Science.gov

Sample records for improved nitrogen difference

  1. Biochemical Approaches to Improved Nitrogen Fixation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving symbiotic nitrogen fixation by legumes has emerged again as an important topic on the world scene due to the energy crisis and lack of access to nitrogen fertilizer in developing countries. We have taken a biochemical genomics approach to improving symbiotic nitrogen fixation in legumes. L...

  2. Simulation of the dissolved nitrogen and phosphorus loads in different land uses in the Three Gorges Reservoir Region--based on the improved export coefficient model.

    PubMed

    Wang, Jinliang; Shao, Jing'an; Wang, Dan; Ni, Jiupai; Xie, Deti

    2015-11-01

    much smaller than those of the paddy field. The dissolved nitrogen and phosphorus loads in the woodland and meadow decreased after modification. The dissolved nitrogen and phosphorus loads in the building lot were the lowest but showed an increase with the progression of time. These results demonstrate that the modified export coefficient model significantly improves the accuracy of dissolved pollutant load simulation for different land uses in the TGRR, especially the accuracy of dissolved nitrogen load simulation.

  3. [Nitrogen Fraction Distributions and Impacts on Soil Nitrogen Mineralization in Different Vegetation Restorations of Karst Rocky Desertification].

    PubMed

    Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing

    2015-09-01

    In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in < 0. 25 mm. The content of nitrogen fractions for all aggregate-classes followed in the order of abandoned land < grass land < brush land < brush-arbor land < arbor land in different sample plots. Artificial forest lands had more effects on the improvement of the soil nitrogen than honeysuckle land. In this study it also showed the nitrogen stockpiling quantity of each aggregate-size class was differed in all aggregate-size classes, in which the content of nitrogen fraction in 5-10 mm and 2-5 mm classes of soil aggregate-size were the highest. And it meant that soil nutrient mainly was stored in large size aggregates. Large size aggregates were significant to the storage of soil nutrient. For each class of soil aggregate-size, the contribution of the nitrogen stockpiling quantity of 0. 25-1 mm class to soil net nitrogen mineralization quantity was the biggest, and following >5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified. PMID:26717705

  4. [Nitrogen Fraction Distributions and Impacts on Soil Nitrogen Mineralization in Different Vegetation Restorations of Karst Rocky Desertification].

    PubMed

    Hu, Ning; Ma, Zhi-min; Lan, Jia-cheng; Wu, Yu-chun; Chen, Gao-qi; Fu, Wa-li; Wen, Zhi-lin; Wang, Wen-jing

    2015-09-01

    In order to illuminate the impact on soil nitrogen accumulation and supply in karst rocky desertification area, the distribution characteristics of soil nitrogen pool for each class of soil aggregates and the relationship between aggregates nitrogen pool and soil nitrogen mineralization were analyzed in this study. The results showed that the content of total nitrogen, light fraction nitrogen, available nitrogen and mineral nitrogen in soil aggregates had an increasing tendency along with the descending of aggregate-size, and the highest content was occurred in < 0. 25 mm. The content of nitrogen fractions for all aggregate-classes followed in the order of abandoned land < grass land < brush land < brush-arbor land < arbor land in different sample plots. Artificial forest lands had more effects on the improvement of the soil nitrogen than honeysuckle land. In this study it also showed the nitrogen stockpiling quantity of each aggregate-size class was differed in all aggregate-size classes, in which the content of nitrogen fraction in 5-10 mm and 2-5 mm classes of soil aggregate-size were the highest. And it meant that soil nutrient mainly was stored in large size aggregates. Large size aggregates were significant to the storage of soil nutrient. For each class of soil aggregate-size, the contribution of the nitrogen stockpiling quantity of 0. 25-1 mm class to soil net nitrogen mineralization quantity was the biggest, and following >5mm and 2-5 mm classes, and the others were the smallest. With the positive vegetation succession, the weight percentage of > 5 mm aggregate-size classes was improved and the nitrogen storage of macro-aggregates also was increased. Accordingly, the capacity of soil supply mineral nitrogen and storage organic nitrogen were intensified.

  5. Continuous improvement in nitrogen rejection unit design

    SciTech Connect

    O`Brien, J.V.; Maloney, J.J.

    1997-12-31

    The design and fabrication of Nitrogen Rejection Units (NRU) has advanced considerably over the past 15 years. Improvements have been made in all aspects of producing an NRU plant and cold box. This paper presents the primary areas involved that have seen these improvements. (1) Process design: the two-column process has been superseded by an approach which utilizes multiple flash drums and one column. This leads to a smaller and lower cost cold box. With low nitrogen content feeds, the prefractionater recovers half the methane as a high pressure residue gas and reduces the cold box size. (2) Mechanical Design: improved software enables the design process to be more accurate, eliminate piping and equipment interferences, reduce the size of the box and save design time. (3) Manufacturing: the interfacing of the 3D software design tools and the manufacturing process enables the shop floor personnel to reduce the manufacturing time by 10%. All of these individual improvements have reduced the real cost of an NRU substantially over the past 15 years.

  6. Can the anaerobic potentially mineralizable nitrogen test improve predictions of fertilizer nitrogen rates in the Cornbelt?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Correctly estimating the amount of mineralizable nitrogen (N) can enhance nitrogen use efficiency. The anaerobic potentially mineralizable nitrogen (PMNAn) test is a tool that may help improve predictions of N uptake, grain yield, and the economical optimum nitrogen rate (EONR) of corn (Zea mays L...

  7. Response of potatoes to nitrogen concentrations differ with nitrogen forms

    NASA Technical Reports Server (NTRS)

    Cao, W.; Tibbitts, T. W.

    1998-01-01

    Two separate experiments were conducted to investigate plant growth and mineral composition of potatoes (Solanum tuberosum L.) at varied solution concentrations of nitrate (NO3-) and ammonium (NH4+). Each experiment evaluated five nitrogen (N) concentrations of 0.5, 2, 4, 8, and 12 mM, which were maintained with a non-recirculating nutrient film system in controlled environment. Plants were harvested on day 42 with NO3-; and day 35 with NH4+ after transplanting of tissue culture plantlets, and growth measurements were taken as leaf area, tuber number, and dry weights of different parts. With NO3-, plant growth was greatest and similar at 2, 4, and 8 mM of N whereas with NH4+, plant growth was best only at 2 and 4 mM of N. At 12 mM of N, plants exhibited interveinal ammonium toxicity with NH4+ nutrition, but healthy growth appearance with NO3- nutrition. With either N form, total N concentrations in tissues tended to increase with increased N concentrations, and tissue phosphorus (P) concentrations were reduced at 0.5 and 2 mM of N. Tissue concentrations of calcium (Ca), magnesium (Mg), and sulfur (S) changed only slightly at particular N concentrations, yet changed substantially with different N forms. The data indicate that the optimal ranges of N concentrations in both solution and tissues are wider and higher with NO3- than with NH4+ nutrition, and thus a careful control of NH4+ concentrations is necessary to minimize possible ammonium toxicity to potato plants.

  8. Bioretention Design to Improve Nitrogen Removal

    EPA Science Inventory

    Bioretention has been shown to effectively remove a variety of stormwater stressors, including oil/grease, heavy metals, phosphorus, and ammonium. However, reported nitrate and total nitrogen removal performance is highly variable. The media typically used in bioretention install...

  9. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources.

    PubMed

    Zhao, Shaohui; Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-04-14

    In cultures containing multiple sources of nitrogen, Saccharomyces cerevisiae exhibits a sequential use of nitrogen sources through a mechanism known as nitrogen catabolite repression (NCR). To identify proteins differentially expressed due to NCR, proteomic analysis of S. cerevisiae S288C under different nitrogen source conditions was performed using two-dimensional gel electrophoresis (2-DE), revealing 169 candidate protein spots. Among these 169 protein spots, 121 were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins were closely associated with four main biological processes through Gene Ontology (GO) categorical analysis. The identification of the potential proteins and cellular processes related to NCR offer a global overview of changes elicited by different nitrogen sources, providing clues into how yeast adapt to different nutritional conditions. Moreover, by comparing our proteomic data with corresponding mRNA data, proteins regulated at the transcriptional and post-transcriptional level could be distinguished. Biological significance In S. cerevisiae, different nitrogen sources provide different growth characteristics and generate different metabolites. The nitrogen catabolite repression (NCR) process plays an important role for S. cerevisiae in the ordinal utilization of different nitrogen sources. NCR process can result in significant shift of global metabolic networks. Previous works on NCR primarily focused on transcriptomic level. The results obtained in this study provided a global atlas of the proteome changes triggered by different nitrogen sources and would facilitate the understanding of mechanisms for how yeast could adapt to different nutritional conditions.

  10. [Purification effects on nitrogen under different concentration and nitrogen conformation transform principles by Vallisneria spiraslis L].

    PubMed

    Wang, Pei-fang; Wang, Chao; Wang, Xiao-rong; Xue, Yan; Yang, Ai

    2008-04-01

    Wet vegetation performed different physiological actions under different pollution loads, thus inducing different purification effects on pollutants. Since water of various rivers, lakes and ponds are polluted at different extents and purification levels currently in China, a typical submerged vegetation, Vallisneria spiraslis L. is selected to study the purification effects on total nitrogen(TN) under different purification levels, which is widely distributed in rivers and lakes of Yangtz middle and down stream. The targets of this paper are to determine the nitrogen degradation impacts of Vallisneria spiraslis L., and nitrogen accumulation and distribution in leaf and root rules, and inorganic nitrogen conformation transformation characters under 7 nitrogen loads during 7 to 22 Sept., 2006. The 7 nitrogen loads are 1.0 mg/L, 5.0 mg/L, 10.0 mg/L, 20.0 mg/L, 40.0 mg/L, 60.0 mg/L and 80.0 mg/L. The experiment data show that Vallisneria spiraslis L. have significant effects on nitrogen purification while the TN concentration equal to and less than 60 mg/L, and the contribution principles of vegetation are similar among the 6 loads. Whereas, when the TN load bigger than 80.0 mg/L, Vallisneria spiraslis L. have no obvious contribution on nitrogen purification. Meanwhile, the nitrogen accumulation principles in the leaf and root of Vallisneria spiraslis L. is interrelated to the TN load. However, its distribution ratio in leaf to root is unrelated with TN load. Furthermore, the conformation of inorganic nitrogen transform characters changed with the TN load increasing. It is concluded that ammonia concentration decreased rapidly while the nitrogen load less than 20.0 mg/L, and the ammonia concentration ratio in the inorganic nitrogen increased remarkably with the nitrogen load increasing. Results indicate Vallisneria spiraslis L. have different purification contribution extents which can be benefit for nitrogen removal in different eutrophicated water and wet vegetation

  11. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency.

    PubMed

    Adams, Mark Andrew; Turnbull, Tarryn L; Sprent, Janet I; Buchmann, Nina

    2016-04-12

    Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43-100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea-in distinct challenge to current theories that place the leaf nitrogen-Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea-gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen-in a variety of forms-enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates.

  12. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency.

    PubMed

    Adams, Mark Andrew; Turnbull, Tarryn L; Sprent, Janet I; Buchmann, Nina

    2016-04-12

    Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43-100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea-in distinct challenge to current theories that place the leaf nitrogen-Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea-gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen-in a variety of forms-enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates. PMID:27035971

  13. [Effects of different nitrogen regulators on nitrogen transformation in different soil types].

    PubMed

    Liu, Jian-Tao; Xu, Jing; Sun, Zhi-Mei; Cui, Shao-Xiong; Wang, Xue

    2014-10-01

    Laboratory incubation experiments were conducted to compare the inhibitory effects of dicyandiamide (DCD) and 3,5-dimethylpyrazole (DMP) on nitrification in meadow-cinnamon soil and fluvo-aquic soil, the main soil types of North China Plain. The synergistic effect of DMP combined with urease inhibitor hydroquinone (HQ) on nitrogen transformation in fluvo-aquic soil was further studied. The results indicated that, in contrast to DCD, DMP had a stronger inhibitory effect on the nitrification in the two tested soils. In comparison with the treatment without any inhibitor, the soil NH(4+)-N content in the treatment with DMP increased significantly by 149.5%-387.2% at the peak of nitrogen transformation stage, and the soil NO(3-)-N content reduced by 22.3%-55.3%. The inhibitory effects of DCD and DMP in fluvo-aquic soil were both stronger than in meadow-cinnamon soil. In addition, the application of DMP combined with HQ had a significantly synergistic effect on soil nitrogen transformation.

  14. Integrating soil information into canopy sensor algorithms for improved corn nitrogen rate recommendation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop canopy sensors have proven effective at determining site-specific nitrogen (N) needs, but several Midwest states use different algorithms to predict site-specific N need. The objective of this research was to determine if soil information can be used to improve the Missouri canopy sensor algori...

  15. Physiological limitations and the genetic improvement of symbiotic nitrogen fixation

    SciTech Connect

    Gara, F.O.; Manian, S. ); Drevon, J.J. )

    1988-01-01

    The rhizobium legume symbiosis continues to be of strategic importance particularly in the context of food production. As the world population grows, it is necessary that new developments take place in crop improvement. The development and application of new technologies in biological sciences over past years has made the entire area of plant-microbial interaction an exciting and challenging research area to be involved in. In view of the importance of symbiotic nitrogen fixation, it is not surprising that it still represents one of the priority areas for commercial development in agricultural biotechnology. Since this symbiosis involves an association between procaryotic and eucaryhotic partners, it requires of necessity a coordinated and interdisciplinary approach. This book focuses on physiological limitations affecting symbiotic nitrogen fixation and the potential for overcoming such limitations by using genetic technologies.

  16. Improvements to the Characterization of Organic Nitrogen Chemistry

    EPA Science Inventory

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  17. Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency

    PubMed Central

    Adams, Mark Andrew; Turnbull, Tarryn L.; Sprent, Janet I.; Buchmann, Nina

    2016-01-01

    Using robust, pairwise comparisons and a global dataset, we show that nitrogen concentration per unit leaf mass for nitrogen-fixing plants (N2FP; mainly legumes plus some actinorhizal species) in nonagricultural ecosystems is universally greater (43–100%) than that for other plants (OP). This difference is maintained across Koppen climate zones and growth forms and strongest in the wet tropics and within deciduous angiosperms. N2FP mostly show a similar advantage over OP in nitrogen per leaf area (Narea), even in arid climates, despite diazotrophy being sensitive to drought. We also show that, for most N2FP, carbon fixation by photosynthesis (Asat) and stomatal conductance (gs) are not related to Narea—in distinct challenge to current theories that place the leaf nitrogen–Asat relationship at the center of explanations of plant fitness and competitive ability. Among N2FP, only forbs displayed an Narea–gs relationship similar to that for OP, whereas intrinsic water use efficiency (WUEi; Asat/gs) was positively related to Narea for woody N2FP. Enhanced foliar nitrogen (relative to OP) contributes strongly to other evolutionarily advantageous attributes of legumes, such as seed nitrogen and herbivore defense. These alternate explanations of clear differences in leaf N between N2FP and OP have significant implications (e.g., for global models of carbon fluxes based on relationships between leaf N and Asat). Combined, greater WUE and leaf nitrogen—in a variety of forms—enhance fitness and survival of genomes of N2FP, particularly in arid and semiarid climates. PMID:27035971

  18. Nitrogen deposition along differently exposed slopes in the Bavarian Alps.

    PubMed

    Kirchner, Manfred; Fegg, Wolfgang; Römmelt, Horst; Leuchner, Michael; Ries, Ludwig; Zimmermann, Ralf; Michalke, Bernd; Wallasch, Markus; Maguhn, Jürgen; Faus-Kessler, Theresa; Jakobi, Gert

    2014-02-01

    The Alps are affected by high nitrogen deposition, particularly in the fringe of the Northern and Southern Alps. In the framework of a two-year monitoring study performed in 2010 and 2011, we investigated the ammonia and nitrogen dioxide air concentration and ammonium and nitrate deposition at different altitudes between 700 and 1,600 ma.s.l. in the Garmisch-Partenkirchen district in the Upper Bavaria region (Germany). Four-weekly measurements of deposition collected with bulk open field samplers and under-crown were performed in a profile perpendicular to the axis of the Loisach valley; measurements were conducted at eight sites. Whereas open field deposition ranged from 5 to 11 kg ha(-1)a(-1), nitrogen throughfall has reached up to 21 kg ha(-1)a(-1). Data from the valley and the slopes were compared with measurements performed on the platform of the Environmental Research Station Schneefernerhaus (Zugspitze) at an altitude of 2,650 ma.s.l. For the rough estimation of the total yearly deposition rate of nitrogen, the canopy uptake model was applied. By regarding nitrogen uptake by the trees, total deposition can exceed the throughfall in all sites by up to 50%. Additionally, we estimated the total deposition from the sum of wet and dry deposition. On the one side, the wet deposition could be extrapolated from the open field deposition. On the other side, we used the inferential method to calculate the dry deposition on the basis of NH3 and NO2 air concentrations and their literature based deposition velocities. Since fixed deposition velocities are inappropriate particularly in complex orography, we tried to find correction factors based upon terrain characteristics and meteorological considerations. Temperature monitoring at the eight sites and wind measurements at two sites provided some evidence for the semi-empirical parameterization. Due to numerous imponderabilities, the results of the two methods were not consistent for all sites.

  19. [Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil].

    PubMed

    Liu, Xi-Yu; Zou, Jing-Dong; Xu, Li-Li; Zhang, Xin-Yu; Yang, Feng-Ting; Dai, Xiao-Qin; Wang, Zhong-Qiang; Sun, Xiao-Min

    2014-08-01

    Enhanced fertilization could decrease nitrogen utilization rate and increase carbon and nitrogen leaching, leading to water pollution in agricultural ecosystem. A long-term field experiment had been established on a reddish paddy soil of Qianyanzhou Ecological Experimental Station (114 degrees 53'E, 26 degrees 48'N) in Jiangxi Province in 1998. Soil solution samples were collected by clay tube and vacuum pump. Four fertilizer species treatments were selected: control with no fertilizer (CK), straw return (ST), nitrogen, phosphorus and potassium mineral fertilizers (NPK) and pig manure (OM), aiming to evaluate the effects of different species of fertilizer on carbon and nitrogen leaching in a double rice cropping system. The results showed that: (1) ammonium nitrogen (NH4(+) -N) was the major type of N in soil leachate in reddish paddy soil. The application of NPK could significantly increase the ammonium nitrogen concentration (1.2 mg x L(-1) +/- 0.1 mg x L(-1)) compared with the CK, ST and OM treatments, and the application of OM could significantly increase the dissolved organic carbon (DOC) concentration (27.3 mg x L(-1) +/- 1.6 mg x L(-1)) in soil leachate. The carbon and nitrogen leaching were more notable in the vegetative growth stage than the reproductive growth stage of rice (P < 0.05); (2) the long-term application of NPK and OM increased the NH4(+) -N, DOC, soil organic carbon (SOC) and total nitrogen (TN) contents. The NPK was best beneficial to improve TN contents and OM to improve SOC contents. (3) The DOC contents in soil leachate and SOC in paddy soil had a positive correlation (P < 0.01), while NH4(+) -N contents in soil leachate and TN contents in paddy soil had a positive correlation (P < 0.01). PMID:25338383

  20. [Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil].

    PubMed

    Liu, Xi-Yu; Zou, Jing-Dong; Xu, Li-Li; Zhang, Xin-Yu; Yang, Feng-Ting; Dai, Xiao-Qin; Wang, Zhong-Qiang; Sun, Xiao-Min

    2014-08-01

    Enhanced fertilization could decrease nitrogen utilization rate and increase carbon and nitrogen leaching, leading to water pollution in agricultural ecosystem. A long-term field experiment had been established on a reddish paddy soil of Qianyanzhou Ecological Experimental Station (114 degrees 53'E, 26 degrees 48'N) in Jiangxi Province in 1998. Soil solution samples were collected by clay tube and vacuum pump. Four fertilizer species treatments were selected: control with no fertilizer (CK), straw return (ST), nitrogen, phosphorus and potassium mineral fertilizers (NPK) and pig manure (OM), aiming to evaluate the effects of different species of fertilizer on carbon and nitrogen leaching in a double rice cropping system. The results showed that: (1) ammonium nitrogen (NH4(+) -N) was the major type of N in soil leachate in reddish paddy soil. The application of NPK could significantly increase the ammonium nitrogen concentration (1.2 mg x L(-1) +/- 0.1 mg x L(-1)) compared with the CK, ST and OM treatments, and the application of OM could significantly increase the dissolved organic carbon (DOC) concentration (27.3 mg x L(-1) +/- 1.6 mg x L(-1)) in soil leachate. The carbon and nitrogen leaching were more notable in the vegetative growth stage than the reproductive growth stage of rice (P < 0.05); (2) the long-term application of NPK and OM increased the NH4(+) -N, DOC, soil organic carbon (SOC) and total nitrogen (TN) contents. The NPK was best beneficial to improve TN contents and OM to improve SOC contents. (3) The DOC contents in soil leachate and SOC in paddy soil had a positive correlation (P < 0.01), while NH4(+) -N contents in soil leachate and TN contents in paddy soil had a positive correlation (P < 0.01).

  1. Nitrogen cycling in different types of sediments from Danish waters

    SciTech Connect

    Blackburn, T.H.; Henridsen, K.

    1983-05-01

    Variations in sediment N:C ratios were correlated with water depth and season. /sup 14/NH/sub 4//sup +/ was used to measure the rates of NH/sub 4//sup +/ production (d) and incorporation into bacterial cells (i) in sediments from different stations, at different seasons. The validity of the rates d and i was indicated by the predicted correlation of d:i ratios with N:C ratios of the sediment, and the predicted N:C ratio at which net NH/sub 4//sup +/; pore water NH/sub 4//sup +/, flux of NH/sub 4//sup +/ from sediment, and flux of NH/sub 4//sup +/ into exchangeable pool. The NO/sub 3//sup -/ flux from sediment was correlated with nitrification rate and with season. Benthic infauna increased the flux of NH/sub 4//sup +/ from the sediment by 50%. The rates of transfer of nitrogen (NO/sub 3//sup -/, NH/sub 4//sup +/, N/sub 2/) from sediment to water were 44-66% of the net rates of organic nitrogen mineralization (d-i). Flux of NO/sub 3//sup -/ + NH/sub 4//sup +/ from the sediment could supply 30-82% of the nitrogen requirement of the planktonic primary producers.

  2. Nitrogen fixation in lichens is important for improved rock weathering.

    PubMed

    Seneviratne, Gamini; Indrasena, I K

    2006-12-01

    It is known that cyanobacteria in cyanolichens fix nitrogen for their nutrition.However, specific uses of the fixed nitrogen have not been examined. The present study shows experimentally that a mutualistic interaction between a heterotrophic N2 fixer and lichen fungi in the presence of a carbon source can contribute to enhanced release of organic acids, leading to improved solubilization of the mineral substrate. Three lichen fungi were isolated from Xanthoparmelia mexicana, a foliose lichen, and they were cultured separately or with a heterotrophic N2 fixer in nutrient broth media in the presence of a mineral substrate. Cells of the N2-fixing bacteria attached to the mycelial mats of all fungi, forming biofilms. All biofilms showed higher solubilizations of the substrate than cultures of their fungi alone. This finding has bearing on the significance of the origin and existence of N2-fixing activity in the evolution of lichen symbiosis. Further, our results may explain why there are N2-fixing photobionts even in the presence of non- fixing photobionts (green algae) in some remarkable lichens such as Placopsis gelida. Our study sheds doubt on the idea that the establishment of terrestrial eukaryotes was possible only through the association between a fungus and a phototroph.

  3. Effects of improving nitrogen management on nitrogen utilization, nitrogen balance, and reactive nitrogen losses in a Mollisol with maize monoculture in Northeast China.

    PubMed

    Yan, Li; Zhang, Zhi-Dan; Zhang, Jin-Jing; Gao, Qiang; Feng, Guo-Zhong; Abelrahman, A M; Chen, Yuan

    2016-03-01

    Traditional fertilization led to higher apparent N surplus, and optimized fertilization can reduce residual nitrogen in soils with keeping high yield. But in continuous spring maize cropping zone in Mollisol in Northeast China, the effect of the optimized N management on N balance and comprehensive environment was not clear. The primary objective of this study was to compare the differences of two fertilizations (traditional farmer N management (FNM) with single basal fertilizer and improvement N management (INM) by soil testing with top-dressing) in gain yield, N uptake and N efficiency, soil N balance, reactive N losses, and environment assessment. The results showed that INM treatment has no remarkable effect on grain yield and N uptake; N partial factor productivity (PFPN) of INM treatment was 19.8 % significantly higher than the FNM treatment. Nmin in soils of INM treatment reached to 111.0 kg ha(-1), which was 27.1 % lower than the FNM treatment after 6 years of continuous maize cropping; the apparent N Losses (ANL) and apparent N surplus (ANS) of INM were only half of FNM by soil N balance analysis. In reactive N losses, comparing with FNM treatment, INM treatment reduced NH3 volatilization, N2O emission, N leaching, and N runoff by 17.8, 35.6, 45, and 38.3 %, respectively, during planting period, and in integrated environment assessment by life cycle assessment (LCA) method, producing 1 t maize grain, energy depletion, acidification, eutrophication, and climate change impacts of INM treatment decreased 26.19, 30.16, 32.61, and 22.75 %, respectively. Therefore, INM treatment is a better N management strategy in comprehensive analysis.

  4. Effects of improving nitrogen management on nitrogen utilization, nitrogen balance, and reactive nitrogen losses in a Mollisol with maize monoculture in Northeast China.

    PubMed

    Yan, Li; Zhang, Zhi-Dan; Zhang, Jin-Jing; Gao, Qiang; Feng, Guo-Zhong; Abelrahman, A M; Chen, Yuan

    2016-03-01

    Traditional fertilization led to higher apparent N surplus, and optimized fertilization can reduce residual nitrogen in soils with keeping high yield. But in continuous spring maize cropping zone in Mollisol in Northeast China, the effect of the optimized N management on N balance and comprehensive environment was not clear. The primary objective of this study was to compare the differences of two fertilizations (traditional farmer N management (FNM) with single basal fertilizer and improvement N management (INM) by soil testing with top-dressing) in gain yield, N uptake and N efficiency, soil N balance, reactive N losses, and environment assessment. The results showed that INM treatment has no remarkable effect on grain yield and N uptake; N partial factor productivity (PFPN) of INM treatment was 19.8 % significantly higher than the FNM treatment. Nmin in soils of INM treatment reached to 111.0 kg ha(-1), which was 27.1 % lower than the FNM treatment after 6 years of continuous maize cropping; the apparent N Losses (ANL) and apparent N surplus (ANS) of INM were only half of FNM by soil N balance analysis. In reactive N losses, comparing with FNM treatment, INM treatment reduced NH3 volatilization, N2O emission, N leaching, and N runoff by 17.8, 35.6, 45, and 38.3 %, respectively, during planting period, and in integrated environment assessment by life cycle assessment (LCA) method, producing 1 t maize grain, energy depletion, acidification, eutrophication, and climate change impacts of INM treatment decreased 26.19, 30.16, 32.61, and 22.75 %, respectively. Therefore, INM treatment is a better N management strategy in comprehensive analysis. PMID:26518001

  5. The role of water nitrogen retention in integrated nutrient management: assessment in a large basin using different modelling approaches

    NASA Astrophysics Data System (ADS)

    Grizzetti, Bruna; Passy, Paul; Billen, Gilles; Bouraoui, Fayçal; Garnier, Josette; Lassaletta, Luis

    2015-06-01

    Assessing the removal of nitrogen (temporary and permanent) in large river basins is complex due to the dependency on climate, hydrological and physical characteristics, and ecosystems functioning. Measurements are generally limited in number and do not account for the full integration of all processes contributing to nitrogen retention in the river basin. However, the estimation of nitrogen retention by the ecosystems is crucial to understanding the nitrate water pollution and the N2O emissions to the atmosphere, as well as the lag time between the implementation of agri-environmental measures to reduce nitrogen pollution and the improvement of water quality. Models have often been used to understand the dynamics of the river basin system. The objective of this study was to assess nitrogen retention in a large river basin, the Seine basin (∼65 000 km2, in France), through the application of three models with different levels of complexity developed for different specific purposes: the GREEN, SWAT and RiverStrahler models. The study analyses the different modelling approaches and compares their estimates of water nitrogen retention over an 11-year period. Then reflexions on the role played by nitrogen retention by aquatic ecosystems in integrated nutrient management are presented. The results of this study are relevant for the understanding of nitrogen retention processes at the large river basin scale and for the analysis of mitigation measure scenarios designed to reduce nitrogen impacts on aquatic ecosystems and climate.

  6. Improving dynamic phytoplankton reserve-utilization models with an indirect proxy for internal nitrogen.

    PubMed

    Malerba, Martino E; Heimann, Kirsten; Connolly, Sean R

    2016-09-01

    Ecologists have often used indirect proxies to represent variables that are difficult or impossible to measure directly. In phytoplankton, the internal concentration of the most limiting nutrient in a cell determines its growth rate. However, directly measuring the concentration of nutrients within cells is inaccurate, expensive, destructive, and time-consuming, substantially impairing our ability to model growth rates in nutrient-limited phytoplankton populations. The red chlorophyll autofluorescence (hereafter "red fluorescence") signal emitted by a cell is highly correlated with nitrogen quota in nitrogen-limited phytoplankton species. The aim of this study was to evaluate the reliability of including flow cytometric red fluorescence as a proxy for internal nitrogen status to model phytoplankton growth rates. To this end, we used the classic Quota model and designed three approaches to calibrate its model parameters to data: where empirical observations on cell internal nitrogen quota were used to fit the model ("Nitrogen-Quota approach"), where quota dynamics were inferred only from changes in medium nutrient depletion and population density ("Virtual-Quota approach"), or where red fluorescence emission of a cell was used as an indirect proxy for its internal nitrogen quota ("Fluorescence-Quota approach"). Two separate analyses were carried out. In the first analysis, stochastic model simulations were parameterized from published empirical relationships and used to generate dynamics of phytoplankton communities reared under nitrogen-limited conditions. Quota models were fitted to the dynamics of each simulated species with the three different approaches and the performance of each model was compared. In the second analysis, we fit Quota models to laboratory time-series and we calculate the ability of each calibration approach to describe the observed trajectories of internal nitrogen quota in the culture. Results from both analyses concluded that the

  7. Improving dynamic phytoplankton reserve-utilization models with an indirect proxy for internal nitrogen.

    PubMed

    Malerba, Martino E; Heimann, Kirsten; Connolly, Sean R

    2016-09-01

    Ecologists have often used indirect proxies to represent variables that are difficult or impossible to measure directly. In phytoplankton, the internal concentration of the most limiting nutrient in a cell determines its growth rate. However, directly measuring the concentration of nutrients within cells is inaccurate, expensive, destructive, and time-consuming, substantially impairing our ability to model growth rates in nutrient-limited phytoplankton populations. The red chlorophyll autofluorescence (hereafter "red fluorescence") signal emitted by a cell is highly correlated with nitrogen quota in nitrogen-limited phytoplankton species. The aim of this study was to evaluate the reliability of including flow cytometric red fluorescence as a proxy for internal nitrogen status to model phytoplankton growth rates. To this end, we used the classic Quota model and designed three approaches to calibrate its model parameters to data: where empirical observations on cell internal nitrogen quota were used to fit the model ("Nitrogen-Quota approach"), where quota dynamics were inferred only from changes in medium nutrient depletion and population density ("Virtual-Quota approach"), or where red fluorescence emission of a cell was used as an indirect proxy for its internal nitrogen quota ("Fluorescence-Quota approach"). Two separate analyses were carried out. In the first analysis, stochastic model simulations were parameterized from published empirical relationships and used to generate dynamics of phytoplankton communities reared under nitrogen-limited conditions. Quota models were fitted to the dynamics of each simulated species with the three different approaches and the performance of each model was compared. In the second analysis, we fit Quota models to laboratory time-series and we calculate the ability of each calibration approach to describe the observed trajectories of internal nitrogen quota in the culture. Results from both analyses concluded that the

  8. [Optimization and comparison of nitrogen and phosphorus removal by different aeration modes in oxidation ditch].

    PubMed

    Guo, Chang-Zi; Peng, Dang-Cong; Cheng, Xue-Mei; Wang, Dan

    2012-03-01

    The oxidation ditch operation mode was simulated by sequencing batch reactor (SBR) system with alternate stirring and aeration. The nitrogen and phosphorus removal efficiencies were investigated in two different aeration modes: point aeration and step aeration. Experimental results show that oxygen is dissolved more efficiently in point aeration mode with a longer aerobic region in the same air supply capacity, but dissolved oxygen (DO) utilization efficiency for nitrogen and phosphorus removal is high in step aeration mode. Nitrification abilities of the two modes are equal with ammonia-nitrogen (NH4(+) -N) removal efficiency of 96.68% and 97.03%, respectively. Nitrifier activities are 4.65 and 4.66 mg x (g x h)(-1) respectively. When the ratio of anoxic zones and the aerobic zones were 1, the total nitrogen (TN) removal efficiency of point aeration mode in 2, 4 or 7 partitions was respectively 60.14%, 47.93% and 33.7%. The total phosphorus (TP) removal efficiency was respectively 28.96%, 23.75% and 24.31%. The less the partitions, the higher the nitrogen and phosphorus removal efficiencies, but it is in more favor of TN removal. As for step aeration mode with only one partitioning zone, the TN and TP removal efficiencies are respectively 64.21% and 49.09%, which is better than in point aeration mode, but more conducive to the improvement of TP removal efficiency. Under the condition of sufficient nitrification in step aeration mode, the nitrogen and phosphorus removal is better with the increase of anoxic zone. The removal efficiencies of TN and TP respectively rose to 73.94% and 54.18% when the ratio of anoxic zones and the aerobic zones was increased from 1 : 1 to 1. 8 : 1. As the proportion of anoxic zones was enlarged further, nitrification and operation stability were weakened so as to affect the nitrogen and phosphorus removal efficiencies.

  9. Microalgae respond differently to nitrogen availability during culturing.

    PubMed

    Gigova, Liliana G; Ivanova, Natalia J

    2015-06-01

    Variations in the exogenous nitrogen level are known to significantly affect the physiological status and metabolism of microalgae. However, responses of red, green and yellow-green algae to nitrogen (N) availability have not been compared yet. Porphyridium cruentum, Scenedesmus incrassatulus and Trachydiscus minutus were cultured in the absence of N in the medium and subsequent resupply of N to the starved cells. Culture growth and in-gel changes in isoenzyme pattern and activity of glutamate synthase, glutamate dehydrogenase, malate dehydrogenase, aspartate aminotransferase, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase were studied. The results demonstrated that the algae responded to the fully N-depleted and N-replete culture conditions by species-specific metabolic enzyme changes, suggesting differential regulation of both enzyme activity and cellular metabolism. Substantial differences in the activities of the antioxidant enzymes between N-depleted and N-replete cells of each species as well as between the species were also found. In the present work, besides the more general responses, such as adjustment of growth and pigmentation, we report on the involvement of specific metabolic and antioxidant enzymes and their isoforms in the mechanisms operating during N starvation and recovery in P. cruentum, T. minutus and S. incrassatulus.

  10. Microalgae respond differently to nitrogen availability during culturing.

    PubMed

    Gigova, Liliana G; Ivanova, Natalia J

    2015-06-01

    Variations in the exogenous nitrogen level are known to significantly affect the physiological status and metabolism of microalgae. However, responses of red, green and yellow-green algae to nitrogen (N) availability have not been compared yet. Porphyridium cruentum, Scenedesmus incrassatulus and Trachydiscus minutus were cultured in the absence of N in the medium and subsequent resupply of N to the starved cells. Culture growth and in-gel changes in isoenzyme pattern and activity of glutamate synthase, glutamate dehydrogenase, malate dehydrogenase, aspartate aminotransferase, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase were studied. The results demonstrated that the algae responded to the fully N-depleted and N-replete culture conditions by species-specific metabolic enzyme changes, suggesting differential regulation of both enzyme activity and cellular metabolism. Substantial differences in the activities of the antioxidant enzymes between N-depleted and N-replete cells of each species as well as between the species were also found. In the present work, besides the more general responses, such as adjustment of growth and pigmentation, we report on the involvement of specific metabolic and antioxidant enzymes and their isoforms in the mechanisms operating during N starvation and recovery in P. cruentum, T. minutus and S. incrassatulus. PMID:25963263

  11. Mapping quantitative trait loci for nitrogen uptake and utilization efficiency in rice (Oryza sativa L.) at different nitrogen fertilizer levels.

    PubMed

    Dai, G J; Cheng, S H; Hua, Z T; Zhang, M L; Jiang, H B; Feng, Y; Shen, X H; Su, Y A; He, N; Ma, Z B; Ma, X Q; Hou, S G; Wang, Y R

    2015-01-01

    Genetic improvement is the fundamental basis for improving nitrogen-use efficiency. A better understanding of genetic factors controlling nitrogen uptake and utilization is required for crop genetic improvement. In this study, we identified the quantitative trait loci (QTLs) associated with traits of nitrogen uptake and utilization by using the single-sequence repeat marker method and a recombinant inbred line (RIL) population derived from a super hybrid Xieyou9308. All the traits investigated were inherited quantitatively by continuous variation and showed normal distribution in phenotype with transgressive segregation in the RIL population. Most of the traits were significantly correlated with each other except for nitrogen absorption ability (NAA) with nitrogen harvest index (NHI) and NHI with agricultural nitrogen-absorption efficiency (ANAE). At logarithmic odds value of 2.3, total 13 candidate QTLs, including 4 for NAA, 2 for NHI, 2 for physiological nitrogen-use efficiency, 1 for agricultural nitrogen-use efficiency (ANUE), and 4 for ANAE, were detected and mapped on chromosomes 2, 3, 4, 5, 8, 9, 10, and 12. Significant pleiotropic effect or neighboring expression of QTLs was observed among traits. At position 64.8 cM on chromosome 4 near the marker RM5757, there was a QTL cluster of NAA, ANUE, and ANAE, and at chromosome 5 near the marker RM5968, there was a QTL cluster of NAA and ANUE. The QTL clusters might provide partial explanation and genetic mechanism for the observed correlations between nitrogen uptake and utilization efficiency traits and might form a basis for future breeding programs. PMID:26400271

  12. Mapping quantitative trait loci for nitrogen uptake and utilization efficiency in rice (Oryza sativa L.) at different nitrogen fertilizer levels.

    PubMed

    Dai, G J; Cheng, S H; Hua, Z T; Zhang, M L; Jiang, H B; Feng, Y; Shen, X H; Su, Y A; He, N; Ma, Z B; Ma, X Q; Hou, S G; Wang, Y R

    2015-09-08

    Genetic improvement is the fundamental basis for improving nitrogen-use efficiency. A better understanding of genetic factors controlling nitrogen uptake and utilization is required for crop genetic improvement. In this study, we identified the quantitative trait loci (QTLs) associated with traits of nitrogen uptake and utilization by using the single-sequence repeat marker method and a recombinant inbred line (RIL) population derived from a super hybrid Xieyou9308. All the traits investigated were inherited quantitatively by continuous variation and showed normal distribution in phenotype with transgressive segregation in the RIL population. Most of the traits were significantly correlated with each other except for nitrogen absorption ability (NAA) with nitrogen harvest index (NHI) and NHI with agricultural nitrogen-absorption efficiency (ANAE). At logarithmic odds value of 2.3, total 13 candidate QTLs, including 4 for NAA, 2 for NHI, 2 for physiological nitrogen-use efficiency, 1 for agricultural nitrogen-use efficiency (ANUE), and 4 for ANAE, were detected and mapped on chromosomes 2, 3, 4, 5, 8, 9, 10, and 12. Significant pleiotropic effect or neighboring expression of QTLs was observed among traits. At position 64.8 cM on chromosome 4 near the marker RM5757, there was a QTL cluster of NAA, ANUE, and ANAE, and at chromosome 5 near the marker RM5968, there was a QTL cluster of NAA and ANUE. The QTL clusters might provide partial explanation and genetic mechanism for the observed correlations between nitrogen uptake and utilization efficiency traits and might form a basis for future breeding programs.

  13. Nitrogen balance as a tool to assess nitrogen mineralized from winery wastes under different irrigation strategies

    NASA Astrophysics Data System (ADS)

    Requejo, Maria Isabel; Castellanos, Maria Teresa; Villena, Raquel; Ribas, Francisco; Jesús Cabello, Maria; Arce, Augusto; Cartagena, Maria Carmen

    2013-04-01

    Grape marc is a by-product coming from the winery industry, composed of skins, seeds and stalks generated during the crushing process. In Spain, large quantities of wine are produced every year (3,610,000 tonnes in 2010 (FAO, 2010)) with the consequent waste generation. With an adequate composting treatment, this waste can be applied to soils as a source of nutrients and organic matter. Compost N forms added to soil are mostly organic N forms, so organic N can be mineralized during the crop period and thus be taken up by the plants, immobilised, or leached. Compost N mineralization depends on factors such as compost C/N ratio but also on climate conditions. Estimation of N mineralization is necessary to optimise crop yield and minimize the risk of N losses to the environment, especially in zones vulnerable to nitrate pollution. The aim of this work was to assess mineralized N during the crop season when applying grape marc compost as fertilizer in a melon crop cultivated under different drip irrigation rates. A nitrogen balance in field conditions was carried out with three different doses of compost: 0 (D0), 6.7 (D1), 13.3 (D2) and 20 T/ha (D3); and two irrigation rates (100% ETc and 120% ETc). The field experiment was carried out in Ciudad Real, designated "vulnerable zone" by the "Nitrates Directive" 91/676/CEE. The soil was a shallow sandy-loam (Petrocalcic Palexeralfs), with 0.6 depth and a discontinuous petrocalcic horizon between 0.6 and 0.7 m. Nitrogen plant uptake and nitrate losses were measured weekly; mineral N in soil was determined before compost addition and at the end of the crop cycle. An estimation of soil mineralized N during the crop season using nitrogen balance is presented. Results are compared with data obtained in laboratory conditions. Acknowledgements: This project has been supported by INIA-RTA2010-00110-C03-01.

  14. Improvement of fluorescence intensity of nitrogen vacancy centers in self-formed diamond microstructures

    SciTech Connect

    Furuyama, S.; Yaita, J.; Kondo, M.; Tahara, K.; Iwasaki, T.; Shimizu, M.; Kodera, T.; Hatano, M.

    2015-10-19

    We present umbrella-shaped diamond microstructures with metal mirrors at the bottom in order to improve the amount of collected photons from nitrogen vacancy centers. The metal mirrors at the bottom are self-aligned to the umbrella-shaped diamond microstructures which are selectively grown through holes created on a metal mask. By the finite-difference time-domain simulations, we found that the umbrella-shaped microstructures, which have an effect similar to solid immersion lens, could collect photons more efficiently than bulk or pillar-shaped microstructures. Improvement of the fluorescence intensity by factors of from 3 to 5 is shown experimentally.

  15. Improvement of fluorescence intensity of nitrogen vacancy centers in self-formed diamond microstructures

    NASA Astrophysics Data System (ADS)

    Furuyama, S.; Tahara, K.; Iwasaki, T.; Shimizu, M.; Yaita, J.; Kondo, M.; Kodera, T.; Hatano, M.

    2015-10-01

    We present umbrella-shaped diamond microstructures with metal mirrors at the bottom in order to improve the amount of collected photons from nitrogen vacancy centers. The metal mirrors at the bottom are self-aligned to the umbrella-shaped diamond microstructures which are selectively grown through holes created on a metal mask. By the finite-difference time-domain simulations, we found that the umbrella-shaped microstructures, which have an effect similar to solid immersion lens, could collect photons more efficiently than bulk or pillar-shaped microstructures. Improvement of the fluorescence intensity by factors of from 3 to 5 is shown experimentally.

  16. Nitrogen

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  17. Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions

    PubMed Central

    Yanagisawa, Shuichi; Akiyama, Ai; Kisaka, Hiroaki; Uchimiya, Hirofumi; Miwa, Tetuya

    2004-01-01

    Utilization of transcription factors might be a powerful approach to modification of metabolism for a generation of crops having superior characteristics because a single transcription factor frequently regulates coordinated expression of a set of key genes for respective pathways. Here, we apply the plant-specific Dof1 transcription factor to improve nitrogen assimilation, the essential metabolism including the primary assimilation of ammonia to carbon skeletons to biosynthesize amino acids and other organic compounds involving nitrogen in plants. Expressing Dof1 induced the up-regulation of genes encoding enzymes for carbon skeleton production, a marked increase of amino acid contents, and a reduction of the glucose level in transgenic Arabidopsis. The results suggest cooperative modification of carbon and nitrogen metabolisms on the basis of their intimate link. Furthermore, elementary analysis revealed that the nitrogen content increased in the Dof1 transgenic plants (≈30%), indicating promotion of net nitrogen assimilation. Most significantly, the Dof1 transgenic plants exhibit improved growth under low-nitrogen conditions, an agronomically important trait. These results highlight the great utility of transcription factors in engineering metabolism in plants. PMID:15136740

  18. An Improved Retrieval of Tropospheric Nitrogen Dioxide from GOME

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Chance, Kelly; Jacob, Daniel J.; Kurosu, Thomas P.; Spurr, Robert J. D.; Bucsela, Eric; Gleason, James F.; Palmer, Paul I.; Bey, Isabelle; Fiore, Arlene M.

    2002-01-01

    We present a retrieval of tropospheric nitrogen dioxide (NO2) columns from the Global Ozone Monitoring Experiment (GOME) satellite instrument that improves in several ways over previous retrievals, especially in the accounting of Rayleigh and cloud scattering. Slant columns, which are directly fitted without low-pass filtering or spectral smoothing, are corrected for an artificial offset likely induced by spectral structure on the diffuser plate of the GOME instrument. The stratospheric column is determined from NO2 columns over the remote Pacific Ocean to minimize contamination from tropospheric NO2. The air mass factor (AMF) used to convert slant columns to vertical columns is calculated from the integral of the relative vertical NO2 distribution from a global 3-D model of tropospheric chemistry driven by assimilated meteorological data (Global Earth Observing System (GEOS)-CHEM), weighted by altitude dependent scattering weights computed with a radiative transfer model (Linearized Discrete Ordinate Radiative Transfer), using local surface albedos determined from GOME observations at NO2 wavelengths. The AMF calculation accounts for cloud scattering using cloud fraction, cloud top pressure, and cloud optical thickness from a cloud retrieval algorithm (GOME Cloud Retrieval Algorithm). Over continental regions with high surface emissions, clouds decrease the AMT by 20- 30% relative to clear sky. GOME is almost twice as sensitive to tropospheric NO2 columns over ocean than over land. Comparison of the retrieved tropospheric NO2 columns for July 1996 with GEOS-CHEM values tests both the retrieval and the nitrogen oxide radical (NOx) emissions inventories used in GEOS-CHEM. Retrieved tropospheric NO2 columns over the United States, where NOx emissions are particularly well known, are within 18% of GEOS-CHEM columns and are strongly spatially correlated (r = 0.78, n = 288, p less than 0.005). Retrieved columns show more NO2 than GEOS-CHEM columns over the Transvaal

  19. INTERNAL NITROGEN CYCLING IN WESTERN OREGON FORESTS WITH DIFFERENT NITROGEN STATUS

    EPA Science Inventory

    Nitrogen incorporation and retention in forest ecosystems should vary with site N status, because nitrogen often limits temperate forest productivity and microbial activity. We followed the incorporation of a pulse of 15N-ammonium into the roots, microbes and soil organic matter...

  20. Phenotyping two tomato genotypes with different nitrogen use efficiency.

    PubMed

    Abenavoli, Maria Rosa; Longo, Caterina; Lupini, Antonio; Miller, Anthony J; Araniti, Fabrizio; Mercati, Francesco; Princi, Maria P; Sunseri, Francesco

    2016-10-01

    Nitrogen (N) supply usually limits crop production and optimizing N-use efficiency (NUE) to minimize fertilizer loss is important. NUE is a complex trait that can be dissected into crop N uptake from the soil (NUpE) and N utilization (NUtE). We compared NUE in 14 genotypes of three week old tomatoes grown in sand or hydroponic culture supplied with nitrate (NO3(-)). Culture method influenced measured NUE for some cultivars, but Regina Ostuni (RO) and UC82 were consistently identified as high and low NUE genotypes. To identify why these genotypes had contrasting NUE some traits were compared growing under 0.1 and 5 mM NO3(-) supply. UC82 showed greater root (15)NO3(-) influx at low and high supply, and stronger SlNRT2.1/NAR2.1 transporter expression under low supply when compared with RO. Conversely, RO showed a higher total root length and thickness compared to UC82. Compared with UC82, RO showed higher shoot SlNRT2.3 expression and NO3(-) storage at high supply, but similar NO3(-) reductase activity. After N-starvation, root cell electrical potentials of RO were significantly more negative than UC82, but nitrate elicited similar responses in both root types. Overall for UC82 and RO, NUtE may play a greater role than NUpE for improved NUE. PMID:27235648

  1. [Effects of applying different nitrogen form on cherry tomato nitrogen metabolism during fruit development].

    PubMed

    Li, Qing-yu; Xu, Xin-juan; Gu, Hai-long; Gao, Hong-yan; Zhu, Yi-yong; Dong, Cai-xia; Shen, Qi-rong

    2010-09-01

    A hydroponic experiment was conducted to study the effects of applying 100% NO3- -N, 100% NH4+ -N, and 75% NO3- -N+25% NH4+ -N on the nitrogen metabolism and the nitrate reductase (NR) and glutamine synthetase (GS) gene expression of cherry tomato during its fruit development. Applying 75% NO3- -N+25% NH4+ -N slightly increased the single fruit mass, and increased the fruit NH4+ -N, total amino acid, and total N contents and N accumulation significantly, compared with applying 100% NO3- -N. In treatments 100% NO3- -N and 75% NO3- -N + 25% NH4+ -N, the fruit NR activity and its gene expression had no significant difference, but were higher than those in treatment 100% NH4+ -N. The fruit GS activity was significantly higher in treatment 75% NO3--N+25% NH4+ -N than in treatment 100% NO3- -N. In the three treatments, isozyme GS1 (Cytosolic type GS) and GS2 (Chloroplast type GS) expression was inconsistent with GS activity, suggesting that the effects of applied N on GS activity could be mainly reflected at posttranscriptional level. PMID:21265157

  2. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation

    PubMed Central

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-01-01

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7–overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement. PMID:27293103

  3. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation.

    PubMed

    Yu, Lin-Hui; Wu, Jie; Tang, Hui; Yuan, Yang; Wang, Shi-Mei; Wang, Yu-Ping; Zhu, Qi-Sheng; Li, Shi-Gui; Xiang, Cheng-Bin

    2016-01-01

    Nitrogen is essential for plant survival and growth. Excessive application of nitrogenous fertilizer has generated serious environment pollution and increased production cost in agriculture. To deal with this problem, tremendous efforts have been invested worldwide to increase the nitrogen use ability of crops. However, only limited success has been achieved to date. Here we report that NLP7 (NIN-LIKE PROTEIN 7) is a potential candidate to improve plant nitrogen use ability. When overexpressed in Arabidopsis, NLP7 increases plant biomass under both nitrogen-poor and -rich conditions with better-developed root system and reduced shoot/root ratio. NLP7-overexpressing plants show a significant increase in key nitrogen metabolites, nitrogen uptake, total nitrogen content, and expression levels of genes involved in nitrogen assimilation and signalling. More importantly, overexpression of NLP7 also enhances photosynthesis rate and carbon assimilation, whereas knockout of NLP7 impaired both nitrogen and carbon assimilation. In addition, NLP7 improves plant growth and nitrogen use in transgenic tobacco (Nicotiana tabacum). Our results demonstrate that NLP7 significantly improves plant growth under both nitrogen-poor and -rich conditions by coordinately enhancing nitrogen and carbon assimilation and sheds light on crop improvement. PMID:27293103

  4. Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress.

    PubMed

    Giansoldati, Virginia; Tassi, Eliana; Morelli, Elisabetta; Gabellieri, Edi; Pedron, Francesca; Barbafieri, Meri

    2012-06-01

    In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress. PMID:22382070

  5. Nitrogen metabolism in pepper plants applied with different bioregulators.

    PubMed

    Ruiz, J M; Castilla, N; Romero, L

    2000-07-01

    Certain bioregulators were studied in relation to nitrogen metabolism of pepper plants (Capsicum annuum L. cv. Lamuyo). Plants were grown under controlled conditions and submitted to regular fertilization with macro- and micronutrients. Treatments were as follows: nontreated control (T0); fosfonutren [essential amino acids and micronutrients (46.9 mg L(-)(1))] (T1); biozyme [GA(3) (32.2 mg L(-)(1)) plus IAA (32.2 mg L(-)(1)) plus zeatin (83.2 mg L(-)(1)) plus chelated micronutrients] (T2); and GA(3) [16 mg L(-)(1)] (T3). The concentrations of NO(3)(-), organic N, amino acids, and proteins, the activities of nitrate reductase (NR) and nitrite reductase (NiR), and finally the foliar dry weight and yield were analyzed. The results indicated that the application of certain bioregulators, such as fosfonutren (T1), which contain amino acids can cause a negative effect on the efficiency and utilization of NO(3)(-), resulting in a drastic loss in growth and yield, even under the control treatment, in which no bioregulator was applied. On the contrary, the application of certain bioregulators based principally on the combination of different hormones, as in the case of biozyme (T2), increased NO(3)(-) assimilation under our experimental conditions, due possibly to a greater availability of these bioregulators in the leaves and increased NR and NiR activities. This appears to explain why the T2 treatment gave the greatest foliar dry weight and fruit yield per plant in the experiment.

  6. Nitrogen pools and flows during lab-scale degradation of old landfilled waste under different oxygen and water regimes.

    PubMed

    Brandstätter, Christian; Laner, David; Fellner, Johann

    2015-09-01

    Nitrogen emissions from municipal solid waste (MSW) landfills occur primarily via leachate, where they pose a long-term pollution problem in the form of ammonium. In-situ aeration was proposed as a remediation measure to mitigate nitrogenous landfill emissions, turning the anaerobic environment to anoxic and subsequently aerobic. As in-depth studies of the nitrogen cycle during landfill aeration had been largely missing, it was the aim of this work to establish a detailed nitrogen balance for aerobic and anaerobic degradation of landfilled MSW based on lab-scale experiments, and also investigating the effect of different water regimes on nitrogen transformation during aeration. Six landfill simulation reactors were operated in duplicate under different conditions: aerated wet (with water addition and recirculation), aerated dry (without water addition) and anaerobic (wet). The results showed that more than 78 % of the initial total nitrogen (TNinit) remained in the solids in all set ups, with the highest nitrogen losses achieved with water addition during aeration. In this case, gaseous nitrogen losses (as N2 due to denitrification) amounted up to 16.6 % of TNinit and around 4 % of TNinit was discharged via leachate. The aerated dry set-up showed lower denitrification rates (2.6-8.8 % of TNinit was released as N2), but was associated with the highest N2O emissions (3.8-3.9 % of TNinit). For the anaerobic treatment the main pathway of nitrogen discharge was the leachate, where NH4 accounted for around 8 % of TNinit. These findings provide the basis for improved management strategies to enhance nitrogen removal during in-situ aeration of old landfills.

  7. Improved estimation of nitrogen uptake in grasslands using the nitrogen dilution curve

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The critical nitrogen concentration (CNC) is a simple yet robust relationship that describes the changes in crop N during growth. We applied the concept of CNC to calculate N uptake across various cutting regimes. While it is well-established that decreasing cutting frequency changes growth rates, t...

  8. Improved predictability of fertilizer nitrogen need for corn following alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accounting for alfalfa nitrogen (N) credits to first-year corn reduces fertilizer N costs, over-application of N, and the risk of nitrate loss to ground water. It is equally important, however, to avoid inadequate N supply for corn. We analyzed nearly all previous research on fertilizer N response i...

  9. Root aeration improves growth and nitrogen accumulation in rice seedlings under low nitrogen.

    PubMed

    Zhu, Jingwen; Liang, Jing; Xu, Zhihui; Fan, Xiaorong; Zhou, Quansuo; Shen, Qirong; Xu, Guohua

    2015-11-16

    In wetland soils, changes in oxygen (O2) level in the rhizosphere are believed to influence the behaviour of nutrients and their usage by plants. However, the effect of aeration on nitrogen (N) acquisition under different N supply conditions remains largely unknown. In this study, the rice cultivars Yangdao 6 (YD6, with higher root aerenchyma abundance) and Nongken 57 (NK57, with lower root aerenchyma abundance) were used to evaluate the effects of aeration on rice growth and N accumulation. Our results showed that the number of adventitious roots and the root surface area increased significantly, and ethylene production and aerenchyma formation decreased in both cultivars after external aeration (EA). Five N treatments, including no N (-N), 0.125 mM NH4NO3 (LN), 1.25 mM Ca(NO3)2 (NO3-N), 1.25 mM (NH4)2SO4 (NH4-N) and 1.25 mM NH4NO3 (N/N), were applied to YD6 and NK57 for 2 days under internal aeration or EA conditions. External aeration increased the root biomass in both cultivars and the shoot biomass in NK57 by 18-50 %. The total N concentrations in roots of YD6 grown under -N and LN and of NK57 grown under NO3-N were increased by EA. Expression of OsPAD4, one of four putative genes regulating aerenchyma formation, showed a similar pattern alongside changes in the ethylene level in the EA-treated rice irrespective of the N treatments. Furthermore, expression of the high-affinity nitrate transporter gene OsNRT2.1 was increased by EA under -N, LN and NO3-N conditions. Our data provide evidence of an interaction between O2 and the supply of N in ethylene production, aerenchyma formation and N nutrition through modification of the expression of OsPAD4 and OsNRT2.1.

  10. Root aeration improves growth and nitrogen accumulation in rice seedlings under low nitrogen

    PubMed Central

    Zhu, Jingwen; Liang, Jing; Xu, Zhihui; Fan, Xiaorong; Zhou, Quansuo; Shen, Qirong; Xu, Guohua

    2015-01-01

    In wetland soils, changes in oxygen (O2) level in the rhizosphere are believed to influence the behaviour of nutrients and their usage by plants. However, the effect of aeration on nitrogen (N) acquisition under different N supply conditions remains largely unknown. In this study, the rice cultivars Yangdao 6 (YD6, with higher root aerenchyma abundance) and Nongken 57 (NK57, with lower root aerenchyma abundance) were used to evaluate the effects of aeration on rice growth and N accumulation. Our results showed that the number of adventitious roots and the root surface area increased significantly, and ethylene production and aerenchyma formation decreased in both cultivars after external aeration (EA). Five N treatments, including no N (−N), 0.125 mM NH4NO3 (LN), 1.25 mM Ca(NO3)2 (NO3-N), 1.25 mM (NH4)2SO4 (NH4-N) and 1.25 mM NH4NO3 (N/N), were applied to YD6 and NK57 for 2 days under internal aeration or EA conditions. External aeration increased the root biomass in both cultivars and the shoot biomass in NK57 by 18–50 %. The total N concentrations in roots of YD6 grown under −N and LN and of NK57 grown under NO3-N were increased by EA. Expression of OsPAD4, one of four putative genes regulating aerenchyma formation, showed a similar pattern alongside changes in the ethylene level in the EA-treated rice irrespective of the N treatments. Furthermore, expression of the high-affinity nitrate transporter gene OsNRT2.1 was increased by EA under −N, LN and NO3-N conditions. Our data provide evidence of an interaction between O2 and the supply of N in ethylene production, aerenchyma formation and N nutrition through modification of the expression of OsPAD4 and OsNRT2.1. PMID:26578743

  11. Manipulation of microRNA expression to improve nitrogen use efficiency.

    PubMed

    Fischer, Jeffrey J; Beatty, Perrin H; Good, Allen G; Muench, Douglas G

    2013-09-01

    Nitrogen is the key limiting nutrient required for plant growth. The application of nitrogen-based fertilizers to crops has risen dramatically in recent years, resulting in significant yield increases. However, increased production has come at the cost of substantial negative environmental consequences. Higher crop production costs, increased consumption of food and fertilizer, and a growing global population have led to calls for a "second green revolution" using modern genetic manipulation techniques to improve the production, yield, and quality of crops. Considerable research is being directed toward the study and engineering of nitrogen use efficiency in crop plants. The end goal is to reduce the amount of nitrogen-based fertilizer used and thereby reduce production costs and environmental damage while increasing yields. In this review, we present an overview of recent advances in understanding the regulation of nitrogen metabolism by the action of microRNAs with a view toward engineering crops with increased nitrogen use efficiency.

  12. Effect of different biochars on Nitrogen uptake in poplar trees

    NASA Astrophysics Data System (ADS)

    George, Elizabeth; Tonon, Giustino; Scandellari, Francesca

    2014-05-01

    Influence of biochar on soil nitrogen transformation and plant uptake has been reported. This paper presents preliminary results of plant N uptake in poplars by using 15N isotope tracer approach Two types of biochar were applied to two sets of pots containing only sand and each pot received a pre-rooted poplar cutting. Half of the pots were inoculated with commercial mycorrhizal gel and the other half were left without. It is intended to provide information on how biochar, mycorrhiza and root interaction mediate nitrogen uptake and organ allocation.

  13. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  14. Shelf life study of fresh celery (Apium graveolens L.) grown under different nitrogen fertilization treatments.

    PubMed

    Rizzo, Valeria; Muratore, Giuseppe; Russo, Marco Antonio; Belligno, Adalgisa

    2011-05-01

    Nitrogen fertilization is useful for obtaining higher growth and quality of productions, and the use of nitrogen fertilization is widespread. To evaluate the influence of nitrogen-rich fertilizers on quality characteristics of celery, shelf life tests of celery grown with 2 levels of nitrogen and 2 different nitrogen fertilizers were performed. The treatments of the celery samples were identified as follows: T1, mineral nitrogen (80 kg ha(-1)); T2, mineral nitrogen (120 kg ha(-1)); T3, organic nitrogen (80 kg ha(-1)); T4, organic nitrogen (120 kg ha(-1)); R4, residual organic nitrogen (120 kg ha(-1)); and C, untreated control. Celery plants were selected and packaged in either of the following 2 plastic films: antifog polyolefin (AFP) film or microperforated polypropylene (MPP) film. The nitrate contents, weight loss, hardness, changes in color parameters, and total phenols were studied for both packaging types during storage. The results demonstrated that celery fertilized with organic nitrogen and packaged in AFP film reached a shelf life of 37 d. The control sample packaged in MPP film was not marketable after 20 d, but the same untreated sample packaged in AFP film reached a shelf life of 30 d.

  15. Preparation of nitrogen-doped carbon nanotubes with different morphologies from melamine-formaldehyde resin.

    PubMed

    Yao, Yi; Zhang, Bingqing; Shi, Jingying; Yang, Qihua

    2015-04-01

    We report a facile method for the synthesis of nitrogen-doped carbon nanotubes (NCNTs) from melamine-formaldehyde (MR) resin using FeCl3 or supported FeCl3 as catalysts. The growth of NCNTs follows a decomposition-reconstruction mechanism, in which the polymer precursor would totally gasify during pyrolysis process and then transformed into carbon nanotubes. The morphology of the NCNTs could be adjusted via applying different catalyst supports and three kinds of carbon nanotubes with outer-diameter of 20-200 nm and morphologies of either bamboo-like or hollow interiors were obtained. Nitrogen atoms in the materials were mainly in the form of pyridinic and quaternary form while the formation of iron species strongly depended on the interaction between iron precursor and organic carbon/nitrogen sources. All MR resin derived NCNTs are efficient toward oxygen reduction reaction (ORR). NCNTs prepared using FeCl3 as catalyst showed the highest ORR activity with half-wave potentials of -0.17 V, which is comparable with commercial Pt/C. This is probably because of a close contact between MR resin and iron precursor could enhance the iron-ligand coordination strength and thus steadily improve the performance of the catalyst.

  16. The mechanism of improved pullulan production by nitrogen limitation in batch culture of Aureobasidium pullulans.

    PubMed

    Wang, Dahui; Chen, Feifei; Wei, Gongyuan; Jiang, Min; Dong, Mingsheng

    2015-08-20

    Batch culture of Aureobasidium pullulans CCTCC M 2012259 for pullulan production at different concentrations of ammonium sulfate and yeast extract was investigated. Increased pullulan production was obtained under nitrogen-limiting conditions, as compared to that without nitrogen limitation. The mechanism of nitrogen limitation favoring to pullulan overproduction was revealed by determining the activity as well as gene expression of key enzymes, and energy supply for pullulan biosynthesis. Results indicated that nitrogen limitation increased the activities of α-phosphoglucose mutase and glucosyltransferase, up-regulated the transcriptional levels of pgm1 and fks genes, and supplied more ATP intracellularly, which were propitious to further pullulan biosynthesis. The economic analysis of batch pullulan production indicated that nitrogen limitation could reduce more than one third of the cost of raw materials when glucose was supplemented to a total concentration of 70 g/L. This study also helps to understand the mechanism of other polysaccharide overproduction by nitrogen limitation.

  17. Nitrogen fixation and respiratory electron transport in the cyanobacterium Cyanothece under different light/dark cycles.

    PubMed

    Rabouille, Sophie; Van de Waal, Dedmer B; Matthijs, Hans C P; Huisman, Jef

    2014-03-01

    Incompatibility of nitrogen fixation and oxygen production compels unicellular diazotrophic cyanobacteria to perform photosynthesis during daytime and restrict nitrogen fixation to nighttime. The marine diazotroph Cyanothece BG 043511 was grown in continuous culture under three light/dark regimes (16L : 8D, 12L : 12D, and 8L : 16D h); we monitored nitrogen fixation and potential photosynthetic efficiency simultaneously online to reveal how their temporal separation is affected by different LD regimes. An increase in nitrogen fixation rate at night coincided with a rise in pulse-amplitude modulated fluorescence, indicating that the enhanced respiratory electron transport to fuel diazotrophy affects the oxidation state of the plastoquinone pool. This may offer an alternative approach to assess instantaneous nitrogen fixation activity. Regardless of photoperiod, the maximum rate of nitrogen fixation was conserved at about 20 h after the onset of the light. Consequently, nitrogen fixation rates peaked at different moments in the dark: relatively early in the 16L : 8D cycle, at midnight in 12L : 12D, and relatively late in 8L : 16D. Under 16L : 8D, nitrogen fixation extended into the light, demonstrating the functional plasticity of nitrogen fixation in Cyanothece. Highest daily amounts of nitrogen fixed were obtained in 12L : 12D, which is consistent with the natural LD cycle of subtropical latitudes in which Cyanothece thrives.

  18. Detecting leaf nitrogen content in wheat with canopy hyperspectrum under different soil backgrounds

    NASA Astrophysics Data System (ADS)

    Yao, X.; Ren, H.; Cao, Z.; Tian, Y.; Cao, W.; Zhu, Y.; Cheng, T.

    2014-10-01

    Hyperspectral sensing techniques can be effective for rapid, non-destructive detecting of the nitrogen (N) status in crop plants; however, their accuracy is often affected by the soil background. Under different fractions of soil background, the canopy spectra and leaf nitrogen content (LNC) in winter wheat (Triticum aestivum L.) were obtained from field experiments with different N rates and planting densities over 3 growing seasons. Five types of vegetation index (VIs: normalized difference vegetation index (NDVI), ratio vegetation index (RVI), soil adjusted vegetation index (SAVI), optimize soil adjusted vegetation index (OSAVI), and perpendicular vegetation index (PVI) were constructed based on three types of spectral information: (1) the original and the first derivative (FD) spectrum, (2) the spectrum adjusted with the vegetation coverage (FVcover), and (3) the pure spectrum extracted by a linear mixed model. Comprehensive relationships of above five types of VI with LNC were quantified for LNC detecting under different soil backgrounds. The results indicated that all five types of VI were significantly affected by the soil background, with R2 values of around 0.55 for LNC detecting, with the OSAVI (R514, R469)L=0.04 producing the best performance of all five indices. However, based on the FVcover, the coverage adjusted spectral index (CASI = NDVI(R513, R481)/(1 + FVcover) produced the higher R2 value of 0.62 and the lower RRMSE of 13%, and was less sensitive to the leaf area index (LAI), leaf dry weight (LDW), FVcover, and leaf nitrogen accumulation (LNA). The results demonstrate that the newly developed CASI could improve the performance of LNC estimation under different soil backgrounds.

  19. The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes.

    PubMed

    Meng, Yingying; Jiang, Junpeng; Wang, Haitao; Cao, Xupeng; Xue, Song; Yang, Qing; Wang, Weiliang

    2015-03-01

    The strategy of nitrogen limitation has been widely applied to enhance lipid production in microalgae. The changes of cellular composition, and the characteristics of triacylglycerol (TAG) and eicosapentaenoic acid (EPA) accumulation in Nannochloropsis oceanica IMET1 were investigated. The results revealed that after nitrogen limitation TAG rather than carbohydrate was the dominant carbon sink in N. oceanica IMET1. Different nitrogen supplementation strategies were applied in order to achieve high TAG and EPA productivity, respectively. Limited nitrogen was supplied to improve TAG production, and a maximum productivity of 29.44 mg L(-1) d(-1) was obtained, which was a 6.74-fold increase compared to nitrogen-depleted cultivation. The highest EPA productivity of 7.66 mg L(-1) d(-1) was achieved under nitrogen-replete cultivation, which is different from the condition for TAG maximum productivity because the EPA is in glycolipids and phospholipids mainly. The fatty acid composition analysis identified the source of acyl group in TAG accumulation.

  20. Improvement of existing nightsoil treatment plant for nitrogen removal.

    PubMed

    Lim, B S; Kim, J U; Park, H D

    2004-01-01

    This study was performed to increase the treatment efficiency and to reduce operation and maintenance costs of the existing nightsoil treatment plant. The existing nightsoil plant was not established by the nitrogen removal process, and was operated ineffectively with deterioration of treatment efficiency rate, and according to the demand of many operators, the expenses of operation and maintenance have become excessive. Modified plant has been changed through two steps. The first step, liquid decayed tank using closed oxidation ditch is operated to increase retention time only for nitrification. The second step, modified liquid decayed tank including anoxic tank is operated, it has an excellent nitrogen removal rate. In first step, when HRT was increased from 10 days to 13 days in liquid decayed tank including aeration tank using closed oxidation ditch, TN concentration of effluent appeared below 51 mg/L less than discharge limit, 60 mg/L. In second step, when anoxic tank and oxic tank were installed, HRT has been increased to 13 days and 26 days, respectively. Then average TN concentration of effluent was detected less than 13 mg/L for over one year. The simple process modified the existing two processes resulted in the reduction of costs for operation and maintenance in the personnel, chemical, and filter change sphere.

  1. An improved method of ion exchange for nitrogen isotope analysis of water nitrate.

    PubMed

    Xing, Meng; Liu, Weiguo

    2011-02-01

    Nitrate nitrogen and oxygen isotopes have been widely used to trace the nitrogen biogeochemical cycle by identifying NO(3)(-) sources. An improved method of anion exchange was developed to measure δ(15)N-NO(3)(-) in fresh water by continuous-flow elemental analyzer/isotope ratio mass spectrometry (EA-IRMS). We used a custom-built exchange resin column, a peristaltic pump and the oven-drying method in our experiments. Consequently, the amount of Ag(2)O used as a neutralizer was reduced, time was saved, and operation became simpler than before. Meanwhile, analytical precision remained identical to previous studies. KNO(3) solutions were prepared at 0.2, 5 and 25 mg-N L(-1) from KNO(3) standard salt (δ(15)N=+6.27‰), and the average δ(15)N values of the solutions after having been absorbed on and subsequently stripped from anion columns were +6.62±0.22‰ (n=6), +6.38±0.09‰ (n=6), and +6.26±0.07‰ (n=6), respectively. In addition, the "natural" water sample δ(15)N-NO(3)(-) showed consistency in comparison to standards, and the mean standard deviation by the different approaches was 0.08‰. Accordingly, by these improvements the anion exchange resin technique is demonstrated to be more suitable for measuring δ(15)N in NO(3)(-) than original techniques. PMID:21237315

  2. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2012-01-01

    Ammonia was produced by 12 companies at 27 plants in 15 states in the United States during 2011. Sixty-one percent of total U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2011, U.S. producers operated at about 84 percent of their rated capacity (excluding plants that were idle for the entire year). Four companies — CF Industries Holdings Inc.; Koch Nitrogen Co.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 77 percent of the total U.S. ammonia production capacity.

