Guided particle swarm optimization method to solve general nonlinear optimization problems
NASA Astrophysics Data System (ADS)
Abdelhalim, Alyaa; Nakata, Kazuhide; El-Alem, Mahmoud; Eltawil, Amr
2018-04-01
The development of hybrid algorithms is becoming an important topic in the global optimization research area. This article proposes a new technique in hybridizing the particle swarm optimization (PSO) algorithm and the Nelder-Mead (NM) simplex search algorithm to solve general nonlinear unconstrained optimization problems. Unlike traditional hybrid methods, the proposed method hybridizes the NM algorithm inside the PSO to improve the velocities and positions of the particles iteratively. The new hybridization considers the PSO algorithm and NM algorithm as one heuristic, not in a sequential or hierarchical manner. The NM algorithm is applied to improve the initial random solution of the PSO algorithm and iteratively in every step to improve the overall performance of the method. The performance of the proposed method was tested over 20 optimization test functions with varying dimensions. Comprehensive comparisons with other methods in the literature indicate that the proposed solution method is promising and competitive.
Double-Group Particle Swarm Optimization and Its Application in Remote Sensing Image Segmentation
Shen, Liang; Huang, Xiaotao; Fan, Chongyi
2018-01-01
Particle Swarm Optimization (PSO) is a well-known meta-heuristic. It has been widely used in both research and engineering fields. However, the original PSO generally suffers from premature convergence, especially in multimodal problems. In this paper, we propose a double-group PSO (DG-PSO) algorithm to improve the performance. DG-PSO uses a double-group based evolution framework. The individuals are divided into two groups: an advantaged group and a disadvantaged group. The advantaged group works according to the original PSO, while two new strategies are developed for the disadvantaged group. The proposed algorithm is firstly evaluated by comparing it with the other five popular PSO variants and two state-of-the-art meta-heuristics on various benchmark functions. The results demonstrate that DG-PSO shows a remarkable performance in terms of accuracy and stability. Then, we apply DG-PSO to multilevel thresholding for remote sensing image segmentation. The results show that the proposed algorithm outperforms five other popular algorithms in meta-heuristic-based multilevel thresholding, which verifies the effectiveness of the proposed algorithm. PMID:29724013
Double-Group Particle Swarm Optimization and Its Application in Remote Sensing Image Segmentation.
Shen, Liang; Huang, Xiaotao; Fan, Chongyi
2018-05-01
Particle Swarm Optimization (PSO) is a well-known meta-heuristic. It has been widely used in both research and engineering fields. However, the original PSO generally suffers from premature convergence, especially in multimodal problems. In this paper, we propose a double-group PSO (DG-PSO) algorithm to improve the performance. DG-PSO uses a double-group based evolution framework. The individuals are divided into two groups: an advantaged group and a disadvantaged group. The advantaged group works according to the original PSO, while two new strategies are developed for the disadvantaged group. The proposed algorithm is firstly evaluated by comparing it with the other five popular PSO variants and two state-of-the-art meta-heuristics on various benchmark functions. The results demonstrate that DG-PSO shows a remarkable performance in terms of accuracy and stability. Then, we apply DG-PSO to multilevel thresholding for remote sensing image segmentation. The results show that the proposed algorithm outperforms five other popular algorithms in meta-heuristic-based multilevel thresholding, which verifies the effectiveness of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Azmi, Nur Iffah Mohamed; Arifin Mat Piah, Kamal; Yusoff, Wan Azhar Wan; Romlay, Fadhlur Rahman Mohd
2018-03-01
Controller that uses PID parameters requires a good tuning method in order to improve the control system performance. Tuning PID control method is divided into two namely the classical methods and the methods of artificial intelligence. Particle swarm optimization algorithm (PSO) is one of the artificial intelligence methods. Previously, researchers had integrated PSO algorithms in the PID parameter tuning process. This research aims to improve the PSO-PID tuning algorithms by integrating the tuning process with the Variable Weight Grey- Taguchi Design of Experiment (DOE) method. This is done by conducting the DOE on the two PSO optimizing parameters: the particle velocity limit and the weight distribution factor. Computer simulations and physical experiments were conducted by using the proposed PSO- PID with the Variable Weight Grey-Taguchi DOE and the classical Ziegler-Nichols methods. They are implemented on the hydraulic positioning system. Simulation results show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE has reduced the rise time by 48.13% and settling time by 48.57% compared to the Ziegler-Nichols method. Furthermore, the physical experiment results also show that the proposed PSO-PID with the Variable Weight Grey-Taguchi DOE tuning method responds better than Ziegler-Nichols tuning. In conclusion, this research has improved the PSO-PID parameter by applying the PSO-PID algorithm together with the Variable Weight Grey-Taguchi DOE method as a tuning method in the hydraulic positioning system.
PSO Algorithm for an Optimal Power Controller in a Microgrid
NASA Astrophysics Data System (ADS)
Al-Saedi, W.; Lachowicz, S.; Habibi, D.; Bass, O.
2017-07-01
This paper presents the Particle Swarm Optimization (PSO) algorithm to improve the quality of the power supply in a microgrid. This algorithm is proposed for a real-time selftuning method that used in a power controller for an inverter based Distributed Generation (DG) unit. In such system, the voltage and frequency are the main control objectives, particularly when the microgrid is islanded or during load change. In this work, the PSO algorithm is implemented to find the optimal controller parameters to satisfy the control objectives. The results show high performance of the applied PSO algorithm of regulating the microgrid voltage and frequency.
Research of converter transformer fault diagnosis based on improved PSO-BP algorithm
NASA Astrophysics Data System (ADS)
Long, Qi; Guo, Shuyong; Li, Qing; Sun, Yong; Li, Yi; Fan, Youping
2017-09-01
To overcome those disadvantages that BP (Back Propagation) neural network and conventional Particle Swarm Optimization (PSO) converge at the global best particle repeatedly in early stage and is easy trapped in local optima and with low diagnosis accuracy when being applied in converter transformer fault diagnosis, we come up with the improved PSO-BP neural network to improve the accuracy rate. This algorithm improves the inertia weight Equation by using the attenuation strategy based on concave function to avoid the premature convergence of PSO algorithm and Time-Varying Acceleration Coefficient (TVAC) strategy was adopted to balance the local search and global search ability. At last the simulation results prove that the proposed approach has a better ability in optimizing BP neural network in terms of network output error, global searching performance and diagnosis accuracy.
Su, Hongsheng
2017-12-18
Distributed power grids generally contain multiple diverse types of distributed generators (DGs). Traditional particle swarm optimization (PSO) and simulated annealing PSO (SA-PSO) algorithms have some deficiencies in site selection and capacity determination of DGs, such as slow convergence speed and easily falling into local trap. In this paper, an improved SA-PSO (ISA-PSO) algorithm is proposed by introducing crossover and mutation operators of genetic algorithm (GA) into SA-PSO, so that the capabilities of the algorithm are well embodied in global searching and local exploration. In addition, diverse types of DGs are made equivalent to four types of nodes in flow calculation by the backward or forward sweep method, and reactive power sharing principles and allocation theory are applied to determine initial reactive power value and execute subsequent correction, thus providing the algorithm a better start to speed up the convergence. Finally, a mathematical model of the minimum economic cost is established for the siting and sizing of DGs under the location and capacity uncertainties of each single DG. Its objective function considers investment and operation cost of DGs, grid loss cost, annual purchase electricity cost, and environmental pollution cost, and the constraints include power flow, bus voltage, conductor current, and DG capacity. Through applications in an IEEE33-node distributed system, it is found that the proposed method can achieve desirable economic efficiency and safer voltage level relative to traditional PSO and SA-PSO algorithms, and is a more effective planning method for the siting and sizing of DGs in distributed power grids.
Incremental social learning in particle swarms.
de Oca, Marco A Montes; Stutzle, Thomas; Van den Enden, Ken; Dorigo, Marco
2011-04-01
Incremental social learning (ISL) was proposed as a way to improve the scalability of systems composed of multiple learning agents. In this paper, we show that ISL can be very useful to improve the performance of population-based optimization algorithms. Our study focuses on two particle swarm optimization (PSO) algorithms: a) the incremental particle swarm optimizer (IPSO), which is a PSO algorithm with a growing population size in which the initial position of new particles is biased toward the best-so-far solution, and b) the incremental particle swarm optimizer with local search (IPSOLS), in which solutions are further improved through a local search procedure. We first derive analytically the probability density function induced by the proposed initialization rule applied to new particles. Then, we compare the performance of IPSO and IPSOLS on a set of benchmark functions with that of other PSO algorithms (with and without local search) and a random restart local search algorithm. Finally, we measure the benefits of using incremental social learning on PSO algorithms by running IPSO and IPSOLS on problems with different fitness distance correlations.
Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong
2015-08-05
Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms.
Packets Distributing Evolutionary Algorithm Based on PSO for Ad Hoc Network
NASA Astrophysics Data System (ADS)
Xu, Xiao-Feng
2018-03-01
Wireless communication network has such features as limited bandwidth, changeful channel and dynamic topology, etc. Ad hoc network has lots of difficulties in accessing control, bandwidth distribution, resource assign and congestion control. Therefore, a wireless packets distributing Evolutionary algorithm based on PSO (DPSO)for Ad Hoc Network is proposed. Firstly, parameters impact on performance of network are analyzed and researched to obtain network performance effective function. Secondly, the improved PSO Evolutionary Algorithm is used to solve the optimization problem from local to global in the process of network packets distributing. The simulation results show that the algorithm can ensure fairness and timeliness of network transmission, as well as improve ad hoc network resource integrated utilization efficiency.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network's initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data.
Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem
NASA Astrophysics Data System (ADS)
Rahmalia, Dinita
2017-08-01
Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.
Sung, Wen-Tsai; Chiang, Yen-Chun
2012-12-01
This study examines wireless sensor network with real-time remote identification using the Android study of things (HCIOT) platform in community healthcare. An improved particle swarm optimization (PSO) method is proposed to efficiently enhance physiological multi-sensors data fusion measurement precision in the Internet of Things (IOT) system. Improved PSO (IPSO) includes: inertia weight factor design, shrinkage factor adjustment to allow improved PSO algorithm data fusion performance. The Android platform is employed to build multi-physiological signal processing and timely medical care of things analysis. Wireless sensor network signal transmission and Internet links allow community or family members to have timely medical care network services.
Cao, Jianfang; Cui, Hongyan; Shi, Hao; Jiao, Lijuan
2016-01-01
A back-propagation (BP) neural network can solve complicated random nonlinear mapping problems; therefore, it can be applied to a wide range of problems. However, as the sample size increases, the time required to train BP neural networks becomes lengthy. Moreover, the classification accuracy decreases as well. To improve the classification accuracy and runtime efficiency of the BP neural network algorithm, we proposed a parallel design and realization method for a particle swarm optimization (PSO)-optimized BP neural network based on MapReduce on the Hadoop platform using both the PSO algorithm and a parallel design. The PSO algorithm was used to optimize the BP neural network’s initial weights and thresholds and improve the accuracy of the classification algorithm. The MapReduce parallel programming model was utilized to achieve parallel processing of the BP algorithm, thereby solving the problems of hardware and communication overhead when the BP neural network addresses big data. Datasets on 5 different scales were constructed using the scene image library from the SUN Database. The classification accuracy of the parallel PSO-BP neural network algorithm is approximately 92%, and the system efficiency is approximately 0.85, which presents obvious advantages when processing big data. The algorithm proposed in this study demonstrated both higher classification accuracy and improved time efficiency, which represents a significant improvement obtained from applying parallel processing to an intelligent algorithm on big data. PMID:27304987
Particle Swarm Optimization With Interswarm Interactive Learning Strategy.
Qin, Quande; Cheng, Shi; Zhang, Qingyu; Li, Li; Shi, Yuhui
2016-10-01
The learning strategy in the canonical particle swarm optimization (PSO) algorithm is often blamed for being the primary reason for loss of diversity. Population diversity maintenance is crucial for preventing particles from being stuck into local optima. In this paper, we present an improved PSO algorithm with an interswarm interactive learning strategy (IILPSO) by overcoming the drawbacks of the canonical PSO algorithm's learning strategy. IILPSO is inspired by the phenomenon in human society that the interactive learning behavior takes place among different groups. Particles in IILPSO are divided into two swarms. The interswarm interactive learning (IIL) behavior is triggered when the best particle's fitness value of both the swarms does not improve for a certain number of iterations. According to the best particle's fitness value of each swarm, the softmax method and roulette method are used to determine the roles of the two swarms as the learning swarm and the learned swarm. In addition, the velocity mutation operator and global best vibration strategy are used to improve the algorithm's global search capability. The IIL strategy is applied to PSO with global star and local ring structures, which are termed as IILPSO-G and IILPSO-L algorithm, respectively. Numerical experiments are conducted to compare the proposed algorithms with eight popular PSO variants. From the experimental results, IILPSO demonstrates the good performance in terms of solution accuracy, convergence speed, and reliability. Finally, the variations of the population diversity in the entire search process provide an explanation why IILPSO performs effectively.
Fuzzy PID control algorithm based on PSO and application in BLDC motor
NASA Astrophysics Data System (ADS)
Lin, Sen; Wang, Guanglong
2017-06-01
A fuzzy PID control algorithm is studied based on improved particle swarm optimization (PSO) to perform Brushless DC (BLDC) motor control which has high accuracy, good anti-jamming capability and steady state accuracy compared with traditional PID control. The mathematical and simulation model is established for BLDC motor by simulink software, and the speed loop of the fuzzy PID controller is designed. The simulation results show that the fuzzy PID control algorithm based on PSO has higher stability, high control precision and faster dynamic response speed.
Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm
2015-01-01
This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO (MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior to the general PSO for the phase response design of digital recursive all-pass filter. PMID:26366168
Li, Jun-qing; Pan, Quan-ke; Mao, Kun
2014-01-01
A hybrid algorithm which combines particle swarm optimization (PSO) and iterated local search (ILS) is proposed for solving the hybrid flowshop scheduling (HFS) problem with preventive maintenance (PM) activities. In the proposed algorithm, different crossover operators and mutation operators are investigated. In addition, an efficient multiple insert mutation operator is developed for enhancing the searching ability of the algorithm. Furthermore, an ILS-based local search procedure is embedded in the algorithm to improve the exploitation ability of the proposed algorithm. The detailed experimental parameter for the canonical PSO is tuning. The proposed algorithm is tested on the variation of 77 Carlier and Néron's benchmark problems. Detailed comparisons with the present efficient algorithms, including hGA, ILS, PSO, and IG, verify the efficiency and effectiveness of the proposed algorithm. PMID:24883414
The admissible portfolio selection problem with transaction costs and an improved PSO algorithm
NASA Astrophysics Data System (ADS)
Chen, Wei; Zhang, Wei-Guo
2010-05-01
In this paper, we discuss the portfolio selection problem with transaction costs under the assumption that there exist admissible errors on expected returns and risks of assets. We propose a new admissible efficient portfolio selection model and design an improved particle swarm optimization (PSO) algorithm because traditional optimization algorithms fail to work efficiently for our proposed problem. Finally, we offer a numerical example to illustrate the proposed effective approaches and compare the admissible portfolio efficient frontiers under different constraints.
A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.
Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei
2017-10-01
The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.
A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations
NASA Technical Reports Server (NTRS)
Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw
2005-01-01
A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.
A multipopulation PSO based memetic algorithm for permutation flow shop scheduling.
Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang
2013-01-01
The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP.
Particle swarm optimization: an alternative in marine propeller optimization?
NASA Astrophysics Data System (ADS)
Vesting, F.; Bensow, R. E.
2018-01-01
This article deals with improving and evaluating the performance of two evolutionary algorithm approaches for automated engineering design optimization. Here a marine propeller design with constraints on cavitation nuisance is the intended application. For this purpose, the particle swarm optimization (PSO) algorithm is adapted for multi-objective optimization and constraint handling for use in propeller design. Three PSO algorithms are developed and tested for the optimization of four commercial propeller designs for different ship types. The results are evaluated by interrogating the generation medians and the Pareto front development. The same propellers are also optimized utilizing the well established NSGA-II genetic algorithm to provide benchmark results. The authors' PSO algorithms deliver comparable results to NSGA-II, but converge earlier and enhance the solution in terms of constraints violation.
A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm.
Amoshahy, Mohammad Javad; Shamsi, Mousa; Sedaaghi, Mohammad Hossein
2016-01-01
Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO's parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate.
Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka
2013-01-01
Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted. PMID:24324383
NASA Astrophysics Data System (ADS)
Prathabrao, M.; Nawawi, Azli; Sidek, Noor Azizah
2017-04-01
Radio Frequency Identification (RFID) system has multiple benefits which can improve the operational efficiency of the organization. The advantages are the ability to record data systematically and quickly, reducing human errors and system errors, update the database automatically and efficiently. It is often more readers (reader) is needed for the installation purposes in RFID system. Thus, it makes the system more complex. As a result, RFID network planning process is needed to ensure the RFID system works perfectly. The planning process is also considered as an optimization process and power adjustment because the coordinates of each RFID reader to be determined. Therefore, algorithms inspired by the environment (Algorithm Inspired by Nature) is often used. In the study, PSO algorithm is used because it has few number of parameters, the simulation time is fast, easy to use and also very practical. However, PSO parameters must be adjusted correctly, for robust and efficient usage of PSO. Failure to do so may result in disruption of performance and results of PSO optimization of the system will be less good. To ensure the efficiency of PSO, this study will examine the effects of two parameters on the performance of PSO Algorithm in RFID tag coverage optimization. The parameters to be studied are the swarm size and iteration number. In addition to that, the study will also recommend the most optimal adjustment for both parameters that is, 200 for the no. iterations and 800 for the no. of swarms. Finally, the results of this study will enable PSO to operate more efficiently in order to optimize RFID network planning system.
NASA Astrophysics Data System (ADS)
Zhuang, Yufei; Huang, Haibin
2014-02-01
A hybrid algorithm combining particle swarm optimization (PSO) algorithm with the Legendre pseudospectral method (LPM) is proposed for solving time-optimal trajectory planning problem of underactuated spacecrafts. At the beginning phase of the searching process, an initialization generator is constructed by the PSO algorithm due to its strong global searching ability and robustness to random initial values, however, PSO algorithm has a disadvantage that its convergence rate around the global optimum is slow. Then, when the change in fitness function is smaller than a predefined value, the searching algorithm is switched to the LPM to accelerate the searching process. Thus, with the obtained solutions by the PSO algorithm as a set of proper initial guesses, the hybrid algorithm can find a global optimum more quickly and accurately. 200 Monte Carlo simulations results demonstrate that the proposed hybrid PSO-LPM algorithm has greater advantages in terms of global searching capability and convergence rate than both single PSO algorithm and LPM algorithm. Moreover, the PSO-LPM algorithm is also robust to random initial values.
a New Hybrid Yin-Yang Swarm Optimization Algorithm for Uncapacitated Warehouse Location Problems
NASA Astrophysics Data System (ADS)
Heidari, A. A.; Kazemizade, O.; Hakimpour, F.
2017-09-01
Yin-Yang-pair optimization (YYPO) is one of the latest metaheuristic algorithms (MA) proposed in 2015 that tries to inspire the philosophy of balance between conflicting concepts. Particle swarm optimizer (PSO) is one of the first population-based MA inspired by social behaviors of birds. In spite of PSO, the YYPO is not a nature inspired optimizer. It has a low complexity and starts with only two initial positions and can produce more points with regard to the dimension of target problem. Due to unique advantages of these methodologies and to mitigate the immature convergence and local optima (LO) stagnation problems in PSO, in this work, a continuous hybrid strategy based on the behaviors of PSO and YYPO is proposed to attain the suboptimal solutions of uncapacitated warehouse location (UWL) problems. This efficient hierarchical PSO-based optimizer (PSOYPO) can improve the effectiveness of PSO on spatial optimization tasks such as the family of UWL problems. The performance of the proposed PSOYPO is verified according to some UWL benchmark cases. These test cases have been used in several works to evaluate the efficacy of different MA. Then, the PSOYPO is compared to the standard PSO, genetic algorithm (GA), harmony search (HS), modified HS (OBCHS), and evolutionary simulated annealing (ESA). The experimental results demonstrate that the PSOYPO can reveal a better or competitive efficacy compared to the PSO and other MA.
