Creating catalysts with enhanced selectivity and activity requires precise control over particle shape, composition, and size. Here we report the use of atomic layer deposition (ALD) to synthesize supported Ni, Pt, and Ni-Pt catalysts in the size regime (< 3 nm) where nanoscale properties can have a dramatic effect on reaction activity and selectivity. This thesis presents the first ALD synthesis of non-noble metal nanoparticles by depositing Ni on Al2O3 with two half-reactions of Ni(Cp)2 and H2. By changing the number of ALD cycles, Ni weight loadings were varied from 4.7 wt% to 16.7 wt% and the average particle sizes ranged from 2.5 to 3.3 nm, which increased the selectivity for C 3H6 hydrogenolysis by an order of magnitude over a much larger Ni/Al2O3 catalyst. Pt particles were deposited by varying the number of ALD cycles and the reaction chemistry (H2 or O 2) to control the particle size from approximately 1 to 2 nm, which allowed lower-coordinated surface atoms to populate the particle surface. These Pt ALD catalysts demonstrated some of the highest oxidative dehydrogenation of propane selectivities (37%) of a Pt catalyst synthesized by a scalable technique. Dry reforming of methane (DRM) is a reaction of interest due to the recent increased recovery of natural gas, but this reaction is hindered from industrial implementation because the Ni catalysts are plagued by deactivation from sintering and coking. This work utilized Ni ALD and NiPt ALD catalysts for the DRM reaction. These catalysts did not form destructive carbon whiskers and had enhanced reaction rates due to increased bimetallic interaction. To further limit sintering, the Ni and NiPt ALD catalysts were coated with a porous alumina matrix by molecular layer deposition (MLD). The catalysts were evaluated for DRM at 973 K, and the MLD-coated Ni catalysts outperformed the uncoated Ni catalysts in either activity (with 5 MLD cycles) or stability (with 10 MLD cycles). In summary, this thesis developed a

  19. Virtual Lab Demonstrations Improve Students’ Mastery of Basic Biology Laboratory Techniques

    PubMed Central

    Maldarelli, Grace A.; Hartmann, Erica M.; Cummings, Patrick J.; Horner, Robert D.; Obom, Kristina. M.; Shingles, Richard; Pearlman, Rebecca S.

    2009-01-01

    Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergraduate and graduate lab courses and to assess the impact of these videos on student learning. Demonstrations of individual laboratory procedures were videotaped and then edited with iMovie. Narration for the videos was edited with Audacity. Undergraduate students were surveyed anonymously prior to and following screening to assess the impact of the videos on student lab performance by completion of two Participant Perception Indicator surveys. A total of 203 and 171 students completed the pre- and posttesting surveys, respectively. Statistical analyses were performed to compare student perceptions of knowledge of, confidence in, and experience with the lab techniques before and after viewing the videos. Eleven demonstrations were recorded. Chi-square analysis revealed a significant increase in the number of students reporting increased knowledge of, confidence in, and experience with the lab techniques after viewing the videos. Incorporation of instructional videos as prelaboratory exercises has the potential to standardize techniques and to promote successful experimental outcomes. PMID:23653690

  20. Improving Oral Bioavailability of Sorafenib by Optimizing the "Spring" and "Parachute" Based on Molecular Interaction Mechanisms.

    PubMed

    Liu, Chengyu; Chen, Zhen; Chen, Yuejie; Lu, Jia; Li, Yuan; Wang, Shujing; Wu, Guoliang; Qian, Feng

    2016-02-01

    Sorafenib is a clinically important oral tyrosine kinase inhibitor for the treatment of various cancers. However, the oral bioavailability of sorafenib tablet (Nexavar) is merely 38-49% relative to the oral solution, due to the low aqueous solubility of sorafenib and its relatively high daily dose. It is desirable to improve the oral bioavailability of sorafenib to expand the therapeutic window, reduce the drug resistance, and enhance patient compliance. In this study, we observed that the solubility of sorafenib could be increased ∼50-fold in the coexistence of poly(vinylpyrrolidone-vinyl acetate) (PVP-VA) and sodium lauryl sulfate (SLS), due to the formation of PVP-VA/SLS complexes at a lower critical aggregation concentration. The enhanced solubility provided a faster initial sorafenib dissolution rate, analogous to a forceful "spring" to release drug into solution, from tablets containing both PVP-VA and SLS. However, SLS appears to impair the ability of PVP-VA to act as an efficient "parachute" to keep the drug in solution and maintain drug supersaturation. Using 2D (1)H NMR, (13)C NMR, and FT-IR analysis, we concluded that the solubility enhancement and supersaturation of sorafenib were achieved by PVP-VA/SLS complexes and PVP-VA/sorafenib interaction, respectively, both through molecular interactions hinged on the PVP-VA VA groups. Therefore, a balance between "spring" and "parachute" must be carefully considered in formulation design. To confirm the in vivo relevance of these molecular interaction mechanisms, we prepared three tablet formulations containing PVP-VA alone, SLS alone, and PVP-VA/SLS in combination. The USP II in vitro dissolution and dog pharmacokinetic in vivo evaluation showed clear differentiation between these three formulations, and also good in vitro-in vivo correlation. The formulation containing PVP-VA alone demonstrated the best bioavailability with 1.85-fold and 1.79-fold increases in Cmax and AUC, respectively, compared with the