  3. Global scale analysis and evaluation of an improved mechanistic representation of plant nitrogen and carbon dynamics in the Community Land Model (CLM)

    NASA Astrophysics Data System (ADS)

    Ghimire, B.; Riley, W. J.; Koven, C. D.; Randerson, J. T.; Mu, M.; Kattge, J.; Rogers, A.; Reich, P. B.

    2014-12-01

    In many ecosystems, nitrogen is the most limiting nutrient for plant growth and productivity. However mechanistic representation of nitrogen uptake linked to root traits, and functional nitrogen allocation among different leaf enzymes involved in respiration and photosynthesis is currently lacking in Earth System models. The linkage between nitrogen availability and plant productivity is simplistically represented by potential photosynthesis rates, and is subsequently downregulated depending on nitrogen supply and other nitrogen consumers in the model (e.g., nitrification). This type of potential photosynthesis rate calculation is problematic for several reasons. Firstly, plants do not photosynthesize at potential rates and then downregulate. Secondly, there is considerable subjectivity on the meaning of potential photosynthesis rates. Thirdly, there exists lack of understanding on modeling these potential photosynthesis rates in a changing climate. In addition to model structural issues in representing photosynthesis rates, the role of plant roots in nutrient acquisition have been largely ignored in Earth System models. For example, in CLM4.5, nitrogen uptake is linked to leaf level processes (e.g., primarily productivity) rather than root scale process involved in nitrogen uptake. We present a new plant model for CLM with an improved mechanistic presentation of plant nitrogen uptake based on root scale Michaelis Menten kinetics, and stronger linkages between leaf nitrogen and plant productivity by inferring relationships observed in global databases of plant traits (including the TRY database and several individual studies). We also incorporate improved representation of plant nitrogen leaf allocation, especially in tropical regions where significant over-prediction of plant growth and productivity in CLM4.5 simulations exist. We evaluate our improved global model simulations using the International Land Model Benchmarking (ILAMB) framework. We conclude that

  4. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Ammonia is the principal source of fixed nitrogen. It was produced by 17 companies at 34 plants in the United States during 2003. Fifty-three percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock.

  5. Responses to nitrogen pulses and growth under low nitrogen availability in invasive and native tree species with differing successional status.

    PubMed

    Osone, Yoko; Yazaki, Kenichi; Masaki, Takeshi; Ishida, Atsushi

    2014-03-01

    Invasive species are frequently found in recently disturbed sites. To examine how these disturbance-dependent invasive species exploit resource pulses resulting from disturbance, twelve physiological and morphological traits, including age-dependent responsiveness in leaf traits to nitrogen pulse, were compared between Bischofia javanica, an invasive tree species in Ogasawara islands, and three native Ogasawara species, each having a different successional status. When exposed to a nitrogen pulse, invasive B. javanica showed higher increases in photosynthetic capacity, leaf area, epidermal cell number and cell size in leaves of broad age classes, and root nitrogen absorption ability than two native mid-/late or late-successional species, but showed no particular superiority to a native pioneer species in these responses. Under low nitrogen, however, it showed the largest relative growth rate among the four species, while the native pioneer showed the lowest growth. From these results, we concluded that the combination of moderately high responsiveness to resource pulses and the ability to maintain steady growth under resource limitations may give B. javanica a competitive advantage over a series of native species with different successional status from early to late-successional stages.

  6. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  7. Nitrogen

    USGS Publications Warehouse

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  8. Increasing in-stream nitrogen concentrations under different bioenergy crop management practices in central Germany

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Thraen, Daniela; Rode, Michael

    2015-04-01

    Understanding how nitrogen fluxes respond to changes in land use and agriculture practices is crucial for improving instream water quality prediction. In central Germany, expansion of bioenergy crops such as maize and rape for ethanol production during the last decade led to increasing of fertilizer application rates. To examine the effect of these changes, surface water quality of a drinking water reservoir catchment was investigated for more than 30 years. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% agricultural land use with significant changes in agricultural practices within the investigation period. For the period 2004-2012, the share of maize and rape has been increased by 52% and 20%, respectively, for enhancing bioenergy production. To achieve our gaols, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was calibrated for discharge and inorganic nitrogen concentrations (IN) during the period 1997-2000.The model was validated successfully (with lowest performance of NSE = 0.78 and PBIAS = 3.74% for discharge) for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates. Results showed that the HYPE model reproduced reasonably well discharge and IN daily loads (with lowest NSE = 0.64 for IN-load). In addition, the HYPE model was evaluated successfully to predict the discharge and IN concentrations for the period 2004-2012, where detailed input data in terms of crops management (field-specific survey) have been considered. Land use and crop rotations scenarios, with high hypothetical percentage of acceptance by the farmers, revealed that continuous conversion of agricultural land into bioenergy crops, will most likely, lead to an enrichment of in-stream nitrogen, especially after spring storms.

  9. Improved retrieval of nitrogen dioxide (NO2) column densities by means of MKIV Brewer spectrophotometers

    NASA Astrophysics Data System (ADS)

    Diémoz, H.; Siani, A. M.; Redondas, A.; Savastiouk, V.; McElroy, C. T.

    2014-07-01

    A new algorithm to retrieve nitrogen dioxide (NO2) column densities using MKIV Brewer spectrophotometers is described. The method includes several improvements, such as a more recent spectroscopic dataset, the reduction of the measurement noise and interferences by other atmospheric species and instrumental settings, and a better determination of the air mass enhancement factors. The technique was tested during an ad-hoc calibration campaign at the high-altitude site of Izaña (Tenerife, Spain) and provided results compatible to those obtained from a spectrometer associated to the Network for the Detection of Atmospheric Composition Change (NDACC), with deviations of less than 0.02 DU. To determine the extraterrestrial constant, an easily implementable generalisation of the standard Langley technique was developed which takes into account the daytime linear drift of nitrogen dioxide due to the photochemistry. Estimates obtained from different observation geometries, by collecting the light from either the sun or the zenith sky, were found to be comparable within the measurement uncertainty. The latter was thoroughly determined by using a Monte Carlo technique. Finally, a method to retrieve additional products such as the degree of linear polarisation of the zenith sky and the oxygen dimer optical depth is presented. The new algorithm is backward-compatible, thus allowing for the reprocessing of historical datasets.

  10. Improved Productivity of Neutral Lipids in Chlorella sp. A2 by Minimal Nitrogen Supply

    PubMed Central

    Zhu, Junying; Chen, Weixian; Chen, Hui; Zhang, Xin; He, Chenliu; Rong, Junfeng; Wang, Qiang

    2016-01-01

    Nitrogen starvation is an efficient environmental pressure for increasing lipid accumulation in microalgae, but it could also significantly lower the biomass productivity, resulting in lower lipid productivity. In this study, green alga Chlorella sp. A2 was cultivated by using a minimal nitrogen supply strategy under both laboratory and outdoor cultivation conditions to evaluate biomass accumulation and lipid production. Results showed that minimal nitrogen supply could promote neutral lipid accumulation of Chlorella sp. A2 without a significant negative effect on cell growth. In laboratory cultivation mode, alga cells cultured with 18 mg L−1 d−1 urea addition could generate 74 and 416% (w/w) more neutral lipid productivity than cells cultured with regular BG11 and nitrogen starvation media, respectively. In outdoor cultivation mode, lipid productivity of cells cultured with 18 mg L−1 d−1 urea addition is approximately 10 and 88% higher than the one with regular BG11 and nitrogen starvation media, respectively. Notably, the results of photosynthetic analysis clarified that minimal nitrogen supply reduced the loss of photosynthetic capacity to keep CO2 fixation during photosynthesis for biomass production. The minimal nitrogen supply strategy for microalgae cultivation could promote neutral lipid accumulation without a significant negative effect on cell growth, resulting in a significant improvement in the lipid productivity. PMID:27148237

  11. Improved Productivity of Neutral Lipids in Chlorella sp. A2 by Minimal Nitrogen Supply.

    PubMed

    Zhu, Junying; Chen, Weixian; Chen, Hui; Zhang, Xin; He, Chenliu; Rong, Junfeng; Wang, Qiang

    2016-01-01

    Nitrogen starvation is an efficient environmental pressure for increasing lipid accumulation in microalgae, but it could also significantly lower the biomass productivity, resulting in lower lipid productivity. In this study, green alga Chlorella sp. A2 was cultivated by using a minimal nitrogen supply strategy under both laboratory and outdoor cultivation conditions to evaluate biomass accumulation and lipid production. Results showed that minimal nitrogen supply could promote neutral lipid accumulation of Chlorella sp. A2 without a significant negative effect on cell growth. In laboratory cultivation mode, alga cells cultured with 18 mg L(-1) d(-1) urea addition could generate 74 and 416% (w/w) more neutral lipid productivity than cells cultured with regular BG11 and nitrogen starvation media, respectively. In outdoor cultivation mode, lipid productivity of cells cultured with 18 mg L(-1) d(-1) urea addition is approximately 10 and 88% higher than the one with regular BG11 and nitrogen starvation media, respectively. Notably, the results of photosynthetic analysis clarified that minimal nitrogen supply reduced the loss of photosynthetic capacity to keep CO2 fixation during photosynthesis for biomass production. The minimal nitrogen supply strategy for microalgae cultivation could promote neutral lipid accumulation without a significant negative effect on cell growth, resulting in a significant improvement in the lipid productivity. PMID:27148237

  12. Modelling nitrogen retention in floodplains with different degrees of degradation for three large rivers in Germany.

    PubMed

    Natho, S; Venohr, M; Henle, K; Schulz-Zunkel, C

    2013-06-15

    Floodplains perform a variety of ecosystem functions and services - more than many other ecosystems. One of these ecosystem services is the reduction in nitrogen (N) loads and a subsequent improvement to the water quality. Since diffuse and also point nitrogen sources continue to cause a variety of problems in rivers and floodplains, inundated floodplains could act as net sinks for N and are therefore of great importance throughout Germany and Europe. This study analyses the effects of riparian floodplains on N-retention on the landscape scale for three large river systems with different degrees of degradation. Two approaches, differing in terms of the complexity of their respective input data and methods, were applied under wet and dry conditions. Whereas the proxy-based approach considers proxy values for N-retention, the model-based approach accounts for event-driven dynamic input data such as the extent of the inundated floodplain and incoming loads. Comparing the results of the two approaches it can be observed that floodplains of the near-natural river can retain up to 4% of the river load under wet conditions. During such conditions N-retention in floodplains is similar to that of rivers. For the two other floodplains, the results of the two approaches were quite different, showing lower N-retention capacities. However, for these floodplains as well, both approaches are suitable for calculating measurable N-retention rates, which is an important result because it also suggests that even degraded floodplains still preserve this particular ecosystem function and therefore still contribute to improving the quality of river water.

  13. [Effects of different fertilization modes on vegetable growth, fertilizer nitrogen utilization, and nitrogen loss from vegetable field].

    PubMed

    Huang, Dong-feng; Wang, Guo; Li, Wei-hua; Qiu, Xiao-xuan

    2009-03-01

    A field experiment with Chinese cabbage, water spinach, and three-colored amaranth cropped three times in one year was conducted to study the effects of seven fertilization modes, i.e., none fertilization, basal application of chemical fertilizers, 1/2 basal application and 1/2 top-dressing of chemical fertilizers, basal application of chemical fertilizers and dicyandiamide, 1/2 basal application and 1/2 top-dressing of chemical fertilizers and dicyandiamide, 1/2 basal application and 1/2 top-dressing of chemical fertilizers and organic manure, and basal application of organic manure, on the plant height, yield, nitrogen accumulation, and fertilizer nitrogen utilization of the vegetables, and the loss of NO3- -N and NH4+ -N from vegetable field under natural rainfall condition. The results showed that comparing with none fertilization, the fertilization modes '1/2 basal application and 1/2 top-dressing of chemical fertilizers and organic manure' and 'basal application of chemical fertilizers and dicyandiamide' improved the agronomic properties of test vegetables, increased their yields by 103%-219% and 93%-226%, and nitrogen accumulation by 153% -216% and 231%-320%, respectively, and enhanced fertilizer nitrogen utilization rate. They also decreased the surface runoff loss of NO3- -N and NH4+ -N by 48.1% and 46.5%, respectively, compared with the mode 'basal application of chemical fertilizers', and hence, reduced the risk of agricultural non-point pollution. Therefore, these two fertilization modes could be popularized in vegetable production.

  14. [Soil nitrogen mineralization under different land use patterns in Xishuangbanna].

    PubMed

    Li, Mingrui; Sha, Liqing

    2005-01-01

    Nitrogen (N) cycle is very important for forest ecosystem, and soil N mineralization rate is often used as the index of soil N availability and its losses. Using Close-Top incubation method, we measured the N mineralization rate in soils (0-15 cm) of monsoon evergreen broadleaf forest, seasonal rain forest, rubber plantation, heavily disturbed seasonal rain forest, Millettia laptobotrya secondary forest and upland rice field. The results showed that the net N mineralization rate and N nitrification rate were decreased in the sequence of heavily disturbed seasonal rain forest > Millettia laptobotrya secondary forest > seasonal rain forest > monsoon evergreen broadleaf forest > rubber plantation > upland rice field. Rubber plantation and upland rice field were the most seriously disturbed land use patterns. Their soil N storage and mineralization rate were very low and exhibited significant variations, compared with other land use patterns. Lower net N mineralization rate correlated with lower N storage, and also, with lower fungi numbers. The N mineralization rate in disturbed forest soil which had recovered for several years was similar to that in primary forest soil, but decreased significantly when the forests were converted to agricultural land.

  15. Post-refining removal of organic nitrogen compounds from diesel fuels to improve environmental quality.

    PubMed

    Mushrush, George W; Quintana, Marian A; Bauserman, Joy W; Willauer, Heather D

    2011-01-01

    The purpose of this investigation was to remove the organic nitrogen compounds from petroleum-derived diesel fuels. These nitrogen compounds can cause environmental problems, as well as fuel instability problems that can degrade fuels and affect engine performance. Fuels were treated with two different filtering media, activated clay and silica tel. The methylene chloride extracts from both the activated clay and silica gel were subjected to GC/MS analysis. Close to 99% of the total organic nitrogen compounds were removed. About 60% of the nitrogen compounds identified consisted of pyridines, quinolines and tetra-hydroquinolines made up 26%, while indoles and carbazoles about 10% of the total nitrogen compounds. Of the nitrogen heterocyclics identified, indoles and carbazoles were linked to fuel instability reactions. The proposed method was tested on diesels fuels from a variety of countries and found to remove between 97.8 and 99.9% of the N-compounds. The results of this study showed that both of these filtering materials were effective in removing the organic nitrogen compounds and resulted in fuels that exhibited excellent storage stability. These simple filtering methods can be independent of the refining process and do result in an environmentally cleaner burning fuel.

  16. Improvement of wine terroir management according to biogeochemical cycle of nitrogen in soil

    NASA Astrophysics Data System (ADS)

    Najat, Nassr; Aude, Langenfeld; Mohammed, Benbrahim; Lionel, Ley; Laurent, Deliere; Jean-Pascal, Goutouly; David, Lafond; Marie, Thiollet-Scholtus

    2015-04-01

    Good wine terroir production implies a well-balanced Biogeochemical Cycle of Nitrogen (BCN) at field level i.e. in soil and in plant. Nitrogen is very important for grape quality and soil sustainability. The mineralization of organic nitrogen is the main source of mineral nitrogen for the vine. This mineralization depends mainly on the soil microbial activity. This study is focused on the functional microbial populations implicated in the BCN, in particular nitrifying bacteria. An experimental network with 6 vine sites located in Atlantic coast (Loire valley and Bordeaux) and in North-East (Alsace) of France has been set up since 2012. These vine sites represent a diversity of environmental factors (i.e. soil and climate). The adopted approach is based on the measure of several indicators to assess nitrogen dynamic in soil, i.e. nitrogen mineralization, regarding microbial biomass and activity. Statistical analyses are performed to determine the relationship between biological indicator and nitrogen mineralisation regarding farmer's practices. The variability of the BCN indicators seems to be correlated to the physical and chemical parameters in the soil of the field. For all the sites, the bacterial biomass is correlated to the rate and kinetic of nitrogen in soil, however this bioindicator depend also on others parameters. Moreover, the functional bacterial diversity depends on the soil organic matter content. Differences in the bacterial biomass and kinetic of nitrogen mineralization are observed between the sites with clayey (Loire valley site) and sandy soils (Bordeaux site). In some tested vine systems, effects on bacterial activity and nitrogen dynamic are also observed depending on the farmer's practices: soil tillage, reduction of inputs, i.e. pesticides and fertilizers, and soil cover management between rows. The BCN indicators seem to be strong to assess the dynamics of the nitrogen in various sites underline the functional diversity of the soils. These

  17. Improved diffusion methods for nitrogen and 15nitrogen analysis of Kjeldahl digests.

    PubMed

    Stevens, W B; Mulvaney, R L; Khan, S A; Hoeft, R G

    2000-01-01

    Simple methods are described that permit the use of either H3BO3 indicator solution or acidified filter disks to collect NH3 liberated by treatment of Kjeldahl digests with NaOH. These methods incorporate modifications to improve reliability, analytical capacity, and convenience. A semimicro digest was diluted to 25 mL with deionized water, and a 10 mL aliquot, containing up to 4 mg N (150 microg N for diffusions into acidified disks), was transferred to a shell vial, which was placed inside a 473 mL (1 pint) Mason jar containing 10 mL 10N NaOH. The NH3 liberated by overturning the vial was collected after 12 to 48 h at ambient temperature, or after 4 h at 45 to 50 degrees C on a hotplate, for quantitative and/or isotope-ratio analyses. With either H3BO3 indicator solution or acidified filter disks, recovery of diffused N was quantitative. Isotope-ratio analyses of diffused N from 15N-labeled chemical, plant, and soil samples were within 3% of analyses using steam distillation.

  18. Nitrogen removal and microbial characteristics in CANON biofilters fed with different ammonia levels.

    PubMed

    Liang, Yuhai; Li, Dong; Zhang, Xiaojing; Zeng, Huiping; Yang, Zhuo; Cui, Shaoming; Zhang, Jie

    2014-11-01

    The nitrogen removal performance and microbial characteristics of four completely autotrophic nitrogen removal over nitrite (CANON) biofilters were investigated. These four reactors were simultaneously seeded from a stable CANON biofilter with a seeding ratio of 1:1, which were fed with different ammonia levels. Results suggested that with the ammonia of 200-400 mg L(-1), aerobic ammonia-oxidizing bacteria (AerAOB) and anaerobic ammonia-oxidizing bacteria (AnAOB) could perform harmonious work. The bioactivity and population of the two groups of bacteria were both high, which then resulted in excellent nitrogen removal, while too low or too high ammonia would both lead to worse performance. When ammonia was too high, the bioactivity, biodiversity and population of AerAOB all decreased and then resulted in the lowest nitrogen removal. Nitrosomonas and Candidatus Brocadia were detected as predominant functional microbes in all the four reactors. Finally, strategies for treating sewage with different ammonia levels were proposed.

  19. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization

    PubMed Central

    Vergara-Díaz, Omar; Zaman-Allah, Mainassara A.; Masuka, Benhildah; Hornero, Alberto; Zarco-Tejada, Pablo; Prasanna, Boddupalli M.; Cairns, Jill E.; Araus, José L.

    2016-01-01

    Maize crop production is constrained worldwide by nitrogen (N) availability and particularly in poor tropical and subtropical soils. The development of affordable high-throughput crop monitoring and phenotyping techniques is key to improving maize cultivation under low-N fertilization. In this study several vegetation indices (VIs) derived from Red-Green-Blue (RGB) digital images at the leaf and canopy levels are proposed as low-cost tools for plant breeding and fertilization management. They were compared with the performance of the normalized difference vegetation index (NDVI) measured at ground level and from an aerial platform, as well as with leaf chlorophyll content (LCC) and other leaf composition and structural parameters at flowering stage. A set of 10 hybrids grown under five different nitrogen regimes and adequate water conditions were tested at the CIMMYT station of Harare (Zimbabwe). Grain yield and leaf N concentration across N fertilization levels were strongly predicted by most of these RGB indices (with R2~ 0.7), outperforming the prediction power of the NDVI and LCC. RGB indices also outperformed the NDVI when assessing genotypic differences in grain yield and leaf N concentration within a given level of N fertilization. The best predictor of leaf N concentration across the five N regimes was LCC but its performance within N treatments was inefficient. The leaf traits evaluated also seemed inefficient as phenotyping parameters. It is concluded that the adoption of RGB-based phenotyping techniques may significantly contribute to the progress of plant breeding and the appropriate management of fertilization. PMID:27242867

  20. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization.

    PubMed

    Vergara-Díaz, Omar; Zaman-Allah, Mainassara A; Masuka, Benhildah; Hornero, Alberto; Zarco-Tejada, Pablo; Prasanna, Boddupalli M; Cairns, Jill E; Araus, José L

    2016-01-01

    Maize crop production is constrained worldwide by nitrogen (N) availability and particularly in poor tropical and subtropical soils. The development of affordable high-throughput crop monitoring and phenotyping techniques is key to improving maize cultivation under low-N fertilization. In this study several vegetation indices (VIs) derived from Red-Green-Blue (RGB) digital images at the leaf and canopy levels are proposed as low-cost tools for plant breeding and fertilization management. They were compared with the performance of the normalized difference vegetation index (NDVI) measured at ground level and from an aerial platform, as well as with leaf chlorophyll content (LCC) and other leaf composition and structural parameters at flowering stage. A set of 10 hybrids grown under five different nitrogen regimes and adequate water conditions were tested at the CIMMYT station of Harare (Zimbabwe). Grain yield and leaf N concentration across N fertilization levels were strongly predicted by most of these RGB indices (with R (2)~ 0.7), outperforming the prediction power of the NDVI and LCC. RGB indices also outperformed the NDVI when assessing genotypic differences in grain yield and leaf N concentration within a given level of N fertilization. The best predictor of leaf N concentration across the five N regimes was LCC but its performance within N treatments was inefficient. The leaf traits evaluated also seemed inefficient as phenotyping parameters. It is concluded that the adoption of RGB-based phenotyping techniques may significantly contribute to the progress of plant breeding and the appropriate management of fertilization. PMID:27242867

  1. The nitrogen budget for different forest types in the central Congo Basin

    NASA Astrophysics Data System (ADS)

    Bauters, Marijn; Verbeeck, Hans; Cizungu, Landry; Boeckx, Pascal

    2016-04-01

    Characterization of fundamental processes in different forest types is vital to understand the interaction of forests with their changing environment. Recent data analyses, as well as modeling activities have shown that the CO2 uptake by terrestrial ecosystems strongly depends on site fertility, i.e. nutrient availability. Accurate projections of future net forest growth and terrestrial CO2 uptake thus necessitate an improved understanding on nutrient cycles and how these are coupled to the carbon (C) cycle in forests. This holds especially for tropical forests, since they represent about 40-50% of the total carbon that is stored in terrestrial vegetation, with the Amazon basin and the Congo basin being the largest two contiguous blocks. However, due to political instability and reduced accessibility in the central Africa region, there is a strong bias in scientific research towards the Amazon basin. Consequently, central African forests are poorly characterized and their role in global change interactions shows distinct knowledge gaps, which is important bottleneck for all efforts to further optimize Earth system models explicitly including this region. Research in the Congo Basin region should combine assessments of both carbon stocks and the underlying nutrient cycles which directly impact the forest productivity. We set up a monitoring network for carbon stocks and nitrogen fluxes in four different forest types in the Congo Basin, which is now operative. With the preliminary data, we can get a glimpse of the differences in nitrogen budget and biogeochemistry of African mixed lowland rainforest, monodominant lowland forest, mixed montane forest and eucalypt plantations.

  2. Use of GIS-based site-specific nitrogen management for improving energy efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) is a significant energy component of in support of crop production but it can be highly variable within fields. To our knowledge, no efforts have been made to employ GIS-based site-specific N management (SSNM) to assess and improve energy costs and efficiency. We examine recent SSNM ca...

  3. Nitrogen removal through different pathways in an aged refuse bioreactor treating mature landfill leachate.

    PubMed

    Xie, Bing; Lv, Zhuo; Hu, Chong; Yang, Xuezhi; Li, Xiangzhen

    2013-10-01

    In this study, an aged refuse bioreactor was constructed to remove nitrogen in a mature landfill leachate. The nitrogen removal efficiency and the microbial community composition in the bioreactor were investigated. The results showed that the aged refuse bioreactor removed more than 90 % of total nitrogen in the leachate under the nitrogen loading rate (NLR) of 0.74 g/kg (vs) day, and the total nitrogen removal rate decreased to 62.2 % when NLR increased up to 2.03 g/kg (vs) day. Quantitative polymerase chain reaction results showed that the average cell number of ammonia-oxidizing bacteria in the bioreactor was 1.58 × 10(8) cells/g, which accounted for 0.41 % of total bacteria. The number of anammox bacteria in the reactor was 1.09 × 10(8) cells/g, which accounted for 0.27 % of total bacteria. Isotopic (15)N tracing experiments showed that nearly 10 % of nitrogen was removed by anammox. High-throughout 454 pyrosequencing revealed that the predominant bacteria in the bioreactor were Proteobacteria, Chloroflexi, Actinobacteria, Bacteroidetes, and Gemmatimonadetes, including various nitrifiers and denitrifiers with diverse heterotrophic and autotrophic metabolic pathways, supporting that nitrogen was removed through different pathways in this aged refuse bioreactor.

  4. [Influence of different NH4+/NO3- ratios on nitrogen metabolism of cotton].

    PubMed

    Dong, Hairong; Li, Jincai; Li, Cundong

    2004-04-01

    The influence of different NH4+/NO3- ratios on nitrogen metabolism of cotton was studied under controlled hydroponics. The results showed that compared with single nitrate nutrition, solutions with 25/75, 50/50, 75/25 and 100/0 of NH4+/NO3- significantly increased the soluble protein accumulation in leaves and roots of cotton, and the maximum content of soluble protein in leaves and roots appeared respectively in the solution with 50/50 and 75/25 of NH4+/NO3-. The soluble protein content in roots was increased with the increase of NH4+ percentage, but was slightly less in the solution of 100/0 than 75/25, which was probably related to the excess NH4+ limiting boot metabolism. With the increase of NH4+ percentage, the nitrate content in petiole and the nitrate reductase activity in functional blade declined, but ammoniac nitrogen content increased in every organ of cotton. These results showed that foreign nitrogen affected the nitrogen metabolism of cotton in a different way, and the nitrogen absorption by cotton was probably related to different forms of foreign nitrogen.

  5. Land Cover Differences in Soil Carbon and Nitrogen at Fort Benning, Georgia

    SciTech Connect

    Garten Jr., C.T.

    2004-02-09

    Land cover characterization might help land managers assess the impacts of management practices and land cover change on attributes linked to the maintenance and/or recovery of soil quality. However, connections between land cover and measures of soil quality are not well established. The objective of this limited investigation was to examine differences in soil carbon and nitrogen among various land cover types at Fort Benning, Georgia. Forty-one sampling sites were classified into five major land cover types: deciduous forest, mixed forest, evergreen forest or plantation, transitional herbaceous vegetation, and barren land. Key measures of soil quality (including mineral soil density, nitrogen availability, soil carbon and nitrogen stocks, as well as properties and chemistry of the O-horizon) were significantly different among the five land covers. In general, barren land had the poorest soil quality. Barren land, created through disturbance by tracked vehicles and/or erosion, had significantly greater soil density and a substantial loss of carbon and nitrogen relative to soils at less disturbed sites. We estimate that recovery of soil carbon under barren land at Fort Benning to current day levels under transitional vegetation or forests would require about 60 years following reestablishment of vegetation. Maps of soil carbon and nitrogen were produced for Fort Benning based on a 1999 land cover map and field measurements of soil carbon and nitrogen stocks under different land cover categories.

  6. Improved Exciton Dissociation at Semiconducting Polymer:ZnO Donor:Acceptor Interfaces via Nitrogen Doping of ZnO

    PubMed Central

    Musselman, Kevin P; Albert-Seifried, Sebastian; Hoye, Robert L Z; Sadhanala, Aditya; Muñoz-Rojas, David; MacManus-Driscoll, Judith L; Friend, Richard H

    2014-01-01

    Exciton dissociation at the zinc oxide/poly(3-hexylthiophene) (ZnO/P3HT) interface as a function of nitrogen doping of the zinc oxide, which decreases the electron concentration from approximately 1019 cm−3 to 1017 cm−3, is reported. Exciton dissociation and device photocurrent are strongly improved with nitrogen doping. This improved dissociation of excitons in the conjugated polymer is found to result from enhanced light-induced de-trapping of electrons from the surface of the nitrogen-doped ZnO. The ability to improve the surface properties of ZnO by introducing a simple nitrogen dopant has general applicability. PMID:25520604

  7. Cytokinin-dependent improvement in transgenic P(SARK)::IPT tobacco under nitrogen deficiency.

    PubMed

    Rubio-Wilhelmi, María Del Mar; Sanchez-Rodriguez, Eva; Rosales, Miguel Angel; Blasco, Begoña; Rios, Juan Jose; Romero, Luis; Blumwald, Eduardo; Ruiz, Juan Manuel

    2011-10-12

    Wild-type (WT) and transgenic tobacco plants overexpressing isopentenyltransferase (IPT), a gene coding the rate-limiting step in cytokinin (CKs) synthesis, were grown under limited nitrogen (N) conditions to evaluate the role of CKs in NUE (N-use efficiency) and in different parameters that determine the quality of tobacco leaves. The results indicate that WT tobacco plants submitted to N deficiency show a decline in the leaf/root ratio, associated with a decrease in the NUE and in tobacco-leaf quality, defined by an increase in the quantity of nicotine. On the contrary, the transgenic plants submitted to N deficiency maintained the leaf/root ratio, presenting a higher NUE and greater quality of tobacco leaves than the WT plants, as the latter showed reduced nicotine and an increase in reducing sugars under severe N-deficiency conditions. Therefore, the overexpression of CKs under N deficiency could be a useful tool to improve tobacco cultivation, given that it could reduce N-fertilizer application and thereby provide economic savings and environmental benefits, maintaining yield and improving tobacco leaf quality.

  8. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean.

    PubMed

    Baghel, Lokesh; Kataria, Sunita; Guruprasad, Kadur Narayan

    2016-10-01

    The effectiveness of magnetopriming was assessed for alleviation of salt-induced adverse effects on soybean growth. Soybean seeds were pre-treated with static magnetic field (SMF) of 200 mT for 1 h to evaluate the effect of magnetopriming on growth, carbon and nitrogen metabolism, and yield of soybean plants under different salinity levels (0, 25, and 50 mM NaCl). The adverse effect of NaCl-induced salt stress was found on growth, yield, and various physiological attributes of soybeans. Results indicate that SMF pre-treatment significantly increased plant growth attributes, number of root nodules, nodules, fresh weight, biomass accumulation, and photosynthetic performance under both non-saline and saline conditions as compared to untreated seeds. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at J-I-P phase. Nitrate reductase activity, PIABS , photosynthetic pigments, and net rate of photosynthesis were also higher in plants that emerged from SMF pre-treated seeds as compared to untreated seeds. Leghemoglobin content and hemechrome content in root nodules were also increased by SMF pre-treatment. Thus pre-sowing exposure of seeds to SMF enhanced carbon and nitrogen metabolism and improved the yield of soybeans in terms of number of pods, number of seeds, and seed weight under saline as well as non-saline conditions. Consequently, SMF pre-treatment effectively mitigated adverse effects of NaCl on soybeans. It indicates that magnetopriming of dry soybean seeds can be effectively used as a pre-sowing treatment for alleviating salinity stress. Bioelectromagnetics. 37:455-470, 2016. © 2016 Wiley Periodicals, Inc.

  9. Static magnetic field treatment of seeds improves carbon and nitrogen metabolism under salinity stress in soybean.

    PubMed

    Baghel, Lokesh; Kataria, Sunita; Guruprasad, Kadur Narayan

    2016-10-01

    The effectiveness of magnetopriming was assessed for alleviation of salt-induced adverse effects on soybean growth. Soybean seeds were pre-treated with static magnetic field (SMF) of 200 mT for 1 h to evaluate the effect of magnetopriming on growth, carbon and nitrogen metabolism, and yield of soybean plants under different salinity levels (0, 25, and 50 mM NaCl). The adverse effect of NaCl-induced salt stress was found on growth, yield, and various physiological attributes of soybeans. Results indicate that SMF pre-treatment significantly increased plant growth attributes, number of root nodules, nodules, fresh weight, biomass accumulation, and photosynthetic performance under both non-saline and saline conditions as compared to untreated seeds. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at J-I-P phase. Nitrate reductase activity, PIABS , photosynthetic pigments, and net rate of photosynthesis were also higher in plants that emerged from SMF pre-treated seeds as compared to untreated seeds. Leghemoglobin content and hemechrome content in root nodules were also increased by SMF pre-treatment. Thus pre-sowing exposure of seeds to SMF enhanced carbon and nitrogen metabolism and improved the yield of soybeans in terms of number of pods, number of seeds, and seed weight under saline as well as non-saline conditions. Consequently, SMF pre-treatment effectively mitigated adverse effects of NaCl on soybeans. It indicates that magnetopriming of dry soybean seeds can be effectively used as a pre-sowing treatment for alleviating salinity stress. Bioelectromagnetics. 37:455-470, 2016. © 2016 Wiley Periodicals, Inc. PMID:27336791

  10. Farm nitrogen balances in six European landscapes as an indicator for nitrogen losses and basis for improved management

    NASA Astrophysics Data System (ADS)

    Dalgaard, T.; Bienkowski, J. F.; Bleeker, A.; Dragosits, U.; Drouet, J. L.; Durand, P.; Frumau, A.; Hutchings, N. J.; Kedziora, A.; Magliulo, V.; Olesen, J. E.; Theobald, M. R.; Maury, O.; Akkal, N.; Cellier, P.

    2012-12-01

    Improved management of nitrogen (N) in agriculture is necessary to achieve a sustainable balance between the production of food and other biomass, and the unwanted effects of N on water pollution, greenhouse gas emissions, biodiversity deterioration and human health. To analyse farm N-losses and the complex interactions within farming systems, efficient methods for identifying emissions hotspots and evaluating mitigation measures are therefore needed. The present paper aims to fill this gap at the farm and landscape scales. Six agricultural landscapes in Poland (PL), the Netherlands (NL), France (FR), Italy (IT), Scotland (UK) and Denmark (DK) were studied, and a common method was developed for undertaking farm inventories and the derivation of farm N balances, N surpluses and for evaluating uncertainty for the 222 farms and 11 440 ha of farmland included in the study. In all landscapes, a large variation in the farm N surplus was found, and thereby a large potential for reductions. The highest average N surpluses were found in the most livestock-intensive landscapes of IT, FR, and NL; on average 202 ± 28, 179 ± 63 and 178 ± 20 kg N ha-1 yr-1, respectively. All landscapes showed hotspots, especially from livestock farms, including a special UK case with large-scale landless poultry farming. Overall, the average N surplus from the land-based UK farms dominated by extensive sheep and cattle grazing was only 31 ± 10 kg N ha-1 yr-1, but was similar to the N surplus of PL and DK (122 ± 20 and 146 ± 55 kg N ha-1 yr-1, respectively) when landless poultry farming was included. We found farm N balances to be a useful indicator for N losses and the potential for improving N management. Significant correlations to N surplus were found, both with ammonia air concentrations and nitrate concentrations in soils and groundwater, measured during the period of N management data collection in the landscapes from 2007-2009. This indicates that farm N surpluses may be used as an

  11. Suitability of different growth substrates as source of nitrogen for sulfate reducing bacteria.

    PubMed

    Dev, Subhabrata; Patra, Aditya Kumar; Mukherjee, Abhijit; Bhattacharya, Jayanta

    2015-11-01

    Sulfate reducing bacteria (SRB) mediated treatment of acid mine drainage is considered as a globally accepted technology. However, inadequate information on the role of nitrogen source in the augmentation of SRB significantly affects the overall treatment process. Sustenance of SRB depends on suitable nitrogen source which is considered as an important nutrient. This review focuses on the different nitrogen rich growth substrates for their effectiveness to support SRB growth and sulfate reduction in passive bioreactors. Compounds like NH4Cl, NH4HCO3, NO3 (-), aniline, tri-nitrotoluene, cornsteep liquor, peptone, urea, and chitin are reported to have served as nitrogen source for SRB. In association with fermentative bacteria, SRB can metabolize these complex compounds to NH4 (+), amines, and amino acids. After incorporation into cells, these compounds take part in the biosynthesis of nucleic acids, amino acids and enzyme co-factor. This work describes the status of current and the probable directions of the future research.

  12. Suitability of different growth substrates as source of nitrogen for sulfate reducing bacteria.

    PubMed

    Dev, Subhabrata; Patra, Aditya Kumar; Mukherjee, Abhijit; Bhattacharya, Jayanta

    2015-11-01

    Sulfate reducing bacteria (SRB) mediated treatment of acid mine drainage is considered as a globally accepted technology. However, inadequate information on the role of nitrogen source in the augmentation of SRB significantly affects the overall treatment process. Sustenance of SRB depends on suitable nitrogen source which is considered as an important nutrient. This review focuses on the different nitrogen rich growth substrates for their effectiveness to support SRB growth and sulfate reduction in passive bioreactors. Compounds like NH4Cl, NH4HCO3, NO3 (-), aniline, tri-nitrotoluene, cornsteep liquor, peptone, urea, and chitin are reported to have served as nitrogen source for SRB. In association with fermentative bacteria, SRB can metabolize these complex compounds to NH4 (+), amines, and amino acids. After incorporation into cells, these compounds take part in the biosynthesis of nucleic acids, amino acids and enzyme co-factor. This work describes the status of current and the probable directions of the future research. PMID:26364194

  13. Improved spectral fitting of nitrogen dioxide from OMI in the 405-465 nm window

    NASA Astrophysics Data System (ADS)

    van Geffen, J. H. G. M.; Boersma, K. F.; Van Roozendael, M.; Hendrick, F.; Mahieu, E.; De Smedt, I.; Sneep, M.; Veefkind, J. P.

    2015-04-01

    An improved nitrogen dioxide (NO2) slant column density retrieval for the Ozone Monitoring Instrument (OMI) in the 405-465 nm spectral region is presented. Since the launch of OMI on board NASA's EOS-Aura satellite in 2004, differential optical absorption spectroscopy (DOAS) retrievals of NO2 slant column densities have been the starting point for the KNMI DOMINO and NASA SP NO2 vertical column data as well as the OMI NO2 data of some other institutes. However, recent intercomparisons between NO2 retrievals from OMI and other UV/Vis and limb spectrometers, as well as ground-based measurements, suggest that OMI stratospheric NO2 is biased high. This study revises and, for the first time, fully documents the OMI NO2 retrieval in detail. The representation of the OMI slit function to convolve high-resolution reference spectra onto the relevant spectral grid is improved. The window used for the wavelength calibration is optimised, leading to much-reduced fitting errors. Ozone and water vapour spectra used in the fit are updated, reflecting the recently improved knowledge of their absorption cross section in the literature. The improved spectral fit also accounts for absorption by the O2-O2 collision complex and by liquid water over clear-water areas. The main changes in the improved spectral fitting result from the updates related to the wavelength calibration: the RMS error of the fit is reduced by 23% and the NO2 slant column by 0.85 × 1015 molec cm-2, independent of latitude, solar zenith angle and NO2 value. Including O2-O2 and liquid water absorption and updating the O3 and water vapour cross-section spectra further reduces NO2 slant columns on average by 0.35 × 1015 molec cm-2, accompanied by a further 9% reduction in the RMS error of the fit. The improved OMI NO2 slant columns are consistent with independent NO2 retrievals from other instruments to within a range that can be explained by photochemically driven diurnal increases in stratospheric NO2 and by

  14. Improved spectral fitting of nitrogen dioxide from OMI in the 405-465 nm window

    NASA Astrophysics Data System (ADS)

    van Geffen, J. H. G. M.; Boersma, K. F.; Van Roozendael, M.; Hendrick, F.; Mahieu, E.; De Smedt, I.; Sneep, M.; Veefkind, J. P.

    2014-10-01

    An improved nitrogen dioxide (NO2) slant column density retrieval for the Ozone Monitoring Instrument (OMI) in the 405-465 nm spectral region is presented. Since the launch of OMI on board NASA's EOS-Aura satellite in 2004, DOAS retrievals of NO2 slant column densities have been the starting point for the KNMI DOMINO (v2.0) and NASA SP (v2.1) retrievals. However, recent intercomparisons between NO2 retrievals from OMI and other UV/Vis and limb spectrometers, as well as ground-based measurements, clearly suggested that OMI stratospheric NO2 is biased high. This study revises the OMI NO2 retrieval in detail. The representation of the OMI slit function to convolve high-resolution reference spectra onto the relevant spectral grid is improved. The window used for the wavelength calibration is optimised, leading to much-reduced fitting errors. Ozone and water vapour spectra used in the fit are updated, reflecting the recently improved knowledge on their absorption cross section as documented in the literature. The improved spectral fit also accounts for absorption by the O2-O2 collision complex and by liquid water over clear-water areas. The main changes in the improved spectral fitting result from the updates related to the wavelength calibration: the RMS error of the fit is reduced by 23% and the NO2 slant column by 0.85 × 1015 molec cm-2, independent of latitude, solar zenith angle and NO2 value. Including O2-O2 and liquid water absorption and updating the O3 and water vapour cross-section spectra further reduces NO2 slant columns on average by 0.35 × 1015 molec cm-2, accompanied with a further 9% reduction in the RMS error of the fit. The improved OMI NO2 slant columns are consistent with independent NO2 retrievals to within a range that can be explained by photo-chemically driven diurnal increases in stratospheric NO2 and by small differences in fitting window and fitting approach. The revisions indicate that current OMI NO2 slant columns suffered mostly from an

  15. Improved performance due to selective passivation of nitrogen clusters in GaInNAs solar cells

    NASA Astrophysics Data System (ADS)

    Fukuda, Miwa; Whiteside, Vincent R.; Al Khalfioui, Mohamed; Leroux, Mathieu; Hossain, Khalid; Sellers, Ian R.

    2015-03-01

    While GaInNAs has the potential to be a fourth-junction in multi-junction solar cells it has proved to be difficult to incorporate due to the low solubility of nitrogen in these materials. Specifically, mid-gap states attributed to nitrogen clusters have proved prohibitive for practical implementation of these systems. Here, we present the selective passivation of nitrogen impurities using a UV-activated hydrogenation process, which enables the removal of defects while retaining substitution nitrogen. Temperature dependent photoluminescence measurements of the intrinsic region of a GaInNAs p-i-n solar cell show a classic ``s-shape'' associated with localization prior to hydrogenation, while after hydrogenation no sign of the ``s-shape'' is evident. This passivation of nitrogen centers is reflected in improved performance of solar cells structures relative to reference, unpassivated devices presenting a potential route to practical implementation of GaInNAs solar cells. The authors acknowledge support through Oklahoma Center for the Advancement of Science and Technology under the Oklahoma Applied Research Support Grant No. AR12.2-040.

  16. Improving nitrogen removal in an ANAMMOX reactor using a permeable reactive biobarrier.

    PubMed

    Meng, Fangang; Su, Guangyi; Hu, Yifang; Lu, Hui; Huang, Li-Nan; Chen, Guang-Hao

    2014-07-01

    A novel ANAMMOX biofilm reactor that combines the advantages of conventional biofilm reactors and membrane bioreactors (MBRs) was developed in an attempt to decrease the levels of nitrogen in the reactor filtrate. In this reactor, nonwoven fabric modules served as both biofilm carriers and membrane-like separators, and the biofilm acted as a permeable reactive barrier for the removal of nitrogen species from the bulk liquid. Long-term monitoring suggests that the nitrogen removal rates (NRR) of the reactor reached ca. 1.6 kg-N/(m(3) d). Interestingly, large fractions of the ammonium (ca. 27%) and nitrite (ca. 48%) remaining in the bulk liquid were removed during their transport through the biofilm; thus, the reactive barrier process of the biofilm contributed ca. 11% to the total NRR. With an increase in the imposed flux, the contribution of the reactive barrier process to the removal of nitrogen from the reactor bulk liquid increased significantly, e.g., it contributed 26% to the NRR at 17.4 L/(m(2) h). Additionally, the nonwoven modules could retain free bacteria effectively; they maintained a non-fouling state during the entire operation period of approximately 400 days. Sequence analysis shows that Candidatus Kuenenia-like species dominated the ANAMMOX bacteria in the reactor. These results clearly demonstrate that this innovative reactor holds great promise for improving the ANAMMOX process, thus decreasing nitrogen levels in the effluent.

  17. Microcystin-tolerant Rhizobium protects plants and improves nitrogen assimilation in Vicia faba irrigated with microcystin-containing waters.

    PubMed

    Lahrouni, Majida; Oufdou, Khalid; El Khalloufi, Fatima; Benidire, Loubna; Albert, Susann; Göttfert, Michael; Caviedes, Miguel A; Rodriguez-Llorente, Ignacio D; Oudra, Brahim; Pajuelo, Eloísa

    2016-05-01

    Irrigation of crops with microcystins (MCs)-containing waters-due to cyanobacterial blooms-affects plant productivity and could be a way for these potent toxins entering the food chain. This study was performed to establish whether MC-tolerant rhizobia could benefit growth, nodulation, and nitrogen metabolism of faba bean plants irrigated with MC-containing waters. For that, three different rhizobial strains-with different sensitivity toward MCs-were used: RhOF96 (most MC-sensitive strain), RhOF125 (most MC-tolerant strain), or Vicz1.1 (reference strain). As a control, plants grown without rhizobia and fertilized by NH4NO3 were included in the study. MC exposure decreased roots (30-37 %) and shoots (up to 15 %) dry weights in un-inoculated plants, whereas inoculation with rhizobia protects plants toward the toxic effects of MCs. Nodulation and nitrogen content were significantly impaired by MCs, with the exception of plants inoculated with the most tolerant strain RhOF125. In order to deep into the effect of inoculation on nitrogen metabolism, the nitrogen assimilatory enzymes (glutamine synthetase (GS) and glutamate synthase (GOGAT)) were investigated: Fertilized plants showed decreased levels (15-30 %) of these enzymes, both in shoots and roots. By contrast, inoculated plants retained the levels of these enzymes in shoots and roots, as well as the levels of NADH-GOGAT activity in nodules. We conclude that the microcystin-tolerant Rhizobium protects faba bean plants and improves nitrogen assimilation when grown in the presence of MCs. PMID:26865488

  18. [Characteristics of soil organic carbon and total nitrogen under different land use types in Shanghai].

    PubMed

    Shi, Li-jiang; Zheng, Li-bo; Mei, Xue-ying; Yu, Li-zhong; Jia, Zheng-chang

    2010-09-01

    By the methods of field sampling and laboratory analysis, this paper studied the variations of soil organic carbon (SOC) and total nitrogen (TN) contents and SOC density under different land use types in Shanghai. Significant differences were observed in the test parameters among different land use types. The SOC density was the highest in paddy field (3.86 kg x m(-2)), followed by in upland (3.17 kg x m(-2)), forestland (3.15 kg x m(-2)), abandoned land (2.73 kg x m(-2)), urban lawn (2.65 kg x m(-2)), garden land (2.13 kg x m(-2)), and tidal flat (1.38 kg x m(-2)). The assessment on the effects of three types of land use change on the test parameters showed that the conversion of paddy field into upland resulted in a significant decrease of SOC and TN contents and SOC density; the abandonment of farmland was not an effective way in improving SOC storage in the Yangtze Delta region with abundant water and heat resources, high soil fertility, and high level of field management; while the 4-5 years conversion of paddy field into artificial forestland decreased the SOC and TN contents and SOC density, suggesting that in a short term, the soil carbon sequestration effect of the conversion from paddy field to forestland was at a low level, due to the limitation of vegetation productivity.

  19. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    PubMed

    Huhe; Borjigin, Shinchilelt; Buhebaoyin; Wu, Yanpei; Li, Minquan; Cheng, Yunxiang

    2016-01-01

    In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P < 0.002 and P < 0.03, respectively). The present study elucidates the ecology of bacteria that mediate the nitrogen cycle in recently abandoned croplands.

  20. Fuel nitrogen release during black liquor pyrolysis; Part 1: Laboratory measurements at different conditions

    SciTech Connect

    Aho, K.; Vakkilainen, E. ); Hupa, M. . Chemical Engineering Dept.)

    1994-05-01

    Fuel nitrogen release during black liquor pyrolysis is high. There is only minor release during the drying stage. Ammonia is the main fixed nitrogen species formed. The rate of fixed nitrogen release increases with increasing temperature. The level of fixed nitrogen released by birch liquor is almost twice the level for pine liquor. Assuming complete conversion to NO, fixed nitrogen yields gave NO concentrations near typically measured values for flue gases in full scale recovery boilers. The purpose of this work was to gain more detailed information about the behavior of the fuel nitrogen in black liquor combustion. The work focused on the pyrolysis or devolatilization of the combustion process. Devolatilization is the stage at which the majority (typically 50--80%) of the liquor organics release from a fuel particle or droplet as gaseous species due to the rapid destruction of the organic macromolecules in the liquor. In this paper, the authors use the terms devolatilization and pyrolysis interchangeably with no difference in their meaning.

  1. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    PubMed

    Huhe; Borjigin, Shinchilelt; Buhebaoyin; Wu, Yanpei; Li, Minquan; Cheng, Yunxiang

    2016-01-01

    In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P < 0.002 and P < 0.03, respectively). The present study elucidates the ecology of bacteria that mediate the nitrogen cycle in recently abandoned croplands. PMID:27140199

  2. Nitrogen Metabolism in Lactating Goats Fed with Diets Containing Different Protein Sources

    PubMed Central

    Santos, A. B.; Pereira, M. L. A.; Silva, H. G. O.; Pedreira, M. S.; Carvalho, G. G. P.; Ribeiro, L. S. O.; Almeida, P. J. P.; Pereira, T. C. J.; Moreira, J. V.

    2014-01-01

    This study aimed to evaluate urea excretion, nitrogen balance and microbial protein synthesis in lactating goats fed with diets containing different protein sources in the concentrate (soybean meal, cottonseed meal, aerial part of cassava hay and leucaena hay). Four Alpine goats whose mean body weight was 42.6±6.1 kg at the beginning of the experiment, a mean lactation period of 94.0±9.0 days and a production of 1.7±0.4 kg of milk were distributed in a 4×4 Latin square with four periods of 15 days. Diets were formulated to be isonitrogenous, containing 103.0 g/kg of CP, 400 g/kg of Tifton 85 hay and 600 g/kg of concentrate. Diet containing cottonseed meal provided (p<0.05) increased excretion of urea and urea nitrogen in the urine (g/d and mg/kg of BW) when compared with leucaena hay. The diets affected the concentrations of urea nitrogen in plasma (p<0.05) and excretion of urea nitrogen in milk, being that soybean meal and cottonseed meal showed (p<0.05) higher than the average aerial part of the cassava hay. The use of diets with cottonseed meal as protein source in the concentrate in feeding of lactating goats provides greater nitrogen excretion in urine and negative nitrogen balance, while the concentrate with leucaena hay as a source of protein, provides greater ruminal microbial protein synthesis. PMID:25050000

  3. Genome-wide mapping of nucleosome positions in Saccharomyces cerevisiae in response to different nitrogen conditions

    PubMed Central

    Zhang, Peng; Du, Guocheng; Zou, Huijun; Xie, Guangfa; Chen, Jian; Shi, Zhongping; Zhou, Jingwen

    2016-01-01

    Well-organized chromatin is involved in a number of various transcriptional regulation and gene expression. We used genome-wide mapping of nucleosomes in response to different nitrogen conditions to determine both nucleosome profiles and gene expression events in Saccharomyces cerevisiae. Nitrogen conditions influence general nucleosome profiles and the expression of nitrogen catabolite repression (NCR) sensitive genes. The nucleosome occupancy of TATA-containing genes was higher compared to TATA-less genes. TATA-less genes in high or low nucleosome occupancy, showed a significant change in gene coding regions when shifting cells from glutamine to proline as the sole nitrogen resource. Furthermore, a correlation between the expression of nucleosome occupancy induced NCR sensitive genes or TATA containing genes in NCR sensitive genes, and nucleosome prediction were found when cells were cultured in proline or shifting from glutamine to proline as the sole nitrogen source compared to glutamine. These results also showed that variation of nucleosome occupancy accompany with chromatin-dependent transcription factor could influence the expression of a series of genes involved in the specific regulation of nitrogen utilization. PMID:27659668

  4. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods

    PubMed Central

    Huhe; Borjigin, Shinchilelt; Buhebaoyin; Wu, Yanpei; Li, Minquan; Cheng, Yunxiang

    2016-01-01

    In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P < 0.002 and P < 0.03, respectively). The present study elucidates the ecology of bacteria that mediate the nitrogen cycle in recently abandoned croplands. PMID:27140199

  5. Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands.

    PubMed

    Schrama, Maarten; Heijning, Pieter; Bakker, Jan P; van Wijnen, Harm J; Berg, Matty P; Olff, Han

    2013-05-01

    Studies addressing the role of large herbivores on nitrogen cycling in grasslands have suggested that the direction of effects depends on soil fertility. Via selection for high quality plant species and input of dung and urine, large herbivores have been shown to speed up nitrogen cycling in fertile grassland soils while slowing down nitrogen cycling in unfertile soils. However, recent studies show that large herbivores can reduce nitrogen mineralization in some temperate fertile soils, but not in others. To explain this, we hypothesize that large herbivores can reduce nitrogen mineralization in loamy or clay soils through soil compaction, but not in sandy soils. Especially under wet conditions, strong compaction in clay soils can lead to periods of soil anoxia, which reduces decomposition of soil organic matter and, hence, N mineralization. In this study, we use a long-term (37-year) field experiment on a salt marsh to investigate the hypothesis that the effect of large herbivores on nitrogen mineralization depends on soil texture. Our results confirm that the presence of large herbivores decreased nitrogen mineralization rate in a clay soil, but not in a sandy soil. By comparing a hand-mown treatment with a herbivore-grazed treatment, we show that these differences can be attributed to herbivore-induced changes in soil physical properties rather than to above-ground biomass removal. On clay soil, we find that large herbivores increase the soil water-filled porosity, induce more negative soil redox potentials, reduce soil macrofauna abundance, and reduce decomposition activity. On sandy soil, we observe no changes in these variables in response to grazing. We conclude that effects of large herbivores on nitrogen mineralization cannot be understood without taking soil texture, soil moisture, and feedbacks through soil macrofauna into account.

  6. Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands.

    PubMed

    Schrama, Maarten; Heijning, Pieter; Bakker, Jan P; van Wijnen, Harm J; Berg, Matty P; Olff, Han

    2013-05-01

    Studies addressing the role of large herbivores on nitrogen cycling in grasslands have suggested that the direction of effects depends on soil fertility. Via selection for high quality plant species and input of dung and urine, large herbivores have been shown to speed up nitrogen cycling in fertile grassland soils while slowing down nitrogen cycling in unfertile soils. However, recent studies show that large herbivores can reduce nitrogen mineralization in some temperate fertile soils, but not in others. To explain this, we hypothesize that large herbivores can reduce nitrogen mineralization in loamy or clay soils through soil compaction, but not in sandy soils. Especially under wet conditions, strong compaction in clay soils can lead to periods of soil anoxia, which reduces decomposition of soil organic matter and, hence, N mineralization. In this study, we use a long-term (37-year) field experiment on a salt marsh to investigate the hypothesis that the effect of large herbivores on nitrogen mineralization depends on soil texture. Our results confirm that the presence of large herbivores decreased nitrogen mineralization rate in a clay soil, but not in a sandy soil. By comparing a hand-mown treatment with a herbivore-grazed treatment, we show that these differences can be attributed to herbivore-induced changes in soil physical properties rather than to above-ground biomass removal. On clay soil, we find that large herbivores increase the soil water-filled porosity, induce more negative soil redox potentials, reduce soil macrofauna abundance, and reduce decomposition activity. On sandy soil, we observe no changes in these variables in response to grazing. We conclude that effects of large herbivores on nitrogen mineralization cannot be understood without taking soil texture, soil moisture, and feedbacks through soil macrofauna into account. PMID:23271034

  7. Improving Model Representation of Reduced Nitrogen in the Greater Yellowstone Area

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.

    2015-12-01

    Human activity, including fossil fuel combustion and agriculture has greatly increased the amount of reactive nitrogen (RN) in the atmosphere and its subsequent deposition to land. Increases in deposition of RN compounds can adversely affect sensitive ecosystems and is a growing problem in many natural areas. The National Park Service in conjunction with Colorado State University researchers and assistance from the Forest Service conducted the Grand Teton Reactive Nitrogen Deposition Study (GrandTReNDS) involving spatially and temporally detailed measurements of RN during spring/summer 2011. In this work it was found that during summer months at the high elevation site Grand Targhee, 62% of the nitrogen deposition was due to reduced nitrogen, about equally split between dry and wet deposition, oxidized nitrogen accounted for 27% of the total, and the remaining was wet deposited organic nitrogen. An important next step to GrandTReNDS is the use of chemical transport models (CTMs) to estimate source contributions to RN in the park. Given the large contribution of reduced nitrogen species to total nitrogen deposition in the park, understanding and properly characterizing ammonia in CTMs is critical to estimating the total nitrogen deposition. A model performance evaluation of the CAMx uni-directional model and CMAQ bi-direction and uni-directional 2011 model simulations versus GrandTReNDS and other datasets was conducted. Preliminary results suggest that, in some areas, model performance of ambient ammonia concentration is more sensitive to the spatial resolution of the model and the accuracy of the spatial representation of emissions than to the incorporation of bi-directional flux. Additional model sensitivity runs, including sensitivity to resolution (with and without bi-directional flux capabilities), changes to model estimated ammonia dry deposition velocities, and improved representation of the spatial distribution of ammonia emissions, are used to identify the

  8. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    SciTech Connect

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu E-mail: zouguifu@suda.edu.cn; Gao, Peng; Zhang, Ke-Qin E-mail: zouguifu@suda.edu.cn; Du, Dezhuang; Guo, Jun

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  9. Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts.

    PubMed

    Jara, Matías; Cubillos, Francisco A; García, Verónica; Salinas, Francisco; Aguilera, Omayra; Liti, Gianni; Martínez, Claudio

    2014-01-01

    Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism. PMID:24466135

  10. [Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China's cropland soil].

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Duan, Xiao-Nan; Zheng, Hua

    2008-10-01

    With reference to the situation of nitrogen fertilization in 2003 and the recommendations from agricultural experts on fertilization to different crops, two scenarios, namely, 'current situation' and 'fertilization as recommended', were set for estimating the current and potential carbon sequestration of China's cropland soil under nitrogen fertilization. After collecting and analyzing the typical data from the long-term agricultural experiment stations all over China, and based on the recent studies of soil organic matter and nutrient dynamics, we plotted China into four agricultural regions, and estimated the carbon sequestration rate and potential of cropland soil under the two scenarios in each province of China. Meanwhile, with the data concerning fossil fuel consumption for fertilizer production and nitrogen fertilization, the greenhouse gas leakage caused by nitrogen fertilizer production and application was estimated with the help of the parameters given by domestic studies and IPCC. We further proposed that the available carbon sequestration potential of cropland soil could be taken as the criterion of the validity and availability of carbon sequestration measures. The results showed that the application of synthetic nitrogen fertilizer could bring about a carbon sequestration potential of 21.9 Tg C x a(-1) in current situation, and 30.2 Tg C x a(-1) with fertilization as recommended. However, under the two scenarios, the greenhouse gas leakage caused by fertilizer production and application would reach 72.9 Tg C x a(-1) and 91.4 Tg C x a(-1), and thus, the actual available carbon sequestration potential would be -51.0 Tg C x a(-1) and -61.1 Tg C x a(-1), respectively. The situation was even worse under the 'fertilization as recommended' scenario, because the increase in the amount of nitrogen fertilization would lead to 10. 1 Tg C x a(-1) or more net greenhouse gas emission. All these results indicated that the application of synthetic nitrogen fertilizer

  11. Improving yield potential in crops under elevated CO(2): Integrating the photosynthetic and nitrogen utilization efficiencies.

    PubMed

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO(2) levels have linearly increased. Developing crop varieties with increased utilization of CO(2) for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO(2) and achieve higher food production. The primary effects of elevated CO(2) levels in most crop plants, particularly C(3) plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO(2). The yield potential of C(3) crops is limited by their capacity to exploit sufficient carbon. The "C fertilization" through elevated CO(2) levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO(2) and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO(2), raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO(2) levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO(2) levels.

  12. Field observations of soil water content and nitrogen distribution on two hillslopes of different shape

    NASA Astrophysics Data System (ADS)

    Li, Yong; Huang, Manli; Hua, Jianlan; Zhang, Zhentin; Ni, Lixiao; Li, Ping; Chen, Yong; Zhu, Liang

    2015-06-01

    nitrogen concentrations compared to its mid and lower positions. Nitrogen storage in the low segment soil profile of the CCS was higher than its up segment, but they were similar on the CVS. The nitrogen redistributions on the hillslopes were dominantly from water regimes, in particular, from the lateral subsurface flow. Due to the diversity of water regimes in different shaped hillslopes, the interception of lateral subsurface flow and its nitrogen pollution should receive more attention in a humid region.

  13. Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions.

    PubMed

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops.

  14. Engineering Pseudomonas protegens Pf-5 for Nitrogen Fixation and its Application to Improve Plant Growth under Nitrogen-Deficient Conditions

    PubMed Central

    Setten, Lorena; Soto, Gabriela; Mozzicafreddo, Matteo; Fox, Ana Romina; Lisi, Christian; Cuccioloni, Massimiliano; Angeletti, Mauro; Pagano, Elba; Díaz-Paleo, Antonio; Ayub, Nicolás Daniel

    2013-01-01

    Nitrogen is the second most critical factor for crop production after water. In this study, the beneficial rhizobacterium Pseudomonas protegens Pf-5 was genetically modified to fix nitrogen using the genes encoding the nitrogenase of Pseudomonas stutzeri A1501 via the X940 cosmid. Pf-5 X940 was able to grow in L medium without nitrogen, displayed high nitrogenase activity and released significant quantities of ammonium to the medium. Pf-5 X940 also showed constitutive expression and enzymatic activity of nitrogenase in ammonium medium or in nitrogen-free medium, suggesting a constitutive nitrogen fixation. Similar to Pseudomonas protegens Pf-5, Pseudomonas putida, Pseudomonas veronii and Pseudomonas taetrolens but not Pseudomonas balearica and Pseudomonas stutzeri transformed with cosmid X940 showed constitutive nitrogenase activity and high ammonium production, suggesting that this phenotype depends on the genome context and that this technology to obtain nitrogen-fixing bacteria is not restricted to Pf-5. Interestingly, inoculation of Arabidopsis, alfalfa, tall fescue and maize with Pf-5 X940 increased the ammonium concentration in soil and plant productivity under nitrogen-deficient conditions. In conclusion, these results open the way to the production of effective recombinant inoculants for nitrogen fixation on a wide range of crops. PMID:23675499

  15. Increased Needle Nitrogen Contents Did Not Improve Shoot Photosynthetic Performance of Mature Nitrogen-Poor Scots Pine Trees.

    PubMed

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2016-01-01

    Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the

  16. Increased Needle Nitrogen Contents Did Not Improve Shoot Photosynthetic Performance of Mature Nitrogen-Poor Scots Pine Trees

    PubMed Central

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2016-01-01

    Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the

  17. Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes

    SciTech Connect

    Suen, Yu.; Hubbard, J.S.; Holzer, G.; Tornabene, T.G.

    1987-06-01

    The green alga Nannochloropsis sp. QII was cultivated in media with sufficient and growth-limiting levels of nitrogen (nitrate). Nitrogen deficiency promoted lipid synthesis yielding cells with lipids comprising 55% of the biomass. The major lipids were triacylglycerols (79%), polar lipids (9%) and hydrocarbons (2.5%). The polar lipids consisted of a broad range of phospholipids, glycolipids and sulfolipids. Other lipids identified were pigments, free fatty acids, saponifiable and unsaponifiable sterol derivatives, various glycerides, a family of alkyl-1, 4-dioxane derivatives and a series of alkyl- and hydroxy-alkyl-dimethyl-acetals. Experiments in which /sup 14/CO/sub 2/ was provided at different times in the growth cycle demonstrated that enhanced lipid biosynthesis at low nitrogen levels resulted principally from de novo CO/sub 2/ fixation.

  18. PCS Nitrogen: Combustion Fan System Optimization Improves Performance and Saves Energy at a Chemical Plant

    SciTech Connect

    2005-01-01

    This U.S. Department of Energy Industrial Technologies Program case study describes how, in 2003, PCS Nitrogen, Inc., improved the efficiency of the combustion fan on a boiler at the company's chemical fertilizer plant in Augusta, Georgia. The project saved $420,000 and 76,400 million British thermal units (MBtu) per year. In addition, maintenance needs declined, because there is now less stress on the fan motor and bearings and less boiler feed water usage. This project was so successful that the company has implemented more efficiency improvements that should result in energy cost savings of nearly $1 million per year.

  19. Persistence of biological nitrogen fixation in high latitude grass-clover grasslands under different management practices

    NASA Astrophysics Data System (ADS)

    Tzanakakis, Vasileios; Sturite, Ievina; Dörsch, Peter

    2016-04-01

    Biological nitrogen fixation (BNF) can substantially contribute to N supply in permanent grasslands, improving N yield and forage quality, while reducing inorganic N inputs. Among the factors critical to the performance of BNF in grass-legume mixtures are selected grass and legume species, proportion of legumes, the soil-climatic conditions, in particular winter conditions, and management practices (e.g. fertilization and compaction). In high latitude grasslands, low temperatures can reduce the performance of BNF by hampering the legumés growth and by suppressing N2 fixation. Estimation of BNF in field experiments is not straightforward. Different methods have been developed providing different results. In the present study, we evaluated the performance of BNF, in a newly established field experiment in North Norway over four years. The grassland consisted of white clover (Trifolium repens L.) and red clover (Trifolium pretense L.) sawn in three proportions (0, 15 and 30% in total) together with timothy (Pheum pretense L.) and meadow fescue (Festuca pratensis L.). Three levels of compaction were applied each year (no tractor, light tractor, heavy tractor) together with two different N rates (110 kg N/ha as cattle slurry or 170 kg N/ha as cattle slurry and inorganic N fertilizer). We applied two different methods, the 15N natural abundance and the difference method, to estimate BNF in the first harvest of each year. Overall, the difference method overestimated BNF relative to the 15N natural abundance method. BNF in the first harvest was compared to winter survival of red and white clover plants, which decreased with increasing age of the grassland. However, winter conditions did not seem to affect the grassland's ability to fix N in spring. The fraction of N derived from the atmosphere (NdfA) in white and red clover was close to 100% in each spring, indicating no suppression of BNF. BNF increased the total N yield of the grasslands by up to 75%, mainly due to high

  20. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.

    PubMed

    Zhu, Xiancan; Song, Fengbin; Liu, Shengqun; Liu, Fulai

    2016-02-01

    Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A (15)N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.

  1. Quantitative Genetic Analysis of Biomass and Wood Chemistry of Populus under Different Nitrogen Levels

    SciTech Connect

    Novaes, E.; Osorio, L.; Drost, D. R.; Miles, B. L.; Boaventura-Novaes, C. R. D.; Benedict, C.; Dervinis, C.; Yu, Q.; Sykes, R.; Davis, M.; Martin, T. A.; Peter, G. F.; Kirst, M.

    2009-01-01

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration, biofuels and other wood-based industries. It is also unclear how environmental cues, such as nitrogen availability, impact the genes that regulate growth, biomass allocation and wood composition in trees. We phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above- and below-ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Sixty-three quantitative trait loci were identified for the 20 traits analyzed. The majority of quantitative trait loci are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and quantitative trait loci co-localization identified the genomic position of potential pleiotropic regulators. Pleiotropic loci linking higher growth rates to wood with less lignin are excellent targets to engineer tree germplasm improved for pulp, paper and cellulosic ethanol production. The causative genes are being identified with a genetical genomics approach.

  2. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase.

    PubMed

    Shrawat, Ashok K; Carroll, Rebecka T; DePauw, Mary; Taylor, Gregory J; Good, Allen G

    2008-09-01

    Summary Nitrogen is quantitatively the most essential nutrient for plants and a major factor limiting crop productivity. One of the critical steps limiting the efficient use of nitrogen is the ability of plants to acquire it from applied fertilizer. Therefore, the development of crop plants that absorb and use nitrogen more efficiently has been a long-term goal of agricultural research. In an attempt to develop nitrogen-efficient plants, rice (Oryza sativa L.) was genetically engineered by introducing a barley AlaAT (alanine aminotransferase) cDNA driven by a rice tissue-specific promoter (OsAnt1). This modification increased the biomass and grain yield significantly in comparison with control plants when plants were well supplied with nitrogen. Compared with controls, transgenic rice plants also demonstrated significant changes in key metabolites and total nitrogen content, indicating increased nitrogen uptake efficiency. The development of crop plants that take up and assimilate nitrogen more efficiently would not only improve the use of nitrogen fertilizers, resulting in lower production costs, but would also have significant environmental benefits. These results are discussed in terms of their relevance to the development of strategies to engineer enhanced nitrogen use efficiency in crop plants. PMID:18510577

  3. Environmental analysis of sunflower production with different forms of mineral nitrogen fertilizers.

    PubMed

    Spinelli, D; Bardi, L; Fierro, A; Jez, S; Basosi, R

    2013-11-15

    Environmental profiles of mineral nitrogen fertilizers were used to evaluate the environmental disturbances related to their use in cultivation systems in Europe. Since the production of mineral fertilizers requires a large amount of energy, the present study of bioenergy systems is relevant in order to achieve crop yields less dependent on fossil fuels and to reduce the environmental impact due to fertilization. In this study, the suitability of the LCA methodology to analyze the environmental impact of sunflower cultivation systems with different forms of mineral nitrogen fertilizers urea and ammonium nitrate was investigated. Effects on climate change were estimated by the use of Ecoinvent 2.2 database default value for soil N2O emission factor (1%) and local emission data (0.8%) of mineral nitrogen applied to soils. LCA analysis showed a higher impact on environmental categories (human health and ecosystem quality) for the system in which urea was used as a nitrogen source. Use of urea fertilizer showed a higher impact on resource consumption due to fossil fuel consumption. Use of mineral nitrogen fertilizers showed a higher environmental burden than other inputs required for sunflower cultivation systems under study. Urea and ammonium nitrate showed, respectively, a 7.8% and 4.9% reduced impact of N2O as greenhouse gas by using direct field data of soil N2O emission factor compared to the default soil emission factor of 2006 IPCC Guidelines. Use of ammonium nitrate as mineral nitrogen fertilizer in sunflower cultivation would have a lower impact on environmental categories considered. Further environmental analysis of available technologies for fertilizer production might be also evaluated in order to reduce the environmental impacts of each fertilizer.

  4. [Effects of poplar-amaranth intercropping system on the soil nitrogen loss under different nitrogen applying levels].