A Multipopulation PSO Based Memetic Algorithm for Permutation Flow Shop Scheduling
Liu, Ruochen; Ma, Chenlin; Ma, Wenping; Li, Yangyang
2013-01-01
The permutation flow shop scheduling problem (PFSSP) is part of production scheduling, which belongs to the hardest combinatorial optimization problem. In this paper, a multipopulation particle swarm optimization (PSO) based memetic algorithm (MPSOMA) is proposed in this paper. In the proposed algorithm, the whole particle swarm population is divided into three subpopulations in which each particle evolves itself by the standard PSO and then updates each subpopulation by using different local search schemes such as variable neighborhood search (VNS) and individual improvement scheme (IIS). Then, the best particle of each subpopulation is selected to construct a probabilistic model by using estimation of distribution algorithm (EDA) and three particles are sampled from the probabilistic model to update the worst individual in each subpopulation. The best particle in the entire particle swarm is used to update the global optimal solution. The proposed MPSOMA is compared with two recently proposed algorithms, namely, PSO based memetic algorithm (PSOMA) and hybrid particle swarm optimization with estimation of distribution algorithm (PSOEDA), on 29 well-known PFFSPs taken from OR-library, and the experimental results show that it is an effective approach for the PFFSP. PMID:24453841
NASA Astrophysics Data System (ADS)
Yuan, Chunhua; Wang, Jiang; Yi, Guosheng
2017-03-01
Estimation of ion channel parameters is crucial to spike initiation of neurons. The biophysical neuron models have numerous ion channel parameters, but only a few of them play key roles in the firing patterns of the models. So we choose three parameters featuring the adaptation in the Ermentrout neuron model to be estimated. However, the traditional particle swarm optimization (PSO) algorithm is still easy to fall into local optimum and has the premature convergence phenomenon in the study of some problems. In this paper, we propose an improved method that uses a concave function and dynamic logistic chaotic mapping mixed to adjust the inertia weights of the fitness value, effectively improve the global convergence ability of the algorithm. The perfect predicting firing trajectories of the rebuilt model using the estimated parameters prove that only estimating a few important ion channel parameters can establish the model well and the proposed algorithm is effective. Estimations using two classic PSO algorithms are also compared to the improved PSO to verify that the algorithm proposed in this paper can avoid local optimum and quickly converge to the optimal value. The results provide important theoretical foundations for building biologically realistic neuron models.
Enhanced Particle Swarm Optimization Algorithm: Efficient Training of ReaxFF Reactive Force Fields.
Furman, David; Carmeli, Benny; Zeiri, Yehuda; Kosloff, Ronnie
2018-06-12
Particle swarm optimization (PSO) is a powerful metaheuristic population-based global optimization algorithm. However, when it is applied to nonseparable objective functions, its performance on multimodal landscapes is significantly degraded. Here we show that a significant improvement in the search quality and efficiency on multimodal functions can be achieved by enhancing the basic rotation-invariant PSO algorithm with isotropic Gaussian mutation operators. The new algorithm demonstrates superior performance across several nonlinear, multimodal benchmark functions compared with the rotation-invariant PSO algorithm and the well-established simulated annealing and sequential one-parameter parabolic interpolation methods. A search for the optimal set of parameters for the dispersion interaction model in the ReaxFF- lg reactive force field was carried out with respect to accurate DFT-TS calculations. The resulting optimized force field accurately describes the equations of state of several high-energy molecular crystals where such interactions are of crucial importance. The improved algorithm also presents better performance compared to a genetic algorithm optimization method in the optimization of the parameters of a ReaxFF- lg correction model. The computational framework is implemented in a stand-alone C++ code that allows the straightforward development of ReaxFF reactive force fields.
Evolutionary Algorithms Approach to the Solution of Damage Detection Problems
NASA Astrophysics Data System (ADS)
Salazar Pinto, Pedro Yoajim; Begambre, Oscar
2010-09-01
In this work is proposed a new Self-Configured Hybrid Algorithm by combining the Particle Swarm Optimization (PSO) and a Genetic Algorithm (GA). The aim of the proposed strategy is to increase the stability and accuracy of the search. The central idea is the concept of Guide Particle, this particle (the best PSO global in each generation) transmits its information to a particle of the following PSO generation, which is controlled by the GA. Thus, the proposed hybrid has an elitism feature that improves its performance and guarantees the convergence of the procedure. In different test carried out in benchmark functions, reported in the international literature, a better performance in stability and accuracy was observed; therefore the new algorithm was used to identify damage in a simple supported beam using modal data. Finally, it is worth noting that the algorithm is independent of the initial definition of heuristic parameters.
An Integrated Method Based on PSO and EDA for the Max-Cut Problem.
Lin, Geng; Guan, Jian
2016-01-01
The max-cut problem is NP-hard combinatorial optimization problem with many real world applications. In this paper, we propose an integrated method based on particle swarm optimization and estimation of distribution algorithm (PSO-EDA) for solving the max-cut problem. The integrated algorithm overcomes the shortcomings of particle swarm optimization and estimation of distribution algorithm. To enhance the performance of the PSO-EDA, a fast local search procedure is applied. In addition, a path relinking procedure is developed to intensify the search. To evaluate the performance of PSO-EDA, extensive experiments were carried out on two sets of benchmark instances with 800 to 20,000 vertices from the literature. Computational results and comparisons show that PSO-EDA significantly outperforms the existing PSO-based and EDA-based algorithms for the max-cut problem. Compared with other best performing algorithms, PSO-EDA is able to find very competitive results in terms of solution quality.
NASA Astrophysics Data System (ADS)
Ervin, Katherine; Shipman, Steven
2017-06-01
While rotational spectra can be rapidly collected, their analysis (especially for complex systems) is seldom straightforward, leading to a bottleneck. The AUTOFIT program was designed to serve that need by quickly matching rotational constants to spectra with little user input and supervision. This program can potentially be improved by incorporating an optimization algorithm in the search for a solution. The Particle Swarm Optimization Algorithm (PSO) was chosen for implementation. PSO is part of a family of optimization algorithms called heuristic algorithms, which seek approximate best answers. This is ideal for rotational spectra, where an exact match will not be found without incorporating distortion constants, etc., which would otherwise greatly increase the size of the search space. PSO was tested for robustness against five standard fitness functions and then applied to a custom fitness function created for rotational spectra. This talk will explain the Particle Swarm Optimization algorithm and how it works, describe how Autofit was modified to use PSO, discuss the fitness function developed to work with spectroscopic data, and show our current results. Seifert, N.A., Finneran, I.A., Perez, C., Zaleski, D.P., Neill, J.L., Steber, A.L., Suenram, R.D., Lesarri, A., Shipman, S.T., Pate, B.H., J. Mol. Spec. 312, 13-21 (2015)
A Novel Flexible Inertia Weight Particle Swarm Optimization Algorithm
Shamsi, Mousa; Sedaaghi, Mohammad Hossein
2016-01-01
Particle swarm optimization (PSO) is an evolutionary computing method based on intelligent collective behavior of some animals. It is easy to implement and there are few parameters to adjust. The performance of PSO algorithm depends greatly on the appropriate parameter selection strategies for fine tuning its parameters. Inertia weight (IW) is one of PSO’s parameters used to bring about a balance between the exploration and exploitation characteristics of PSO. This paper proposes a new nonlinear strategy for selecting inertia weight which is named Flexible Exponential Inertia Weight (FEIW) strategy because according to each problem we can construct an increasing or decreasing inertia weight strategy with suitable parameters selection. The efficacy and efficiency of PSO algorithm with FEIW strategy (FEPSO) is validated on a suite of benchmark problems with different dimensions. Also FEIW is compared with best time-varying, adaptive, constant and random inertia weights. Experimental results and statistical analysis prove that FEIW improves the search performance in terms of solution quality as well as convergence rate. PMID:27560945
A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM.
Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei; Song, Houbing
2018-01-15
Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model's performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM's parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models' performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors.
Improving a HMM-based off-line handwriting recognition system using MME-PSO optimization
NASA Astrophysics Data System (ADS)
Hamdani, Mahdi; El Abed, Haikal; Hamdani, Tarek M.; Märgner, Volker; Alimi, Adel M.
2011-01-01
One of the trivial steps in the development of a classifier is the design of its architecture. This paper presents a new algorithm, Multi Models Evolvement (MME) using Particle Swarm Optimization (PSO). This algorithm is a modified version of the basic PSO, which is used to the unsupervised design of Hidden Markov Model (HMM) based architectures. For instance, the proposed algorithm is applied to an Arabic handwriting recognizer based on discrete probability HMMs. After the optimization of their architectures, HMMs are trained with the Baum- Welch algorithm. The validation of the system is based on the IfN/ENIT database. The performance of the developed approach is compared to the participating systems at the 2005 competition organized on Arabic handwriting recognition on the International Conference on Document Analysis and Recognition (ICDAR). The final system is a combination between an optimized HMM with 6 other HMMs obtained by a simple variation of the number of states. An absolute improvement of 6% of word recognition rate with about 81% is presented. This improvement is achieved comparing to the basic system (ARAB-IfN). The proposed recognizer outperforms also most of the known state-of-the-art systems.
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.
Vimalarani, C; Subramanian, R; Sivanandam, S N
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.
Li, Mengshan; Zhang, Huaijing; Chen, Bingsheng; Wu, Yan; Guan, Lixin
2018-03-05
The pKa value of drugs is an important parameter in drug design and pharmacology. In this paper, an improved particle swarm optimization (PSO) algorithm was proposed based on the population entropy diversity. In the improved algorithm, when the population entropy was higher than the set maximum threshold, the convergence strategy was adopted; when the population entropy was lower than the set minimum threshold the divergence strategy was adopted; when the population entropy was between the maximum and minimum threshold, the self-adaptive adjustment strategy was maintained. The improved PSO algorithm was applied in the training of radial basis function artificial neural network (RBF ANN) model and the selection of molecular descriptors. A quantitative structure-activity relationship model based on RBF ANN trained by the improved PSO algorithm was proposed to predict the pKa values of 74 kinds of neutral and basic drugs and then validated by another database containing 20 molecules. The validation results showed that the model had a good prediction performance. The absolute average relative error, root mean square error, and squared correlation coefficient were 0.3105, 0.0411, and 0.9685, respectively. The model can be used as a reference for exploring other quantitative structure-activity relationships.
An improved grey wolf optimizer algorithm for the inversion of geoelectrical data
NASA Astrophysics Data System (ADS)
Li, Si-Yu; Wang, Shu-Ming; Wang, Peng-Fei; Su, Xiao-Lu; Zhang, Xin-Song; Dong, Zhi-Hui
2018-05-01
The grey wolf optimizer (GWO) is a novel bionics algorithm inspired by the social rank and prey-seeking behaviors of grey wolves. The GWO algorithm is easy to implement because of its basic concept, simple formula, and small number of parameters. This paper develops a GWO algorithm with a nonlinear convergence factor and an adaptive location updating strategy and applies this improved grey wolf optimizer (improved grey wolf optimizer, IGWO) algorithm to geophysical inversion problems using magnetotelluric (MT), DC resistivity and induced polarization (IP) methods. Numerical tests in MATLAB 2010b for the forward modeling data and the observed data show that the IGWO algorithm can find the global minimum and rarely sinks to the local minima. For further study, inverted results using the IGWO are contrasted with particle swarm optimization (PSO) and the simulated annealing (SA) algorithm. The outcomes of the comparison reveal that the IGWO and PSO similarly perform better in counterpoising exploration and exploitation with a given number of iterations than the SA.
NASA Astrophysics Data System (ADS)
Yu, Wan-Ting; Yu, Hong-yi; Du, Jian-Ping; Wang, Ding
2018-04-01
The Direct Position Determination (DPD) algorithm has been demonstrated to achieve a better accuracy with known signal waveforms. However, the signal waveform is difficult to be completely known in the actual positioning process. To solve the problem, we proposed a DPD method for digital modulation signals based on improved particle swarm optimization algorithm. First, a DPD model is established for known modulation signals and a cost function is obtained on symbol estimation. Second, as the optimization of the cost function is a nonlinear integer optimization problem, an improved Particle Swarm Optimization (PSO) algorithm is considered for the optimal symbol search. Simulations are carried out to show the higher position accuracy of the proposed DPD method and the convergence of the fitness function under different inertia weight and population size. On the one hand, the proposed algorithm can take full advantage of the signal feature to improve the positioning accuracy. On the other hand, the improved PSO algorithm can improve the efficiency of symbol search by nearly one hundred times to achieve a global optimal solution.
Zou, Feng; Chen, Debao; Wang, Jiangtao
2016-01-01
An improved teaching-learning-based optimization with combining of the social character of PSO (TLBO-PSO), which is considering the teacher's behavior influence on the students and the mean grade of the class, is proposed in the paper to find the global solutions of function optimization problems. In this method, the teacher phase of TLBO is modified; the new position of the individual is determined by the old position, the mean position, and the best position of current generation. The method overcomes disadvantage that the evolution of the original TLBO might stop when the mean position of students equals the position of the teacher. To decrease the computation cost of the algorithm, the process of removing the duplicate individual in original TLBO is not adopted in the improved algorithm. Moreover, the probability of local convergence of the improved method is decreased by the mutation operator. The effectiveness of the proposed method is tested on some benchmark functions, and the results are competitive with respect to some other methods.
hydroPSO: A Versatile Particle Swarm Optimisation R Package for Calibration of Environmental Models
NASA Astrophysics Data System (ADS)
Zambrano-Bigiarini, M.; Rojas, R.
2012-04-01
Particle Swarm Optimisation (PSO) is a recent and powerful population-based stochastic optimisation technique inspired by social behaviour of bird flocking, which shares similarities with other evolutionary techniques such as Genetic Algorithms (GA). In PSO, however, each individual of the population, known as particle in PSO terminology, adjusts its flying trajectory on the multi-dimensional search-space according to its own experience (best-known personal position) and the one of its neighbours in the swarm (best-known local position). PSO has recently received a surge of attention given its flexibility, ease of programming, low memory and CPU requirements, and efficiency. Despite these advantages, PSO may still get trapped into sub-optimal solutions, suffer from swarm explosion or premature convergence. Thus, the development of enhancements to the "canonical" PSO is an active area of research. To date, several modifications to the canonical PSO have been proposed in the literature, resulting into a large and dispersed collection of codes and algorithms which might well be used for similar if not identical purposes. In this work we present hydroPSO, a platform-independent R package implementing several enhancements to the canonical PSO that we consider of utmost importance to bring this technique to the attention of a broader community of scientists and practitioners. hydroPSO is model-independent, allowing the user to interface any model code with the calibration engine without having to invest considerable effort in customizing PSO to a new calibration problem. Some of the controlling options to fine-tune hydroPSO are: four alternative topologies, several types of inertia weight, time-variant acceleration coefficients, time-variant maximum velocity, regrouping of particles when premature convergence is detected, different types of boundary conditions and many others. Additionally, hydroPSO implements recent PSO variants such as: Improved Particle Swarm Optimisation (IPSO), Fully Informed Particle Swarm (FIPS), and weighted FIPS (wFIPS). Finally, an advanced sensitivity analysis using the Latin Hypercube One-At-a-Time (LH-OAT) method and user-friendly plotting summaries facilitate the interpretation and assessment of the calibration/optimisation results. We validate hydroPSO against the standard PSO algorithm (SPSO-2007) employing five test functions commonly used to assess the performance of optimisation algorithms. Additionally, we illustrate how the performance of the optimization/calibration engine is boosted by using several of the fine-tune options included in hydroPSO. Finally, we show how to interface SWAT-2005 with hydroPSO to calibrate a semi-distributed hydrological model for the Ega River basin in Spain, and how to interface MODFLOW-2000 and hydroPSO to calibrate a groundwater flow model for the regional aquifer of the Pampa del Tamarugal in Chile. We limit the applications of hydroPSO to study cases dealing with surface water and groundwater models as these two are the authors' areas of expertise. However, based on the flexibility of hydroPSO we believe this package can be implemented to any model code requiring some form of parameter estimation.
Design and multi-physics optimization of rotary MRF brakes
NASA Astrophysics Data System (ADS)
Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan
2018-03-01
Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellano, T.; De Palma, L.; Laneve, D.
2015-07-01
A homemade computer code for designing a Side- Coupled Linear Accelerator (SCL) is written. It integrates a simplified model of SCL tanks with the Particle Swarm Optimization (PSO) algorithm. The computer code main aim is to obtain useful guidelines for the design of Linear Accelerator (LINAC) resonant cavities. The design procedure, assisted via the aforesaid approach seems very promising, allowing future improvements towards the optimization of actual accelerating geometries. (authors)
Particle Swarm Optimization algorithms for geophysical inversion, practical hints
NASA Astrophysics Data System (ADS)
Garcia Gonzalo, E.; Fernandez Martinez, J.; Fernandez Alvarez, J.; Kuzma, H.; Menendez Perez, C.
2008-12-01
PSO is a stochastic optimization technique that has been successfully used in many different engineering fields. PSO algorithm can be physically interpreted as a stochastic damped mass-spring system (Fernandez Martinez and Garcia Gonzalo 2008). Based on this analogy we present a whole family of PSO algorithms and their respective first order and second order stability regions. Their performance is also checked using synthetic functions (Rosenbrock and Griewank) showing a degree of ill-posedness similar to that found in many geophysical inverse problems. Finally, we present the application of these algorithms to the analysis of a Vertical Electrical Sounding inverse problem associated to a seawater intrusion in a coastal aquifer in South Spain. We analyze the role of PSO parameters (inertia, local and global accelerations and discretization step), both in convergence curves and in the a posteriori sampling of the depth of an intrusion. Comparison is made with binary genetic algorithms and simulated annealing. As result of this analysis, practical hints are given to select the correct algorithm and to tune the corresponding PSO parameters. Fernandez Martinez, J.L., Garcia Gonzalo, E., 2008a. The generalized PSO: a new door to PSO evolution. Journal of Artificial Evolution and Applications. DOI:10.1155/2008/861275.
A novel artificial immune clonal selection classification and rule mining with swarm learning model
NASA Astrophysics Data System (ADS)
Al-Sheshtawi, Khaled A.; Abdul-Kader, Hatem M.; Elsisi, Ashraf B.
2013-06-01
Metaheuristic optimisation algorithms have become popular choice for solving complex problems. By integrating Artificial Immune clonal selection algorithm (CSA) and particle swarm optimisation (PSO) algorithm, a novel hybrid Clonal Selection Classification and Rule Mining with Swarm Learning Algorithm (CS2) is proposed. The main goal of the approach is to exploit and explore the parallel computation merit of Clonal Selection and the speed and self-organisation merits of Particle Swarm by sharing information between clonal selection population and particle swarm. Hence, we employed the advantages of PSO to improve the mutation mechanism of the artificial immune CSA and to mine classification rules within datasets. Consequently, our proposed algorithm required less training time and memory cells in comparison to other AIS algorithms. In this paper, classification rule mining has been modelled as a miltiobjective optimisation problem with predictive accuracy. The multiobjective approach is intended to allow the PSO algorithm to return an approximation to the accuracy and comprehensibility border, containing solutions that are spread across the border. We compared our proposed algorithm classification accuracy CS2 with five commonly used CSAs, namely: AIRS1, AIRS2, AIRS-Parallel, CLONALG, and CSCA using eight benchmark datasets. We also compared our proposed algorithm classification accuracy CS2 with other five methods, namely: Naïve Bayes, SVM, MLP, CART, and RFB. The results show that the proposed algorithm is comparable to the 10 studied algorithms. As a result, the hybridisation, built of CSA and PSO, can develop respective merit, compensate opponent defect, and make search-optimal effect and speed better.
Pashaei, Elnaz; Ozen, Mustafa; Aydin, Nizamettin
2015-08-01
Improving accuracy of supervised classification algorithms in biomedical applications is one of active area of research. In this study, we improve the performance of Particle Swarm Optimization (PSO) combined with C4.5 decision tree (PSO+C4.5) classifier by applying Boosted C5.0 decision tree as the fitness function. To evaluate the effectiveness of our proposed method, it is implemented on 1 microarray dataset and 5 different medical data sets obtained from UCI machine learning databases. Moreover, the results of PSO + Boosted C5.0 implementation are compared to eight well-known benchmark classification methods (PSO+C4.5, support vector machine under the kernel of Radial Basis Function, Classification And Regression Tree (CART), C4.5 decision tree, C5.0 decision tree, Boosted C5.0 decision tree, Naive Bayes and Weighted K-Nearest neighbor). Repeated five-fold cross-validation method was used to justify the performance of classifiers. Experimental results show that our proposed method not only improve the performance of PSO+C4.5 but also obtains higher classification accuracy compared to the other classification methods.
A Sensor Dynamic Measurement Error Prediction Model Based on NAPSO-SVM
Jiang, Minlan; Jiang, Lan; Jiang, Dingde; Li, Fei
2018-01-01
Dynamic measurement error correction is an effective way to improve sensor precision. Dynamic measurement error prediction is an important part of error correction, and support vector machine (SVM) is often used for predicting the dynamic measurement errors of sensors. Traditionally, the SVM parameters were always set manually, which cannot ensure the model’s performance. In this paper, a SVM method based on an improved particle swarm optimization (NAPSO) is proposed to predict the dynamic measurement errors of sensors. Natural selection and simulated annealing are added in the PSO to raise the ability to avoid local optima. To verify the performance of NAPSO-SVM, three types of algorithms are selected to optimize the SVM’s parameters: the particle swarm optimization algorithm (PSO), the improved PSO optimization algorithm (NAPSO), and the glowworm swarm optimization (GSO). The dynamic measurement error data of two sensors are applied as the test data. The root mean squared error and mean absolute percentage error are employed to evaluate the prediction models’ performances. The experimental results show that among the three tested algorithms the NAPSO-SVM method has a better prediction precision and a less prediction errors, and it is an effective method for predicting the dynamic measurement errors of sensors. PMID:29342942
Load forecast method of electric vehicle charging station using SVR based on GA-PSO
NASA Astrophysics Data System (ADS)
Lu, Kuan; Sun, Wenxue; Ma, Changhui; Yang, Shenquan; Zhu, Zijian; Zhao, Pengfei; Zhao, Xin; Xu, Nan
2017-06-01
This paper presents a Support Vector Regression (SVR) method for electric vehicle (EV) charging station load forecast based on genetic algorithm (GA) and particle swarm optimization (PSO). Fuzzy C-Means (FCM) clustering is used to establish similar day samples. GA is used for global parameter searching and PSO is used for a more accurately local searching. Load forecast is then regressed using SVR. The practical load data of an EV charging station were taken to illustrate the proposed method. The result indicates an obvious improvement in the forecasting accuracy compared with SVRs based on PSO and GA exclusively.