    PubMed

    Chu, Jun; Xue, Jian-Hui; Wu, Dian-Ming; Jin, Mei-Juan; Wu, Yong-Bo

    2014-09-01

    Characteristics of soil nitrogen loss were investigated based on field experiments in two types of poplar-amaranth intercropping systems (spacing: L1 2 m x 5 m, L2 2 m x 15 m) with four N application rates, i. e., 0 (N1), 91 (N2), 137 (N3) and 183 (N4) kg · hm(-2). The regulation effects on the soil surface runoff, leaching loss and soil erosion were different among the different types of intercropping systems: L1 > L2 > L3 (amaranth monocropping). Compared with the amaranth monocropping, the soil surface runoff rates of L1 and L2 decreased by 65.1% and 55.9%, the soil leaching rates of L1 and L2 with a distance of 0.5 m from the poplar tree row de- creased by 30.0% and 28.9%, the rates with a distance of 1. 5 m decreased by 25. 6% and 21.9%, and the soil erosion rates decreased by 65.0% and 55.1%, respectively. The control effects of two intercropping systems on TN, NO(3-)-N and NH(4+)-N in soil runoff and leaching loss were in the order of L1 > L2 > L3. Compared with the amaranth monocropping, TN, NO(3-)-N and NH(4+)-N loss rates in soil runoff of L1 decreased by 62.9%, 45.1% and 69.2%, while the loss rates of L2 decreased by 23.4%, 6.9% and 46.2% under N1 (91 kg · hm(-2)), respectively. High- er tree-planting density and closer positions to the polar tree row were more effective on controlling the loss rates of NO(3-)-N and NH(4+)-N caused by soil leaching. The loss proportion of NO(3-)-N in soil runoff decreased with the increasing nitrogen rate under the same tree-planting density, while that of NH(4+)-N increased. Leaching loss of NO(3-)-N had a similar trend with that of NH(4+)-N, i. e. , N3 > N2 > N1 > N0.

  5. [Effects of poplar-amaranth intercropping system on the soil nitrogen loss under different nitrogen applying levels].

    PubMed

    Chu, Jun; Xue, Jian-Hui; Wu, Dian-Ming; Jin, Mei-Juan; Wu, Yong-Bo

    2014-09-01

    Characteristics of soil nitrogen loss were investigated based on field experiments in two types of poplar-amaranth intercropping systems (spacing: L1 2 m x 5 m, L2 2 m x 15 m) with four N application rates, i. e., 0 (N1), 91 (N2), 137 (N3) and 183 (N4) kg · hm(-2). The regulation effects on the soil surface runoff, leaching loss and soil erosion were different among the different types of intercropping systems: L1 > L2 > L3 (amaranth monocropping). Compared with the amaranth monocropping, the soil surface runoff rates of L1 and L2 decreased by 65.1% and 55.9%, the soil leaching rates of L1 and L2 with a distance of 0.5 m from the poplar tree row de- creased by 30.0% and 28.9%, the rates with a distance of 1. 5 m decreased by 25. 6% and 21.9%, and the soil erosion rates decreased by 65.0% and 55.1%, respectively. The control effects of two intercropping systems on TN, NO(3-)-N and NH(4+)-N in soil runoff and leaching loss were in the order of L1 > L2 > L3. Compared with the amaranth monocropping, TN, NO(3-)-N and NH(4+)-N loss rates in soil runoff of L1 decreased by 62.9%, 45.1% and 69.2%, while the loss rates of L2 decreased by 23.4%, 6.9% and 46.2% under N1 (91 kg · hm(-2)), respectively. High- er tree-planting density and closer positions to the polar tree row were more effective on controlling the loss rates of NO(3-)-N and NH(4+)-N caused by soil leaching. The loss proportion of NO(3-)-N in soil runoff decreased with the increasing nitrogen rate under the same tree-planting density, while that of NH(4+)-N increased. Leaching loss of NO(3-)-N had a similar trend with that of NH(4+)-N, i. e. , N3 > N2 > N1 > N0. PMID:25757310

  6. Carbon and nitrogen cycles in European ecosystems respond differently to global warming.

    PubMed

    Beier, C; Emmett, B A; Peñuelas, J; Schmidt, I K; Tietema, A; Estiarte, M; Gundersen, P; Llorens, L; Riis-Nielsen, T; Sowerby, A; Gorissen, A

    2008-12-15

    The global climate is predicted to become significantly warmer over the next century. This will affect ecosystem processes and the functioning of semi natural and natural ecosystems in many parts of the world. However, as various ecosystem processes may be affected to a different extent, balances between different ecosystem processes as well as between different ecosystems may shift and lead to major unpredicted changes. In this study four European shrubland ecosystems along a north-south temperature gradient were experimentally warmed by a novel nighttime warming technique. Biogeochemical cycling of both carbon and nitrogen was affected at the colder sites with increased carbon uptake for plant growth as well as increased carbon loss through soil respiration. Carbon uptake by plant growth was more sensitive to warming than expected from the temperature response across the sites while carbon loss through soil respiration reacted to warming in agreement with the overall Q10 and response functions to temperature across the sites. Opposite to carbon, the nitrogen mineralization was relatively insensitive to the temperature increase and was mainly affected by changes in soil moisture. The results suggest that C and N cycles respond asymmetrically to warming, which may lead to progressive nitrogen limitation and thereby acclimation in plant production. This further suggests that in many temperate zones nitrogen deposition has to be accounted for, not only with respect to the impact on water quality through increased nitrogen leaching where N deposition is high, but also in predictions of carbon sequestration in terrestrial ecosystems under future climatic conditions. Finally the results indicate that on the short term the above-ground processes are more sensitive to temperature changes than the below ground processes. PMID:18930514

  7. Carbon and nitrogen cycles in European ecosystems respond differently to global warming.

    PubMed

    Beier, C; Emmett, B A; Peñuelas, J; Schmidt, I K; Tietema, A; Estiarte, M; Gundersen, P; Llorens, L; Riis-Nielsen, T; Sowerby, A; Gorissen, A

    2008-12-15

    The global climate is predicted to become significantly warmer over the next century. This will affect ecosystem processes and the functioning of semi natural and natural ecosystems in many parts of the world. However, as various ecosystem processes may be affected to a different extent, balances between different ecosystem processes as well as between different ecosystems may shift and lead to major unpredicted changes. In this study four European shrubland ecosystems along a north-south temperature gradient were experimentally warmed by a novel nighttime warming technique. Biogeochemical cycling of both carbon and nitrogen was affected at the colder sites with increased carbon uptake for plant growth as well as increased carbon loss through soil respiration. Carbon uptake by plant growth was more sensitive to warming than expected from the temperature response across the sites while carbon loss through soil respiration reacted to warming in agreement with the overall Q10 and response functions to temperature across the sites. Opposite to carbon, the nitrogen mineralization was relatively insensitive to the temperature increase and was mainly affected by changes in soil moisture. The results suggest that C and N cycles respond asymmetrically to warming, which may lead to progressive nitrogen limitation and thereby acclimation in plant production. This further suggests that in many temperate zones nitrogen deposition has to be accounted for, not only with respect to the impact on water quality through increased nitrogen leaching where N deposition is high, but also in predictions of carbon sequestration in terrestrial ecosystems under future climatic conditions. Finally the results indicate that on the short term the above-ground processes are more sensitive to temperature changes than the below ground processes.

  8. Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ (CMAS Presentation)

    EPA Science Inventory

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  9. Improvements to the treatment of organic nitrogen chemistry & deposition in CMAQ

    EPA Science Inventory

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  10. Improvements to the characterization of organic nitrogen chemistry and deposition in CMAQ

    EPA Science Inventory

    Excess atmospheric nitrogen deposition can cause significant harmful effects to ecosystems. Organic nitrogen deposition can be an important contributor to the total nitrogen budget, contributing 10-30%, however there are large uncertainties in the chemistry and deposition of thes...

  11. Altering blood flow does not reveal differences between nitrogen and helium kinetics in brain or in skeletal miracle in sheep.

    PubMed

    Doolette, David J; Upton, Richard N; Grant, Cliff

    2015-03-01

    In underwater diving, decompression schedules are based on compartmental models of nitrogen and helium tissue kinetics. However, these models are not based on direct measurements of nitrogen and helium kinetics. In isoflurane-anesthetized sheep, nitrogen and helium kinetics in the hind limb (n = 5) and brain (n = 5) were determined during helium-oxygen breathing and after return to nitrogen-oxygen breathing. Nitrogen and helium concentrations in arterial, femoral vein, and sagittal sinus blood samples were determined using headspace gas chromatography, and venous blood flows were monitored continuously using ultrasonic Doppler. The experiment was repeated at different states of hind limb blood flow and cerebral blood flow. Using arterial blood gas concentrations and blood flows as input, parameters and model selection criteria of various compartmental models of hind limb and brain were estimated by fitting to the observed venous gas concentrations. In both the hind limb and brain, nitrogen and helium kinetics were best fit by models with multiexponential kinetics. In the brain, there were no differences in nitrogen and helium kinetics. Hind limb models fit separately to the two gases indicated that nitrogen kinetics were slightly faster than helium, but models with the same kinetics for both gases fit the data well. In the hind limb and brain, the blood:tissue exchange of nitrogen is similar to that of helium. On the basis of these results, it is inappropriate to assign substantially different time constants for nitrogen and helium in all compartments in decompression algorithms.

  12. DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS

    SciTech Connect

    Dr. Ates Akyurlu; Dr. Jale F. Akyurtlu

    2003-01-28

    Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. A relatively wide temperature window was established for the use of alumina-supported cerium oxide-copper oxide mixtures as regenerable sorbents for SO{sub 2} removal. Evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with methane. Since the replacement of ammonia by methane is commercially very attractive, in this project, it was planned to investigate the effect of promoters on the activity and selectivity of copper oxide/cerium oxide-based catalysts and to obtain data on the reaction mechanism for the SCR with methane. The investigation of the reaction mechanism will help in the selection of promoters to improve the catalytic activity and selectivity of the sorbents in the SCR with methane. This will result in new catalyst formulations. The last component of the project involves our industrial partner TDA Research, and the objective is to evaluate long- term stability and durability of the prepared sorbent/catalysts. In the second year of the project, the catalysts were investigated for their SCR activity with methane in a microreactor setup and also, by the temperature-programmed desorption (TPD) technique. The results from the SCR experiments indicated that manganese is a more effective promoter than rhodium on the supported copper oxide-ceria catalysts under study; the effectiveness of the promoter increases with the increase in Ce/Cu ratio. The TPD profiles of the unpromoted catalyst (Cu/Ce=3) is different than those promoted with 0.1% rhodium. In the current reporting period, the screening of the promoted catalysts were completed, sufficient amount of the selected catalysts were prepared and delivered to TDA for long term deactivation testing.

  13. Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari.

    PubMed

    Yang, Bo; Ma, Hai-Yan; Wang, Xiao-Mi; Jia, Yong; Hu, Jing; Li, Xia; Dai, Chuan-Chao

    2014-09-01

    The fungal endophyte Phomopsis liquidambari can enhance nitrogen (N) uptake and metabolism of rice plants under hydroponic conditions. To investigate the effects of P. liquidambari on N accumulation and metabolism in rice (Oryza sativa L.) under field conditions during the entire growing season (S1, the seedling stage; S2, the tillering stage; S3, the heading stage; S4, the ripening stage), we utilized pot experiments to examine metabolic and physiological levels in both shoot and root tissues of rice, with endophyte (E+) and without endophyte (E-), in response to three different N levels. We found that under low-N treatment, P. liquidambari symbiosis increased the rice yield and N use efficiency by 12% and by 11.59%, respectively; that the total N contents in E+ rice plants at the four growth stages were separately increased by 29.05%, 14.65%, 21.06% and 18.38%, respectively; and that the activities of nitrate reductase and glutamine synthetase in E+ rice roots and shoots were significantly increased by fungal infection during the S1 to S3 stages. Moreover, P. liquidambari significantly increased the free NH4(+), NO3(-), amino acid and soluble protein contents in infected rice tissues under low-N treatment during the S1 to S3 stages. The obtained results offer novel data concerning the systemic changes induced by P. liquidambari in rice during the entire growth period and confirm the hypothesis that the rice-P. liquidambari interaction improved the N accumulation and metabolism of rice plants, consequently increasing rice N utilization in nutrient-limited soil.

  14. Improving nitrogen management via a regional management plan for Chinese rice production

    NASA Astrophysics Data System (ADS)

    Wu, Liang; Chen, Xinping; Cui, Zhenling; Wang, Guiliang; Zhang, Weifeng

    2015-09-01

    A lack of basic information on optimal nitrogen (N) management often results in over- or under-application of N fertilizer in small-scale intensive rice farming. Here, we present a new database of N input from a survey of 6611 small-scale rice farmers and rice yield in response to added N in 1177 experimental on-farm tests across eight agroecological subregions of China. This database enables us to evaluate N management by farmers and develop an optimal approach to regional N management. We also investigated grain yield, N application rate, and estimated greenhouse gas (GHG) emissions in comparison to N application and farming practices. Across all farmers, the average N application rate, weighted by the area of rice production in each subregion, was 210 kg ha-1 and ranged from 30 to 744 kg ha-1 across fields and from 131 to 316 kg ha-1 across regions. The regionally optimal N rate (RONR) determined from the experiments averaged 167 kg ha-1 and varied from 114 to 224 kg N ha-1 for the different regions. If these RONR were widely adopted in China, approximately 56% of farms would reduce their use of N fertilizer, and approximately 33% would increase their use of N fertilizer. As a result, grain yield would increase by 7.4% from 7.14 to 7.67 Mg ha-1, and the estimated GHG emissions would be reduced by 11.1% from 1390 to 1236 kg carbon dioxide (CO2) eq Mg-1 grain. These results suggest that to achieve the goals of improvement in regional yield and sustainable environmental development, regional N use should be optimized among N-poor and N-rich farms and regions in China.

  15. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    PubMed Central

    Cendrero-Mateo, M. Pilar; Moran, M. Susan; Papuga, Shirley A.; Thorp, K.R.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  16. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments.

    PubMed

    Cendrero-Mateo, M Pilar; Moran, M Susan; Papuga, Shirley A; Thorp, K R; Alonso, L; Moreno, J; Ponce-Campos, G; Rascher, U; Wang, G

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management.

  17. Enhanced photoelectric property and visible activity of nitrogen doped TiO2 synthesized from different nitrogen dopants

    NASA Astrophysics Data System (ADS)

    Cheng, Xiuwen; Yu, Xiujuan; Xing, Zipeng

    2013-03-01

    N doped TiO2 nano-particles were synthesized through simple sol-gel reactions from different nitrogen dopants. The resulting materials were characterized by X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) and surface photovoltage spectroscopy (SPS). Furthermore, the photoelectric property and activity enhanced mechanism were investigated in detail. It was found that the introduction of N dopants could effectively inhibit the crystal growth of TiO2 nano-particles, enhance the light absorption in visible region, possess more surface hydroxyl groups and separate the photoinduced charge carriers. The effects of dopants on the photocatalytic activity for the degradation of rhodamine B (RhB) were investigated in detail. It is clearly demonstrated that the photocatalytic activity of N)-TiO nano-particle was higher than that of NCl)-TiO and undoped TiO2. The enhanced photocatalytic activity could be attributed to the smaller crystal size, more hydroxyl groups on surface of the catalyst, stronger light absorption in visible region and higher separation efficiency of photoinduced charge carriers.

  18. Effect of compost, nitrogen salts, and NPK fertilizers on methane oxidation potential at different temperatures.

    PubMed

    Jugnia, Louis-B; Mottiar, Yaseen; Djuikom, Euphrasie; Cabral, Alexandre R; Greer, Charles W

    2012-03-01

    The effects of compost, nitrogen salts, and nitrogen-phosphorous-potassium (NPK) fertilizers on the methane oxidation potential (MOP) of landfill cover soil at various temperatures were assessed. For this, we used batch assays conducted at 5°C, 15°C, and 25°C with microcosms containing landfill cover soil slurries amended with these elements. Results indicated variable impacts dependent on the type of amendment and the incubation temperature. For a given incubation temperature, MOP varied from one compost to another and with the amount of compost added, except for the shrimp/peat compost. With this latter compost, independent of the amount, MOP values remained similar and were significantly higher than those obtained with other composts. Amendment with most of the tested nitrogen salts led to similar improvements in methanotrophic activity, except for urea. MOP with NPK fertilizer addition was amongst the highest in this study; the minimum value obtained with NPK (20-0-20) suggested the importance of P for methanotrophs. MOP generally increased with temperature, and nutrient limitation became less important at higher temperatures. Overall, at each of the three temperatures tested, MOP with NPK fertilizer amendments provided the best results and was comparable to those observed with the addition of the shrimp/peat compost. The results of this study provide the first evidence of the following: (1) compost addition to improve methanotrophic activity in a landfill cover soil should consider the amount and type of compost used and (2) the importance of using NPK fertilizers rather than nitrogen salts, in enhancing this activity, primarily at low temperatures. One can also consider the potential beneficial impact of adding these elements to enhance plant growth, which is an advantage for MOP. PMID:21894478

  19. Effect of cooling rate on the survival of cryopreserved rooster sperm: Comparison of different distances in the vapor above the surface of the liquid nitrogen.

    PubMed

    Madeddu, M; Mosca, F; Abdel Sayed, A; Zaniboni, L; Mangiagalli, M G; Colombo, E; Cerolini, S

    2016-08-01

    The aim of the present trial was to study the effect of different freezing rates on the survival of cryopreserved rooster semen packaged in straws. Slow and fast freezing rates were obtained keeping straws at different distances in the vapor above the surface of the nitrogen during freezing. Adult Lohmann roosters (n=27) were used. Two experiments were conducted. In Experiment 1, semen was packaged in straws and frozen comparing the distances of 1, 3 and 5cm in nitrogen vapor above the surface of the liquid nitrogen. In Experiment 2, the distances of 3, 7 and 10cm above the surfaces of the liquid nitrogen were compared. Sperm viability, motility and progressive motility and the kinetic variables were assessed in fresh and cryopreserved semen samples. The recovery rates after freezing/thawing were also calculated. In Experiment 1, there were no significant differences among treatments for all semen quality variables. In Experiment 2, the percentage of viable (46%) and motile (22%) sperm in cryopreserved semen was greater when semen was placed 3cm compared with 7 and 10cm in the vapor above the surface of the liquid nitrogen. The recovery rate of progressive motile sperm after thawing was also greater when semen was stored 3cm in the vapor above the surface of the liquid nitrogen. More rapid freezing rates are required to improve the survival of rooster sperm after cryopreservation and a range of distances from 1 to 5cm in nitrogen vapor above the surface of the liquid nitrogen is recommended for optimal sperm viability. PMID:27349144

  20. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability.

    PubMed

    Leckie, S E; Prescott, C E; Grayston, S J; Neufeld, J D; Mohn, W W

    2004-07-01

    To address the link between soil microbial community composition and soil processes, we investigated the microbial communities in forest floors of two forest types that differ substantially in nitrogen availability. Cedar-hemlock (CH) and hemlock-amabilis fir (HA) forests are both common on northern Vancouver Island, B.C., occurring adjacently across the landscape. CH forest floors have low nitrogen availability and HA high nitrogen availability. Total microbial biomass was assessed using chloroform fumigation-extraction and community composition was assessed using several cultivation-independent approaches: denaturing gradient gel electrophoresis (DGGE) of the bacterial communities, ribosomal intergenic spacer analysis (RISA) of the bacterial and fungal communities, and phospholipid fatty acid (PLFA) profiles of the whole microbial community. We did not detect differences in the bacterial communities of each forest type using DGGE and RISA, but differences in the fungal communities were detected using RISA. PLFA analysis detected subtle differences in overall composition of the microbial community between the forest types, as well as in particular groups of organisms. Fungal PLFAs were more abundant in the nitrogen-poor CH forests. Bacteria were proportionally more abundant in HA forests than CH in the lower humus layer, and Gram-positive bacteria were proportionally more abundant in HA forests irrespective of layer. Bacterial and fungal communities were distinct in the F, upper humus, and lower humus layers of the forest floor and total biomass decreased in deeper layers. These results indicate that there are distinct patterns in forest floor microbial community composition at the landscape scale, which may be important for understanding nutrient availability to forest vegetation.

  1. Emission of Nitrous Oxide in Temperate Forests with Different Stages of Nitrogen Saturation in Central Japan

    NASA Astrophysics Data System (ADS)

    Shaoyan, F.

    2015-12-01

    Long-term nitrogen deposition has caused a problem called nitrogen saturation in forest ecosystems globally. Aber et al. (1989) suggested that nitrogen saturation activate soil nitrification in forest systems, which is the main process of N2O production in aerobic condition. Thus, nitrogen saturation may affect significantly the N2O emission from forests, while the impact on flux has not been quantitatively evaluated yet. In the present study, 3-year monitoring of N2O emission was performed in an N-saturated forests (Tama Hill, Tokyo): the emission rate of N2O was measured monthly by a closed chamber method at 12 plots along a slope, and the net nitrification rate of surface soil (0-10 cm) was measured 4 times in situ. In addition, a comparative research was conducted in summer in eight temperate forests with different stages of nitrogen saturation in central Japan; the N2O flux, soil moisture, nitrogen availability and stream water NO3- concentration were measured at each site. In an N-saturated forests, the annual N2O emission was estimated to be 0.88 kg N ha-1year-1 , showing a typical seasonal variation . The seasonal patterns of N2O emission were significantly related to soil moisture and ambient temperature. We also found high spatial variation of N2O flux among 12 plots along the slope, which was generally higher at the bottom. Moreover, a positive correlation was found between the rate of N2O emission and the net nitrification rate with WFPS<60%, while it was unclear in some humid spots with WFPS>60% , probably due to the effect of denitrification. In comparison sites, the N2O emission rate ranged nearly 16-fold from 0.13-2.11 g N ha-1day-1 was linearly related to the stream water NO3- concentration ranged 10-fold from 0.14 to 1.4 mg N/L. Our results revealed N enrichment in forest obviously stimulate soil N2O emission. Keywords: Nitrous oxide, nitrogen saturation, nitrification, temperate forest

  2. Vertical distribution and retention mechanism of nitrogen and phosphorus in soils with different macrophytes of a natural river mouth wetland.

    PubMed

    Huang, Wei; Chen, Qiuwen; Ren, Kuixiao; Chen, Kaining

    2015-03-01

    Wetland vegetation can improve water quality through several processes including direct assimilation and the indirect effects of sedimentation and mineralization. This research takes the Zhucao River mouth of Daxi reservoir as a study case to investigate the vertical distribution of nitrogen and phosphorus in the soil of a natural wetland covered by different plants prior to any restoration action. There are four native emergent macrophytes (Typha latifolia L., Polygonum hydropiper L., Juncus effuses L., Phragmites communis L.) in the wetland. The total nitrogen (TN) and nitrate contents decreased with the soil depth for all vegetation types, and the mean TN and nitrate concentrations were higher in vegetative soil than in bare ground. The maximum TN concentration was found in the surface soil (0-2 cm) covered by P. communis. Ammonium decreased with the soil depth in vegetative areas, while it increased with soil depth in bare ground. The rank order of P fractions was organic P (OP) > P associated with Ca (Ca-P) > P associated with Fe/Al (Fe/Al-P). Total phosphorus (TP) and OP showed vertical profiles similar to that of TN. The mean concentrations of TP, Ca-P and Fe/Al-P were higher in vegetative soil than in bare ground. The maximum mean TP was also found in soil covered by P. communis. Loss on ignition (LOI) was significantly correlated with TN and TP (P < 0.05). Organic matter accumulation may be the main pathway to retain nitrogen and phosphorus in the wetland. Nitrogen and phosphorus sequestration in P. communis soil was the highest of the four dominant plants. The results could support the restoration of other degraded river mouth wetlands of the reservoir. PMID:25663397

  3. Vertical distribution and retention mechanism of nitrogen and phosphorus in soils with different macrophytes of a natural river mouth wetland.

    PubMed

    Huang, Wei; Chen, Qiuwen; Ren, Kuixiao; Chen, Kaining

    2015-03-01

    Wetland vegetation can improve water quality through several processes including direct assimilation and the indirect effects of sedimentation and mineralization. This research takes the Zhucao River mouth of Daxi reservoir as a study case to investigate the vertical distribution of nitrogen and phosphorus in the soil of a natural wetland covered by different plants prior to any restoration action. There are four native emergent macrophytes (Typha latifolia L., Polygonum hydropiper L., Juncus effuses L., Phragmites communis L.) in the wetland. The total nitrogen (TN) and nitrate contents decreased with the soil depth for all vegetation types, and the mean TN and nitrate concentrations were higher in vegetative soil than in bare ground. The maximum TN concentration was found in the surface soil (0-2 cm) covered by P. communis. Ammonium decreased with the soil depth in vegetative areas, while it increased with soil depth in bare ground. The rank order of P fractions was organic P (OP) > P associated with Ca (Ca-P) > P associated with Fe/Al (Fe/Al-P). Total phosphorus (TP) and OP showed vertical profiles similar to that of TN. The mean concentrations of TP, Ca-P and Fe/Al-P were higher in vegetative soil than in bare ground. The maximum mean TP was also found in soil covered by P. communis. Loss on ignition (LOI) was significantly correlated with TN and TP (P < 0.05). Organic matter accumulation may be the main pathway to retain nitrogen and phosphorus in the wetland. Nitrogen and phosphorus sequestration in P. communis soil was the highest of the four dominant plants. The results could support the restoration of other degraded river mouth wetlands of the reservoir.

  4. AquaCrop model simulation under different irrigation water and nitrogen strategies.

    PubMed

    Khoshravesh, Mojtaba; Mostafazadeh-Fard, Behrouz; Heidarpour, Manouchehr; Kiani, Ali-Reza

    2013-01-01

    On a global scale, irrigated agriculture consumes about 72% of available freshwater resources. Deficit irrigation can be applied in the field to save irrigation water and still lead to acceptable crop production. The AquaCrop model is a simulation model for management of irrigation and nitrogen fertilizer. This model is a new model that is accurate, robust and requires fewer data inputs compared with the other models. The purpose of this study was to simulate canopy cover, grain yield and water use efficiency (WUE) for soybean using the AquaCrop model. A field line source sprinkler irrigation system was conducted under full and deficit irrigation using different nitrogen fertilizer applications during two cropping seasons for soybean at Gorgan province in Iran. The simulation results showed a reasonably accurate prediction of yield, canopy cover and WUE in all cases (error less than 23%). The simulated pattern of canopy progression over time was close to measured values, with Willmott's index of agreement for all the cases being ≥0.95 for different parameters. The AquaCrop model has the ability to simulate the WUE of soybean under different irrigation water and nitrogen applications. This model is a useful tool for managing the crop water productivity.

  5. AquaCrop model simulation under different irrigation water and nitrogen strategies.

    PubMed

    Khoshravesh, Mojtaba; Mostafazadeh-Fard, Behrouz; Heidarpour, Manouchehr; Kiani, Ali-Reza

    2013-01-01

    On a global scale, irrigated agriculture consumes about 72% of available freshwater resources. Deficit irrigation can be applied in the field to save irrigation water and still lead to acceptable crop production. The AquaCrop model is a simulation model for management of irrigation and nitrogen fertilizer. This model is a new model that is accurate, robust and requires fewer data inputs compared with the other models. The purpose of this study was to simulate canopy cover, grain yield and water use efficiency (WUE) for soybean using the AquaCrop model. A field line source sprinkler irrigation system was conducted under full and deficit irrigation using different nitrogen fertilizer applications during two cropping seasons for soybean at Gorgan province in Iran. The simulation results showed a reasonably accurate prediction of yield, canopy cover and WUE in all cases (error less than 23%). The simulated pattern of canopy progression over time was close to measured values, with Willmott's index of agreement for all the cases being ≥0.95 for different parameters. The AquaCrop model has the ability to simulate the WUE of soybean under different irrigation water and nitrogen applications. This model is a useful tool for managing the crop water productivity. PMID:23128644

  6. Failure of carnitine in improving hepatic nitrogen content in alcoholic and non‐alcoholic malnourished rats

    PubMed Central

    Rodrigues, Luciana P; Portari, Guilherme Vannucchi; Padovan, Gilberto João; Jordão, Alceu Afonso; Suen, Vivian M M; Sergio Marchini, Julio

    2010-01-01

    AIMS: To investigate the effect of carnitine supplementation on alcoholic malnourished rats' hepatic nitrogen content. METHODS: Malnourished rats, on 50% protein‐calorie restriction with free access to water (malnutrition group) and malnourished rats under the same conditions with free access to a 20% alcohol/water solution (alcohol group) were studied. After the undernourishment period (4 weeks with or without alcohol), both groups were randomly divided into two subgroups, one of them nutritionally recovered for 28 days with free access to a normal diet and water (recovery groups) and the other re‐fed with free access to diet and water plus carnitine (0.1 g/g body weight/day by gavage) (carnitine groups). No alcohol intake was allowed during the recovery period. RESULTS: The results showed: i) no difference between the alcohol/no alcohol groups, with or without carnitine, regarding body weight gain, diet consumption, urinary nitrogen excretion, plasma free fatty acids, lysine, methionine, and glycine. ii) Liver nitrogen content was highest in the carnitine recovery non‐alcoholic group (from 1.7 to 3.3 g/100 g, P<0.05) and lowest in alcoholic animals (about 1.5 g/100g). iii) Hepatic fat content (∼10 g/100 g, P>.05) was highest in the alcoholic animals. CONCLUSION: Carnitine supplementation did not induce better nutritional recovery. PMID:21049216

  7. Corrosion behaviors of Mo coating on stainless steel 316 substrates implanted by different nitrogen ion fluences

    NASA Astrophysics Data System (ADS)

    Mojtahedzadeh Larijani, Madjid; Bafandeh, Nastaran

    2014-03-01

    The molybdenum nitride coating was produced by nitrogen ion implantation of the molybdenum layer deposited on the stainless steel 316 (SS) substrates. At first, molybdenum layers were deposited on the substrates by ion beam sputtering method, then nitrogen ions with an energy of 30 keV and a fluence between 1×1017 and 12×1017 N+ cm-2 were implanted in Mo/SS system. Crystal structure and topography of the surface are investigated by grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy (AFM) image respectively. XRD patterns showed the formation of molybdenum nitride phases in all implanted samples. Corrosion tests showed that the corrosion resistance of the samples strongly depends on the nitrogen applied fluences. A considerable improvement of corrosion performance by increasing ions fluences was observed. The lowest corrosion current density with amount of 0.1 μA/cm2 was obtained at 12×1017 ions/cm2 fluence in our case.

  8. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    PubMed

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.

  9. DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS

    SciTech Connect

    Ates Akyurtlu; Jale F. Akyurtlu

    2003-11-30

    temperature programmed desorption studies a strong interaction between manganese and cerium. Presence of manganese not only enhanced the reduction rate of NO by methane, but also significantly improved the N{sub 2} selectivity. To increase the activity of the Mn-promoted catalyst, the manganese content of the catalyst need to be optimized and different methods of catalyst preparation and different reactor types need to be investigated to lower the transport limitations in the reactor.

  10. Improving the accuracy of central difference schemes

    NASA Technical Reports Server (NTRS)

    Turkel, Eli

    1988-01-01

    General difference approximations to the fluid dynamic equations require an artificial viscosity in order to converge to a steady state. This artificial viscosity serves two purposes. One is to suppress high frequency noise which is not damped by the central differences. The second purpose is to introduce an entropy-like condition so that shocks can be captured. These viscosities need a coefficient to measure the amount of viscosity to be added. In the standard scheme, a scalar coefficient is used based on the spectral radius of the Jacobian of the convective flux. However, this can add too much viscosity to the slower waves. Hence, it is suggested that a matrix viscosity be used. This gives an appropriate viscosity for each wave component. With this matrix valued coefficient, the central difference scheme becomes closer to upwind biased methods.

  11. XPS study of nitrogen dioxide adsorption on metal oxide particle surfaces under different environmental conditions.

    PubMed

    Baltrusaitis, Jonas; Jayaweera, Pradeep M; Grassian, Vicki H

    2009-10-01

    The adsorption of nitrogen dioxide on gamma aluminium oxide (gamma-Al(2)O(3)) and alpha iron oxide (alpha-Fe(2)O(3)) particle surfaces under various conditions of relative humidity, presence of molecular oxygen and UV light has been investigated. X-Ray photoelectron spectroscopy (XPS) is used to monitor the different surface species that form under these environmental conditions. Adsorption of NO(2) on aluminum oxide particle surfaces results primarily in the formation of surface nitrate, NO(3)(-) with an oxidation state of +5, as indicated by a peak with binding energy of 407.3 eV in the N1s region. An additional minority species, sensitive to the presence of relative humidity and molecular oxygen, is also observed in the N1s region with lower binding energy of 405.9 eV. This peak is assigned to a surface species in the +4 oxidation state. When irradiated with UV light, other species form on the surface. These surface-bound photochemical products all have lower binding energy, between 400 and 402 eV, indicating reduced nitrogen species in the range of N oxidations states spanning +1 to -1. Co-adsorbed water decreases the amount of these reduced surface-bound products while the presence of molecular oxygen completely suppresses the formation of all reduced nitrogen species on aluminum oxide particle surfaces. For NO(2) on iron oxide particle surfaces, photoreduction is enhanced relative to gamma-Al(2)O(3) and surface bound photoreduced species are observed under all environmental conditions. Complementing the experimental data, N1s core electron binding energies (CEBEs) were calculated using DFT for a number of nitrogen-containing species in the gas phase and adsorbed on an Al(8)O(12) cluster. A range of CEBEs is calculated for various nitrogen species in different adsorption modes and oxidation states. These calculated values are discussed in light of the peaks observed in the XPS N1s region and the possible species that form following NO(2) adsorption and

  12. DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS

    SciTech Connect

    Ates Akyurtlu; Jale F. Akyurtlu

    2001-09-01

    Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. A relatively wide temperature window was established for the use of alumina-supported cerium oxide-copper oxide mixtures as regenerable sorbents for SO{sub 2} removal. Preliminary evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with ammonia, but indicated low selectivity when methane was used as the reductant. Since the replacement of ammonia by another reductant is commercially very attractive, in this project, four research components will be undertaken. The investigation of the reaction mechanism, the first component, will help in the selection of promoters to improve the catalytic activity and selectivity of the sorbents in the SCR with methane. This will result in new catalyst formulations (second component). If this research is successful, the combined SO{sub 2}-NO{sub x} removal process based on alumina-supported copper oxide-ceria sorbent/catalysts will become very attractive for commercial applications. The objective of the third component of the project is to develop an alternative SCR process using another inexpensive fuel, residual fuel oil, instead of natural gas. This innovative proposal is based on very scant evidence concerning the good performance of coked catalysts in the selective reduction of NO and if proven to work the process will certainly be commercially viable. The fourth component of the project involves our industrial partner TDA Research, and the objective is to evaluate long- term stability and durability of the prepared sorbent/catalysts. In the second year of the project, the catalysts were investigated for their SCR activity with methane in a microreactor setup and also, by the temperature-programmed desorption (TPD) technique. The results from the SCR experiments

  13. [Evaluation of nitrogen loss way in summer maize system under different fertilizer N managements].

    PubMed

    Lin, Li; Hu, Ke-Lin; Li, Guang-De; Wang, Huan-Yuan

    2011-09-01

    The objective of this study was to investigate nitrogen (N) loss from soil-crop systems under different fertilizer N managements, and to provide some suggestions on optimizing fertilizer management practices. The experiment was carried in high yield production area of Huantai county in Shandong province in 2009. Four kinds of fertilizer N application practices were designed, including CK, farmer practice (FP), optimizing fertilizer application (OPT) and controlled release fertilizer (CRT) for studying the fate of N during the maize growth season in 2009. The water and nitrogen management model (WNMM) was used to simulate the dynamics of soil water and N fate. The results indicated that the ratio of nitrate leaching and NH3 volatilization accounting of fertilizer N ranged from 6% to 18% and 5% to 34%, and their means were 12.7% and 20.7%, respectively. The amount of N leaching under OPT was 14.5 kg x hm(-2), was the lowest in all treatments. The amount of NH3 volatilization under CRT was 7.6 kg x hm(-2), respectively, was the lowest in all treatments. The order of total N loss under four treatments followed as: FP > OPT > CRF approximately CK. Both OPT and CRT treatments are the best management practices considering their high grain yield, water and nitrogen use efficiencies, and environmental protection. PMID:22165230

  14. [Evaluation of nitrogen loss way in summer maize system under different fertilizer N managements].

    PubMed

    Lin, Li; Hu, Ke-Lin; Li, Guang-De; Wang, Huan-Yuan

    2011-09-01

    The objective of this study was to investigate nitrogen (N) loss from soil-crop systems under different fertilizer N managements, and to provide some suggestions on optimizing fertilizer management practices. The experiment was carried in high yield production area of Huantai county in Shandong province in 2009. Four kinds of fertilizer N application practices were designed, including CK, farmer practice (FP), optimizing fertilizer application (OPT) and controlled release fertilizer (CRT) for studying the fate of N during the maize growth season in 2009. The water and nitrogen management model (WNMM) was used to simulate the dynamics of soil water and N fate. The results indicated that the ratio of nitrate leaching and NH3 volatilization accounting of fertilizer N ranged from 6% to 18% and 5% to 34%, and their means were 12.7% and 20.7%, respectively. The amount of N leaching under OPT was 14.5 kg x hm(-2), was the lowest in all treatments. The amount of NH3 volatilization under CRT was 7.6 kg x hm(-2), respectively, was the lowest in all treatments. The order of total N loss under four treatments followed as: FP > OPT > CRF approximately CK. Both OPT and CRT treatments are the best management practices considering their high grain yield, water and nitrogen use efficiencies, and environmental protection.

  15. [Coupling effect of water and nitrogen for cotton under different furrow irrigation patterns].

    PubMed

    Li, Pei-Ling; Zhang, Fu-Cang; Jia, Yun-Gang

    2009-06-01

    A field plot experiment with general rotation design was conducted to study the coupling effect of water amount and nitrogen (N) application rate for cotton under alternative furrow irrigation (AFI), conventional furrow irrigation (CFI), and fixed separate furrow irrigation (FFI). When the water amount was 37.52-160.00 mm and N application rate was 56.2-95.2 kg N x hm(-2), cotton yield had significant positive correlations with them; when the two factors were in the ranges of 160.00-218.48 mm and 95.2-134.2 kg N x hm(-2), respectively, no significant change was observed in the cotton yield. Within the test ranges of water amount and N application rate, cotton yield had no significant difference between AFI and CFI, but was 9.15% higher under CFI than under FFI. The water use efficiency (WUE) of cotton was significantly negatively correlated with the water amount 37.52-160.00 mm and positively correlated with the N application rate 56.2-122.8 kg N x hm(-2), but had no significant change when the water amount was 160.00-218.48 mm and N application rate was 122.8-134.2 kg N x hm(-2). Within the test ranges of water amount and N application rate, the WUE had no significant difference between CFI and AFI, but was 9.01% higher under CFI than under FFI. The nitrogen use efficiency (NUE) of cotton had significant positive correlation with the water amount 37.52-160.00 mm but significant negative correlation with the N application rate 56.2-134.2 kg N x hm(-2), and had no significant difference between AFI and CFI but was 6. 34% was lower under FFI than under CFI. Appropriate measures for high-efficiently using water and nitrogen resources under different furrow irrigation patterns were put forward to optimize cotton yield, WUE and NUE.

  16. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration.

    PubMed

    Xue, Cheng; Auf'm Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.

  17. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration.

    PubMed

    Xue, Cheng; Auf'm Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems. PMID:27313585

  18. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration

    PubMed Central

    Xue, Cheng; auf’m Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems. PMID:27313585

  19. Determination of carbon and nitrogen in microbial biomass of southern-Taiga soils by different methods

    NASA Astrophysics Data System (ADS)

    Makarov, M. I.; Malysheva, T. I.; Maslov, M. N.; Kuznetsova, E. Yu.; Menyailo, O. V.

    2016-06-01

    The results of methods for determining microbial biomass carbon vary in reproducibility among soils. The fumigation-extraction and substrate-induced respiration methods give similar results for Albic Luvisol and Gleyic Fluvisol, while the results of the rehydration method are reliably higher. In Histic Fluvisol, relatively similar results are obtained using the fumigation-extraction and rehydration methods, and the substrate-induced respiration method gives almost halved results. The seasonal dynamics of microbial biomass carbon also varies depending on the method used. The highest difference is typical for the warm period, when the concentrations found by the extraction and substrate-induced methods poorly agree between two out of three soils studied. The concentration of microbial biomass nitrogen is less sensitive to the analytical method: the differences between the results of the fumigation-extraction and rehydration methods are statistically insignificant in the all soils. To reveal stable relationships between the results of determining microbial carbon and the soil properties and analytical method, a large diversity of soils should be studied. This will allow for proposing of conversion factors for the recalculation of the obtained values to the concentrations of carbon and nitrogen in microbial biomass for different soils (or soil groups) and, hence, the more correct comparison of the results obtained by different methods.

  20. Bacterial Diversity and Community Structure in Two Bornean Nepenthes Species with Differences in Nitrogen Acquisition Strategies.

    PubMed

    Sickel, Wiebke; Grafe, T Ulmar; Meuche, Ivonne; Steffan-Dewenter, Ingolf; Keller, Alexander

    2016-05-01

    Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats. PMID:26790863

  1. Effects of cryptogamic covers on the global carbon and nitrogen balance as investigated by different approaches

    NASA Astrophysics Data System (ADS)

    Weber, Bettina; Porada, Philipp; Elbert, Wolfgang; Burrows, Susannah; Caesar, Jennifer; Steinkamp, Jörg; Tamm, Alexandra; Andreae, Meinrat O.; Büdel, Burkhard; Kleidon, Axel; Pöschl, Ulrich

    2014-05-01

    needed by the organisms to build up biomass. The predicted requirement for nitrogen ranges from 3.5 to 34 Tg a-1, again being in a reasonable range compared to the data analysis approach. In experimental field studies (3rd approach), we analyzed the net primary production of biological soil crusts, i.e. one major group of cryptogamic covers. The microclimatic conditions (water status, temperature, light intensity) of different types of biological soil crusts were monitored at 5-minute intervals over a whole year. Conducting a factorial analysis of CO2 gas exchange of the crusts in the lab, we obtained the net photosynthesis or respiration rate for all microclimatic conditions encountered in the field. The latter results were combined with the microclimate data, assigning CO2 gas exchange values to each microclimate measurement tuple. Integration over the year resulted in an annual carbon fixation of ~5 g m-2 a-1, being nearly identical to the numbers obtained during the data analysis approach. In summary, our three different approaches clearly revealed that cryptogamic covers have a considerable effect on the global terrestrial C and N cycle, which must not be neglected in global carbon and nitrogen balances.

  2. Phytochemical changes induced by different nitrogen supply forms and radiation levels in two leafy Brassica species.

    PubMed

    Fallovo, Carlo; Schreiner, Monika; Schwarz, Dietmar; Colla, Giuseppe; Krumbein, Angelika

    2011-04-27

    The effect of three different nitrogen (N) supply forms differing in their ammonium-to-nitrate (NH(4):NO(3)) ratio (100% NH(4), 50% NH(4) + 50% NO(3), 100% NO(3)) under three different levels of daily photosynthetic active radiation (PAR) (low, 5.0; medium, 6.8; high, 9.0 mol m(-2) day(-1)) on a range of desirable health-promoting phytochemicals in Brassica rapa subsp. nipposinica var. chinoleifera and Brassica juncea was determined. The 100% NH(4) supply under medium PAR levels led to the highest concentration of glucosinolates based on a low nitrogen/sulfur ratio as well as high levels of carotenoids in the leaves of both Brassica species. However, the 100% NH(4) supply under low and medium PAR levels resulted in low concentrations of flavonoids based on high N concentration in the leaves. Thus, the data provided here have strong implications for crop management strategies aimed at optimizing both the concentration and composition of a range of phytochemicals.

  3. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin

    USGS Publications Warehouse

    Alexander, R.B.; Smith, R.A.; Schwarz, G.E.; Boyer, E.W.; Nolan, J.V.; Brakebill, J.W.

    2008-01-01

    Seasonal hypoxia in the northern Gulf of Mexico has been linked to increased nitrogen fluxes from the Mississippi and Atchafalaya River Basins, though recent evidence shows that phosphorus also influences productivity in the Gulf. We developed a spatially explicit and structurally detailed SPARROW water-quality model that reveals important differences in the sources and transport processes that control nitrogen (N) and phosphorus (P) delivery to the Gulf. Our model simulations indicate that agricultural sources in the watersheds contribute more than 70% of the delivered N and P. However, corn and soybean cultivation is the largest contributor of N (52%), followed by atmospheric deposition sources (16%); whereas P originates primarily from animal manure on pasture and rangelands (37%), followed by corn and soybeans (25%), other crops (18%), and urban sources (12%). The fraction of in-stream P and N load delivered to the Gulf increases with stream size, but reservoir trapping of P causes large local- and regional-scale differences in delivery. Our results indicate the diversity of management approaches required to achieve efficient control of nutrient loads to the Gulf. These include recognition of important differences in the agricultural sources of N and P, the role of atmospheric N, attention to P sources downstream from reservoirs, and better control of both N and P in close proximity to large rivers. ?? 2008 American Chemical Society.

  4. Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin.

    PubMed

    Alexander, Richard B; Smith, Richard A; Schwarz, Gregory E; Boyer, Elizabeth W; Nolan, Jacqueline V; Brakebill, John W

    2008-02-01

    Seasonal hypoxia in the northern Gulf of Mexico has been linked to increased nitrogen fluxes from the Mississippi and Atchafalaya River Basins, though recent evidence shows that phosphorus also influences productivity in the Gulf. We developed a spatially explicit and structurally detailed SPARROW water-quality model that reveals important differences in the sources and transport processes that control nitrogen (N) and phosphorus (P) delivery to the Gulf. Our model simulations indicate that agricultural sources in the watersheds contribute more than 70% of the delivered N and P. However, corn and soybean cultivation is the largest contributor of N (52%), followed by atmospheric deposition sources (16%); whereas P originates primarily from animal manure on pasture and rangelands (37%), followed by corn and soybeans (25%), other crops (18%), and urban sources (12%). The fraction of in-stream P and N load delivered to the Gulf increases with stream size, but reservoir trapping of P causes large local- and regional-scale differences in delivery. Our results indicate the diversity of management approaches required to achieve efficient control of nutrient loads to the Gulf. These include recognition of important differences in the agricultural sources of N and P, the role of atmospheric N, attention to P sources downstream from reservoirs, and better control of both N and P in close proximity to large rivers.

  5. Fuel nitrogen release during black liquor pyrolysis; Part 2: Comparisons between different liquors

    SciTech Connect

    Aho, K.; Nikkanen, S. ); Hupa, M. . Chemical Engineering Dept.)

    1994-08-01

    This continuation of earlier work reports fuel nitrogen release for black liquors at two temperatures during pyrolysis of single droplets in an oxygen-free environment. Approximately half of the 20--60% fuel nitrogen released was ammonia and half was molecular nitrogen. The total amount of fixed nitrogen released during pyrolysis was almost linearly proportional to the liquor nitrogen content. The yield of fixed nitrogen for birch liquors was significantly higher than for pine liquors, and the yield for bagasse liquor was extremely high.

  6. Nitrogen mineralization and nitrate leaching of a sandy soil amended with different organic wastes.

    PubMed

    Burgos, Pilar; Madejón, Engracia; Cabrera, Francisco

    2006-04-01

    Organic wastes can be recycled as a source of plant nutrients, enhancing crop production by improving soil quality. However, the study of the dynamic of soil nutrient, especially the N dynamic, after soil application of any organic material is vital for assessing a correct and effective use of the material, minimizing the losses of nitrate in leachates and avoiding the negative environmental effects that it may cause in groundwater. To estimate the effect of three organic materials, a municipal solid waste compost (MWC), a non-composted paper mill sludge (PS), and an agroforest compost (AC) on the N dynamic of a sandy soil two experiments were carried out: an incubation experiment and a column experiment. The incubation experiment was conducted to estimate the N mineralization rate of the different soil-amendment mixtures. The soil was mixed with the organic amendments at a rate equivalent to 50,000 kg ha(-1) and incubated during 40 weeks at constant moisture content (70% of its water-holding capacity) and temperature (28 degrees C) under aerobic conditions. Organic amendment-soil samples showed an immobilization of N during the first weeks, which was more noticeable and longer in the case of PS-treated soil compared to the other two amendments due to its high C/N ratio. After this immobilization stage, a positive mineralization was observed for all treatment, especially in MWC treated soil. Contemporaneously a 1-year column (19 cm diameter and 60 cm height) experiment was carried out to estimate the nitrate losses from the soil amended with the same organic materials. Amendments were mixed with the top soil (0-15 cm) at a rate equivalent to 50,000 kg ha(-1). The columns were periodically irrigated simulating rainfall in the area of study, receiving in total 415 mm of water, and the water draining was collected during the experimental period and analysed for NO3-N. At the end of the experimental period NO3-N content in soil columns at three depths (0-20, 20-35 and

  7. Nitrogen mineralization and nitrate leaching of a sandy soil amended with different organic wastes.

    PubMed

    Burgos, Pilar; Madejón, Engracia; Cabrera, Francisco

    2006-04-01

    Organic wastes can be recycled as a source of plant nutrients, enhancing crop production by improving soil quality. However, the study of the dynamic of soil nutrient, especially the N dynamic, after soil application of any organic material is vital for assessing a correct and effective use of the material, minimizing the losses of nitrate in leachates and avoiding the negative environmental effects that it may cause in groundwater. To estimate the effect of three organic materials, a municipal solid waste compost (MWC), a non-composted paper mill sludge (PS), and an agroforest compost (AC) on the N dynamic of a sandy soil two experiments were carried out: an incubation experiment and a column experiment. The incubation experiment was conducted to estimate the N mineralization rate of the different soil-amendment mixtures. The soil was mixed with the organic amendments at a rate equivalent to 50,000 kg ha(-1) and incubated during 40 weeks at constant moisture content (70% of its water-holding capacity) and temperature (28 degrees C) under aerobic conditions. Organic amendment-soil samples showed an immobilization of N during the first weeks, which was more noticeable and longer in the case of PS-treated soil compared to the other two amendments due to its high C/N ratio. After this immobilization stage, a positive mineralization was observed for all treatment, especially in MWC treated soil. Contemporaneously a 1-year column (19 cm diameter and 60 cm height) experiment was carried out to estimate the nitrate losses from the soil amended with the same organic materials. Amendments were mixed with the top soil (0-15 cm) at a rate equivalent to 50,000 kg ha(-1). The columns were periodically irrigated simulating rainfall in the area of study, receiving in total 415 mm of water, and the water draining was collected during the experimental period and analysed for NO3-N. At the end of the experimental period NO3-N content in soil columns at three depths (0-20, 20-35 and

  8. Using multi-model averaging to improve the reliability of catchment scale nitrogen predictions

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.-F.; Viney, N. R.; Frede, H.-G.; Breuer, L.

    2013-01-01

    Hydro-biogeochemical models are used to foresee the impact of mitigation measures on water quality. Usually, scenario-based studies rely on single model applications. This is done in spite of the widely acknowledged advantage of ensemble approaches to cope with structural model uncertainty issues. As an attempt to demonstrate the reliability of such multi-model efforts in the hydro-biogeochemical context, this methodological contribution proposes an adaptation of the reliability ensemble averaging (REA) philosophy to nitrogen losses predictions. A total of 4 models are used to predict the total nitrogen (TN) losses from the well-monitored Ellen Brook catchment in Western Australia. Simulations include re-predictions of current conditions and a set of straightforward management changes targeting fertilisation scenarios. Results show that, in spite of good calibration metrics, one of the models provides a very different response to management changes. This behaviour leads the simple average of the ensemble members to also predict reductions in TN export that are not in agreement with the other models. However, considering the convergence of model predictions in the more sophisticated REA approach assigns more weight to previously less well-calibrated models that are more in agreement with each other. This method also avoids having to disqualify any of the ensemble members.

  9. Using multi-model averaging to improve the reliability of catchment scale nitrogen predictions

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.-F.; Viney, N. R.; Frede, H.-G.; Breuer, L.

    2012-08-01

    Hydro-biogeochemical models are used to foresee the impact of mitigation measures on water quality. Usually, scenario-based studies rely on single model applications. This is done in spite of the widely acknowledged advantage of ensemble approaches to cope with structural model uncertainty issues. As an attempt to demonstrate the reliability of such multi-model efforts in the hydro-biogeochemical context, this methodological contribution proposes an adaptation of the Reliability Ensemble Averaging (REA) philosophy to nitrogen losses predictions. A total of 4 models are used to predict the total nitrogen (TN) losses from the well-monitored Ellen Brook catchment in Western Australia. Simulations include re-predictions of current conditions and a set of straightforward management changes targeting fertilization scenarios. Results show that, in spite of good calibration metrics, one of the models provides a very different response to management changes. This behaviour leads the simple average of the ensemble members to also predict reductions in TN export that are not in agreement with the other models. However, considering the convergence of model predictions in the more sophisticated REA approach assigns more weight to previously less well calibrated models that are more in agreement with each other. This method also avoids having to disqualify any of the ensemble members, which is always sensible.

  10. Evaluation of two approaches for improved nitrogen oxides monitoring in urban atmospheres. Final report

    SciTech Connect

    Spicer, C.W.; Kelly, T.J.; Ward, G.F.

    1994-11-09

    Currently, instrumentation used to monitor nitrogen oxides in urban monitoring networks measure NO and `NOx`, where NOx includes NO and NO2 and no other NOy constituents. These NOx measurements are subject to a positive bias from other oxidized nitrogen species (NOy) and it is believed that NOy measurements are useful in many ways including photochemical grid model diagnostics and emissions inventory verification. This report describes an evaluation of two approaches to monitor both NOx and NOy. System A makes use of two chemiluminescence instruments to monitor NO, NOy and NO2. One of the instruments detects NO by its chemiluminescent reaction with O3, while the other detects NO2 by its chemiluminescent reaction with luminol. A heated molybdenum catalytic converter is used to reduce NOy constituents to NO for detection. System B utilizes the luminol chemiluminescence reaction to detect NO2 and employs multiple catalysts to obtain measurements of NOx and NOy. Nitric oxide is determined as the difference between NOx and NO2. These two approaches are evaluated in terms of linearity, converter efficiency, interferences and detection limits.

  11. Applying the Different Statistical Tests in Analysis of Electrical Breakdown Mechanisms in Nitrogen Filled Gas Diode

    NASA Astrophysics Data System (ADS)

    Čedomir, A. Maluckov; Saša, A. Rančev; Miodrag, K. Radović

    2016-10-01

    This paper presents the results of our investigations of breakdown mechanisms, as well as a description of their influence on the distributions of time delay distributions, for a gas tube filled with nitrogen at 4 mbar. The values of the time delay are measured for different voltages, and the values of the relaxation times and their distributions and probability plots are analyzed. The obtained density distributions have Gaussian distributions and exponential distributions for different values of relaxation times (Gaussian for small values and exponential for large values of relaxation time). It is shown that for middle values of relaxation time the delay distributions have a shape between Gaussian and exponential distributions, which is a result of the different influences of electrical breakdown.

  12. IR spectroscopy of ethanol in nitrogen cryomatrices with different concentration ratios

    NASA Astrophysics Data System (ADS)

    Aldiyarov, A.; Aryutkina, M.; Drobyshev, A.; Kurnosov, V.

    2011-06-01

    Thin films of cryovacuum condensates of ethanol-nitrogen mixtures formed by co-condensation of gas mixtures with different concentrations on a cooled metal substrate are studied by IR spectrometry. The condensation temperature was Tc = 16 K and the pressure of the gaseous phase during cryodeposition was P = 10-5 Torr. The ethanol concentration in nitrogen was varied from 0.5 to 10% and the film thickness, from 1 to 30 μm. Measurements were made in the range from 400 to 4200 cm-1. An analysis of the IR spectra and a comparison with published data shows that ethanol monomers and dimers are present in the nitrogen matrix. This is indicated by an absorption band at a frequency of 3658 cm-1 owing to vibrations of O-H bonds of ethanol monomers and dimers. The local minima of this band at 3645 and 3658 cm-1 are related to the existence of two conformational states of the ethanol molecule: anti (3658 cm-1) and gauche (3645 cm-1). In addition, the presence of ethanol dimers and monomers in the matrix leads to the appearance of absorption bands at 1259 and 1276 cm-1 attributable to deformation vibrations δ(COH) of the anti- and gauche-isomers, respectively, as well as bands corresponding to a combination of ν(CCO) valence vibrations and rotational oscillations of the methyl group r(CH3) attributable to anti-dimers (ν = 1090 cm-1) and anti-monomers (ν = 1095 cm-1). Local minima within 3000-3600 cm-1 also indicate the presence of cyclical dimers, trimers, and tetramers, as well as hexamers in the matrix. A broad band over 3250-3330 cm-1 indicates that large polyaggregates, with ethanol molecules in a hydrogen-bond state (multimer), exist in the matrix.

  13. Rapidly growing tropical trees mobilize remarkable amounts of nitrogen, in ways that differ surprisingly among species.

    PubMed

    Russell, Ann E; Raich, James W

    2012-06-26

    Fast-growing forests such as tropical secondary forests can accumulate large amounts of carbon (C), and thereby play an important role in the atmospheric CO(2) balance. Because nitrogen (N) cycling is inextricably linked with C cycling, the question becomes: Where does the N come from to match high rates of C accumulation? In unique experimental 16-y-old plantations established in abandoned pasture in lowland Costa Rica, we used a mass-balance approach to quantify N accumulation in vegetation, identify sources of N, and evaluate differences among tree species in N cycling. The replicated design contained four broad-leaved evergreen tree species growing under similar environmental conditions. Nitrogen uptake was rapid, reaching 409 (± 30) kg · ha(-1) · y(-1), double the rate reported from a Puerto Rican forest and greater than four times that observed at Hubbard Brook Forest (New Hampshire, USA). Nitrogen amassed in vegetation was 874 (± 176) kg · ha(-1), whereas net losses of soil N (0-100 cm) varied from 217 (±146) to 3,354 (± 915) kg · ha(-1) (P = 0.018) over 16 y. Soil C:N, δ(13)C values, and N budgets indicated that soil was the main source of biomass N. In Vochysia guatemalensis, however, N fixation contributed >60 kg · ha(-1) · y(-1). All species apparently promoted soil N turnover, such that the soil N mean residence time was 32-54 y, an order of magnitude lower than the global mean. High rates of N uptake were associated with substantial N losses in three of the species, in which an average of 1.6 g N was lost for every gram of N accumulated in biomass.

  14. Toxicity of ozone and nitrogen dioxide to alveolar macrophages: comparative study revealing differences in their mechanism of toxic action

    SciTech Connect

    Rietjens, I.M.; Poelen, M.C.; Hempenius, R.A.; Gijbels, M.J.; Alink, G.M.

    1986-01-01

    In this study the toxic mechanisms of action of ozone and nitrogen dioxide were compared using an intact cell model. Rat alveolar macrophages were exposed by means of gas diffusion through a Teflon film. In this in vitro system, ozone appeared to be 10 times more toxic than nitrogen dioxide. alpha-Tocopherol protected equally well against ozone and nitrogen dioxide. It was demonstrated that alpha-tocopherol provided its protection by its action as a radical scavenger and not by its stabilizing structural membrane effect, as (1) concentrations of alpha-tocopherol that already provided optimal protection against ozone and nitrogen dioxide did not influence the membrane fluidity of alveolar macrophages and (2) neither one of the structural alpha-tocopherol analogs tested (phytol and the methyl ether of alpha-tocopherol) could provide a protection against ozone or nitrogen dioxide comparable to the one provided by alpha-tocopherol. It was concluded that reactive intermediates scavenged by alpha-tocopherol are important in the toxic mechanism of both ozone and nitrogen dioxide induced cell damage. However, further results presented strongly confirmed that the kind of radicals and/or reactive intermediates, and thus the toxic reaction mechanism involved, must be different in ozone- and nitrogen dioxide-induced cell damage. This was concluded from the observations that showed that (1) vitamin C provided significantly better protection against nitrogen dioxide than against an equally toxic dose of ozone, (2) glutathione depletion affected the cellular sensitivity toward ozone to a significantly greater extent than the sensitivity towards nitrogen dioxide, and (3) the scavenging action of alpha-tocopherol was accompanied by a significantly greater reduction in its cellular level during nitrogen dioxide exposure than during exposure to ozone.

  15. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation.

    PubMed

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Liang, Shuang; Wang, Jinhe; Yan, Runxin

    2016-04-01

    Aquaponics has attracted worldwide attention in recent years and is considered as an alternative technology for conventional aquaculture. In this study, common carp (Cyprinus carpio) and pakchoi (Brassica chinensis) were cultured in lab-scale aquaponics, and attempts were conducted to enhance its nitrogen utilization efficiency (NUE) through two optimization methods, i.e., nitrifies addition (NA) and filler gradation (FG). Results showed that NA and FG could improve the NUE of aquaponics by 8.8 and 16.0%, respectively, compared with control. The total ammonia (TAN) and nitrite (NO2(-)) concentrations in NA and FG systems were maintained at relatively low level (TAN < 0.5 mg/L, NO2(-) < 0.1 mg/L), which demonstrated that both the NA and FG could provide non-toxic water environment for fish culture. Nitrous oxide conversion ratio of the control, NA, and FG were 0.8, 1.2, and 1.7%, respectively, indicating that media-based aquaponics also contributed to global warming. Although the two proposed attempts in this study caused more N2O emission, they made new breakthrough in improving the NUE of aquaponics.

  16. Attempts to improve nitrogen utilization efficiency of aquaponics through nitrifies addition and filler gradation.

    PubMed

    Zou, Yina; Hu, Zhen; Zhang, Jian; Xie, Huijun; Liang, Shuang; Wang, Jinhe; Yan, Runxin

    2016-04-01

    Aquaponics has attracted worldwide attention in recent years and is considered as an alternative technology for conventional aquaculture. In this study, common carp (Cyprinus carpio) and pakchoi (Brassica chinensis) were cultured in lab-scale aquaponics, and attempts were conducted to enhance its nitrogen utilization efficiency (NUE) through two optimization methods, i.e., nitrifies addition (NA) and filler gradation (FG). Results showed that NA and FG could improve the NUE of aquaponics by 8.8 and 16.0%, respectively, compared with control. The total ammonia (TAN) and nitrite (NO2(-)) concentrations in NA and FG systems were maintained at relatively low level (TAN < 0.5 mg/L, NO2(-) < 0.1 mg/L), which demonstrated that both the NA and FG could provide non-toxic water environment for fish culture. Nitrous oxide conversion ratio of the control, NA, and FG were 0.8, 1.2, and 1.7%, respectively, indicating that media-based aquaponics also contributed to global warming. Although the two proposed attempts in this study caused more N2O emission, they made new breakthrough in improving the NUE of aquaponics. PMID:26645232

  17. Variations in dissolved organic nitrogen concentration in biofilters with different media during drinking water treatment.

    PubMed

    Zhang, Huining; Zhang, Kefeng; Jin, Huixia; Gu, Li; Yu, Xin

    2015-11-01

    Dissolved organic nitrogen (DON) is potential precursor of disinfection byproducts (DBPs), especially nitrogenous DBPs. In this study, we investigated the impact of biofilters on DON concentration changes in a drinking water plant. A small pilot plant was constructed next to a sedimentation tank in a drinking water plant and included activated carbon, quartz sand, anthracite, and ceramsite biofilters. As the biofilter layer depth increased, the DON concentration first decreased and then increased, and the variation in DON concentration differed among the biofilters. In the activated carbon biofilter, the DON concentration was reduced by the largest amount in the first part of the column and increased by the largest amount in the second part of the column. The biomass in the activated carbon filter was less than that in the quartz sand filter in the upper column. The heterotrophic bacterial proportion among bacterial flora in the activated carbon biofilter was the largest, which might be due to the significant reduction in DON in the first part of the column. Overall, the results indicate that the DON concentration in biofiltered water can be controlled via the selection of appropriate biofilter media. We propose that a two-layer biofilter with activated carbon in the upper layer and another media type in the lower layer could best reduce the DON concentration.

  18. Use of quaternary ammonium salts of nitrogen containing polymers for improved carburetor detergency

    SciTech Connect

    Biasotti, J.B.; Vartanian, P.F.

    1980-01-15

    A quaternary ammonium salt is described of a copolymer, said copolymer being the olefin polymerization product of: (A) a nitrogen amine free ester of a C/sub 1/-C/sub 6/ olefinically unsaturated aliphatic mono-, di-, or polycarboxylic acid having a tertiary nitrogen atom; and (B) an olefinically unsaturated co-monomer containing a basic nitrogen atom in a side chain; a fuel component, especially gasoline, containing such quaternary ammonium salt of such copolymer as a detergent.

  19. Studies on the storage life of irradiated potatoes of different maturities as influenced by different levels of nitrogen during growth and different harvest dates

    SciTech Connect

    Badshah, N.L.

    1989-01-01

    Studies were conducted to determine the effects of irradiation levels on potato tubers of different maturities grown with 0.0, 182 and 364 kg/ha nitrogen in 16-16-16 NPK fertilizer, harvested on different dates and stored at 10 and 15.5{degree}C. Tubers from the 1986 crop were harvested on September 15, 1986. Tubers from the 1987 crop were harvested when 0-5%, 50%, and 100% of the vines had died. Gamma irradiation was applied to the tubers of the 1986 crop at dosage 0, 5, 10 and 20 krad; and 0 and 7.5 krad for the tubers of 1987 crop. The 1986 study indicated that increasing fertilizer and irradiation levels significantly decreased sprouting, percent weight loss and specific gravity of tubers. The loss of ascorbic acid, histidine, leucine, isoleucine, and the amount of reducing, and non-reducing sugars were significantly decreased by increasing nitrogen levels. The content of leucine, reducing sugars and ascorbic acid levels were decreased by irradiation. Higher storage temperatures caused greater loss of arginine, isoleucine, valine and ascorbic acid. No significant changes were found in protein, lysine and aromatic amino acids. Tubers stored at 15.5{degree}C showed greater metabolic changes as indicated by sprouting, weight loss; changes in permeability, protein, amino acids, sugars and ascorbic acid contents. The 5 krad irradiation treatment resulted in complete sprout inhibition of tubers from 364 kg/ha nitrogen levels at 10{degree}C storage. Twenty krad dosage while inhibiting sprouting at 15.5{degree}C, caused greater loss of ascorbic acid. The results of 1987 studies showed that tubers from higher nitrogen levels irradiated with 7.5 krad significantly decreased weight loss.

  20. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply.

    PubMed

    Fan, Xiaorong; Xie, Dan; Chen, Jingguang; Lu, Haiyan; Xu, Yanling; Ma, Cui; Xu, Guohua

    2014-10-01

    Nitrogen (N) plays a critical role in plant growth and productivity and PTR/NRT1 transporters are critical for rice growth. In this study, OsPTR6, a PTR/NRT1 transporter, was over-expressed in the Nipponbare rice cultivar by Agrobacterium tumefaciens transformation using the ubiquitin (Ubi) promoter. Three single-copy T2 generation transgenic lines, named OE1, OE5 and OE6, were produced and subjected to hydroponic growth experiments in different nitrogen treatments. The results showed the plant height and biomass of the over-expression lines were increased, and plant N accumulation and glutamine synthetase (GS) activities were enhanced at 5.0mmol/L NH4(+) and 2.5mmol/L NH4NO3. The expression of OsATM1 genes in over-expression lines showed that the OsPTR6 over expression increased OsAMT1.1, OsATM1.2 and OsAMT1.3 expression at 0.2 and 5.0mmol/L NH4(+) and 2.5mmol/L NH4NO3. However, nitrogen utilisation efficiency (NUE) was decreased at 5.0mmol/LNH4(+). These data suggest that over-expression of the OsPTR6 gene could increase rice growth through increasing ammonium transporter expression and glutamine synthetase activity (GSA), but decreases nitrogen use efficiency under conditions of high ammonium supply.

  1. [Seasonal dynamics of carbon and nitrogen in fine roots and their differences between successive rotation poplar plantations].

    PubMed

    Wang, Yan-ping; Xu, Tan; Zhu, Wan-rui; Wang, Hua-tian; Zhang, Guang-can; Li, Chuan-rong; Jiang, Yue-zhong

    2015-11-01

    In this study, poplar fine roots in two successive rotation plantations were sampled over seasons. Root samples were grouped from first to five orders to examine the seasonal dynamics of carbon and nitrogen contents of poplar fine roots with orders, and compared their differences between two successive rotation plantations, and finally to find the relationships between the fine root growth and the productivity decline of successive rotation poplar plantations. The results showed that non-structure carbohydrates (NSC) content increased significantly with root orders, while nitrogen content decreased. The contents of total carbon and NSC were significantly related to total nitrogen content. Root orders explained 98.2% variance of carbon and nitrogen contents of poplar fine roots, and the difference between rotations only explained 1.7% of variance. Poplar fine roots consisted of more carbon and less nitrogen with root orders, and the seasonal changes in contents of total carbon, total nitrogen and NSC showed significant difference between rotations, while.that of the C:N ratio didn' t show significant difference. Root order and season showed interaction effect on carbon and nitrogen dynamic. The C:N ratio was about 20:1 in lower order roots, and more than 30:1 in higher order roots. The C:N ratio in summer and autumn was significantly less than those in other seasons, while NSC content was the highest in November. This study indicated that the allocation of carbon and nitrogen in fine roots was closely correlated with fine root orders. Both NSC content and C:N ratio were of greatly important ecological significance in fine root turnover and growth regulation.

  2. [Effects of different irrigation modes on winter wheat grain yield and water- and nitrogen use efficiency].

    PubMed

    Men, Hong-wen; Zhang, Qiu; Dai, Xing-long; Cao, Qian; Wang, Cheng-yu; Zhou, Xiao-hu; He, Ming-rong

    2011-10-01

    Taking the widely planted winter wheat cultivar Tainong 18 as test material, a field experiment was conducted to study the effects of different irrigation modes on the winter wheat grain yield and water- and nitrogen use efficiency in drier year (2009-2010) in Tai' an City of Shandong Province, China. Five treatments were installed, i. e., irrigation before sowing (CK), irrigation before sowing and at jointing stage (W1), irrigation before sowing and at jointing stages and at over-wintering stage with alternative irrigation at milking stage (W2), irrigation before sowing and at jointing and flowering stages (optimized traditional irrigation mode, W3), and irrigation before sowing and at over-wintering, jointing, and milking stages (traditional irrigation mode, W4). The irrigation amount was 600 m3 hm(-2) one time. Under the condition of 119.7 mm precipitation in the winter wheat growth season, no significant difference was observed in the grain yield between treatments W2 and W4, but the water use efficiency was significantly higher in W2 than in W4. Comparing with treatment W3, treatments W2 and W4 had obviously higher grain yield, but the water use efficiency had no significant difference. The partial factor productivity from N fertilization was the highest in W2 and W4, and the NO3(-)-N accumulation amount in 0-100 cm soil layer at harvest was significantly higher in W2 than in W3 and W4, suggesting that W2 could reduce NO3(-)-N leaching loss. Under the conditions of our experiment, irrigation before sowing and jointing stages and at over-wintering stage with alternative irrigation at milking stage was the optimal irrigation mode in considering both the grain yield and the water- and nitrogen use efficiency.

  3. Effects of Nitrogen and Shading on Root Morphologies, Nutrient Accumulation, and Photosynthetic Parameters in Different Rice Genotypes.

    PubMed

    Pan, Shenggang; Liu, Haidong; Mo, Zhaowen; Patterson, Bob; Duan, Meiyang; Tian, Hua; Hu, Shuijing; Tang, Xiangru

    2016-01-01

    Nitrogen availability and illumination intensity are two key factors which affect rice growth. However, their influences on total nitrogen accumulation, photosynthetic rate, root morphologies, and yields are not fully understood. We conducted two field experiments to (1) evaluate the effects of shading under different N treatments on photosynthetic parameters, root morphologies, total nutrient accumulation, and grain yields of rice; and (2) elucidate the relationship between total nutrient accumulation and root morphologies under different shading conditions and nitrogen treatments. Three nitrogen rates, three shading treatments, and three different rice cultivars were used in two field experiments. Double shading during the grain-filling stage decreased total nutrient accumulation, altered root morphological characteristics, and decreased yields in rice. There were also significant interaction effects between nitrogen and shading on photosynthetic rate, transpiration rate, and total root length, root superficial area, and root volume. Significant interactions were found among cultivars and shading for photosynthetic rate and transpiration rate. Correlation analysis revealed that total nitrogen accumulation (TNA) and potassium accumulation (TKA) were significantly positively correlated with total root length, root superficial area, and root volume. N application could alleviate the detrimental effects of shading on total nutrient accumulation and grain yield in rice. PMID:27557779

  4. Effects of Nitrogen and Shading on Root Morphologies, Nutrient Accumulation, and Photosynthetic Parameters in Different Rice Genotypes.

    PubMed

    Pan, Shenggang; Liu, Haidong; Mo, Zhaowen; Patterson, Bob; Duan, Meiyang; Tian, Hua; Hu, Shuijing; Tang, Xiangru

    2016-08-25

    Nitrogen availability and illumination intensity are two key factors which affect rice growth. However, their influences on total nitrogen accumulation, photosynthetic rate, root morphologies, and yields are not fully understood. We conducted two field experiments to (1) evaluate the effects of shading under different N treatments on photosynthetic parameters, root morphologies, total nutrient accumulation, and grain yields of rice; and (2) elucidate the relationship between total nutrient accumulation and root morphologies under different shading conditions and nitrogen treatments. Three nitrogen rates, three shading treatments, and three different rice cultivars were used in two field experiments. Double shading during the grain-filling stage decreased total nutrient accumulation, altered root morphological characteristics, and decreased yields in rice. There were also significant interaction effects between nitrogen and shading on photosynthetic rate, transpiration rate, and total root length, root superficial area, and root volume. Significant interactions were found among cultivars and shading for photosynthetic rate and transpiration rate. Correlation analysis revealed that total nitrogen accumulation (TNA) and potassium accumulation (TKA) were significantly positively correlated with total root length, root superficial area, and root volume. N application could alleviate the detrimental effects of shading on total nutrient accumulation and grain yield in rice.

  5. Effects of Nitrogen and Shading on Root Morphologies, Nutrient Accumulation, and Photosynthetic Parameters in Different Rice Genotypes

    PubMed Central

    Pan, Shenggang; Liu, Haidong; Mo, Zhaowen; Patterson, Bob; Duan, Meiyang; Tian, Hua; Hu, Shuijing; Tang, Xiangru

    2016-01-01

    Nitrogen availability and illumination intensity are two key factors which affect rice growth. However, their influences on total nitrogen accumulation, photosynthetic rate, root morphologies, and yields are not fully understood. We conducted two field experiments to (1) evaluate the effects of shading under different N treatments on photosynthetic parameters, root morphologies, total nutrient accumulation, and grain yields of rice; and (2) elucidate the relationship between total nutrient accumulation and root morphologies under different shading conditions and nitrogen treatments. Three nitrogen rates, three shading treatments, and three different rice cultivars were used in two field experiments. Double shading during the grain-filling stage decreased total nutrient accumulation, altered root morphological characteristics, and decreased yields in rice. There were also significant interaction effects between nitrogen and shading on photosynthetic rate, transpiration rate, and total root length, root superficial area, and root volume. Significant interactions were found among cultivars and shading for photosynthetic rate and transpiration rate. Correlation analysis revealed that total nitrogen accumulation (TNA) and potassium accumulation (TKA) were significantly positively correlated with total root length, root superficial area, and root volume. N application could alleviate the detrimental effects of shading on total nutrient accumulation and grain yield in rice. PMID:27557779

  6. Improving nitrogen management for corn in southern Idaho and southwest Oregon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Funding is being sought from multiple sources to update nitrogen fertilizer recommendations for irrigated corn in southern Idaho and southwest Oregon. This paper summarizes the justifications and main objectives of this proposed research. Nitrogen needs to be correctly managed in corn production sys...

  7. [Physiological Effect of Vallisneria natans Under Different Concentrations of Nitrogen, Phosphorus and Chloramphenicol].

    PubMed

    Hu, Zhen-zhen; Cui, Yi-bin; Li, Mei; Yu, Jing

    2015-09-01

    The effects of peroxidase(POD), superoxide dismutase(SOD) activities and malondialdehyde(MDA), soluble proteins and chlorophyll in the leaves of Vallisneria natans exposed to different concentrations of nitrogen and phosphorus in the eutrophication water body and chloramphenicol after 7 days were investigated in the study. The soluble protein content increased significantly in group eutrophic water and 0.2 µg.L-1 chloramphenicol, and the concentration of protein was 2.38 times of that in group 0 µg.L-1 chloramphenicol. In group of eutrophic water and 0. 2 µg.L-1 chloramphenicol, POD activities decreased significantly to 33. 84% of that in group 0 µg.L-1 chloramphenicol. With the increasing of the joint concentration, SOD activities decreased. SOD activities in group of mesotrophic and 0. 2 µg.L-1 chloramphenicol was 28. 59% of that in group of 0 µg.L-1 chloramphenicol. PMID:26717684

  8. Combined use of nitrogen and coatings to improve the quality of mechanically harvested Manzanilla olives.

    PubMed

    Ramírez, Eva; Sánchez, Antonio H; Romero, Concepción; Brenes, Manuel

    2015-03-15

    The combined effect of an edible coating and a nitrogen atmosphere on the quality of Manzanilla olives mechanically harvested and processed as Spanish-style green olives was assessed. The percentage of olives free of any brown spots ranged between 35-50%, 10-25% and 50-65% for fruit directly processed, storage under nitrogen and coated and storage under nitrogen respectively. Moreover, olives stored in the open air developed brown spots due to the oxidation of oleuropein. By contrast, the anoxic conditions prevented oleuropein from undergoing enzymatic oxidation but not from its enzymatic hydrolysis. Hence, the phenolic derivative HyEDA was formed in olives stored under nitrogen, and this substance was rapidly oxidized in the open air to give rise to brown spots although to a lesser extent in the coated fruit. Therefore, the postharvest storage of coated olives under nitrogen can be a good method to prevent bruise damage in mechanically harvested fruit.

  9. Combined use of nitrogen and coatings to improve the quality of mechanically harvested Manzanilla olives.

    PubMed

    Ramírez, Eva; Sánchez, Antonio H; Romero, Concepción; Brenes, Manuel

    2015-03-15

    The combined effect of an edible coating and a nitrogen atmosphere on the quality of Manzanilla olives mechanically harvested and processed as Spanish-style green olives was assessed. The percentage of olives free of any brown spots ranged between 35-50%, 10-25% and 50-65% for fruit directly processed, storage under nitrogen and coated and storage under nitrogen respectively. Moreover, olives stored in the open air developed brown spots due to the oxidation of oleuropein. By contrast, the anoxic conditions prevented oleuropein from undergoing enzymatic oxidation but not from its enzymatic hydrolysis. Hence, the phenolic derivative HyEDA was formed in olives stored under nitrogen, and this substance was rapidly oxidized in the open air to give rise to brown spots although to a lesser extent in the coated fruit. Therefore, the postharvest storage of coated olives under nitrogen can be a good method to prevent bruise damage in mechanically harvested fruit. PMID:25308641

  10. [Soil carbon and nitrogen storage of different land use types in northwestern Shanxi Loess Plateau].

    PubMed

    Dong, Yun-Zhong; Wang, Yong-Liang; Zhang, Jian-Jie; Zhang, Qiang; Yang, Zhi-Ping

    2014-04-01

    The soil organic carbon (SOC) and total nitrogen (TN) storage under five different land use patterns, i. e. , poplar and Caragana microphylla plantation, C. microphylla artificial shrubland, poplar plantation, bare land and cropland were studied in the hilly [ness Plateau of northwestern Shanxi. The results showed that the contents, densities and storage of SOC and TN varied remarkably under the different land-use patterns. Soil carbon and nitrogen contents and storage in the 0-20 cm soil layer were significantly higher in the 20-40 cm and 40-60 cm soil layers under each of the five land use patterns. In the same soil layer, the contents and densities of SOC and TN under the five land use patterns were in the order of poplar and C. microphylla plantation > C. microphylla artificial shrubland > poplar plantation > bare land > cropland. The SOC storage in the 0-60 cm soil layer was in the order of poplar and C. microphylla plantation (30.09 t x hm(-2)) > C. microphylla artificial shrubland (24.78 t x hm(-2)) > poplar plantation (24.14 t x hm(-2)) > bare land (22.06 t x hm(-2)) > cropland (17.59 t x hm(-2)). Soil TN storage had the same trend as SOC storage, and TN storage in the 0-60 cm soil layer was the highest (4.94 t x hm(-2)) in poplar and Caragana microphylla plantation, followed by C. microphylla artificial shrubland (3.53 t x hm(-2)), poplar plantation (3.51 t x hm(-2)), bare land (3.40 t x hm(-2)), and cropland (2.71 t x hm(-2)). Poplar and C. microphylla plantation and C. microphylla artificial shrubland were the good land use patterns in the process of vegetation construction and ecological restoration in the hilly Loess Plateau of northwestern Shanxi.

  11. Nitrogen Utilization and Environmental Losses from Organic Farming and Biochar's Potential to Improve N Efficiency.

    NASA Astrophysics Data System (ADS)

    Pereira, E. I.; SIX, J. W. U. A.

    2014-12-01

    The response of plant performance and nitrogen (N) dynamics to biochar amendments were studied across various levels of N input for two growing seasons in mesocosms representing an organic lettuce production systems. A silt loam soil was amended with pine chip (PC) and walnut shell (WS) biochar (10 t ha-1) in combination with five organic N fertilization rates 0%, 25%, 50%, 75%, and 100% of 225 kg N ha-1. N output through harvest, leachate, and nitrous oxide (N2O) emissions were determined to assess N utilization and environmental losses of biochar-amended soils. Analysis of plant performance indicate that PC and WS biochar did not provide any increases in plant biomass in soils that received less than business-as-usual fertilization rates. At 100% N fertilization rate, biochar amendments (both PC and WS) improved lettuce biomass production, which resulted in significant increases in NUE with no effects on N2O emissions. Furthermore, N losses via leaching were decreased by PC biochar at 100% N fertilization rates. Thus, due to increases in plant biomass and decreases in N losses via leachate, PC biochar significantly decreased the ratio of N lost over N exported in biomass. Findings from this study suggest that biochar can provide some beneficial effects to organic farming systems, however, not in all circumstances, given the effects seem to vary with biochar type and fertilization level.

  12. Multifunctional Low-Pressure Turbine for Core Noise Reduction, Improved Efficiency, and Nitrogen Oxide (NOx) Reduction

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.; Shyam, Vikram; Rigby, David L.

    2013-01-01

    This work studied the feasibility of using Helmholtz resonator cavities embedded in low-pressure-turbine (LPT) airfoils to (1) reduce core noise by damping acoustic modes; (2) use the synthetic jets produced by the liner hole acoustic oscillations to improve engine efficiency by maintaining turbulent attached flow in the LPT at low-Reynolds-number cruise conditions; and (3) reduce engine nitrogen oxide emissions by lining the internal cavities with materials capable of catalytic conversion. Flat plates with embedded Helmholtz resonators, designed to resonate at either 3000 or at 400 Hz, were simulated using computational fluid dynamics. The simulations were conducted for two inlet Mach numbers, 0.25 and 0.5, corresponding to Reynolds numbers of 90 000 and 164 000 based on the effective chordwise distance to the resonator orifice. The results of this study are (1) the region of acoustic treatment may be large enough to have a benefit; (2) the jets may not possess sufficient strength to reduce flow separation (based on prior work by researchers in the flow control area); and (3) the additional catalytic surface area is not exposed to a high velocity, so it probably does not have any benefit.

  13. Improving spatial nitrogen dioxide prediction using diffusion tubes: A case study in West Central Scotland

    NASA Astrophysics Data System (ADS)

    Pannullo, Francesca; Lee, Duncan; Waclawski, Eugene; Leyland, Alastair H.

    2015-10-01

    It has been well documented that air pollution adversely affects health, and epidemiological pollution-health studies utilise pollution data from automatic monitors. However, these automatic monitors are small in number and hence spatially sparse, which does not allow an accurate representation of the spatial variation in pollution concentrations required for these epidemiological health studies. Nitrogen dioxide (NO2) diffusion tubes are also used to measure concentrations, and due to their lower cost compared to automatic monitors are much more prevalent. However, even combining both data sets still does not provide sufficient spatial coverage of NO2 for epidemiological studies, and modelled concentrations on a regular grid from atmospheric dispersion models are also available. This paper proposes the first modelling approach to using all three sources of NO2 data to make fine scale spatial predictions for use in epidemiological health studies. We propose a geostatistical fusion model that regresses combined NO2 concentrations from both automatic monitors and diffusion tubes against modelled NO2 concentrations from an atmospheric dispersion model in order to predict fine scale NO2 concentrations across our West Central Scotland study region. Our model exhibits a 47% improvement in fine scale spatial prediction of NO2 compared to using the automatic monitors alone, and we use it to predict NO2 concentrations across West Central Scotland in 2006.

  14. Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline.

    PubMed

    Cao, Jia; Wang, Chong; Ji, Dingge

    2016-11-15

    Interactions between earthworms (Eisenia fetida) and arbuscular mycorrhizal fungi (Rhizophagus intraradices, AM fungi) have been suggested to improve the maize nitrogen (N) content and biomass and were studied in soils polluted by oxytetracycline (OTC). Maize was planted and amended with AMF and/or earthworms (E) in the soil with low (1mgkg(-1) soil DM) or high (100mgkg(-1) soil DM) amounts of OTC pollution in comparison to soil without OTC. The root colonization, shoot and root biomass, shoot and root N contents, soil nitrogen forms, ammonia-oxidizing bacteria (AOB) and archaea (AOA) were measured at harvest. The results indicated that OTC decreased maize shoot and root biomass (p<0.05) by mediating the soil urease activity and AOB and AOA abundance, which resulted in a lower N availability for maize roots and shoots. There was a significant interaction between earthworms and AM fungi on the urease activity in soil polluted by OTC (p<0.05). Adding earthworms or AM fungi could increase the maize biomass and N content (p<0.05) in OTC polluted soil by increasing the urease activity and relieving the stress from OTC on the soil N cycle. AM fungi and earthworms interactively increased maize shoot and root biomass (p<0.05) in the OTC polluted soils through their regulation of the urease activity and the abundance of ammonia oxidizers, resulting in different soil NH4(+)-N and NO3(-)-N contents, which may contribute to the N content of maize shoots and roots. Earthworms and AM fungi could be used as an efficient method to relieve the OTC stress in agro-ecosystems. PMID:27496075

  15. Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline.

    PubMed

    Cao, Jia; Wang, Chong; Ji, Dingge

    2016-11-15

    Interactions between earthworms (Eisenia fetida) and arbuscular mycorrhizal fungi (Rhizophagus intraradices, AM fungi) have been suggested to improve the maize nitrogen (N) content and biomass and were studied in soils polluted by oxytetracycline (OTC). Maize was planted and amended with AMF and/or earthworms (E) in the soil with low (1mgkg(-1) soil DM) or high (100mgkg(-1) soil DM) amounts of OTC pollution in comparison to soil without OTC. The root colonization, shoot and root biomass, shoot and root N contents, soil nitrogen forms, ammonia-oxidizing bacteria (AOB) and archaea (AOA) were measured at harvest. The results indicated that OTC decreased maize shoot and root biomass (p<0.05) by mediating the soil urease activity and AOB and AOA abundance, which resulted in a lower N availability for maize roots and shoots. There was a significant interaction between earthworms and AM fungi on the urease activity in soil polluted by OTC (p<0.05). Adding earthworms or AM fungi could increase the maize biomass and N content (p<0.05) in OTC polluted soil by increasing the urease activity and relieving the stress from OTC on the soil N cycle. AM fungi and earthworms interactively increased maize shoot and root biomass (p<0.05) in the OTC polluted soils through their regulation of the urease activity and the abundance of ammonia oxidizers, resulting in different soil NH4(+)-N and NO3(-)-N contents, which may contribute to the N content of maize shoots and roots. Earthworms and AM fungi could be used as an efficient method to relieve the OTC stress in agro-ecosystems.

  16. Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions.

    PubMed

    Backhus, L E; DeRisi, J; Bisson, L F

    2001-07-01

    DNA microarray analysis was used to profile gene expression in a commercial isolate of Saccharomyces cerevisiae grown in a synthetic grape juice medium under conditions mimicking a natural environment for yeast: High-sugar and variable nitrogen conditions. The high nitrogen condition displayed elevated levels of expression of genes involved in biosynthesis of macromolecular precursors across the time course as compared to low-nitrogen. In contrast, expression of genes involved in translation and oxidative carbon metabolism were increased in the low-nitrogen condition, suggesting that respiration is more nitrogen-conserving than fermentation. Several genes under glucose repression control were induced in low-nitrogen in spite of very high (17%) external glucose concentrations, but there was no general relief of glucose repression. Expression of many stress response genes was elevated in stationary phase. Some of these genes were expressed regardless of the nitrogen concentration while others were found at higher levels only under high nitrogen conditions. A few genes, FSP2, RGS2, AQY1, YFL030W, were expressed more strongly with nitrogen limitation as compared to other conditions.

  17. [Dynamics of soil inorganic nitrogen in middle mountain moist evergreen broadleaf forest under different disturbance intensities in Ailao Mountain].

    PubMed

    Li, Guicai; Han, Xingguo; Huang, Jianhui; Wamg, Changyao

    2003-08-01

    The effects of three different intensities of disturbance on soil NH4(+)-N and NO3(-).N contents were studied in three community types (primary Lithocarpus xylocarpus forest, secondary oak forest, and tea plantation, which represent three different intensities of disturbance). The results showed that the contents of inorganic nitrogen in soil (0-15 cm) of three community types had marked differences. Soil organic matter and total nitrogen decreased, while C/N ratio increased, with the increasing intensity of the disturbance. Simultaneously, the potential lose of NO3(-)-N increased. It suggested that the disturbance was not in favor of the retainment of soil fertility and the positive development of community succession. The soil organic matter, total nitrogen and C/N ratio were basically same at different spatial sites in same community, while the NO3(-)-N contents were obvious difference. This implied that soil NO3(-)-N content was less stable than NH4(+)-N. In addition, NH4(+)-N was the major component of the soil inorganic nitrogen, accounted for 95.5%-99.3% of the total content of soil inorganic nitrogen.

  18. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts

    PubMed Central

    Sanders, J G; Beinart, R A; Stewart, F J; Delong, E F; Girguis, P R

    2013-01-01

    Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host–symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts' metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts' interaction with regional-scale differences in geochemistry. PMID:23619306

  19. Biogas production from water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nitrogen concentrations.

    PubMed

    Jayaweera, Mahesh W; Dilhani, Jayakodi A T; Kularatne, Ranil K A; Wijeyekoon, Suren L J

    2007-06-01

    This paper reports the biogas production from water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nitrogen concentrations of 1-fold [28 mg/L of total nitrogen (TN)], 2-fold, 1/2-fold, 1/4-fold and 1/8-fold and plants harvested from a polluted water body. This study was carried out for a period of 4 months at ambient mesophilic temperatures of 30.3-31.3 degrees C using six 3-barreled batch-fed reactors with the innermost barrel (45 L) being used as the digester. There was no marked variation in the C/N ratios of the plants cultured under different nitrogen concentrations. The addition of fresh cow dung having a low C/N of 8 resulted in a significant reduction in the C/N ratios of the water hyacinth substrates. However, gas production commenced 3 days after charging the reactors and gas production rates peaked in 4-7 days. The volatile solids (VS) degradation and gas production patterns manifested that in conventional single-stage batch digesters acidogenesis and methanogenesis of water hyacinth requires a retention time of around 27-30 days and 27-51 days, respectively. Substrates in the f-1 digester (i.e., the digester containing plants grown under 28 TN mg/L) having the lowest VS content of 45.3 g/L with a highest C/N ratio of 16 showed fairly higher gas production rates consistently (10-27 days) with higher gas yields containing around 50-65% of CH4 (27-51 days). Moreover the highest overall VS (81.7%) removal efficiencies were reported from the f-1 digester. Fairly higher gas production rates and gas yields with fairly higher CH4 contents were also noticed from the f-2 digester containing substrates having a C/N of 14 and f-out digester (containing the plants harvested from the polluted water body) having the lowest C/N ratio of 9.7 with a fairly high VS content of 56 g/L. CH4 production was comparatively low in the f-1/8, f-1/4 and f-1/2 digesters having VS rich substrates with varying C/N ratios. We conclude that water hyacinth could be

  20. Diversity pattern of nitrogen fixing microbes in nodules of Trifolium arvense (L.) at different initial stages of ecosystem development

    NASA Astrophysics Data System (ADS)

    Schulz, S.; Engel, M.; Fischer, D.; Buegger, F.; Elmer, M.; Welzl, G.; Schloter, M.

    2013-02-01

    Legumes can be considered as pioneer plants during ecosystem development, as they form a symbiosis with different nitrogen fixing rhizobia species, which enable the plants to grow on soils with low available nitrogen content. In this study we compared the abundance and diversity of nitrogen fixing microbes based on the functional marker gene nifH, which codes for a subunit of the Fe-protein of the dinitrogenase reductase, in nodules of different size classes of Trifolium arvense (L.). Additionally, carbon and nitrogen contents of the bulk soil and plant material were measured. Plants were harvested from different sites, reflecting 2 (2a) and 5 (5a) yr of ecosystem development, of an opencast lignite mining area in the south of Cottbus, Lower Lusatia (Germany) where the artificial catchment "Chicken Creek" was constructed to study the development of terrestrial ecosystems. Plants from the 5a site revealed higher amounts of carbon and nitrogen, although nifH gene abundances in the nodules and carbon and nitrogen contents between the two soils did not differ significantly. Analysis of the nifH clone libraries showed a significant effect of the nodule size on the community composition of nitrogen fixing microbes. Medium sized nodules (2-5 mm) contained a uniform community composed of Rhizobium leguminosarum bv. trifolii, whereas the small nodules (<2 mm) consisted of a diverse community including clones with non-Rhizobium nifH gene sequences. Regarding the impact of the soil age on the community composition a clear distinction between the small and the medium nodules can be made. While clone libraries from the medium nodules were pretty similar at both soil ages, soil age had a significant effect on the community compositions of the small nodules, where the proportion of R. leguminosarum bv. trifolii increased with soil age.

  1. Diversity pattern of nitrogen fixing microbes in nodules of Trifolium arvense (L.) at different initial stages of ecosystem development

    NASA Astrophysics Data System (ADS)

    Schulz, S.; Engel, M.; Fischer, D.; Buegger, F.; Elmer, M.; Welzl, G.; Schloter, M.

    2012-09-01

    Legumes can be considered as pioneer plants during ecosystem development, as they form a symbiosis with different nitrogen fixing rhizobia species, which enable the plants to grow on soils with low available nitrogen content. In this study we compared the abundance and diversity of nitrogen fixing microbes based on the functional marker gene nifH, which codes for a subunit of the Fe-protein of the dinitrogenase reductase, in nodules of different size classes of Trifolium arvense (L.). Additionally, carbon and nitrogen contents of the bulk soil and plant material were measured. Plants were harvested from different sites, reflecting 2 (2a) and 5 (5a) yr of ecosystem development, of an opencast lignite mining area in the south of Cottbus, Lower Lusatia (Germany) where the artificial catchment "Chicken Creek" was constructed to study the development of terrestrial ecosystems. Plants from the 5a site revealed higher amounts of carbon and nitrogen, although nifH gene abundances in the nodules and carbon and nitrogen contents between the two soils did not differ significantly. Analysis of the nifH clone libraries showed a significant effect of the nodule size on the community composition of nitrogen fixing microbes. Medium sized nodules (2-5 mm) contained a uniform community composed of Rhizobium leguminosarum bv. trifolii, whereas the small nodules (< 2 mm) consisted of a diverse community including clones with non-Rhizobium nifH gene sequences. Regarding the impact of the soil age on the community composition a clear distinction between the small and the medium nodules can be made. While clone libraries from the medium nodules were pretty similar at both soil ages, soil age had a significant effect on the community compositions of the small nodules, where the proportion of R. leguminosarum bv. trifolii increased with soil age.

  2. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species.

    PubMed

    Rafiq, Saima; Huma, Nuzhat; Pasha, Imran; Sameen, Aysha; Mukhtar, Omer; Khan, Muhammad Issa

    2016-07-01

    Milk composition is an imperative aspect which influences the quality of dairy products. The objective of study was to compare the chemical composition, nitrogen fractions and amino acids profile of milk from buffalo, cow, sheep, goat, and camel. Sheep milk was found to be highest in fat (6.82%±0.04%), solid-not-fat (11.24%±0.02%), total solids (18.05%±0.05%), protein (5.15%±0.06%) and casein (3.87%±0.04%) contents followed by buffalo milk. Maximum whey proteins were observed in camel milk (0.80%±0.03%), buffalo (0.68%±0.02%) and sheep (0.66%±0.02%) milk. The non-protein-nitrogen contents varied from 0.33% to 0.62% among different milk species. The highest r-values were recorded for correlations between crude protein and casein in buffalo (r = 0.82), cow (r = 0.88), sheep (r = 0.86) and goat milk (r = 0.98). The caseins and whey proteins were also positively correlated with true proteins in all milk species. A favorable balance of branched-chain amino acids; leucine, isoleucine, and valine were found both in casein and whey proteins. Leucine content was highest in cow (108±2.3 mg/g), camel (96±2.2 mg/g) and buffalo (90±2.4 mg/g) milk caseins. Maximum concentrations of isoleucine, phenylalanine, and histidine were noticed in goat milk caseins. Glutamic acid and proline were dominant among non-essential amino acids. Conclusively, current exploration is important for milk processors to design nutritious and consistent quality end products. PMID:26954163

  3. Chemical Composition, Nitrogen Fractions and Amino Acids Profile of Milk from Different Animal Species

    PubMed Central

    Rafiq, Saima; Huma, Nuzhat; Pasha, Imran; Sameen, Aysha; Mukhtar, Omer; Khan, Muhammad Issa

    2016-01-01

    Milk composition is an imperative aspect which influences the quality of dairy products. The objective of study was to compare the chemical composition, nitrogen fractions and amino acids profile of milk from buffalo, cow, sheep, goat, and camel. Sheep milk was found to be highest in fat (6.82%±0.04%), solid-not-fat (11.24%±0.02%), total solids (18.05%±0.05%), protein (5.15%±0.06%) and casein (3.87%±0.04%) contents followed by buffalo milk. Maximum whey proteins were observed in camel milk (0.80%±0.03%), buffalo (0.68%±0.02%) and sheep (0.66%±0.02%) milk. The non-protein-nitrogen contents varied from 0.33% to 0.62% among different milk species. The highest r-values were recorded for correlations between crude protein and casein in buffalo (r = 0.82), cow (r = 0.88), sheep (r = 0.86) and goat milk (r = 0.98). The caseins and whey proteins were also positively correlated with true proteins in all milk species. A favorable balance of branched-chain amino acids; leucine, isoleucine, and valine were found both in casein and whey proteins. Leucine content was highest in cow (108±2.3 mg/g), camel (96±2.2 mg/g) and buffalo (90±2.4 mg/g) milk caseins. Maximum concentrations of isoleucine, phenylalanine, and histidine were noticed in goat milk caseins. Glutamic acid and proline were dominant among non-essential amino acids. Conclusively, current exploration is important for milk processors to design nutritious and consistent quality end products. PMID:26954163

  4. The response of mesophyll conductance to nitrogen and water availability differs between wheat genotypes.

    PubMed

    Barbour, Margaret M; Kaiser, Brent N

    2016-10-01

    Increased mesophyll conductance (gm) has been suggested as a target for selection for high productivity and high water-use efficiency in crop plants, and genotypic variability in gm has been reported in several important crop species. However, effective selection requires an understanding of how gm varies with growth conditions, to ensure that the ranking of genotypes is consistent across environments. We assessed the genotypic variability in gm and other leaf gas exchange traits, as well as growth and biomass allocation for six wheat genotypes under different water and nitrogen availabilities. The wheat genotypes differed in their response of gm to growth conditions, resulting in genotypic differences in the mesophyll limitation to photosynthesis and a significant increase in the mesophyll limitation to photosynthesis under drought. In this experiment, leaf intrinsic water-use efficiency was more closely related to stomatal conductance than to mesophyll conductance, and stomatal limitation to photosynthesis increased more in some genotypes than in others in response to drought. Screening for gm should be carried out under a range of growth conditions. PMID:27593470

  5. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer

    PubMed Central

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-01-01

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ13C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure. PMID:27628897

  6. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    PubMed

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-09-15

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.

  7. Difference in leaf water use efficiency/photosynthetic nitrogen use efficiency of Bt-cotton and its conventional peer.

    PubMed

    Guo, Ruqing; Sun, Shucun; Liu, Biao

    2016-01-01

    This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure. PMID:27628897

  8. [Effects of applying different kind fertilizers on enzyme activities related to carbon, nitrogen, and phosphorus cycles in reddish paddy soil].

    PubMed

    Xu, Li-Li; Wang, Qiu-Bing; Zhang, Xin-Yu; Sun, Xiao-Min; Dai, Xiao-Qin; Yang, Feng-Ting; Bu, Jin-Feng; Wang, Hui-min

    2013-04-01

    Based on the long-term fixed position experimental data from Qianyanzhou Ecological Experiment Station, Chinese Academy of Sciences in 1998, this paper analyzed the effects of applying different kind fertilizers (straw, ST; pig manure, OM; and chemical fertilizer, NPK) on the nutrients (C, N, and P) status and the activities of related enzymes ( beta-1,4-glucosidase, betaG; beta-1,4-N-acetylglucosaminidase, NAG; L-leucine aminopeptidase, LAP; and acid phosphatase, AP) in reddish paddy soil. With the application of OM, the activities of soil betaG, NAG, and LAP increased significantly, as compared with other treatments, and were 1.4, 2. 6, and 1.9 times higher than the control (CK) , respectively. Applying OM also improved the ratio of soil organic carbon to total nitrogen (C/N), but decreased the soil betaG/(NAG+LAP) ratio, suggesting that pig manure could benefit the degradation of soil cellulose and the accumulation of soil organic carbon. Applying NPK increased the activities of soil betaG, NAG, and LAP, but decreased the AP activity, with a decrement of 34% as compared with CK. Under the application of NPK, the soilbetaG/AP and (NAG+ LAP)/AP ratios increased, but the ratios of soil organic carbon to total phosphorus (C/P) and of soil total nitrogen to total phosphorus (N/P) decreased, indicating that chemical fertilizers could induce the accumulation of soil inorganic phosphorus, and inhibit the microbial functions of degrading polysaccharides and phosphate phospholipids.

  9. Carbon and nitrogen balance of leaf-eating sesarmid crabs ( Neoepisesarma versicolor) offered different food sources

    NASA Astrophysics Data System (ADS)

    Thongtham, Nalinee; Kristensen, Erik

    2005-10-01

    Carbon and nitrogen budgets for the leaf-eating crab, Neoepisesarma versicolor, were established for individuals living on pure leaf diets. Crabs were fed fresh (green), senescent (yellow) and partly degraded (brown) leaves of the mangrove tree Rhizophora apiculata. Ingestion, egestion and metabolic loss of carbon and nitrogen were determined from laboratory experiments. In addition, bacterial abundance in various compartments of the crabs' digestive tract was enumerated after dissection of live individuals. Ingestion and egestion rates (in terms of dry weight) were highest, while the assimilation efficiency was poorest for crabs fed on brown leaves. The low assimilation efficiency was more than counteracted by the high ingestion rate providing more carbon for growth than for crabs fed green and yellow leaves. In any case, the results show that all types of leaves can provide adequate carbon while nitrogen was insufficient to support both maintenance (yellow leaves) and growth (green, yellow and brown leaves). Leaf-eating crabs must therefore obtain supplementary nitrogen by other means in order to meet their nitrogen requirement. Three hypotheses were evaluated: (1) crabs supplement their diet with bacteria and benthic microalgae by ingesting own faeces and/or selective grazing at the sediment surface; (2) assimilation of symbiotic nitrogen-fixing bacteria in the crabs' own intestinal system; and (3) nitrogen storage following occasional feeding on animal tissues (e.g. meiofauna and carcasses). It appears that hypothesis 1 is of limited importance for N. versicolor since faeces and sediment can only supply a minor fraction of the missing nitrogen due to physical constraints on the amount of material the crabs can consume. Hypothesis 2 can be ruled out because tests showed no nitrogen fixation activity in the intestinal system of N. versicolor. It is therefore likely that leaf-eating crabs provide most of their nitrogen requirement from intracellular deposits

  10. Thrust Performance Improvement for a Water/Liquid Nitrogen Rocket Engine

    NASA Astrophysics Data System (ADS)

    Watanabe, Rikio; Mikami, Ryo

    We propose a water/liquid nitrogen rocket engine as a new non-combustion type rocket engine. Liquid nitrogen is mixed with heated water and specific volume of nitrogen is increased by evaporation. Thrust force is obtained by exhaust of nitrogen gas through a nozzle with water particles. Results of previous experiments indicated a specific impulse is 60 % of the theoretically estimated value. By evaluating the characteristic exhaust velocity and other thrust characteristics, we found that the lower-than-expected specific impulse is due to insufficient propellant mixing and heat transfer between heated water and liquid nitrogen in the mixing chamber. We also performed high-speed imaging experiments to visualize impinging and mixing of propellants. Results indicate that in the original injection setup, heat conveyed by heated water is not adequately transferred to the liquid nitrogen. An alternative injection pattern was tested, which resulted in a 10% increase in the characteristic exhaust velocity. In addition, we tested a new type of injector designed for more efficient mixing and heat transfer that exhibited 30 % increase in characteristic exhaust velocity. Furthermore, we modified the theoretical expression for the characteristic exhaust velocity based on multi-phased flow theory so that it agrees well with the experimental results.

  11. The Fluorescent Properties of Dissolved Organic Matter and Assessment of Total Nitrogen in Overlying Water with Different Dissolved Oxygen Conditions.

    PubMed

    Zhang Hua; Kuan, Wang; Song, Jian; Zhang, Yong; Huang, Ming; Huang, Jian; Zhu, Jing; Huang, Shan; Wang, Meng

    2016-03-01

    This paper used excitation-emission matrix spectroscopy (EEMs) to probe the fluorescence properties of dissolved organic matter (DOM) in the overlying water with different dissolved oxygen (DO) conditions, investigating the relationship between protein-like fluorescence intensity and total nitrogen concentration. The resulting fluorescence spectra revealed three protein-like components (high-excitation wavelength tyrosine, low-excitation wavelength tyrosine, low-excitation wavelength tryptophan) and two fulvic-like components (ultraviolet fulvic-like components, visible fulvic-like components) in the overlying water. Moreover, the protein-like components were dominant in the overlying water's DOM. The fluorescence intensity of the protein-like components decreased significantly after aeration. Two of the protein-like components--the low-excitation wavelength tyrosine and the low-excitation wavelength tryptophan--were more susceptible to degradation by microorganisms within the degradable organic matter with respect to the high-excitation wavelength tyrosine. In contrast, the ultraviolet and visible fulvic-like fluorescence intensity increased along with increasing DO concentration, indicating that the fulvic-like components were part of the refractory organics. The fluorescence indices of the DOM in the overlying water were between 1.65-1.80, suggesting that the sources of the DOM were related to terrigenous sediments and microbial metabolic processes, with the primary source being the contribution from microbial metabolism. The fluorescence indices increased along with DO growth, which showed that microbial biomass and microbial activity gradually increased with increasing DO while microbial metabolism also improved, which also increased the biogenic components in the overlying water. The fluorescence intensity of the high-excitation wavelength tyrosine peak A showed a good linear relationship with the total nitrogen concentration at higher DO concentrations of 2

  12. The Fluorescent Properties of Dissolved Organic Matter and Assessment of Total Nitrogen in Overlying Water with Different Dissolved Oxygen Conditions.

    PubMed

    Zhang Hua; Kuan, Wang; Song, Jian; Zhang, Yong; Huang, Ming; Huang, Jian; Zhu, Jing; Huang, Shan; Wang, Meng

    2016-03-01

    This paper used excitation-emission matrix spectroscopy (EEMs) to probe the fluorescence properties of dissolved organic matter (DOM) in the overlying water with different dissolved oxygen (DO) conditions, investigating the relationship between protein-like fluorescence intensity and total nitrogen concentration. The resulting fluorescence spectra revealed three protein-like components (high-excitation wavelength tyrosine, low-excitation wavelength tyrosine, low-excitation wavelength tryptophan) and two fulvic-like components (ultraviolet fulvic-like components, visible fulvic-like components) in the overlying water. Moreover, the protein-like components were dominant in the overlying water's DOM. The fluorescence intensity of the protein-like components decreased significantly after aeration. Two of the protein-like components--the low-excitation wavelength tyrosine and the low-excitation wavelength tryptophan--were more susceptible to degradation by microorganisms within the degradable organic matter with respect to the high-excitation wavelength tyrosine. In contrast, the ultraviolet and visible fulvic-like fluorescence intensity increased along with increasing DO concentration, indicating that the fulvic-like components were part of the refractory organics. The fluorescence indices of the DOM in the overlying water were between 1.65-1.80, suggesting that the sources of the DOM were related to terrigenous sediments and microbial metabolic processes, with the primary source being the contribution from microbial metabolism. The fluorescence indices increased along with DO growth, which showed that microbial biomass and microbial activity gradually increased with increasing DO while microbial metabolism also improved, which also increased the biogenic components in the overlying water. The fluorescence intensity of the high-excitation wavelength tyrosine peak A showed a good linear relationship with the total nitrogen concentration at higher DO concentrations of 2

  13. Improved finite-difference vibration analysis of pretwisted, tapered beams

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1984-01-01

    An improved finite difference procedure based upon second order central differences is developed. Several difficulties encountered in earlier works with fictitious stations that arise in using second order central differences, are eliminated by developing certain recursive relations. The need for forward or backward differences at the beam boundaries or other similar procedures is eliminated in the present theory. By using this improved theory, the vibration characteristics of pretwisted and tapered blades are calculated. Results of the second order theory are compared with published theoretical and experimental results and are found to be in good agreement. The present method generally produces close lower bound solutions and shows fast convergence. Thus, extrapolation procedures that are customary with first order finite-difference methods are unnecessary. Furthermore, the computational time and effort needed for this improved method are almost the same as required for the conventional first order finite-difference approach.

  14. Policies for agricultural nitrogen management—trends, challenges and prospects for improved efficiency in Denmark

    NASA Astrophysics Data System (ADS)

    Dalgaard, Tommy; Hansen, Birgitte; Hasler, Berit; Hertel, Ole; Hutchings, Nicholas J.; Jacobsen, Brian H.; Stoumann Jensen, Lars; Kronvang, Brian; Olesen, Jørgen E.; Schjørring, Jan K.; Sillebak Kristensen, Ib; Graversgaard, Morten; Termansen, Mette; Vejre, Henrik

    2014-11-01

    With more than 60% of the land farmed, with vulnerable freshwater and marine environments, and with one of the most intensive, export-oriented livestock sectors in the world, the nitrogen (N) pollution pressure from Danish agriculture is severe. Consequently, a series of policy action plans have been implemented since the mid 1980s with significant effects on the surplus, efficiency and environmental loadings of N. This paper reviews the policies and actions taken and their ability to mitigate effects of reactive N (Nr) while maintaining agricultural production. In summary, the average N-surplus has been reduced from approximately 170 kg N ha-1 yr-1 to below 100 kg N ha-1 yr-1 during the past 30 yrs, while the overall N-efficiency for the agricultural sector (crop + livestock farming) has increased from around 20-30% to 40-45%, the N-leaching from the field root zone has been halved, and N losses to the aquatic and atmospheric environment have been significantly reduced. This has been achieved through a combination of approaches and measures (ranging from command and control legislation, over market-based regulation and governmental expenditure to information and voluntary action), with specific measures addressing the whole N cascade, in order to improve the quality of ground- and surface waters, and to reduce the deposition to terrestrial natural ecosystems. However, there is still a major challenge in complying with the EU Water Framework and Habitats Directives, calling for new approaches, measures and technologies to mitigate agricultural N losses and control N flows.

  15. Preference for different inorganic nitrogen forms among plant functional types and species of the Patagonian steppe.

    PubMed

    Gherardi, Laureano A; Sala, Osvaldo E; Yahdjian, Laura

    2013-11-01

    We have explored species-specific preferences for nitrate (NO3(-)) and ammonium (NH4(+)) as an alternative niche separation in ecosystems where nitrogen (N) is present mostly in inorganic forms. The Patagonian steppe is dominated by shrubs and grasses. Shrubs absorb water and nutrients from deep soil layers, which are poor in N, while grasses have the opposite pattern, absorbing most of their water and nutrients from the upper layers of the soil. We hypothesized that the preferences of shrub and grass for inorganic N forms are different and that the rate of potential N uptake is greater in shrubs than in grasses. To test this hypothesis, we grew individuals of six dominant species in solutions of different NH4(+):NO3(-) concentration ratios. Nitrate uptake was found to be higher in shrubs, while ammonium uptake was similar between plant functional types. The NH4(+):NO3(-) uptake ratio was significantly lower for shrubs than grasses. Shrubs, which under field conditions have deeper rooting systems than grasses, showed a higher N absorption capacity than grasses and a preference for the more mobile N form, nitrate. Grasses, which had lower N uptake rates than shrubs, preferred ammonium over nitrate. These complementary patterns between grasses and shrubs suggest a more thorough exploitation of resources by diverse ecosystems than those dominated by just one functional type. The loss of one plant functional group or a significant change in its abundance would therefore represent a reduction in resource use efficiency and ecosystem functioning. PMID:23812108

  16. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants. PMID:27380366

  17. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants.

  18. Use of a nitrogen-argon plasma to improve adherence of sputtered titanium carbide coatings on steel

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1979-01-01

    Friction and wear experiments on 440-C steel surfaces that had been RF-sputtered with titanium carbide when a small percentage of nitrogen was added to the plasma were conducted. X-ray photoelectron spectroscopy and X-ray diffraction were used to analyze the resultant coatings. Results indicate that a small partial pressure of nitrogen (about 0.5%) markedly improves the adherence, friction, and wear properties when compared with coatings applied on sputter-etched oxidized surfaces or in the presence of a small oxygen partial pressure. The improvements are related to the formation of an interface containing a mixture of the nitrides of titanium and iron, which are harder than their corresponding oxides.

  19. OPPORTUNITIES IN NITROGEN MANAGEMENT RESEARCH; IMPROVING APPLICATIONS FOR PROVEN TECHNOLOGIES AND IDENTIFYING NEW TOOLS FOR MANAGING NITROGEN FLUX AND INPUT IN ECOSYSTEMS

    EPA Science Inventory

    The presence and distribution of undesirable quantities of bioavailable nitrogenous compounds in the environment are issues of long-standing concern. Importantly for us today, deleterious effects associated with high levels of nitrogen in the ecosystem are becoming everyday news...

  20. Improvement in nitrogen fixation capacity could be part of the domestication process in soybean.

    PubMed

    Muñoz, N; Qi, X; Li, M-W; Xie, M; Gao, Y; Cheung, M-Y; Wong, F-L; Lam, H-M

    2016-08-01

    Biological nitrogen fixation (BNF) in soybeans is a complex process involving the interplay between the plant host and the symbiotic rhizobia. As nitrogen supply has a crucial role in growth and development, higher nitrogen fixation capacity would be important to achieve bigger plants and larger seeds, which were important selection criteria during plant domestication by humans. To test this hypothesis, we monitored the nitrogen fixation-related performance in 31 cultivated and 17 wild soybeans after inoculation with the slow-growing Bradyrhizobium diazoefficiens sp. nov. USDA110 and the fast-growing Sinorhizobium (Ensifer) fredii CCBAU45436. Our results showed that, in general, cultivated soybeans gave better performance in BNF. Electron microscopic studies indicated that there was an exceptionally high accumulation of poly-β-hydroxybutyrate bodies in bacteroids in the nodules of all wild soybeans tested, suggesting that the C/N balance in wild soybeans may not be optimized for nitrogen fixation. Furthermore, we identified new quantitative trait loci (QTLs) for total ureides and total nodule fresh weight by employing a recombinant inbred population composed of descendants from a cross between a cultivated and a wild parent. Using nucleotide diversity (θπ), divergence index (Fst) and distribution of fixed single-nucleotide polymorphisms as parameters, we found that some regions in the total ureides QTL on chromosome 17 and the total nodule fresh weight QTL on chromosome 12 exhibited very low diversity among cultivated soybeans, suggesting that these were traits specially selected during the domestication and breeding process.

  1. Improvement in nitrogen fixation capacity could be part of the domestication process in soybean.

    PubMed

    Muñoz, N; Qi, X; Li, M-W; Xie, M; Gao, Y; Cheung, M-Y; Wong, F-L; Lam, H-M

    2016-08-01

    Biological nitrogen fixation (BNF) in soybeans is a complex process involving the interplay between the plant host and the symbiotic rhizobia. As nitrogen supply has a crucial role in growth and development, higher nitrogen fixation capacity would be important to achieve bigger plants and larger seeds, which were important selection criteria during plant domestication by humans. To test this hypothesis, we monitored the nitrogen fixation-related performance in 31 cultivated and 17 wild soybeans after inoculation with the slow-growing Bradyrhizobium diazoefficiens sp. nov. USDA110 and the fast-growing Sinorhizobium (Ensifer) fredii CCBAU45436. Our results showed that, in general, cultivated soybeans gave better performance in BNF. Electron microscopic studies indicated that there was an exceptionally high accumulation of poly-β-hydroxybutyrate bodies in bacteroids in the nodules of all wild soybeans tested, suggesting that the C/N balance in wild soybeans may not be optimized for nitrogen fixation. Furthermore, we identified new quantitative trait loci (QTLs) for total ureides and total nodule fresh weight by employing a recombinant inbred population composed of descendants from a cross between a cultivated and a wild parent. Using nucleotide diversity (θπ), divergence index (Fst) and distribution of fixed single-nucleotide polymorphisms as parameters, we found that some regions in the total ureides QTL on chromosome 17 and the total nodule fresh weight QTL on chromosome 12 exhibited very low diversity among cultivated soybeans, suggesting that these were traits specially selected during the domestication and breeding process. PMID:27118154

  2. Suitable strategy to improve nitrogen utilization and reduce the environmental impact of Nellore bulls supplemented on tropical pasture.

    PubMed

    Jose Neto, A; Zervoudakis, J T; da Silva-Marques, R P; Silva, L C R P; Hatamoto-Zervoudakis, L K; Klopfenstein, T J

    2016-03-01

    Expansion of the biodiesel industry has increased the crude glycerin (CG) supply. Crude glycerin has the potential of replacing corn in ruminant diets because the glycerol can be converted to glucose in the liver of ruminants, providing energy for cellular metabolism. The objective was to evaluate the effects of CG with urea, soybean meal, cottonseed meal, and corn gluten feed, respectively, on intake, digestibility, microbial protein yield, and efficiency of N utilization. Five Nellore bulls (initial BW of 448 kg [SD 14]) grazing tropical pasture were used in a 5 × 5 Latin square design. The supplements were control (no supplementation; only free-choice mineral mixture ad libitum), CG with urea (CG-Urea), CG with soybean meal, CG with cottonseed meal, and CG with corn gluten. Crude glycerin was used in all supplements to replace corn (15% of DM supplement). There were differences between CG-Urea and other supplements with regard to intake of DM (% of BW and total; < 0.01), OM ( < 0.01), CP ( < 0.01), and TDN ( < 0.01). The digestibility of CP was greater ( = 0.04) for animals supplemented with CG-Urea than for those fed other supplements. Animals supplemented with CG-Urea showed greater N intake ( < 0.01) and N ammonia ( = 0.04) than those supplemented with other treatments. Nitrogen retained (g/d) was not affected by protein source but was greater for cattle fed a protein supplement compared with cattle fed the control supplement ( < 0.01). Supplementing the animals with protein sources increased ( = 0.02) the daily production of rumen microbial nitrogen (g/d) compared with the control group. Microbial protein (g/d) was lesser for the control than for protein sources ( = 0.02). However, when expressed relative to TDN ( = 0.35) and CP ( = 0.82), there were no differences across treatments. Crude protein intake per digestible OM intake (g CP/kg digestible OM intake) was greater for animals fed protein sources compared with animals fed control supplements ( < 0

  3. Biochemical studies on strain differences of mice in the susceptibility to nitrogen dioxide

    SciTech Connect

    Ichinose, T.; Suzuki, A.K.; Tsubone, H.; Sagai, M.

    1982-11-01

    Strain differences of mice in their susceptibility to nitrogen dioxide (NO/sub 2/) were examined by measuring the activities of antioxidative protective enzymes, and the amounts of antioxidants and lipid peroxides in lungs. Four strains of mice: ICR, BALB/c, ddy and C57BL/6 were used in this study and their LC/sub 50/ values after exposure to NO/sub 2/ for 16 hr were: 38, 49, 51 and 64 ppm, respectively. Genetic strain differences were observed in the enzyme activities, the antioxidant contents and lipid peroxide contents among these four different strains. The activities of glutathione peroxidase (GP/sub x/), glutathione S-transferase, and superoxide dismutase (SOD), and the contents of non-protein sulfyhdryls (NPSH), ..cap alpha..-tocopherol (..cap alpha..-Toc) and total lipids in lungs of the four strains were related to their LC/sub 50/, while TBA reactants in lungs of the four strains were inversely related to their LC/sub 50/. After exposure to 20 ppm NO/sub 2/ for 16 hr, the activities of the protective enzymes and the contents of NPSH decreased, while the level of ..cap alpha..-Toc increased markedly. The activities of GP/sub x/, 6-phosphogluconate dehydrogenase, SOD and disulfide reductase, and the contents of NPSH, ..cap alpha..-Toc and total lipids were also related to their LC/sub 50/. On the other hand, TBA reactants increased higher than those of the control groups and were inversely related to their LC/sub 50/. These results suggest that the protective enzymes and the antioxidants are important factors as defence mechanism in lungs to NO/sub 2/ and that the intensity of the protective systems in pigmented strains is generally greater than that in albino strains.

  4. Stoichiometric Characteristics of Carbon, Nitrogen, and Phosphorus in Leaves of Differently Aged Lucerne (Medicago sativa) Stands

    PubMed Central

    Wang, Zhennan; Lu, Jiaoyun; Yang, Mei; Yang, Huimin; Zhang, Qingping

    2015-01-01

    Element concentration within a plant which is vital to function maintenance and adaptation to environment, may change with plant growth. However, how carbon (C), nitrogen (N), and phosphorus (P) vary stoichiometrically with stand growth, i.e., ages or cuts, was still untouched in perennial species. This study tested the hypothesis that lucerne (Medicago sativa) C:N, C:P, and N:P should change with stand age and cut. Leaf C:N, C:P, and N:P changed with stand age, showing various trends in different cuts of lucerne. Generally the greatest stoichiometric ratios were measured in 8 year stand and in the second cut. They were affected significantly and negatively by total N and P concentrations of leaf, but not by organic C concentration. There were significantly positive correlations among leaf C:N, C:P, and N:P. However, leaf C:N, C:P, and N:P were hardly affected by soil features. Conclusively, lucerne C, N, and P stoichiometry are age- and cut-specific, and regulated mainly by leaf N, P concentrations and stoichiometry. There are few correlations with soil fertility. To our knowledge, it is the first try to elucidate the stoichiometry in the viewpoint of age and cut with a perennial herbaceous legume. PMID:26697029

  5. Modelling of in-stream nitrogen and phosphorus concentrations using different sampling strategies for calibration data

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael

    2016-04-01

    It is known that a good evaluation and prediction of surface water pollution is mainly limited by the monitoring strategy and the capability of the hydrological water quality model to reproduce the internal processes. To this end, a compromise sampling frequency, which can reflect the dynamical behaviour of leached nutrient fluxes responding to changes in land use, agriculture practices and point sources, and appropriate process-based water quality model are required. The objective of this study was to test the identification of hydrological water quality model parameters (nitrogen and phosphorus) under two different monitoring strategies: (1) regular grab-sampling approach and (2) regular grab-sampling with additional monitoring during the hydrological events using automatic samplers. First, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was successfully calibrated (1994-1998) for discharge (NSE = 0.86), nitrate-N (lowest NSE for nitrate-N load = 0.69), particulate phosphorus and soluble phosphorus in the Selke catchment (463 km2, central Germany) for the period 1994-1998 using regular grab-sampling approach (biweekly to monthly for nitrogen and phosphorus concentrations). Second, the model was successfully validated during the period 1999-2010 for discharge, nitrate-N, particulate-phosphorus and soluble-phosphorus (lowest NSE for soluble phosphorus load = 0.54). Results, showed that when additional sampling during the events with random grab-sampling approach was used (period 2011-2013), the hydrological model could reproduce only the nitrate-N and soluble phosphorus concentrations reasonably well. However, when additional sampling during the hydrological events was considered, the HYPE model could not represent the measured particulate phosphorus. This reflects the importance of suspended sediment during the hydrological events increasing the concentrations of particulate phosphorus. The HYPE model could

  6. Carbon and nitrogen dynamics in mesocosms of five different European peatlands

    NASA Astrophysics Data System (ADS)

    Blodau, Christian; Zajac, Katarzyna

    2015-04-01

    Elevated nitrogen (N) deposition, a key growth limiting nutrient in ombrotrophic peatlands, can cause various shifts in peatland N cycling. Quantification of N transformation rates and fluxes within peatlands that are induced by long-term N deposition is crucial for understanding the mechanisms and robustness of N retention. Using a 15N labeled tracer under steady state conditions at two water table levels, we investigated the fate of N in mesocosms from five European peatlands, which have a history of differing long-term N load. Peat contained the largest N pool, followed by Sphagnum (0 - 5 cm), shrubs, graminoids and the dissolved pool. We found a decline of N recovery from the peat and an increase of N recovery from shrubs and the dissolved pool across the N deposition gradient. Sphagnum mosses not only intercepted large amounts of 15N in the mesocosms (0.2 - 0.35 mg g-1) but they also retained the tracer most effectively relative to their biomass. Polluted sites (Lille Vildmose, Frölichshaier Sattelmoor) contained the largest dissolved nitrogen pools and the highest nitrate concentrations. At the same time the recoveries of their Sphagnum pools were in the range of the recovery recorded for the Sphagnum layer from the 'clean' site (Degerö Stormyr). Our experiment shows that a decline in N retention at levels above ca. 1.5 g m-2 yr-1, as expressed by elevated near-surface peat N content and increased dissolved N concentrations, might not be an evidence for Sphagnum saturation. As long as N is required for the synthesis of biomass Sphagnum species can thrive even at strongly elevated long-term N loads. A change in WT position from -28 to -8 cm influenced CO2 fluxes from mesocosms only to a small degree, which implies that small changes in water table position may be less important in controlling CO2 exchange with the atmosphere than often assumed. Although water table rise was a main driver for increase of methane emissions in all cores, short time lags (3

  7. Growth and nutrient removal properties of the diatoms, Chaetoceros curvisetus and C. simplex under different nitrogen sources

    NASA Astrophysics Data System (ADS)

    Karthikeyan, Panneerselvam; Manimaran, Kuppusamy; Sampathkumar, Pitchai; Rameshkumar, Lakshmanan

    2013-03-01

    To investigate the suitability of the marine diatoms, Chaetoceros curvisetus and C. simplex for the removal of macronutrients from different wastewater, the growth and nitrate-phosphate removal properties were studied with nitrate, ammonium and urea nitrogen sources. Three separate experiments were conducted using modified F/2 medium with 12.35 mg L-1 total nitrogen and 1.12 mg L-1 total phosphorous (simulating the typical concentration of nitrogen and phosphorus in secondary effluent) as growth medium. The maximum cell densities of C. curvisetus and C. simplex were 7.16 ± 0.34 × 104 cells mL-1 in {{NO}}3^{ - } and 3.88 ± 0.32 × 105 cells mL-1 in urea, respectively. The maximum chlorophyll a per cell was 1.7 and 4.7 pg for C. simplex and C. curvisetus, cultured with urea and nitrate, respectively. The high protein contents of 4.7 pg cell-1 in C. simplex with urea and 19.7 pg cell-1 in C. curvisetus nitrate nitrogen sources were found. The higher cell density and protein content of both species from urea and nitrate nitrogen sources ( p < 0.05) have shown that these were utilized by microalgae and were converted to protein. The C. simplex and C. curvisetus showed maximum removal efficiencies of nitrate by 97.86 and 91.62 % and phosphate by 98.5 and 100 %, respectively when urea used as nitrogen source than ammonia. The results indicated the C. simplex was more efficient than C. curvisetus and suitable for the removal of macronutrients when cultured with urea and nitrate nitrogen sources.

  8. Effects of three different PAHs on nitrogen-fixing bacterial diversity in mangrove sediment.

    PubMed

    Sun, Fu-Lin; Wang, You-Shao; Sun, Cui-Ci; Peng, Ya-Lan; Deng, Chao

    2012-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are of great environmental and human health concerns due to their widespread occurrence, persistence and carcinogenic properties. There is now compelling evidence that the mangrove sediment microbial structure is susceptible to PAHs contamination. The study aimed to assess the effects of PAHs on the nitrogen-fixing bacterial community of mangrove sediment. Three types of PAHs, naphthalene (NAP), a two-ring PAH; fluorene (FLU), a three-ring PAH; and pyrene (PYR), a four-ring PAH; were applied at three doses. After 7 and 24 days of incubation, the nitrogen-fixing bacterial population and diversity were evidenced in the nifH gene polymerase chain reaction denaturing gradient gel electrophoresis profile. DGGE pattern shows that the nitrogen-fixing bacterial community changed significantly with the types and doses of PAHs, and the incubation time. As far as single PAH is concerned, high concentration of PAH has larger impact on the nitrogen-fixing bacteria than low concentration of PAH. Besides, among the three types of PAHs, NAP has the greatest short term toxicity; PYR has the strongest long-term impact, whereas FLU has relatively higher long-time effect. Multidimensional scaling analysis and correspondence analysis are two reliable multivariate analysis methods for investigating the relationship between the nitrogen-fixing bacterial community and PAHs contamination. Investigating the effect of PAHs on the nitrogen-fixing bacterial diversity could yield useful information for understanding the process of biogeochemical cycling of nitrogen in mangrove sediment. The present study reveals that nitrogen-fixing bacterial community can be used as an important parameter indicating the impact of PAHs on mangrove sediment ecosystem.

  9. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    PubMed

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink.

  10. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    PubMed

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink. PMID:26473512

  11. Combined effect of nitrogen doping and nanosteps on microcrystalline diamond films for improvement of field emission

    NASA Astrophysics Data System (ADS)

    Mengui, U. A.; Campos, R. A.; Alves, K. A.; Antunes, E. F.; Hamanaka, M. H. M. O.; Corat, E. J.; Baldan, M. R.

    2015-04-01

    Nitrogen-doped microcrystalline diamond (N-MCD) films were grown on Si substrates using a hot filament reactor with methanol solution of urea as N source. Electrostatic self-assembly seeding of nanocrystalline diamond were used to obtain continuous and uniform films. Simultaneous changes in grains morphology and work function of diamond by nitrogen doping decreased the threshold field and the angular coefficient of Fowler-Nordhein plots. The field emission properties of our N-MCD films are comparable to carbon nanotube films.

  12. The plasma membrane H(+) -ATPase AHA2 contributes to the root architecture in response to different nitrogen supply.

    PubMed

    Młodzińska, Ewa; Kłobus, Grażyna; Christensen, Monica Daugbjerg; Fuglsang, Anja Thoe

    2015-06-01

    In this study the role of the plasma membrane (PM) H(+) -ATPase for growth and development of roots as response to nitrogen starvation is studied. It is known that root development differs dependent on the availability of different mineral nutrients. It includes processes such as initiation of lateral root primordia, root elongation and increase of the root biomass. However, the signal transduction mechanisms, which enable roots to sense changes in different mineral environments and match their growth and development patterns to actual conditions in the soil, are still unknown. Most recent comments have focused on one of the essential macroelements, namely nitrogen, and its role in the modification of the root architecture of Arabidopsis thaliana. As yet, not all elements of the signal transduction pathway leading to the perception of the nitrate stimulus, and hence to anatomical changes of the root, which allow for adaptation to variable ion concentrations in the soil, are known. Our data demonstrate that primary and lateral root length were shorter and lower in aha2 mutant lines compared with wild-type plants in response to a variable nitrogen source. This suggests that the PM proton pump AHA2 (Arabidopsis plasma membrane H(+) -ATPase isoform 2) is important for root growth and development during different nitrogen regimes. This is possible by controlling the pH homeostasis in the root during growth and development as shown by pH biosensors.

  13. The Impacts of Different Meteorology Data Sets on Nitrogen Fate and Transport in the SWAT Watershed Model

    EPA Science Inventory

    In this study, we investigated how different meteorology data sets impacts nitrogen fate and transport responses in the Soil and Water Assessment Tool (SWAT) model. We used two meteorology data sets: National Climatic Data Center (observed) and Mesoscale Model 5/Weather Research ...

  14. Tomato response to legume cover crop and nitrogen: differing enhancement patterns of fruit yield, photosynthesis and gene expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomatoes responded to soil and residue from a hairy vetch cover crop differently on many levels than tomato response to inorganic nitrogen. Tomato fruit production, plant biomass parameters, and photosynthesis were higher in plants grown in vetch than bare soil. Tomato growth and photosynthesis metr...

  15. Short-Term Nitrogen Transformations Associated with Soil Aggregates and Microbial Community Composition in Three Different Tillage Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantifying soil nitrogen transformation processes associated with soil aggregates is noteworthy as microbial communities central to N cycle reside in the soil aggregates of different sizes. The objective of this investigation was to determine both the rates of ammonium production and consumption pr...

  16. Removal of oxygen demand and nitrogen using different particle-sizes of anthracite coated with nine kinds of LDHs for wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangling; Guo, Lu; Wang, Yafen; Ruan, Congying

    2015-10-01

    This paper reports the application of anthracite particles of different sizes and coated with nine kinds of layered double hydroxides (LDHs) varying in MII-MIII cations, as alternative substrates in the simulated vertical-flow constructed wetland columns. Effects of LDHs-coating and particle size of modified anthracites were examined to evaluate their abilities in removing oxygen demand and nitrogen from sewage wastewater. Results showed that LDHs modification effectively enhanced the removal of nitrogen and organics. The removal efficiencies of total nitrogen (TN) , ammonia and chemical oxygen demand (COD) were best improved by 28.5%, 11.9% and 4.1% for the medium particle size (1-3 mm), followed by 9.2%, 5.5% and 13.6% for the large size (3-5 mm), respectively. Only TN removal was improved up to 16.6% for the small particle size (0.5-1 mm). Nitrate tended to accumulate and fluctuate greatly across all the treatments, probably due to the dominancy of aerobic condition in the vertical-flow columns. Overall, MgFe-LDHs was selected as the best-modified coating for anthracite. The results suggested LDHs modification would be one of the promising strategies to provide new-types of highly efficient and lasting wetland substrates.

  17. DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS

    SciTech Connect

    Dr. Ates Akyurtlu; Dr. Jale F. Akyurtlu

    2001-05-31

    Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. A relatively wide temperature window was established for the use of alumina-supported cerium oxide-copper oxide mixtures as regenerable sorbents for SO{sub 2} removal. Preliminary evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with ammonia, but indicated low selectivity when methane was used as the reductant. Since the replacement of ammonia by another reductant is commercially very attractive, in this project, four research components will be undertaken. The investigation of the reaction mechanism, the first component, will help in the selection of promoters to improve the catalytic activity and selectivity of the sorbents in the SCR with methane. This will result in new catalyst formulations (second component). If this research is successful, the combined SO{sub 2}-NO{sub x} removal process based on alumina-supported copper oxide-ceria sorbent/catalysts will become very attractive for commercial applications. The objective of the third component of the project is to develop an alternative SCR process using another inexpensive fuel, residual fuel oil, instead of natural gas. This innovative proposal is based on very scant evidence concerning the good performance of coked catalysts in the selective reduction of NO and if proven to work the process will certainly be commercially viable. The fourth component of the project involves our industrial partner TDA Research, and the objective is to evaluate long-term stability and durability of the prepared sorbent/catalysts. In the first year of the project, the catalysts were investigated by the temperature-programmed reduction (TPR) technique. The results from TPR indicated that the interaction with support appears to promote reduction at lower temperatures

  18. Can Crops with Greater Rooting Systems Improve Nitrogen Retention and Mitigate Emissions of Nitrous Oxide?

    NASA Astrophysics Data System (ADS)

    Decock, Charlotte; Lee, Juhwan; Barthel, Matti; Mikita, Chris; Wilde, Benjamin; Verhoeven, Elizabeth; Hund, Andreas; Abiven, Samuel; Friedli, Cordula; Conen, Franz; Mohn, Joachim; Wolf, Benjamin; Six, Johan

    2016-04-01

    It has been suggested that crops with deeper root systems could improve agricultural sustainability, because scavenging of nitrogen (N) in the subsoil would increase overall N retention and use efficiency in the system. However, the effect of plant root depth and root architecture on N-leaching and emissions of the potent greenhouse N2O remains largely unknown. We aimed to assess the effect of plant rooting depth on N-cycling and N2O production and reduction within the plant-soil system and throughout the soil profile. We hypothesized that greater root depth and root biomass will (1) increase N use efficiency and decrease N losses in the form of N leaching and N2O emissions; (2) increase N retention by shifting the fate of NH4+ from more nitrification toward more plant uptake and microbial immobilization; and (3) increase the depth of maximum N2O production and decrease the ratio of N2O:(N2O+N2) in denitrification end-products. To test these hypotheses, 4 winter wheat cultivars were grown in lysimeters (1.5 m tall, 0.5 m diameter, 3 replications per cultivar) under greenhouse conditions. Each lysimeter was equipped with an automated flux chamber for the determination of N2O surface fluxes. At 7.5, 30, 60, 90 and 120 cm depth, sampling ports were installed for the determination of soil moisture contents, as well as the collection of soil pore air and soil pore water samples. We selected two older and two newer varieties from the Swiss winter wheat breeding program, spanning a 100-year breeding history. The selection was based on previous experiments indicating that the older varieties have deeper rooting systems than the newer varieties under well watered conditions. N2O fluxes were determined twice per day on a quantum cascade laser absorption spectrometer interfaced with the automated flux chambers. Once per week, we determined concentrations of mineral N in pore water and of CO2 and N2O in the pore air. For mineral N and N2O, also natural abundance isotope deltas

  19. Biological nutrient (nitrogen and phosphorus) removal from municipal wastewater using different variations of the activated sludge process

    SciTech Connect

    Munirathinam, K.

    1986-01-01

    This study was undertaken in order to obtain operation and design information necessary for the successful functioning of municipal wastewater treatment plants to accomplish carbon, nitrogen, and phosphorus removal. Investigations were carried out on continuous flow bench-scale pilot systems using municipal wastewater. The continuous flow studies involved a one-stage nitrifying system, a three-stage nitrifying-denitrifying system, and a combined biological nitrogen-phosphorus removal system. The first two systems were operated simultaneously. These systems were operated under different sludge retention times and food-to-microorganism ratios. The hydraulic flow rates were carefully controlled throughout all experiments. These data were then used to evaluate the systems for organics, nitrogen, and phosphorus removal.

  20. [Effects of Different Land Uses on Soil Active Organic Carbon and Nitrogen Fractions in Jinyun Mountain].

    PubMed

    Qi, Xin; Jiang, Chang-sheng; Hao, Qing-ju; Li, Jian-lin

    2015-10-01

    In this paper, we take Jinyun Mountain where located in Beibei district of Chongqing as the research object and explore the effect of different ways of land use on soil active organic carbon, nitrogen components by collecting the soil samples from 0 to 60 cm depth in subtropical evergreen broad-leaved forest (hereinafter referred to as the forest), abandoned land, orchard, farmland and measuring the content of MBC, MBN, DOC and DON. The research results show that the contents of soil MBC, MBN, DOC, DON are reduced with the increase of soil depth in four types of land using soils. Variance analysis of the single factor shows that four kinds of land uses have no significant difference in the contents of MBC, MBN and DON, but the DOC content of the abandoned land is significantly higher than that of other three kinds. It shows that the different ways of land use have no obvious effects on soil MBC, MBN and DON but the abandonment of slope cropland can significantly increase the content of soil DOC. There is no significant difference among the distribution ratio of MBN, DOC, DON in forest, abandoned land, orchard and farmland within the soil from 0 to 60 cm, but the distribution ratio of slope MBC is significantly higher than that of other three kinds. It means farmland soil organic carbon has a higher biological activity, this could due to the application of green manure, farmland manure and other organic fertilizers. Under different land utilizations, DOC/DON is the highest, MBC/MBN is the second, and SOC/TN is the lowest. It means the biological solidification of dissolved organic matter is the strongest, and the mineralization of soil organic matter is the most obvious. Under the four kinds of land uses, there are the lowest ratios in SOC/TN, MBC/MBN and DOC/DON in the farmland. And all the ratios are less than 20, which suggest that the mineralization of farmland soil organic matter is stronger and it's easy to cause the loss of soil carbon.

  1. Multiple leaf measurements improve effectiveness of the cholorophyll meter in drum wheat nitrogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simple and rapid methods are needed to measure durum wheat (Triticum durum L.) nitrogen (N) status and make on-site N application decisions for increased crop yield and grain quality. Although chlorophyll meters (SPAD meters) have been widely tested for cereal crop N management, significant variatio...

  2. Public-private partnering for improving performance of corn nitrogen fertilization tools

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilization for corn production is complicated by soil and weather variability, yet such has far-reaching economic and environmental implications. To address this challenge, alternative N management strategies have been explored extensively in recent years for determining the most consist...

  3. Application of plant genomics for improved symbiotic nitrogen fixation in plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because genome sequencing, transcript profiling, proteome analysis, metabolite profiling, mutant analysis, and comparative genomics have progressed at a logarithmic pace, we know more about the plant genes involved in symbiotic nitrogen fixation (SNF) than could have been imagined a decade ago. Howe...

  4. Future riverine nitrogen export to US coastal regions: Prospects for improving water quality considering population growth

    EPA Science Inventory

    Excess nitrogen (N) in the environment degrades ecosystems and adversely affects human health. Here we examine predictions of contemporary (2000) and future (2030) coastal N loading in the continental US by the Nutrient Export from WaterSheds (NEWS) model. Future output is from s...

  5. Use of GIS-based Site-specific Nitrogen Management for Improving Energy Efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To our knowledge, geographical information system (GIS)-based site-specific nitrogen management (SSNM) techniques have not been used to assess agricultural energy costs and efficiency. This chapter uses SSNM case studies for corn (Zea mays L.) grown in Missouri and cotton (Gossypium hirsutum L.) gro...

  6. Future riverine nitrogen export to US coastal regions: Prospects for improving water quality amid population growth.

    EPA Science Inventory

    Excess nitrogen (N) in the environment degrades ecosystems and adversely affects human health. Here we examine predictions of contemporary (2000) and future (2030) coastal N loading in the continental US by the Nutrient Export from WaterSheds (NEWS) model. Future scenarios were b...

  7. Integrating soil and weather information into canopy sensor algorithms for improved corn nitrogen rate recommendation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn production can be often limited by the loss of nitrogen (N) due to leaching, volatilization and denitrification. The use of canopy sensors for making in-season N fertilizer applications has been proven effective in matching plant N requirements with periods of rapid N uptake (V7-V11), reducing ...

  8. Removal of nitrogen in different wetland filter materials: use of stable nitrogen isotopes to determine factors controlling denitrification and DNRA.

    PubMed

    Mørkved, P T; Søvik, A K; Kløve, B; Bakken, L R

    2005-01-01

    Laboratory incubations with varying O2 and NO3 concentrations were performed with a range of filter materials used in constructed wetlands (CWs). The study included material sampled from functioning CWs as well as raw materials subjected to laboratory pre-incubation. 15N-tracer techniques were used to assess the rates of denitrification versus dissimilatory nitrate reduction to ammonium (DNRA), and the relative role of nitrification versus denitrification in producing N2O. The N2O/(N2 + N2O) product ratio was assessed for the different materials. Sand, shell sand, and peat sustained high rates of denitrification. Raw light-weight aggregates (LWA) had a very low rate, while in LWA sampled from a functioning CW, the rate was similar to the one found in the other materials. The N2O/(N2 + N2O) ratio was very low for sand, shell sand and LWA from functioning CWs, but very high for raw LWA. The ratio was intermediate but variable for peat. The N2O produced by nitrification accounted for a significant percentage of the N2O accumulated during the incubation, but was dependent on the initial oxygen concentration. DNRA was significant only for shell sand taken from a functioning CW, suggesting that the establishment of active DNRA is a slower process than the establishment of a denitrifying flora. PMID:16042244

  9. [Effects of different nitrogen, phosphorous, and potassium fertilization modes on carbon- and nitrogen accumulation and allocation in rice plant].