A novel discrete PSO algorithm for solving job shop scheduling problem to minimize makespan
NASA Astrophysics Data System (ADS)
Rameshkumar, K.; Rajendran, C.
2018-02-01
In this work, a discrete version of PSO algorithm is proposed to minimize the makespan of a job-shop. A novel schedule builder has been utilized to generate active schedules. The discrete PSO is tested using well known benchmark problems available in the literature. The solution produced by the proposed algorithms is compared with best known solution published in the literature and also compared with hybrid particle swarm algorithm and variable neighborhood search PSO algorithm. The solution construction methodology adopted in this study is found to be effective in producing good quality solutions for the various benchmark job-shop scheduling problems.
A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models
Wong, Weng Kee; Chen, Ray-Bing; Huang, Chien-Chih; Wang, Weichung
2015-01-01
Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been shown to be successful in solving a wide variety of real and complicated optimization problems in engineering and computer science. This paper introduces a projection based PSO technique, named ProjPSO, to efficiently find different types of optimal designs, or nearly optimal designs, for mixture models with and without constraints on the components, and also for related models, like the log contrast models. We also compare the modified PSO performance with Fedorov's algorithm, a popular algorithm used to generate optimal designs, Cocktail algorithm, and the recent algorithm proposed by [1]. PMID:26091237
Application of Particle Swarm Optimization Algorithm in the Heating System Planning Problem
Ma, Rong-Jiang; Yu, Nan-Yang; Hu, Jun-Yi
2013-01-01
Based on the life cycle cost (LCC) approach, this paper presents an integral mathematical model and particle swarm optimization (PSO) algorithm for the heating system planning (HSP) problem. The proposed mathematical model minimizes the cost of heating system as the objective for a given life cycle time. For the particularity of HSP problem, the general particle swarm optimization algorithm was improved. An actual case study was calculated to check its feasibility in practical use. The results show that the improved particle swarm optimization (IPSO) algorithm can more preferably solve the HSP problem than PSO algorithm. Moreover, the results also present the potential to provide useful information when making decisions in the practical planning process. Therefore, it is believed that if this approach is applied correctly and in combination with other elements, it can become a powerful and effective optimization tool for HSP problem. PMID:23935429
A joint swarm intelligence algorithm for multi-user detection in MIMO-OFDM system
NASA Astrophysics Data System (ADS)
Hu, Fengye; Du, Dakun; Zhang, Peng; Wang, Zhijun
2014-11-01
In the multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) system, traditional multi-user detection (MUD) algorithms that usually used to suppress multiple access interference are difficult to balance system detection performance and the complexity of the algorithm. To solve this problem, this paper proposes a joint swarm intelligence algorithm called Ant Colony and Particle Swarm Optimisation (AC-PSO) by integrating particle swarm optimisation (PSO) and ant colony optimisation (ACO) algorithms. According to simulation results, it has been shown that, with low computational complexity, the MUD for the MIMO-OFDM system based on AC-PSO algorithm gains comparable MUD performance with maximum likelihood algorithm. Thus, the proposed AC-PSO algorithm provides a satisfactory trade-off between computational complexity and detection performance.
A hybrid artificial bee colony algorithm for numerical function optimization
NASA Astrophysics Data System (ADS)
Alqattan, Zakaria N.; Abdullah, Rosni
2015-02-01
Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).
Research on bulbous bow optimization based on the improved PSO algorithm
NASA Astrophysics Data System (ADS)
Zhang, Sheng-long; Zhang, Bao-ji; Tezdogan, Tahsin; Xu, Le-ping; Lai, Yu-yang
2017-08-01
In order to reduce the total resistance of a hull, an optimization framework for the bulbous bow optimization was presented. The total resistance in calm water was selected as the objective function, and the overset mesh technique was used for mesh generation. RANS method was used to calculate the total resistance of the hull. In order to improve the efficiency and smoothness of the geometric reconstruction, the arbitrary shape deformation (ASD) technique was introduced to change the shape of the bulbous bow. To improve the global search ability of the particle swarm optimization (PSO) algorithm, an improved particle swarm optimization (IPSO) algorithm was proposed to set up the optimization model. After a series of optimization analyses, the optimal hull form was found. It can be concluded that the simulation based design framework built in this paper is a promising method for bulbous bow optimization.
Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang
2015-01-01
To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.
Cakar, Tarik; Koker, Rasit
2015-01-01
A particle swarm optimization algorithm (PSO) has been used to solve the single machine total weighted tardiness problem (SMTWT) with unequal release date. To find the best solutions three different solution approaches have been used. To prepare subhybrid solution system, genetic algorithms (GA) and simulated annealing (SA) have been used. In the subhybrid system (GA and SA), GA obtains a solution in any stage, that solution is taken by SA and used as an initial solution. When SA finds better solution than this solution, it stops working and gives this solution to GA again. After GA finishes working the obtained solution is given to PSO. PSO searches for better solution than this solution. Later it again sends the obtained solution to GA. Three different solution systems worked together. Neurohybrid system uses PSO as the main optimizer and SA and GA have been used as local search tools. For each stage, local optimizers are used to perform exploitation to the best particle. In addition to local search tools, neurodominance rule (NDR) has been used to improve performance of last solution of hybrid-PSO system. NDR checked sequential jobs according to total weighted tardiness factor. All system is named as neurohybrid-PSO solution system.
Optimizing Multiple QoS for Workflow Applications using PSO and Min-Max Strategy
NASA Astrophysics Data System (ADS)
Umar Ambursa, Faruku; Latip, Rohaya; Abdullah, Azizol; Subramaniam, Shamala
2017-08-01
Workflow scheduling under multiple QoS constraints is a complicated optimization problem. Metaheuristic techniques are excellent approaches used in dealing with such problem. Many metaheuristic based algorithms have been proposed, that considers various economic and trustworthy QoS dimensions. However, most of these approaches lead to high violation of user-defined QoS requirements in tight situation. Recently, a new Particle Swarm Optimization (PSO)-based QoS-aware workflow scheduling strategy (LAPSO) is proposed to improve performance in such situations. LAPSO algorithm is designed based on synergy between a violation handling method and a hybrid of PSO and min-max heuristic. Simulation results showed a great potential of LAPSO algorithm to handling user requirements even in tight situations. In this paper, the performance of the algorithm is anlysed further. Specifically, the impact of the min-max strategy on the performance of the algorithm is revealed. This is achieved by removing the violation handling from the operation of the algorithm. The results show that LAPSO based on only the min-max method still outperforms the benchmark, even though the LAPSO with the violation handling performs more significantly better.
Rayleigh wave dispersion curve inversion by using particle swarm optimization and genetic algorithm
NASA Astrophysics Data System (ADS)
Buyuk, Ersin; Zor, Ekrem; Karaman, Abdullah
2017-04-01
Inversion of surface wave dispersion curves with its highly nonlinear nature has some difficulties using traditional linear inverse methods due to the need and strong dependence to the initial model, possibility of trapping in local minima and evaluation of partial derivatives. There are some modern global optimization methods to overcome of these difficulties in surface wave analysis such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). GA is based on biologic evolution consisting reproduction, crossover and mutation operations, while PSO algorithm developed after GA is inspired from the social behaviour of birds or fish of swarms. Utility of these methods require plausible convergence rate, acceptable relative error and optimum computation cost that are important for modelling studies. Even though PSO and GA processes are similar in appearence, the cross-over operation in GA is not used in PSO and the mutation operation is a stochastic process for changing the genes within chromosomes in GA. Unlike GA, the particles in PSO algorithm changes their position with logical velocities according to particle's own experience and swarm's experience. In this study, we applied PSO algorithm to estimate S wave velocities and thicknesses of the layered earth model by using Rayleigh wave dispersion curve and also compared these results with GA and we emphasize on the advantage of using PSO algorithm for geophysical modelling studies considering its rapid convergence, low misfit error and computation cost.
An Energy Integrated Dispatching Strategy of Multi- energy Based on Energy Internet
NASA Astrophysics Data System (ADS)
Jin, Weixia; Han, Jun
2018-01-01
Energy internet is a new way of energy use. Energy internet achieves energy efficiency and low cost by scheduling a variety of different forms of energy. Particle Swarm Optimization (PSO) is an advanced algorithm with few parameters, high computational precision and fast convergence speed. By improving the parameters ω, c1 and c2, PSO can improve the convergence speed and calculation accuracy. The objective of optimizing model is lowest cost of fuel, which can meet the load of electricity, heat and cold after all the renewable energy is received. Due to the different energy structure and price in different regions, the optimization strategy needs to be determined according to the algorithm and model.
2017-01-01
In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718
Wu, Jianfa; Peng, Dahao; Li, Zhuping; Zhao, Li; Ling, Huanzhang
2015-01-01
To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data. PMID:25807466
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2015-10-01
Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.
Using Animal Instincts to Design Efficient Biomedical Studies via Particle Swarm Optimization.
Qiu, Jiaheng; Chen, Ray-Bing; Wang, Weichung; Wong, Weng Kee
2014-10-01
Particle swarm optimization (PSO) is an increasingly popular metaheuristic algorithm for solving complex optimization problems. Its popularity is due to its repeated successes in finding an optimum or a near optimal solution for problems in many applied disciplines. The algorithm makes no assumption of the function to be optimized and for biomedical experiments like those presented here, PSO typically finds the optimal solutions in a few seconds of CPU time on a garden-variety laptop. We apply PSO to find various types of optimal designs for several problems in the biological sciences and compare PSO performance relative to the differential evolution algorithm, another popular metaheuristic algorithm in the engineering literature.
PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization
Chen, Shuangqing; Wei, Lixin; Guan, Bing
2018-01-01
Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036
Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization.
Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Wong, Wai Peng; Chen, Chun-Hung
2017-04-01
Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort.
Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization
Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Chen, Chun-Hung
2017-01-01
Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort. PMID:29170617
Control strategy of grid-connected photovoltaic generation system based on GMPPT method
NASA Astrophysics Data System (ADS)
Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen
2018-02-01
There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.
NASA Astrophysics Data System (ADS)
Guang, Chen; Qibo, Feng; Keqin, Ding; Zhan, Gao
2017-10-01
A subpixel displacement measurement method based on the combination of particle swarm optimization (PSO) and gradient algorithm (GA) was proposed for accuracy and speed optimization in GA, which is a subpixel displacement measurement method better applied in engineering practice. An initial integer-pixel value was obtained according to the global searching ability of PSO, and then gradient operators were adopted for a subpixel displacement search. A comparison was made between this method and GA by simulated speckle images and rigid-body displacement in metal specimens. The results showed that the computational accuracy of the combination of PSO and GA method reached 0.1 pixel in the simulated speckle images, or even 0.01 pixels in the metal specimen. Also, computational efficiency and the antinoise performance of the improved method were markedly enhanced.
NASA Astrophysics Data System (ADS)
Hayana Hasibuan, Eka; Mawengkang, Herman; Efendi, Syahril
2017-12-01
The use of Partical Swarm Optimization Algorithm in this research is to optimize the feature weights on the Voting Feature Interval 5 algorithm so that we can find the model of using PSO algorithm with VFI 5. Optimization of feature weight on Diabetes or Dyspesia data is considered important because it is very closely related to the livelihood of many people, so if there is any inaccuracy in determining the most dominant feature weight in the data will cause death. Increased accuracy by using PSO Algorithm ie fold 1 from 92.31% to 96.15% increase accuracy of 3.8%, accuracy of fold 2 on Algorithm VFI5 of 92.52% as well as generated on PSO Algorithm means accuracy fixed, then in fold 3 increase accuracy of 85.19% Increased to 96.29% Accuracy increased by 11%. The total accuracy of all three trials increased by 14%. In general the Partical Swarm Optimization algorithm has succeeded in increasing the accuracy to several fold, therefore it can be concluded the PSO algorithm is well used in optimizing the VFI5 Classification Algorithm.
Chen, Tinggui; Xiao, Renbin
2014-01-01
Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments.
Wang, Jie-Sheng; Han, Shuang
2015-01-01
For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, a feed-forward neural network (FNN) based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO) algorithm and gravitational search algorithm (GSA) is proposed. Although GSA has better optimization capability, it has slow convergence velocity and is easy to fall into local optimum. So in this paper, the velocity vector and position vector of GSA are adjusted by PSO algorithm in order to improve its convergence speed and prediction accuracy. Finally, the proposed hybrid algorithm is adopted to optimize the parameters of FNN soft-sensor model. Simulation results show that the model has better generalization and prediction accuracy for the concentrate grade and tailings recovery rate to meet the online soft-sensor requirements of the real-time control in the flotation process. PMID:26583034
Chen, Tinggui; Xiao, Renbin
2014-01-01
Artificial bee colony (ABC) algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA), artificial colony optimization (ACO), and particle swarm optimization (PSO). However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments. PMID:24772023
A new inertia weight control strategy for particle swarm optimization
NASA Astrophysics Data System (ADS)
Zhu, Xianming; Wang, Hongbo
2018-04-01
Particle Swarm Optimization is a member of swarm intelligence algorithms, which is inspired by the behavior of bird flocks. The inertia weight, one of the most important parameters of PSO, is crucial for PSO, for it balances the performance of exploration and exploitation of the algorithm. This paper proposes a new inertia weight control strategy and PSO with this new strategy is tested by four benchmark functions. The results shows that the new strategy provides the PSO with better performance.
Wang, Jie-sheng; Li, Shu-xia; Gao, Jie
2014-01-01
For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.
NASA Astrophysics Data System (ADS)
Wang, Geng; Zhou, Kexin; Zhang, Yeming
2018-04-01
The widely used Bouc-Wen hysteresis model can be utilized to accurately simulate the voltage-displacement curves of piezoelectric actuators. In order to identify the unknown parameters of the Bouc-Wen model, an improved artificial bee colony (IABC) algorithm is proposed in this paper. A guiding strategy for searching the current optimal position of the food source is proposed in the method, which can help balance the local search ability and global exploitation capability. And the formula for the scout bees to search for the food source is modified to increase the convergence speed. Some experiments were conducted to verify the effectiveness of the IABC algorithm. The results show that the identified hysteresis model agreed well with the actual actuator response. Moreover, the identification results were compared with the standard particle swarm optimization (PSO) method, and it can be seen that the search performance in convergence rate of the IABC algorithm is better than that of the standard PSO method.
Si, Lei; Wang, Zhongbin; Yang, Yinwei
2014-01-01
In order to efficiently and accurately adjust the shearer traction speed, a novel approach based on Takagi-Sugeno (T-S) cloud inference network (CIN) and improved particle swarm optimization (IPSO) is proposed. The T-S CIN is built through the combination of cloud model and T-S fuzzy neural network. Moreover, the IPSO algorithm employs parameter automation adjustment strategy and velocity resetting to significantly improve the performance of basic PSO algorithm in global search and fine-tuning of the solutions, and the flowchart of proposed approach is designed. Furthermore, some simulation examples are carried out and comparison results indicate that the proposed method is feasible, efficient, and is outperforming others. Finally, an industrial application example of coal mining face is demonstrated to specify the effect of proposed system. PMID:25506358
Darzi, Soodabeh; Kiong, Tiong Sieh; Islam, Mohammad Tariqul; Ismail, Mahamod; Kibria, Salehin; Salem, Balasem
2014-01-01
Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program.
Sieh Kiong, Tiong; Tariqul Islam, Mohammad; Ismail, Mahamod; Salem, Balasem
2014-01-01
Linear constraint minimum variance (LCMV) is one of the adaptive beamforming techniques that is commonly applied to cancel interfering signals and steer or produce a strong beam to the desired signal through its computed weight vectors. However, weights computed by LCMV usually are not able to form the radiation beam towards the target user precisely and not good enough to reduce the interference by placing null at the interference sources. It is difficult to improve and optimize the LCMV beamforming technique through conventional empirical approach. To provide a solution to this problem, artificial intelligence (AI) technique is explored in order to enhance the LCMV beamforming ability. In this paper, particle swarm optimization (PSO), dynamic mutated artificial immune system (DM-AIS), and gravitational search algorithm (GSA) are incorporated into the existing LCMV technique in order to improve the weights of LCMV. The simulation result demonstrates that received signal to interference and noise ratio (SINR) of target user can be significantly improved by the integration of PSO, DM-AIS, and GSA in LCMV through the suppression of interference in undesired direction. Furthermore, the proposed GSA can be applied as a more effective technique in LCMV beamforming optimization as compared to the PSO technique. The algorithms were implemented using Matlab program. PMID:25147859
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2016-01-01
Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.
A Novel Particle Swarm Optimization Approach for Grid Job Scheduling
NASA Astrophysics Data System (ADS)
Izakian, Hesam; Tork Ladani, Behrouz; Zamanifar, Kamran; Abraham, Ajith
This paper represents a Particle Swarm Optimization (PSO) algorithm, for grid job scheduling. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. In this paper we used a PSO approach for grid job scheduling. The scheduler aims at minimizing makespan and flowtime simultaneously. Experimental studies show that the proposed novel approach is more efficient than the PSO approach reported in the literature.
Application of Improved APO Algorithm in Vulnerability Assessment and Reconstruction of Microgrid
NASA Astrophysics Data System (ADS)
Xie, Jili; Ma, Hailing
2018-01-01
Artificial Physics Optimization (APO) has good global search ability and can avoid the premature convergence phenomenon in PSO algorithm, which has good stability of fast convergence and robustness. On the basis of APO of the vector model, a reactive power optimization algorithm based on improved APO algorithm is proposed for the static structure and dynamic operation characteristics of microgrid. The simulation test is carried out through the IEEE 30-bus system and the result shows that the algorithm has better efficiency and accuracy compared with other optimization algorithms.
Composite Particle Swarm Optimizer With Historical Memory for Function Optimization.
Li, Jie; Zhang, JunQi; Jiang, ChangJun; Zhou, MengChu
2015-10-01
Particle swarm optimization (PSO) algorithm is a population-based stochastic optimization technique. It is characterized by the collaborative search in which each particle is attracted toward the global best position (gbest) in the swarm and its own best position (pbest). However, all of particles' historical promising pbests in PSO are lost except their current pbests. In order to solve this problem, this paper proposes a novel composite PSO algorithm, called historical memory-based PSO (HMPSO), which uses an estimation of distribution algorithm to estimate and preserve the distribution information of particles' historical promising pbests. Each particle has three candidate positions, which are generated from the historical memory, particles' current pbests, and the swarm's gbest. Then the best candidate position is adopted. Experiments on 28 CEC2013 benchmark functions demonstrate the superiority of HMPSO over other algorithms.
Performance of Multi-chaotic PSO on a shifted benchmark functions set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan
2015-03-10
In this paper the performance of Multi-chaotic PSO algorithm is investigated using two shifted benchmark functions. The purpose of shifted benchmark functions is to simulate the time-variant real-world problems. The results of chaotic PSO are compared with canonical version of the algorithm. It is concluded that using the multi-chaotic approach can lead to better results in optimization of shifted functions.
PSO-tuned PID controller for coupled tank system via priority-based fitness scheme
NASA Astrophysics Data System (ADS)
Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal
2015-05-01
The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.
NASA Astrophysics Data System (ADS)
Davis, Jeremy E.; Bednar, Amy E.; Goodin, Christopher T.; Durst, Phillip J.; Anderson, Derek T.; Bethel, Cindy L.
2017-05-01
Particle swarm optimization (PSO) and genetic algorithms (GAs) are two optimization techniques from the field of computational intelligence (CI) for search problems where a direct solution can not easily be obtained. One such problem is finding an optimal set of parameters for the maximally stable extremal region (MSER) algorithm to detect areas of interest in imagery. Specifically, this paper describes the design of a GA and PSO for optimizing MSER parameters to detect stop signs in imagery produced via simulation for use in an autonomous vehicle navigation system. Several additions to the GA and PSO are required to successfully detect stop signs in simulated images. These additions are a primary focus of this paper and include: the identification of an appropriate fitness function, the creation of a variable mutation operator for the GA, an anytime algorithm modification to allow the GA to compute a solution quickly, the addition of an exponential velocity decay function to the PSO, the addition of an "execution best" omnipresent particle to the PSO, and the addition of an attractive force component to the PSO velocity update equation. Experimentation was performed with the GA using various combinations of selection, crossover, and mutation operators and experimentation was also performed with the PSO using various combinations of neighborhood topologies, swarm sizes, cognitive influence scalars, and social influence scalars. The results of both the GA and PSO optimized parameter sets are presented. This paper details the benefits and drawbacks of each algorithm in terms of detection accuracy, execution speed, and additions required to generate successful problem specific parameter sets.