    PubMed

    Feng, Lei; Tong, Cheng-li; Shi, Hui; Wu, Jin-shui; Chen, An-lei; Zhou, Ping

    2011-10-01

    Based on a 20-year field site-specific fertilization experiment in Taoyuan Experimental Station of Agriculture Ecosystems under Chinese Ecosystem Research Network (CERN), this paper studied the effects of different fertilization modes of N, P, and K on the accumulation and allocation of C and N in rice plant. The fertilization mode N-only showed the highest C and N contents (433 g kg(-1) and 18.9 g kg(-1), respectively) in rice grain, whereas the modes balanced fertilization of chemical N, P and K (NPK) and its combination with organic mature recycling (NPKC) showed the highest storage of C and N in rice plant. In treatments NPK and NPKC, the C storage in rice grain and in stem and leaf was 1960 kg hm(-2) and 2015 kg hm(-2), and 2002 kg hm(-2) and 2048 kg hm(-2), and the N storage in rice grain was 80.5 kg hm(-2) and 80.6 kg hm(-2), respectively. Treatment NPK had the highest N storage (59.3 kg hm(-2)) in stem and leaf. Balanced fertilization of chemical N, P, and K combined with organic manure recycling increased the accumulation of C and N in rice plant significantly. Comparing with applying N only, balanced fertilization of chemical N, P, and K was more favorable to the accumulation and allocation of C and N in rice plant during its growth period.

  10. VARYING STABLE NITROGEN ISOTOPIC RATIOS OF DIFFERENT COASTAL MARSH PLANTS AND THEIR RELATIONSHIPS WITH WASTEWATER NITROGEN AND LAND USE IN NEW ENGLAND, USA

    EPA Science Inventory

    Stable nitrogen isotopic ratios of coastal biota have been used as indicators of sources of anthropogenic nitrogen. In this study the relationships of the stable nitrogen isotopic ratios of salt marsh plants, Iva frutescens (L.), Phragmites australis (Cav.) Trin ex Steud, Spar...

  11. [Effects of water levels and the additions of different nitrogen forms on soil net nitrogen transformation rate and N2O emission in subtropical forest soils].

    PubMed

    Ma, Fen; Ma, Hong-liang; Qiu, Hong; Yang, Hong-yu

    2015-02-01

    An incubation experiment was conducted to investigate the effects of the additions of different nitrogen forms on nitrogen transformation in red soils of subtropical forest under soil moisture conditions with 40%, 70% and 110% of water holding capacity (WHC). The results showed that soil net mineralization and ammonification rates were maximum at 70% WHC and minimum at 40% WHC. Compared with the control, the addition of NO(3-)-N decreased the soil net mineralization and ammonification rates by 56.1% and 43.0% under 70% WHC condition, and decreased by 68.2% and 19.0% under 110% WHC, respectively. However, the proportion of ammonification to mineralization increased at 70% and 110% WHC, which suggested that nitrate addition inhibited the nitrification. With addition of NO(3-)-N at 110% WHC, the net nitrification rate was lowest while N20 emission was highest with the concomitant decrease of nitrate content, indicating that N2O emission was largely derived from denitrification. However, at 40% WHC and 70% WHC, the maximum N20 flux was found at the early stage of incubation. Even with addition of NH(4+)-N and NO(3-)-N, N2O flux did not change much at the latter stage of incubation, indicating that autotrophic nitrification was dominant for N20 production at the early stage of incubation. Under 40% WHC condition, soluble organic carbon increased more and it increased largely with NH(4+)-N addition, which meant NH(4+)-N addition could enhance the mineralization of soil organic matter. Under 40% and 110% WHC conditions, the addition of NH(4+)-N increased significantly the soil soluble organic nitrogen (SON) by 73.6% and 176.6% compared with the control, respectively. A significant increase of 78.7% for SON was only found at 40% WHC under addition of NO(3-)-N compared with the control. These results showed that high soil moisture condition and addition of NH(4+)-N were of benefit to SON formation.

  12. [Effects of nitrogen application on soil greenhouse gas fluxes in Eucalyptus plantations with different soil organic carbon content].

    PubMed

    Li, Rui-Da; Zhang, Kai; Su, Dan; Lu, Fei; Wan, Wu-Xing; Wang, Xiao-Ke; Zheng, Hua

    2014-10-01

    The effects of nitrogen fertilization or nitrogen deposition on soil greenhouse gases fluxes has been well studied, while little has been piloted about the effects of nitrogen application on soil greenhouse gas fluxes and its discrepancy with different soil organic carbon content. In our study, we conducted field control experiment in a young Eucalyptus plantation in Southeast China. We compared the effects of 4 levels of nitrogen fertilization (Control: 0 kg · hm(-2); Low N: 84.2 kg · hm(-2); Medium N: 166.8 kg · hm(-2); High N: 333.7 kg · hm(-2)) on soil GHGs fluxes from 2 sites (LC and HC) with significantly different soil organic carbon (SOC) content (P < 0.05). The results showed: (1) Fertilization had significant priming effect on CO2 and N2O emission fluxes. One month after fertilization, both CO2 and N2O had the flux peak and decreased gradually, and the difference among the treatments disappeared at the end of the growing season. However, fertilization had no significant effect on CH4 oxidation between the 2 sites. (2) Fertilization and SOC were two crucial factors that had significant effects on CO2 and N2O emission. Fertilization had a significant positive effect on CO2 and N2O emission fluxes (P < 0.001). CH4 oxidation rates decreased with the increasing N addition, but there was no statistical difference (P > 0.05). The CO2 and N2O emission fluxes were significantly higher in HC than those in LC (P < 0.01). (3) Fertilization and SOC had great interactive effect on CO2 and N2O emission (P < 0.05). Compared with fluxes in LC, the fluxes in HC were much more sensitive to N input: low N could remarkably stimulate the CO2 and N2O emission. In conclusion, the effects of nitrogen fertilization on soil GHGs fluxes were not only in connection with the intensify of nitrogen, but also closely tied to the SOC content. When we assess the effects of nitrogen on soil GHGs fluxes, the difference induced by SOC should not be ignored.

  13. Nitrous oxide emissions respond differently to mineral and organic nitrogen sources in contrasting soil types.

    PubMed

    Pelster, David E; Chantigny, Martin H; Rochette, Philippe; Angers, Denis A; Rieux, Christine; Vanasse, Anne

    2012-01-01

    The use of various animal manures for nitrogen (N) fertilization is often viewed as a viable replacement for mineral N fertilizers. However, the impacts of amendment type on NO production may vary. In this study, NO emissions were measured for 2 yr on two soil types with contrasting texture and carbon (C) content under a cool, humid climate. Treatments consisted of a no-N control, calcium ammonium nitrate, poultry manure, liquid cattle manure, or liquid swine manure. The N sources were surface applied and immediately incorporated at 90 kg N ha before seeding of spring wheat ( L.). Cumulative NO-N emissions from the silty clay ranged from 2.2 to 8.3 kg ha yr and were slightly lower in the control than in the fertilized plots ( = 0.067). The 2-yr mean NO emission factors ranged from 2.0 to 4.4% of added N, with no difference among N sources. Emissions of NO from the sandy loam soil ranged from 0.3 to 2.2 kg NO-N ha yr, with higher emissions with organic than mineral N sources ( = 0.015) and the greatest emissions with poultry manure ( < 0.001). The NO emission factor from plots amended with poultry manure was 1.8%, more than double that of the other treatments (0.3-0.9%), likely because of its high C content. On the silty clay, the yield-based NO emissions (g NO-N kg grain yield N) were similar between treatments, whereas on the sandy loam, they were greatest when amended with poultry manure. Our findings suggest that, compared with mineral N sources, manure application only increases soil NO flux in soils with low C content.

  14. Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment

    NASA Astrophysics Data System (ADS)

    Liu, W. B.; Zhang, C.; Xia, Z. X.; Yang, Z. G.

    2014-12-01

    In the present study, we report an enhanced high-temperature creep resistance in reduced activation ferrite/martensite (RAFM) steels, by introducing nitrogen (0.035 wt%, M3 steel) and employing a novel intermediate heat treatment I-Q-T (intermediate treatment, quenching and tempering). In comparison with all the control groups, the uniaxial tests of the I-Q-T treated M3 steel showed significant increase in rupture time and decrease in elongation. The microstructures of the samples were further characterized to elucidate the origin of the enhanced creep resistance. It is found that, by introducing nitrogen, the primary TaC particles were refined; by employing the I-Q-T heat treatment, the dispersed fine secondary MX precipitates, as well as the lath subgrains containing high-density dislocations, were increased: all are responsible for the improved creep resistance.

  15. Effect of manure under different nitrogen application rates on winter wheat production and soil fertility in dryland

    NASA Astrophysics Data System (ADS)

    Zhang, H. Q.; Yu, X. Y.; Zhai, B. N.; Jin, Z. Y.; Wang, Z. H.

    2016-08-01

    Exploring an effective fertilization practice is crucial for achieving a sustainable dryland winter wheat cropping system. Following a split-plot design, this study was conducted to investigate the combined effect of manure (-M or +M; main plot) and various rates of nitrogen (N) fertilizer (0, 75, 150, 225, and 300 kg N ha-1; sub plot) on grain yield, water and N use efficiencies of winter wheat, and soil nutrients. The results showed that the treatments with manure improved the grain yield by 8%, and WUE by 10% relative to that without manure throughout the study years. The highest winter wheat yield and WUE were both recorded in the M+N225 treatment, which were not significantly different from those for M+N75 and M+N150 treatment. In contrast, high levels of N fertilizer (> 150 kg N ha-1) combined with manure not only caused a reduction in the N use efficiency (NUE), but it also caused an increase in the soil residual nitrate-N (from 43.7 to 188.9 kg ha-1) relative to without manure. After three years of continuous cropping, the treatment combining manure with 150 kg N ha-1 fertilizer had the highest SOM, available P and available K, which was 24%, 379% and 102% higher than that for unfertilized treatment (CK), and 10%, 267%, and 55% higher than that for without manure, respectively. Thus, the combination of manure (17.5 t ha-1 poultry or 30 t ha-1 pig manure) with 75-150 kg N ha-1 N fertilizer is recommended for improving winter wheat yield, water and N use efficiencies, and reducing soil nitrate-N residue as well.

  16. School Improvement in Practice: Schools Make a Difference Project.

    ERIC Educational Resources Information Center

    Myers, Kate, Ed.

    When the Inner London Education Authority (ILEA) was disbanded in 1990, 13 separate education authorities were created in its place. Two years after its creation, in partnership with all of its secondary schools, one of the new LEAs initiated a school-improvement project to raise standards called Schools Make A Difference (SMAD). This book…

  17. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil.

    PubMed

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Keil, Daniel; Welzl, Gerhard; Schöning, Ingo; Boch, Steffen; Marhan, Sven; Kandeler, Ellen; Schloter, Michael

    2013-01-01

    Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.

  18. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    PubMed

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  19. Application of biofilm reactors to improve ammonia oxidation in low nitrogen loaded wastewater.

    PubMed

    Seca, I; Torres, R; Val del Río, A; Mosquera-Corral, A; Campos, J L; Méndez, R

    2011-01-01

    An airlift reactor using zeolite particles as carrier material was used for the nitrification of effluents from the aquaculture industry. During the start-up the nitrogen concentration was kept around 100 mg NH4(+)-N/L to develop the nitrifying population. Later it was decreased down to around 3 mg NH4(+)-N/L and the dilution rate was increased up to 4.8 d(-1) in order to simulate the conditions in a an aquaculture waster treatment system. A nitrogen loading rate (NLR) of 535 mg NH(+)-N/m2 d was fully oxidized to nitrate. Higher values of NLRs caused nitrite accumulation. A second biofilm reactor was fed with a synthetic medium containing 50 mg NH4(+)-N/L which simulated the effluents from anaerobic units treating domestic wastewater. A nitrogen loading rate of 400 mg NH4(+)-N/L d was oxidized into nitrate with an efficiency of 60% at a dilution rate of 8 d(-1). Both biofilm systems allowed the development of a nitrifying population to treat the studied types of wastewaters.

  20. [Variation of soil nitrogen during in situ mineralization process under different grasslands in the mountainous area of southern Ningxia, Northwest China].

    PubMed

    Jiang, Yue-Li; Zhao, Tong; Yan, Hao; Huang, Yi-Mei

    2014-06-01

    Variations in organic nitrogen, microbial biomass nitrogen, soluble organic nitrogen, NH4(+) -N, NO3(-) -N, NO2(-) -N and N mineralization were investigated under three different grasslands in the mountainous area of southern Ningxia, Northwest China (natural grassland, artificial turf and abandoned land) using the close-top tube incubation method. Microbial biomass nitrogen, soluble organic nitrogen, NH4(+)-N, NO3(-)-N, NO2(-)-N and N mineralization exhibited significant seasonal variations. The nitrogen levels remained essentially unchanged from April to June, significantly decreased in July-August, rebounded after August, and were lowest in August. The organic nitrogen content remained unchanged in the whole training process. The soil mineralization rates, nitrification and ammonification rate were lowest in June-August. The ratios of each N fraction to total N responded differently to seasonal changes. The ratios of organic N, NO2(-) -N to total N did not change, in contrast, the ratios of nitrate N, microbial biomass nitrogen and soluble organic nitrogen, to total soil N decreased from April to August, and increased from August to December. The soil organic matter, pH, and bulk density were closely related to soil N. There was a significant positive correlation among the six N fractions. The soil nitrogen content of the different grassland types followed the order of natural grassland > abandoned land > artificial turf.

  1. Assessing indices for predicting potential nitrogen mineralization in soils under different management systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A reliable laboratory index of nitrogen availability would be useful for making N recommendations but no single approach has received broad acceptance across a wide range of soils. We compared several indices over a range of soil conditions to test the possibility of determining the best combination...

  2. Response of two wheat cultivars to supplemental nitrogen under different salinity stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of supplemental nitrogen (N), as either farmyard manure (FYM) or urea, on response of two wheat (Triticum aestivum) cultivars (a salt sensitive ‘Sakha 69’ and a salt tolerant ‘Sakha 93’) were investigated in a green house experiment under various salinity levels (control, 6, 9, or 12 dS m-1)...

  3. Nitrous oxide emissions from a golf course fairway and rough following application of different nitrogen fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide (N2O) is a potent greenhouse gas that destroys stratospheric ozone. There is limited research of golf course N2O emission and the effects of frequent fertilization and irrigation. Three enhanced efficiency nitrogen fertilizers (EENFs) were applied to a Colorado golf course fairway and ...

  4. Application of microbial inoculants as tools for reducing nitrous oxide emissions from different nitrogen fertilizers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions of nitrous oxide (N2O) are increasing due to several factors, including increased use of nitrogen fertilizers. New management tools are needed to reduce N2O emissions from production agriculture. One potential such tool is the use of microbial inoculants, which are increasingly being used ...

  5. Stable nitrogen isotopes in essential versus non-essential amino acids of different plankton size fractions.

    PubMed

    Loick, Natalie; Gehre, Matthias; Voss, Maren

    2007-12-01

    The stable nitrogen isotope values (delta(15)N) of the essential amino acid (EAA) leucine and the delta(15)N values of six non-essential amino acids (NEAAs) from plankton size fractions from the South China Sea (SCS) were analysed. Data from the SCS were collected during two cruises in July 2003 and 2004 onboard of RV Nghien Cuu Bien. The delta(15)N values of alanine, aspartic acid, glutamic acid and leucine increased with size at all sites. The delta(15)N of glycine did not increase with size, the delta(15)N of tyrosine increased with size only at offshore stations and the delta(15)N of proline increased with size only at inshore stations. We found highly significant correlations between the delta(15)N ratios of leucine to the delta(15)N ratios of glutamic acid, proline, alanine, tyrosine and aspartic acid at oligotrophic sites of enhanced nitrogen fixation. In contrast thereto these correlations were less distinct or absent at more eutrophic sites of low nitrogen fixation. A comparison with an independent data set from the tropical North Atlantic revealed intriguing similar patterns. We interpret these patterns as result of the connected metabolism of EAA and NEAA in zooplankton at sites of nitrogen limitation.

  6. Influence of nitrogen sources on growth and fermentation performance of different wine yeast species during alcoholic fermentation.

    PubMed

    Kemsawasd, Varongsiri; Viana, Tiago; Ardö, Ylva; Arneborg, Nils

    2015-12-01

    In this study, the influence of twenty different single (i.e. 19 amino acids and ammonium sulphate) and two multiple nitrogen sources (N-sources) on growth and fermentation (i.e. glucose consumption and ethanol production) performance of Saccharomyces cerevisiae and of four wine-related non-Saccharomyces yeast species (Lachancea thermotolerans, Metschnikowia pulcherrima, Hanseniaspora uvarum and Torulaspora delbrueckii) was investigated during alcoholic fermentation. Briefly, the N-sources with beneficial effects on all performance parameters (or for the majority of them) for each yeast species were alanine, arginine, asparagine, aspartic acid, glutamine, isoleucine, ammonium sulphate, serine, valine and mixtures of 19 amino acids and of 19 amino acids plus ammonium sulphate (for S. cerevisiae), serine (for L. thermotolerans), alanine (for H. uvarum), alanine and asparagine (for M. pulcherrima), arginine, asparagine, glutamine, isoleucine and mixture of 19 amino acids (for T. delbrueckii). Furthermore, our results showed a clear positive effect of complex mixtures of N-sources on S. cerevisiae and on T. delbrueckii (although to a lesser extent) as to all performance parameters studied, whereas for L. thermotolerans, H. uvarum and M. pulcherrima, single amino acids affected growth and fermentation performance to the same extent as the mixtures. Moreover, we found groups of N-sources with similar effects on the growth and/or fermentation performance of two or more yeast species. Finally, the influences of N-sources observed for T. delbrueckii and H. uvarum resembled those of S. cerevisiae the most and the least, respectively. Overall, this work contributes to an improved understanding of how different N-sources affect growth, glucose consumption and ethanol production of wine-related yeast species under oxygen-limited conditions, which, in turn, may be used to, e.g. optimize growth and fermentation performance of the given yeast upon N-source supplementation during

  7. Improvement of growth and nitrogen utilization in sheep using sugar beet pulp treated with Trichoderma reesei or urea.

    PubMed

    Okab, Aly B; Ayoub, Mostafa A; Samara, Emad M; Abdoun, Khalid A; Al-Haidary, Ahmed A; Koriem, Ahmed A; Hassan, Ayman A

    2012-10-01

    Twenty-five intact Barki lambs with mean body weight of 24.81 ± 0.16 kg were used to investigate the effect of including in the diet sugar beet pulp (SBP) treated biologically with Trichoderma reesei or chemically with urea 4 % on nutrients digestibility, growth performance, nitrogen (N) utilization, and hematological and biochemical parameters. Two experiments were conducted. In the growth experiment, five lambs were randomly assigned to one of five dietary treatments. Lambs were offered isonitrogenous and isoenergetic concentrate feed mixture containing on dry matter basis 0 % SBP (D0), 50 % SBP (D1), 50 % SBP treated with 4 % urea (D2), 50 % SBP treated with T. reesei (D3), and 25 % SPB treated with 4 % urea plus 25 % SPB treated with T. reesei (D4). In the metabolism experiment, five rams were used in a 5 × 5 Latin square design and housed in metabolism crates for 21 days. The present study showed that inclusion of SBP at the level of 50 % (D1) negatively affected diet digestibility coefficients of crude protein, crude fiber, and ether extract, in addition to average daily gain, feed conversion, and N utilization. However, treatment of SBP with urea (D2), T. reesei (D3), or the combination (D4) of both had improved (P < 0.05) these parameters with superiority of D3. Despite the significant differences in the tested hematological and biochemical parameters of lambs fed on biologically or chemically treated SBP diets, their levels remained within the physiological ranges which could indicate that treated SBP did not have any adverse effect on lambs' health.

  8. Pre-breeding blood urea nitrogen concentration and reproductive performance of Bonsmara heifers within different management systems.

    PubMed

    Tshuma, Takula; Holm, Dietmar Erik; Fosgate, Geoffrey Theodore; Lourens, Dirk Cornelius

    2014-08-01

    This study investigated the association between pre-breeding blood urea nitrogen (BUN) concentration and reproductive performance of beef heifers within different management systems in South Africa. Bonsmara heifers (n = 369) from five herds with different estimated levels of nitrogen intake during the month prior to the commencement of the breeding season were sampled in November and December 2010 to determine BUN concentrations. Body mass, age, body condition score (BCS) and reproductive tract score (RTS) were recorded at study enrolment. Trans-rectal ultrasound and/or palpation was performed 4-8 weeks after a 3-month breeding season to estimate the stage of pregnancy. Days to pregnancy (DTP) was defined as the number of days from the start of the breeding season until the estimated conception date. Logistic regression and Cox proportional hazards survival analysis were performed to estimate the association of pre-breeding BUN concentration with subsequent pregnancy and DTP, respectively. After stratifying for herd and adjusting for age, heifers with relatively higher pre-breeding BUN concentration took longer to become pregnant when compared to those with relatively lower BUN concentration (P = 0.011). In the herd with the highest estimated nitrogen intake (n = 143), heifers with relatively higher BUN were less likely to become pregnant (P = 0.013) and if they did, it was only later during the breeding season (P = 0.017), after adjusting for body mass. These associations were not present in the herd (n = 106) with the lowest estimated nitrogen intake (P > 0.500). It is concluded that Bonsmara heifers with relatively higher pre-breeding BUN concentration, might be at a disadvantage because of this negative impact on reproductive performance, particularly when the production system includes high levels of nitrogen intake.

  9. Projecting Future Nitrous Oxide Emissions From Agriculture: Importance of Ecological Feedbacks and the Environmental Benefits of Improved Nitrogen Use Efficiency

    NASA Astrophysics Data System (ADS)

    Kanter, D.; Zhang, X.; Shevliakova, E.; Malyshev, S.; Mauzerall, D. L.

    2014-12-01

    Nitrous oxide (N2O) presents a triple threat to the global environment: it is the third most important anthropogenic greenhouse gas, the largest remaining anthropogenic contributor to stratospheric ozone depletion, and an important component of the nitrogen (N) cascade - where one atom of N can interconvert between a number of forms, each with a unique set of environmental impacts. Here we use a dynamic vegetation model (Princeton-Geophysical Fluid Dynamics Lab (GFDL) LM3 - the interactive land component of the GFDL Earth System Model) to assess how changes in future climate, land-use, and global fertilizer and manure application are projected to affect global N2O emissions from agriculture by 2050. Agricultural land is defined in this study as the sum of cropland and pasture. In a baseline scenario assuming little improvement in global N use efficiency (NUE) by 2050, the model projects a 24-31% increase in global agricultural N2O emissions (with the uncertainty range stemming from differences in climate forcing, land-use and fertilizer and manure consumption between RCP2.6 and RCP8.5, the two climate scenarios used in this study) - rising from 2.9 Tg N2O-N yr-1 in 1990-2000 to 3.6-3.8 Tg N2O-N yr-1 in 2040-2050. This emission increase is considerably less than the projected increases in global fertilizer and manure consumption (42-44%) and previously published projections of global agricultural N2O emission increases (38-75% - again, the uncertainty range reflecting the differences between the climate scenarios used). This disparity appears to be a result of ecological feedbacks captured by the model, where a considerable portion of the increase in fertilizer and manure use is absorbed by agricultural plant biomass rather than lost to the environment. In addition to this dynamic, the model projects that improvements in global NUE of 20-50% could reduce global N2O emissions significantly, delivering important climate and stratospheric ozone benefits over the period

  10. Simulation studies of the separation of Kr-85 radionuclide gas from nitrogen and oxygen across nanoporous graphene membranes in different pore configurations

    NASA Astrophysics Data System (ADS)

    Fatemi, S. Mahmood; Sepehrian, Hamid; Arabieh, Masoud

    2016-05-01

    Separating molecular species is an important precursor for various applications. In this work, we have utilized molecular dynamics (MD) simulations to examine how pore radius and structure affect the separation process. We show from MD simulations that 2-D graphene sheets with designed sub-nanometer pores can efficiently separate the Kr-85 radionuclide gas from an N2/O2 mixture. Three species of gases (Kr-85, N2 and O2 were considered in the simulation box in which different sizes and geometries of pores were modeled on the graphene sheet. The ( 30× 30× 80 Å^3 simulation box contains a nanoporous graphene membrane in the middle of the box and two fixed walls with equal distances on both sides of the nanoporous graphene. The results revealed that Kr-85 separation was improved by using an optimized pore structure. It was also found that the Kr-85 gas radionuclides could be completely separated from nitrogen and oxygen molecules in the pore-7 configuration. Restriction of the molecular orientation largely prohibited the permeation of nitrogen molecules. It was also found that nitrogen was more strongly adsorbed onto the membrane than oxygen, while krypton was not adsorbed.

  11. Effects of UV-B radiation and water stress on gas exchange of soybeans under two different nitrogen levels

    SciTech Connect

    Rosa, L.M.; Forseth, I.N. )

    1993-06-01

    Due to anthropogenic destruction of stratospheric ozone, UV-B radiation is projected to increase in the near future. Other potential global climate changes in temperature and precipitation patterns raise the need for research into plant responses to multiple environmental stresses. The objective of this study was to document UV-B and water stress effects on gas exchange of soybean (Glycine max Merr.) under two nitrogen levels. Two soybean cultivars differing in sensitivity to UV-B were tested at fluence rates of 19.1 or 8.5 kJ m[sub [minus]2]day[sub [minus]1] (enhance and natural levels of UV-B, respectively). Measurements of photosaturated CO[sub 2] uptake at ambient CO[sub 2] (A). stomatal conductance. photosaturated O[sub 2] evolution at saturating CO[sub 2] (A[sub max]), long term water use efficiency (using [delta][sup 13]C), and nitrogen fixation (using [sup 15]N) were performed. No significant treatment effects on A could be detected. However A[sub max] was significantly increased, and stomatal conductance reduced (p<0.01) by increased UV-B at all levels of water and nitrogen for both cultivars, suggesting a stronger stomal limitation of photosynthesis under UV-B. Water and nitrogen use efficiency also decreased under increased UV-B in both cultivars (p<0.01).

  12. Improved TNT detoxification by starch addition in a nitrogen-fixing Methylophilus-dominant aerobic microbial consortium.

    PubMed

    Khan, Muhammad Imran; Lee, Jaejin; Yoo, Keunje; Kim, Seonghoon; Park, Joonhong

    2015-12-30

    In this study, a novel aerobic microbial consortium for the complete detoxification of 2,4,6-trinitrotoluene (TNT) was developed using starch as a slow-releasing carbon source under nitrogen-fixing conditions. Aerobic TNT biodegradation coupled with microbial growth was effectively stimulated by the co-addition of starch and TNT under nitrogen-fixing conditions. The addition of starch with TNT led to TNT mineralization via ring cleavage without accumulation of any toxic by-products, indicating improved TNT detoxification by the co-addition of starch and TNT. Pyrosequencing targeting the bacterial 16S rRNA gene suggested that Methylophilus and Pseudoxanthomonas population were significantly stimulated by the co-addition of starch and TNT and that the Methylophilus population became predominant in the consortium. Together with our previous study regarding starch-stimulated RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) degradation (Khan et al., J. Hazard. Mater. 287 (2015) 243-251), this work suggests that the co-addition of starch with a target explosive is an effective way to stimulate aerobic explosive degradation under nitrogen-fixing conditions for enhancing explosive detoxification.

  13. Controls on Nitrogen Fluxes from Agricultural Fields: Differing Conclusions Based on Choice of Sensitivity Analysis Method

    NASA Astrophysics Data System (ADS)

    Ahrens, T.; Matson, P.; Lobell, D.

    2006-12-01

    Sensitivity analyses (SA) of biogeochemical and agricultural models are often used to identify the importance of input variables for variance in model outputs, such as crop yield or nitrate leaching. Identification of these factors can aid in prioritizing efforts in research or decision support. Many types of sensitivity analyses are available, ranging from simple One-At-A-Time (OAT) screening exercises to more complex local and global variance-based methods (see Saltelli et al 2004). The purpose of this study was to determine the influence of the type of SA on factor prioritization in the Yaqui Valley, Mexico using the Water and Nitrogen Management Model (WNMM; Chen et al 2005). WNMM, a coupled plant-growth - biogeochemistry simulation model, was calibrated to reproduce crop growth, soil moisture, and gaseous N emission dynamics in experimental plots of irrigated wheat in the Yaqui Valley, Mexico from 1994-1997. Three types of SA were carried out using 16 input variables, including parameters related to weather, soil properties and crop management. Methods used for SA were local OAT, Monte Carlo (MC), and a global variance-based method (orthogonal input; OI). Results of the SA were based on typical interpretations used for each test: maximum absolute ratio of variation (MAROV) for OAT analyses; first- and second-order regressions for MC analyses; and a total effects index for OI. The three most important factors identified by MC and OI methods were generally in agreement, although the order of importance was not always consistent and there was little agreement for variables of less importance. OAT over-estimated the importance of two factors (planting date and pH) for many outputs. The biggest differences between the OAT results and those from MC and OI were likely due to the inability of OAT methods to account for non-linearity (eg. pH and ammonia volatilization), interactions among variables (eg. pH and timing of fertilization) and an over-reliance on baseline

  14. Nitrogen Loadings from Different Land Uses at University of Florida Determined by High-Resolution in situ Nitrate Sensors

    NASA Astrophysics Data System (ADS)

    Luo, J.; Hochmuth, G.; Clark, M. W.

    2013-12-01

    Nitrogen loadings based on different land uses have been studied in many ecosystems, but few focus in a small scale which can help better identifying the specific nitrogen sources. A nitrogen budget is being developed at the University of Florida in Gainesville, Florida. This study will use in situ nitrate sensors to collect continuous nitrate data, which will bring another way to interpret watershed hydrology and biogeochemical processes. The study areas include three sub-basins with different types of land uses (recreational with intensive fertilization management, urban with reclaimed water irrigation, urban without irrigation) in Lake Alice watershed and the outfall point in Lake Alice where the flow discharges to the groundwater. Two in situ nitrate sensors (SUNAs) are being deployed in different types of land uses each time for a week period taking NO3--N readings every 15 minutes. Continuous time series data will be compared to determine if the NO3--N concentration from one land use is different from the other land use. The weekly N loads are calculated as the summation of the products of daily average concentrations and daily average flow over a week. The results showed the weekly time series data of NO3--N concentrations in the land use of recreation are significantly higher than other land use types, so are the estimated N loads.

  15. Using C₆₀⁺ Sputtering to Improve Detection Limit of Nitrogen in Zinc Oxide

    SciTech Connect

    Zhu, Zihua; Shutthanandan, V.; Nachimuthu, Ponnusamy

    2010-05-11

    C₆₀⁺ sputtering was firstly used to determine depth profile of nitrogen in zinc oxide materials by time-of-flight secondary ion mass spectrometry (ToF-SIMS). Compared to traditional Cs+ sputtering depth profiling, the C₆₀⁺ sputtering provides over 200 times of effective signal intensity and the detection limit is about 10 times better. In addition, our X-ray photoelectron spectroscopy (XPS) results show that sputtering zinc oxide materials by 10 keV C₆₀⁺ leads to very weak carbon deposition at bottom of the sputter crater.

  16. Improved Flaw Detection and Characterization with Difference Thermography

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Howell, Patricia A.

    2011-01-01

    Flaw detection and characterization with thermographic techniques in graphite polymer composites is often limited by localized variations in the thermographic response. Variations in properties such as acceptable porosity, variations in fiber volume content and surface polymer thickness result in variations in the thermal response that in general cause significant variations in the initial thermal response. These variations result in a noise floor that increases the difficulty of detecting and characterizing deeper flaws. The paper investigates comparing thermographic responses taken before and after a change in state in a composite to improve the detection of subsurface flaws. A method is presented for registration of the responses before finding the difference. A significant improvement in the detectability is achieved by comparing the differences in response. Examples of changes in state due to application of a load and impact are presented.

  17. [Effects of water levels and the additions of different nitrogen forms on soil net nitrogen transformation rate and N2O emission in subtropical forest soils].

    PubMed

    Ma, Fen; Ma, Hong-liang; Qiu, Hong; Yang, Hong-yu

    2015-02-01

    An incubation experiment was conducted to investigate the effects of the additions of different nitrogen forms on nitrogen transformation in red soils of subtropical forest under soil moisture conditions with 40%, 70% and 110% of water holding capacity (WHC). The results showed that soil net mineralization and ammonification rates were maximum at 70% WHC and minimum at 40% WHC. Compared with the control, the addition of NO(3-)-N decreased the soil net mineralization and ammonification rates by 56.1% and 43.0% under 70% WHC condition, and decreased by 68.2% and 19.0% under 110% WHC, respectively. However, the proportion of ammonification to mineralization increased at 70% and 110% WHC, which suggested that nitrate addition inhibited the nitrification. With addition of NO(3-)-N at 110% WHC, the net nitrification rate was lowest while N20 emission was highest with the concomitant decrease of nitrate content, indicating that N2O emission was largely derived from denitrification. However, at 40% WHC and 70% WHC, the maximum N20 flux was found at the early stage of incubation. Even with addition of NH(4+)-N and NO(3-)-N, N2O flux did not change much at the latter stage of incubation, indicating that autotrophic nitrification was dominant for N20 production at the early stage of incubation. Under 40% WHC condition, soluble organic carbon increased more and it increased largely with NH(4+)-N addition, which meant NH(4+)-N addition could enhance the mineralization of soil organic matter. Under 40% and 110% WHC conditions, the addition of NH(4+)-N increased significantly the soil soluble organic nitrogen (SON) by 73.6% and 176.6% compared with the control, respectively. A significant increase of 78.7% for SON was only found at 40% WHC under addition of NO(3-)-N compared with the control. These results showed that high soil moisture condition and addition of NH(4+)-N were of benefit to SON formation. PMID:26094450

  18. [Effects of neem seed extracts on nitrogen use efficiency in two different soils].

    PubMed

    Zhang, Xiaoxiao; Shen, Qirong; Tan, Jiankang; Mao, Zesheng

    2002-11-01

    Incubation test and pot experiments were conducted with haplic luvisols and hydragric anthrosols to study the effects of neem seed extracts (N I, N II) on nitrification and immobilization of ammonium sulfate. N I could significantly inhibit the nitrification of N applied to the two soils. N II was effective in promoting the immobilization of NH4+(-)N. Pot experiments showed that N II could increase the use efficiency of chemical nitrogen significantly in fimic anthrosols. PMID:12624997

  19. Nitrogen removal performance in planted and unplanted horizontal subsurface flow constructed wetlands treating different influent COD/N ratios.

    PubMed

    Wang, Wei; Ding, Yi; Ullman, Jeffrey L; Ambrose, Richard F; Wang, Yuhui; Song, Xinshan; Zhao, Zhimiao

    2016-05-01

    Microcosm horizontal subsurface flow constructed wetlands (HSSFCWs) were used to examine the impacts of vegetation on nitrogen dynamics treating different influent COD/N ratios (1:1, 4:1, and 8:1). An increase in the COD/N ratio led to increased reductions in NO3 and total inorganic nitrogen (TIN) in planted and unplanted wetlands, but diminished removal of NH4. The HSSFCW planted with Canna indica L. exhibited a significant reduction in NH4 compared to the unplanted system, particularly in the active root zone where NH4 removal performance increased by up to 26 % at the COD/N ratio of 8:1. There was no significant difference in NO3 removal between the planted and unplanted wetlands. TIN removal efficiency in the planted wetland increased with COD/N ratios, which was likely influenced by plant uptake. NH4 reductions were greater in planted wetland at the 20- and 40-cm depths while NO3 reductions were uniformly greater with depth in all cases, but no statistical difference was impacted by depth on TIN removal. These findings show that planting a HSSFCW can provide some benefit in reducing nitrogen loads in effluents, but only when a sufficient carbon source is present.

  20. Phosphorus applications improved the soil microbial responses under nitrogen additions in Chinese fir plantations of subtropical China

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; Li, Dandan; Yang, Yang; Tang, Yuqian; Wang, Huimin; Chen, Fusheng; Sun, Xiaomin

    2016-04-01

    Nitrogen (N) deposition and low soil phosphorus (P) content aggravate the P limitation in subtropical forest soils. However, the responses of soil microbial communities, enzyme kinetics, and N cycling genes to P additions in subtropical plantations are still not clear. The hypothesis that P application can alleviate the limitation and improve the soil microbial properties was tested by long term field experiment in the Chinese fir plantations in subtropical China. Thirty 20m×20m plots were established in November 2011 and six different treatments were randomly distributed with five replicates. The treatments are control (CK, no N and P application), low N addition (N1: 50 kg N ha-1 yr-1), high N addition (N2: 100 kg N ha-1 yr-1), P addition (P: 50 kg P ha-1 yr-1), low N and P addition (N1P: 50 kg N ha-1 yr-1 and 50 kg P ha-1 yr-1) and high N and P addition (N2P: 100 kg N ha-1 yr-1 and 50 kg P ha-1 yr-1). A suite of responses of soil microorganism across four years (2012-2015) during three seasons (spring, summer and autumn) were measured. Following 4 years of N amendments, fertilized soils were more acidic and had lower soil microbial biomass carbon contents than CK. However, P alleviated the soil acidification and increased the soil microbial biomass carbon contents. Increases in microbial PLFA biomarkers and exoenzyme kinetics in N fertilized plots were observed in the initial year (2013) but reduced since then (2014 and 2015). Whereas P amendments increased the soil PLFA biomarkers and exoenzyme kinetics through the four years except that the acid phosphatase activities declined after 3 years applications. P applications enhanced the soil N cycling by increases the abundances of nitrifiers (ammonia-oxidizing archea) and denitrifiers (nos Z, norG, and nirK). The bacterial and fungal residue carbons (calculated by amino sugar indicators) were higher under NP fertilizations than the other treatments. Our results suggest that P application could improve the soil

  1. Minimum resolvable temperature difference (MRT): procedure improvements and dynamic MRT

    NASA Astrophysics Data System (ADS)

    Krapels, Keith; Driggers, Ronald; Vollmerhausen, Richard; Halford, Carl

    2002-02-01

    Minimum resolvable temperature difference (MRT or MRTD) is the primary performance test for tactical military infrared (IR) sensors. It is a lab measurement that may be related to discrimination task performance in the field. Also, a theoretical model exists for deriving the MRT of a particular sensor, where the model is used in sensor design evaluation and trades. The model includes both the human and the sensor/display in the overall system performance and can be considered a visual acuity test of a human looking through the IR imager. Both the model and test are validated for first and second generation forward looking IR sensors. The test procedure has been incorrectly applied to undersampled staring array imagers that are becoming more common today. Additionally, it lacks stringent controllability in the procedures, which hampers test repeatability. As a result, multiple measurements are typically performed and the results averaged. This is usually without regard to statistical requirements for estimating values from distributed data. Improvements to the MRT testing procedure are investigated in this research. Data is reported that supports the use of improved techniques. The first improvement is to standardize the sensor and display configuration procedures. A process for standardization is presented and applied to a mid-wave IR imaging sensor. The currently accepted procedure for the static MRT test is accompanied by errors for undersampled staring array imagers. Thus, the second improvement suggested is to utilize dynamic MRT (DMRT) testing for undersampled IR imaging systems. Two motivations for the study presented here are to minimize the uncertainty associated with MRT testing and to improve the characterization of undersampled imagers. These two goals are achieved by the suggested improvements. The resulting DMRTs are compared with modeled MRTs and static MRTs.

  2. Improved online δ18O measurements of nitrogen- and sulfur-bearing organic materials and a proposed analytical protocol

    USGS Publications Warehouse

    Qi, H.; Coplen, T.B.; Wassenaar, L.I.

    2011-01-01

    It is well known that N2 in the ion source of a mass spectrometer interferes with the CO background during the δ18O measurement of carbon monoxide. A similar problem arises with the high-temperature conversion (HTC) analysis of nitrogenous O-bearing samples (e.g. nitrates and keratins) to CO for δ18O measurement, where the sample introduces a significant N2 peak before the CO peak, making determination of accurate oxygen isotope ratios difficult. Although using a gas chromatography (GC) column longer than that commonly provided by manufacturers (0.6 m) can improve the efficiency of separation of CO and N2 and using a valve to divert nitrogen and prevent it from entering the ion source of a mass spectrometer improved measurement results, biased δ18O values could still be obtained. A careful evaluation of the performance of the GC separation column was carried out. With optimal GC columns, the δ18O reproducibility of human hair keratins and other keratin materials was better than ±0.15 ‰ (n = 5; for the internal analytical reproducibility), and better than ±0.10 ‰ (n = 4; for the external analytical reproducibility).

  3. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    PubMed

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  4. Catalytic two-stage coal liquefaction process having improved nitrogen removal

    DOEpatents

    Comolli, Alfred G.

    1991-01-01

    A process for catalytic multi-stage hydrogenation and liquefaction of coal to produce high yields of low-boiling hydrocarbon liquids containing low concentrations of nitogen compounds. First stage catalytic reaction conditions are 700.degree.-800.degree. F. temperature, 1500-3500 psig hydrogen partial pressure, with the space velocity maintained in a critical range of 10-40 lb coal/hr ft.sup.3 catalyst settled volume. The first stage catalyst has 0.3-1.2 cc/gm total pore volume with at least 25% of the pore volume in pores having diameters of 200-2000 Angstroms. Second stage reaction conditions are 760.degree.-870.degree. F. temperature with space velocity exceeding that in the first stage reactor, so as to achieve increased hydrogenation yield of low-boiling hydrocarbon liquid products having at least 75% removal of nitrogen compounds from the coal-derived liquid products.

  5. Conversion to No-Till Improves Maize Nitrogen Use Efficiency in a Continuous Cover Cropping System

    PubMed Central

    Habbib, Hazzar; Verzeaux, Julien; Nivelle, Elodie; Roger, David; Lacoux, Jérôme; Catterou, Manuella; Hirel, Bertrand; Dubois, Frédéric; Tétu, Thierry

    2016-01-01

    A two-year experiment was conducted in the field to measure the combined impact of tilling and N fertilization on various agronomic traits related to nitrogen (N) use efficiency and to grain yield in maize cultivated in the presence of a cover crop. Four years after conversion to no-till, a significant increase in N use efficiency N harvest index, N remobilization and N remobilization efficiency was observed both under no and high N fertilization conditions. Moreover, we observed that grain yield and grain N content were higher under no-till conditions only when N fertilizers were applied. Thus, agronomic practices based on continuous no-till appear to be a promising for increasing N use efficiency in maize. PMID:27711154

  6. Nitrogen dioxide at an ambient level improves the capability of kenaf (Hibiscus cannabinus) to decontaminate cadmium.

    PubMed

    Takahashi, Misa; Adam, Suaad E H; Konaka, Daisuke; Morikawa, Hiromichi

    2008-01-01

    As reported previously, atmospheric nitrogen dioxide (NO2) at an ambient level increased plant size and the contents of cell constituents. We investigated this effect of atmospheric NO2 on decontamination of cadmium (Cd) by kenaf (Hibiscus cannabinus). Seventeen-day-old seedlings of kenaf were grown in air either with NO2 or without NO2. (Plants were exposed to 100 +/- 50 ppb NO2 for 10 d under irrigation of 0.1% Hyponex supplemented with 20 microM CdCl2.) Plants were then harvested and the biomass of stems, leaves, and roots, as well as the content of Cd in the organs, was determined. The stem and root biomass per plant were 1.25-1.27-fold greater in +NO2 plants than in -NO2 plants. The Cd content per stem was more than 30% greater in +NO2 plants than in -NO2 plants.

  7. Improved intrinsic resolution: does it make a difference. concise communication

    SciTech Connect

    Hoffer, P.B.; Neumann, R.; Quartararo, L.; Lange, R.; Hernandez, T.

    1984-02-01

    The purpose of this study was to determine what effect further improvement in an Anger camera's intrinsic resolution has on lesion detection. We studied 52 patients undergoing bone imaging and 58 undergoing liver imaging. All patients had images performed in rapid sequence on ZLC-75 and ZLC-37 Anger cameras, both by Siemens. The two imaging systems are virtually identical except for the number of photomultiplier tubes and crystal thickness; these resulted in differences in intrinsic resolution and sensitivity. Observer performance, measured by ROC curves, for detection of abnormalities was virtually identical with the two instruments. Subjectively, there was a trend toward preference of the ZLC-75 images, but this was not associated with any significant improvement in lesion detectability even in the subgroup in which a preference for one or the other instrument was noted.

  8. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age.

    PubMed

    Chen, Fu-Sheng; Niklas, Karl Joseph; Liu, Yu; Fang, Xiang-Min; Wan, Song-Ze; Wang, Huimin

    2015-10-01

    It is unclear how or even if phosphorus (P) input alters the influence of nitrogen (N) deposition in a forest. In theory, nutrients in leaves and twigs differing in age may show different responses to elevated nutrient input. To test this possibility, we selected Chinese fir (Cunninghamia lanceolata) for a series of N and P addition experiments using treatments of +N1 - P (50 kg N ha(-1) year(-1)), +N2 - P (100 kg N ha(-1) year(-1)), -N + P (50 kg P ha(-1) year(-1)), +N1 + P, +N2 + P and -N - P (without N and P addition). Soil samples were analyzed for mineral N and available P concentrations. Leaves and twigs in summer and their litters in winter were classified as and sorted into young and old components to measure N and P concentrations. Soil mineral N and available P increased with N and P additions, respectively. Nitrogen addition increased leaf and twig N concentrations in the second year, but not in the first year; P addition increased leaf and twig P concentrations in both years and enhanced young but not old leaf and twig N accumulations. Nitrogen and P resorption proficiencies in litters increased in response to N and P additions, but N and P resorption efficiencies were not significantly altered. Nitrogen resorption efficiency was generally higher in leaves than in twigs and in young vs old leaves and twigs. Phosphorus resorption efficiency showed a minimal variation from 26.6 to 47.0%. Therefore, P input intensified leaf and twig N enrichment with N addition, leaf and twig nutrients were both gradually resorbed with aging, and organ and age effects depended on the extent of nutrient limitation.

  9. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age.

    PubMed

    Chen, Fu-Sheng; Niklas, Karl Joseph; Liu, Yu; Fang, Xiang-Min; Wan, Song-Ze; Wang, Huimin

    2015-10-01

    It is unclear how or even if phosphorus (P) input alters the influence of nitrogen (N) deposition in a forest. In theory, nutrients in leaves and twigs differing in age may show different responses to elevated nutrient input. To test this possibility, we selected Chinese fir (Cunninghamia lanceolata) for a series of N and P addition experiments using treatments of +N1 - P (50 kg N ha(-1) year(-1)), +N2 - P (100 kg N ha(-1) year(-1)), -N + P (50 kg P ha(-1) year(-1)), +N1 + P, +N2 + P and -N - P (without N and P addition). Soil samples were analyzed for mineral N and available P concentrations. Leaves and twigs in summer and their litters in winter were classified as and sorted into young and old components to measure N and P concentrations. Soil mineral N and available P increased with N and P additions, respectively. Nitrogen addition increased leaf and twig N concentrations in the second year, but not in the first year; P addition increased leaf and twig P concentrations in both years and enhanced young but not old leaf and twig N accumulations. Nitrogen and P resorption proficiencies in litters increased in response to N and P additions, but N and P resorption efficiencies were not significantly altered. Nitrogen resorption efficiency was generally higher in leaves than in twigs and in young vs old leaves and twigs. Phosphorus resorption efficiency showed a minimal variation from 26.6 to 47.0%. Therefore, P input intensified leaf and twig N enrichment with N addition, leaf and twig nutrients were both gradually resorbed with aging, and organ and age effects depended on the extent of nutrient limitation. PMID:26358049

  10. Influence of Residue and Nitrogen Fertilizer Additions on Carbon Mineralization in Soils with Different Texture and Cropping Histories

    PubMed Central

    Chen, Xianni; Wang, Xudong; Liebman, Matt; Cavigelli, Michel; Wander, Michelle

    2014-01-01

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs) and decay rates (ka, ks) of active and slow C pools which we compared with total particulate organic matter (POM) and occluded-POM (OPOM). The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays. Net SOC loss was greater (2.6 g kg−1; 8.6%) from the IAsoil than the MDsoil (0.9 g kg−1, 6.3%); fractions and coefficients suggest losses were principally from IAsoil’s resistant pool. Cropping history did not alter SOC pool size or decay rates in IAsoil where rotation-based differences in OPOM-C were small. In MDsoil, use of diversified rotations and manure increased ka by 32% and ks by 46% compared to Conv; differences mirrored in POM- and OPOM-C contents. Residue addition prompted greater increases in Ca (340% vs 230%) and Cs (38% vs 21%) and decreases in ka (58% vs 9%) in IAsoil than MDsoil. Reduced losses of SOC from residue-amended MDsoil were associated with increased OPOM-C. Nitrogen addition dampened CO2-C release. Clay type and C saturation dominated the IAsoil’s response to external inputs and made labile and stable fractions more vulnerable to decay. Trends in OPOM suggest aggregate protection influences C turnover in the low active MDsoil. Clay charge and OPOM-C contents were better predictors of soil C dynamics than clay or POM-C contents. PMID:25078458

  11. Impact of the addition of different plant residues on carbon-nitrogen content and nitrogen mineralization-immobilization turnover in a soil incubated under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Abbasi, M. K.; Tahir, M. M.; Sabir, N.; Khurshid, M.

    2014-10-01

    Application of plant residues as soil amendment may represent a valuable recycling strategy that affects on carbon (C) and nitrogen (N) cycling, soil properties improvement and plant growth promotion. The amount and rate of nutrient release from plant residues depend on their quality characteristics and biochemical composition. A laboratory incubation experiment was conducted for 120 days under controlled conditions (25 °C and 58% water filled pore space (WFPS)) to quantify initial biochemical composition and N mineralization of leguminous and non-leguminous plant residues i.e. the roots, shoots and leaves of Glycine max, Trifolium repens, Zea mays, Poplus euramericana, Rubinia pseudoacacia and Elagnus umbellate incorporated into the soil at the rate of 200 mg residue N kg-1 soil. The diverse plant residues showed wide variation in total N, carbon, lignin, polyphenols and C/N ratio with higher polyphenol content in the leaves and higher lignin content in the roots. The shoot of G. max and the shoot and root of T. repens displayed continuous mineralization by releasing a maximum of 109.8, 74.8 and 72.5 mg N kg-1 and representing a 55, 37 and 36% of added N being released from these resources. The roots of G. max and Z. mays and the shoot of Z. mays showed continuous negative values throughout the incubation showing net immobilization. After an initial immobilization, leaves of P. euramericana, R. pseudoacacia and E. umbellate exhibited net mineralization by releasing a maximum of 31.8, 63.1 and 65.1 mg N kg-1, respectively and representing a 16, 32 and 33% of added N being released. Nitrogen mineralization from all the treatments was positively correlated with the initial residue N contents (r = 0.89; p ≤ 0.01), and negatively correlated with lignin content (r = -0.84; p ≤ 0.01), C/N ratio (r = -0.69; p ≤ 0.05), lignin/N ratio (r = -0.68; p ≤ 0.05), polyphenol/N ratio (r = -0.73; p ≤ 0.05) and ligin + polyphenol/N ratio (r = -0.70; p ≤ 0.05) indicating

  12. Modeling nitrogen uptake and potential nitrate leaching under different irrigation programs in nitrogen-fertilized tomato using the computer program NLEAP.

    PubMed

    Karaman, M Rüstü; Saltali, Kadir; Ersahin, Sabit; Güleç, Hikmet; Derici, M Rifat

    2005-02-01

    Readily available nitrogen (N) sources such as ammonium nitrate with excessive irrigation present a potential hazard for the environment. The computer program Nitrate Leaching and Economic Analysis Package (NLEAP) is a mechanistic model developed for rapid site-specific estimates of nitrate-nitrogen (NO3-N) moving below the root zone in agricultural crops and potential impacts of NO3-N leaching into groundwater. In this study, the value of NLEAP was tested to simulate N uptake by crops and NO3-N leaching parameters in large lysimeters under the tomato crop. Three seedlings of tomato variety of H-2274 (Lycopersicum esculentum L.) were transplanted into each lysimeter. N fertilizer at the rate of 140 kg N ha(-1) was sidedressed in two split applications, the first half as ammonium sulphate and the second half as ammonium nitrate. The lysimeters were irrigated based on programs of C 0.75, 1.00, 1.25 and 1.50, C referring to class A-Pan evaporation coefficients. Parameters such as leaching index (LI), annual leaching risk potential (ALRP), N available for leaching (NAL), amount of NO3-N leached (NL) and amount of N taken up by the crops (NU) were estimated using the NLEAP computer model. To test the ability of model to simulate N uptake and NL, measured values were compared with simulated values. Significant correlations, R2 = 0.92 and P < 0.03 for the first year and R2 = 0.86 and P < 0.06 for the second year, were found between measured and simulated values for crop N consumption, indicating that the NLEAP model adequately described crop N uptake under the varied irrigation programs using an optimal N fertilization program for the experimental site. Significant correlations, R2 = 0.96 and P < 0.01 for the first year and R2 = 0.97 and P < 0.01 for the second year, were also found between measured and simulated values of NL, indicating that the NLEAP model also adequately predicted NL under the varied irrigation programs. Therefore, this computer model can be useful to

  13. Food contact surfaces coated with nitrogen-doped titanium dioxide: effect on Listeria monocytogenes survival under different light sources

    NASA Astrophysics Data System (ADS)

    Rodrigues, D.; Teixeira, P.; Tavares, C. J.; Azeredo, J.

    2013-04-01

    Improvement of food safety is a very important issue, and is on the basis of production and application of new/modified food contact surfaces. Titanium dioxide (TiO2) and, more recently, nitrogen-doped titanium dioxide (N-TiO2) coatings are among the possible forms to enhance food contact surfaces performance in terms of higher hygiene and easier sanitation. In this context, the present work aimed at evaluating the bactericidal activity of an N-TiO2 coating on glass and stainless steel under two different sources of visible light - fluorescent and incandescent - and ultraviolet (UV) irradiation. Listeria monocytogenes was chosen as representative of major foodborne pathogens and its survival was tested on N-TiO2 coated coupons. In terms of survival percentage, good results were obtained after exposure of coated surfaces to all light types since, apart from the value obtained after exposing glass to fluorescent light (56.3%), survival rates were always below 50%. However, no effective disinfection was obtained, given that for a disinfectant or sanitizing agent to be claimed as effective it needs to be able to promote at least a 3-log reduction of the microbial load, which was not observed for any of the experimental conditions assessed. Even so, UV irradiation was the most successful on eliminating cells on coated surfaces, since the amount of bacteria was reduced to 1.49 × 106 CFU/ml on glass and 2.37 × 107 on stainless steel. In contrast, both visible light sources had only slightly decreased the amount of viable cells, which remained in the range of 8 log CFU/ml. Hence, although some bactericidal effect was accomplished under visible light, UV was the most effective light source on promoting photocatalytic reactions on N-TiO2 coated coupons and none of the experimental conditions have reached a satisfactory disinfection level. Thus, this surface coating needs further research and improvement in order to become truly effective against foodborne pathogens and

  14. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements.

    PubMed

    Ye, Yushi; Liang, Xinqiang; Chen, Yingxu; Li, Liang; Ji, Yuanjing; Zhu, Chunyan

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD) and four N managements (control, N0; conventional urea at 240 kg N ha(-1), UREA; controlled-release bulk blending fertilizer at 240 kg N ha(-1), BBF; polymer-coated urea at 240 kg N ha(-1), PCU). We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems. PMID:24992006

  15. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements.

    PubMed

    Ye, Yushi; Liang, Xinqiang; Chen, Yingxu; Li, Liang; Ji, Yuanjing; Zhu, Chunyan

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD) and four N managements (control, N0; conventional urea at 240 kg N ha(-1), UREA; controlled-release bulk blending fertilizer at 240 kg N ha(-1), BBF; polymer-coated urea at 240 kg N ha(-1), PCU). We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems.

  16. Carbon, Nitrogen and Phosphorus Accumulation and Partitioning, and C:N:P Stoichiometry in Late-Season Rice under Different Water and Nitrogen Managements

    PubMed Central

    Ye, Yushi; Liang, Xinqiang; Chen, Yingxu; Li, Liang; Ji, Yuanjing; Zhu, Chunyan

    2014-01-01

    Water and nitrogen availability plays an important role in the biogeochemical cycles of essential elements, such as carbon (C), nitrogen (N) and phosphorus (P), in agricultural ecosystems. In this study, we investigated the seasonal changes of C, N and P concentrations, accumulation, partitioning, and C:N:P stoichiometric ratios in different plant tissues (root, stem-leaf, and panicle) of late-season rice under two irrigation regimes (continuous flooding, CF; alternate wetting and drying, AWD) and four N managements (control, N0; conventional urea at 240 kg N ha−1, UREA; controlled-release bulk blending fertilizer at 240 kg N ha−1, BBF; polymer-coated urea at 240 kg N ha−1, PCU). We found that water and N treatments had remarkable effects on the measured parameters in different plant tissues after transplanting, but the water and N interactions had insignificant effects. Tissue C:N, N:P and C:P ratios ranged from 14.6 to 52.1, 3.1 to 7.8, and 76.9 to 254.3 over the rice growing seasons, respectively. The root and stem-leaf C:N:P and panicle C:N ratios showed overall uptrends with a peak at harvest whereas the panicle N:P and C:P ratios decreased from filling to harvest. The AWD treatment did not affect the concentrations and accumulation of tissue C and N, but greatly decreased those of P, resulting in enhanced N:P and C:P ratios. N fertilization significantly increased tissue N concentration, slightly enhanced tissue P concentration, but did not affect tissue C concentration, leading to a significant increase in tissue N:P ratio but a decrease in C:N and C:P ratios. Our results suggested that the growth of rice in the Taihu Lake region was co-limited by N and P. These findings broadened our understanding of the responses of plant C:N:P stoichiometry to simultaneous water and N managements in subtropical high-yielding rice systems. PMID:24992006

  17. Studies on nitrogen modified TiO{sub 2} photocatalyst prepared in different conditions

    SciTech Connect

    Bubacz, K.; Choina, J.; Dolat, D.; Borowiak-Palen, E.; Moszynski, D.; Morawski, A.W.

    2010-09-15

    Nitrogen modified titania photocatalysts (TiO{sub 2}/N) were characterized using high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), dynamic light scattering (DLS), Raman spectroscopy and BET surface area method. The presence of nitrogen in modified photocatalysts has been studied using FT-IR and XPS analyses. The influence of the calcination temperature in the range of 100-350 {sup o}C on nanocrystallite as well as particle size of the samples and their photocatalytic activity was investigated. The calcination of TiO{sub 2}/N samples caused a growth of the particle size and an increase of their crystallinity. TEM studies present changes of the diameter and shape of TiO{sub 2} particles and nanocrystallites. The XRD and the Raman response of the samples confirmed an increase of the crystallinity of the samples when annealed at higher temperatures. The photocatalytic activity of the modified photocatalysts was determined using the reaction of phenol decomposition. It was shown that phenol decomposition rate was greatly influenced by pH of the solution. The highest phenol degradation using all the modified samples was observed for pH 7.1 which is close to the PZC point established for pristine TiO{sub 2} at pH 6.8.

  18. The expression of nitrate transporter genes reveals different nitrogen statuses of dominant diatom groups in the southern East China Sea.

    PubMed

    Kang, Lee-Kuo; Gong, Gwo-Ching; Wu, Yi-Hsuan; Chang, Jeng

    2015-03-01

    In this study, the mRNA levels of the Nrt2 nitrate transporter gene were used as a molecular indicator of nitrogen status in two dominant diatom groups, Skeletonema and Chaetoceros, which inhabit the southern East China Sea (ECS). To accurately interpret the abundance of Nrt2 transcripts in situ, maximum and minimum expression levels were determined under conditions of nitrogen deprivation and ammonium addition, respectively. In August 2010, Nrt2 transcript levels in Skeletonema at the inner shelf region exhibited a mean of 111 mmole/(mole EFL); at the mid-shelf region, the mean Nrt2 mRNA levels were 298 mmole/(mole EFL), which was very close to the maximum levels observed under nitrogen starvation. By contrast, the Nrt2 transcript levels in Chaetoceros were low at all of the shelf locations, except at one station in the mid-shelf region. The cross-shelf mean was 2.86 mmole/(mole EFL), which was similar to the expression levels observed in cultured Chaetoceros under conditions of sufficient ammonium. Similar expression patterns were observed in diatoms in the southern ECS in June 2011, but the Nrt2 transcript levels in Skeletonema at the inner shelf region were reduced to a mean of 28.6 mmole/(mole EFL). Regression analysis indicated that cell abundance and Nrt2 expression were closely related to the nutricline depth in the coastward half of the southern ECS for Skeletonema but not for Chaetoceros. These results indicate that the evaluated species differ in nitrogen status, which may reflect their evolutionary strategies to survive in a fluctuating marine environment.

  19. Different irrigation and nitrogen fertilizer treatments on some agro-physiologic traits in rapeseed (Brassica napus L.).

    PubMed

    Daneshvar, Mashallah; Sarvestani, Zeinalaabdine Tahmasebi; Sanavy, Seyed Ali Mohammad Modarres

    2008-06-15

    In order to investigate the effect of irrigation and nitrogen fertilizer on agronomical and physiological traits of two winter rapeseed varieties, an experiment was established in a randomized complete block design as split-plot factorial arrangement with four replications in 2005-2006 at Agricultural Research Station of Khorramabad, Iran. Irrigation as main-plot factor consisted of four levels (I60, I90, I120 and I150). Sub-plot factors included nitrogen in four levels (N0, N70, N140, and N210 kg N ha(-1)) and two varieties (Zarfam and SLM046). Thousand-seed weight (TSW) in all irrigation and nitrogen levels was lower in the 2006 than that of the 2005. Seed oil percentage (SOP) was decreased with increasing water use only in second year. As nitrogen rate increased, SOP decreased and seed oil yield (SOY) increased in the 2006 significantly (p < 0.05). With increasing water supply, SOY increased in first year. Zarfam variety had a higher TSW and SOP in both years. According to combined analysis results, seed and oil yield were not significantly affected by irrigation treatments and rapeseed varieties. Seed yield had not significant difference between 70 to 210 kg N ha(-1) treatments. Both Water Use Efficiency (WUE) and dry matter remobilization efficiency (DMRE) were increased by decreasing water supply in I90 to I150 treatments. But N0 and N210 resulted in the lowest WUE and DMRE, respectively. Considering all traits, the first year of experiment was better than second year. The irrigation x variety interaction had a significant (p < 0.01) effect on seed yield and WUE. Generally, I150N70V1 combination is recommended in the region of the study due to high performance in production of seed and oil yield.

  20. The expression of nitrate transporter genes reveals different nitrogen statuses of dominant diatom groups in the southern East China Sea.

    PubMed

    Kang, Lee-Kuo; Gong, Gwo-Ching; Wu, Yi-Hsuan; Chang, Jeng

    2015-03-01

    In this study, the mRNA levels of the Nrt2 nitrate transporter gene were used as a molecular indicator of nitrogen status in two dominant diatom groups, Skeletonema and Chaetoceros, which inhabit the southern East China Sea (ECS). To accurately interpret the abundance of Nrt2 transcripts in situ, maximum and minimum expression levels were determined under conditions of nitrogen deprivation and ammonium addition, respectively. In August 2010, Nrt2 transcript levels in Skeletonema at the inner shelf region exhibited a mean of 111 mmole/(mole EFL); at the mid-shelf region, the mean Nrt2 mRNA levels were 298 mmole/(mole EFL), which was very close to the maximum levels observed under nitrogen starvation. By contrast, the Nrt2 transcript levels in Chaetoceros were low at all of the shelf locations, except at one station in the mid-shelf region. The cross-shelf mean was 2.86 mmole/(mole EFL), which was similar to the expression levels observed in cultured Chaetoceros under conditions of sufficient ammonium. Similar expression patterns were observed in diatoms in the southern ECS in June 2011, but the Nrt2 transcript levels in Skeletonema at the inner shelf region were reduced to a mean of 28.6 mmole/(mole EFL). Regression analysis indicated that cell abundance and Nrt2 expression were closely related to the nutricline depth in the coastward half of the southern ECS for Skeletonema but not for Chaetoceros. These results indicate that the evaluated species differ in nitrogen status, which may reflect their evolutionary strategies to survive in a fluctuating marine environment. PMID:25689485

  1. Different irrigation and nitrogen fertilizer treatments on some agro-physiologic traits in rapeseed (Brassica napus L.).

    PubMed

    Daneshvar, Mashallah; Sarvestani, Zeinalaabdine Tahmasebi; Sanavy, Seyed Ali Mohammad Modarres

    2008-06-15

    In order to investigate the effect of irrigation and nitrogen fertilizer on agronomical and physiological traits of two winter rapeseed varieties, an experiment was established in a randomized complete block design as split-plot factorial arrangement with four replications in 2005-2006 at Agricultural Research Station of Khorramabad, Iran. Irrigation as main-plot factor consisted of four levels (I60, I90, I120 and I150). Sub-plot factors included nitrogen in four levels (N0, N70, N140, and N210 kg N ha(-1)) and two varieties (Zarfam and SLM046). Thousand-seed weight (TSW) in all irrigation and nitrogen levels was lower in the 2006 than that of the 2005. Seed oil percentage (SOP) was decreased with increasing water use only in second year. As nitrogen rate increased, SOP decreased and seed oil yield (SOY) increased in the 2006 significantly (p < 0.05). With increasing water supply, SOY increased in first year. Zarfam variety had a higher TSW and SOP in both years. According to combined analysis results, seed and oil yield were not significantly affected by irrigation treatments and rapeseed varieties. Seed yield had not significant difference between 70 to 210 kg N ha(-1) treatments. Both Water Use Efficiency (WUE) and dry matter remobilization efficiency (DMRE) were increased by decreasing water supply in I90 to I150 treatments. But N0 and N210 resulted in the lowest WUE and DMRE, respectively. Considering all traits, the first year of experiment was better than second year. The irrigation x variety interaction had a significant (p < 0.01) effect on seed yield and WUE. Generally, I150N70V1 combination is recommended in the region of the study due to high performance in production of seed and oil yield. PMID:18819639

  2. Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation

    NASA Astrophysics Data System (ADS)

    Brzostek, Edward R.; Fisher, Joshua B.; Phillips, Richard P.

    2014-08-01

    Accurate projections of the future land carbon (C) sink by terrestrial biosphere models depend on how nutrient constraints on net primary production are represented. While nutrient limitation is nearly universal, current models do not have a C cost for plant nutrient acquisition. Also missing are symbiotic mycorrhizal fungi, which can consume up to 20% of net primary production and supply up to 50% of a plant's nitrogen (N) uptake. Here we integrate simultaneous uptake and mycorrhizae into a cutting-edge plant N model—Fixation and Uptake of Nitrogen (FUN)—that can be coupled into terrestrial biosphere models. The C cost of N acquisition varies as a function of mycorrhizal type, with plants that support arbuscular mycorrhizae benefiting when N is relatively abundant and plants that support ectomycorrhizae benefiting when N is strongly limiting. Across six temperate forested sites (representing arbuscular mycorrhizal- and ectomycorrhizal-dominated stands and 176 site years), including multipath resistance improved the partitioning of N uptake between aboveground and belowground sources. Integrating mycorrhizae led to further improvements in predictions of N uptake from soil (R2 = 0.69 increased to R2 = 0.96) and from senescing leaves (R2 = 0.29 increased to R2 = 0.73) relative to the original model. On average, 5% and 9% of net primary production in arbuscular mycorrhizal- and ectomycorrhizal-dominated forests, respectively, was needed to support mycorrhizal-mediated acquisition of N. To the extent that resource constraints to net primary production are governed by similar trade-offs across all terrestrial ecosystems, integrating these improvements to FUN into terrestrial biosphere models should enhance predictions of the future land C sink.

  3. Effect of different nitrogenous nutrients on the cadmium hyperaccumulation efficiency of Rorippa globosa (Turcz.) Thell.

    PubMed

    Wei, Shuhe; Ji, Dandan; Twardowska, Irena; Li, Yunmeng; Zhu, Jiangong

    2015-02-01

    This experiment was used to explore whether the 11 nitrogenous nutrients affect the hyperaccumulation of Rorippa globosa (Turcz.) Thell. to Cd. Pot culture experiments using soil spiked with Cd as CdCl2·2.5H2O and 11 nitrogen-containing chemicals were conducted to determine the efficiency of the accumulation of Cd by R. globosa. Application of all 11 nitrogenous nutrients significantly (p < 0.05) enhanced Cd accumulation by R. globosa (Turcz.) Thell. Two major modes of Cd accumulation were observed: (i) through increase of biomass yield without reduction of Cd uptake and (ii) through increase of Cd uptake efficiency in parallel with increase of biomass yield. Bicarbonate > phosphate > chloride compounds of NH4 enhanced the biomass yield to the greatest extent, while oxalate > nitrate > chloride > and bicarbonate caused a significant increase of Cd uptake by R. globosa. Competition between N and Cd translocation caused either significant reduction of Cd translocation factor or decrease of biomass yield. Of studied nutrients, ammonium bicarbonate NH4HCO3 and ammonium chloride NH4Cl exerted the best joint effect of these two processes on the efficiency of R. globosa as a Cd hyperaccumulator. Application of these chemicals caused increase of Cd concentrations in roots of R. globosa by 35.1 and 41.1 %, and in shoots by 13.9 and 56.4 %, while biomasses of roots increased by 5.8- and 3.8-fold and in shoots by 7.4-fold, and 6.4-fold, respectively, compared to the control. As a result, accumulated load (μg pot(-1)) of Cd in roots increased by 8.2- and 5.8-fold and in shoots by 8.6- and 10.6-fold in both pots. Consequently, chemicals (NH4HCO3 and NH4Cl) that enhanced both Cd enrichment and biomass yield had the greatest effect on the bioaccumulation capacity of R. globosa. PMID:25167813

  4. [Problems of improving working conditions for workers engaged in the production of nitrogen mineral fertilizers].

    PubMed

    Rumiantsev, G I; Kozlova, T A; Atiakina, I K; Pavlova, A P

    1989-01-01

    The study results show that significant improvement of labour conditions can be achieved due to the introduction of a new distribution pattern of technological equipment, further improvement of equipment supply of the technological process, further mechanization of production operations, rational arrangement and disposition of control desks for technological processes, utilization of possible means of protection against noise, improvement of measuring machines, rational organization of the workplace for packing of stock-produced products and application of the means of small-scale mechanization, rational distribution of the sections of packing, filling and loading.

  5. Improved Na Storage Performance with the Involvement of Nitrogen-Doped Conductive Carbon into WS2 Nanosheets.

    PubMed

    Wang, Xin; Huang, Jianfeng; Li, Jiayin; Cao, Liyun; Hao, Wei; Xu, Zhanwei

    2016-09-14

    Tungsten disulfide (WS2) material is regarded as one of the most promising anode candidates for sodium ion batteries (SIBs). However, the exploration of this material still remains a great challenge to improve its cycling capacity. In this paper, nitrogen-doped conductive carbon/WS2 nanocomposites (WS2-NC) were fabricated based on the synthesis of the pure WS2 and conductive carbon/WS2 (WS2-C) nanocomposites. The reversible capacity of the as-prepared WS2-NC is stabilized at ∼360 mA h g(-1) at the density of 100 mA g(-1), even ∼200 mA h g(-1) at 1 A g(-1), presenting much better cycling performance than pure WS2 and conductive carbon/WS2 (WS2-C) samples. This excellent performance is further attributed to obviously promoted interfacial reaction in WS2 nanosheets at a low voltage platform (0.3-0.0 V), which is considered to closely relate to the incorporation of nitrogen-doped conductive carbon into WS2 nanosheets. Generally, this work presents an obviously enhanced Na storage performance by the incorporation of N-doped carbon into WS2 nanosheets to promote their interfacial reaction at low voltage platform. It could provide guidelines to create other high-capacity anode sulfide materials for SIBs. PMID:27564678

  6. Changes of carbon, nitrogen, phosphorous, and potassium content during storage of vermicomposts prepared from different substrates.