Hybrid algorithms for fuzzy reverse supply chain network design.
Che, Z H; Chiang, Tzu-An; Kuo, Y C; Cui, Zhihua
2014-01-01
In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods.
Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design
Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.
2014-01-01
In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057
An effective PSO-based memetic algorithm for flow shop scheduling.
Liu, Bo; Wang, Ling; Jin, Yi-Hui
2007-02-01
This paper proposes an effective particle swarm optimization (PSO)-based memetic algorithm (MA) for the permutation flow shop scheduling problem (PFSSP) with the objective to minimize the maximum completion time, which is a typical non-deterministic polynomial-time (NP) hard combinatorial optimization problem. In the proposed PSO-based MA (PSOMA), both PSO-based searching operators and some special local searching operators are designed to balance the exploration and exploitation abilities. In particular, the PSOMA applies the evolutionary searching mechanism of PSO, which is characterized by individual improvement, population cooperation, and competition to effectively perform exploration. On the other hand, the PSOMA utilizes several adaptive local searches to perform exploitation. First, to make PSO suitable for solving PFSSP, a ranked-order value rule based on random key representation is presented to convert the continuous position values of particles to job permutations. Second, to generate an initial swarm with certain quality and diversity, the famous Nawaz-Enscore-Ham (NEH) heuristic is incorporated into the initialization of population. Third, to balance the exploration and exploitation abilities, after the standard PSO-based searching operation, a new local search technique named NEH_1 insertion is probabilistically applied to some good particles selected by using a roulette wheel mechanism with a specified probability. Fourth, to enrich the searching behaviors and to avoid premature convergence, a simulated annealing (SA)-based local search with multiple different neighborhoods is designed and incorporated into the PSOMA. Meanwhile, an effective adaptive meta-Lamarckian learning strategy is employed to decide which neighborhood to be used in SA-based local search. Finally, to further enhance the exploitation ability, a pairwise-based local search is applied after the SA-based search. Simulation results based on benchmarks demonstrate the effectiveness of the PSOMA. Additionally, the effects of some parameters on optimization performances are also discussed.
NASA Astrophysics Data System (ADS)
Guo, Weian; Li, Wuzhao; Zhang, Qun; Wang, Lei; Wu, Qidi; Ren, Hongliang
2014-11-01
In evolutionary algorithms, elites are crucial to maintain good features in solutions. However, too many elites can make the evolutionary process stagnate and cannot enhance the performance. This article employs particle swarm optimization (PSO) and biogeography-based optimization (BBO) to propose a hybrid algorithm termed biogeography-based particle swarm optimization (BPSO) which could make a large number of elites effective in searching optima. In this algorithm, the whole population is split into several subgroups; BBO is employed to search within each subgroup and PSO for the global search. Since not all the population is used in PSO, this structure overcomes the premature convergence in the original PSO. Time complexity analysis shows that the novel algorithm does not increase the time consumption. Fourteen numerical benchmarks and four engineering problems with constraints are used to test the BPSO. To better deal with constraints, a fuzzy strategy for the number of elites is investigated. The simulation results validate the feasibility and effectiveness of the proposed algorithm.
A Hybrid Approach for CpG Island Detection in the Human Genome.
Yang, Cheng-Hong; Lin, Yu-Da; Chiang, Yi-Cheng; Chuang, Li-Yeh
2016-01-01
CpG islands have been demonstrated to influence local chromatin structures and simplify the regulation of gene activity. However, the accurate and rapid determination of CpG islands for whole DNA sequences remains experimentally and computationally challenging. A novel procedure is proposed to detect CpG islands by combining clustering technology with the sliding-window method (PSO-based). Clustering technology is used to detect the locations of all possible CpG islands and process the data, thus effectively obviating the need for the extensive and unnecessary processing of DNA fragments, and thus improving the efficiency of sliding-window based particle swarm optimization (PSO) search. This proposed approach, named ClusterPSO, provides versatile and highly-sensitive detection of CpG islands in the human genome. In addition, the detection efficiency of ClusterPSO is compared with eight CpG island detection methods in the human genome. Comparison of the detection efficiency for the CpG islands in human genome, including sensitivity, specificity, accuracy, performance coefficient (PC), and correlation coefficient (CC), ClusterPSO revealed superior detection ability among all of the test methods. Moreover, the combination of clustering technology and PSO method can successfully overcome their respective drawbacks while maintaining their advantages. Thus, clustering technology could be hybridized with the optimization algorithm method to optimize CpG island detection. The prediction accuracy of ClusterPSO was quite high, indicating the combination of CpGcluster and PSO has several advantages over CpGcluster and PSO alone. In addition, ClusterPSO significantly reduced implementation time.
N, Sadhasivam; R, Balamurugan; M, Pandi
2018-01-27
Objective: Epigenetic modifications involving DNA methylation and histone statud are responsible for the stable maintenance of cellular phenotypes. Abnormalities may be causally involved in cancer development and therefore could have diagnostic potential. The field of epigenomics refers to all epigenetic modifications implicated in control of gene expression, with a focus on better understanding of human biology in both normal and pathological states. Epigenomics scientific workflow is essentially a data processing pipeline to automate the execution of various genome sequencing operations or tasks. Cloud platform is a popular computing platform for deploying large scale epigenomics scientific workflow. Its dynamic environment provides various resources to scientific users on a pay-per-use billing model. Scheduling epigenomics scientific workflow tasks is a complicated problem in cloud platform. We here focused on application of an improved particle swam optimization (IPSO) algorithm for this purpose. Methods: The IPSO algorithm was applied to find suitable resources and allocate epigenomics tasks so that the total cost was minimized for detection of epigenetic abnormalities of potential application for cancer diagnosis. Result: The results showed that IPSO based task to resource mapping reduced total cost by 6.83 percent as compared to the traditional PSO algorithm. Conclusion: The results for various cancer diagnosis tasks showed that IPSO based task to resource mapping can achieve better costs when compared to PSO based mapping for epigenomics scientific application workflow. Creative Commons Attribution License
Enhancement web proxy cache performance using Wrapper Feature Selection methods with NB and J48
NASA Astrophysics Data System (ADS)
Mahmoud Al-Qudah, Dua'a.; Funke Olanrewaju, Rashidah; Wong Azman, Amelia
2017-11-01
Web proxy cache technique reduces response time by storing a copy of pages between client and server sides. If requested pages are cached in the proxy, there is no need to access the server. Due to the limited size and excessive cost of cache compared to the other storages, cache replacement algorithm is used to determine evict page when the cache is full. On the other hand, the conventional algorithms for replacement such as Least Recently Use (LRU), First in First Out (FIFO), Least Frequently Use (LFU), Randomized Policy etc. may discard important pages just before use. Furthermore, using conventional algorithm cannot be well optimized since it requires some decision to intelligently evict a page before replacement. Hence, most researchers propose an integration among intelligent classifiers and replacement algorithm to improves replacement algorithms performance. This research proposes using automated wrapper feature selection methods to choose the best subset of features that are relevant and influence classifiers prediction accuracy. The result present that using wrapper feature selection methods namely: Best First (BFS), Incremental Wrapper subset selection(IWSS)embedded NB and particle swarm optimization(PSO)reduce number of features and have a good impact on reducing computation time. Using PSO enhance NB classifier accuracy by 1.1%, 0.43% and 0.22% over using NB with all features, using BFS and using IWSS embedded NB respectively. PSO rises J48 accuracy by 0.03%, 1.91 and 0.04% over using J48 classifier with all features, using IWSS-embedded NB and using BFS respectively. While using IWSS embedded NB fastest NB and J48 classifiers much more than BFS and PSO. However, it reduces computation time of NB by 0.1383 and reduce computation time of J48 by 2.998.
NASA Astrophysics Data System (ADS)
Jude Hemanth, Duraisamy; Umamaheswari, Subramaniyan; Popescu, Daniela Elena; Naaji, Antoanela
2016-01-01
Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT) and Finite Ridgelet Transform (FRIT) are used in combination with GA and PSO to improve the efficiency of the image steganography system.
NASA Astrophysics Data System (ADS)
Ogren, Ryan M.
For this work, Hybrid PSO-GA and Artificial Bee Colony Optimization (ABC) algorithms are applied to the optimization of experimental diesel engine performance, to meet Environmental Protection Agency, off-road, diesel engine standards. This work is the first to apply ABC optimization to experimental engine testing. All trials were conducted at partial load on a four-cylinder, turbocharged, John Deere engine using neat-Biodiesel for PSO-GA and regular pump diesel for ABC. Key variables were altered throughout the experiments, including, fuel pressure, intake gas temperature, exhaust gas recirculation flow, fuel injection quantity for two injections, pilot injection timing and main injection timing. Both forms of optimization proved effective for optimizing engine operation. The PSO-GA hybrid was able to find a superior solution to that of ABC within fewer engine runs. Both solutions call for high exhaust gas recirculation to reduce oxide of nitrogen (NOx) emissions while also moving pilot and main fuel injections to near top dead center for improved tradeoffs between NOx and particulate matter.
Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems.
Huang, Shuqiang; Tao, Ming
2017-01-22
Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K -center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms.
Prediction of Tibial Rotation Pathologies Using Particle Swarm Optimization and K-Means Algorithms.
Sari, Murat; Tuna, Can; Akogul, Serkan
2018-03-28
The aim of this article is to investigate pathological subjects from a population through different physical factors. To achieve this, particle swarm optimization (PSO) and K-means (KM) clustering algorithms have been combined (PSO-KM). Datasets provided by the literature were divided into three clusters based on age and weight parameters and each one of right tibial external rotation (RTER), right tibial internal rotation (RTIR), left tibial external rotation (LTER), and left tibial internal rotation (LTIR) values were divided into three types as Type 1, Type 2 and Type 3 (Type 2 is non-pathological (normal) and the other two types are pathological (abnormal)), respectively. The rotation values of every subject in any cluster were noted. Then the algorithm was run and the produced values were also considered. The values of the produced algorithm, the PSO-KM, have been compared with the real values. The hybrid PSO-KM algorithm has been very successful on the optimal clustering of the tibial rotation types through the physical criteria. In this investigation, Type 2 (pathological subjects) is of especially high predictability and the PSO-KM algorithm has been very successful as an operation system for clustering and optimizing the tibial motion data assessments. These research findings are expected to be very useful for health providers, such as physiotherapists, orthopedists, and so on, in which this consequence may help clinicians to appropriately designing proper treatment schedules for patients.
Fault Detection of Bearing Systems through EEMD and Optimization Algorithm
Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan
2017-01-01
This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772
NASA Astrophysics Data System (ADS)
Yan, Liang; Zhang, Lu; Zhu, Bo; Zhang, Jingying; Jiao, Zongxia
2017-10-01
Permanent magnet spherical actuator (PMSA) is a multi-variable featured and inter-axis coupled nonlinear system, which unavoidably compromises its motion control implementation. Uncertainties such as external load and friction torque of ball bearing and manufacturing errors also influence motion performance significantly. Therefore, the objective of this paper is to propose a controller based on a single neural adaptive (SNA) algorithm and a neural network (NN) identifier optimized with a particle swarm optimization (PSO) algorithm to improve the motion stability of PMSA with three-dimensional magnet arrays. The dynamic model and computed torque model are formulated for the spherical actuator, and a dynamic decoupling control algorithm is developed. By utilizing the global-optimization property of the PSO algorithm, the NN identifier is trained to avoid locally optimal solution and achieve high-precision compensations to uncertainties. The employment of the SNA controller helps to reduce the effect of compensation errors and convert the system to a stable one, even if there is difference between the compensations and uncertainties due to external disturbances. A simulation model is established, and experiments are conducted on the research prototype to validate the proposed control algorithm. The amplitude of the parameter perturbation is set to 5%, 10%, and 15%, respectively. The strong robustness of the proposed hybrid algorithm is validated by the abundant simulation data. It shows that the proposed algorithm can effectively compensate the influence of uncertainties and eliminate the effect of inter-axis couplings of the spherical actuator.
A novel swarm intelligence algorithm for finding DNA motifs.
Lei, Chengwei; Ruan, Jianhua
2009-01-01
Discovering DNA motifs from co-expressed or co-regulated genes is an important step towards deciphering complex gene regulatory networks and understanding gene functions. Despite significant improvement in the last decade, it still remains one of the most challenging problems in computational molecular biology. In this work, we propose a novel motif finding algorithm that finds consensus patterns using a population-based stochastic optimisation technique called Particle Swarm Optimisation (PSO), which has been shown to be effective in optimising difficult multidimensional problems in continuous domains. We propose to use a word dissimilarity graph to remap the neighborhood structure of the solution space of DNA motifs, and propose a modification of the naive PSO algorithm to accommodate discrete variables. In order to improve efficiency, we also propose several strategies for escaping from local optima and for automatically determining the termination criteria. Experimental results on simulated challenge problems show that our method is both more efficient and more accurate than several existing algorithms. Applications to several sets of real promoter sequences also show that our approach is able to detect known transcription factor binding sites, and outperforms two of the most popular existing algorithms.
Wang, Xue; Wang, Sheng; Ma, Jun-Jie
2007-01-01
The effectiveness of wireless sensor networks (WSNs) depends on the coverage and target detection probability provided by dynamic deployment, which is usually supported by the virtual force (VF) algorithm. However, in the VF algorithm, the virtual force exerted by stationary sensor nodes will hinder the movement of mobile sensor nodes. Particle swarm optimization (PSO) is introduced as another dynamic deployment algorithm, but in this case the computation time required is the big bottleneck. This paper proposes a dynamic deployment algorithm which is named “virtual force directed co-evolutionary particle swarm optimization” (VFCPSO), since this algorithm combines the co-evolutionary particle swarm optimization (CPSO) with the VF algorithm, whereby the CPSO uses multiple swarms to optimize different components of the solution vectors for dynamic deployment cooperatively and the velocity of each particle is updated according to not only the historical local and global optimal solutions, but also the virtual forces of sensor nodes. Simulation results demonstrate that the proposed VFCPSO is competent for dynamic deployment in WSNs and has better performance with respect to computation time and effectiveness than the VF, PSO and VFPSO algorithms.
A new effective operator for the hybrid algorithm for solving global optimisation problems
NASA Astrophysics Data System (ADS)
Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac
2018-04-01
Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.
Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO
Zhu, Zhichuan; Zhao, Qingdong; Liu, Liwei; Zhang, Lijuan
2018-01-01
Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified. PMID:29853983
Pulmonary Nodule Recognition Based on Multiple Kernel Learning Support Vector Machine-PSO.
Li, Yang; Zhu, Zhichuan; Hou, Alin; Zhao, Qingdong; Liu, Liwei; Zhang, Lijuan
2018-01-01
Pulmonary nodule recognition is the core module of lung CAD. The Support Vector Machine (SVM) algorithm has been widely used in pulmonary nodule recognition, and the algorithm of Multiple Kernel Learning Support Vector Machine (MKL-SVM) has achieved good results therein. Based on grid search, however, the MKL-SVM algorithm needs long optimization time in course of parameter optimization; also its identification accuracy depends on the fineness of grid. In the paper, swarm intelligence is introduced and the Particle Swarm Optimization (PSO) is combined with MKL-SVM algorithm to be MKL-SVM-PSO algorithm so as to realize global optimization of parameters rapidly. In order to obtain the global optimal solution, different inertia weights such as constant inertia weight, linear inertia weight, and nonlinear inertia weight are applied to pulmonary nodules recognition. The experimental results show that the model training time of the proposed MKL-SVM-PSO algorithm is only 1/7 of the training time of the MKL-SVM grid search algorithm, achieving better recognition effect. Moreover, Euclidean norm of normalized error vector is proposed to measure the proximity between the average fitness curve and the optimal fitness curve after convergence. Through statistical analysis of the average of 20 times operation results with different inertial weights, it can be seen that the dynamic inertial weight is superior to the constant inertia weight in the MKL-SVM-PSO algorithm. In the dynamic inertial weight algorithm, the parameter optimization time of nonlinear inertia weight is shorter; the average fitness value after convergence is much closer to the optimal fitness value, which is better than the linear inertial weight. Besides, a better nonlinear inertial weight is verified.
Canonical PSO Based K-Means Clustering Approach for Real Datasets.
Dey, Lopamudra; Chakraborty, Sanjay
2014-01-01
"Clustering" the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms.
Canonical PSO Based K-Means Clustering Approach for Real Datasets
Dey, Lopamudra; Chakraborty, Sanjay
2014-01-01
“Clustering” the significance and application of this technique is spread over various fields. Clustering is an unsupervised process in data mining, that is why the proper evaluation of the results and measuring the compactness and separability of the clusters are important issues. The procedure of evaluating the results of a clustering algorithm is known as cluster validity measure. Different types of indexes are used to solve different types of problems and indices selection depends on the kind of available data. This paper first proposes Canonical PSO based K-means clustering algorithm and also analyses some important clustering indices (intercluster, intracluster) and then evaluates the effects of those indices on real-time air pollution database, wholesale customer, wine, and vehicle datasets using typical K-means, Canonical PSO based K-means, simple PSO based K-means, DBSCAN, and Hierarchical clustering algorithms. This paper also describes the nature of the clusters and finally compares the performances of these clustering algorithms according to the validity assessment. It also defines which algorithm will be more desirable among all these algorithms to make proper compact clusters on this particular real life datasets. It actually deals with the behaviour of these clustering algorithms with respect to validation indexes and represents their results of evaluation in terms of mathematical and graphical forms. PMID:27355083
Competitive Swarm Optimizer Based Gateway Deployment Algorithm in Cyber-Physical Systems
Huang, Shuqiang; Tao, Ming
2017-01-01
Wireless sensor network topology optimization is a highly important issue, and topology control through node selection can improve the efficiency of data forwarding, while saving energy and prolonging lifetime of the network. To address the problem of connecting a wireless sensor network to the Internet in cyber-physical systems, here we propose a geometric gateway deployment based on a competitive swarm optimizer algorithm. The particle swarm optimization (PSO) algorithm has a continuous search feature in the solution space, which makes it suitable for finding the geometric center of gateway deployment; however, its search mechanism is limited to the individual optimum (pbest) and the population optimum (gbest); thus, it easily falls into local optima. In order to improve the particle search mechanism and enhance the search efficiency of the algorithm, we introduce a new competitive swarm optimizer (CSO) algorithm. The CSO search algorithm is based on an inter-particle competition mechanism and can effectively avoid trapping of the population falling into a local optimum. With the improvement of an adaptive opposition-based search and its ability to dynamically parameter adjustments, this algorithm can maintain the diversity of the entire swarm to solve geometric K-center gateway deployment problems. The simulation results show that this CSO algorithm has a good global explorative ability as well as convergence speed and can improve the network quality of service (QoS) level of cyber-physical systems by obtaining a minimum network coverage radius. We also find that the CSO algorithm is more stable, robust and effective in solving the problem of geometric gateway deployment as compared to the PSO or Kmedoids algorithms. PMID:28117735
NASA Astrophysics Data System (ADS)
Shan, Bonan; Wang, Jiang; Deng, Bin; Wei, Xile; Yu, Haitao; Zhang, Zhen; Li, Huiyan
2016-07-01
This paper proposes an epilepsy detection and closed-loop control strategy based on Particle Swarm Optimization (PSO) algorithm. The proposed strategy can effectively suppress the epileptic spikes in neural mass models, where the epileptiform spikes are recognized as the biomarkers of transitions from the normal (interictal) activity to the seizure (ictal) activity. In addition, the PSO algorithm shows capabilities of accurate estimation for the time evolution of key model parameters and practical detection for all the epileptic spikes. The estimation effects of unmeasurable parameters are improved significantly compared with unscented Kalman filter. When the estimated excitatory-inhibitory ratio exceeds a threshold value, the epileptiform spikes can be inhibited immediately by adopting the proportion-integration controller. Besides, numerical simulations are carried out to illustrate the effectiveness of the proposed method as well as the potential value for the model-based early seizure detection and closed-loop control treatment design.