    PubMed

    Das, D; Powell, Michael; Bhattacharyya, P; Banik, P

    2014-12-01

    The study was conducted to determine the optimum storage time for vermicompost without significant loss of nutrients; nitrogen (N), phosphorous (P), and potassium (K). Cattle manure, paddy straw, municipal solid wastes, and fly ash were used for vermicompost preparations. The dynamics of N, P, and K in the vermicomposts were studied during 180 days of incubation at 28-32 °C. In general, N concentration increased in the first 90-105 days of incubation and then gradually decreased until the 180th day while P and K concentrations steadily decreased over the length of the study, with the rate of loss leveling off after 150 days. The rate of nutrient loss was directly related to the initial level, decreasing the fastest for the nutrients with the highest initial concentrations. Optimum storage times were substrate and N dependent. PMID:25208521

  7. Changes of carbon, nitrogen, phosphorous, and potassium content during storage of vermicomposts prepared from different substrates.

    PubMed

    Das, D; Powell, Michael; Bhattacharyya, P; Banik, P

    2014-12-01

    The study was conducted to determine the optimum storage time for vermicompost without significant loss of nutrients; nitrogen (N), phosphorous (P), and potassium (K). Cattle manure, paddy straw, municipal solid wastes, and fly ash were used for vermicompost preparations. The dynamics of N, P, and K in the vermicomposts were studied during 180 days of incubation at 28-32 °C. In general, N concentration increased in the first 90-105 days of incubation and then gradually decreased until the 180th day while P and K concentrations steadily decreased over the length of the study, with the rate of loss leveling off after 150 days. The rate of nutrient loss was directly related to the initial level, decreasing the fastest for the nutrients with the highest initial concentrations. Optimum storage times were substrate and N dependent.

  8. Propionate supplementation improves nitrogen use by reducing urea flux in sheep.

    PubMed

    Agarwal, U; Hu, Q; Bequette, B J

    2015-10-01

    experiments. In Exp. 1, glucose entry and gluconeogenesis were greater ( < 0.05) and plasma glucose tended ( < 0.1) to be greater with sodium propionate infusion than with sodium acetate infusion, but there was no difference in Cori cycling. In Exp. 2, glucose entry, gluconeogenesis, Cori cycling, and plasma glucose increased ( < 0.05) with dietary propionate. Our studies indicate that propionate inclusion in feed, but not continuous infusion in to the rumen, improves N utilization in growing sheep. The propionate effect is likely mediated by providing additional precursors for gluconeogenesis.

  9. Propionate supplementation improves nitrogen use by reducing urea flux in sheep.

    PubMed

    Agarwal, U; Hu, Q; Bequette, B J

    2015-10-01

    experiments. In Exp. 1, glucose entry and gluconeogenesis were greater ( < 0.05) and plasma glucose tended ( < 0.1) to be greater with sodium propionate infusion than with sodium acetate infusion, but there was no difference in Cori cycling. In Exp. 2, glucose entry, gluconeogenesis, Cori cycling, and plasma glucose increased ( < 0.05) with dietary propionate. Our studies indicate that propionate inclusion in feed, but not continuous infusion in to the rumen, improves N utilization in growing sheep. The propionate effect is likely mediated by providing additional precursors for gluconeogenesis. PMID:26523581

  10. [Impact of different nitrogen concentrations on the N2O production in the denitrification process of granular sludge].

    PubMed

    Han, Xue; Gao, Da-Wen

    2013-01-01

    The aerobic-anoxic SBR biological wastewater treatment systems were used to examine the impact of different influent NH4(+) -N concentrations on the release of N2O and nitrogen removal in the simultaneous nitrification and denitrification of granular sludge. The results showed that when the influent NH4(+) -N concentration suddenly increased from the stable concentrations of 30 mg x L(-1) to 40 mg x L(-1), 60 mg x L(-1) and 80 mg x L(-1), the ammonia removal rate decreased from 80.04% to 61.40%, 39.65% and 31.02%, respectively, however, the ammonia nitrogen removal amount underwent little change, being about 25 mg x L(-1) in all cases; in addition, there was little influence of influent NH4(+) -N on the N2O production, under the four different influent NH4(+) -N concentrations, the N2O production in a typical cycle was 3.019 mg x m(-3), 3.489 mg x m(-3), 3.271 mg x m(-3), and 3.490 mg x m(-3), respectively, and the N2O emission rates were all around 0.0045 mg x (m3 x min)(-1). N2O was produced in both the aerobic stage and anoxic stage of the granular sludge simultaneous nitrification and denitrification system. Under different influent NH4(+) -N concentrations, the amount of NH4(+) -N removal by the granular sludge simultaneous nitrification and denitrification system was not changed, but significant decrease in nitrogen removal rate was observed with the increase in the influent NH4(+) -N concentration.

  11. Metformin Improves Diabetic Bone Health by Re-Balancing Catabolism and Nitrogen Disposal

    PubMed Central

    Li, Xiyan; Guo, Yuqi; Yan, Wenbo; Snyder, Michael P.; Li, Xin

    2015-01-01

    Objective Metformin, a leading drug used to treat diabetic patients, is reported to benefit bone homeostasis under hyperglycemia in animal models. However, both the molecular targets and the biological pathways affected by metformin in bone are not well identified or characterized. The objective of this study is to investigate the bioengergeric pathways affected by metformin in bone marrow cells of mice. Materials and Methods Metabolite levels were examined in bone marrow samples extracted from metformin or PBS -treated healthy (Wild type) and hyperglycemic (diabetic) mice using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. We applied an untargeted high performance LC-MS approach which combined multimode chromatography (ion exchange, reversed phase and hydrophilic interaction (HILIC)) and Orbitrap-based ultra-high accuracy mass spectrometry to achieve a wide coverage. A multivariate clustering was applied to reveal the global trends and major metabolite players. Results A total of 346 unique metabolites were identified, and they are grouped into distinctive clusters that reflected general and diabetes-specific responses to metformin. As evidenced by changes in the TCA and urea cycles, increased catabolism and nitrogen waste that are commonly associated with diabetes were rebalanced upon treatment with metformin. In particular, we found glutamate and succinate whose levels were drastically elevated in diabetic animals were brought back to normal levels by metformin. These two metabolites were further validated as the major targets of metformin in bone marrow stromal cells. Conclusion Overall using limited sample size, our study revealed the metabolic pathways modulated by metformin in bones which have broad implication in our understanding of bone remodeling under hyperglycemia and in finding therapeutic interventions in mammals. PMID:26716870

  12. Changes of Nitrogen Transformation Rates and Related Functional Genes Abundance under Different Dissolved Oxygen Levels in sediments form an Urban River

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2015-12-01

    In the nitrogen rich urban river sediments, we investigated the nitrogen transformation rates and nitrogen-cycling genes in response to different dissolved oxygen (DO) supply levels (saturation, DO > 8.00 mg L-1; aerobic, 2.50 mg L-1 nitrogen transformation rates (ammonium release, ammonia oxidation, nitrite oxidation, denitrification, and anammox) and their corresponding integrated amounts were solved by the least square analysis. Results showed that the total amount of ammonium oxidation, nitrite oxidation, denitrification, and anammox increased with the elevated dissolved oxygen levels, but the amount of ammonium release decreased inversely. The increasing DO level also raised the total amount of nitrogen loss (from 6.12 mg N to 35.44 mg N) and its proportion to ammonium liberated (from 12.96% to 99.84%), but the contributions of anammox to nitrogen loss in each incubation showed no significant difference (83.36% to 89.19%). The dissolved oxygen facilitated an exponential increasing of the anammox oxidizing archaea (AOA) and bacteria (AOB), and raised the denitrifiers (nirK and nirS gene) abundance by an order, but its influence on anammox (hzsB) was insignificant. Four quantitative response relationships between nitrogen transformation rates, nitrogen functional genes abundances, and nitrogen concentrations were established by stepwise linear regression analysis. These relationships confirmed that different nitrogen transformation processes were coupled at the molecular level (functional genes), especially for the coupling of ammonium oxidation and anammox.

  13. Acclimation of the Global Transcriptome of the Cyanobacterium Synechococcus sp. Strain PCC 7002 to Nutrient Limitations and Different Nitrogen Sources

    PubMed Central

    Ludwig, Marcus; Bryant, Donald A.

    2012-01-01

    The unicellular, euryhaline cyanobacterium Synechococcus sp. strain PCC 7002 is a model organism for laboratory-based studies of cyanobacterial metabolism and is a potential platform for biotechnological applications. Two of its most notable properties are its exceptional tolerance of high-light intensity and very rapid growth under optimal conditions. In this study, transcription profiling by RNAseq has been used to perform an integrated study of global changes in transcript levels in cells subjected to limitation for the major nutrients CO2, nitrogen, sulfate, phosphate, and iron. Transcriptional patterns for cells grown on nitrate, ammonia, and urea were also studied. Nutrient limitation caused strong decreases of transcript levels of the genes encoding major metabolic pathways, especially for components of the photosynthetic apparatus, CO2 fixation, and protein biosynthesis. Uptake mechanisms for the respective nutrients were strongly up-regulated. The transcription data further suggest that major changes in the composition of the NADH dehydrogenase complex occur upon nutrient limitation. Transcripts for flavoproteins increased strongly when CO2 was limiting. Genes involved in protection from oxidative stress generally showed high, constitutive transcript levels, which possibly explains the high-light tolerance of this organism. The transcriptomes of cells grown with ammonia or urea as nitrogen source showed increased transcript levels for components of the CO2 fixation machinery compared to cells grown with nitrate, but in general transcription differences in cells grown on different N-sources exhibited surprisingly minor differences. PMID:22514553

  14. Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances.

    PubMed

    Du, Baoguo; Jansen, Kirstin; Junker, Laura Verena; Eiblmeier, Monika; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo; Rennenberg, Heinz

    2014-10-01

    Global climate change causes an increase in ambient air temperature, a major environmental factor influencing plant physiology and growth that already has been perceived at the regional scale and is expected to become even more severe in the future. In the present study, we investigated the effect of elevated ambient air temperature on the nitrogen metabolism of two interior provenances of Douglas fir (Pseudotsuga menziesii var. glauca) originating from contrasting habitats, namely the provenances Monte Creek (MC) from a drier environment and Pend Oreille (PO) from a more humid environment. Three- to four-year-old seedlings of the two provenances were grown for 3 months in controlled environments under either control temperature (day 20 °C, night 15 °C) or high temperature (HT, 30/25 °C) conditions. Total nitrogen (N), soluble protein, chlorophyll and total amino acid (TAA) contents as well as individual amino acid concentrations were determined in both current-year and previous-year needles. Our results show that the foliar total N contents of the two provenances were unaffected by HT. Arginine, lysine, proline, glutamate and glutamine were the most abundant amino acids, which together contributed ∼88% to the TAA pool of current- and previous-year needles. High temperature decreased the contents of most amino acids of the glutamate family (i.e., arginine, proline, ornithine and glutamine) in current-year needles. However, HT did not affect the concentrations of metabolites related to the photorespiratory pathway, such as [Formula: see text], glycine and serine. In general, current-year needles were considerably more sensitive to HT than previous-year needles. Moreover, provenance PO originating from a mesic environment showed stronger responses to HT than provenance MC. Our results indicate provenance-specific plasticity in the response of Douglas fir to growth temperature. Provenance-specific effects of elevated temperature on N-use efficiency suggest

  15. Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances.

    PubMed

    Du, Baoguo; Jansen, Kirstin; Junker, Laura Verena; Eiblmeier, Monika; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo; Rennenberg, Heinz

    2014-10-01

    Global climate change causes an increase in ambient air temperature, a major environmental factor influencing plant physiology and growth that already has been perceived at the regional scale and is expected to become even more severe in the future. In the present study, we investigated the effect of elevated ambient air temperature on the nitrogen metabolism of two interior provenances of Douglas fir (Pseudotsuga menziesii var. glauca) originating from contrasting habitats, namely the provenances Monte Creek (MC) from a drier environment and Pend Oreille (PO) from a more humid environment. Three- to four-year-old seedlings of the two provenances were grown for 3 months in controlled environments under either control temperature (day 20 °C, night 15 °C) or high temperature (HT, 30/25 °C) conditions. Total nitrogen (N), soluble protein, chlorophyll and total amino acid (TAA) contents as well as individual amino acid concentrations were determined in both current-year and previous-year needles. Our results show that the foliar total N contents of the two provenances were unaffected by HT. Arginine, lysine, proline, glutamate and glutamine were the most abundant amino acids, which together contributed ∼88% to the TAA pool of current- and previous-year needles. High temperature decreased the contents of most amino acids of the glutamate family (i.e., arginine, proline, ornithine and glutamine) in current-year needles. However, HT did not affect the concentrations of metabolites related to the photorespiratory pathway, such as [Formula: see text], glycine and serine. In general, current-year needles were considerably more sensitive to HT than previous-year needles. Moreover, provenance PO originating from a mesic environment showed stronger responses to HT than provenance MC. Our results indicate provenance-specific plasticity in the response of Douglas fir to growth temperature. Provenance-specific effects of elevated temperature on N-use efficiency suggest

  16. Identification and characterization of improved nitrogen efficiency in interspecific hybridized new-type Brassica napus

    PubMed Central

    Wang, Gaili; Ding, Guangda; Li, Ling; Cai, Hongmei; Ye, Xiangsheng; Zou, Jun; Xu, Fangsen

    2014-01-01

    Background and Aims Oilseed rape (Brassica napus) is an important oil crop worldwide. The aim of this study was to identify the variation in nitrogen (N) efficiency of new-type B. napus (genome ArArCcCc) genotypes, and to characterize some critical physiological and molecular mechanisms in response to N limitation. Methods Two genotypes with contrasting N efficiency (D4-15 and D1-1) were identified from 150 new-type B. napus lines, and hydroponic and pot experiments were conducted. Root morphology, plant biomass, N uptake parameters and seed yield of D4-15 and D1-1 were investigated. Two traditional B. napus (genome AnAnCnCn) genotypes, QY10 and NY7, were also cultivated. Introgression of exotic genomic components in D4-15 and D1-1 was evaluated with molecular markers. Key Results Large genetic variation existed among traits contributing to the N efficiency of new-type B. napus. Under low N levels at the seedling stage, the N-efficient new-type D4-15 showed higher values than the N-inefficient D1-1 line and the traditional B. napus QY10 and NY7 genotypes with respect to several traits, including root and shoot biomass, root morphology, N accumulation, N utilization efficiency (NutE), N uptake efficiency (NupE), activities of nitrate reductase (NR) and glutamine synthetase (GS), and expression levels of N transporter genes and genes that are involved in N assimilation. Higher yield was produced by the N-efficient D4-15 line compared with the N-inefficient D1-1 at maturity. More exotic genome components were introgressed into the genome of D4-15 (64·97 %) compared with D1-1 (32·23 %). Conclusions The N-efficient new-type B. napus identified in this research had higher N efficiency (and tolerance to low-N stress) than traditional B. napus cultivars, and thus could have important potential for use in breeding N-efficient B. napus cultivars in the field. PMID:24989788

  17. Feed intake, growth, digestibility of dry matter and nitrogen in young pigs as affected by dietary cation-anion difference and supplementation of xylanase.

    PubMed

    Dersjant-Li, Y; Schulze, H; Schrama, J W; Verreth, J A; Verstegen, M W

    2001-04-01

    An experiment was conducted to test the effect of dietary cation-anion difference (CAD, Na(+) + K(+)-Cl(-), mEq/kg diet) and xylanase addition on feed consumption, digestibility of nutrients, plasma electrolyte balance and growth performance in young pigs. A 2 x 3 factorial arrangement with three dietary CAD levels (-100, 200, and 500 mEq/kg) and two levels of xylanase supplementation (0 and 0.1% xylanase derived from Trichoderma longibrachiatum) was used. Thirty-six individually housed, castrated pigs (5 weeks old) with an initial body weight of 9.34 +/- 0.28 kg (mean +/- SEM) were randomly assigned to the six treatments. Diets were provided to pigs as cold pellets. Pigs had ad libitum access to feed and water. Venous plasma Cl(-) concentration was higher (p < 0.0001) in dietary CAD of - 100 mEq/kg group compared with the other two CAD groups. Dietary CAD did not affect Na(+) and K(+) concentrations in the venous plasma. Growth rates were higher (p < 0.05) in pigs receiving dietary CAD of 200 mEq/kg (657 g/pig.day) and dietary CAD of 500 mEq/kg (603 g/pig.day) than in pigs receiving dietary CAD of -100 mEq/kg (484 g/pig.day). Faecal dry matter and nitrogen decreased with increasing dietary CAD. Faecal apparent digestibility of dry matter and nitrogen was higher (p < 0.05) in the dietary CAD of 500 mEq/kg compared to the two lower level CAD groups. Supplementation of xylanase did not affect the performance of pigs. Xylanase addition in the diet significantly increased apparent faecal digestibility of dry matter and tended to increase apparent digestibility of nitrogen. No interaction between dietary CAD and xylanase was found. In conclusion, dietary CAD influenced the performance and digestibility of nutrients of pigs. Xylanase supplementation improved digestibility of dry matter.

  18. Improvement in carbofuran degradation by different Fenton's reagent dosing processes.

    PubMed

    Ma, Ying-Shih

    2011-11-01

    Attempts were made in this study to examine the efficiency of Fenton's reagent with different dosing processes and H(2)O(2) and Fe(2+) concentrations for the treatment of carbofuran wastewater. Carbofuran degradation, total organic carbon (TOC) removal and H(2)O(2) consumption were determined during the experiments. Increases in H(2)O(2) and Fe(2+) concentrations led to an increase in the degradation of carbofuran. Almost 100% of carbofuran could be degraded at pH 3, 120 mg L(-1) H(2)O(2), 24 mg L(-1) Fe(2+) and 30 minutes reaction time; removals of TOC were among 48.8%-53.3% under different dosing processes. A continuous dosing process was beneficial to improve the removal of TOC by Fenton's reagent. Rate constants of carbofuran degradation could be calculated by the first-order kinetics; increase in the Fenton's reagent generally increased the rate constants. Gas chromatography-mass spectrometry analysis found five degradation products by hydroxyl radicals attack. Thus, this study might offer an effective dosing way for carbofuran wastewater treatment by Fenton's reagent.

  19. Improvement of different vaccine delivery systems for cancer therapy

    PubMed Central

    2011-01-01

    Cancer vaccines are the promising tools in the hands of the clinical oncologist. Many tumor-associated antigens are excellent targets for immune therapy and vaccine design. Optimally designed cancer vaccines should combine the best tumor antigens with the most effective immunotherapy agents and/or delivery strategies to achieve positive clinical results. Various vaccine delivery systems such as different routes of immunization and physical/chemical delivery methods have been used in cancer therapy with the goal to induce immunity against tumor-associated antigens. Two basic delivery approaches including physical delivery to achieve higher levels of antigen production and formulation with microparticles to target antigen-presenting cells (APCs) have demonstrated to be effective in animal models. New developments in vaccine delivery systems will improve the efficiency of clinical trials in the near future. Among them, nanoparticles (NPs) such as dendrimers, polymeric NPs, metallic NPs, magnetic NPs and quantum dots have emerged as effective vaccine adjuvants for infectious diseases and cancer therapy. Furthermore, cell-penetrating peptides (CPP) have been known as attractive carrier having applications in drug delivery, gene transfer and DNA vaccination. This review will focus on the utilization of different vaccine delivery systems for prevention or treatment of cancer. We will discuss their clinical applications and the future prospects for cancer vaccine development. PMID:21211062

  20. Sewage treatment by an UAFB-EGSB biosystem with energy recovery and autotrophic nitrogen removal under different temperatures.

    PubMed

    Gao, Da-Wen; Huang, Xiao-Li; Tao, Yu; Cong, Yan; Wang, Xiao-Long

    2015-04-01

    A system combined an upflow anaerobic fixed bed (UAFB) and an expanded granular sludge bed (EGSB) was designed and verified as a success for treating real sewage with simultaneous energy recovery and autotrophic nitrogen removal. The impact of temperature (stepwise decreased from 30 °C to 20 °C and 10 °C) was a primary focus, aiming to reveal the response of the anaerobic digestion (AD) and anammox efficiency to the temperature variation. As the temperature decreases, the soluble chemical oxygen demand (sCOD) removal rate was 90.6%, 90.0% and 84.7%, respectively; total nitrogen (TN) removal was 69.4%, 48.8%, 38.4%, respectively; NH4(+)-N removal was 91.3%, 74.9%, 65.1%, respectively. Methanogenic activity of UAFB was significantly influenced by low temperatures, while the unavoidable growth of heterotrophic organisms in EGSB also contributed to the sCOD removal, even at 10 °C. Lower working temperature (10/20 °C) limited the growth and activity of ammonia-oxidizing bacteria (AOB) and anaerobic ammonia oxidation bacteria (AnAOB), but improved the nitrite-oxidizing bacteria (NOB) activity.

  1. Reducing nitrogen runoff from paddy fields with arbuscular mycorrhizal fungi under different fertilizer regimes.

    PubMed

    Zhang, Shujuan; Wang, Li; Ma, Fang; Zhang, Xue; Fu, Dafang

    2016-08-01

    Nitrogen (N) runoff from paddy fields serves as one of the main sources of water pollution. Our aim was to reduce N runoff from paddy fields by fertilizer management and inoculation with arbuscular mycorrhizal fungi (AMF). In northeast China, Shuangcheng city in Heilongjiang province, a field experiment was conducted, using rice provided with 0%, 20%, 40%, 60%, 80%, and 100% of the local norm of fertilization (including N, phosphorus and potassium), with or without inoculation with Glomus mosseae. The volume, concentrations of total N (TN), dissolved N (DN) and particulate N (PN) of runoff water were measured. We found that the local norm of fertilization led to 18.9kg/ha of N runoff during rice growing season, with DN accounting for 60%-70%. We also found that reduction in fertilization by 20% cut down TN runoff by 8.2% while AMF inoculation decreased N runoff at each fertilizer level and this effect was inhibited by high fertilization. The combination of inoculation with AMF and 80% of the local norm of fertilization was observed to reduce N runoff by 27.2%. Conclusively, we suggested that the contribution of AMF inoculation combined with decreasing fertilization should get more attention to slow down water eutrophication by reducing N runoff from paddy fields. PMID:27521940

  2. Surface modification of poly(dimethylsiloxane) through oxygen and nitrogen plasma treatment to improve its characteristics towards biomedical applications

    NASA Astrophysics Data System (ADS)

    Gomathi, N.; Mishra, I.; Varma, S.; Neogi, S.

    2015-09-01

    Polymeric materials successfully applied in biomedical applications have an issue of poor surface properties which may restrict their applications as biomaterials. The present paper aims to study the effect of oxygen and nitrogen plasma treatment on physico-chemical properties of poly(dimethylsiloxane) (PDMS) and enhancement in its biocompatibility. Various characterization techniques including Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy (SEM), atomic force microscopy were used to evaluate the changes in surface chemistry and morphology of plasma treated PDMS. Changes in the wettability after plasma treatments and the effects of ageing on wettability were studied by contact angle measurement. Ageing studies showed that the contact angle was stable after two hours. The effect of plasma treatment on biocompatibility was studied through cell adhesion and MTT using 3T3 fibroblast cells. Morphology of cells obtained through SEM was analyzed using ImageJ software. Among the different treated and untreated samples, substantial enhancement in biocompatibility was observed for nitrogen plasma treated PDMS for 5 min in terms of highest cell area observed from cell adhesion test and highest cell viability observed from MTT test. This may be probably due to its highest polarity (0.4) and surface energy (33.3 N mm-2) with a moderate surface roughness (Rrms = 100.24 nm) among the other treated and untreated samples.

  3. [Effect of different volume loading of aerobic/anaerobic zone on nitrogen and phosphorus removal by biofilm and granular sludge coupling process].

    PubMed

    Yin, Hang; Liu, Chang; Gao, Hui; Gao, Da-Wen

    2014-05-01

    The effect of different aerobic/anaerobic zone volume loading on nitrogen and phosphorus removal by biological film and granular coupling process was investigated using a self-designed Biofilm/Granular sludge coupling reactor. Three operating modes were conducted in the experiment. In operating mode I ,the volume of aerobic zone was 9. 66 L, and the volume of anaerobic zone was 15. 34 L. In operating mode II , the volume of aerobic zone was 12. 56 L, and the volume of anaerobic zone was 12. 44 L. In operating mode III , the volume of aerobic zone was 15.42 L, and the volume of anaerobic zone was 9.58 L. Three operating modes expressed different volume loading of the reactor because of different aerobic/anaerobic zone. The results showed that the performance of ammonia nitrogen and phosphorus removal was a bit poor in operating mode I , the effluent nitrate nitrogen was higher in operating mode III compared with other modes, which brought the total nitrogen removal efficiency lower. The operating mode II was optimal for nitrogen and phosphorus removal. In operating mode II , the ammonia nitrogen removal efficiency was about 80. 63% , the volume loading rate of nitrogen removal was about 150. 27 g(m3 d)-1, and the COD removal efficiency was higher than 83.24%; the amounts of phosphorus release and uptake under anaerobic conditions were 7. 23 mg L-1 and 11. 93 mg L-1.

  4. [Effects of different vegetation restoration patterns on the diversity of soil nitrogen-fixing microbes in Hulunbeier sandy land, Inner Mongolia of North China].

    PubMed

    Li, Gang; Wang, Li-Juan; Li, Yu-Jie; Qiao, Jiang; Zhang, Hai-Fang; Song, Xiao-Long; Yang, Dian-Lin

    2013-06-01

    By using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequence analysis, this paper studied the nifH gene diversity and community structure of soil nitrogen-fixing microbes in Hulunbeier sandy land of Inner Mongolia under four years management of five vegetation restoration modes, i. e., mixed-planting of Agropyron cristatum, Hedysarum fruticosum, Caragana korshinskii, and Elymus nutans (ACHE) and of Agropyron cristatum and Hedysarum fruticosum (AC), and mono-planting of Caragana korshinskii (UC), Agropyron cristatum (UA), and Hedysarum fruticosum (UH), taking the bare land as the control (CK). There existed significant differences in the community composition of nitrogen-fixing microbes among the five vegetation restoration patterns. The Shannon index of the nifH gene was the highest under ACHE, followed by under AC, UC, UA, and UH, and the lowest in CK. Except that UH and CK had less difference in the Shannon index, the other four vegetation restoration modes had a significantly higher Shannon index than CK (P < 0.05). The phylogenetic analysis showed that the soil nitrogen-fixing microbes under UA, UH, and UC were mainly of cyanobacteria, but the soil nitrogen-fixing microbes under AC and ACHE changed obviously, mainly of proteobacteria, and also of cyanobacteria. The canonical correlation analysis showed that the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen contents under the five vegetation restoration modes had significant effects on the nitrogen-fixing microbial communities, and there existed significant correlations among the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen. It was suggested that the variations of the community composition of soil nitrogen-fixing microbes under the five vegetation restoration modes were resulted from the interactive and combined effects of the soil physical and chemical factors.

  5. [Effects of different vegetation restoration patterns on the diversity of soil nitrogen-fixing microbes in Hulunbeier sandy land, Inner Mongolia of North China].

    PubMed

    Li, Gang; Wang, Li-Juan; Li, Yu-Jie; Qiao, Jiang; Zhang, Hai-Fang; Song, Xiao-Long; Yang, Dian-Lin

    2013-06-01

    By using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequence analysis, this paper studied the nifH gene diversity and community structure of soil nitrogen-fixing microbes in Hulunbeier sandy land of Inner Mongolia under four years management of five vegetation restoration modes, i. e., mixed-planting of Agropyron cristatum, Hedysarum fruticosum, Caragana korshinskii, and Elymus nutans (ACHE) and of Agropyron cristatum and Hedysarum fruticosum (AC), and mono-planting of Caragana korshinskii (UC), Agropyron cristatum (UA), and Hedysarum fruticosum (UH), taking the bare land as the control (CK). There existed significant differences in the community composition of nitrogen-fixing microbes among the five vegetation restoration patterns. The Shannon index of the nifH gene was the highest under ACHE, followed by under AC, UC, UA, and UH, and the lowest in CK. Except that UH and CK had less difference in the Shannon index, the other four vegetation restoration modes had a significantly higher Shannon index than CK (P < 0.05). The phylogenetic analysis showed that the soil nitrogen-fixing microbes under UA, UH, and UC were mainly of cyanobacteria, but the soil nitrogen-fixing microbes under AC and ACHE changed obviously, mainly of proteobacteria, and also of cyanobacteria. The canonical correlation analysis showed that the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen contents under the five vegetation restoration modes had significant effects on the nitrogen-fixing microbial communities, and there existed significant correlations among the soil total phosphorus, available phosphorus, total nitrogen, and nitrate nitrogen. It was suggested that the variations of the community composition of soil nitrogen-fixing microbes under the five vegetation restoration modes were resulted from the interactive and combined effects of the soil physical and chemical factors. PMID:24066552

  6. Improving low-energy boron/nitrogen ion implantation in graphene by ion bombardment at oblique angles

    NASA Astrophysics Data System (ADS)

    Bai, Zhitong; Zhang, Lin; Liu, Ling

    2016-04-01

    Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically analyzing the effects of the incident angle and ion energy in determining the probabilities of six distinct types of physics that may occur in an ion bombardment event, including reflection, absorption, substitution, single vacancy, double vacancy, and transmission. By analyzing the atomic trajectories from 576 000 simulations, we identified three single vacancy creation mechanisms and four double vacancy creation mechanisms, and quantified their probability distributions in the angle-energy space. These findings further open the door for improved control of ion implantation towards a wide range of applications of graphene.Ion implantation is a widely adopted approach to structurally modify graphene and tune its electrical properties for a variety of applications. Further development of the approach requires a fundamental understanding of the mechanisms that govern the ion bombardment process as well as establishment of key relationships between the controlling parameters and the dominant physics. Here, using molecular dynamics simulations with adaptive bond order calculations, we demonstrate that boron and nitrogen ion bombardment at oblique angles (particularly at 70°) can improve both the productivity and quality of perfect substitution by over 25%. We accomplished this by systematically

  7. Together but different: co-occurring dune plant species differ in their water- and nitrogen-use strategies.

    PubMed

    Bermúdez, Raimundo; Retuerto, Rubén

    2014-03-01

    Stress factors may severely constrain the range of plant physiological responses in harsh environments. Convergence of traits is expected in coastal dunes because of environmental filtering imposed by severe abiotic factors. However, the wide range of morphological and phenological traits exhibited by coexisting dune species suggests considerable variation in functional traits. We hypothesized that the constraints imposed by structural traits ought to translate into physiological differences. Five dominant species with different morphological traits, but coexisting in a homogeneous dune area in Northwest Spain, were selected for study. Soil characteristics and leaf functional traits were measured in April, June and November 2008. Integrated water-use efficiency (assessed by C isotope discrimination) and N acquisition and use strategies (estimated by N isotope composition) varied significantly among species and the differences changed over time. Species differences in specific leaf area, relative water content, leaf N and C:N ratio, also varied over time. The species differed in stomatal density but not in soil characteristics, with the exception of pH. Species differences in functional traits related to the use of resources suggest species niche segregation. Species-specific temporal effects on the use of these resources support temporal niche differentiation. Somewhat in contrast to the findings of previous studies on harsh environments, this study revealed a considerable level of functional diversity and complexity, suggesting that dune plant species have evolved species-specific strategies to survive by partitioning growth-limiting resources.

  8. Responses of nitrogen metabolism and seed nutrition to drought stress in soybean genotypes differing in slow-wilting phenotype1

    PubMed Central

    Bellaloui, Nacer; Gillen, Anne M.; Mengistu, Alemu; Kebede, Hirut; Fisher, Daniel K.; Smith, James R.; Reddy, Krishna N.

    2013-01-01

    Recent advances in soybean breeding have resulted in genotypes that express the slow-wilting phenotype (trait) under drought stress conditions. The physiological mechanisms of this trait remain unknown due to the complexity of trait × environment interactions. The objective of this research was to investigate nitrogen metabolism and leaf and seed nutrients composition of the slow-wilting soybean genotypes under drought stress conditions. A repeated greenhouse experiment was conducted using check genotypes: NC-Roy (fast wilting), Boggs (intermediate in wilting); and NTCPR94-5157 and N04-9646 (slow-wilting, SLW) genotypes. Plants were either well-watered or drought stressed. Results showed that under well-watered conditions, nitrogen fixation (NF), nitrogen assimilation (NA), and leaf and seed composition differed between genotypes. Under drought stress, NF and NA were higher in NTCPR94-5157 and N04-9646 than in NC-Roy and Boggs. Under severe water stress, however, NA was low in all genotypes. Leaf water potential was significantly lower in checks (−2.00 MPa) than in the SLW genotypes (−1.68 MPa). Leaf and seed concentrations of K, P, Ca, Cu, Na, B were higher in SLW genotypes than in the checks under drought stress conditions. Seed protein, oleic acid, and sugars were higher in SLW genotypes, and oil, linoleic and linolenic acids were lower in SLW genotypes. This research demonstrated that K, P, Ca, Cu, Na, and B may be involved in SLW trait by maintaining homeostasis and osmotic regulation. Maintaining higher leaf water potential in NTCPR94-5157 and N04-9646 under drought stress could be a possible water conservation mechanism to maintain leaf turgor pressure. The increase in osmoregulators such as minerals, raffinose, and stachyose, and oleic acid could be beneficial for soybean breeders in selecting for drought stress tolerance. PMID:24339829

  9. Different Growth Responses of an Invasive Weed and a Native Crop to Nitrogen Pulse and Competition

    PubMed Central

    Lu, Ping; Li, Jingxin; Jin, Chenggong; Jiang, Baiwen; Bai, Yamei

    2016-01-01

    Resource pulses are a common event in agro-ecosystems. A pot experiment was conducted to assess the effects of nitrogen (N) pulses and competition on the growth of an invasive weed, Amaranthus retroflexus, and a native crop, Glycine max. A. retroflexus and G. max were planted in pure culture with two individuals of one species in each pot and in mixed culture with one A. retroflexus and one G. max individual and subjected to three N pulse treatments. The N treatments included a no-peak treatment (NP) with N applied stably across the growing period, a single-peak treatment (SP) with only one N addition on the planting date, and a double-peak treatment (DP) with two N additions, one on the planting date and the other on the flowering date. N pulse significantly impacted biomass and height of the two species across the whole growing season. However, only the relative growth rate (RGR) of A. retroflexus was significantly affected by N pulse. A. retroflexus had the greatest biomass and height in the SP treatment at the first harvest, and in the DP treatment at the last three harvests. Pure culture G. max produced the greatest biomass in the DP treatment. In mixed culture, G. max produced the greatest biomass in the NP treatment. Biomass production of both species was significantly influenced by species combination, with higher biomass in mixed culture than in pure culture at most growth stages. Relative yield total (RYT) values were all greater than 1.0 at the last three harvests across the three N treatments, suggesting partial resource complementarity occurred when A. retroflexus is grown with G. max. These results indicate that A. retroflexus has a strong adaptive capacity to reduce interspecific competition, likely leading to its invasion of G. max cropland in China. PMID:27280410

  10. Excretory nitrogen metabolism in the juvenile axolotl Ambystoma mexicanum: differences in aquatic and terrestrial environments.

    PubMed

    Loong, Ai M; Chew, Shit F; Ip, Yuen K

    2002-01-01

    The fully grown but nonmetamorphosed (juvenile) axolotl Ambystoma mexicanum was ureogenic and primarily ureotelic in water. A complete ornithine-urea cycle (OUC) was present in the liver. Aerial exposure impeded urea (but not ammonia) excretion, leading to a decrease in the percentage of nitrogen excreted as urea in the first 24 h. However, urea and not ammonia accumulated in the muscle, liver, and plasma during aerial exposure. By 48 h, the rate of urea excretion recovered fully, probably due to the greater urea concentration gradient in the kidney. It is generally accepted that an increase in carbamoyl phosphate synthetase activity is especially critical in the developmental transition from ammonotelism to ureotelism in the amphibian. Results from this study indicate that such a transition in A. mexicanum would have occurred before migration to land. Aerial exposure for 72 h exhibited no significant effect on carbamoyl phosphate synthetase-I activity or that of other OUC enzymes (with the exception of ornithine transcarbamoylase) from the liver of the juvenile A. mexicanum. This supports our hypothesis that the capacities of OUC enzymes present in the liver of the aquatic juvenile axolotl were adequate to prepare it for its invasion of the terrestrial environment. The high OUC capacity was further supported by the capability of the juvenile A. mexicanum to survive in 10 mM NH(4)Cl without accumulating amino acids in its body. The majority of the accumulating endogenous and exogenous ammonia was detoxified to urea, which led to a greater than twofold increase in urea levels in the muscle, liver, and plasma and a significant increase in urea excretion by hour 96. Hence, it can be concluded that the juvenile axolotl acquired ureotelism while submerged in water, and its hepatic capacity of urea synthesis was more than adequate to handle the toxicity of endogenous ammonia during migration to land.

  11. Functional groups show distinct differences in nitrogen cycling during early stand development: implications for forest management.

    SciTech Connect

    Aubrey, Doug, P.; Coyle, David, R. Coleman, Mark, D.

    2011-08-26

    Nutrient acquisition of forest stands is controlled by soil resource availability and belowground production, but tree species are rarely compared in this regard. Here, we examine ecological and management implications of nitrogen (N) dynamics during early forest stand development in productive commercial tree species with narrow (Populus deltoides Bartr. and Platanus occidentalis L.) and broad (Liquidambar styraciflua L. and Pinus taeda L.) site requirements while grown with a range of nutrient and water resources. We constructed N budgets by measuring N concentration ([N]) and N content (N{sub C}) of above- and belowground perennial and ephemeral tissues, determined N uptake (N{sub UP}), and calculated N use efficiency (NUE). Forest stands regulated [N] within species-specific operating ranges without clear temporal or treatment patterns, thus demonstrating equilibrium between tissue [N] and biomass accumulation. Forest stand N{sub C} and N{sub UP} increased with stand development and paralleled treatment patterns of biomass accumulation, suggesting productivity is tightly linked to N{sub UP}. Inclusion of above- and belowground ephemeral tissue turnover in N{sub UP} calculations demonstrated that maximum N demand for narrow-sites adapted species exceeded 200 kg N ha{sup -1} year{sup -1} while demand for broad-site adapted species was below this level. NUE was species dependent but not consistently influenced by N availability, suggesting relationships between NUE and resource availability were species dependent. Based on early stand development, species with broad site adaptability are favored for woody cropping systems because they maintain high above- and belowground productivity with minimal fertilization requirements due to higher NUE than narrow site adapted species.

  12. Different Growth Responses of an Invasive Weed and a Native Crop to Nitrogen Pulse and Competition.

    PubMed

    Lu, Ping; Li, Jingxin; Jin, Chenggong; Jiang, Baiwen; Bai, Yamei

    2016-01-01

    Resource pulses are a common event in agro-ecosystems. A pot experiment was conducted to assess the effects of nitrogen (N) pulses and competition on the growth of an invasive weed, Amaranthus retroflexus, and a native crop, Glycine max. A. retroflexus and G. max were planted in pure culture with two individuals of one species in each pot and in mixed culture with one A. retroflexus and one G. max individual and subjected to three N pulse treatments. The N treatments included a no-peak treatment (NP) with N applied stably across the growing period, a single-peak treatment (SP) with only one N addition on the planting date, and a double-peak treatment (DP) with two N additions, one on the planting date and the other on the flowering date. N pulse significantly impacted biomass and height of the two species across the whole growing season. However, only the relative growth rate (RGR) of A. retroflexus was significantly affected by N pulse. A. retroflexus had the greatest biomass and height in the SP treatment at the first harvest, and in the DP treatment at the last three harvests. Pure culture G. max produced the greatest biomass in the DP treatment. In mixed culture, G. max produced the greatest biomass in the NP treatment. Biomass production of both species was significantly influenced by species combination, with higher biomass in mixed culture than in pure culture at most growth stages. Relative yield total (RYT) values were all greater than 1.0 at the last three harvests across the three N treatments, suggesting partial resource complementarity occurred when A. retroflexus is grown with G. max. These results indicate that A. retroflexus has a strong adaptive capacity to reduce interspecific competition, likely leading to its invasion of G. max cropland in China. PMID:27280410

  13. Glucose, Nitrogen, and Phosphate Repletion in Saccharomyces cerevisiae: Common Transcriptional Responses to Different Nutrient Signals

    PubMed Central

    Conway, Michael K.; Grunwald, Douglas; Heideman, Warren

    2012-01-01

    Saccharomyces cerevisiae are able to control growth in response to changes in nutrient availability. The limitation for single macronutrients, including nitrogen (N) and phosphate (P), produces stable arrest in G1/G0. Restoration of the limiting nutrient quickly restores growth. It has been shown that glucose (G) depletion/repletion very rapidly alters the levels of more than 2000 transcripts by at least 2-fold, a large portion of which are involved with either protein production in growth or stress responses in starvation. Although the signals generated by G, N, and P are thought to be quite distinct, we tested the hypothesis that depletion and repletion of any of these three nutrients would affect a common core set of genes as part of a generalized response to conditions that promote growth and quiescence. We found that the response to depletion of G, N, or P produced similar quiescent states with largely similar transcriptomes. As we predicted, repletion of each of the nutrients G, N, or P induced a large (501) common core set of genes and repressed a large (616) common gene set. Each nutrient also produced nutrient-specific transcript changes. The transcriptional responses to each of the three nutrients depended on cAMP and, to a lesser extent, the TOR pathway. All three nutrients stimulated cAMP production within minutes of repletion, and artificially increasing cAMP levels was sufficient to replicate much of the core transcriptional response. The recently identified transceptors Gap1, Mep1, Mep2, and Mep3, as well as Pho84, all played some role in the core transcriptional responses to N or P. As expected, we found some evidence of cross talk between nutrient signals, yet each nutrient sends distinct signals. PMID:22973537

  14. Use of generalized additive models and cokriging of spatial residuals to improve land-use regression estimates of nitrogen oxides in Southern California

    PubMed Central

    Li, Lianfa; Wu, Jun; Wilhelm, Michelle; Ritz, Beate

    2012-01-01

    Land-use regression (LUR) models have been developed to estimate spatial distributions of traffic-related pollutants. Several studies have examined spatial autocorrelation among residuals in LUR models, but few utilized spatial residual information in model prediction, or examined the impact of modeling methods, monitoring site selection, or traffic data quality on LUR performance. This study aims to improve spatial models for traffic-related pollutants using generalized additive models (GAM) combined with cokriging of spatial residuals. Specifically, we developed spatial models for nitrogen dioxide (NO2) and nitrogen oxides (NOx) concentrations in Southern California separately for two seasons (summer and winter) based on over 240 sampling locations. Pollutant concentrations were disaggregated into three components: local means, spatial residuals, and normal random residuals. Local means were modeled by GAM. Spatial residuals were cokriged with global residuals at nearby sampling locations that were spatially auto-correlated. We compared this two-stage approach with four commonly-used spatial models: universal kriging, multiple linear LUR and GAM with and without a spatial smoothing term. Leave-one-out cross validation was conducted for model validation and comparison purposes. The results show that our GAM plus cokriging models predicted summer and winter NO2 and NOx concentration surfaces well, with cross validation R2 values ranging from 0.88 to 0.92. While local covariates accounted for partial variance of the measured NO2 and NOx concentrations, spatial autocorrelation accounted for about 20% of the variance. Our spatial GAM model improved R2 considerably compared to the other four approaches. Conclusively, our two-stage model captured summer and winter differences in NO2 and NOx spatial distributions in Southern California well. When sampling location selection cannot be optimized for the intended model and fewer covariates are available as predictors for

  15. Combining pH and electrical conductivity measurements to improve titrimetric methods to determine ammonia nitrogen, volatile fatty acids and inorganic carbon concentrations.

    PubMed

    Charnier, C; Latrille, E; Lardon, L; Miroux, J; Steyer, J P

    2016-05-15

    Volatile fatty acids (VFA), inorganic carbon (IC) and total ammonia nitrogen (TAN) are key variables in the current context of anaerobic digestion (AD). Accurate measurements like gas chromatography and infrared spectrometry have been developed to follow the concentration of these compounds but none of these methods are affordable for small AD units. Only titration methods answer the need for small plant monitoring. The existing methods accuracy was assessed in this study and reveals a lack of accuracy and robustness to control AD plants. To solve these issues, a new titrimetric device to estimate the VFA, IC and TAN concentrations with an improved accuracy was developed. This device named SNAC (System of titration for total ammonia Nitrogen, volatile fatty Acids and inorganic Carbon) has been developed combining the measurement of electrical conductivity and pH. SNAC were tested on 24 different plant samples in a range of 0-0.16 mol.L(-1) TAN, 0.01-0.21 mol.L(-1) IC and 0-0.04 mol.L(-1) VFA. The standard error was about 0.012 mol.L(-1) TAN, 0.015 mol.L(-1) IC and 0.003 mol.L(-1) VFA. The coefficient of determination R(2) between the estimated and reference data was 0.95, 0.94 and 0.95 for TAN, IC and VFA respectively. Using the same data, current methods based on key pH points lead to standard error more than 14.5 times higher on VFA and more than 1.2 times higher on IC. These results show that SNAC is an accurate tool to improve the management of AD plant.

  16. [Vertical distribution patterns of nitrogen, phosphorus, and potassium in Chinese pine forest soils developed from different parent materials in Songshan Mountain Nature Reserve, Beijing of China].

    PubMed

    Gou, Li-hui; Sun, Zhao-di; Nie, Li-shui; Luo, Pan-pan; Wu, Ji-Gui; Xu, Wu-de

    2013-04-01

    Taking the soils developed from two kinds of parent materials (granite and limestone) under Pinus tabulaeformis forest at the same altitude in Songshan Mountain Nature Reserve of Beijing as test objects, this paper studied the vertical distribution patterns of soil total nitrogen, available phosphorus, and available potassium. The soil developed from granite had the total nitrogen, available phosphorus, and available potassium contents being 1.61-2. 35 g kg-1, 5. 84-10.74 mg kg- 1, and 39.33-93.66 mg kg-1, while that developed from limestone had the total nitrogen, available phosphorus, and available potassium contents being 1. 69 -2. 36 g kg-1, 4.45-8.57 mg . kg-1, and 60.66-124.00 mg kg-1, respectively. The total nitrogen, available phosphorus, and available potassium contents in the two soils were the highest in 0-10 cm layer, decreased with increasing depth, and had significant differences between different layers, showing that the soil total nitrogen, available phosphorus, and available potassium had a strong tendency to accumulate in surface layer. Such a tendency was more obvious for the soil developed from limestone. The paired t-test for the two soils indicated that the total nitrogen content in different layers had no significant difference, whereas the available phosphorus content in 0-10 cm layer and the available potassium content in 10-20 cm layer differed significantly. PMID:23898652

  17. [Vertical distribution patterns of nitrogen, phosphorus, and potassium in Chinese pine forest soils developed from different parent materials in Songshan Mountain Nature Reserve, Beijing of China].

    PubMed

    Gou, Li-hui; Sun, Zhao-di; Nie, Li-shui; Luo, Pan-pan; Wu, Ji-Gui; Xu, Wu-de

    2013-04-01

    Taking the soils developed from two kinds of parent materials (granite and limestone) under Pinus tabulaeformis forest at the same altitude in Songshan Mountain Nature Reserve of Beijing as test objects, this paper studied the vertical distribution patterns of soil total nitrogen, available phosphorus, and available potassium. The soil developed from granite had the total nitrogen, available phosphorus, and available potassium contents being 1.61-2. 35 g kg-1, 5. 84-10.74 mg kg- 1, and 39.33-93.66 mg kg-1, while that developed from limestone had the total nitrogen, available phosphorus, and available potassium contents being 1. 69 -2. 36 g kg-1, 4.45-8.57 mg . kg-1, and 60.66-124.00 mg kg-1, respectively. The total nitrogen, available phosphorus, and available potassium contents in the two soils were the highest in 0-10 cm layer, decreased with increasing depth, and had significant differences between different layers, showing that the soil total nitrogen, available phosphorus, and available potassium had a strong tendency to accumulate in surface layer. Such a tendency was more obvious for the soil developed from limestone. The paired t-test for the two soils indicated that the total nitrogen content in different layers had no significant difference, whereas the available phosphorus content in 0-10 cm layer and the available potassium content in 10-20 cm layer differed significantly.

  18. Nuclear magnetic resonance relaxation characterisation of water status of developing grains of maize (Zea mays L.) grown at different nitrogen levels.

    PubMed

    Krishnan, Prameela; Chopra, Usha Kiran; Verma, Ajay Pal Singh; Joshi, Devendra Kumar; Chand, Ishwar

    2014-04-01

    Changes in water status of developing grains of maize (Zea mays L.) grown under different nitrogen levels were characterized by nuclear magnetic resonance (NMR) spectroscopy. There were distinct changes in water status of grains due to the application of different levels of nitrogen (0, 120 and 180 kg N ha(-1)). A comparison of the grain developmental characteristics, composition and physical properties indicated that, not only the developmental characteristics like grain weight, grain number/ear, and rate of grain filling increased, but also bound water characterized by the T2 component of NMR relaxation increased with nitrogen application (50-70%) and developmental stages leading to maturation (10-60%). The consistency in the patterns of responses to free water and intermediate water to increasing levels of nitrogen application and grain maturity suggested that nitrogen application resulted in more proportion of water to both bound- and intermediate states and less in free state. These changes are further corroborated by the concomitant increases in protein and starch contents in grains from higher nitrogen treatments as macromolecules like protein and starch retain more amount of water in the bound state. The results of the changes in T2 showed that water status during grain development was not only affected by developmental processes but also by nitrogen supply to plants. This study strongly indicated a clear nutrient and developmental stage dependence of grain tissue water status in maize.

  19. Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species

    PubMed Central

    2013-01-01

    Background Jatropha curcas L. is an oil seed producing non-leguminous tropical shrub that has good potential to be a fuel plant that can be cultivated on marginal land. Due to the low nutrient content of the targeted plantation area, the requirement for fertilizer is expected to be higher than other plants. This factor severely affects the commercial viability of J. curcas. Results We explored the feasibility to use endophytic nitrogen-fixing bacteria that are native to J. curcas to improve plant growth, biomass and seed productivity. We demonstrated that a novel N-fixing endophyte, Enterobacter sp. R4-368, was able to colonize in root and stem tissues and significantly promoted early plant growth and seed productivity of J. curcas in sterilized and non-sterilized soil. Inoculation of young seedling led to an approximately 57.2% increase in seedling vigour over a six week period. At 90 days after planting, inoculated plants showed an average increase of 25.3%, 77.7%, 27.5%, 45.8% in plant height, leaf number, chlorophyll content and stem volume, respectively. Notably, inoculation of the strain led to a 49.0% increase in the average seed number per plant and 20% increase in the average single seed weight when plants were maintained for 1.5 years in non-sterilized soil in pots in the open air. Enterobacter sp. R4-368 cells were able to colonize root tissues and moved systemically to stem tissues. However, no bacteria were found in leaves. Promotion of plant growth and leaf nitrogen content by the strain was partially lost in nifH, nifD, nifK knockout mutants, suggesting the presence of other growth promoting factors that are associated with this bacterium strain. Conclusion Our results showed that Enterobacter sp. R4-368 significantly promoted growth and seed yield of J. curcas. The application of the strains is likely to significantly improve the commercial viability of J. curcas due to the reduced fertilizer cost and improved oil yield. PMID:24083555

  20. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings.

    PubMed

    Balotf, Sadegh; Kavoosi, Gholamreza; Kholdebarin, Bahman

    2016-01-01

    The objective of this study was to examine the expression and activity of nitrate reductase (NR, EC 1.7.1.1), nitrite reductase (NiR, EC 1.7.2.2), glutamine synthetase (GS, EC 6.3.1.2), and glutamate synthase (GOGAT, EC 1.4.7.1) in response to potassium nitrate, ammonium chloride, and ammonium nitrate in nitrogen-starved wheat seedlings. Plants were grown in standard nutrient solution for 17 days and then subjected to nitrogen starvation for 7 days. The starved plants were supplied with potassium nitrate ammonium nitrate and ammonium chloride (50 mM) for 4 days and the leaves were harvested. The relative expression of NR, NiR, GS, and GOGAT as well as the enzyme activities were investigated. Nitrogen starvation caused a significant decrease both in transcript levels and in NR, NiR, GS, and GOGAT activities. Potassium nitrate and ammonium nitrate treatments restored NR, NiR, GS, and GOGAT expressions and activities. Ammonium chloride increased only the expressions and activities of GS and GOGAT in a dose-dependent manner. The results of our study highlight the differential effects between the type and the amount of nitrogen salts on NR, NiR, GS, and GOGAT activities in wheat seedlings while potassium nitrate being more effective.

  1. Improving Growth and Productivity of Oleiferous Brassicas under Changing Environment: Significance of Nitrogen and Sulphur Nutrition, and Underlying Mechanisms

    PubMed Central

    Anjum, Naser A.; Gill, Sarvajeet S.; Umar, Shahid; Ahmad, Iqbal; Duarte, Armando C.; Pereira, Eduarda

    2012-01-01

    Mineral nutrients are the integral part of the agricultural systems. Among important plant nutrients, nitrogen (N) and sulphur (S) are known essential elements for growth, development, and various physiological functions in plants. Oleiferous brassicas (rapeseed and mustard) require higher amounts of S in addition to N for optimum growth and yield. Therefore, balancing S-N fertilization, optimization of nutrient replenishment, minimization of nutrient losses to the environment, and the concept of coordination in action between S and N could be a significant strategy for improvement of growth and productivity of oleiferous brassicas. Additionally, positive interaction between S and N has been reported to be beneficial for various aspects of oilseed brassicas. The current paper updates readers on the significance of N and S for the improvement of plant growth, development, and productivity in detail. In addition, S-N nutrition-mediated control of major plant antioxidant defense system components involved in the removal and/or metabolism of stress-induced/generated reactive oxygen species in plants (hence, the control of plant growth, development, and productivity) has been overviewed. PMID:22629181

  2. Improving growth and productivity of Oleiferous Brassicas under changing environment: significance of nitrogen and sulphur nutrition, and underlying mechanisms.

    PubMed

    Anjum, Naser A; Gill, Sarvajeet S; Umar, Shahid; Ahmad, Iqbal; Duarte, Armando C; Pereira, Eduarda

    2012-01-01

    Mineral nutrients are the integral part of the agricultural systems. Among important plant nutrients, nitrogen (N) and sulphur (S) are known essential elements for growth, development, and various physiological functions in plants. Oleiferous brassicas (rapeseed and mustard) require higher amounts of S in addition to N for optimum growth and yield. Therefore, balancing S-N fertilization, optimization of nutrient replenishment, minimization of nutrient losses to the environment, and the concept of coordination in action between S and N could be a significant strategy for improvement of growth and productivity of oleiferous brassicas. Additionally, positive interaction between S and N has been reported to be beneficial for various aspects of oilseed brassicas. The current paper updates readers on the significance of N and S for the improvement of plant growth, development, and productivity in detail. In addition, S-N nutrition-mediated control of major plant antioxidant defense system components involved in the removal and/or metabolism of stress-induced/generated reactive oxygen species in plants (hence, the control of plant growth, development, and productivity) has been overviewed.

  3. Microcystin Biosynthesis and mcyA Expression in Geographically Distinct Microcystis Strains under Different Nitrogen, Phosphorus, and Boron Regimes

    PubMed Central

    Srivastava, Ankita; Ko, So-Ra; Ahn, Chi-Yong; Ravi, Alok Kumar

    2016-01-01

    Roles of nutrients and other environmental variables in development of cyanobacterial bloom and its toxicity are complex and not well understood. We have monitored the photoautotrophic growth, total microcystin concentration, and microcystins synthetase gene (mcyA) expression in lab-grown strains of Microcystis NIES 843 (reference strain), KW (Wangsong Reservoir, South Korea), and Durgakund (Varanasi, India) under different nutrient regimes (nitrogen, phosphorus, and boron). Higher level of nitrogen and boron resulted in increased growth (avg. 5 and 6.5 Chl a mg/L, resp.), total microcystin concentrations (avg. 1.185 and 7.153 mg/L, resp.), and mcyA transcript but its expression was not directly correlated with total microcystin concentrations in the target strains. Interestingly, Durgakund strain had much lower microcystin content and lacked microcystin-YR variant over NIES 843 and KW. It is inferred that microcystin concentration and its variants are strain specific. We have also examined the heterotrophic bacteria associated with cyanobacterial bloom in Durgakund Pond and Wangsong Reservoir which were found to be enriched in Alpha-, Beta-, and Gammaproteobacteria and that could influence the bloom dynamics. PMID:27803926

  4. Comparative analysis of corrosion cracking of austenitic steels with different contents of nitrogen in chloride- and hydrogen-containing media

    NASA Astrophysics Data System (ADS)

    Mushnikova, S. Yu.; Sagaradze, V. V.; Filippov, Yu. I.; Kataeva, N. V.; Zavalishin, V. A.; Malyshevskii, V. A.; Kalinin, G. Yu.; Kostin, S. K.

    2015-06-01

    The structural state and the resistance to stress-corrosion cracking (SCC) at constant loads have been studied using samples with a grown crack by the method of the cantilever bending on quenched austenitic stainless steels of the 20Cr-6Ni-11Mn-2Mo-N-V-Nb (Kh20N6G11M2AFB) type, with different contents of nitrogen (0.17, 0.34, 0.43, and 0.50 wt % N). The tests were conducted in a 3.5% aqueous solution of NaCl (without providing polarization) and in a similar solution under cathodic polarization, which causes the formation of hydrogen. It has been shown that, in a chloride solution without polarization, the steels do not undergo SCC for 2000 h. In the case of significant cathodic polarization via employment of a magnesium protector, there was revealed a brittle character of fracture upon SCC in all steels. It has been shown that steel with a nitrogen content of 0.43 wt % possesses the maximum absolute values of rupture stresses under the conditions of cathodic polarization.

  5. Nitrogen and phosphorus retention in surface waters: an inter-comparison of predictions by catchment models of different complexity.

    PubMed

    Hejzlar, J; Anthony, S; Arheimer, B; Behrendt, H; Bouraoui, F; Grizzetti, B; Groenendijk, P; Jeuken, M H J L; Johnsson, H; Lo Porto, A; Kronvang, B; Panagopoulos, Y; Siderius, C; Silgram, M; Venohr, M; Zaloudík, J

    2009-03-01

    Nitrogen and phosphorus retention estimates in streams and standing water bodies were compared for four European catchments by a series of catchment-scale modelling tools of different complexity, ranging from a simple, equilibrium input-output type to dynamic, physical-based models: source apportionment, MONERIS, EveNFlow, TRK, SWAT, and NL-CAT. The four catchments represent diverse climate, hydrology, and nutrient loads from diffuse and point sources in Norway, the UK, Italy, and the Czech Republic. The models' retention values varied largely, with tendencies towards higher scatters for phosphorus than for nitrogen, and for catchments with lakes (Vansjø-Hobøl, Zelivka) compared to mostly or entirely lakeless catchments (Ouse or Enza, respectively). A comparison of retention values with the size of nutrient sources showed that the modelled nutrient export from diffuse sources was directly proportional to retention estimates, hence implying that the uncertainty in quantification of diffuse catchment sources of nutrients was also related to the uncertainty in nutrient retention determination. This study demonstrates that realistic modelling of nutrient export from large catchments is very difficult without a certain level of measured data. In particular, even complex process oriented models require information on the retention capabilities of water bodies within the receiving surface water system and on the nutrient export from micro-catchments representing the major types of diffuse sources to surface waters. PMID:19280036

  6. Improvement of Vitamin K2 Production by Escherichia sp. with Nitrogen Ion Beam Implantation Induction

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Wang, Li; Zheng, Zhiming; Wang, Peng; Zhao, Genhai; Liu, Hui; Gong, Guohong; Wu, Hefang; Liu, Hongxia; Tan, Mu; Li, Zhemin

    2015-02-01

    Low-energy ion implantation as a novel mutagen has been increasingly applied in the microbial mutagenesis for its higher mutation frequency and wider mutation spectra. In this work, N+ ion beam implantation was used to enhance Escherichia sp. in vitamin K2 yield. Optimization of process parameters under submerged fermentation was carried out to improve the vitamin K2 yield of mutant FM5-632. The results indicate that an excellent mutant FM5-632 with a yield of 123.2±1.6 μg/L, that is four times that of the original strain, was achieved by eight successive implantations under the conditions of 15 keV and 60×2.6×1013 ions/cm2. A further optimization increased the yield of the mutant by 39.7%, i.e. 172.1±1.2 μg/L which occurred in the mutant cultivated in the optimal fermentation culture medium composed of (per liter): 15.31 g glycerol, 10 g peptone, 2.89 g yeast extract, 5 g K2HPO4, 1 g NaCl, 0.5 g MgSO4·7H2O and 0.04 g cedar wood oil, incubated at 33 °C, pH 7.0 and 180 rpm for 120 h.

  7. [Nitrogen and phosphorus loss in different land use types and its response to environmental factors in the Three Gorges Reservoir area].

    PubMed

    Zeng, Li-Xiong; Huang, Zhi-Lin; Xiao, Wen-Fa; Tian, Yao-Wu

    2012-10-01

    The control of agricultural non-point source pollution (AGNPS) is an urgent problem to be solved for the ecological environment construction in the Three Gorges Reservoir Area. We analyzed the nitrogen (N) and phosphorus (P) loss and its response to environmental factors through monitoring the nutrient loss in different land use types after returning farmland to forest. The results showed that: 1) The variability of nutrient concentration loss was strong in different land use types under different rainfall conditions, and the variability in the concentration of available nutrient was much higher than that of total nutrient; 2) Compared to farmland, the annual phosphorus loss of different land use types was reduced by 84.53% - 91.61% after returning farmland to forest; the reduction of annual nitrogen loss was not significant except Chinese chestnut forest (Castanea mollissima) and arbor forest, and the nitrogen loss was much higher than the phosphorus loss in all land use types; 3) The particle phosphorus and nitrate nitrogen (NO3(-)-N) were the main forms of the phosphorus and nitrogen loss, respectively; 4) The nutrient loss of tea garden (Camellia sinensis) and bamboo forest (Phyllostachys pubescens) showed a good correlation with precipitation, and the correlation of phosphorus was better than that of nitrogen, but there was no significant relation with the rainfall intensity; 5) The coverage of vegetation, tree layer and litter had a great influence on the loss of total nitrogen (TN). NO3(-)-N loss was highly influenced by the ammonium nitrogen (NH4(+)-N) content in the surface soil, and P loss mainly by the total phosphorus (TP) and sand content in the soil.

  8. [Nitrogen and phosphorus loss in different land use types and its response to environmental factors in the Three Gorges Reservoir area].

    PubMed

    Zeng, Li-Xiong; Huang, Zhi-Lin; Xiao, Wen-Fa; Tian, Yao-Wu

    2012-10-01

    The control of agricultural non-point source pollution (AGNPS) is an urgent problem to be solved for the ecological environment construction in the Three Gorges Reservoir Area. We analyzed the nitrogen (N) and phosphorus (P) loss and its response to environmental factors through monitoring the nutrient loss in different land use types after returning farmland to forest. The results showed that: 1) The variability of nutrient concentration loss was strong in different land use types under different rainfall conditions, and the variability in the concentration of available nutrient was much higher than that of total nutrient; 2) Compared to farmland, the annual phosphorus loss of different land use types was reduced by 84.53% - 91.61% after returning farmland to forest; the reduction of annual nitrogen loss was not significant except Chinese chestnut forest (Castanea mollissima) and arbor forest, and the nitrogen loss was much higher than the phosphorus loss in all land use types; 3) The particle phosphorus and nitrate nitrogen (NO3(-)-N) were the main forms of the phosphorus and nitrogen loss, respectively; 4) The nutrient loss of tea garden (Camellia sinensis) and bamboo forest (Phyllostachys pubescens) showed a good correlation with precipitation, and the correlation of phosphorus was better than that of nitrogen, but there was no significant relation with the rainfall intensity; 5) The coverage of vegetation, tree layer and litter had a great influence on the loss of total nitrogen (TN). NO3(-)-N loss was highly influenced by the ammonium nitrogen (NH4(+)-N) content in the surface soil, and P loss mainly by the total phosphorus (TP) and sand content in the soil. PMID:23233964

  9. Partitioning of water and nitrogen in co-occurring Mediterranean woody shrub species of different evolutionary history.

    PubMed

    Filella, Iolanda; Peñuelas, Josep

    2003-09-01

    We studied the interspecific and intraspecific variation in the development of water stress and in the use of different water and nitrogen sources during the spring (wet season) and summer (dry season) in a shrub community in NE Spain. We measured shoot water potentials, stable deuterium isotopic composition (delta D) of xylem sap, leaf mass per area, leaf N and C concentrations, gas exchange, leaf delta(13)C, and leaf delta(15)N of the dominant species (Quercus coccifera, Arbutus unedo, Pistacia lentiscus, Erica multiflora, Globularia alypum). The delta D, the delta(13)C and the shoot water potential values showed diurnal, seasonal, intraspecific and interspecific variation in the source and use of water. There was also seasonal, intraspecific and interspecific variation in the foliar delta(15)N and N concentrations. In summer, some species (A. unedo, P. lentiscus and E. multiflora) presented significantly different delta D values in morning and afternoon measurements likely indicating that they used different sources of water during the day, and a dual root system in these species. We conjecture that dew may be one of these water sources. Species predawn water potential was negatively correlated with species xylem water delta D. There was also a positive correlation between delta(13)C and delta D in P. lentiscus, species for which we took additional samples from nearby sites. These results suggest that the access to water from greater depths allowed the maintenance of more favourable plant water supply. Multivariate principal component analysis based on the studied hydrological and isotope variables clearly separated the seasons (wet spring and dry summer) and the species. The species resulted separated according to their evolutionary history (Pre-Mediterranean and Mediterranean) and the associated root and functional traits. These results show water (and nitrogen) partitioning among coexisting species of the same functional type (Mediterranean woody shrubs

  10. Partitioning of water and nitrogen in co-occurring Mediterranean woody shrub species of different evolutionary history.

    PubMed

    Filella, Iolanda; Peñuelas, Josep

    2003-09-01

    We studied the interspecific and intraspecific variation in the development of water stress and in the use of different water and nitrogen sources during the spring (wet season) and summer (dry season) in a shrub community in NE Spain. We measured shoot water potentials, stable deuterium isotopic composition (delta D) of xylem sap, leaf mass per area, leaf N and C concentrations, gas exchange, leaf delta(13)C, and leaf delta(15)N of the dominant species (Quercus coccifera, Arbutus unedo, Pistacia lentiscus, Erica multiflora, Globularia alypum). The delta D, the delta(13)C and the shoot water potential values showed diurnal, seasonal, intraspecific and interspecific variation in the source and use of water. There was also seasonal, intraspecific and interspecific variation in the foliar delta(15)N and N concentrations. In summer, some species (A. unedo, P. lentiscus and E. multiflora) presented significantly different delta D values in morning and afternoon measurements likely indicating that they used different sources of water during the day, and a dual root system in these species. We conjecture that dew may be one of these water sources. Species predawn water potential was negatively correlated with species xylem water delta D. There was also a positive correlation between delta(13)C and delta D in P. lentiscus, species for which we took additional samples from nearby sites. These results suggest that the access to water from greater depths allowed the maintenance of more favourable plant water supply. Multivariate principal component analysis based on the studied hydrological and isotope variables clearly separated the seasons (wet spring and dry summer) and the species. The species resulted separated according to their evolutionary history (Pre-Mediterranean and Mediterranean) and the associated root and functional traits. These results show water (and nitrogen) partitioning among coexisting species of the same functional type (Mediterranean woody shrubs

  11. Effects of Different Application Methods of Methane Fermentation Digested Liquid into the Paddy Plot on Soil Nitrogen Behavior and Rice Yield

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoko; Nakamura, Kimihito; Seok Ryu, Chan; Iida, Michihisa; Kawashima, Shigeto

    Methane fermentation technique with the treatment of animal waste and food waste is drawing public attention as a good option for the utilization of biomass resources and it is investigated how to apply the by-product of fermentation (methane fermentation digested liquid) to agricultural fields as a fertilizer. It is important to determine an adequate method of applying digested liquid to a paddy plot as fertilizer taking into account the concentrations of soil nitrogen components and rice yield. The objective of this study is to compare the performances of three methods of applying digested liquid to paddy plots in terms of the nitrogen transformation in soil, rice yield, and nitrogen load in effluent. The three methods were pouring (with irrigation water), spreading onto the surface of a plot, and injection into paddy soil. It was found that the ammonium nitrogen concentration and the dissolved organic nitrogen concentration in soil of the spreading plot were higher than that for the pouring plot and that for the injecting plot. The rice yield was higher in the spreading plot than in the injecting and pouring plots. And, there was a significant correlation between the rice yield and the dissolved organic nitrogen just before and after the panicle initiation stage. There were no differences in the nitrogen effluent loads with surface drainage.

  12. Physiological and biochemical responses of the forage legume Trifolium alexandrinum to different saline conditions and nitrogen levels.

    PubMed

    Zouhaier, Barhoumi; Mariem, Maatallah; Mokded, Rabhi; Rouached, Aida; Alsane, Khaldoun; Chedly, Abdelly; Abderrazek, Smaoui; Abdallah, Atia

    2016-05-01

    Salinity stress reduces plant productivity, but low levels of salinity often increase plant growth rates in some species. We herein describe the effects of salinity on plant growth while focusing on nitrogen use. We treated Trifolium alexandrinum with two nitrogen concentrations and salinity levels and determined growth rates, mineral concentrations, nitrogen use efficiency, photosynthesis rates, and nitrate reductase (NR, E.C. 1.6.6.1) and glutamine synthetase (GS, EC 6.3.1.2) activities. The T. alexandrinum growth rate increased following treatment with 100 mM NaCl in low nitrogen (LN) and high nitrogen (HN) conditions. Salt treatment also increased root volume, intrinsic water use efficiency, and nitrogen use efficiency in LN and HN conditions. These changes likely contributed to higher biomass production. Salinity also increased accumulations of sodium, chloride, and phosphate, but decreased potassium and calcium levels and total nitrogen concentrations in all plant organs independently of the available nitrogen level. However, the effect of salt treatment on magnesium and nitrate concentrations in photosynthetic organs depended on nitrogen levels. Salt treatment reduced photosynthesis rates in LN and HN conditions because of inhibited stomatal conductance. The effects of salinity on leaf NR and GS activities depended on nitrogen levels, with activities increasing in LN conditions. In saline conditions, LN availability resulted in optimal growth because of low chloride accumulation and increases in total nitrogen concentrations, nitrogen use efficiency, and NR and GS activities in photosynthetic organs. Therefore, T. alexandrinum is a legume forage crop that can be cultivated in low-saline soils where nitrogen availability is limited. PMID:26818949

  13. Change in Uptake, Transport and Accumulation of Ions in Nerium oleander (Rosebay) as Affected by Different Nitrogen Sources and Salinity

    PubMed Central

    Abdolzadeh, Ahmad; Shima, Kazuto; Lambers, Hans; Chiba, Kyozo

    2008-01-01

    Background and Aims The source of nitrogen plays an important role in salt tolerance of plants. In this study, the effects of NaCl on net uptake, accumulation and transport of ions were investigated in Nerium oleander with ammonium or nitrate as the nitrogen source in order to analyse differences in uptake and cycling of ions within plants. Methods Plants were grown in a greenhouse in hydroponics under different salt treatments (control vs. 100 mm NaCl) with ammonium or nitrate as the nitrogen source, and changes in ion concentration in plants, xylem sap exuded from roots and stems, and phloem sap were determined. Key Results Plant weight, leaf area and photosynthetic rate showed a higher salt tolerance of nitrate-fed plants compared with that of ammonium-fed plants. The total amount of Na+ transported in the xylem in roots, accumulated in the shoot and retranslocated in the phloem of ammonium-fed plants under salt treatment was 1·8, 1·9 and 2·7 times more, respectively, than that of nitrate-treated plants. However, the amount of Na+ accumulated in roots in nitrate-fed plants was about 1·5 times higher than that in ammonium-fed plants. Similarly, Cl− transport via the xylem to the shoot and its retranslocation via the phloem (Cl− cycling) were far greater with ammonium treatment than with nitrate treatment under conditions of salinity. The uptake and accumulation of K+ in shoots decreased more due to salinity in ammonium-fed plants compared with nitrate-fed plants. In contrast, K+ cycling in shoots increased due to salinity, with higher rates in the ammonium-treated plants. Conclusions The faster growth of nitrate-fed plants under conditions of salinity was associated with a lower transport and accumulation of Na+ and Cl− in the shoot, whereas in ammonium-fed plants accumulation and cycling of Na+ and Cl− in shoots probably caused harmful effects and reduced growth of plants. PMID:18772147

  14. Differences in postmortem urea nitrogen, creatinine and uric acid levels between blood and pericardial fluid in acute death.