NASA Astrophysics Data System (ADS)
Zheng, Qin; Yang, Zubin; Sha, Jianxin; Yan, Jun
2017-02-01
In predictability problem research, the conditional nonlinear optimal perturbation (CNOP) describes the initial perturbation that satisfies a certain constraint condition and causes the largest prediction error at the prediction time. The CNOP has been successfully applied in estimation of the lower bound of maximum predictable time (LBMPT). Generally, CNOPs are calculated by a gradient descent algorithm based on the adjoint model, which is called ADJ-CNOP. This study, through the two-dimensional Ikeda model, investigates the impacts of the nonlinearity on ADJ-CNOP and the corresponding precision problems when using ADJ-CNOP to estimate the LBMPT. Our conclusions are that (1) when the initial perturbation is large or the prediction time is long, the strong nonlinearity of the dynamical model in the prediction variable will lead to failure of the ADJ-CNOP method, and (2) when the objective function has multiple extreme values, ADJ-CNOP has a large probability of producing local CNOPs, hence making a false estimation of the LBMPT. Furthermore, the particle swarm optimization (PSO) algorithm, one kind of intelligent algorithm, is introduced to solve this problem. The method using PSO to compute CNOP is called PSO-CNOP. The results of numerical experiments show that even with a large initial perturbation and long prediction time, or when the objective function has multiple extreme values, PSO-CNOP can always obtain the global CNOP. Since the PSO algorithm is a heuristic search algorithm based on the population, it can overcome the impact of nonlinearity and the disturbance from multiple extremes of the objective function. In addition, to check the estimation accuracy of the LBMPT presented by PSO-CNOP and ADJ-CNOP, we partition the constraint domain of initial perturbations into sufficiently fine grid meshes and take the LBMPT obtained by the filtering method as a benchmark. The result shows that the estimation presented by PSO-CNOP is closer to the true value than the one by ADJ-CNOP with the forecast time increasing.
Dobson-Belaire, Wendy; Goodfield, Jason; Borrelli, Richard; Liu, Fei Fei; Khan, Zeba M
2018-01-01
Using diagnosis code-based algorithms is the primary method of identifying patient cohorts for retrospective studies; nevertheless, many databases lack reliable diagnosis code information. To develop precise algorithms based on medication claims/prescriber visits (MCs/PVs) to identify psoriasis (PsO) patients and psoriatic patients with arthritic conditions (PsO-AC), a proxy for psoriatic arthritis, in Canadian databases lacking diagnosis codes. Algorithms were developed using medications with narrow indication profiles in combination with prescriber specialty to define PsO and PsO-AC. For a 3-year study period from July 1, 2009, algorithms were validated using the PharMetrics Plus database, which contains both adjudicated medication claims and diagnosis codes. Positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of the developed algorithms were assessed using diagnosis code as the reference standard. Chosen algorithms were then applied to Canadian drug databases to profile the algorithm-identified PsO and PsO-AC cohorts. In the selected database, 183,328 patients were identified for validation. The highest PPVs for PsO (85%) and PsO-AC (65%) occurred when a predictive algorithm of two or more MCs/PVs was compared with the reference standard of one or more diagnosis codes. NPV and specificity were high (99%-100%), whereas sensitivity was low (≤30%). Reducing the number of MCs/PVs or increasing diagnosis claims decreased the algorithms' PPVs. We have developed an MC/PV-based algorithm to identify PsO patients with a high degree of accuracy, but accuracy for PsO-AC requires further investigation. Such methods allow researchers to conduct retrospective studies in databases in which diagnosis codes are absent. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hadia, Sarman K.; Thakker, R. A.; Bhatt, Kirit R.
2016-05-01
The study proposes an application of evolutionary algorithms, specifically an artificial bee colony (ABC), variant ABC and particle swarm optimisation (PSO), to extract the parameters of metal oxide semiconductor field effect transistor (MOSFET) model. These algorithms are applied for the MOSFET parameter extraction problem using a Pennsylvania surface potential model. MOSFET parameter extraction procedures involve reducing the error between measured and modelled data. This study shows that ABC algorithm optimises the parameter values based on intelligent activities of honey bee swarms. Some modifications have also been applied to the basic ABC algorithm. Particle swarm optimisation is a population-based stochastic optimisation method that is based on bird flocking activities. The performances of these algorithms are compared with respect to the quality of the solutions. The simulation results of this study show that the PSO algorithm performs better than the variant ABC and basic ABC algorithm for the parameter extraction of the MOSFET model; also the implementation of the ABC algorithm is shown to be simpler than that of the PSO algorithm.
A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.
Sun, Tao; Xu, Ming-Hai
2017-01-01
Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.
Liu, Xue-song; Sun, Fen-fang; Jin, Ye; Wu, Yong-jiang; Gu, Zhi-xin; Zhu, Li; Yan, Dong-lan
2015-12-01
A novel method was developed for the rapid determination of multi-indicators in corni fructus by means of near infrared (NIR) spectroscopy. Particle swarm optimization (PSO) based least squares support vector machine was investigated to increase the levels of quality control. The calibration models of moisture, extractum, morroniside and loganin were established using the PSO-LS-SVM algorithm. The performance of PSO-LS-SVM models was compared with partial least squares regression (PLSR) and back propagation artificial neural network (BP-ANN). The calibration and validation results of PSO-LS-SVM were superior to both PLS and BP-ANN. For PSO-LS-SVM models, the correlation coefficients (r) of calibrations were all above 0.942. The optimal prediction results were also achieved by PSO-LS-SVM models with the RMSEP (root mean square error of prediction) and RSEP (relative standard errors of prediction) less than 1.176 and 15.5% respectively. The results suggest that PSO-LS-SVM algorithm has a good model performance and high prediction accuracy. NIR has a potential value for rapid determination of multi-indicators in Corni Fructus.
Wang, Handing; Jin, Yaochu; Doherty, John
2017-09-01
Function evaluations (FEs) of many real-world optimization problems are time or resource consuming, posing a serious challenge to the application of evolutionary algorithms (EAs) to solve these problems. To address this challenge, the research on surrogate-assisted EAs has attracted increasing attention from both academia and industry over the past decades. However, most existing surrogate-assisted EAs (SAEAs) either still require thousands of expensive FEs to obtain acceptable solutions, or are only applied to very low-dimensional problems. In this paper, a novel surrogate-assisted particle swarm optimization (PSO) inspired from committee-based active learning (CAL) is proposed. In the proposed algorithm, a global model management strategy inspired from CAL is developed, which searches for the best and most uncertain solutions according to a surrogate ensemble using a PSO algorithm and evaluates these solutions using the expensive objective function. In addition, a local surrogate model is built around the best solution obtained so far. Then, a PSO algorithm searches on the local surrogate to find its optimum and evaluates it. The evolutionary search using the global model management strategy switches to the local search once no further improvement can be observed, and vice versa. This iterative search process continues until the computational budget is exhausted. Experimental results comparing the proposed algorithm with a few state-of-the-art SAEAs on both benchmark problems up to 30 decision variables as well as an airfoil design problem demonstrate that the proposed algorithm is able to achieve better or competitive solutions with a limited budget of hundreds of exact FEs.
NASA Astrophysics Data System (ADS)
Handayani, D.; Nuraini, N.; Tse, O.; Saragih, R.; Naiborhu, J.
2016-04-01
PSO is a computational optimization method motivated by the social behavior of organisms like bird flocking, fish schooling and human social relations. PSO is one of the most important swarm intelligence algorithms. In this study, we analyze the convergence of PSO when it is applied to with-in host dengue infection treatment model simulation in our early research. We used PSO method to construct the initial adjoin equation and to solve a control problem. Its properties of control input on the continuity of objective function and ability of adapting to the dynamic environment made us have to analyze the convergence of PSO. With the convergence analysis of PSO we will have some parameters that ensure the convergence result of numerical simulations on this model using PSO.
Particle Swarm Optimization for Programming Deep Brain Stimulation Arrays
Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D.
2017-01-01
Objective Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Approach Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. Main Results The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (≤9.2%) and ROA (≤1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n=3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations showed discrepancies of <1% between approaches. Significance The PSO algorithm provides a computationally efficient way to program DBS systems especially those with higher electrode counts. PMID:28068291
Particle swarm optimization for programming deep brain stimulation arrays
NASA Astrophysics Data System (ADS)
Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D.
2017-02-01
Objective. Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Approach. Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. Main results. The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (<1% median discrepancy in axon activation). The algorithm was able to accommodate for (1) lead displacement (1 mm) with relatively small ROI (⩽9.2%) and ROA (⩽1%) activation changes, irrespective of shift direction; (2) reduction in maximum per-electrode current (by 50% and 80%) with ROI activation decreasing by 5.6% and 16%, respectively; and (3) disabling electrodes (n = 3 and 12) with ROI activation reduction by 1.8% and 14%, respectively. Additionally, comparison between PSO predictions and multi-compartment axon model simulations showed discrepancies of <1% between approaches. Significance. The PSO algorithm provides a computationally efficient way to program DBS systems especially those with higher electrode counts.
Mousavi, Maryam; Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah
2017-01-01
Flexible manufacturing system (FMS) enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah
2017-01-01
Flexible manufacturing system (FMS) enhances the firm’s flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs’ battery charge. Assessment of the numerical examples’ scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software. PMID:28263994
Discrete particle swarm optimization for identifying community structures in signed social networks.
Cai, Qing; Gong, Maoguo; Shen, Bo; Ma, Lijia; Jiao, Licheng
2014-10-01
Modern science of networks has facilitated us with enormous convenience to the understanding of complex systems. Community structure is believed to be one of the notable features of complex networks representing real complicated systems. Very often, uncovering community structures in networks can be regarded as an optimization problem, thus, many evolutionary algorithms based approaches have been put forward. Particle swarm optimization (PSO) is an artificial intelligent algorithm originated from social behavior such as birds flocking and fish schooling. PSO has been proved to be an effective optimization technique. However, PSO was originally designed for continuous optimization which confounds its applications to discrete contexts. In this paper, a novel discrete PSO algorithm is suggested for identifying community structures in signed networks. In the suggested method, particles' status has been redesigned in discrete form so as to make PSO proper for discrete scenarios, and particles' updating rules have been reformulated by making use of the topology of the signed network. Extensive experiments compared with three state-of-the-art approaches on both synthetic and real-world signed networks demonstrate that the proposed method is effective and promising. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.
2018-03-01
Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.
Toushmalani, Reza
2013-01-01
The purpose of this study was to compare the performance of two methods for gravity inversion of a fault. First method [Particle swarm optimization (PSO)] is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. Second method [The Levenberg-Marquardt algorithm (LM)] is an approximation to the Newton method used also for training ANNs. In this paper first we discussed the gravity field of a fault, then describes the algorithms of PSO and LM And presents application of Levenberg-Marquardt algorithm, and a particle swarm algorithm in solving inverse problem of a fault. Most importantly the parameters for the algorithms are given for the individual tests. Inverse solution reveals that fault model parameters are agree quite well with the known results. A more agreement has been found between the predicted model anomaly and the observed gravity anomaly in PSO method rather than LM method.
Chuang, Li-Yeh; Moi, Sin-Hua; Lin, Yu-Da; Yang, Cheng-Hong
2016-10-01
Evolutionary algorithms could overcome the computational limitations for the statistical evaluation of large datasets for high-order single nucleotide polymorphism (SNP) barcodes. Previous studies have proposed several chaotic particle swarm optimization (CPSO) methods to detect SNP barcodes for disease analysis (e.g., for breast cancer and chronic diseases). This work evaluated additional chaotic maps combined with the particle swarm optimization (PSO) method to detect SNP barcodes using a high-dimensional dataset. Nine chaotic maps were used to improve PSO method results and compared the searching ability amongst all CPSO methods. The XOR and ZZ disease models were used to compare all chaotic maps combined with PSO method. Efficacy evaluations of CPSO methods were based on statistical values from the chi-square test (χ 2 ). The results showed that chaotic maps could improve the searching ability of PSO method when population are trapped in the local optimum. The minor allele frequency (MAF) indicated that, amongst all CPSO methods, the numbers of SNPs, sample size, and the highest χ 2 value in all datasets were found in the Sinai chaotic map combined with PSO method. We used the simple linear regression results of the gbest values in all generations to compare the all methods. Sinai chaotic map combined with PSO method provided the highest β values (β≥0.32 in XOR disease model and β≥0.04 in ZZ disease model) and the significant p-value (p-value<0.001 in both the XOR and ZZ disease models). The Sinai chaotic map was found to effectively enhance the fitness values (χ 2 ) of PSO method, indicating that the Sinai chaotic map combined with PSO method is more effective at detecting potential SNP barcodes in both the XOR and ZZ disease models. Copyright © 2016 Elsevier B.V. All rights reserved.
2017-01-01
Collaborative beamforming (CBF) with a finite number of collaborating nodes (CNs) produces sidelobes that are highly dependent on the collaborating nodes’ locations. The sidelobes cause interference and affect the communication rate of unintended receivers located within the transmission range. Nulling is not possible in an open-loop CBF since the collaborating nodes are unable to receive feedback from the receivers. Hence, the overall sidelobe reduction is required to avoid interference in the directions of the unintended receivers. However, the impact of sidelobe reduction on the capacity improvement at the unintended receiver has never been reported in previous works. In this paper, the effect of peak sidelobe (PSL) reduction in CBF on the capacity of an unintended receiver is analyzed. Three meta-heuristic optimization methods are applied to perform PSL minimization, namely genetic algorithm (GA), particle swarm algorithm (PSO) and a simplified version of the PSO called the weightless swarm algorithm (WSA). An average reduction of 20 dB in PSL alongside 162% capacity improvement is achieved in the worst case scenario with the WSA optimization. It is discovered that the PSL minimization in the CBF provides capacity improvement at an unintended receiver only if the CBF cluster is small and dense. PMID:28464000
Online Adaboost-Based Parameterized Methods for Dynamic Distributed Network Intrusion Detection.
Hu, Weiming; Gao, Jun; Wang, Yanguo; Wu, Ou; Maybank, Stephen
2014-01-01
Current network intrusion detection systems lack adaptability to the frequently changing network environments. Furthermore, intrusion detection in the new distributed architectures is now a major requirement. In this paper, we propose two online Adaboost-based intrusion detection algorithms. In the first algorithm, a traditional online Adaboost process is used where decision stumps are used as weak classifiers. In the second algorithm, an improved online Adaboost process is proposed, and online Gaussian mixture models (GMMs) are used as weak classifiers. We further propose a distributed intrusion detection framework, in which a local parameterized detection model is constructed in each node using the online Adaboost algorithm. A global detection model is constructed in each node by combining the local parametric models using a small number of samples in the node. This combination is achieved using an algorithm based on particle swarm optimization (PSO) and support vector machines. The global model in each node is used to detect intrusions. Experimental results show that the improved online Adaboost process with GMMs obtains a higher detection rate and a lower false alarm rate than the traditional online Adaboost process that uses decision stumps. Both the algorithms outperform existing intrusion detection algorithms. It is also shown that our PSO, and SVM-based algorithm effectively combines the local detection models into the global model in each node; the global model in a node can handle the intrusion types that are found in other nodes, without sharing the samples of these intrusion types.
Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering.
Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar
2015-01-01
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed.
Classification of Two Class Motor Imagery Tasks Using Hybrid GA-PSO Based K-Means Clustering
Suraj; Tiwari, Purnendu; Ghosh, Subhojit; Sinha, Rakesh Kumar
2015-01-01
Transferring the brain computer interface (BCI) from laboratory condition to meet the real world application needs BCI to be applied asynchronously without any time constraint. High level of dynamism in the electroencephalogram (EEG) signal reasons us to look toward evolutionary algorithm (EA). Motivated by these two facts, in this work a hybrid GA-PSO based K-means clustering technique has been used to distinguish two class motor imagery (MI) tasks. The proposed hybrid GA-PSO based K-means clustering is found to outperform genetic algorithm (GA) and particle swarm optimization (PSO) based K-means clustering techniques in terms of both accuracy and execution time. The lesser execution time of hybrid GA-PSO technique makes it suitable for real time BCI application. Time frequency representation (TFR) techniques have been used to extract the feature of the signal under investigation. TFRs based features are extracted and relying on the concept of event related synchronization (ERD) and desynchronization (ERD) feature vector is formed. PMID:25972896
Hybrid intelligent optimization methods for engineering problems
NASA Astrophysics Data System (ADS)
Pehlivanoglu, Yasin Volkan
The purpose of optimization is to obtain the best solution under certain conditions. There are numerous optimization methods because different problems need different solution methodologies; therefore, it is difficult to construct patterns. Also mathematical modeling of a natural phenomenon is almost based on differentials. Differential equations are constructed with relative increments among the factors related to yield. Therefore, the gradients of these increments are essential to search the yield space. However, the landscape of yield is not a simple one and mostly multi-modal. Another issue is differentiability. Engineering design problems are usually nonlinear and they sometimes exhibit discontinuous derivatives for the objective and constraint functions. Due to these difficulties, non-gradient-based algorithms have become more popular in recent decades. Genetic algorithms (GA) and particle swarm optimization (PSO) algorithms are popular, non-gradient based algorithms. Both are population-based search algorithms and have multiple points for initiation. A significant difference from a gradient-based method is the nature of the search methodologies. For example, randomness is essential for the search in GA or PSO. Hence, they are also called stochastic optimization methods. These algorithms are simple, robust, and have high fidelity. However, they suffer from similar defects, such as, premature convergence, less accuracy, or large computational time. The premature convergence is sometimes inevitable due to the lack of diversity. As the generations of particles or individuals in the population evolve, they may lose their diversity and become similar to each other. To overcome this issue, we studied the diversity concept in GA and PSO algorithms. Diversity is essential for a healthy search, and mutations are the basic operators to provide the necessary variety within a population. After having a close scrutiny of the diversity concept based on qualification and quantification studies, we improved new mutation strategies and operators to provide beneficial diversity within the population. We called this new approach as multi-frequency vibrational GA or PSO. They were applied to different aeronautical engineering problems in order to study the efficiency of these new approaches. These implementations were: applications to selected benchmark test functions, inverse design of two-dimensional (2D) airfoil in subsonic flow, optimization of 2D airfoil in transonic flow, path planning problems of autonomous unmanned aerial vehicle (UAV) over a 3D terrain environment, 3D radar cross section minimization problem for a 3D air vehicle, and active flow control over a 2D airfoil. As demonstrated by these test cases, we observed that new algorithms outperform the current popular algorithms. The principal role of this multi-frequency approach was to determine which individuals or particles should be mutated, when they should be mutated, and which ones should be merged into the population. The new mutation operators, when combined with a mutation strategy and an artificial intelligent method, such as, neural networks or fuzzy logic process, they provided local and global diversities during the reproduction phases of the generations. Additionally, the new approach also introduced random and controlled diversity. Due to still being population-based techniques, these methods were as robust as the plain GA or PSO algorithms. Based on the results obtained, it was concluded that the variants of the present multi-frequency vibrational GA and PSO were efficient algorithms, since they successfully avoided all local optima within relatively short optimization cycles.
PSO algorithm enhanced with Lozi Chaotic Map - Tuning experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pluhacek, Michal; Senkerik, Roman; Zelinka, Ivan
2015-03-10
In this paper it is investigated the effect of tuning of control parameters of the Lozi Chaotic Map employed as a chaotic pseudo-random number generator for the particle swarm optimization algorithm. Three different benchmark functions are selected from the IEEE CEC 2013 competition benchmark set. The Lozi map is extensively tuned and the performance of PSO is evaluated.
Image segmentation algorithm based on improved PCNN
NASA Astrophysics Data System (ADS)
Chen, Hong; Wu, Chengdong; Yu, Xiaosheng; Wu, Jiahui
2017-11-01
A modified simplified Pulse Coupled Neural Network (PCNN) model is proposed in this article based on simplified PCNN. Some work have done to enrich this model, such as imposing restrictions items of the inputs, improving linking inputs and internal activity of PCNN. A self-adaptive parameter setting method of linking coefficient and threshold value decay time constant is proposed here, too. At last, we realized image segmentation algorithm for five pictures based on this proposed simplified PCNN model and PSO. Experimental results demonstrate that this image segmentation algorithm is much better than method of SPCNN and OTSU.
Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles
NASA Astrophysics Data System (ADS)
Aghababa, Mohammad Pourmahmood; Amrollahi, Mohammad Hossein; Borjkhani, Mehdi
2012-09-01
In this paper, an underwater vehicle was modeled with six dimensional nonlinear equations of motion, controlled by DC motors in all degrees of freedom. Near-optimal trajectories in an energetic environment for underwater vehicles were computed using a numerical solution of a nonlinear optimal control problem (NOCP). An energy performance index as a cost function, which should be minimized, was defined. The resulting problem was a two-point boundary value problem (TPBVP). A genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) algorithms were applied to solve the resulting TPBVP. Applying an Euler-Lagrange equation to the NOCP, a conjugate gradient penalty method was also adopted to solve the TPBVP. The problem of energetic environments, involving some energy sources, was discussed. Some near-optimal paths were found using a GA, PSO, and ACO algorithms. Finally, the problem of collision avoidance in an energetic environment was also taken into account.
Multi-period project portfolio selection under risk considerations and stochastic income
NASA Astrophysics Data System (ADS)
Tofighian, Ali Asghar; Moezzi, Hamid; Khakzar Barfuei, Morteza; Shafiee, Mahmood
2018-02-01
This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably.
A particle swarm optimization variant with an inner variable learning strategy.