    PubMed

    Zhu, Bao-Li; Ishikawa, Takaki; Michiue, Tomomi; Tanaka, Sayaka; Zhao, Dong; Li, Dong-Ri; Quan, Li; Oritani, Shigeki; Maeda, Hitoshi

    2007-05-01

    Previous studies showed significant differences in postmortem urea nitrogen (UN), creatinine (Cr) and uric acid (UA) levels in heart blood depending on the causes of death, including acute death. In addition, the levels in pericardial fluid approximated the clinical serum reference ranges, and their elevations may be assessed based on clinical criteria. The present study investigated difference between blood and pericardial levels of these markers. Medicolegal autopsy cases (n=556, within 48h postmortem) of the following causes of death were examined: injury (n=136), asphyxiation (n=50), drowning (n=39), fire fatalities (n=99), hyperthermia (n=11), hypothermia (n=8), poisoning (n=26), delayed traumatic death (n=44) and natural diseases (n=143). When serum UN, Cr and UA levels were compared with the pericardial levels, there was an equivalency for delayed traumatic death and chronic renal failure, although each level was markedly elevated. Parallel increases in serum and pericardial UA and/or Cr levels were also observed for hypothermia and gastrointestinal bleeding. However, in drowning cases, the left cardiac and pericardial UN levels were lower than the right cardiac and peripheral levels, suggesting the influence of water aspiration. Significant elevations in serum and pericardial Cr and UA levels with a higher serum/pericardial UA ratio for fatal methamphetamine intoxication suggest progressive skeletal muscle damage due to advanced hypoxia/acidosis. Similar findings were often observed for other acute and subacute deaths. These findings suggest that a comparison between blood and pericardial nitrogenous compounds would be useful for investigating the cause and process of death.

  15. Leaching behavior of nitrogen in a long-term experiment on rice under different N management systems.

    PubMed

    Luo, Liang-Guo; Itoh, Sumio; Zhang, Qing-Wen; Yang, Shi-Qi; Zhang, Qing-Zhong; Yang, Zheng-Li

    2011-06-01

    The leaching behavior of nitrogen was studied in single rice paddy production ecosystems in Tsukuba, Japan after 75 years of consistent fertilization regimes (no fertilizer, ammonium sulfate, a combination of composted rice straw with soybean cake, and fresh clover). During the 75-year period, management was unchanged with respect to rice planting density, irrigation, and net N fertilization for each field to which an N-source was added. Percolation water was collected, from May 2001 to April 2002, using porous suction cups installed in the fields at depths of 15, 40, and 60 cm. All water samples were taken to the laboratory for the measurement of both NH(4) ( + )-N and NO(3) ( - )-N concentrations using a continuous-flow nitrogen analyzer. The result indicated that there were significant differences in N leaching losses between treatments during the rice growing season. Total N leaching was significantly lower with the application of composted rice straw plus soybean cake (0.58 kg N ha( - 1)) than with ammonium sulfate (2.41 kg N ha( - 1)), which resulted in N leaching at a similar level to that with the fresh clover treatment (no significant difference). The majority of this N leaching was not due to NO(3) ( - )-N loss, but to that of NH(4) ( + )-N. The mean N leaching for all fertilizer treatments during the entire rice growing season was 1.58 kg N ha( - 1). Composted rice straw plus soybean cake produced leaching losses which were 65-75% lower than those with the application of fresh clover and ammonium sulfate. N accumulation resulting from nitrification in the fallow season could be a key source of nitrate-N leaching when fields become re-flooded before rice transplanting in the following year; particular attention should be paid to this phenomenon. PMID:20676930

  16. Evaluating the uncertainties of thermal catalytic conversion in measuring atmospheric nitrogen dioxide at four differently polluted sites in China

    NASA Astrophysics Data System (ADS)

    Xu, Zheng; Wang, Tao; Xue, L. K.; Louie, Peter K. K.; Luk, Connie W. Y.; Gao, J.; Wang, S. L.; Chai, F. H.; Wang, W. X.

    2013-09-01

    A widely used method for measuring nitrogen dioxide (NO2) in the atmosphere is the conversion of NO2 to nitric oxide (NO) on the hot surface of a molybdenum oxide (MoO) catalyst followed by the chemiluminescence detection of NO. Although it has long been recognized that this type of conversion may suffer from the positive interference of other oxidized nitrogen compounds, evaluations of such interference in the atmosphere are scarce, thus rendering it difficult to make use of a large portion of the NO2 or NOx data obtained via this method (often denoted as NO2* or NOx*). In the present study, we compared the MoO converter with a selective, more accurate photolytic approach at four differently polluted sites in China. The converter worked well at the urban site, which was greatly affected by fresh emissions, but, on average, overestimated NO2 by 30%-50% at the two suburban sites and by more than 130% at the mountain-top site during afternoon hours, with a much larger positive bias seen during the top 10% of ozone events. The degree of overestimation depended on both air-parcel age and the composition of the oxidation products/intermediates of NOx (NOz). We attempted to derive an empirical formula to correct for this overestimation using concurrently measured O3, NO, and NO2* at the two suburban sites. Although the formula worked well at each individual site, the different NOz partitions at the sites made it difficult to obtain a universal formula. In view of the difficulty of assessing the uncertainties of the conventional conversion method, thus limiting the usability of data obtained via this method in atmospheric research, we suggest that, in areas away from fresh NOx emission sources, either a more selective NO2 measurement method or a NOy (NOx and its reaction products and intermediates) instrument should be adopted.

  17. [Study on nitrogen cycling and transformations in a duckweed pond by means of modeling analysis].

    PubMed

    Peng, Jian-feng; Song, Yong-hui; Yuan, Peng; Wang, Bao-zhen

    2006-10-01

    Based on the simulated results from N cycling and transformation model of duckweed pond, the influences of different major transfer pathways on various nitrogen removal performances are investigated. The effects of seasonal variations of water conditions on nitrogen transformations are determined. The simulated results show that nitrification and denitrification were the major removal pathways for nitrogen in duckweed pond, and the removal contributions of organic nitrogen sedimentation and ammonia volatilization for total nitrogen removal were less than 2.1%. Furthermore, in duckweed pond, nitrification and denitrification decided the removal efficiencies of ammonia and NOx., respectively; both algae decaying and organic nitrogen ammonification controlled primarily the organic nitrogen removal performances; both organic nitrogen sedimentation and mineralization of sedimentary nitrogen determined the variations of sedimentary nitrogen. Duckweed pond with duckweed growing largely can increase sharply algae mortality and keep the low content of algae in effluent. Besides, through accelerating the nitrification and denitrification rate, duckweed can evidently improve the removal efficiencies of total nitrogen.

  18. Variations in Protein Concentration and Nitrogen Sources in Different Positions of Grain in Wheat

    PubMed Central

    Li, Xiangnan; Zhou, Longjing; Liu, Fulai; Zhou, Qin; Cai, Jian; Wang, Xiao; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2016-01-01

    The distribution patterns of total protein and protein components in different layers of wheat grain were investigated using the pearling technique, and the sources of different protein components and pearling fractions were identified using 15N isotope tracing methods. It was found that N absorbed from jointing to anthesis (JA) and remobilized to the grain after anthesis was the principal source of grain N, especially in the outer layer. For albumin and globulin, the amount of N absorbed during different stages all showed a decreasing trend from the surface layer to the center part. Whereas, for globulin and glutenin, the N absorbed after anthesis accounted for the main part indicating that for storage protein, the utilization of N assimilated after anthesis is greater than that of the stored N assimilated before anthesis. It is concluded that manipulation of the N application rate during different growth stages could be an effective approach to modulate the distribution of protein fractions in pearled grains for specific end-uses. PMID:27446169

  19. Influence of Bacillus subtilis on the physiological state of wheat and the microbial community of the soil under different rates of nitrogen fertilizers

    NASA Astrophysics Data System (ADS)

    Pishchik, V. N.; Vorobyev, N. I.; Moiseev, K. G.; Sviridova, O. V.; Surin, V. G.

    2015-01-01

    The effects of inoculation with bacteria Bacillus subtilis strain No. 2 (hereinafter, B. subtilis 2) and of the physical properties of the soil on the physiological state of wheat ( Triticum aestivum L.) plants and the soil microbial community under different rates of nitrogen fertilizers are studied. In the field, the physiological state of wheat was evaluated using the optical vegetation index. It was found that (1) the impact of B. subtilis 2 on plants decreases with an increase in the rate of fertilizers and soil bulk density, (2) the inoculation of wheat with bacteria enhances the resistance of the plant-microbial system to the adverse impact of high rates of nitrogen fertilizers due to the rearrangement of bacteria in rhizosphere ecological niches, and (3) the highest agronomic efficiency of nitrogen fertilizers is observed in wheat inoculation with B. subtilis 2 at the rate of nitrogen fertilization of 120 kg/ha.

  20. The long-term storage of blood for transfusion using an improved container for freezing the red cells in liquid nitrogen.

    PubMed

    Jenkins, W J; Blagdon, J

    1971-11-01

    Considerable experience has been gained in the operation of a bank of blood frozen in liquid nitrogen. The procedure for freezing and recovering the red cells is, in principle, that described by Krijnen, Kuivenhoven, and de Wit (1970). An improved metal freezing container offers greater freedom from liquid nitrogen leaks and hence, bacterial contamination. Over 500 units of blood have been preserved and used for transfusions without mishap, and many advantages are seen in this relatively economical method for the long-term storage of blood.

  1. [Nitrogen Losses Under the Action of Different Land Use Types of Small Catchment in Three Gorges Region].

    PubMed

    Chen, Cheng-long; Gao, Ming; Ni, Jiu-pai; Xie, De-ti; Deng, Hua

    2016-05-15

    As an independent water-collecting area, small catchment is the source of non-point source pollution in Three Gorges Region. Choosing 3 kinds of the most representative land-use types and using them to lay monitoring points of overland runoff within the small catchment of Wangjiagou in Fuling of Three Gorges Region, the author used the samples of surface runoff collected through the twelve natural rainfalls from May to December to analyze the feature of spatial-temporal change of Nitrogen's losses concentrations under the influence of different land use types and the hillslopes and small catchments composed by those land use types, revealing the relation between different land-use types and Nitrogen's losses of small catchments in Three Gorges Region. The result showed: the average losses concentration of TN showed the biggest difference for different land use types during the period of spring crops, and the average value of dry land was 1. 61 times and 6.73 times of the values of interplanting field of mulberry and paddy field, respectively; the change of the losses concentration of TN was most conspicuous in the 3 periods of paddy field. The main element was NO₃⁻-N, and the relation between TN and NO₃⁻-N showed a significant linear correlation. TN's and NO₃⁻-N's losses concentrations were significantly and positively correlated with the area ratio of corn and mustard, but got a significant negative correlation with the area ratio of paddy and mulberry; NH₄⁺-N's losses concentrations got a significant positive correlation with the area ratio of mustard. Among all the hillslopes composed by different land use types, TN's average losses concentration of surface runoff of the hillslope composed by interplantating field of mulberry and paddy land during the three periods was the lowest, and the values were 2.55, 11.52, 8.58 mg · L⁻¹, respectively; the hillslope of rotation plough land of corn and mustard had the maximum value, and the values were

  2. Core/shell-structured nickel/nitrogen-doped onion-like carbon nanocapsules with improved electromagnetic wave absorption properties

    NASA Astrophysics Data System (ADS)

    Wu, Niandu; Liu, Xianguo; Or, Siu Wing

    2016-05-01

    Core/shell-structured nickel/nitrogen-doped onion-like carbon (Ni/(C, N)) nanocapsules are synthesized by a modified arc-discharge method using N2 gas as the source of N atoms. Core/shell-structured Ni/C nanocapsules are also prepared for comparison. The Ni/(C, N) nanocapsules with diameters of 10-80 nm exhibit a clear core/shell structure. The doping of N atoms introduces more lattice defects into the (C, N) shells and creates more disorderly C in the (C, N) shells. This leads to a slight shift in the dielectric resonance peak to the lower frequency side and an increase in the dielectric loss tangent for the Ni/(C, N) nanocapsules in comparison with the Ni/C nanocapsules. The magnetic permeability of both types of nanocapsules remains almost unaltered since the N atoms exist only in the (C, N) shells. The reflection loss (RL) of the Ni/(C, N) nanocapsules not only reaches a high value of -35 dB at 13.6 GHz, but also is generally improved in the low-frequency S and C microwave bands covering 2-8 GHz as a result of the N-doping-induced additional dipolar polarization and dielectric loss from the (C, N) shells.

  3. Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants.

    PubMed

    Sun, Jiali; Ye, Miao; Peng, Shaobing; Li, Yong

    2016-01-01

    To identify the effect of nitrogen (N) nutrition on the dynamic photosynthesis of rice plants, a pot experiment was conducted under two N conditions. The leaf N and chlorophyll levels, as well as steady-state photosynthesis, were significantly increased under high N. After the transition from saturating to low light levels, decreases in the induction state (IS%) of leaf photosynthesis (A) and stomatal conductance (gs) were more severe under low than under high N supply. After the transition from low to flecked irradiance, the times to 90% of maximum A (T90%A) were significantly longer under low than under high N supply. Under flecked irradiance, the maximum A under saturating light (Amax-fleck) and the steady-state A under low light (Amin-fleck) were both lower than those under uniform irradiance (Asat and Ainitial). Under high N supply, Amax-fleck was 14.12% lower than Asat, while it was 22.80% lower under low N supply. The higher IS%, shorter T90%A, and the lower depression of Amax-fleck from Asat under high N supply led to a less carbon loss compared with under a low N supply. Therefore, we concluded that N can improve the rapid response of photosynthesis to changing irradiance. PMID:27506927

  4. Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants

    PubMed Central

    Sun, Jiali; Ye, Miao; Peng, Shaobing; Li, Yong

    2016-01-01

    To identify the effect of nitrogen (N) nutrition on the dynamic photosynthesis of rice plants, a pot experiment was conducted under two N conditions. The leaf N and chlorophyll levels, as well as steady–state photosynthesis, were significantly increased under high N. After the transition from saturating to low light levels, decreases in the induction state (IS%) of leaf photosynthesis (A) and stomatal conductance (gs) were more severe under low than under high N supply. After the transition from low to flecked irradiance, the times to 90% of maximum A (T90%A) were significantly longer under low than under high N supply. Under flecked irradiance, the maximum A under saturating light (Amax–fleck) and the steady–state A under low light (Amin–fleck) were both lower than those under uniform irradiance (Asat and Ainitial). Under high N supply, Amax–fleck was 14.12% lower than Asat, while it was 22.80% lower under low N supply. The higher IS%, shorter T90%A, and the lower depression of Amax–fleck from Asat under high N supply led to a less carbon loss compared with under a low N supply. Therefore, we concluded that N can improve the rapid response of photosynthesis to changing irradiance. PMID:27506927

  5. Atmospheric emissions of nitrous oxide, methane, and carbon dioxide from different nitrogen fertilizers.

    PubMed

    Sistani, K R; Jn-Baptiste, M; Lovanh, N; Cook, K L

    2011-01-01

    Alternative N fertilizers that produce low greenhouse gas (GHG) emissions from soil are needed to reduce the impacts of agricultural practices on global warming potential (GWP). We quantified and compared growing season fluxes of NO, CH, and CO resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitrate (NHNO), poultry litter, and commercially available, enhanced-efficiency N fertilizers as follows: polymer-coated urea (ESN), SuperU, UAN + AgrotainPlus, and poultry litter + AgrotainPlus in a no-till corn ( L.) production system. Greenhouse gas fluxes were measured during two growing seasons using static, vented chambers. The ESN delayed the NO flux peak by 3 to 4 wk compared with other N sources. No significant differences were observed in NO emissions among the enhanced-efficiency and traditional inorganic N sources, except for ESN in 2009. Cumulative growing season NO emission from poultry litter was significantly greater than from inorganic N sources. The NO loss (2-yr average) as a percentage of N applied ranged from 0.69% for SuperU to 4.5% for poultry litter. The CH-C and CO-C emissions were impacted by environmental factors, such as temperature and moisture, more than the N source. There was no significant difference in corn yield among all N sources in both years. Site specifics and climate conditions may be responsible for the differences among the results of this study and some of the previously published studies. Our results demonstrate that N fertilizer source and climate conditions need consideration when selecting N sources to reduce GHG emissions. PMID:22031562

  6. Atmospheric emissions of nitrous oxide, methane, and carbon dioxide from different nitrogen fertilizers.

    PubMed

    Sistani, K R; Jn-Baptiste, M; Lovanh, N; Cook, K L

    2011-01-01

    Alternative N fertilizers that produce low greenhouse gas (GHG) emissions from soil are needed to reduce the impacts of agricultural practices on global warming potential (GWP). We quantified and compared growing season fluxes of NO, CH, and CO resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitrate (NHNO), poultry litter, and commercially available, enhanced-efficiency N fertilizers as follows: polymer-coated urea (ESN), SuperU, UAN + AgrotainPlus, and poultry litter + AgrotainPlus in a no-till corn ( L.) production system. Greenhouse gas fluxes were measured during two growing seasons using static, vented chambers. The ESN delayed the NO flux peak by 3 to 4 wk compared with other N sources. No significant differences were observed in NO emissions among the enhanced-efficiency and traditional inorganic N sources, except for ESN in 2009. Cumulative growing season NO emission from poultry litter was significantly greater than from inorganic N sources. The NO loss (2-yr average) as a percentage of N applied ranged from 0.69% for SuperU to 4.5% for poultry litter. The CH-C and CO-C emissions were impacted by environmental factors, such as temperature and moisture, more than the N source. There was no significant difference in corn yield among all N sources in both years. Site specifics and climate conditions may be responsible for the differences among the results of this study and some of the previously published studies. Our results demonstrate that N fertilizer source and climate conditions need consideration when selecting N sources to reduce GHG emissions.

  7. Effect of different fertilizers on nitrogen isotope composition and nitrate content of Brassica campestris.

    PubMed

    Yuan, Yuwei; Zhao, Ming; Zhang, Zhiheng; Chen, Tianjin; Yang, Guiling; Wang, Qiang

    2012-02-15

    The effect of different fertilizers on the δ(15)N value, nitrate concentration, and nitrate reductase activity of Brassica campestris and the δ(15)N value of soil has been investigated through a pot experiment. The δ(15)N mean value of B. campestris at the seedling stage observed in the composted chicken treatment (+8.65‰) was higher than that of chemical fertilizer treatment (+5.73‰), compost-chemical fertilizer (+7.53‰), and control check treatment (+7.86‰). There were significantly different δ(15)N values (p < 0.05) between B. campestris cultivated with composted chicken manure treatment and with chemical fertilizer treatment. The similar results were also found at the middle stage and the terminal stage. The variation of δ(15)N value in soil for different treatments was smaller than that of B. campestris, which was +6.71-+8.12‰, +6.83-+8.24‰, and +6.85-8.4‰, respectively, at seedling stage, middle stage, and terminal stage. With the growth of B. campestris, the nitrate content decreased in all treatments, and the nitrate reductase activity in B. campestris increased except for the CK. Results suggested that the δ(15)N values of B. campestris and soil were more effected by the fertilizer than by the dose level, and the δ(15)N value analysis could be used as a tool to discriminate the B. campestris cultivated with composted manure or chemical fertilizer.

  8. Foliar stable carbon and nitrogen isotopes in woody Mediterranean species with different life form and post-fire regeneration.

    PubMed

    Saura-Mas, S; Lloret, F

    2010-01-01

    Wildfire is an important ecological disturbance factor in most Mediterranean ecosystems. In the Mediterranean Basin, most shrub species can regenerate after fire by resprouting or seeding. Here, we hypothesize that post-fire regenerative syndromes may potentially co-vary with traits directly related to functional properties involved in resource use. Thus, seeders with a shorter life span and smaller size would have lower water-use efficiency (WUE) than re-sprouting species and would take up nutrients such as nitrogen from more superficial parts of the soil. To test this hypothesis, we compared leaf (13)C and (15)N signatures from 29 co-existing species with different post-fire regeneration strategies. We also considered life form as an additional explanatory variable of the differences between post-fire regenerative groups. Our data support the hypothesis that seeder species (which mostly evolved in the Quaternary under a Mediterranean climate) have lower WUE and less stomatal control than non-seeders (many of which evolved under different climatic conditions in the Tertiary) and consequently greater consumption of water per unit biomass. This would be related to their smaller life forms, which tend to have lower WUE and shorter life and leaf lifespan. Differences in (15)N also support the hypothesis that resprouters have deeper root systems than non-resprouters. The study supports the hypothesis of an overlap between plant functional traits and plant attributes describing post-disturbance resilience. PMID:20653895

  9. Ionic composition and nitrate in drainage water from fields fertilized with different nitrogen sources, middle swamp watershed, North Carolina, August 2000-August 2001

    USGS Publications Warehouse

    Harden, Stephen L.; Spruill, Timothy B.

    2004-01-01

    A study was conducted from August 2000 to August 2001 to characterize the influence of fertilizer use from different nitrogen sources on the quality of drainage water from 11 subsurface tile drains and 7 surface field ditches in a North Carolina Coastal Plain watershed. Agricultural fields receiving commercial fertilizer (conventional sites), swine lagoon effluent (spray sites), and wastewater-treatment plant sludge (sludge site) in the Middle Swamp watershed were investigated. The ionic composition of drainage water in tile drains and ditches varied depending on fertilizer source type. The dominant ions identified in water samples from tile drains and ditches include calcium, magnesium, sodium, chloride, nitrate, and sulfate, with tile drains generally having lower pH, low or no bicarbonates, and higher nitrate and chloride concentrations. Based on fertilizer source type, median nitrate-nitrogen concentrations were significantly higher at spray sites (32.0 milligrams per liter for tiles and 8.2 milligrams per liter for ditches) relative to conventional sites (6.8 milligrams per liter for tiles and 2.7 milligrams per liter for ditches). The median instantaneous nitrate-nitrogen yields also were significantly higher at spray sites (420 grams of nitrogen per hectare per day for tile drains and 15.6 grams of nitrogen per hectare per day for ditches) relative to conventional sites (25 grams of nitrogen per hectare per day for tile drains and 8.1 grams of nitrogen per hectare per day for ditches). The tile drain site where sludge is applied had a median nitrate-nitrogen concentration of 10.5 milligrams per liter and a median instantaneous nitrate-nitrogen yield of 93 grams of nitrogen per hectare per day, which were intermediate to those of the conventional and spray tile drain sites. Results from this study indicate that nitrogen loadings and subsequent edge-of-field nitrate-nitrogen yields through tile drains and ditches were significantly higher at sites receiving

  10. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect

    Joe Sinner

    2006-06-30

    The reservoir characterization and investigation of the benefits of horizontal wells in the East Binger Unit miscible nitrogen flood as been completed. A significant work program was implemented from 2002 to 2005 in an effort to reduce gas cycling and economically increase ultimate oil recovery. Horizontal and vertical infill wells were drilled and existing producers were converted to injection. Due to successful infill drilling based on the improved flow characterization, more drilling was done than originally planned, and further drilling will occur after the project is completed. Through the drilling of wells and reservoir characterization work, it was determined that poor areal sweep efficiency is the primary factor causing nitrogen cycling and limiting oil recovery. This is in contrast to the perception prior to the initiation of development, which was that gravity segregation was causing poor vertical sweep efficiency. Although not true of all infill wells, most were drilled in areas with little sweep and came online producing gas with much lower nitrogen contents than previously drilled wells in the field and in the pilot area. Seven vertical and three horizontal wells were drilled in the pilot area throughout the project. As previously reported, the benefits of horizontal drilling were found to be insufficient to justify their increased cost. Nitrogen recycle, defined as nitrogen production as a percentage of injection, decreased from 72% prior to initiation of the project to about 25% before rising back to a current rate of 40%. Injection into the pilot area, despite being limited at times by problems in the Air Separation Unit of the Nitrogen Management Facility, increased 60% over levels prior to the project. Meanwhile, gas production and nitrogen content of produced gas both decreased.

  11. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes.

    PubMed

    Hu, Xiao-Kang; Su, Fang; Ju, Xiao-Tang; Gao, Bing; Oenema, Oene; Christie, Peter; Huang, Bin-Xiang; Jiang, Rong-Feng; Zhang, Fu-Suo

    2013-05-01

    Here, we report on a two-years field experiment aimed at the quantification of the emissions of nitrous oxide (N2O) and methane (CH4) from the dominant wheat-maize double cropping system in North China Plain. The experiment had 6 different fertilization strategies, including a control treatment, recommended fertilization, with and without straw and manure applications, and nitrification inhibitor and slow release urea. Application of N fertilizer slightly decreased CH4 uptake by soil. Direct N2O emissions derived from recommended urea application was 0.39% of the annual urea-N input. Both straw and manure had relatively low N2O emissions factors. Slow release urea had a relatively high emission factor. Addition of nitrification inhibitor reduced N2O emission by 55%. We conclude that use of nitrification inhibitors is a promising strategy for N2O mitigation for the intensive wheat-maize double cropping systems.

  12. Effects of different nitrogen fertilizers on emission of nitrous oxide from soil

    NASA Astrophysics Data System (ADS)

    Breitenbeck, G. A.; Blackmer, A. M.; Bremner, J. M.

    1980-01-01

    Field studies of emissions of nitrous oxide (N2O) from a fallow soil treated with different forms and amounts of fertilizer N showed that N2O emissions from plots treated with N in the form of ammonium sulfate or urea markedly exceeded those from plots treated with the same amount of N in the form of calcium nitrate. This supports evidence from laboratory research that most of the N2O evolved from soils treated with ammonium and ammonium-producing fertilizers is generated by nitrifying microorganisms during oxidation of ammonium to nitrate and not, as previously assumed, through reduction of fertilizer-derived nitrate by denitrifying microorganisms. Emissions of N2O from plots treated with fertilizer N as ammonium sulfate or urea increased with the amount of N applied. Emissions of N2O in 25 days were increased 329-524% by application of 125 kg N ha-1 as ammonium sulfate or urea and increased 1024-1319% by the application of 250 kg N ha-1 in these forms, but these applications did not markedly increase N2O emissions after 25 days, and the fertilizer-induced emissions of N2O-N observed in 96 days from plots treated with ammonium sulfate or urea represented only 0.11-0.18% of the fertilizer N applied. Emissions of N2O from plots treated with different amounts of N as calcium nitrate did not increase with the amount of N applied and were not appreciably greater than the emissions observed when no fertilizer N was added.

  13. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models.

    PubMed

    Waring, Bonnie G; Averill, Colin; Hawkes, Christine V

    2013-07-01

    Since fungi and bacteria are the dominant decomposers in soil, their distinct physiologies are likely to differentially influence rates of ecosystem carbon (C) and nitrogen (N) cycling. We used meta-analysis and an enzyme-driven biogeochemical model to explore the drivers and biogeochemical consequences of changes in the fungal-to-bacterial ratio (F : B). In our meta-analysis data set, F : B increased with soil C : N ratio (R(2) = 0.224, P < 0.001), a relationship predicted by our model. We found that differences in biomass turnover rates influenced F : B under conditions of C limitation, while differences in biomass stoichiometry set the upper bounds on F : B once a nutrient limitation threshold was reached. Ecological interactions between the two groups shifted along a gradient of resource stoichiometry. At intermediate substrate C : N, fungal N mineralisation fuelled bacterial growth, increasing total microbial biomass and decreasing net N mineralisation. Therefore, we conclude that differences in bacterial and fungal physiology may have large consequences for ecosystem-scale C and N cycling.

  14. Effects of different forms of nitrogen fertilizers on arsenic uptake by rice plants.

    PubMed

    Chen, Xue-Ping; Zhu, Yong-Guan; Hong, Mi-Na; Kappler, Andreas; Xu, Yu-Xin

    2008-04-01

    A pot microcosm experiment was conducted to investigate the effect of different forms of N fertilizers on As uptake by rice. Compared to a nontreated control, addition of nitrate reduced Fe(II) concentration in soil solution, while treatment with ammonium enhanced Fe(III) reduction, probably coupled to NH(4)(+) oxidation in the nonrhizosphere. Most-probable-number (MPN) enumerations revealed high densities of nitrate-dependent Fe(II)-oxidizing microorganisms. The addition of nitrate decreased Fe plaque formation on the root surface, accompanied by much lower dissolved Fe(II) concentrations in the rhizosphere soil solution compared to the nonamended control. Nitrate addition also reduced As uptake by the rice plant. These results suggest that nitrate may inhibit Fe(III) reduction and/or stimulate nitrate-dependent Fe(II) oxidation, leading to As coprecipitation with, or adsorption to, Fe(III) minerals in the soil. Although Fe plaque formation on the root surface is reduced, nitrate-dependent stimulation of Fe(II) oxidation and/or inhibition of Fe(III) reduction in the bulk soil sequesters mobile As in the soil, resulting in reduced As uptake by rice.

  15. HIV DNA Vaccine: Stepwise Improvements Make a Difference

    PubMed Central

    Felber, Barbara K.; Valentin, Antonio; Rosati, Margherita; Bergamaschi, Cristina; Pavlakis, George N.

    2014-01-01

    Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic. PMID:26344623

  16. Improved Boundary Conditions for Cell-centered Difference Schemes

    NASA Technical Reports Server (NTRS)

    VanderWijngaart, Rob F.; Klopfer, Goetz H.; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    Cell-centered finite-volume (CCFV) schemes have certain attractive properties for the solution of the equations governing compressible fluid flow. Among others, they provide a natural vehicle for specifying flux conditions at the boundaries of the physical domain. Unfortunately, they lead to slow convergence for numerical programs utilizing them. In this report a method for investigating and improving the convergence of CCFV schemes is presented, which focuses on the effect of the numerical boundary conditions. The key to the method is the computation of the spectral radius of the iteration matrix of the entire demoralized system of equations, not just of the interior point scheme or the boundary conditions.

  17. Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests.

    PubMed

    Du, Yuhan; Guo, Peng; Liu, Jianqiu; Wang, Chunyu; Yang, Ning; Jiao, Zhenxia

    2014-10-01

    Nitrogen (N) deposition significantly affects the soil carbon (C) cycle process of forests. However, the influence of different types of N on it still remained unclear. In this work, ammonium nitrate was selected as an inorganic N (IN) source, while urea and glycine were chosen as organic N (ON) sources. Different ratios of IN to ON (1 : 4, 2 : 3, 3 : 2, 4 : 1, and 5 : 0) were mixed with equal total amounts and then used to fertilize temperate forest soils for 2 years. Results showed that IN deposition inhibited soil C cycle processes, such as soil respiration, soil organic C decomposition, and enzymatic activities, and induced the accumulation of recalcitrant organic C. By contrast, ON deposition promoted these processes. Addition of ON also resulted in accelerated transformation of recalcitrant compounds into labile compounds and increased CO2 efflux. Meanwhile, greater ON deposition may convert C sequestration in forest soils into C source. These results indicated the importance of the IN to ON ratio in controlling the soil C cycle, which can consequently change the ecological effect of N deposition.

  18. Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China

    USGS Publications Warehouse

    Zhao, Y.; Xu, M.; Belnap, J.

    2010-01-01

    Biological soil crusts (biocrusts) cover up to 60–70% of the soil surface in grasslands rehabilitated during the "Grain for Green" project implemented in the hilly Loess Plateau region in 1999. As biocrusts fix nitrogen (N), they are an important part of restoring soil fertility. We measured nitrogenase activity (NA) in biocrusts from sites rehabilitated at six different time periods to estimate 1) the effects of moisture content and temperature on NA in biocrusts of different ages and 2) the potential N contribution from biocrusts to soils and plants in this region. Results show that NA in the biocrusts was mostly controlled by the species composition, as the activity of biocrusts dominated by free-living soil cyanobacteria was significantly higher than that of moss-dominated biocrusts. Nitrogenase activity was also influenced by soil moisture content and ambient temperature, with a significant decline in activity when moisture levels were decreased to 20% field water-holding capacity. The optimal temperature for NA was 35–40 °C and 30–40 °C for cyanobacteria- and moss-dominated biocrusts, respectively. Biocrust fixed N is likely an important source of N in this ecosystem, as we estimated annual potential N inputs per hectare in these grasslands to be up to 13 kg N ha-1 and 4 kg N ha-1 for cyanobacteria- and moss-dominated biocrusts, respectively.

  19. Nitrogen and phosphorus associating with different size suspended solids in roof and road runoff in Beijing, China.

    PubMed

    Wu, Junliang; Ren, Yufen; Wang, Xuemei; Wang, Xiaoke; Chen, Liding; Liu, Gangcai

    2015-10-01

    Roofs and roads, accounting for a large portion of the urban impervious land surface, have contributed significantly to urban nonpoint pollution. In this study, in Beijing, China, roof and road runoff are sampled to measure the suspended solids (SS), nitrogen (N), and phosphorus (P) contained in particles with different sizes. The SS content in the road runoff (151.59 mg/L) was sevenfold that in the roof runoff (21.13 mg/L, p < 0.05). The SS contained more coarse particulates in the roof runoff than in road runoff. The small particulates in the range of 0.45-50 μm consisted of 59 % SS in the roof runoff and 94 % SS in the road runoff. P was mainly attached to particle sizes of 10-50 μm in the roof (73 %) and road (48 %) runoffs, while N was mainly in a dissolved phase state in both runoffs. So, the different associations of N and P raise a challenge in preventing stormwater pollution in urban environments. PMID:26036583

  20. Dynamics of nitrogen transformation depending on different operational strategies in laboratory-scale tidal flow constructed wetlands.

    PubMed

    Chang, Yongjiang; Wu, Shubiao; Zhang, Tao; Mazur, Robert; Pang, Changle; Dong, Renjie

    2014-07-15

    The influence of different flooded/drained (F/D) time ratios and different effluent flow rates on the dynamics of nitrogen transformations in three laboratory-scale tidal flow constructed wetland systems (TFCWs-A, B, and C) under varying NH4(+)-N and COD influent loadings was investigated in this study. Good organic matter removal performance up to 90% was achieved for all experimental TFCWs under inflow concentrations of 300 and 150 mg/L regardless of F/D and effluent flow rate. The ammonium removal efficiency of wetland with F/D=3h:3h (55%) was higher than that of the wetland with F/D=5h:1h (47%) under an ammonium inflow concentration of 60 mg/L, indicating the positive effect of longer drained and shorter flooded time on tidal-operated wetlands under nitrification. In addition, more uniform oxygen distribution and better nitrification capacity within the wetland might be achieved with a relatively slow effluent flow rate of 0.025 L/s. TFCWs were shown to be a robust and reliable option to achieve high TN removal of 70% due to its repeated cycle of "wet" and "dry" periods, particularly for the treatment of wastewater with high organic content. Moreover, F/D and effluent flow rates of tidal flow constructed wetlands exhibited no significant effect on phosphorus removal in this study. Other techniques, such as pretreatment or post treatment, require further investigation.

  1. Improving utilisation of dental services by understanding cultural difference.

    PubMed

    Johnston, J A

    1993-10-01

    There is considerable health and medical research and anecdotal evidence showing that members of different cultural groups and people from lower socio-economic status and/or disadvantaged ethnic minority groups are prone to increased morbidity and early mortality. It is also clear that similar patterns are found in terms of dental health status and dental health morbidity. New Zealand data from the Second International Collaborative Study (ICSII) clearly illustrate that poorer health status overall and poorer dental health status are experienced by certain sections and groups within the population. Data from these studies suggest that members of lower socio-economic status groups, different ethnic groups and those with different cultural affiliations experience different health status and use the health services at differential rates. Some of the factors that appear to influence this are clearly related to cultural beliefs and attitudes. Future efforts by the New Zealand health services and in particular by the New Zealand dental health services to redress the situation need to be based on a clear understanding of the many factors that limit the availability and uptake of preventive and dental health care services by high risk groups. Understanding cultural difference is a key requirement.

  2. Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size

    NASA Astrophysics Data System (ADS)

    Cheng, Junyang; Chen, Jin; Lin, Wei; Liu, Yandong; Kong, Yan

    2015-03-01

    Fluorine and nitrogen co-doped TiO2 (F-N-TiO2) photocatalysts with enhanced photocatalytic activities were facilely synthesized by a simple one-step hydrothermal method using Ti(SO4)2 as an economical precursor, and hydrofluoric acid and ammonia as F and N source, respectively. The structure, morphology, and optical properties of produced nanoparticles were characterized by X-ray diffraction (XRD), N2 adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectra (FT-IR) methods. The synergistic effects of F and N doping were systematically examined by changing the molar ratio of F/N. Compared with the un-doped F or N mono-doped TiO2, the co-doped samples exhibited significantly improved photocatalytic performance due to their synergistic effects under visible light. It was shown that F dopant promoted the crystal growth and crystallinity of samples, while N dopant hindered it to some extent, which resulted in the tunable particle size of obtained F-N-TiO2 materials. The effects of F and N dopants on the enhanced photocatalytic activity of modified TiO2 materials were also discussed. The degradation rate of methylene blue (MB) was achieved at 97.31% after 5 h reaction under visible light over the optimized sample of FN3.5T. The materials also showed excellent stability according to the recycling tests of the photodegradation of MB.

  3. Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) Heywood grown in soils from different sites of the Damma glacier forefield.

    PubMed

    Töwe, Stefanie; Albert, Andreas; Kleineidam, Kristina; Brankatschk, Robert; Dümig, Alexander; Welzl, Gerhard; Munch, Jean Charles; Zeyer, Josef; Schloter, Michael

    2010-11-01

    Glacier forefields are an ideal playground to investigate the role of development stages of soils on the formation of plant-microbe interactions as within the last decades, many alpine glaciers retreated, whereby releasing and exposing parent material for soil development. Especially the status of macronutrients like nitrogen differs between soils of different development stages in these environments and may influence plant growth significantly. Thus, in this study, we reconstructed major parts of the nitrogen cycle in the rhizosphere soil/root system of Leucanthemopsis alpina (L.) HEYWOOD: as well as the corresponding bulk soil by quantifying functional genes of nitrogen fixation (nifH), nitrogen mineralisation (chiA, aprA), nitrification (amoA AOB, amoA AOA) and denitrification (nirS, nirK and nosZ) in a 10-year and a 120-year ice-free soil of the Damma glacier forefield. We linked the results to the ammonium and nitrate concentrations of the soils as well as to the nitrogen and carbon status of the plants. The experiment was performed in a greenhouse simulating the climatic conditions of the glacier forefield. Samples were taken after 7 and 13 weeks of plant growth. Highest nifH gene abundance in connection with lowest nitrogen content of L. alpina was observed in the 10-year soil after 7 weeks of plant growth, demonstrating the important role of associative nitrogen fixation for plant development in this soil. In contrast, in the 120-year soil copy numbers of genes involved in denitrification, mainly nosZ were increased after 13 weeks of plant growth, indicating an overall increased microbial activity status as well as higher concentrations of nitrate in this soil.

  4. Improved Miscible Nitrogen Flood Performance Utilizing Advanced Reservoir Characterization and Horizontal Laterals in a Class I Reservoir - East Binger (Marchand) Unit

    SciTech Connect

    Joe Sinner

    2004-06-30

    The DOE-sponsored project at the East Binger Unit is an investigation into the benefits of reservoir characterization and horizontal wells in this particular setting of geologic and recovery method. The geologic setting is a tight (average porosity of 7% and average permeability of less than 1 millidarcy) Pennsylvanian-age sandstone at about 10,000 feet, and the recovery method is a miscible nitrogen flood. The projected oil recovery of the East Binger Unit, prior to the initiation of this project, was about 25%. Gravity segregation of nitrogen and crude oil was believed to be the principal cause of the poor sweep efficiency, and it was envisioned that with horizontal producing wells in the lower portion of the reservoir and horizontal injection wells near the top, the process could be converted from a lateral displacement process to a vertical displacement/gravity assisted process. Through the characterization and field development work completed in Budget Periods 1 and 2, Binger Operations, LLC (BOL) has developed a different interpretation of the sweep problem as well as a different approach to improving recovery. The sweep problem is now believed to be one of an areal nature, due to a combination of natural and hydraulic fracturing. Vertical wells have provided a much better economic return than have the horizontal wells. The natural and hydraulic fracturing manifests itself as a direction of higher permeability, and the flood is being converted to a line drive flood aligned with this orientation. Consistent with this concept, horizontal wells have been drilled along the line of the fracture orientation, such that hydraulic fracturing leads to 'longitudinal' fractures, in line with the wellbore. As such, the hydraulically fractured horizontal wells are not significantly different than hydraulically fractured vertical wells - save for the potential for a much longer fracture face. This Topical Report contains data from new wells, plus new and updated production

  5. [Effect of Different Purple Parent Rock on Removal Rates of Nitrogen, Phosphorus and Organics in Landscape Water].

    PubMed

    Huang, Xue-jiao; Liu, Xiao-chen; Li, Zhen-lun; Shi, Wen-hao; Yang, Shan

    2015-05-01

    In order to understand the impacts of physicochemical properties of purple parent rock on the removal rates of nitrogen, phosphorus and organics in landscape water systems, four types of purple parent rocks including Peng-lai-zhen Formation (S1) , Sha-xi-miao Formation (S2) , Fei-xian-guan Formation (S3) and Sui-ning Formation (S4) , which distribute widely in Chongqing, were selected and autoclaved, and added to unsterile landscape water collected from Chong-de Lake in Southwest University, and the landscape water only was used as control. And several indicators such as total nitrogen and phosphorus and so on of every disposal were investigated periodically. The results indicated that: (1) The highest removal rates of total nitrogen, total phosphorus and Ammonia nitrogen were observed in Sl, which were 45.1%, 62.3% and 90%, respectively; the highest removal rate of COD was 94.5% in S4; the ammonia nitrogen content in the purple parent rocks was not obviously changed before and after the experiments, which indicated that the adsorption of ammonia nitrogen on purple parent rock surface was not the main reason for the decrease of ammonia nitrogen in water. (2) Arsenate had inhibitory effect on the sulfate-reducing bacteria, while copper and magnesium had promoting effect on gram-negative bacteria. (3) The microbial diversity was positively correlated to total nitrogen in water. (4) Based on the PCA analyses of microbial community structure and environmental factors, the mineral elements released from parent rock affected the structure and composition of microbial community in the test water, and then influenced the removal rates of nitrogen, phosphorus and organics in water systems.

  6. Incorporating tracer-tracee differences into models to improve accuracy

    SciTech Connect

    Schoeller, D.A. )

    1991-05-01

    The ideal tracer for metabolic studies is one that behaves exactly like the tracee. Compounds labeled with isotopes come the closest to this ideal because they are chemically identical to the tracee except for the substitution of a stable or radioisotope at one or more positions. Even this substitution, however, can introduce a difference in metabolism that may be quantitatively important with regard to the development of the mathematical model used to interpret the kinetic data. The doubly labeled water method for the measurement of carbon dioxide production and hence energy expenditure in free-living subjects is a good example of how differences between the metabolism of the tracers and the tracee can influence the accuracy of the carbon dioxide production rate determined from the kinetic data.

  7. Influence of residue and nitrogen fertilizer additions on carbon mineralization in soils with different texture and cropping histories

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using soil sampled from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ul...

  8. Microbial community structure and dynamics in a mixotrophic nitrogen removal process using recycled spent caustic under different loading conditions.

    PubMed

    Park, Sora; Yu, Jaecheul; Byun, Imgyu; Cho, Sunja; Park, Taejoo; Lee, Taeho

    2011-08-01

    A laboratory-scale Bardenpho process was established to investigate the proper nitrogen loading rate (NLR) when modified spent caustic (MSC) is applied as electron donor and alkalinity source for denitrification. MSC injection induced autotrophic nitrogen removal with sulfur as electron donor and heterotrophic denitrification. The nitrogen removal rate (NRR) did not increase proportionally to NLR. Based on the total nitrogen concentration in the effluent observed in the trials with MSC, the NLR in the influent should not exceed 0.15 kg N/m(3)d in order to satisfy water quality regulations. Microbial communities in the anoxic reactors were characterized by pyrosequencing of 16S rRNA gene sequences amplified by the polymerase chain reaction of DNA extracted from sludge samples. Microbial diversity was lower as MSC dosage was increased, and the injection of MSC caused an increase in SOB belonging to the genus Thiobacillus which is responsible for denitrification using sulfur. PMID:21601446

  9. Responses of super rice (Oryza sativa L.) to different planting methods for grain yield and nitrogen-use efficiency in the single cropping season.

    PubMed

    Chen, Song; Wang, Danying; Xu, Chunmei; Ji, Chenglin; Zhang, Xiaoguo; Zhao, Xia; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha-1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha-1) was generally lower than TP (8.58 t ha-1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.

  10. Responses of hydraulics at the whole-plant level to simulated nitrogen deposition of different levels in Fraxinus mandshurica.

    PubMed

    Wang, Ai-Ying; Wang, Miao; Yang, Da; Song, Jia; Zhang, Wei-Wei; Han, Shi-Jie; Hao, Guang-You

    2016-08-01

    Nitrogen (N) deposition is expected to have great impact on forest ecosystems by affecting many aspects of plant-environmental interactions, one of which involves its influences on plant water relations through modifications of plant hydraulic architecture. However, there is a surprising lack of integrative study on tree hydraulic architecture responses to N deposition, especially at the whole-plant level. In the present study, we used a 5-year N addition experiment to simulate the effects of six different levels of N deposition (20-120 kg ha(-1) year(-1)) on growth and whole-plant hydraulic conductance of a dominant tree species (Fraxinus mandshurica Rupr.) from the typical temperate forest of NE China. The results showed that alleviation of N limitation by moderate concentrations of fertilization (20-80 kg ha(-1) year(-1)) promoted plant growth, but further N additions on top of the threshold level showed negative effects on plant growth. Growth responses of F. mandshurica seedlings to N addition of different concentrations were accompanied by corresponding changes in whole-plant hydraulic conductance; higher growth rate was accompanied by reduced whole-plant hydraulic conductance (Kplant) and higher leaf water-use efficiency. A detailed analysis on hydraulic conductance of different components of the whole-plant water transport pathway revealed that changes in root and leaf hydraulic conductance, rather than that of the stem, were responsible for Kplant responses to N fertilization. Both plant growth and hydraulic architecture responses to increasing levels of N addition were not linear, i.e., the correlation between measured parameters and N availability exhibited bell-shaped curves with peak values observed at medium levels of N fertilization. Changes in hydraulic architecture in response to fertilization found in the present study may represent an important underlying mechanism for the commonly observed changes in water-related tree performances

  11. Responses of hydraulics at the whole-plant level to simulated nitrogen deposition of different levels in Fraxinus mandshurica.

    PubMed

    Wang, Ai-Ying; Wang, Miao; Yang, Da; Song, Jia; Zhang, Wei-Wei; Han, Shi-Jie; Hao, Guang-You

    2016-08-01

    Nitrogen (N) deposition is expected to have great impact on forest ecosystems by affecting many aspects of plant-environmental interactions, one of which involves its influences on plant water relations through modifications of plant hydraulic architecture. However, there is a surprising lack of integrative study on tree hydraulic architecture responses to N deposition, especially at the whole-plant level. In the present study, we used a 5-year N addition experiment to simulate the effects of six different levels of N deposition (20-120 kg ha(-1) year(-1)) on growth and whole-plant hydraulic conductance of a dominant tree species (Fraxinus mandshurica Rupr.) from the typical temperate forest of NE China. The results showed that alleviation of N limitation by moderate concentrations of fertilization (20-80 kg ha(-1) year(-1)) promoted plant growth, but further N additions on top of the threshold level showed negative effects on plant growth. Growth responses of F. mandshurica seedlings to N addition of different concentrations were accompanied by corresponding changes in whole-plant hydraulic conductance; higher growth rate was accompanied by reduced whole-plant hydraulic conductance (Kplant) and higher leaf water-use efficiency. A detailed analysis on hydraulic conductance of different components of the whole-plant water transport pathway revealed that changes in root and leaf hydraulic conductance, rather than that of the stem, were responsible for Kplant responses to N fertilization. Both plant growth and hydraulic architecture responses to increasing levels of N addition were not linear, i.e., the correlation between measured parameters and N availability exhibited bell-shaped curves with peak values observed at medium levels of N fertilization. Changes in hydraulic architecture in response to fertilization found in the present study may represent an important underlying mechanism for the commonly observed changes in water-related tree performances

  12. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis.

    PubMed

    Zhou, Lingyan; Zhou, Xuhui; Zhang, Baocheng; Lu, Meng; Luo, Yiqi; Liu, Lingli; Li, Bo

    2014-07-01

    Anthropogenic activities have increased nitrogen (N) deposition by threefold to fivefold over the last century, which may considerably affect soil respiration (Rs). Although numerous individual studies and a few meta-analyses have been conducted, it remains controversial as to how N addition affects Rs and its components [i.e., autotrophic (Ra) and heterotrophic respiration (Rh)]. To reconcile the difference, we conducted a comprehensive meta-analysis of 295 published studies to examine the responses of Rs and its components to N addition in terrestrial ecosystems. We also assessed variations in their responses in relation to ecosystem types, environmental conditions, and experimental duration (DUR). Our results show that N addition significantly increased Rs by 2.0% across all biomes but decreased by 1.44% in forests and increased by 7.84% and 12.4% in grasslands and croplands, respectively (P < 0.05). The differences may largely result from diverse responses of Ra to N addition among biomes with more stimulation of Ra in croplands and grasslands compared with no significant change in forests. Rh exhibited a similar negative response to N addition among biomes except that in croplands, tropical and boreal forests. Methods of partitioning Rs did not induce significant differences in the responses of Ra or Rh to N addition, except that Ra from root exclusion and component integration methods exhibited the opposite responses in temperate forests. The response ratios (RR) of Rs to N addition were positively correlated with mean annual temperature (MAT), with being more significant when MAT was less than 15 °C, but negatively with DUR. In addition, the responses of Rs and its components to N addition largely resulted from the changes in root and microbial biomass and soil C content as indicated by correlation analysis. The response patterns of Rs to N addition as revealed in this study can be benchmarks for future modeling and experimental studies.

  13. Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert

    USGS Publications Warehouse

    Housman, D.C.; Powers, H.H.; Collins, A.D.; Belnap, J.

    2006-01-01

    Biological soil crusts (cyanobacteria, mosses and lichens collectively) perform essential ecosystem services, including carbon (C) and nitrogen (N) fixation. Climate and land-use change are converting later successional soil crusts to early successional soil crusts with lower C and N fixation rates. To quantify the effect of such conversions on C and N dynamics in desert ecosystems we seasonally measured diurnal fixation rates in different biological soil crusts. We classified plots on the Colorado Plateau (Canyonlands) and Chihuahuan Desert (Jornada) as early (Microcoleus) or later successional (Nostoc/Scytonema or Placidium/Collema) and measured photosynthesis (Pn), nitrogenase activity (NA), and chlorophyll fluorescence (Fv/Fm) on metabolically active (moist) soil crusts. Later successional crusts typically had greater Pn, averaging 1.2-1.3-fold higher daily C fixation in Canyonlands and 2.4-2.8-fold higher in the Jornada. Later successional crusts also had greater NA, averaging 1.3-7.5-fold higher daily N fixation in Canyonlands and 1.3-25.0-fold higher in the Jornada. Mean daily Fv/Fm was also greater in later successional Canyonlands crusts during winter, and Jornada crusts during all seasons except summer. Together these findings indicate conversion of soil crusts back to early successional stages results in large reductions of C and N inputs into these ecosystems.

  14. Nitrogen reduction in wastewater treatment using different anox-circulation flow rates and ethanol as a carbon source.

    PubMed

    Poutiainen, H; Laitinen, S; Pradhan, S; Pessi, M; Heinonen-Tanski, H

    2010-05-01

    We studied the optimization of nitrogen reduction from municipal wastewater in a laboratory-scale modified Ludzack-Ettinger activated sludge wastewater treatment plant (WWTP). The unit consisted of primary denitrification, secondary nitrification, a sludge clarifier and a post-denitrification unit. The process simulates the Kuopio WWTP, which provided the influent utilized. We describe the effect of varying anox-circulation schemes on the nitrogen removal efficiency. We further compare the denitrification efficiencies of ethanol and methanol applied in the post-denitrification unit, and compare the properties and costs of these chemicals as carbon sources. Maximum efficiency of total nitrogen removal (70.8%) was obtained with 256% anox-circulation. The process was, however, not very sensitive, as a wide range of 150-400% of anox-circulations gave good results for nitrogen reduction. The unit achieved high BOD, and COD reductions of wastewater also when nitrogen reduction was moderate. The addition of 40 mg/L/day of ethanol to the post-denitrification tank meant that the nitrate-levels of effluent could be controlled to below 10 mg/L of nitrate nitrogen. Methanol and ethanol were equally effective for denitrification. The use of ethanol instead of methanol could reduce treatment costs by 30% to 0.02 E/m3 of treated wastewater according to 2008 market prices.

  15. Responses in growth, lipid accumulation, and fatty acid composition of four oleaginous microalgae to different nitrogen sources and concentrations

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wan, Linglin; Li, Aifen; Zhang, Chengwu

    2013-11-01

    Nitrogen deficiency is an effective strategy for enhancing lipid production in microalgae. Close relationships exist among lipid production, microalgal species, and nitrogen sources. We report growth, lipid accumulation, and fatty acid composition in four microalgae ( Chlorococcum ellipsoideum UTEX972, Chlorococcum nivale LB2225, Chlorococcum tatrense UTEX2227, and Scenedesmus deserticola JNU19) under nitrate- and urea-nitrogen deficiencies. We found three patterns of response to nitrogen deficiency: Type-A (decrease in biomass and increase in lipid content), Type-B (reduction in both biomass and lipid content), and Type-C (enhancement of both biomass and lipid content). Type-C microalgae are potential candidates for large-scale oil production. Chlorococcum ellipsoideum, for example, exhibited a neutral lipid production of up to 239.6 mg/(L·d) under urea-nitrogen deficiency. In addition, nitrogen deficiency showed only a slight influence on lipid fractions and fatty acid composition. Our study provides useful information for further screening hyper-lipid microalgal strains for biofuel production.

  16. Improving dielectric properties of epitaxial Gd{sub 2}O{sub 3} thin films on silicon by nitrogen doping

    SciTech Connect

    Roy Chaudhuri, Ayan; Osten, H. J.; Fissel, A.; Archakam, V. R.

    2013-01-14

    We report about the effect of nitrogen doping on the electrical properties of epitaxial Gd{sub 2}O{sub 3} thin films. Epitaxial Gd{sub 2}O{sub 3}:N thin films were grown on Si (111) substrates by solid source molecular beam epitaxy using nitrous oxide as the nitridation agent. Substitutional nitrogen incorporation into the dielectric layer was confirmed by secondary ion mass spectroscopy and X-ray photoelectron spectroscopy analysis. Substantial reduction of the leakage current density and disappearance of hysteresis in capacitance-voltage characteristics observed in the Gd{sub 2}O{sub 3}:N layers indicate that nitrogen incorporation in Gd{sub 2}O{sub 3} effectively eliminates the adverse effects of the oxygen vacancy induced defects in the oxide layer.

  17. Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodiesel properties based on fatty acid composition.

    PubMed

    Ruangsomboon, Suneerat

    2015-09-01

    This work aimed to find an optimum culture medium for green microalga Botryococcus braunii KMITL and investigate its biodiesel properties based on fatty acid composition. Four different media were tested. Chlorella medium was the best medium for lipid yield. Among four nitrogen sources tested, KNO3 produced the highest lipid yield. When varied the nitrogen concentrations, this strain gave the highest lipid yield at the highest nitrogen level. When cultivated in the best medium and nitrogen source and level for 30 days, and then cultivated further for 14 days in the medium with no nitrogen, the highest lipid content and yield were 49.94±0.82% and 2.71±0.02 g L(-1), respectively. C16:0 fatty acid was the major fatty acid found. Fatty acid profiles of B. braunii KMITL cultivated in Chlorella medium with 1.25 g L(-1) KNO3 gave the best biodiesel properties with the lowest iodine value, maximum cetane number, and lowest degree of unsaturation.

  18. Nitrogen transfer from Lupinus albus L., Trifolium incarnatum L. and Vicia sativa L. contribute differently to rapeseed (Brassica napus L.) nitrogen nutrition.

    PubMed

    Génard, Thaïs; Etienne, Philippe; Laîné, Philippe; Yvin, Jean-Claude; Diquélou, Sylvain

    2016-09-01

    Nitrogen (N) transfer is well documented in legume-cereal intercropping but this is less often reported for legume-Brassica intercrops even though Brassica crops require higher levels of N fertilizers. The present study was carried out to quantify N transfer from legumes (Lupinus albus L., Trifolium incarnatum L. or Vicia sativa L.) to rapeseed (Brassica napus L.) using the split-root (15)N-labelling method. After three months we observed that legumes did not alter the growth of rapeseed. Vetch showed the lowest growth and demonstrated low (15)N shoot to root translocation and no significant N transfer to rapeseed. In contrast, significant (15)N enrichment was found in lupine and clover and (15)N was transferred to the associated rapeseed plants (around 6 and 4 mg N plant(-1), respectively), which contributed 2 to 3% of the rapeseed total N. Additionally, the data revealed that N2 fixation dominated the N nutrition in lupine despite the high N level provided in the donor compartment, suggesting a greater niche segregation between companion plants. Based on the results of this study we suggest that intercropping can be a relevant contributor to rapeseed N nutrition. Among the three legumes tested, clover and lupine seemed to be the best intercropping candidates.

  19. Nitrogen transfer from Lupinus albus L., Trifolium incarnatum L. and Vicia sativa L. contribute differently to rapeseed (Brassica napus L.) nitrogen nutrition.

    PubMed

    Génard, Thaïs; Etienne, Philippe; Laîné, Philippe; Yvin, Jean-Claude; Diquélou, Sylvain

    2016-09-01

    Nitrogen (N) transfer is well documented in legume-cereal intercropping but this is less often reported for legume-Brassica intercrops even though Brassica crops require higher levels of N fertilizers. The present study was carried out to quantify N transfer from legumes (Lupinus albus L., Trifolium incarnatum L. or Vicia sativa L.) to rapeseed (Brassica napus L.) using the split-root (15)N-labelling method. After three months we observed that legumes did not alter the growth of rapeseed. Vetch showed the lowest growth and demonstrated low (15)N shoot to root translocation and no significant N transfer to rapeseed. In contrast, significant (15)N enrichment was found in lupine and clover and (15)N was transferred to the associated rapeseed plants (around 6 and 4 mg N plant(-1), respectively), which contributed 2 to 3% of the rapeseed total N. Additionally, the data revealed that N2 fixation dominated the N nutrition in lupine despite the high N level provided in the donor compartment, suggesting a greater niche segregation between companion plants. Based on the results of this study we suggest that intercropping can be a relevant contributor to rapeseed N nutrition. Among the three legumes tested, clover and lupine seemed to be the best intercropping candidates. PMID:27656683

  20. Stable nitrogen isotope analysis of dentine serial sections elucidate sex differences in weaning patterns of wild chimpanzees (Pan troglodytes).

    PubMed

    Fahy, Geraldine E; Richards, Michael P; Fuller, Benjamin T; Deschner, Tobias; Hublin, Jean-Jacques; Boesch, Christophe

    2014-04-01

    Offspring provisioning is one of the most energetically demanding aspects of reproduction for female mammals. Variation in lactation length and weaning strategies between chimpanzees (Pan troglodytes), our closest living relative, and modern human societies have been reported. When and why these changes occurred is frequently debated. Our study used stable nitrogen isotope data of tooth root dentine from wild Western chimpanzees (Pan troglodytes verus) in Taï National Park, Côte d'Ivoire, to quantify weaning in these chimpanzees and explore if infant sex plays a role in maternal investment. We analyzed serial sections of deciduous lateral incisor root dentine from four Taï chimpanzees to establish the δ(15) N signal of nursing infants; we then analyzed serial sections of first permanent mandibular molar root dentine from 12 Taï chimpanzees to provide quantitative δ(15) N data on weaning in this population. Up to 2 years of age both sexes exhibited dentine δ(15) N values ≈2-3‰ higher than adult female Taï chimpanzees, consistent with a nursing signal. Thereafter a steady decrease in δ(15) N values consistent with the onset, and progression, of weaning, was visible. Sex differences were also evident, where male δ(15) N values decreased at a significantly slower rate compared to females. Confirmation of sex differences in maternal investment among Taï chimpanzees, demonstrates the viability of using isotope analysis to investigate weaning in non-human primates. Additionally, assuming that behaviors observed in the Taï chimpanzees are illustrative of the ancestral pattern, our results provide a platform to enable the trajectory of weaning in human evolution to be further explored.

  1. [Storage and allocation of carbon and nitrogen in Robinia pseudoacacia plantation at different ages in the loess hilly region, China].

    PubMed

    Ai, Ze-Min; Chen, Yun-Ming; Cao, Yang

    2014-02-01

    The 9-, 17-, 30- and 37-year-old Robinia pseudoacacia plantations in the loess hilly region were investigated to study the dynamics and allocation patterns of carbon and nitrogen storage. The results showed that the ranges of carbon and nitrogen contents were 435.9-493.4 g x kg(-1) and 6.8-21.0 g x kg(-1) in the arbor layer, 396.3-459.2 g x kg(-1) and 14.2-23.5 g x kg(-1) in the herb and litter layer, and 2.7-10.7 g x kg(-1) and 0.2-0.7 g x kg(-1) in the soil layer, respectively. The branch was the major carbon and nitrogen pool in the arbor layer, accounting for 46.9%-63.3% and 39.3%-57.8%, respectively. The maximum storage values were 30.1 and 1.8 Mg x hm(-2) for carbon and nitrogen, respectively, in the 0-20 cm soil layer in the 37-year-old R. pseudoacacia plantation. The total carbon and nitrogen storage in the R. pseudoacacia plantation ecosystem increased with increasing forest age, and the maximum values were 127.9 Mg x hm(-2) and 6512.8 kg x hm(-2) for carbon and nitrogen storage, respectively, in the 37-year-old R. pseudoacacia plantation. Soil layer was the major carbon and nitrogen pool of R. pseudoacacia plantation ecosystem, accounting for 63.3%-83.3% and 80.3%-91.4%, respectively.

  2. Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition.

    PubMed

    Bulusheva, L G; Okotrub, A V; Fedoseeva, Yu V; Kurenya, A G; Asanov, I P; Vilkov, O Y; Koós, A A; Grobert, N

    2015-10-01

    Nitrogen-containing multi-wall carbon nanotubes (N-MWCNTs) were synthesized using aerosol assisted chemical vapor deposition (CVD) techniques in conjunction with benzylamine:ferrocene or acetonitrile:ferrocene mixtures. Different amounts of toluene were added to these mixtures in order to change the N/C ratio of the feedstock. X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopy detected pyridinic, pyrrolic, graphitic, and molecular nitrogen forms in the N-MWCNT samples. Analysis of the spectral data indicated that whilst the nature of the nitrogen-containing precursor has little effect on the concentrations of the different forms of nitrogen in N-MWCNTs, the N/C ratio in the feedstock appeared to be the determining factor. When the N/C ratio was lower than ca. 0.01, all four forms existed in equal concentrations, for N/C ratios above 0.01, graphitic and molecular nitrogen were dominant. Furthermore, higher concentrations of pyridinic nitrogen in the outer shells and N2 molecules in the core of the as-produced N-MWCNTs suggest that the precursors were decomposed into individual atoms, which interacted with the catalyst surface to form CN and NH species or in fact diffused through the bulk of the catalyst particles. These findings are important for a better understanding of possible growth mechanisms for heteroatom-containing carbon nanotubes (CNTs) and therefore paving the way for controlling the spatial distribution of foreign elements in the CNTs using CVD processes. PMID:26104737

  3. Will algorithms modified with soil and weather information improve in-field reflectance-sensing corn nitrogen applications?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) needs to support corn (Zea mays L.) production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been implemented on many farmers’ fields to side-dress or top-dress variable-rate N application, but at times farmers report the performance of...

  4. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China.

    PubMed

    Shan, Linan; He, Yunfeng; Chen, Jie; Huang, Qian; Wang, Hongcai

    2015-12-01

    Ammonia (NH3) volatilization is a major pathway of nitrogen (N) loss from soil-crop systems. As vegetable cultivation is one of the most important agricultural land uses worldwide, a deeper understanding of NH3 volatilization is necessary in vegetable production systems. We therefore conducted a 3-year (2010-2012) field experiment to characterize NH3 volatilization and evaluate the effect of different N fertilizer treatments on this process during the growth period of Chinese cabbage. Ammonia volatilization rate, rainfall, soil water content, pH, and soil NH4(+) were measured during the growth period. The results showed that NH3 volatilization was significantly and positively correlated to topsoil pH and NH4(+) concentration. Climate factors and fertilization method also significantly affected NH3 volatilization. Specifically, organic fertilizer (OF) increased NH3 volatilization by 11.77%-18.46%, compared to conventional fertilizer (CF, urea), while organic-inorganic compound fertilizer (OIF) reduced NH3 volatilization by 8.82%-12.67% compared to CF. Furthermore, slow-release fertilizers had significantly positive effects on controlling NH3 volatilization, with a 60.73%-68.80% reduction for sulfur-coated urea (SCU), a 71.85%-78.97% reduction for biological Carbon Power® urea (BCU), and a 77.66%-83.12% reduction for bulk-blend controlled-release fertilizer (BBCRF) relative to CF. This study provides much needed baseline information, which will help in fertilizer choice and management practices to reduce NH3 volatilization and encourage the development of new strategies for vegetable planting. PMID:26702964

  5. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China.

    PubMed

    Shan, Linan; He, Yunfeng; Chen, Jie; Huang, Qian; Wang, Hongcai

    2015-12-01

    Ammonia (NH3) volatilization is a major pathway of nitrogen (N) loss from soil-crop systems. As vegetable cultivation is one of the most important agricultural land uses worldwide, a deeper understanding of NH3 volatilization is necessary in vegetable production systems. We therefore conducted a 3-year (2010-2012) field experiment to characterize NH3 volatilization and evaluate the effect of different N fertilizer treatments on this process during the growth period of Chinese cabbage. Ammonia volatilization rate, rainfall, soil water content, pH, and soil NH4(+) were measured during the growth period. The results showed that NH3 volatilization was significantly and positively correlated to topsoil pH and NH4(+) concentration. Climate factors and fertilization method also significantly affected NH3 volatilization. Specifically, organic fertilizer (OF) increased NH3 volatilization by 11.77%-18.46%, compared to conventional fertilizer (CF, urea), while organic-inorganic compound fertilizer (OIF) reduced NH3 volatilization by 8.82%-12.67% compared to CF. Furthermore, slow-release fertilizers had significantly positive effects on controlling NH3 volatilization, with a 60.73%-68.80% reduction for sulfur-coated urea (SCU), a 71.85%-78.97% reduction for biological Carbon Power® urea (BCU), and a 77.66%-83.12% reduction for bulk-blend controlled-release fertilizer (BBCRF) relative to CF. This study provides much needed baseline information, which will help in fertilizer choice and management practices to reduce NH3 volatilization and encourage the development of new strategies for vegetable planting.

  6. Responses of leaf nitrogen and mobile carbohydrates in different Quercus species/provenances to moderate climate changes.

    PubMed

    Li, M-H; Cherubini, P; Dobbertin, M; Arend, M; Xiao, W-F; Rigling, A

    2013-01-01

    Global warming and shortage of water have been evidenced in the recent past and are predicted for the future. Climate change will inevitably have considerable impact on plant physiology, growth, productivity and forest ecosystem functions. The present study determined the effects of simulated daytime air warming (+1 to 1.5 °C during the growing season), drought (-40% and -57% of mean precipitation of 728 mm during the 2007 and 2008 growing season, respectively) and their combination, on leaf nitrogen (N) and non-structural carbohydrates (NSC) of two Quercus species (Q. robur and Q. petraea) and provenances (two provenances for each species) grown in two soil types in Switzerland across two treatment years, to test the hypothesis that leaf N and NSC in the more water-sensitive species (Q. robur) and provenances (originating from water-rich locations) will more strongly respond to global warming and water deficit, compared to those in the more drought-tolerant species (Q. petraea) or provenances. No species- and provenance-specific responses in leaf N and NSC to the climate treatment were found, indicating that the results failed to support our hypothesis. The between-species variation of leaf N and NSC concentrations mainly reflected differences in biology of the two species, and the between-provenance variation of N and NSC concentrations apparently mirrored the climate of their origins. Hence, we conclude that (i) the two Quercus species studied are somewhat insensitive, due to their distribution covering a wide geographical and climate range, to moderate climate change within Switzerland, and (ii) a moderate global warming of B1 scenario (IPCC 2007) will not, or at least less, negatively affect the N and carbon physiology in Q. robur and Q. petraea.

  7. Nitrogen and metals in two regions in Central Europe: significant differences in accumulation in mosses due to land use?

    PubMed

    Schröder, Winfried; Hornsmann, Inga; Pesch, Roland; Schmidt, Gunther; Markert, Bernd; Fränzle, Stefan; Wünschmann, Simone; Heidenreich, Heike

    2007-10-01

    The study was conducted to test the hypothesis that the regional variability of nitrogen (N) and metal accumulations in terrestrial ecosystems are due to historical and recent ways of landuse. To this end, two regions of Central Europe were selected for investigation: the Weser-Ems Region (WER) and the Euro Region Nissa (ERN). They were assumed to have land use-specific accumulation profiles. Thus, the metal and N accumulations in both regions were examined by means of geostatistically based comparative moss analysis. The sampling and chemical analysis of mosses were conducted in accordance with the convenient guidelines and methods, respectively. The spatial representativity of the sampling sites was computed by means of a land classification which was calculated for Europe by means of classification trees and GIS-techniques. The differences of deposition loads were tested for statistical significance with regard to time and space. The measurement values corroborated the decline of metal accumulation observed since the beginning of the European Metals in Mosses Surveys in 1990. The metal loads of the mosses in the ERN exceeded those in the WER significantly. The opposite holds true for the N concentrations: those in the WER were significantly higher than those in the ERN. The reduction of emissions from power plants, factories and houses was strongly correlated with the decline of deposition and bioaccumulation of metals. As proved by the European Metals in Mosses Surveys, this tendency is due to successful environmental policies. But no such success could be verified by monitoring the accumulation of N in mosses.

  8. Phytoextraction of Cadmium and Zinc By Sedum plumbizincicola Using Different Nitrogen Fertilizers, a Nitrification Inhibitor and a Urease Inhibitor.

    PubMed

    Arnamwong, Suteera; Wu, Longhua; Hu, Pengjie; Yuan, Cheng; Thiravetyan, Paitip; Luo, Yongming; Christie, Peter

    2015-01-01

    Cadmium (Cd) and zinc (Zn) phytoavailability and their phytoextraction by Sedum plumbizincicola using different nitrogen fertilizers, nitrification inhibitor (dicyandiamide, DCD) and urease inhibitor (N-(n-Butyl) thiophosphoric triamide, NBPT) were investigated in pot experiments where the soil was contaminated with 0.99 mg kg(-1) of Cd and 241 mg kg(-1) Zn. The soil solution pH varied between 7.30 and 8.25 during plant growth which was little affected by the type of N fertilizer. The (NH4)2SO4+DCD treatment produced higher NH4+-N concentrations in soil solution than the (NH4)2SO4 and NaNO3 treatment which indicated that DCD addition inhibited the nitrification process. Shoot Cd and Zn concentrations across all treatments showed ranges of 52.9-88.3 and 2691-4276 mg kg(-1), respectively. The (NH4)2SO4+DCD treatment produced slightly higher but not significant Cd and Zn concentrations in the xylem sap than the NaNO3 treatment. Plant shoots grown with NaNO3 had higher Cd concentrations than (NH4)2SO4+DCD treatment at 24.0 and 15.4 mg kg(-1), respectively. N fertilizer application had no significant effect on shoot dry biomass. Total Cd uptake in the urea+DCD treatment was higher than in the control, urea+NBPT, urea+NBPT+DCD, or urea treatments, by about 17.5, 23.3, 10.7, and 25.1%, respectively.