Wu, Guohua; Pedrycz, Witold; Ma, Manhao; Qiu, Dishan; Li, Haifeng; Liu, Jin
2014-01-01
Although Particle Swarm Optimization (PSO) has demonstrated competitive performance in solving global optimization problems, it exhibits some limitations when dealing with optimization problems with high dimensionality and complex landscape. In this paper, we integrate some problem-oriented knowledge into the design of a certain PSO variant. The resulting novel PSO algorithm with an inner variable learning strategy (PSO-IVL) is particularly efficient for optimizing functions with symmetric variables. Symmetric variables of the optimized function have to satisfy a certain quantitative relation. Based on this knowledge, the inner variable learning (IVL) strategy helps the particle to inspect the relation among its inner variables, determine the exemplar variable for all other variables, and then make each variable learn from the exemplar variable in terms of their quantitative relations. In addition, we design a new trap detection and jumping out strategy to help particles escape from local optima. The trap detection operation is employed at the level of individual particles whereas the trap jumping out strategy is adaptive in its nature. Experimental simulations completed for some representative optimization functions demonstrate the excellent performance of PSO-IVL. The effectiveness of the PSO-IVL stresses a usefulness of augmenting evolutionary algorithms by problem-oriented domain knowledge.
Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao
2015-01-01
In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization. PMID:26343660
Xu, Jingjing; Yang, Wei; Zhang, Linyuan; Han, Ruisong; Shao, Xiaotao
2015-08-27
In this paper, a wireless sensor network (WSN) technology adapted to underground channel conditions is developed, which has important theoretical and practical value for safety monitoring in underground coal mines. According to the characteristics that the space, time and frequency resources of underground tunnel are open, it is proposed to constitute wireless sensor nodes based on multicarrier code division multiple access (MC-CDMA) to make full use of these resources. To improve the wireless transmission performance of source sensor nodes, it is also proposed to utilize cooperative sensors with good channel conditions from the sink node to assist source sensors with poor channel conditions. Moreover, the total power of the source sensor and its cooperative sensors is allocated on the basis of their channel conditions to increase the energy efficiency of the WSN. To solve the problem that multiple access interference (MAI) arises when multiple source sensors transmit monitoring information simultaneously, a kind of multi-sensor detection (MSD) algorithm with particle swarm optimization (PSO), namely D-PSO, is proposed for the time-frequency coded cooperative MC-CDMA WSN. Simulation results show that the average bit error rate (BER) performance of the proposed WSN in an underground coal mine is improved significantly by using wireless sensor nodes based on MC-CDMA, adopting time-frequency coded cooperative transmission and D-PSO algorithm with particle swarm optimization.
Wang, Jie-sheng; Li, Shu-xia; Song, Jiang-di
2015-01-01
In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird's nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy. PMID:26366164
NASA Astrophysics Data System (ADS)
Fouladi, Ehsan; Mojallali, Hamed
2018-01-01
In this paper, an adaptive backstepping controller has been tuned to synchronise two chaotic Colpitts oscillators in a master-slave configuration. The parameters of the controller are determined using shark smell optimisation (SSO) algorithm. Numerical results are presented and compared with those of particle swarm optimisation (PSO) algorithm. Simulation results show better performance in terms of accuracy and convergence for the proposed optimised method compared to PSO optimised controller or any non-optimised backstepping controller.
Numerical Computation of Homogeneous Slope Stability
Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong
2015-01-01
To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS). PMID:25784927
Numerical computation of homogeneous slope stability.
Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong
2015-01-01
To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).
NASA Astrophysics Data System (ADS)
Wang, Ershen; Jia, Chaoying; Tong, Gang; Qu, Pingping; Lan, Xiaoyu; Pang, Tao
2018-03-01
The receiver autonomous integrity monitoring (RAIM) is one of the most important parts in an avionic navigation system. Two problems need to be addressed to improve this system, namely, the degeneracy phenomenon and lack of samples for the standard particle filter (PF). However, the number of samples cannot adequately express the real distribution of the probability density function (i.e., sample impoverishment). This study presents a GPS receiver autonomous integrity monitoring (RAIM) method based on a chaos particle swarm optimization particle filter (CPSO-PF) algorithm with a log likelihood ratio. The chaos sequence generates a set of chaotic variables, which are mapped to the interval of optimization variables to improve particle quality. This chaos perturbation overcomes the potential for the search to become trapped in a local optimum in the particle swarm optimization (PSO) algorithm. Test statistics are configured based on a likelihood ratio, and satellite fault detection is then conducted by checking the consistency between the state estimate of the main PF and those of the auxiliary PFs. Based on GPS data, the experimental results demonstrate that the proposed algorithm can effectively detect and isolate satellite faults under conditions of non-Gaussian measurement noise. Moreover, the performance of the proposed novel method is better than that of RAIM based on the PF or PSO-PF algorithm.
NASA Astrophysics Data System (ADS)
He, Yaoyao; Yang, Shanlin; Xu, Qifa
2013-07-01
In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.
Guo, Weian; Si, Chengyong; Xue, Yu; Mao, Yanfen; Wang, Lei; Wu, Qidi
2017-05-04
Particle Swarm Optimization (PSO) is a popular algorithm which is widely investigated and well implemented in many areas. However, the canonical PSO does not perform well in population diversity maintenance so that usually leads to a premature convergence or local optima. To address this issue, we propose a variant of PSO named Grouping PSO with Personal- Best-Position (Pbest) Guidance (GPSO-PG) which maintains the population diversity by preserving the diversity of exemplars. On one hand, we adopt uniform random allocation strategy to assign particles into different groups and in each group the losers will learn from the winner. On the other hand, we employ personal historical best position of each particle in social learning rather than the current global best particle. In this way, the exemplars diversity increases and the effect from the global best particle is eliminated. We test the proposed algorithm to the benchmarks in CEC 2008 and CEC 2010, which concern the large scale optimization problems (LSOPs). By comparing several current peer algorithms, GPSO-PG exhibits a competitive performance to maintain population diversity and obtains a satisfactory performance to the problems.
FRAN and RBF-PSO as two components of a hyper framework to recognize protein folds.
Abbasi, Elham; Ghatee, Mehdi; Shiri, M E
2013-09-01
In this paper, an intelligent hyper framework is proposed to recognize protein folds from its amino acid sequence which is a fundamental problem in bioinformatics. This framework includes some statistical and intelligent algorithms for proteins classification. The main components of the proposed framework are the Fuzzy Resource-Allocating Network (FRAN) and the Radial Bases Function based on Particle Swarm Optimization (RBF-PSO). FRAN applies a dynamic method to tune up the RBF network parameters. Due to the patterns complexity captured in protein dataset, FRAN classifies the proteins under fuzzy conditions. Also, RBF-PSO applies PSO to tune up the RBF classifier. Experimental results demonstrate that FRAN improves prediction accuracy up to 51% and achieves acceptable multi-class results for protein fold prediction. Although RBF-PSO provides reasonable results for protein fold recognition up to 48%, it is weaker than FRAN in some cases. However the proposed hyper framework provides an opportunity to use a great range of intelligent methods and can learn from previous experiences. Thus it can avoid the weakness of some intelligent methods in terms of memory, computational time and static structure. Furthermore, the performance of this system can be enhanced throughout the system life-cycle. Copyright © 2013 Elsevier Ltd. All rights reserved.
López-Caraballo, C. H.; Lazzús, J. A.; Salfate, I.; Rojas, P.; Rivera, M.; Palma-Chilla, L.
2015-01-01
An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ N) from 0.01 to 0.1. PMID:26351449
López-Caraballo, C H; Lazzús, J A; Salfate, I; Rojas, P; Rivera, M; Palma-Chilla, L
2015-01-01
An artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey-Glass chaotic time series in the short-term x(t + 6). The performance prediction was evaluated and compared with other studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called stochastic hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute the uncertainties of predictions for noisy Mackey-Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σ(N)) from 0.01 to 0.1.
NASA Astrophysics Data System (ADS)
Shahamatnia, Ehsan; Dorotovič, Ivan; Fonseca, Jose M.; Ribeiro, Rita A.
2016-03-01
Developing specialized software tools is essential to support studies of solar activity evolution. With new space missions such as Solar Dynamics Observatory (SDO), solar images are being produced in unprecedented volumes. To capitalize on that huge data availability, the scientific community needs a new generation of software tools for automatic and efficient data processing. In this paper a prototype of a modular framework for solar feature detection, characterization, and tracking is presented. To develop an efficient system capable of automatic solar feature tracking and measuring, a hybrid approach combining specialized image processing, evolutionary optimization, and soft computing algorithms is being followed. The specialized hybrid algorithm for tracking solar features allows automatic feature tracking while gathering characterization details about the tracked features. The hybrid algorithm takes advantages of the snake model, a specialized image processing algorithm widely used in applications such as boundary delineation, image segmentation, and object tracking. Further, it exploits the flexibility and efficiency of Particle Swarm Optimization (PSO), a stochastic population based optimization algorithm. PSO has been used successfully in a wide range of applications including combinatorial optimization, control, clustering, robotics, scheduling, and image processing and video analysis applications. The proposed tool, denoted PSO-Snake model, was already successfully tested in other works for tracking sunspots and coronal bright points. In this work, we discuss the application of the PSO-Snake algorithm for calculating the sidereal rotational angular velocity of the solar corona. To validate the results we compare them with published manual results performed by an expert.
PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons.
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei
2016-09-02
Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance.
PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons
Long, Yi; Du, Zhi-Jiang; Wang, Wei-Dong; Zhao, Guang-Yu; Xu, Guo-Qiang; He, Long; Mao, Xi-Wang; Dong, Wei
2016-01-01
Locomotion mode identification is essential for the control of a robotic rehabilitation exoskeletons. This paper proposes an online support vector machine (SVM) optimized by particle swarm optimization (PSO) to identify different locomotion modes to realize a smooth and automatic locomotion transition. A PSO algorithm is used to obtain the optimal parameters of SVM for a better overall performance. Signals measured by the foot pressure sensors integrated in the insoles of wearable shoes and the MEMS-based attitude and heading reference systems (AHRS) attached on the shoes and shanks of leg segments are fused together as the input information of SVM. Based on the chosen window whose size is 200 ms (with sampling frequency of 40 Hz), a three-layer wavelet packet analysis (WPA) is used for feature extraction, after which, the kernel principal component analysis (kPCA) is utilized to reduce the dimension of the feature set to reduce computation cost of the SVM. Since the signals are from two types of different sensors, the normalization is conducted to scale the input into the interval of [0, 1]. Five-fold cross validation is adapted to train the classifier, which prevents the classifier over-fitting. Based on the SVM model obtained offline in MATLAB, an online SVM algorithm is constructed for locomotion mode identification. Experiments are performed for different locomotion modes and experimental results show the effectiveness of the proposed algorithm with an accuracy of 96.00% ± 2.45%. To improve its accuracy, majority vote algorithm (MVA) is used for post-processing, with which the identification accuracy is better than 98.35% ± 1.65%. The proposed algorithm can be extended and employed in the field of robotic rehabilitation and assistance. PMID:27598160
Romero, Leoncio A; Zamudio, Victor; Baltazar, Rosario; Mezura, Efren; Sotelo, Marco; Callaghan, Vic
2012-01-01
In this paper we present a comparison between six novel approaches to the fundamental problem of cyclic instability in Ambient Intelligence. These approaches are based on different optimization algorithms, Particle Swarm Optimization (PSO), Bee Swarm Optimization (BSO), micro Particle Swarm Optimization (μ-PSO), Artificial Immune System (AIS), Genetic Algorithm (GA) and Mutual Information Maximization for Input Clustering (MIMIC). In order to be able to use these algorithms, we introduced the concept of Average Cumulative Oscillation (ACO), which enabled us to measure the average behavior of the system. This approach has the advantage that it does not need to analyze the topological properties of the system, in particular the loops, which can be computationally expensive. In order to test these algorithms we used the well-known discrete system called the Game of Life for 9, 25, 49 and 289 agents. It was found that PSO and μ-PSO have the best performance in terms of the number of agents locked. These results were confirmed using the Wilcoxon Signed Rank Test. This novel and successful approach is very promising and can be used to remove instabilities in real scenarios with a large number of agents (including nomadic agents) and complex interactions and dependencies among them.
Romero, Leoncio A.; Zamudio, Victor; Baltazar, Rosario; Mezura, Efren; Sotelo, Marco; Callaghan, Vic
2012-01-01
In this paper we present a comparison between six novel approaches to the fundamental problem of cyclic instability in Ambient Intelligence. These approaches are based on different optimization algorithms, Particle Swarm Optimization (PSO), Bee Swarm Optimization (BSO), micro Particle Swarm Optimization (μ-PSO), Artificial Immune System (AIS), Genetic Algorithm (GA) and Mutual Information Maximization for Input Clustering (MIMIC). In order to be able to use these algorithms, we introduced the concept of Average Cumulative Oscillation (ACO), which enabled us to measure the average behavior of the system. This approach has the advantage that it does not need to analyze the topological properties of the system, in particular the loops, which can be computationally expensive. In order to test these algorithms we used the well-known discrete system called the Game of Life for 9, 25, 49 and 289 agents. It was found that PSO and μ-PSO have the best performance in terms of the number of agents locked. These results were confirmed using the Wilcoxon Signed Rank Test. This novel and successful approach is very promising and can be used to remove instabilities in real scenarios with a large number of agents (including nomadic agents) and complex interactions and dependencies among them. PMID:23112643
Uncertainty analysis of hydrological modeling in a tropical area using different algorithms
NASA Astrophysics Data System (ADS)
Rafiei Emam, Ammar; Kappas, Martin; Fassnacht, Steven; Linh, Nguyen Hoang Khanh
2018-01-01
Hydrological modeling outputs are subject to uncertainty resulting from different sources of errors (e.g., error in input data, model structure, and model parameters), making quantification of uncertainty in hydrological modeling imperative and meant to improve reliability of modeling results. The uncertainty analysis must solve difficulties in calibration of hydrological models, which further increase in areas with data scarcity. The purpose of this study is to apply four uncertainty analysis algorithms to a semi-distributed hydrological model, quantifying different source of uncertainties (especially parameter uncertainty) and evaluate their performance. In this study, the Soil and Water Assessment Tools (SWAT) eco-hydrological model was implemented for the watershed in the center of Vietnam. The sensitivity of parameters was analyzed, and the model was calibrated. The uncertainty analysis for the hydrological model was conducted based on four algorithms: Generalized Likelihood Uncertainty Estimation (GLUE), Sequential Uncertainty Fitting (SUFI), Parameter Solution method (ParaSol) and Particle Swarm Optimization (PSO). The performance of the algorithms was compared using P-factor and Rfactor, coefficient of determination (R 2), the Nash Sutcliffe coefficient of efficiency (NSE) and Percent Bias (PBIAS). The results showed the high performance of SUFI and PSO with P-factor>0.83, R-factor <0.56 and R 2>0.91, NSE>0.89, and 0.18
Machining fixture layout optimization using particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Dou, Jianping; Wang, Xingsong; Wang, Lei
2011-05-01
Optimization of fixture layout (locator and clamp locations) is critical to reduce geometric error of the workpiece during machining process. In this paper, the application of particle swarm optimization (PSO) algorithm is presented to minimize the workpiece deformation in the machining region. A PSO based approach is developed to optimize fixture layout through integrating ANSYS parametric design language (APDL) of finite element analysis to compute the objective function for a given fixture layout. Particle library approach is used to decrease the total computation time. The computational experiment of 2D case shows that the numbers of function evaluations are decreased about 96%. Case study illustrates the effectiveness and efficiency of the PSO based optimization approach.
Chou, Sheng-Kai; Jiau, Ming-Kai; Huang, Shih-Chia
2016-08-01
The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs-S-PSO and binary PSO (BPSO)-and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP.
NASA Astrophysics Data System (ADS)
Xu, Jiuping; Zeng, Ziqiang; Han, Bernard; Lei, Xiao
2013-07-01
This article presents a dynamic programming-based particle swarm optimization (DP-based PSO) algorithm for solving an inventory management problem for large-scale construction projects under a fuzzy random environment. By taking into account the purchasing behaviour and strategy under rules of international bidding, a multi-objective fuzzy random dynamic programming model is constructed. To deal with the uncertainties, a hybrid crisp approach is used to transform fuzzy random parameters into fuzzy variables that are subsequently defuzzified by using an expected value operator with optimistic-pessimistic index. The iterative nature of the authors' model motivates them to develop a DP-based PSO algorithm. More specifically, their approach treats the state variables as hidden parameters. This in turn eliminates many redundant feasibility checks during initialization and particle updates at each iteration. Results and sensitivity analysis are presented to highlight the performance of the authors' optimization method, which is very effective as compared to the standard PSO algorithm.
PSO/ACO algorithm-based risk assessment of human neural tube defects in Heshun County, China.
Liao, Yi Lan; Wang, Jin Feng; Wu, Ji Lei; Wang, Jiao Jiao; Zheng, Xiao Ying
2012-10-01
To develop a new technique for assessing the risk of birth defects, which are a major cause of infant mortality and disability in many parts of the world. The region of interest in this study was Heshun County, the county in China with the highest rate of neural tube defects (NTDs). A hybrid particle swarm optimization/ant colony optimization (PSO/ACO) algorithm was used to quantify the probability of NTDs occurring at villages with no births. The hybrid PSO/ACO algorithm is a form of artificial intelligence adapted for hierarchical classification. It is a powerful technique for modeling complex problems involving impacts of causes. The algorithm was easy to apply, with the accuracy of the results being 69.5%±7.02% at the 95% confidence level. The proposed method is simple to apply, has acceptable fault tolerance, and greatly enhances the accuracy of calculations. Copyright © 2012 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.
PID controller tuning using metaheuristic optimization algorithms for benchmark problems
NASA Astrophysics Data System (ADS)
Gholap, Vishal; Naik Dessai, Chaitali; Bagyaveereswaran, V.
2017-11-01
This paper contributes to find the optimal PID controller parameters using particle swarm optimization (PSO), Genetic Algorithm (GA) and Simulated Annealing (SA) algorithm. The algorithms were developed through simulation of chemical process and electrical system and the PID controller is tuned. Here, two different fitness functions such as Integral Time Absolute Error and Time domain Specifications were chosen and applied on PSO, GA and SA while tuning the controller. The proposed Algorithms are implemented on two benchmark problems of coupled tank system and DC motor. Finally, comparative study has been done with different algorithms based on best cost, number of iterations and different objective functions. The closed loop process response for each set of tuned parameters is plotted for each system with each fitness function.
Barba, Lida; Rodríguez, Nibaldo; Montt, Cecilia
2014-01-01
Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0:26%, followed by MA-ARIMA with a MAPE of 1:12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15:51%.
MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali
2017-01-01
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms. PMID:28979308
MotieGhader, Habib; Gharaghani, Sajjad; Masoudi-Sobhanzadeh, Yosef; Masoudi-Nejad, Ali
2017-01-01
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as GA, PSO, ACO and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR feature selection are proposed. SGALA algorithm uses advantages of Genetic algorithm and Learning Automata sequentially and the MGALA algorithm uses advantages of Genetic Algorithm and Learning Automata simultaneously. We applied our proposed algorithms to select the minimum possible number of features from three different datasets and also we observed that the MGALA and SGALA algorithms had the best outcome independently and in average compared to other feature selection algorithms. Through comparison of our proposed algorithms, we deduced that the rate of convergence to optimal result in MGALA and SGALA algorithms were better than the rate of GA, ACO, PSO and LA algorithms. In the end, the results of GA, ACO, PSO, LA, SGALA, and MGALA algorithms were applied as the input of LS-SVR model and the results from LS-SVR models showed that the LS-SVR model had more predictive ability with the input from SGALA and MGALA algorithms than the input from all other mentioned algorithms. Therefore, the results have corroborated that not only is the predictive efficiency of proposed algorithms better, but their rate of convergence is also superior to the all other mentioned algorithms.
NASA Astrophysics Data System (ADS)
Singh, R.; Verma, H. K.
2013-12-01
This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.
NASA Astrophysics Data System (ADS)
Santosa, B.; Siswanto, N.; Fiqihesa
2018-04-01
This paper proposes a discrete Particle Swam Optimization (PSO) to solve limited-wait hybrid flowshop scheduing problem with multi objectives. Flow shop schedulimg represents the condition when several machines are arranged in series and each job must be processed at each machine with same sequence. The objective functions are minimizing completion time (makespan), total tardiness time, and total machine idle time. Flow shop scheduling model always grows to cope with the real production system accurately. Since flow shop scheduling is a NP-Hard problem then the most suitable method to solve is metaheuristics. One of metaheuristics algorithm is Particle Swarm Optimization (PSO), an algorithm which is based on the behavior of a swarm. Originally, PSO was intended to solve continuous optimization problems. Since flow shop scheduling is a discrete optimization problem, then, we need to modify PSO to fit the problem. The modification is done by using probability transition matrix mechanism. While to handle multi objectives problem, we use Pareto Optimal (MPSO). The results of MPSO is better than the PSO because the MPSO solution set produced higher probability to find the optimal solution. Besides the MPSO solution set is closer to the optimal solution
A new logistic dynamic particle swarm optimization algorithm based on random topology.
Ni, Qingjian; Deng, Jianming
2013-01-01
Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.
2012-01-01
dimensionality, Tesauro used a backpropagation- based , three-layer neural network and implemented the outcome from a self-play game as the reinforcement signal...a school of fish, flock of birds, and colony of ants. Our literature review reveals that no one has used PSO to train the neural network ...trained with a variant of PSO called cellular PSO (CPSO). CSRN is a supervised learning neural network (SLNN). The proposed algorithm for the
An efficient algorithm for function optimization: modified stem cells algorithm
NASA Astrophysics Data System (ADS)
Taherdangkoo, Mohammad; Paziresh, Mahsa; Yazdi, Mehran; Bagheri, Mohammad Hadi
2013-03-01
In this paper, we propose an optimization algorithm based on the intelligent behavior of stem cell swarms in reproduction and self-organization. Optimization algorithms, such as the Genetic Algorithm (GA), Particle Swarm Optimization (PSO) algorithm, Ant Colony Optimization (ACO) algorithm and Artificial Bee Colony (ABC) algorithm, can give solutions to linear and non-linear problems near to the optimum for many applications; however, in some case, they can suffer from becoming trapped in local optima. The Stem Cells Algorithm (SCA) is an optimization algorithm inspired by the natural behavior of stem cells in evolving themselves into new and improved cells. The SCA avoids the local optima problem successfully. In this paper, we have made small changes in the implementation of this algorithm to obtain improved performance over previous versions. Using a series of benchmark functions, we assess the performance of the proposed algorithm and compare it with that of the other aforementioned optimization algorithms. The obtained results prove the superiority of the Modified Stem Cells Algorithm (MSCA).
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-07-14
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.
NASA Astrophysics Data System (ADS)
Steckiewicz, Adam; Butrylo, Boguslaw
2017-08-01
In this paper we discussed the results of a multi-criteria optimization scheme as well as numerical calculations of periodic conductive structures with selected geometry. Thin printed structures embedded on a flexible dielectric substrate may be applied as simple, cheap, passive low-pass filters with an adjustable cutoff frequency in low (up to 1 MHz) radio frequency range. The analysis of an electromagnetic phenomena in presented structures was realized on the basis of a three-dimensional numerical model of three proposed geometries of periodic elements. The finite element method (FEM) was used to obtain a solution of an electromagnetic harmonic field. Equivalent lumped electrical parameters of printed cells obtained in such manner determine the shape of an amplitude transmission characteristic of a low-pass filter. A nonlinear influence of a printed cell geometry on equivalent parameters of cells electric model, makes it difficult to find the desired optimal solution. Therefore an optimization problem of optimal cell geometry estimation with regard to an approximation of the determined amplitude transmission characteristic with an adjusted cutoff frequency, was obtained by the particle swarm optimization (PSO) algorithm. A dynamically suitable inertia factor was also introduced into the algorithm to improve a convergence to a global extremity of a multimodal objective function. Numerical results as well as PSO simulation results were characterized in terms of approximation accuracy of predefined amplitude characteristics in a pass-band, stop-band and cutoff frequency. Three geometries of varying degrees of complexity were considered and their use in signal processing systems was evaluated.
Particle Swarm Optimization of Low-Thrust, Geocentric-to-Halo-Orbit Transfers
NASA Astrophysics Data System (ADS)
Abraham, Andrew J.
Missions to Lagrange points are becoming increasingly popular amongst spacecraft mission planners. Lagrange points are locations in space where the gravity force from two bodies, and the centrifugal force acting on a third body, cancel. To date, all spacecraft that have visited a Lagrange point have done so using high-thrust, chemical propulsion. Due to the increasing availability of low-thrust (high efficiency) propulsive devices, and their increasing capability in terms of fuel efficiency and instantaneous thrust, it has now become possible for a spacecraft to reach a Lagrange point orbit without the aid of chemical propellant. While at any given time there are many paths for a low-thrust trajectory to take, only one is optimal. The traditional approach to spacecraft trajectory optimization utilizes some form of gradient-based algorithm. While these algorithms offer numerous advantages, they also have a few significant shortcomings. The three most significant shortcomings are: (1) the fact that an initial guess solution is required to initialize the algorithm, (2) the radius of convergence can be quite small and can allow the algorithm to become trapped in local minima, and (3) gradient information is not always assessable nor always trustworthy for a given problem. To avoid these problems, this dissertation is focused on optimizing a low-thrust transfer trajectory from a geocentric orbit to an Earth-Moon, L1, Lagrange point orbit using the method of Particle Swarm Optimization (PSO). The PSO method is an evolutionary heuristic that was originally written to model birds swarming to locate hidden food sources. This PSO method will enable the exploration of the invariant stable manifold of the target Lagrange point orbit in an effort to optimize the spacecraft's low-thrust trajectory. Examples of these optimized trajectories are presented and contrasted with those found using traditional, gradient-based approaches. In summary, the results of this dissertation find that the PSO method does, indeed, successfully optimize the low-thrust trajectory transfer problem without the need for initial guessing. Furthermore, a two-degree-of-freedom PSO problem formulation significantly outperformed a one-degree-of-freedom formulation by at least an order of magnitude, in terms of CPU time. Finally, the PSO method is also used to solve a traditional, two-burn, impulsive transfer to a Lagrange point orbit using a hybrid optimization algorithm that incorporates a gradient-based shooting algorithm as a pre-optimizer. Surprisingly, the results of this study show that "fast" transfers outperform "slow" transfers in terms of both Deltav and time of flight.
Metabolic flux estimation using particle swarm optimization with penalty function.
Long, Hai-Xia; Xu, Wen-Bo; Sun, Jun
2009-01-01
Metabolic flux estimation through 13C trace experiment is crucial for quantifying the intracellular metabolic fluxes. In fact, it corresponds to a constrained optimization problem that minimizes a weighted distance between measured and simulated results. In this paper, we propose particle swarm optimization (PSO) with penalty function to solve 13C-based metabolic flux estimation problem. The stoichiometric constraints are transformed to an unconstrained one, by penalizing the constraints and building a single objective function, which in turn is minimized using PSO algorithm for flux quantification. The proposed algorithm is applied to estimate the central metabolic fluxes of Corynebacterium glutamicum. From simulation results, it is shown that the proposed algorithm has superior performance and fast convergence ability when compared to other existing algorithms.
Comparison of evolutionary algorithms for LPDA antenna optimization
NASA Astrophysics Data System (ADS)
Lazaridis, Pavlos I.; Tziris, Emmanouil N.; Zaharis, Zaharias D.; Xenos, Thomas D.; Cosmas, John P.; Gallion, Philippe B.; Holmes, Violeta; Glover, Ian A.
2016-08-01
A novel approach to broadband log-periodic antenna design is presented, where some of the most powerful evolutionary algorithms are applied and compared for the optimal design of wire log-periodic dipole arrays (LPDA) using Numerical Electromagnetics Code. The target is to achieve an optimal antenna design with respect to maximum gain, gain flatness, front-to-rear ratio (F/R) and standing wave ratio. The parameters of the LPDA optimized are the dipole lengths, the spacing between the dipoles, and the dipole wire diameters. The evolutionary algorithms compared are the Differential Evolution (DE), Particle Swarm (PSO), Taguchi, Invasive Weed (IWO), and Adaptive Invasive Weed Optimization (ADIWO). Superior performance is achieved by the IWO (best results) and PSO (fast convergence) algorithms.
An improved PSO-SVM model for online recognition defects in eddy current testing
NASA Astrophysics Data System (ADS)
Liu, Baoling; Hou, Dibo; Huang, Pingjie; Liu, Banteng; Tang, Huayi; Zhang, Wubo; Chen, Peihua; Zhang, Guangxin
2013-12-01
Accurate and rapid recognition of defects is essential for structural integrity and health monitoring of in-service device using eddy current (EC) non-destructive testing. This paper introduces a novel model-free method that includes three main modules: a signal pre-processing module, a classifier module and an optimisation module. In the signal pre-processing module, a kind of two-stage differential structure is proposed to suppress the lift-off fluctuation that could contaminate the EC signal. In the classifier module, multi-class support vector machine (SVM) based on one-against-one strategy is utilised for its good accuracy. In the optimisation module, the optimal parameters of classifier are obtained by an improved particle swarm optimisation (IPSO) algorithm. The proposed IPSO technique can improve convergence performance of the primary PSO through the following strategies: nonlinear processing of inertia weight, introductions of the black hole and simulated annealing model with extremum disturbance. The good generalisation ability of the IPSO-SVM model has been validated through adding additional specimen into the testing set. Experiments show that the proposed algorithm can achieve higher recognition accuracy and efficiency than other well-known classifiers and the superiorities are more obvious with less training set, which contributes to online application.
Rodríguez, Nibaldo
2014-01-01
Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0 : 26%, followed by MA-ARIMA with a MAPE of 1 : 12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15 : 51%. PMID:25243200
Evaluation of multilayer perceptron algorithms for an analysis of network flow data
NASA Astrophysics Data System (ADS)
Bieniasz, Jedrzej; Rawski, Mariusz; Skowron, Krzysztof; Trzepiński, Mateusz
2016-09-01
The volume of exchanged information through IP networks is larger than ever and still growing. It creates a space for both benign and malicious activities. The second one raises awareness on security network devices, as well as network infrastructure and a system as a whole. One of the basic tools to prevent cyber attacks is Network Instrusion Detection System (NIDS). NIDS could be realized as a signature-based detector or an anomaly-based one. In the last few years the emphasis has been placed on the latter type, because of the possibility of applying smart and intelligent solutions. An ideal NIDS of next generation should be composed of self-learning algorithms that could react on known and unknown malicious network activities respectively. In this paper we evaluated a machine learning approach for detection of anomalies in IP network data represented as NetFlow records. We considered Multilayer Perceptron (MLP) as the classifier and we used two types of learning algorithms - Backpropagation (BP) and Particle Swarm Optimization (PSO). This paper includes a comprehensive survey on determining the most optimal MLP learning algorithm for the classification problem in application to network flow data. The performance, training time and convergence of BP and PSO methods were compared. The results show that PSO algorithm implemented by the authors outperformed other solutions if accuracy of classifications is considered. The major disadvantage of PSO is training time, which could be not acceptable for larger data sets or in real network applications. At the end we compared some key findings with the results from the other papers to show that in all cases results from this study outperformed them.
a Gsa-Svm Hybrid System for Classification of Binary Problems
NASA Astrophysics Data System (ADS)
Sarafrazi, Soroor; Nezamabadi-pour, Hossein; Barahman, Mojgan
2011-06-01
This paperhybridizesgravitational search algorithm (GSA) with support vector machine (SVM) and made a novel GSA-SVM hybrid system to improve the classification accuracy in binary problems. GSA is an optimization heuristic toolused to optimize the value of SVM kernel parameter (in this paper, radial basis function (RBF) is chosen as the kernel function). The experimental results show that this newapproach can achieve high classification accuracy and is comparable to or better than the particle swarm optimization (PSO)-SVM and genetic algorithm (GA)-SVM, which are two hybrid systems for classification.
A Power Transformers Fault Diagnosis Model Based on Three DGA Ratios and PSO Optimization SVM
NASA Astrophysics Data System (ADS)
Ma, Hongzhe; Zhang, Wei; Wu, Rongrong; Yang, Chunyan
2018-03-01
In order to make up for the shortcomings of existing transformer fault diagnosis methods in dissolved gas-in-oil analysis (DGA) feature selection and parameter optimization, a transformer fault diagnosis model based on the three DGA ratios and particle swarm optimization (PSO) optimize support vector machine (SVM) is proposed. Using transforming support vector machine to the nonlinear and multi-classification SVM, establishing the particle swarm optimization to optimize the SVM multi classification model, and conducting transformer fault diagnosis combined with the cross validation principle. The fault diagnosis results show that the average accuracy of test method is better than the standard support vector machine and genetic algorithm support vector machine, and the proposed method can effectively improve the accuracy of transformer fault diagnosis is proved.
Energy aware swarm optimization with intercluster search for wireless sensor network.
Thilagavathi, Shanmugasundaram; Geetha, Bhavani Gnanasambandan
2015-01-01
Wireless sensor networks (WSNs) are emerging as a low cost popular solution for many real-world challenges. The low cost ensures deployment of large sensor arrays to perform military and civilian tasks. Generally, WSNs are power constrained due to their unique deployment method which makes replacement of battery source difficult. Challenges in WSN include a well-organized communication platform for the network with negligible power utilization. In this work, an improved binary particle swarm optimization (PSO) algorithm with modified connected dominating set (CDS) based on residual energy is proposed for discovery of optimal number of clusters and cluster head (CH). Simulations show that the proposed BPSO-T and BPSO-EADS perform better than LEACH- and PSO-based system in terms of energy savings and QOS.
Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming
2016-01-01
Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle’s position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption. PMID:27428971
NASA Astrophysics Data System (ADS)
Vaz, Miguel; Luersen, Marco A.; Muñoz-Rojas, Pablo A.; Trentin, Robson G.
2016-04-01
Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.
A Novel Particle Swarm Optimization Algorithm for Global Optimization
Wang, Chun-Feng; Liu, Kui
2016-01-01
Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms. PMID:26955387
On the optimization of electromagnetic geophysical data: Application of the PSO algorithm
NASA Astrophysics Data System (ADS)
Godio, A.; Santilano, A.
2018-01-01
Particle Swarm optimization (PSO) algorithm resolves constrained multi-parameter problems and is suitable for simultaneous optimization of linear and nonlinear problems, with the assumption that forward modeling is based on good understanding of ill-posed problem for geophysical inversion. We apply PSO for solving the geophysical inverse problem to infer an Earth model, i.e. the electrical resistivity at depth, consistent with the observed geophysical data. The method doesn't require an initial model and can be easily constrained, according to external information for each single sounding. The optimization process to estimate the model parameters from the electromagnetic soundings focuses on the discussion of the objective function to be minimized. We discuss the possibility to introduce in the objective function vertical and lateral constraints, with an Occam-like regularization. A sensitivity analysis allowed us to check the performance of the algorithm. The reliability of the approach is tested on synthetic, real Audio-Magnetotelluric (AMT) and Long Period MT data. The method appears able to solve complex problems and allows us to estimate the a posteriori distribution of the model parameters.
Ramamoorthy, Ambika; Ramachandran, Rajeswari
2016-01-01
Power grid becomes smarter nowadays along with technological development. The benefits of smart grid can be enhanced through the integration of renewable energy sources. In this paper, several studies have been made to reconfigure a conventional network into a smart grid. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. Proposed methodology presented in this paper is aimed at minimizing network power losses and at improving the voltage stability within the frame work of system operation and security constraints in a transmission system. Locations and capacities of DGs have a significant impact on the system losses in a transmission system. In this paper, combined nature inspired algorithms are presented for optimal location and sizing of DGs. This paper proposes a two-step optimization technique in order to integrate DG. In a first step, the best size of DG is determined through PSO metaheuristics and the results obtained through PSO is tested for reverse power flow by negative load approach to find possible bus locations. Then, optimal location is found by Loss Sensitivity Factor (LSF) and weak (WK) bus methods and the results are compared. In a second step, optimal sizing of DGs is determined by PSO, GSA, and hybrid PSOGSA algorithms. Apart from optimal sizing and siting of DGs, different scenarios with number of DGs (3, 4, and 5) and PQ capacities of DGs (P alone, Q alone, and P and Q both) are also analyzed and the results are analyzed in this paper. A detailed performance analysis is carried out on IEEE 30-bus system to demonstrate the effectiveness of the proposed methodology. PMID:27057557
Ramamoorthy, Ambika; Ramachandran, Rajeswari
2016-01-01
Power grid becomes smarter nowadays along with technological development. The benefits of smart grid can be enhanced through the integration of renewable energy sources. In this paper, several studies have been made to reconfigure a conventional network into a smart grid. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. Proposed methodology presented in this paper is aimed at minimizing network power losses and at improving the voltage stability within the frame work of system operation and security constraints in a transmission system. Locations and capacities of DGs have a significant impact on the system losses in a transmission system. In this paper, combined nature inspired algorithms are presented for optimal location and sizing of DGs. This paper proposes a two-step optimization technique in order to integrate DG. In a first step, the best size of DG is determined through PSO metaheuristics and the results obtained through PSO is tested for reverse power flow by negative load approach to find possible bus locations. Then, optimal location is found by Loss Sensitivity Factor (LSF) and weak (WK) bus methods and the results are compared. In a second step, optimal sizing of DGs is determined by PSO, GSA, and hybrid PSOGSA algorithms. Apart from optimal sizing and siting of DGs, different scenarios with number of DGs (3, 4, and 5) and PQ capacities of DGs (P alone, Q alone, and P and Q both) are also analyzed and the results are analyzed in this paper. A detailed performance analysis is carried out on IEEE 30-bus system to demonstrate the effectiveness of the proposed methodology.
Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao
2016-01-01
Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.
Samaan, Michael A; Weinhandl, Joshua T; Bawab, Sebastian Y; Ringleb, Stacie I
2016-12-01
Musculoskeletal modeling allows for the determination of various parameters during dynamic maneuvers by using in vivo kinematic and ground reaction force (GRF) data as inputs. Differences between experimental and model marker data and inconsistencies in the GRFs applied to these musculoskeletal models may not produce accurate simulations. Therefore, residual forces and moments are applied to these models in order to reduce these differences. Numerical optimization techniques can be used to determine optimal tracking weights of each degree of freedom of a musculoskeletal model in order to reduce differences between the experimental and model marker data as well as residual forces and moments. In this study, the particle swarm optimization (PSO) and simplex simulated annealing (SIMPSA) algorithms were used to determine optimal tracking weights for the simulation of a sidestep cut. The PSO and SIMPSA algorithms were able to produce model kinematics that were within 1.4° of experimental kinematics with residual forces and moments of less than 10 N and 18 Nm, respectively. The PSO algorithm was able to replicate the experimental kinematic data more closely and produce more dynamically consistent kinematic data for a sidestep cut compared to the SIMPSA algorithm. Future studies should use external optimization routines to determine dynamically consistent kinematic data and report the differences between experimental and model data for these musculoskeletal simulations.
Zhang, Ying; Liang, Jixing; Jiang, Shengming; Chen, Wei
2016-01-01
Due to their special environment, Underwater Wireless Sensor Networks (UWSNs) are usually deployed over a large sea area and the nodes are usually floating. This results in a lower beacon node distribution density, a longer time for localization, and more energy consumption. Currently most of the localization algorithms in this field do not pay enough consideration on the mobility of the nodes. In this paper, by analyzing the mobility patterns of water near the seashore, a localization method for UWSNs based on a Mobility Prediction and a Particle Swarm Optimization algorithm (MP-PSO) is proposed. In this method, the range-based PSO algorithm is used to locate the beacon nodes, and their velocities can be calculated. The velocity of an unknown node is calculated by using the spatial correlation of underwater object’s mobility, and then their locations can be predicted. The range-based PSO algorithm may cause considerable energy consumption and its computation complexity is a little bit high, nevertheless the number of beacon nodes is relatively smaller, so the calculation for the large number of unknown nodes is succinct, and this method can obviously decrease the energy consumption and time cost of localizing these mobile nodes. The simulation results indicate that this method has higher localization accuracy and better localization coverage rate compared with some other widely used localization methods in this field. PMID:26861348
Continuous Firefly Algorithm for Optimal Tuning of Pid Controller in Avr System
NASA Astrophysics Data System (ADS)
Bendjeghaba, Omar
2014-01-01
This paper presents a tuning approach based on Continuous firefly algorithm (CFA) to obtain the proportional-integral- derivative (PID) controller parameters in Automatic Voltage Regulator system (AVR). In the tuning processes the CFA is iterated to reach the optimal or the near optimal of PID controller parameters when the main goal is to improve the AVR step response characteristics. Conducted simulations show the effectiveness and the efficiency of the proposed approach. Furthermore the proposed approach can improve the dynamic of the AVR system. Compared with particle swarm optimization (PSO), the new CFA tuning method has better control system performance in terms of time domain specifications and set-point tracking.
A Review of Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Jain, N. K.; Nangia, Uma; Jain, Jyoti
2018-03-01
This paper presents an overview of the research progress in Particle Swarm Optimization (PSO) during 1995-2017. Fifty two papers have been reviewed. They have been categorized into nine categories based on various aspects. This technique has attracted many researchers because of its simplicity which led to many improvements and modifications of the basic PSO. Some researchers carried out the hybridization of PSO with other evolutionary techniques. This paper discusses the progress of PSO, its improvements, modifications and applications.
NASA Astrophysics Data System (ADS)
Niu, Chun-Yang; Qi, Hong; Huang, Xing; Ruan, Li-Ming; Wang, Wei; Tan, He-Ping
2015-11-01
A hybrid least-square QR decomposition (LSQR)-particle swarm optimization (LSQR-PSO) algorithm was developed to estimate the three-dimensional (3D) temperature distributions and absorption coefficients simultaneously. The outgoing radiative intensities at the boundary surface of the absorbing media were simulated by the line-of-sight (LOS) method, which served as the input for the inverse analysis. The retrieval results showed that the 3D temperature distributions of the participating media with known radiative properties could be retrieved accurately using the LSQR algorithm, even with noisy data. For the participating media with unknown radiative properties, the 3D temperature distributions and absorption coefficients could be retrieved accurately using the LSQR-PSO algorithm even with measurement errors. It was also found that the temperature field could be estimated more accurately than the absorption coefficients. In order to gain insight into the effects on the accuracy of temperature distribution reconstruction, the selection of the detection direction and the angle between two detection directions was also analyzed. Project supported by the Major National Scientific Instruments and Equipment Development Special Foundation of China (Grant No. 51327803), the National Natural Science Foundation of China (Grant No. 51476043), and the Fund of Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation University of China.