  9. Nitrogen retention and transport differ by hillslope aspect at the rain-snow transition of the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Hinckley, Eve-Lyn S.; Barnes, Rebecca T.; Anderson, Suzanne P.; Williams, Mark W.; Bernasconi, Stefano M.

    2014-07-01

    Over a decade of research in the alpine zone of the Colorado Front Range has shown that atmospheric nitrogen (N) deposition originating from source areas in low elevation, developed areas, has changed ecosystem stoichiometry, nutrient transformations, and aquatic community structure. Less research has occurred in the montane zone, which sits at the current rain-snow transition and is vulnerable to climate change, land cover disturbances, and increased N loading. We conducted lithium bromide and 15N-nitrate (15NO3-) tracer studies during spring snowmelt to determine the immediate fate of N in a forested catchment. Measurements of N species and applied tracers in ecosystem pools and soil solution on north and south facing slopes provided a means of determining export pathways and uptake of deposited N. Our results indicate that NO3- residence time is longer within north than south facing slope soils, due to longer contact with the soil matrix, greater microbial biomass N, and a larger soil organic matter pool. On the north facing slope, >50% of the 1 kg ha-1 of 15NO3- applied was retained in soil and vegetation pools. On the south facing slope, rapid transport during sporadic snowmelt events reduced total recovery of the 15N label in ecosystem pools to 16-34%. Our results suggest that snowmelt events quickly transport N through south facing slope soils, potentially contributing more N to aquatic systems than north facing slopes. Thus, it is important to consider how the fate of N differs by hillslope aspect when predicting catchment-scale N export and determining ecosystem N status across the Colorado Front Range.

  10. [Ecological stoichiometry of soil carbon, nitrogen and phosphorus within soil aggregates in tea plantations with different ages].

    PubMed

    Li, Wei; Zheng, Zi-cheng; Li, Ting-xuan

    2015-01-01

    This study selected 4 tea plantations with different ages (12-15, 20-22, 30-33 and >50 year-old) located in Ya' an, Sichuan Province, China to investigate the distribution patterns of soil organic carbon (SOC), total nitrogen (TN) and total phosphorus (TP) , and to examine the ecological stoichiometric characteristics of C, N and P within soil aggregates. The results showed that the coefficients of variation of SOC, TN and TP were 17.5%, 16.3% and 9.4%, respectively in the 0-20 cm soil layer and were 24.0%, 21.0% and 9.2%, respectively in the 20-40 cm soil layer. The spatial variation of TP was lower than that of SOC and TN but there were significant positive correlations among them. SOC and TN were distributed in the small-size aggregates and both of them had the greatest values in the >50 year-old tea plantation, however, the distribution of TP was relatively uniform among aggregates and ages. The coefficients of variation of C/N, C/P, and N/P were 9.4%, 14.0% and 14.9%, respectively in the 0-20 cm soil layer and were 7.4%, 24.9% and 21.8%, respectively in the 20-40 cm soil layer. Variation of C/N was lower than that of C/P and N/P. Averaged C/P and N/P values in the small-size aggregates were higher than in aggregates of other sizes, and the maximum values were in the >50 year-old plantation. C/N, C/P and N/P had good indication for soil organic carbon storage.

  11. Adapt-N: A Cloud-Based Computational Tool for Crop Nitrogen Management that Improves Production and Environmental Outcomes

    NASA Astrophysics Data System (ADS)

    van Es, Harold; Sela, Shai; Marjerison, Rebecca; Melkonian, Jeff

    2016-04-01

    Maize production accounts for the largest share of crop land area in the US and is the largest consumer of nitrogen (N) fertilizers, while also having low N use efficiency. Routine application of N fertilizer has led to well-documented environmental problems and social costs. Adapt-N is a computational tool that combines soil, crop and management information with near-real-time weather data to estimate optimum N application rates for maize. Its cloud-based implementation allows for tracking and timely management of the dynamic gains and losses of N in cropping systems. This presentation will provide an overview of the tool and its implementation of farms. We also evaluated Adapt-N tool during five growing seasons (2011-to-2015) using a large dataset of both side-by-side (SBS) strip trials and multi-N rate experiments. The SBS trials consisted of 115 on-farm strip trials in Iowa and New York, each trial including yield results from replicated field-scale plots involving two sidedress N rate treatments: Adapt-N-estimated and Grower-selected (conventional). The Adapt-N rates were on average 53 and 30 kg ha-1 lower than Grower rates for NY and IA, respectively (-34% overall), with no statistically significant difference in yields. On average, Adapt-N rates increased grower profits by 63.9 ha-1 and resulted in an Adapt-N estimated decrease of 28 kg ha-1 (38%) in environmental N losses. A second set of strip trials involved multiple N-rate experiments in Wisconsin, Indiana, Ohio and NY, which allowed for the comparison of Adapt-N and conventional static recommendations to an Economic Optimum N Rate (determined through response model fitting). These trials demonstrated that Adapt-N can achieve the same profitability with greatly reduced average N inputs of 20 lbs N/ac for the Midwest and 65 lbs N/ac for the Northeast, resulting in significantly lower environmental losses. In conclusion, Adapt-N recommendations resulted in both increased growers profits and decreased

  12. Global expression profiling of Bacillus subtilis cells during industrial-close fed-batch fermentations with different nitrogen sources.

    PubMed

    Jürgen, Britta; Tobisch, Steffen; Wümpelmann, Mogens; Gördes, Dirk; Koch, Andreas; Thurow, Kerstin; Albrecht, Dirk; Hecker, Michael; Schweder, Thomas

    2005-11-01

    A detailed gene expression analysis of industrial-close Bacillus subtilis fed-batch fermentation processes with casamino acids as the only nitrogen source and with a reduced casamino acid concentration but supplemented by ammonia was carried out. Although glutamine and arginine are supposed to be the preferred nitrogen sources of B. subtilis, we demonstrate that a combined feeding of ammonia and casamino acids supports cell growth under fed-batch fermentation conditions. The transcriptome and proteome analyses revealed that the additional feeding of ammonia in combination with a reduced amino acid concentration results in a significantly lower expression level of the glnAR or tnrA genes, coding for proteins, which are mainly involved in the nitrogen metabolism of B. subtilis. However, the mRNA levels of the genes of the ilvBHC-leuABD and hom-thrCB operons were significantly increased, indicating a valine, leucine, isoleucine, and threonine limitation under these fermentation conditions. In contrast, during the fermentation with casamino acids as the only nitrogen source, several genes, which play a crucial role in nitrogen metabolism of B. subtilis (e.g., glnAR, nasCDE, nrgAB, and ureABC), were up-regulated, indicating a nitrogen limitation under these conditions. Furthermore, increased expression of genes, which are involved in motility and chemotaxis (e.g., hag, fliT) and in acetoin metabolism (e.g., acoABCL), was determined during the fermentation with the mixed nitrogen source of casamino acids and ammonia, indicating a carbon limitation under these fermentation conditions. Under high cell density and slow growth rate conditions a weak up-regulation of autolysis genes could be observed as well as the induction of a number of genes involved in motility, chemotaxis and general stress response. Results of this study allowed the selection of marker genes, which could be used for the monitoring of B. subtilis fermentation processes. The data suggest for example aco

  13. Alfalfa baleage with increased concentration of nonstructural carbohydrates supplemented with a corn-based concentrate did not improve production and nitrogen utilization in early lactation dairy cows.

    PubMed

    Brito, A F; Tremblay, G F; Bertrand, A; Castonguay, Y; Bélanger, G; Michaud, R; Lafrenière, C; Martineau, R; Berthiaume, R

    2014-11-01

    The objective of this study was to investigate the effects of feeding alfalfa baleage with different concentrations of nonstructural carbohydrates (NSC) supplemented with a common corn-based concentrate on performance, ruminal fermentation profile, N utilization, and omasal flow of nutrients in dairy cows during early lactation. Ten multiparous (8 ruminally cannulated) and 8 primiparous Holstein cows were randomly assigned to treatments (high- or low-NSC diet) in a crossover design. The difference in NSC concentration between the 2 alfalfa baleages fed from d14 to 21 averaged 14 g of NSC/kg of dry matter (DM). Forages and concentrate were offered in separate meals with forages fed once and concentrate offered 3 times daily. Except for the molar proportion of valerate, which was lowest in cows fed the high-NSC diet, no other changes in ruminal fermentation were observed. Omasal flows of most nitrogenous fractions, including bacterial nonammonia N and AA, were not affected by treatments. Apparent ruminal digestibilities of neutral and acid detergent fiber and N were lowest, whereas that of total ethanol-soluble carbohydrates was highest when feeding the high-NSC diet. Postruminal digestibilities of DM, organic matter, fiber, and N were highest in cows fed the high-NSC diet, resulting in no difference in total-tract digestibilities. Total-tract digestibility of total ethanol-soluble carbohydrates was highest in cows fed the high-NSC diet, but that of starch did not differ across treatments. Although milk yield and total DM intake did not differ between treatments, yields of milk fat and 4% fat-corrected milk decreased significantly in cows fed the high-NSC diet. Milk concentration of urea N was lowest, and that of ruminal NH3-N highest, in cows fed the high-NSC diet. Plasma urea N concentration tended to be decreased in cows fed the high-NSC diet, but concentrations of AA were not affected by treatments, with the exception of Asp and Cys, both of which were lowest in

  14. Gender Difference Does Not Mean Genetic Difference: Externalizing Improves Performance in Mental Rotation

    ERIC Educational Resources Information Center

    Moe, Angelica

    2012-01-01

    The fear of underperforming owing to stereotype threat affects women's performance in tasks such as mathematics, chess, and spatial reasoning. The present research considered mental rotation and explored effects on performance and on regulatory focus of instructions pointing to different explanations for gender differences. Two hundred and one…

  15. Nonprotein nitrogen is absorbed from the large intestine and increases nitrogen balance in growing pigs fed a valine-limiting diet.

    PubMed

    Columbus, Daniel A; Lapierre, Hélène; Htoo, John K; de Lange, Cornelis F M

    2014-05-01

    Nitrogen absorption from the large intestine, largely as ammonia and possibly as amino acids (AAs), is generally thought to be of little nutritional value to nonruminant animals and humans. Ammonia-nitrogen absorbed from the large intestine, however, may be recycled into the small intestine as urea and incorporated into microbial AAs, which may then be used by the host. A cecal infusion study was performed to determine the form in which nitrogen is absorbed from the large intestine and the impact of large intestine nitrogen supply on nitrogen balance in growing pigs. Eighteen cecally cannulated barrows (initial body weight: 22.4 ± 1.2 kg) were used to determine the effect of supplying nitrogen into the large intestine from either casein or urea on whole-body nitrogen retention and urea kinetics. Treatments were cecal infusions of saline (control), casein, or urea with nitrogen infused at a rate of 40% of nitrogen intake. In a subsample of 9 pigs, (15)N(15)N-urea was infused via i.v. during the nitrogen-balance period to determine urea kinetics. All pigs were fed a valine-limiting cornstarch-soybean meal-based diet. More than 80% of infused nitrogen was apparently absorbed. Urea flux and urinary nitrogen excretion increased (P ≤ 0.05) by the same amount for both nitrogen sources, but this increase did not fully account for the increase in nitrogen absorption from the large intestine. Whole-body nitrogen retention improved with nitrogen infusions (129 vs. 114 g/d; P < 0.01) and did not differ (P > 0.05) between nitrogen sources. Absorption of nitrogen from the large intestine appears to be in the form of nonprotein nitrogen, which appears to be returned to the small intestine via urea and used there for microbial AA production and should therefore be considered when determining nitrogen and AA supply and requirements.

  16. Two Different Strategies to Facilitate Involvement in Healthcare Improvements: A Swedish County Council Initiative

    PubMed Central

    Idvall, Ewa; Perseius, Kent-Inge; Elg, Mattias

    2014-01-01

    Background: From a management point of view, there are many different approaches from which to choose to engage staff members in initiatives to improve performance. Objective: The present study evaluated how two different types of improvement strategies facilitate and encourage involvement of different professional groups in health-care organizations. Methods/Design: Empirical data of two different types of strategies were collected within an improvement project in a County Council in Sweden. The data analysis was carried out through classifying the participants' profession, position, gender, and the organizational administration of which they were a part, in relation to their participation. Setting: An improvement project in a County Council in Sweden. Participants: Designed Improvement Processes consisted of n=105 teams and Intrapreneurship Projects of n=202 projects. Intervention: Two different types of improvement strategies, Designed Improvement Processes and Intrapreneurship Projects. Main Outcome Measures: How two different types of improvement strategies facilitate and encourage involvement of different professional groups in healthcare organizations. Results: Nurses were the largest group participating in both improvement initiatives. Physicians were also well represented, although they seemed to prefer the less structured Intrapreneurship Projects approach. Assistant nurses, being the second largest staff group, were poorly represented in both initiatives. This indicates that the benefits and support for one group may push another group aside. Conclusions: Managers need to give prerequisites and incentives for staff who do not participate in improvements to do so. Comparisons of different types of improvement initiatives are an underused research strategy that yields interesting and thoughtful results. PMID:25568821

  17. [Responses of ecosystem carbon budget to increasing nitrogen deposition in differently degraded Leymus chinensis steppes in Inner Mongolia, China].

    PubMed

    Qi, Yu-Chun; Peng, Qin; Dong, Yun-She; Xiao, Sheng-Sheng; Jia, Jun-Qiang; Quo, Shu-Fang; He, Yun-Long; Yan, Zhong-Qing; Wang, Li-Qin

    2015-02-01

    Based on a field manipulative nitrogen (N) addition experiment, the effects of atmospheric N deposition level change on the plant biomass and net primary productivity (NPP), soil respiration (Rs) and net ecosystem exchange (NEE) were investigated respectively in 2009 and 2010 in two differently degraded Leymus chinensis steppes in Inner Mongolia of China, and the difference in the response of NEE to equal amount of N addition [10 g x (M2 x a)(-1), MN] between the two steppes was also discussed. The results indicated that for the light degraded Leymus chinensis steppe (site A) , the average plant aboveground biomass (AGB) in MN treatment were 21.5% and 46.8% higher than those of CK in these two years. But for the moderate degraded Leymus chinensis steppe (site B), the N addition decreased the plant AGB and ANPP in 2009, while showed positive effects in 2010. N addition increased the belowground biomass (BGB) of the both sites and belowground NPP (BNPP) of site B in both years, but decreased the BNPP of site A in 2010. The increase of N input in the two steppes did not change the seasonal variation of Rs. The cumulative annual soil C emissions in MN treatment in site A showed an increase of about 14.6% and 25.7% of those in the CK respectively for these two years, while were decreased by about 10.4% and 11.3%, respectively in site B. The NEE of MN treatments, expressed by C, for the two steppes were 59.22 g x (m2 x a)(1) and 166.68 g x (m2 x a)(-1), as well as 83.27 g x (m2 x a)(-1) and 117.47 g x (m2 x a)(-1), respectively in these two years. The increments in NEE originated from N addition for these two years were 15.79 g x (M2 x a)(-1) and 82.94 g x (M2 x a)(-1) in site A and 74.54 g x (M2 x a)(-1) and 101.23 g x (M2 x a)(-1) in site B. The N input per unit could obtain greater C sink effect in the steppe with lower initial N level.

  18. A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch.

    PubMed

    Jin, Pengkang; Wang, Xianbao; Wang, Xiaochang; Ngo, Huu Hao; Jin, Xin

    2015-12-01

    Two aeration modes, step aeration and point aeration, were used in a full-scale Carrousel oxidation ditch with microporous aeration. The nitrogen removal performance and mechanism were analyzed. With the same total aeration input, both aeration modes demonstrated good nitrification outcomes with the average efficiency in removing NH4(+)-N of more than 98%. However, the average removal efficiencies for total nitrogen were 89.3% and 77.6% under step aeration and point aeration, respectively. The results indicated that an extended aerobic zone followed the aeration zones could affect the proportion of anoxic and oxic zones. The step aeration with larger anoxic zones indicated better TN removal efficiency. More importantly, step aeration provided the suitable environment for both nitrifiers and denitrifiers. The diversity and relative abundance of denitrifying bacteria under the step aeration (1.55%) was higher than that under the point aeration (1.12%), which resulted in an overall higher TN removal efficiency.

  19. Design and development of a helium injection system to improve external leakage detection during liquid nitrogen immersion tests

    NASA Astrophysics Data System (ADS)

    Townsend, Andrew; Mishra, Rakesh

    2016-10-01

    The testing of assemblies for use in cryogenic systems commonly includes evaluation at or near operating (therefore cryogenic) temperature. Typical assemblies include valves and pumps for use in liquid oxygen-liquid hydrogen rocket engines. One frequently specified method of cryogenic external leakage testing requires the assembly, pressurized with gaseous helium (GHe), be immersed in a bath of liquid nitrogen (LN2) and allowed to thermally stabilize. Component interfaces are then visually inspected for leakage (bubbles). Unfortunately the liquid nitrogen will be boiling under normal, bench-top, test conditions. This boiling tends to mask even significant leakage. One little known and perhaps under-utilized property of helium is the seemingly counter-intuitive thermodynamic property that when ambient temperature helium is bubbled through boiling LN2 at a temperature of -195.8 °C, the temperature of the liquid nitrogen will reduce. This paper reports on the design and testing of a novel proof-of-concept helium injection control system confirming that it is possible to reduce the temperature of an LN2 bath below boiling point through the controlled injection of ambient temperature gaseous helium and then to efficiently maintain a reduced helium flow rate to maintain a stabilized liquid temperature, enabling clear visual observation of components immersed within the LN2. Helium saturation testing is performed and injection system sizing is discussed.

  20. Reducing Soil CO2 Emission and Improving Upland Rice Yield with no-Tillage, Straw Mulch and Nitrogen Fertilization in Northern Benin

    NASA Astrophysics Data System (ADS)

    Dossou-Yovo, E.; Brueggemann, N.; Naab, J.; Huat, J.; Ampofo, E.; Ago, E.; Agbossou, E.

    2015-12-01

    To explore effective ways to decrease soil CO2 emission and increase grain yield, field experiments were conducted on two upland rice soils (Lixisols and Gleyic Luvisols) in northern Benin in West Africa. The treatments were two tillage systems (no-tillage, and manual tillage), two rice straw managements (no rice straw, and rice straw mulch at 3 Mg ha-1) and three nitrogen fertilizers levels (no nitrogen, recommended level of nitrogen: 60 kg ha-1, and high level of nitrogen: 120 kg ha-1). Potassium and phosphorus fertilizers were applied to be non-limiting at 40 kg K2O ha-1 and 40 kg P2O5 ha-1. Four replications of the twelve treatment combinations were arranged in a randomized complete block design. Soil CO2 emission, soil moisture and soil temperature were measured at 5 cm depth in 6 to 10 days intervals during the rainy season and every two weeks during the dry season. Soil moisture was the main factor explaining the seasonal variability of soil CO2 emission. Much larger soil CO2 emissions were found in rainy than dry season. No-tillage planting significantly reduced soil CO2 emissions compared with manual tillage. Higher soil CO2 emissions were recorded in the mulched treatments. Soil CO2 emissions were higher in fertilized treatments compared with non fertilized treatments. Rice biomass and yield were not significantly different as a function of tillage systems. On the contrary, rice biomass and yield significantly increased with application of rice straw mulch and nitrogen fertilizer. The highest response of rice yield to nitrogen fertilizer addition was obtained for 60 kg N ha-1 in combination with 3 Mg ha-1 of rice straw for the two tillage systems. Soil CO2 emission per unit grain yield was lower under no-tillage, rice straw mulch and nitrogen fertilizer treatments. No-tillage combined with rice straw mulch and 60 kg N ha-1 could be used by smallholder farmers to achieve higher grain yield and lower soil CO2 emission in upland rice fields in northern Benin.

  1. Alterations in the Ure2 αCap domain elicit different GATA factor responses to rapamycin treatment and nitrogen limitation.

    PubMed

    Feller, Andre; Georis, Isabelle; Tate, Jennifer J; Cooper, Terrance G; Dubois, Evelyne

    2013-01-18

    Ure2 is a phosphoprotein and central negative regulator of nitrogen-responsive Gln3/Gat1 localization and their ability to activate transcription. This negative regulation is achieved by the formation of Ure2-Gln3 and -Gat1 complexes that are thought to sequester these GATA factors in the cytoplasm of cells cultured in excess nitrogen. Ure2 itself is a dimer the monomer of which consists of two core domains and a flexible protruding αcap. Here, we show that alterations in this αcap abolish rapamycin-elicited nuclear Gln3 and, to a more limited extent, Gat1 localization. In contrast, these alterations have little demonstrable effect on the Gln3 and Gat1 responses to nitrogen limitation. Using two-dimensional PAGE we resolved eight rather than the two previously reported Ure2 isoforms and demonstrated Ure2 dephosphorylation to be stimulus-specific, occurring after rapamycin treatment but only minimally if at all in nitrogen-limited cells. Alteration of the αcap significantly diminished the response of Ure2 dephosphorylation to the TorC1 inhibitor, rapamycin. Furthermore, in contrast to Gln3, rapamycin-elicited Ure2 dephosphorylation occurred independently of Sit4 and Pph21/22 (PP2A) as well as Siw14, Ptc1, and Ppz1. Together, our data suggest that distinct regions of Ure2 are associated with the receipt and/or implementation of signals calling for cessation of GATA factor sequestration in the cytoplasm. This in turn is more consistent with the existence of distinct pathways for TorC1- and nitrogen limitation-dependent control than it is with these stimuli representing sequential steps in a single regulatory pathway. PMID:23184930

  2. Landscape-level estimation of nitrogen removal in coastal Louisiana wetlands: potential sinks under different restoration scenarios

    USGS Publications Warehouse

    Rivera-Monroy, Victor H.; Branoff, Benjamin; Meselhe, Ehab; McCorquodale, Alex; Dortch, Mark; Steyer, Gregory D.; Visser, Jenneke; Wang, Hongqing

    2013-01-01

    Coastal eutrophication in the northern Gulf of Mexico (GOM) is the primary anthropogenic contributor to the largest zone of hypoxic bottom waters in North America. Although biologically mediated processes such as denitrification (Dn) are known to act as sinks for inorganic nitrogen, it is unknown what contribution denitrification makes to landscape-scale nitrogen budgets along the coast. As the State of Louisiana plans the implementation of a 2012 Coastal Master Plan (MP) to help restore its wetlands and protect its coast, it is critical to understand what effect potential restoration projects may have in altering nutrient budgets. As part of the MP, a spatial statistical approach was developed to estimate nitrogen removal under varying scenarios of future conditions and coastal restoration project implementation. In every scenario of future conditions under which MP implementation was modeled, more nitrogen (NO3- was removed from coastal waters when compared with conditions under which no action is taken. Overall, the MP increased coast-wide average nitrogen removal capacity (NRC) rates by up to 0.55 g N m−2 y−1 compared with the “future without action” (FWOA) scenario, resulting in a conservative estimate of up to 25% removal of the annual NO3- + NO2- load of the Mississippi-Atchafalaya rivers (956,480 t y−1). These results are spatially correlated, with the lower Mississippi River and Chenier Plain exhibiting the greatest change in NRC. Since the implementation of the MP can maintain, and in some regions increase the NRC, our results show the need to preserve the functionality of wetland habitats and use this ecosystem service (i.e. Dn) to decrease eutrophication of the GOM.

  3. Burkholderia ambifaria and B. caribensis Promote Growth and Increase Yield in Grain Amaranth (Amaranthus cruentus and A. hypochondriacus) by Improving Plant Nitrogen Uptake

    PubMed Central

    Parra-Cota, Fannie I.; Peña-Cabriales, Juan J.; de los Santos-Villalobos, Sergio; Martínez-Gallardo, Norma A.; Délano-Frier, John P.

    2014-01-01

    Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism

  4. Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake.

    PubMed

    Parra-Cota, Fannie I; Peña-Cabriales, Juan J; de Los Santos-Villalobos, Sergio; Martínez-Gallardo, Norma A; Délano-Frier, John P

    2014-01-01

    Grain amaranth is an emerging crop that produces seeds having high quality protein with balanced amino-acid content. However, production is restricted by agronomic limitations that result in yields that are lower than those normally produced by cereals. In this work, the use of five different rhizobacteria were explored as a strategy to promote growth and yields in Amaranthus hypochondriacus cv. Nutrisol and A. cruentus cv. Candil, two commercially important grain amaranth cultivars. The plants were grown in a rich substrate, high in organic matter, nitrogen (N), and phosphorus (P) and under greenhouse conditions. Burkholderia ambifaria Mex-5 and B. caribensis XV proved to be the most efficient strains and significantly promoted growth in both grain amaranth species tested. Increased grain yield and harvest index occurred in combination with chemical fertilization when tested in A. cruentus. Growth-promotion and improved yields correlated with increased N content in all tissues examined. Positive effects on growth also occurred in A. cruentus plants grown in a poor soil, even after N and P fertilization. No correlation between non-structural carbohydrate levels in roots of inoculated plants and growth promotion was observed. Conversely, gene expression assays performed at 3-, 5- and 7-weeks after seed inoculation in plants inoculated with B. caribensis XV identified a tissue-specific induction of several genes involved in photosynthesis, sugar- and N- metabolism and transport. It is concluded that strains of Burkholderia effectively promote growth and increase seed yields in grain amaranth. Growth promotion was particularly noticeable in plants grown in an infertile soil but also occurred in a well fertilized rich substrate. The positive effects observed may be attributed to a bio-fertilization effect that led to increased N levels in roots and shoots. The latter effect correlated with the differential induction of several genes involved in carbon and N metabolism

  5. Growth and Content of Spirulina Platensis Biomass Chlorophyll Cultivated at Different Values of Light Intensity and Temperature Using Different Nitrogen Sources

    PubMed Central

    Godoy Danesi, Eliane Dalva; Oliveira Rangel-Yagui, Carlota; Sato, Sunao; Monteiro de Carvalho, João Carlos

    2011-01-01

    The effects of light intensity and temperature in S. platensis cultivation with potassium nitrate or urea as nitrogen source were investigated, as well as the biomass chlorophyll contents of this cyanobacteria, through the Response Surface Methodology. Experiments were performed at temperatures from 25 to 34.5ºC and light intensities from 15 to 69 µmol photons m−2 s−1, in mineral medium. In cultivations with both sources of nitrogen, KNO3 and urea, statistic evaluation through multiple regression, no interactions of such independent variables were detected in the results of the dependent variables maximum cell concentration, chlorophyll biomass contents, cell and chlorophyll productivities, as well as in the nitrogen-cell conversion factor. In cultivation performed with both sources of nitrogen, it was possible to obtain satisfactory adjustments to relate the dependent variables to the independent variables. The best results were achieved at temperature of 30ºC, at light intensity of 60 µmol photons m−2s−1, for cell growth, with cell productivity of approximately 95 mg L−1 d−1 in cultivations with urea. For the chlorophyll biomass content, the most adequate light intensity was 24 µmol photons m−2 s−1. PMID:24031643

  6. [Responses of rhizosphere nitrogen and phosphorus transformations to different acid rain intensities in a hilly red soil tea plantation].

    PubMed

    Chen, Xi; Chen, Fu-sheng; Ye, Su-qiong; Yu, Su-qin; Fang, Xiang-min; Hu, Xiao-fei

    2015-01-01

    Tea (Camellia sinensis) plantation in hilly red soil region has been long impacted by acid deposition, however its effects on nitrogen (N) and phosphorus (P) transformations in rhizosphere soils remain unclear. A 25-year old tea plantation in a typical hilly red soil region was selected for an in situ simulation experiment treated by pH 4.5, pH 3.5, pH 2.5 and control. Rhizosihere and bulk soils were collected in the third year from the simulated acid deposition experiment. Soil mineral N, available P contents and major enzyme activities were analyzed using the chemical extraction and biochemical methods, and N and P mineralization rates were estimated using the indoor aerobic incubation methods. Our results showed that compared to the control, the treatments of pH 4.5, pH 3.5 and pH 2.5, respectively decreased 7.1%, 42.1% and 49.9% NO3(-)-N, 6.4%, 35.9% and 40.3% mineral N, 10.5%, 41.1% and 46.9% available P, 18.7%, 30.1% and 44.7% ammonification rate, 3.6%, 12.7% and 38.8% net N-mineralization rate, and 31.5%, 41.8% and 63.0% P mineralization rate in rhizosphere soils; however, among the 4 treatments, rhizosphere soil nitrification rate was not significantly different, the rhizosphere soil urease and acid phosphatase activities generally increased with the increasing intensity of acid rain (P<0.05). In bulk soil, compared with the control, the treatments of pH 4.5, pH 3.5 and pH 2.5 did not cause significant changes in NO3(-)-N, mineral N, available P as well as in the rates of nitrification, ammonification, net N-mineralization and P mineralization. With increasing the acid intensity, the rhizosphere effects of NH4+-N, NO3(-)-N, mineral N, ammonification and net N-mineralization rates were altered from positive to negative effects, those of urease and acid phosphatease showed the opposite trends, those of available P and P mineralization were negative and that of nitrification was positive. In sum, prolonged elevated acid rain could reduce N and P transformation

  7. [Responses of rhizosphere nitrogen and phosphorus transformations to different acid rain intensities in a hilly red soil tea plantation].

    PubMed

    Chen, Xi; Chen, Fu-sheng; Ye, Su-qiong; Yu, Su-qin; Fang, Xiang-min; Hu, Xiao-fei

    2015-01-01

    Tea (Camellia sinensis) plantation in hilly red soil region has been long impacted by acid deposition, however its effects on nitrogen (N) and phosphorus (P) transformations in rhizosphere soils remain unclear. A 25-year old tea plantation in a typical hilly red soil region was selected for an in situ simulation experiment treated by pH 4.5, pH 3.5, pH 2.5 and control. Rhizosihere and bulk soils were collected in the third year from the simulated acid deposition experiment. Soil mineral N, available P contents and major enzyme activities were analyzed using the chemical extraction and biochemical methods, and N and P mineralization rates were estimated using the indoor aerobic incubation methods. Our results showed that compared to the control, the treatments of pH 4.5, pH 3.5 and pH 2.5, respectively decreased 7.1%, 42.1% and 49.9% NO3(-)-N, 6.4%, 35.9% and 40.3% mineral N, 10.5%, 41.1% and 46.9% available P, 18.7%, 30.1% and 44.7% ammonification rate, 3.6%, 12.7% and 38.8% net N-mineralization rate, and 31.5%, 41.8% and 63.0% P mineralization rate in rhizosphere soils; however, among the 4 treatments, rhizosphere soil nitrification rate was not significantly different, the rhizosphere soil urease and acid phosphatase activities generally increased with the increasing intensity of acid rain (P<0.05). In bulk soil, compared with the control, the treatments of pH 4.5, pH 3.5 and pH 2.5 did not cause significant changes in NO3(-)-N, mineral N, available P as well as in the rates of nitrification, ammonification, net N-mineralization and P mineralization. With increasing the acid intensity, the rhizosphere effects of NH4+-N, NO3(-)-N, mineral N, ammonification and net N-mineralization rates were altered from positive to negative effects, those of urease and acid phosphatease showed the opposite trends, those of available P and P mineralization were negative and that of nitrification was positive. In sum, prolonged elevated acid rain could reduce N and P transformation

  8. [Carbon/nitrogen Removal and Bacterial Community Structure Change in an A/O Activated Sludge System Under Different Dissolved Oxygen Conditions].

    PubMed

    Chen, Yan; Liu, Guo-hua; Fan, Qiang; Wang, Jun-yan; Qi, Lu; Wang, Hong-chen

    2015-07-01

    Carbon and nitrogen removal performance and microbial community structure under different dissolved oxygen (DO) conditions (3, 2, 1 and 0. 5 mg . L -1) in an anoxic/oxic (A/O) system were investigated. The results showed that the A/O activated sludge system still had an excellent performance in removing carbon and nutrient under low DO condition (0. 5 mg . L-1). The removal rates of chemical oxygen demand (COD), ammonia (NH4+ -N) and total nitrogen (TN) were 89. 7%, 98. 3% and 88. 0% respectively. The PCR-DGGE analysis showed that the bacterial community structure changed greatly under different DO conditions. However, there was still a high bacterial diversity even at low DO level, which ensured the functional stability of the A/O system. On the basis of the results of the phylogenetic tree, bacterial communities were observed to be very abundant, and Proteobacteria was identified as the dominant bacteria.

  9. Improving oxygen dissolution and distribution in a bioreactor with enhanced simultaneous COD and nitrogen removal by simply introducing micro-pressure and swirl.

    PubMed

    Bian, Dejun; Zhou, Dandan; Huo, Mingxin; Ren, Qingkai; Tian, Xi; Wan, Liguo; Zhu, Suiyi; Ai, Shengshu

    2015-10-01

    Increasingly, environmental regulations are demanding more exacting chemical oxygen demand (COD) and nitrogen removal from wastewater, which come at a high economic cost. A very simple novel bioreactor, the micro-pressure swirl reactor (MPSR), can improve the dissolution and distribution of oxygen by the introduced micro-pressure swirl. Comparison with a conventional sequencing batch reactor (SBR) over 76 days of operation showed that this method can enhance simultaneous COD and nitrogen removal. By installing an aeration diffuser on one side of the two-dimensional MPSR, a swirl formed in the bioreactor that extended the retention time of the air bubbles. This unique flow regime, combined with the micro-pressure caused by the elevated water surface at the bubble outflow point, resulted in a higher level of dissolved oxygen (DO) in the MPSR. Aerobic and anaerobic zones that created appropriate conditions for simultaneous COD and nitrogen removal also formed in the MPSR. As the organic loading rate increased from 0.29 to 1.68 g COD/(L · day) over the test period, the COD removal efficiencies of the MPSR were generally 10-20 % greater than those of the SBR. In particular, the total nitrogen (TN) removal efficiencies of the MPSR and SBR were 40-50 and 20-35 %, respectively, whereas the TN concentrations in the MPSR effluent were always around 10 mg/L lower than those of the SBR. Further, because of the unique DO distribution, the bacterial species in the MPSR were more diverse and contributed to enhanced TN removal. PMID:26066842

  10. Improving oxygen dissolution and distribution in a bioreactor with enhanced simultaneous COD and nitrogen removal by simply introducing micro-pressure and swirl.

    PubMed

    Bian, Dejun; Zhou, Dandan; Huo, Mingxin; Ren, Qingkai; Tian, Xi; Wan, Liguo; Zhu, Suiyi; Ai, Shengshu

    2015-10-01

    Increasingly, environmental regulations are demanding more exacting chemical oxygen demand (COD) and nitrogen removal from wastewater, which come at a high economic cost. A very simple novel bioreactor, the micro-pressure swirl reactor (MPSR), can improve the dissolution and distribution of oxygen by the introduced micro-pressure swirl. Comparison with a conventional sequencing batch reactor (SBR) over 76 days of operation showed that this method can enhance simultaneous COD and nitrogen removal. By installing an aeration diffuser on one side of the two-dimensional MPSR, a swirl formed in the bioreactor that extended the retention time of the air bubbles. This unique flow regime, combined with the micro-pressure caused by the elevated water surface at the bubble outflow point, resulted in a higher level of dissolved oxygen (DO) in the MPSR. Aerobic and anaerobic zones that created appropriate conditions for simultaneous COD and nitrogen removal also formed in the MPSR. As the organic loading rate increased from 0.29 to 1.68 g COD/(L · day) over the test period, the COD removal efficiencies of the MPSR were generally 10-20 % greater than those of the SBR. In particular, the total nitrogen (TN) removal efficiencies of the MPSR and SBR were 40-50 and 20-35 %, respectively, whereas the TN concentrations in the MPSR effluent were always around 10 mg/L lower than those of the SBR. Further, because of the unique DO distribution, the bacterial species in the MPSR were more diverse and contributed to enhanced TN removal.

  11. Significantly improved luminescence properties of nitrogen-polar (0001̅) InGaN multiple quantum wells grown by pulsed metalorganic chemical vapor deposition.

    PubMed

    Song, Jie; Chang, Shih-Pang; Zhang, Cheng; Hsu, Ta-Cheng; Han, Jung

    2015-01-14

    We have demonstrated nitrogen-polar (0001̅) (N-polar) InGaN multiple quantum wells (MQWs) with significantly improved luminescence properties prepared by pulsed metalorganic chemical vapor deposition. During the growth of InGaN quantum wells, Ga and N sources are alternately injected into the reactor to alter the surface stoichiometry. The influence of flow duration in pulsed growth mode on the luminescence properties has been studied. We find that use of pulsed-mode creates a high density of hexagonal mounds with an increased InGaN growth rate and enhanced In composition around screw-type dislocations, resulting in remarkably improved luminescence properties. The mechanism of enhanced luminescence caused by the hexagonal mounds is discussed. Luminescence properties of N-polar InGaN MQWs grown with short pulse durations have been significantly improved in comparison with a sample grown by a conventional continuous growth method.

  12. Enhancing nitrogen removal efficiency and reducing nitrate liquor recirculation ratio by improving simultaneous nitrification and denitrification in integrated fixed-film activated sludge (IFAS) process.

    PubMed

    Bai, Yang; Zhang, Yaobin; Quan, Xie; Chen, Shuo

    2016-01-01

    An integrated fixed-film activated sludge (IFAS) process (G1) and an activated sludge anoxic-oxic process (G2) were operated at nitrate liquor recirculation ratio (R) of 100, 200 and 300% to investigate the feasibility of enhancing nitrogen removal efficiency (RTN) and reducing R by improving simultaneous nitrification and denitrification (SND) in the IFAS process. The results showed that the effluent NH4(+)-N and total nitrogen (TN) of G1 at R of 200% were less than 1.5 and 14.5 mg/L, satisfying the Chinese discharge standard (NH4(+)-N < 5 mg/L; TN < 15 mg/L). However, the effluent NH4(+)-N and TN of G2 at R of 300% were higher than 8.5 and 15.3 mg/L. It indicated that better RTN could be achieved at a lower R in the IFAS process. The polymerase chain reaction-denaturing gradient gel electrophoresis results implied that nitrifiers and denitrifiers co-existed in one microbial community, facilitating the occurrence of SND in the aerobic reactor of G1, and the contribution of SND to TN removal efficiency ranged 15-19%, which was the main reason that the RTN was improved in the IFAS process. Therefore, the IFAS process was an effective method for improving RTN and reducing R. In practical application, this advantage of the IFAS process can decrease the electricity consumption for nitrate liquor recirculation flow, thereby saving operational costs. PMID:26901725

  13. Enhancing nitrogen removal efficiency and reducing nitrate liquor recirculation ratio by improving simultaneous nitrification and denitrification in integrated fixed-film activated sludge (IFAS) process.

    PubMed

    Bai, Yang; Zhang, Yaobin; Quan, Xie; Chen, Shuo

    2016-01-01

    An integrated fixed-film activated sludge (IFAS) process (G1) and an activated sludge anoxic-oxic process (G2) were operated at nitrate liquor recirculation ratio (R) of 100, 200 and 300% to investigate the feasibility of enhancing nitrogen removal efficiency (RTN) and reducing R by improving simultaneous nitrification and denitrification (SND) in the IFAS process. The results showed that the effluent NH4(+)-N and total nitrogen (TN) of G1 at R of 200% were less than 1.5 and 14.5 mg/L, satisfying the Chinese discharge standard (NH4(+)-N < 5 mg/L; TN < 15 mg/L). However, the effluent NH4(+)-N and TN of G2 at R of 300% were higher than 8.5 and 15.3 mg/L. It indicated that better RTN could be achieved at a lower R in the IFAS process. The polymerase chain reaction-denaturing gradient gel electrophoresis results implied that nitrifiers and denitrifiers co-existed in one microbial community, facilitating the occurrence of SND in the aerobic reactor of G1, and the contribution of SND to TN removal efficiency ranged 15-19%, which was the main reason that the RTN was improved in the IFAS process. Therefore, the IFAS process was an effective method for improving RTN and reducing R. In practical application, this advantage of the IFAS process can decrease the electricity consumption for nitrate liquor recirculation flow, thereby saving operational costs.

  14. [Nitrogen uptake rate and use efficiency by rice under different levels of the controlled-release N fertilizers (CRF) in the Nansi Lake basin].

    PubMed

    Zhang, Qing-Wen; Du, Chun-Xiang; Li, Xiao-Wei; Li, Gui-Chun; Wang, Ming

    2011-07-01

    The nitrogen (N) fertilizers overused or misused are the main contributors for water eutrophication of the Nansi Lake in eastern China. A field experiment with different application levels of controlled-release N fertilizer (CRF) was carried out at a rice field in the Nansi lake basin to provide information on the nitrogen uptake rate and use efficiency by rice with CRF application at different growth stages of rice. The fertilization levels for the controlled fertilizer in this study were 0, 300, 337.5 and 375 kg/hm2, respectively, and 375 kg/hm2 for conventional urea (CU). We estimated the N uptake rate in different growing season and apparent recovery of fertilizer in root, stover and grain of rice. The result showed that grain yield increased by higher N rate. However, the N uptake rate did not increase linearly with the nitrogen application amount. The highest N uptake rate was 22.48 mg/(plant x d) under the fertilization amount of 337.5 kg/hm2 during the young panicle differentiation stage. Apparent N recovery efficiency for CU with traditional application amount of 375 kg/hm2 was 21.86%. Apparent N recovery efficiency for CRF with application amount of 337.5 kg/hm2 was highest with 37.17%. Based on the statistical data, with CU of traditional urea application amount of 375 kg/hm2, nitrogen loss and soil N residue at one growing season are 130.07 x 10(3) t for Jining city and 11.4 x 10(3) t for Yutai county of the Nansi Lake basin. If using CRF with the optimized application amount of 337.5 kg/hm2, nitrogen loss and soil residual at one growing season is 10.46 x 10(4) t for Jining city. It could reduce losses of 2.55 x 10(4) t N for Jining city and 2 235.26 t N for Yutai county per year. Because of releasing patterns more closely matched to crop N uptake patterns, controlled release N fertilizer could be a good way to prevent water eutrophication due to nitrogen fertilizer overused or misused in the Nansi Lake. PMID:21922808

  15. [Nitrogen uptake rate and use efficiency by rice under different levels of the controlled-release N fertilizers (CRF) in the Nansi Lake basin].

    PubMed

    Zhang, Qing-Wen; Du, Chun-Xiang; Li, Xiao-Wei; Li, Gui-Chun; Wang, Ming

    2011-07-01

    The nitrogen (N) fertilizers overused or misused are the main contributors for water eutrophication of the Nansi Lake in eastern China. A field experiment with different application levels of controlled-release N fertilizer (CRF) was carried out at a rice field in the Nansi lake basin to provide information on the nitrogen uptake rate and use efficiency by rice with CRF application at different growth stages of rice. The fertilization levels for the controlled fertilizer in this study were 0, 300, 337.5 and 375 kg/hm2, respectively, and 375 kg/hm2 for conventional urea (CU). We estimated the N uptake rate in different growing season and apparent recovery of fertilizer in root, stover and grain of rice. The result showed that grain yield increased by higher N rate. However, the N uptake rate did not increase linearly with the nitrogen application amount. The highest N uptake rate was 22.48 mg/(plant x d) under the fertilization amount of 337.5 kg/hm2 during the young panicle differentiation stage. Apparent N recovery efficiency for CU with traditional application amount of 375 kg/hm2 was 21.86%. Apparent N recovery efficiency for CRF with application amount of 337.5 kg/hm2 was highest with 37.17%. Based on the statistical data, with CU of traditional urea application amount of 375 kg/hm2, nitrogen loss and soil N residue at one growing season are 130.07 x 10(3) t for Jining city and 11.4 x 10(3) t for Yutai county of the Nansi Lake basin. If using CRF with the optimized application amount of 337.5 kg/hm2, nitrogen loss and soil residual at one growing season is 10.46 x 10(4) t for Jining city. It could reduce losses of 2.55 x 10(4) t N for Jining city and 2 235.26 t N for Yutai county per year. Because of releasing patterns more closely matched to crop N uptake patterns, controlled release N fertilizer could be a good way to prevent water eutrophication due to nitrogen fertilizer overused or misused in the Nansi Lake.

  16. Maize varieties released in different eras have similar root length density distributions in the soil, which are negatively correlated with local concentrations of soil mineral nitrogen.

    PubMed

    Ning, Peng; Li, Sa; White, Philip J; Li, Chunjian

    2015-01-01

    Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0-60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30-60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0-20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize.

  17. Maize Varieties Released in Different Eras Have Similar Root Length Density Distributions in the Soil, Which Are Negatively Correlated with Local Concentrations of Soil Mineral Nitrogen

    PubMed Central

    Ning, Peng; Li, Sa; White, Philip J.; Li, Chunjian

    2015-01-01

    Larger, and deeper, root systems of new maize varieties, compared to older varieties, are thought to have enabled improved acquisition of soil resources and, consequently, greater grain yields. To compare the spatial distributions of the root systems of new and old maize varieties and their relationships with spatial variations in soil concentrations of available nitrogen (N), phosphorus (P) and potassium (K), two years of field experiments were performed using six Chinese maize varieties released in different eras. Vertical distributions of roots, and available N, P and K in the 0–60 cm soil profile were determined in excavated soil monoliths at silking and maturity. The results demonstrated that new maize varieties had larger root dry weight, higher grain yield and greater nutrient accumulation than older varieties. All varieties had similar total root length and vertical root distribution at silking, but newer varieties maintained greater total root length and had more roots in the 30–60 cm soil layers at maturity. The spatial variation of soil mineral N (Nmin) in each soil horizon was larger than that of Olsen-P and ammonium-acetate-extractable K, and was inversely correlated with root length density (RLD), especially in the 0–20 cm soil layer. It was concluded that greater acquisition of mineral nutrients and higher yields of newer varieties were associated with greater total root length at maturity. The negative relationship between RLD and soil Nmin at harvest for all varieties suggests the importance of the spatial distribution of the root system for N uptake by maize. PMID:25799291

  18. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics

    SciTech Connect

    Xu, Chonggang; Fisher, Rosie; Wullschleger, Stan D; Wilson, Cathy; Cai, Michael; McDowell, Nathan

    2012-01-01

    Nitrogen is a dominant regulator of vegetation dynamics, net primary production, and terrestrial carbon cycles; however, most ecosystem models use a rather simplistic relationship between leaf nitrogen content and photosynthetic capacity. Such an approach does not consider how patterns of nitrogen allocation may change with differences in light intensity, growing-season temperature and CO{sub 2} concentration. To account for this known variability in nitrogen-photosynthesis relationships, we develop a mechanistic nitrogen allocation model based on a trade-off of nitrogen allocated between growth and storage, and an optimization of nitrogen allocated among light capture, electron transport, carboxylation, and respiration. The developed model is able to predict the acclimation of photosynthetic capacity to changes in CO{sub 2} concentration, temperature, and radiation when evaluated against published data of V{sub c,max} (maximum carboxylation rate) and J{sub max} (maximum electron transport rate). A sensitivity analysis of the model for herbaceous plants, deciduous and evergreen trees implies that elevated CO{sub 2} concentrations lead to lower allocation of nitrogen to carboxylation but higher allocation to storage. Higher growing-season temperatures cause lower allocation of nitrogen to carboxylation, due to higher nitrogen requirements for light capture pigments and for storage. Lower levels of radiation have a much stronger effect on allocation of nitrogen to carboxylation for herbaceous plants than for trees, resulting from higher nitrogen requirements for light capture for herbaceous plants. As far as we know, this is the first model of complete nitrogen allocation that simultaneously considers nitrogen allocation to light capture, electron transport, carboxylation, respiration and storage, and the responses of each to altered environmental conditions. We expect this model could potentially improve our confidence in simulations of carbon-nitrogen interactions

  19. Inter-Comparison of Nitrogen Dioxide Column Densities Retrieved by Ground-Based Max-Doas Under Different Instrumental Conditions Over Mainz

    NASA Astrophysics Data System (ADS)

    Bruchkouski, I.; Dziomin, V.; Ortega, I.; Volkamer, R.; Krasouski, A.

    2013-12-01

    This study is dedicated to the instrumental differences between ground-based MAX-DOAS measurement devices. Our MAX-DOAS instrument, which has been developed at the National Ozone Monitoring Research & Education Center of the Belarusian State University for the purpose of nitrogen dioxide and other atmospheric trace gases monitoring over Belarus, features a rotating mirror and a telescope directly connected to the spectrometer with a two-dimensional CCD detector. Using a mirror instead of an optical fibre makes it possible to change the field of view of the telescope, and the whole instrument is rather compact and all its components are placed outdoors in the open air. However, this makes it quite difficult to ensure a top-quality thermostabilization. In the course of the MAX-DOAS campaign, which took place in the Max Planck Institute for Chemistry in Mainz, Germany in summer of 2013, we had a great opportunity to compare our instrument with other devices of different types. In the present study we make a comparison of nitrogen dioxide slant column densities (SCDs) during several days obtained by our instrument with that measured by the device from the Department of Chemistry and Biochemistry, University of Colorado (Boulder), which has a thermostabilization level of about 0.01 degrees Celsius. We investigate the influence of the spectrometer parts thermostabilization on nitrogen dioxide SCDs retrieval. Furthermore, it was possible to modify the telescope field of view for our instrument from 0.005 to 1.3 degrees, so we performed nitrogen dioxide SCDs retrieval for different fields of view at the same angle of elevation. We analyze these measurement results and obtain an optimal field of view with the aim to achieve the highest possible signal to noise ratio.

  20. NitroGenius: a nitrogen decision support system. A game to develop the optimal policy to solve the Dutch nitrogen pollution problem.

    PubMed

    Erisman, Jan Willem; Hensen, Arjan; de Vries, Wim; Kros, Hans; van de Wal, Tamme; de Winter, Wim; Wien, Jan Erik; van Elswijk, Mark; Maat, Matthijs; Sanders, Kaj

    2002-03-01

    A nitrogen decision support system in the form of a game (NitroGenius) was developed for the Second International Nitrogen Conference. The aims were to: i) improve understanding among scientists and policy makers about the complexity of nitrogen pollution problems in an area of intensive agricultural, industrial, and transportation activity (The Netherlands); and ii) search for optimal policy solutions to prevent pollution effects at lowest economic and social costs. NitroGenius includes a model of nitrogen flows at relevant spatial and temporal scales including emissions of ammonia and nitrogen oxides and contamination of surface- and groundwaters. NitroGenius also includes an economic model describing relationships for important sectors and impacts of different nitrogen control measures on Gross Domestic Product (GDP), unemployment, energy use, and environmental costs. About 50 teams played NitroGenius during the Second International Nitrogen Conference. The results show that careful planning and selection of abatement options can solve Dutch nitrogen problems at reasonable cost.

  1. Performance of Spodoptera litura Fabricius on different host plants: influence of nitrogen and total phenolics of plants and mid-gut esterase activity of the insect.

    PubMed

    Ghumare, S S; Mukherjee, S N

    2003-08-01

    Five host plants [castor, Ricinus communis (Carolus Linnaeus); cotton, Gossypium hirsutm (Carolus Linnaeus); tomato, Lycopersicum esculentum (Philip Miller); mint, Mentha arvensis (Carolus Linnaeus) and cabbage, Brassica oleracea (Carolus Linnaeus)] belonging to different families were used to study the performance of the Asian armyworm, Spodoptera litura larvae. Highest consumption of food and dry weight gain was observed in larvae fed on castor. Mint did not support optimum larval growth because of low digestibility and low efficiency of conversion of digested food to body matter. Dry weight gain ranged from 26.64 mg on mint to 86.80 mg in castor. These differences tend to be related to nitrogen and total phenolics content of the leaf tissues; however, the most clear-cut correlation is an inverse one between the host plant preference and the ratio of total phenolics to nitrogen in the leaf tissues. Mid-gut esterase activity in larvae showed an increasing trend with the increase in total phenolics: nitrogen ratio in the test plants and the order of mid-gut esterase activity in larvae was mint > cabbage > cotton > tomato > castor.

  2. Performance of Spodoptera litura Fabricius on different host plants: influence of nitrogen and total phenolics of plants and mid-gut esterase activity of the insect.

    PubMed

    Ghumare, S S; Mukherjee, S N

    2003-08-01

    Five host plants [castor, Ricinus communis (Carolus Linnaeus); cotton, Gossypium hirsutm (Carolus Linnaeus); tomato, Lycopersicum esculentum (Philip Miller); mint, Mentha arvensis (Carolus Linnaeus) and cabbage, Brassica oleracea (Carolus Linnaeus)] belonging to different families were used to study the performance of the Asian armyworm, Spodoptera litura larvae. Highest consumption of food and dry weight gain was observed in larvae fed on castor. Mint did not support optimum larval growth because of low digestibility and low efficiency of conversion of digested food to body matter. Dry weight gain ranged from 26.64 mg on mint to 86.80 mg in castor. These differences tend to be related to nitrogen and total phenolics content of the leaf tissues; however, the most clear-cut correlation is an inverse one between the host plant preference and the ratio of total phenolics to nitrogen in the leaf tissues. Mid-gut esterase activity in larvae showed an increasing trend with the increase in total phenolics: nitrogen ratio in the test plants and the order of mid-gut esterase activity in larvae was mint > cabbage > cotton > tomato > castor. PMID:15248492

  3. [Nitrogen Loss Through Different Ways in Cropland Under Conventional Fertilization: An In-situ Study of Summer Maize Season in the Middle and Lower Reaches of the Yangtze River].

    PubMed

    Sang, Meng-meng; Fan, Hui; Jiang, Shan-shan; Jiang, Jing-yan

    2015-09-01

    In order to better understand the characteristics of nitrogen loss through different pathways under conventional fertilization conditions, a field experiment was conducted to investigate the variations of N2O emission, NH3 volatilization, N losses through surface runoff and leaching caused by the application of nitrogen fertilizers during summer maize growing season in the Middle and Lower reaches of the Yangtze River, China. Our results showed that when compound fertilizer was used as basal fertilizer at the nitrogen rate of 150 kg.hm-2, and urea with the same level of fertilizing as topdressing, the N2O emission coefficient in the entire growing season was 3. 3%, NH3 volatilization loss rate was 10. 2%, and nitrogen loss rate by leaching and surface runoff was 11. 2% and 5. 1%, respectively. In addition, leaching was the main pathway of nitrogen loss after basal fertilizer, while NH, volatilization and nitrogen leaching accounted for the majority of nitrogen loss after topdressing, which suggested that nitrogen loss from different pathways mainly depended on the type of nitrogen fertilizer. Taken together, it appears to be effective to apply the new N fertilizer with low ammonia volatilization instead of urea when maize needs topdressing, so as to reduce N losses from N fertilizer.

  4. Using dual isotopes to identify sources and transformations of nitrogen in water catchments with different land uses, Loess Plateau of China.

    PubMed

    Xing, Meng; Liu, Weiguo

    2016-01-01

    Nitrogen pollution in rivers is a research hotspot in the field of biogeochemistry. However, the types and sources of pollution have historically been poorly understood in the water catchments of the Loess Plateau in China. In this study, we have chosen the main waterway and four lesser branches of the Jinghe River that vary by land use. We investigated the concentrations and isotopic signatures of nitrogen in river water. Our results revealed that nitrate was the dominant nitrogen type in river catchments of the Loess Plateau. The δ(15)N and δ(18)O values showed that NO3 (-) ions in the studied river samples were derived from precipitation, manure, sewage, soil organic nitrogen, and synthetic NO3 (-) fertilizer. The δ(18)O-NO3 (-) values during July 2012 (mean ± SD = +18.1 ± 1.5‰) were higher than those during the September 2013 (mean ± SD = +7.8 ± 3.7‰), which indicated that mixing with atmospheric NO3 (-) resulted in the high δ(18)O values during July 2012. It appears that no intense nitrification and denitrification occurred in all five rivers according to the isotopic and chemical data. A Bayesian model was used to determine the contributions of four NO3 (-) sources to all five rivers. Results showed that source contributions differ significantly between July and September, and the four potential NO3 (-) sources also showed high variability between the different land use areas.

  5. Improved electrochemical performance of lithium iron phosphate in situ coated with hierarchical porous nitrogen-doped graphene-like membrane

    NASA Astrophysics Data System (ADS)

    zhang, Yue; Huang, Yudai; Wang, Xingchao; Guo, Yong; Jia, Dianzeng; Tang, Xincun

    2016-02-01

    LiFePO4 in situ coated with hierarchical porous nitrogen-doped graphene-like membrane (HPNGM) composite derived from a electrospun polymer membrane (EPM) precursor has been achieved for the first time. The N-doped graphene-like membrane which is in situ coating on LiFePO4 can provide a highly conductive layer, and the hierarchical porous structure facilitates Li+ transfer. The composite exhibits a high reversible capacity (171 mAh g-1 at 0.1 C), excellent high-rate capability and cycling stability. In addition to construct the traditional structure of nanofiber or nanowire, the EPM can also form graphene-like structure after annealing, which is a new application in constructing sheet structure by electrospinning.

  6. Boron and Nitrogen Codoped Carbon Layers of LiFePO4 Improve the High-Rate Electrochemical Performance for Lithium Ion Batteries.

    PubMed

    Zhang, Jinli; Nie, Ning; Liu, Yuanyuan; Wang, Jiao; Yu, Feng; Gu, Junjie; Li, Wei

    2015-09-16

    An evolutionary composite of LiFePO4 with nitrogen and boron codoped carbon layers was prepared by processing hydrothermal-synthesized LiFePO4. This novel codoping method is successfully applied to LiFePO4 for commercial use, and it achieved excellent electrochemical performance. The electrochemical performance can be improved through single nitrogen doping (LiFePO4/C-N) or boron doping (LiFePO4/C-B). When modifying the LiFePO4/C-B with nitrogen (to synthesis LiFePO4/C-B+N) the undesired nonconducting N-B configurations (190.1 and 397.9 eV) are generated. This decreases the electronic conductivity from 2.56×10(-2) to 1.30×10(-2) S cm(-1) resulting in weak electrochemical performance. Nevertheless, using the opposite order to decorate LiFePO4/C-N with boron (to obtain LiFePO4/C-N+B) not only eliminates the nonconducting N-B impurity, but also promotes the conductive C-N (398.3, 400.3, and 401.1 eV) and C-B (189.5 eV) configurations-this markedly improves the electronic conductivity to 1.36×10(-1) S cm(-1). Meanwhile the positive doping strategy leads to synergistic electrochemical activity distinctly compared with single N- or B-doped materials (even much better than their sum capacity at 20 C). Moreover, due to the electron and hole-type carriers donated by nitrogen and boron atoms, the N+B codoped carbon coating tremendously enhances the electrochemical property: at the rate of 20 C, the codoped sample can elevate the discharge capacity of LFP/C from 101.1 mAh g(-1) to 121.6 mAh g(-1), and the codoped product based on commercial LiFePO4/C shows a discharge capacity of 78.4 mAh g(-1) rather than 48.1 mAh g(-1). Nevertheless, the B+N codoped sample decreases the discharge capacity of LFP/C from 101.1 mAh g(-1) to 95.4 mAh g(-1), while the commercial LFP/C changes from 48.1 mAh g(-1) to 40.6 mAh g(-1).

  7. Different effects of transgenic maize and nontransgenic maize on nitrogen-transforming archaea and bacteria in tropical soils.

    PubMed

    Cotta, Simone Raposo; Dias, Armando Cavalcante Franco; Marriel, Ivanildo Evódio; Andreote, Fernando Dini; Seldin, Lucy; van Elsas, Jan Dirk

    2014-10-01

    The composition of the rhizosphere microbiome is a result of interactions between plant roots, soil, and environmental conditions. The impact of genetic variation in plant species on the composition of the root-associated microbiota remains poorly understood. This study assessed the abundances and structures of nitrogen-transforming (ammonia-oxidizing) archaea and bacteria as well as nitrogen-fixing bacteria driven by genetic modification of their maize host plants. The data show that significant changes in the abundances (revealed by quantitative PCR) of ammonia-oxidizing bacterial and archaeal communities occurred as a result of the maize host being genetically modified. In contrast, the structures of the total communities (determined by PCR-denaturing gradient gel electrophoresis) were mainly driven by factors such as soil type and season and not by plant genotype. Thus, the abundances of ammonia-oxidizing bacterial and archaeal communities but not structures of those communities were revealed to be responsive to changes in maize genotype, allowing the suggestion that community abundances should be explored as candidate bioindicators for monitoring the possible impacts of cultivation of genetically modified plants. PMID:25107970

  8. The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO₂.

    PubMed

    Meier, Ina C; Pritchard, Seth G; Brzostek, Edward R; McCormack, M Luke; Phillips, Richard P

    2015-02-01

    While multiple experiments have demonstrated that trees exposed to elevated CO₂ can stimulate microbes to release nutrients from soil organic matter, the importance of root- versus mycorrhizal-induced changes in soil processes are presently unknown. We analyzed the contribution of roots and mycorrhizal activities to carbon (C) and nitrogen (N) turnover in a loblolly pine (Pinus taeda) forest exposed to elevated CO₂ by measuring extracellular enzyme activities at soil microsites accessed via root windows. Specifically, we quantified enzyme activity from soil adjacent to root tips (rhizosphere), soil adjacent to hyphal tips (hyphosphere), and bulk soil. During the peak growing season, CO₂ enrichment induced a greater increase of N-releasing enzymes in the rhizosphere (215% increase) than in the hyphosphere (36% increase), but a greater increase of recalcitrant C-degrading enzymes in the hyphosphere (118%) than in the rhizosphere (19%). Nitrogen fertilization influenced the magnitude of CO₂ effects on enzyme activities in the rhizosphere only. At the ecosystem scale, the rhizosphere accounted for c. 50% and 40% of the total activity of N- and C-releasing enzymes, respectively. Collectively, our results suggest that root exudates may contribute more to accelerated N cycling under elevated CO₂ at this site, while mycorrhizal fungi may contribute more to soil C degradation.

  9. Nitrogen modulation of legume root architecture signaling pathways involves phytohormones and small regulatory molecules.

    PubMed

    Mohd-Radzman, Nadiatul A; Djordjevic, Michael A; Imin, Nijat

    2013-01-01

    Nitrogen, particularly nitrate is an important yield determinant for crops. However, current agricultural practice with excessive fertilizer usage has detrimental effects on the environment. Therefore, legumes have been suggested as a sustainable alternative for replenishing soil nitrogen. Legumes can uniquely form nitrogen-fixing nodules through symbiotic interaction with specialized soil bacteria. Legumes possess a highly plastic root system which modulates its architecture according to the nitrogen availability in the soil. Understanding how legumes regulate root development in response to nitrogen availability is an important step to improving root architecture. The nitrogen-mediated root development pathway starts with sensing soil nitrogen level followed by subsequent signal transduction pathways involving phytohormones, microRNAs and regulatory peptides that collectively modulate the growth and shape of the root system. This review focuses on the current understanding of nitrogen-mediated legume root architecture including local and systemic regulations by different N-sources and the modulations by phytohormones and small regulatory molecules.

  10. Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch.

    PubMed

    Guo, Chang-Zi; Fu, Wei; Chen, Xue-Mei; Peng, Dang-Cong; Jin, Peng-Kang

    2013-07-01

    Oxidation-ditch operation modes were simulated using sequencing batch reactors (SBRs) with alternate stirring and aerating. The nitrogen-removal efficiencies and nitrifying characteristics of two aeration modes, point aeration and step aeration, were investigated. Under the same air-supply capacity, oxygen dissolved more efficiently in the system with point aeration, forming a larger aerobic zone. The nitrifying effects were similar in point aeration and step aeration, where the average removal efficiencies of NH4(+) N were 98% and 96%, respectively. When the proportion of anoxic and oxic zones was 1, the average removal efficiencies of total nitrogen (TN) were 45% and 66% under point aeration and step aeration, respectively. Step aeration was more beneficial to both anoxic denitrification and simultaneous nitrification and denitrification (SND). The maximum specific ammonia-uptake rates (AUR) of point aeration and step aeration were 4.7 and 4.9 mg NH4(+)/(gMLVSS h), respectively, while the maximum specific nitrite-uptake rates (NUR) of the two systems were 7.4 and 5.3 mg NO2(-)-N/(gMLVSS h), respectively. The proportions of ammonia-oxidizing bacteria (AOB) to all bacteria were 5.1% under point aeration and 7.0% under step aeration, and the proportions of nitrite-oxidizing bacteria (NOB) reached 6.5% and 9.0% under point and step aeration, respectively. The dominant genera of AOB and NOB were Nitrosococcus and Nitrospira, which accounted for 90% and 91%, respectively, under point aeration, and the diversity of nitrifying bacteria was lower than under step aeration. Point aeration was selective of nitrifying bacteria. The abundance of NOB was greater than that of AOB in both of the operation modes, and complete transformation of NH4(+) N to NO3(-)-N was observed without NO2(-)-N accumulation.

  11. Metabolic Regulation of “Ca. Methylacidiphilum Fumariolicum” SolV Cells Grown Under Different Nitrogen and Oxygen Limitations

    PubMed Central

    Khadem, Ahmad F.; Pol, Arjan; Wieczorek, Adam S.; Jetten, Mike S. M.; Op den Camp, Huub J. M.

    2012-01-01

    Aerobic methanotrophic bacteria can use methane as their sole energy source. The discovery of “Ca. Methylacidiphilum fumariolicum” strain SolV and other verrucomicrobial methanotrophs has revealed that the ability of bacteria to oxidize CH4 is much more diverse than has previously been assumed in terms of ecology, phylogeny, and physiology. A remarkable characteristic of the methane-oxidizing Verrucomicrobia is their extremely acidophilic phenotype, growing even below pH 1. In this study we used RNA-Seq to analyze the metabolic regulation of “Ca. M. fumariolicum” SolV cells growing at μmax in batch culture or under nitrogen fixing or oxygen limited conditions in chemostats, all at pH 2. The analysis showed that two of the three pmoCAB operons each encoding particulate methane monoxygenases were differentially expressed, probably regulated by the available oxygen. The hydrogen produced during N2 fixation is apparently recycled as demonstrated by the upregulation of the genes encoding a Ni/Fe-dependent hydrogenase. These hydrogenase genes were also upregulated under low oxygen conditions. Handling of nitrosative stress was shown by the expression of the nitric oxide reductase encoding genes norB and norC under all conditions tested, the upregulation of nitrite reductase nirK under oxygen limitation and of hydroxylamine oxidoreductase hao in the presence of ammonium. Unraveling the gene regulation of carbon and nitrogen metabolism helps to understand the underlying physiological adaptations of strain SolV in view of the harsh conditions of its natural ecosystem. PMID:22848206

  12. Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition.

    PubMed

    Li, Huan-Jun; Zhang, De-Huai; Han, Li-Liang; Yu, Xuya; Zhao, Peng; Li, Tao; Zhong, Jian-Jiang; Xu, Jun-Wei

    2016-01-01

    To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively. PMID:26508324

  13. Improvements of anti-corrosion and mechanical properties of NiTi orthopedic materials by acetylene, nitrogen and oxygen plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Poon, Ray W. Y.; Ho, Joan P. Y.; Liu, Xuanyong; Chung, C. Y.; Chu, Paul K.; Yeung, Kelvin W. K.; Lu, William W.; Cheung, Kenneth M. C.

    2005-08-01

    Nickel-titanium shape memory alloys (NiTi) are useful materials in orthopedics and orthodontics due to their unique super-elasticity and shape memory effects. However, the problem associated with the release of harmful Ni ions to human tissues and fluids has been raising safety concern. Hence, it is necessary to produce a surface barrier to impede the out-diffusion of Ni ions from the materials. We have conducted acetylene, nitrogen and oxygen plasma immersion ion implantation (PIII) into NiTi alloys in an attempt to improve the surface properties. All the implanted and annealed samples surfaces exhibit outstanding corrosion and Ni out-diffusion resistance. Besides, the implanted layers are mechanically stronger than the substrate underneath. XPS analyses disclose that the layer formed by C2H2 PIII is composed of mainly TiCx with increasing Ti to C concentration ratios towards the bulk. The nitrogen PIII layer is observed to be TiN, whereas the oxygen PIII layer is composed of oxides of Ti4+, Ti3+ and Ti2+.

  14. Further improvement in ganoderic acid production in static liquid culture of Ganoderma lucidum by integrating nitrogen limitation and calcium ion addition.

    PubMed

    Li, Huan-Jun; Zhang, De-Huai; Han, Li-Liang; Yu, Xuya; Zhao, Peng; Li, Tao; Zhong, Jian-Jiang; Xu, Jun-Wei

    2016-01-01

    To further improve the ganoderic acid (GA) production, a novel integrated strategy by combining nitrogen limitation and calcium ion addition was developed. The effects of the integrated combination on the content of GA-T (one powerful anticancer compound), their intermediates (squalene and lanosterol) and on the transcription levels of GA biosynthetic genes in G. lucidum fermentation were investigated. The maximum GA-T content with the integrated strategy were 1.87 mg/ 100 mg dry cell weight, which was 2.1-4.2 fold higher than that obtained with either calcium ion addition or nitrogen limitation alone, and it is also the highest record as ever reported in submerged fermentation of G. lucidum. The squalene content was increased by 3.9- and 2.2-fold in this case compared with either individual strategy alone. Moreover, the transcription levels of the GA biosynthetic genes encoding 3-hydroxy-3-methyglutaryl coenzyme A reductase and lanosterol synthase were also up-regulated by 3.3-7.5 and 1.3-2.3 fold, respectively.

  15. IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT

    SciTech Connect

    Joe Sinner

    2003-01-31

    Implementation of the work program of Budget Period 2 of the East Binger Unit (''EBU'') DOE Project continues. Major development work planned for the project includes the drilling of three horizontal production and one vertical injection wells, the conversion of five wells from production to injection service, and the expansion of injection capacity at the nitrogen management facility. Other work items include initiation of project monitoring and continued reservoir simulation. EBU 74G-2, the injection well planned to support the production of EBU 64-3H, has been drilled. Completion was underway at the time of this report. EBU 64-3H was fracture-stimulated during the period, further increasing production from this new horizontal well. Drilling of the final two wells of the pilot project is planned for 2003. Both are planned as horizontal producing wells. Work also began on projects aimed at increasing injection in the pilot area. The project to add compression and increase injection capacity at the nitrogen management facility was initiated, with completion targeted for March 2003. Additional producer-to-injector conversions are expected to be implemented around the same time. The revised history match of the simulation model has been completed, and work has begun to evaluate options with forecast simulations. The quality of the history match is significantly improved over the prior match. The predicted distribution of remaining reserves in the field is significantly changed. Decisions on projects planned for implementation later in Budget Period 2 will be guided by new forecasts.

  16. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River.

    PubMed

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha(-1) in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  17. Genetic Improvements in Rice Yield and Concomitant Increases in Radiation- and Nitrogen-Use Efficiency in Middle Reaches of Yangtze River

    PubMed Central

    Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei

    2016-01-01

    The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641

  18. Using stable isotopes to reconcile differences in nitrogen uptake efficiency relative to late season fertilization of northern red oak seedlings in Wisconsin bare-root nurseries

    NASA Astrophysics Data System (ADS)

    Fujinuma, R.; Balster, N. J.

    2009-12-01

    Cultural applications (e.g., timing, amount) of nitrogen (N) fertilizer in bareroot tree nurseries have been assessed for some time. However, the use of different metrologies to quantify the efficient use of fertilizer N and its allocation within biomass has confounded comparisons between fertilization regimes. This inconsistency is especially problematic when quantifying N fertilizer uptake efficiency (NFUE) of late season N fertilization in northern red oak (Quercus rubra L.) (NRO) seedlings characterized by episodic flushes in growth and N storage in perennial tissue to support spring growth. The use of isotopic tracers could help elucidate these differences. We therefore hypothesized that: 1) calculations of NFUE using isotopically enriched fertilizer would yield lower, more precise estimates of NFUE relative to traditional methods due to differences in the accounting of mineralized and reabsorbed N, and 2) a significant fraction of leaf N in older leaves (early flushes) would be reabsorbed into root and shoot tissue before abscission relative to leaves produced toward the end of the growing season (late flushes). To test these hypotheses, we conducted an experiment in two-year old NRO seedlings at two bare-root nurseries in Wisconsin. We applied a total of 147 mg N