NASA Astrophysics Data System (ADS)
Li, X.; Li, S. W.
2012-07-01
In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO), is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm, two experiments are carried out. In the first experiment, images of a standard grid board are taken according to multi-intersection photography using digital camera. Three points or six points which are located on the left-down corner of the standard grid are regarded as control points respectively, and the exterior orientation elements of each image are computed through PSO, and compared with these elements computed through bundle adjustment. In the second experiment, the exterior orientation elements obtained from the first experiment are used as approximate values in bundle adjustment and then the space coordinates of other grid points on the board can be computed. The coordinate difference of grid points between these computed space coordinates and their known coordinates can be used to compute the accuracy. The point accuracy computed in above experiments are ±0.76mm and ±0.43mm respectively. The above experiments prove the effectiveness of PSO used in close range photogrammetry to compute approximate values of exterior orientation elements, and the algorithm can meet the requirement of higher accuracy. In short, PSO can get better results in a faster, cheaper way compared with other surveying methods in close range photogrammetry.
P300 Chinese input system based on Bayesian LDA.
Jin, Jing; Allison, Brendan Z; Brunner, Clemens; Wang, Bei; Wang, Xingyu; Zhang, Jianhua; Neuper, Christa; Pfurtscheller, Gert
2010-02-01
A brain-computer interface (BCI) is a new communication channel between humans and computers that translates brain activity into recognizable command and control signals. Attended events can evoke P300 potentials in the electroencephalogram. Hence, the P300 has been used in BCI systems to spell, control cursors or robotic devices, and other tasks. This paper introduces a novel P300 BCI to communicate Chinese characters. To improve classification accuracy, an optimization algorithm (particle swarm optimization, PSO) is used for channel selection (i.e., identifying the best electrode configuration). The effects of different electrode configurations on classification accuracy were tested by Bayesian linear discriminant analysis offline. The offline results from 11 subjects show that this new P300 BCI can effectively communicate Chinese characters and that the features extracted from the electrodes obtained by PSO yield good performance.
A Modified MinMax k-Means Algorithm Based on PSO.
Wang, Xiaoyan; Bai, Yanping
The MinMax k -means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k -means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k -means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k -means algorithm and the original MinMax k -means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically.
Hannan, M A; Akhtar, Mahmuda; Begum, R A; Basri, H; Hussain, A; Scavino, Edgar
2018-01-01
Waste collection widely depends on the route optimization problem that involves a large amount of expenditure in terms of capital, labor, and variable operational costs. Thus, the more waste collection route is optimized, the more reduction in different costs and environmental effect will be. This study proposes a modified particle swarm optimization (PSO) algorithm in a capacitated vehicle-routing problem (CVRP) model to determine the best waste collection and route optimization solutions. In this study, threshold waste level (TWL) and scheduling concepts are applied in the PSO-based CVRP model under different datasets. The obtained results from different datasets show that the proposed algorithmic CVRP model provides the best waste collection and route optimization in terms of travel distance, total waste, waste collection efficiency, and tightness at 70-75% of TWL. The obtained results for 1 week scheduling show that 70% of TWL performs better than all node consideration in terms of collected waste, distance, tightness, efficiency, fuel consumption, and cost. The proposed optimized model can serve as a valuable tool for waste collection and route optimization toward reducing socioeconomic and environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
VDLLA: A virtual daddy-long legs optimization
NASA Astrophysics Data System (ADS)
Yaakub, Abdul Razak; Ghathwan, Khalil I.
2016-08-01
Swarm intelligence is a strong optimization algorithm based on a biological behavior of insects or animals. The success of any optimization algorithm is depending on the balance between exploration and exploitation. In this paper, we present a new swarm intelligence algorithm, which is based on daddy long legs spider (VDLLA) as a new optimization algorithm with virtual behavior. In VDLLA, each agent (spider) has nine positions which represent the legs of spider and each position represent one solution. The proposed VDLLA is tested on four standard functions using average fitness, Medium fitness and standard deviation. The results of proposed VDLLA have been compared against Particle Swarm Optimization (PSO), Differential Evolution (DE) and Bat Inspired Algorithm (BA). Additionally, the T-Test has been conducted to show the significant deference between our proposed and other algorithms. VDLLA showed very promising results on benchmark test functions for unconstrained optimization problems and also significantly improved the original swarm algorithms.
NASA Astrophysics Data System (ADS)
Aranza, M. F.; Kustija, J.; Trisno, B.; Hakim, D. L.
2016-04-01
PID Controller (Proportional Integral Derivative) was invented since 1910, but till today still is used in industries, even though there are many kind of modern controllers like fuzz controller and neural network controller are being developed. Performance of PID controller is depend on on Proportional Gain (Kp), Integral Gain (Ki) and Derivative Gain (Kd). These gains can be got by using method Ziegler-Nichols (ZN), gain-phase margin, Root Locus, Minimum Variance dan Gain Scheduling however these methods are not optimal to control systems that nonlinear and have high-orde, in addition, some methods relative hard. To solve those obstacles, particle swarm optimization (PSO) algorithm is proposed to get optimal Kp, Ki and Kd. PSO is proposed because PSO has convergent result and not require many iterations. On this research, PID controller is applied on AVR (Automatic Voltage Regulator). Based on result of analyzing transient, stability Root Locus and frequency response, performance of PID controller is better than Ziegler-Nichols.
Particle swarm optimization with recombination and dynamic linkage discovery.
Chen, Ying-Ping; Peng, Wen-Chih; Jian, Ming-Chung
2007-12-01
In this paper, we try to improve the performance of the particle swarm optimizer by incorporating the linkage concept, which is an essential mechanism in genetic algorithms, and design a new linkage identification technique called dynamic linkage discovery to address the linkage problem in real-parameter optimization problems. Dynamic linkage discovery is a costless and effective linkage recognition technique that adapts the linkage configuration by employing only the selection operator without extra judging criteria irrelevant to the objective function. Moreover, a recombination operator that utilizes the discovered linkage configuration to promote the cooperation of particle swarm optimizer and dynamic linkage discovery is accordingly developed. By integrating the particle swarm optimizer, dynamic linkage discovery, and recombination operator, we propose a new hybridization of optimization methodologies called particle swarm optimization with recombination and dynamic linkage discovery (PSO-RDL). In order to study the capability of PSO-RDL, numerical experiments were conducted on a set of benchmark functions as well as on an important real-world application. The benchmark functions used in this paper were proposed in the 2005 Institute of Electrical and Electronics Engineers Congress on Evolutionary Computation. The experimental results on the benchmark functions indicate that PSO-RDL can provide a level of performance comparable to that given by other advanced optimization techniques. In addition to the benchmark, PSO-RDL was also used to solve the economic dispatch (ED) problem for power systems, which is a real-world problem and highly constrained. The results indicate that PSO-RDL can successfully solve the ED problem for the three-unit power system and obtain the currently known best solution for the 40-unit system.
NASA Astrophysics Data System (ADS)
Maghsoudi, Mohammad Javad; Mohamed, Z.; Sudin, S.; Buyamin, S.; Jaafar, H. I.; Ahmad, S. M.
2017-08-01
This paper proposes an improved input shaping scheme for an efficient sway control of a nonlinear three dimensional (3D) overhead crane with friction using the particle swarm optimization (PSO) algorithm. Using this approach, a higher payload sway reduction is obtained as the input shaper is designed based on a complete nonlinear model, as compared to the analytical-based input shaping scheme derived using a linear second order model. Zero Vibration (ZV) and Distributed Zero Vibration (DZV) shapers are designed using both analytical and PSO approaches for sway control of rail and trolley movements. To test the effectiveness of the proposed approach, MATLAB simulations and experiments on a laboratory 3D overhead crane are performed under various conditions involving different cable lengths and sway frequencies. Their performances are studied based on a maximum residual of payload sway and Integrated Absolute Error (IAE) values which indicate total payload sway of the crane. With experiments, the superiority of the proposed approach over the analytical-based is shown by 30-50% reductions of the IAE values for rail and trolley movements, for both ZV and DZV shapers. In addition, simulations results show higher sway reductions with the proposed approach. It is revealed that the proposed PSO-based input shaping design provides higher payload sway reductions of a 3D overhead crane with friction as compared to the commonly designed input shapers.
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
CALIBRATION OF SEMI-ANALYTIC MODELS OF GALAXY FORMATION USING PARTICLE SWARM OPTIMIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruiz, Andrés N.; Domínguez, Mariano J.; Yaryura, Yamila
2015-03-10
We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing regions of maximum likelihood in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard Lambda Cold Dark Matter N-body simulation. The calibration is performed using a combination of observedmore » galaxy properties as constraints, including the local stellar mass function and the black hole to bulge mass relation. We test the ability of the PSO algorithm to find the best set of free parameters of the model by comparing the results with those obtained using a MCMC exploration. Both methods find the same maximum likelihood region, however, the PSO method requires one order of magnitude fewer evaluations. This new approach allows a fast estimation of the best-fitting parameter set in multidimensional spaces, providing a practical tool to test the consequences of including other astrophysical processes in SAMs.« less
Yang, Benson P; Ondra, Stephen L; Chen, Larry A; Jung, Hee Soo; Koski, Tyler R; Salehi, Sean A
2006-07-01
The authors conducted a study to evaluate the radiographically documented and functional outcomes obtained in patients who underwent pedicle subtraction osteotomy (PSO). They also compared outcomes after classification of cases into thoracic and lumbar PSO subgroups. The authors analyzed data obtained in 35 consecutive PSO-treated patients with sagittal imbalance. One surgeon performed all surgeries. The minimal follow-up period was 2 years. Events during the perioperative course and complications were noted. Standing long-film radiographs of the spine were obtained and measurements were made preoperatively, immediately postoperatively, and at most recent follow-up examination. The modified Prolo Scale and the 22-item Scoliosis Research Society (SRS-22) Outcomes Questionnaire were administered. Early complications after PSO included neurological injury, wound-related problems, and nosocomial infections. Late complications were limited to pseudarthrosis and attendant instrumentation failure. Early and late complication rates ranged from 10 to 30% for both thoracic and lumbar PSO cohorts. Lumbar PSO was associated with improvements in local, segmental, and global measures of sagittal balance, whereas thoracic PSO was only associated with local improvement. Most patients rated their functional status as fair to good according to the modified Prolo Scale and reported, according to the SRS-22 Outcomes Questionnaire, that they were satisfied with the overall treatment of their back condition. The ability to perform a PSO at both lumbar and thoracic levels is a powerful asset for the spine surgeon treating spinal deformity. In the present study radiographic and clinical outcomes were superior when PSO was used to treat lumbar deformity rather than thoracic deformity because of several anatomical and technical obstacles that hindered the thoracic procedure. Nevertheless, the thoracic PSO proved a useful addition with which to produce regional improvement in sagittal balance for patients with a fixed thoracic kyphosis.
2018-01-01
This paper presents an integrated hybrid optimization algorithm for training the radial basis function neural network (RBF NN). Training of neural networks is still a challenging exercise in machine learning domain. Traditional training algorithms in general suffer and trap in local optima and lead to premature convergence, which makes them ineffective when applied for datasets with diverse features. Training algorithms based on evolutionary computations are becoming popular due to their robust nature in overcoming the drawbacks of the traditional algorithms. Accordingly, this paper proposes a hybrid training procedure with differential search (DS) algorithm functionally integrated with the particle swarm optimization (PSO). To surmount the local trapping of the search procedure, a new population initialization scheme is proposed using Logistic chaotic sequence, which enhances the population diversity and aid the search capability. To demonstrate the effectiveness of the proposed RBF hybrid training algorithm, experimental analysis on publicly available 7 benchmark datasets are performed. Subsequently, experiments were conducted on a practical application case for wind speed prediction to expound the superiority of the proposed RBF training algorithm in terms of prediction accuracy. PMID:29768463
Rani R, Hannah Jessie; Victoire T, Aruldoss Albert
2018-01-01
This paper presents an integrated hybrid optimization algorithm for training the radial basis function neural network (RBF NN). Training of neural networks is still a challenging exercise in machine learning domain. Traditional training algorithms in general suffer and trap in local optima and lead to premature convergence, which makes them ineffective when applied for datasets with diverse features. Training algorithms based on evolutionary computations are becoming popular due to their robust nature in overcoming the drawbacks of the traditional algorithms. Accordingly, this paper proposes a hybrid training procedure with differential search (DS) algorithm functionally integrated with the particle swarm optimization (PSO). To surmount the local trapping of the search procedure, a new population initialization scheme is proposed using Logistic chaotic sequence, which enhances the population diversity and aid the search capability. To demonstrate the effectiveness of the proposed RBF hybrid training algorithm, experimental analysis on publicly available 7 benchmark datasets are performed. Subsequently, experiments were conducted on a practical application case for wind speed prediction to expound the superiority of the proposed RBF training algorithm in terms of prediction accuracy.
Design and implementation of intelligent electronic warfare decision making algorithm
NASA Astrophysics Data System (ADS)
Peng, Hsin-Hsien; Chen, Chang-Kuo; Hsueh, Chi-Shun
2017-05-01
Electromagnetic signals and the requirements of timely response have been a rapid growth in modern electronic warfare. Although jammers are limited resources, it is possible to achieve the best electronic warfare efficiency by tactical decisions. This paper proposes the intelligent electronic warfare decision support system. In this work, we develop a novel hybrid algorithm, Digital Pheromone Particle Swarm Optimization, based on Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Shuffled Frog Leaping Algorithm (SFLA). We use PSO to solve the problem and combine the concept of pheromones in ACO to accumulate more useful information in spatial solving process and speed up finding the optimal solution. The proposed algorithm finds the optimal solution in reasonable computation time by using the method of matrix conversion in SFLA. The results indicated that jammer allocation was more effective. The system based on the hybrid algorithm provides electronic warfare commanders with critical information to assist commanders in effectively managing the complex electromagnetic battlefield.
NASA Astrophysics Data System (ADS)
Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood
2015-10-01
Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.
Huang, Qingqing; Cai, Tiange; Li, Qianwen; Huang, Yinghong; Liu, Qian; Wang, Bingyue; Xia, Xi; Wang, Qi; Whitney, John C C; Cole, Susan P C; Cai, Yu
2018-11-01
Multidrug resistance (MDR) is the leading cause of failure for breast cancer in the clinic. Thus far, polymer-lipid hybrid nanoparticles (PLN) loaded chemotherapeutic agents has been used to overcome MDR in breast cancer. In this study, we prepared psoralen polymer-lipid hybrid nanoparticles (PSO-PLN) to reverse drug resistant MCF-7/ADR cells in vitro and in vivo. PSO-PLN was prepared by the emulsification evaporation-low temperature solidification method. The formulation, water solubility and bioavailability, particle size, zeta potential and entrapment efficiency, and in vitro release experiments were optimized in order to improve the activity of PSO to reverse MDR. Optimal formulation: soybean phospholipids 50 mg, poly(lactic-co-glycolic) acid (PLGA) 15 mg, PSO 3 mg, and Tween-80 1%. The PSO-PLN possessed a round appearance, uniform size, exhibited no adhesion. The average particle size was 93.59 ± 2.87 nm, the dispersion co-efficient was 0.249 ± 0.06, the zeta potential was 25.47 ± 2.84 mV. In vitro analyses revealed that PSO resistance index was 3.2, and PSO-PLN resistance index was 5.6, indicating that PSO-PLN versus MCF-7/ADR reversal effect was significant. Moreover, PSO-PLN is somewhat targeted to the liver, and has an antitumor effect in the xenograft model of drug-resistant MCF-7/ADR cells. In conclusion, PSO-PLN not only reverses MDR but also improves therapeutic efficiency by enhancing sustained release of PSO.
Research on logistics scheduling based on PSO
NASA Astrophysics Data System (ADS)
Bao, Huifang; Zhou, Linli; Liu, Lei
2017-08-01
With the rapid development of e-commerce based on the network, the logistics distribution support of e-commerce is becoming more and more obvious. The optimization of vehicle distribution routing can improve the economic benefit and realize the scientific of logistics [1]. Therefore, the study of logistics distribution vehicle routing optimization problem is not only of great theoretical significance, but also of considerable value of value. Particle swarm optimization algorithm is a kind of evolutionary algorithm, which is based on the random solution and the optimal solution by iteration, and the quality of the solution is evaluated through fitness. In order to obtain a more ideal logistics scheduling scheme, this paper proposes a logistics model based on particle swarm optimization algorithm.
Research on particle swarm optimization algorithm based on optimal movement probability
NASA Astrophysics Data System (ADS)
Ma, Jianhong; Zhang, Han; He, Baofeng
2017-01-01
The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.
A Modified MinMax k-Means Algorithm Based on PSO
2016-01-01
The MinMax k-means algorithm is widely used to tackle the effect of bad initialization by minimizing the maximum intraclustering errors. Two parameters, including the exponent parameter and memory parameter, are involved in the executive process. Since different parameters have different clustering errors, it is crucial to choose appropriate parameters. In the original algorithm, a practical framework is given. Such framework extends the MinMax k-means to automatically adapt the exponent parameter to the data set. It has been believed that if the maximum exponent parameter has been set, then the programme can reach the lowest intraclustering errors. However, our experiments show that this is not always correct. In this paper, we modified the MinMax k-means algorithm by PSO to determine the proper values of parameters which can subject the algorithm to attain the lowest clustering errors. The proposed clustering method is tested on some favorite data sets in several different initial situations and is compared to the k-means algorithm and the original MinMax k-means algorithm. The experimental results indicate that our proposed algorithm can reach the lowest clustering errors automatically. PMID:27656201
Manifold absolute pressure estimation using neural network with hybrid training algorithm
Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli
2017-01-01
In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value. PMID:29190779
Facial Emotion Recognition System – A Machine Learning Approach
NASA Astrophysics Data System (ADS)
Ramalingam, V. V.; Pandian, A.; Jayakumar, Lavanya
2018-04-01
Frown is a medium for people correlation and it could be exercised in multiple real systems. Single crucial stage for frown realizing is to exactly select hysterical aspects. This journal proposed a frown realization scheme applying transformative Particle Swarm Optimization (PSO) based aspect accumulation. This entity initially employs changed LVP, handles crisscross adjacent picture element contrast, for achieving the selective first frown portrayal. Then the PSO entity inserted with a concept of micro Genetic Algorithm (mGA) called mGA-embedded PSO designed for achieving aspect accumulation. This study, the technique subsumes no disposable memory, a little-populace insignificant flock, a latest acceleration that amends with the approach and a sub dimension-based in-depth local frown aspect examines. Assistance of provincial utilization and comprehensive inspection examine structure of alleviating of an immature concurrence complication of conventional PSO. Numerous identifiers are used to diagnose different frown expositions. Stationed on extensive study within and other-sphere pictures from the continued Cohn Kanade and MMI benchmark directory appropriately. Determination of the application exceeds most advanced level PSO variants, conventional PSO, classical GA and alternate relevant frown realization structures is described with powerful limit. Extending our accession to a motion based FER application for connecting patch-based Gabor aspects with continuous data in multi-frames.
Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer
NASA Astrophysics Data System (ADS)
Abdelaziz, Ramadan; Zambrano-Bigiarini, Mauricio
2014-08-01
Particle Swarm Optimization (PSO) has received considerable attention as a global optimization technique from scientists of different disciplines around the world. In this article, we illustrate how to use PSO for inverse modeling of a coupled flow and transport groundwater model (MODFLOW2005-MT3DMS) in a fractured gneiss aquifer. In particular, the hydroPSO R package is used as optimization engine, because it has been specifically designed to calibrate environmental, hydrological and hydrogeological models. In addition, hydroPSO implements the latest Standard Particle Swarm Optimization algorithm (SPSO-2011), with an adaptive random topology and rotational invariance constituting the main advancements over previous PSO versions. A tracer test conducted in the experimental field at TU Bergakademie Freiberg (Germany) is used as case study. A double-porosity approach is used to simulate the solute transport in the fractured Gneiss aquifer. Tracer concentrations obtained with hydroPSO were in good agreement with its corresponding observations, as measured by a high value of the coefficient of determination and a low sum of squared residuals. Several graphical outputs automatically generated by hydroPSO provided useful insights to assess the quality of the calibration results. It was found that hydroPSO required a small number of model runs to reach the region of the global optimum, and it proved to be both an effective and efficient optimization technique to calibrate the movement of solute transport over time in a fractured aquifer. In addition, the parallel feature of hydroPSO allowed to reduce the total computation time used in the inverse modeling process up to an eighth of the total time required without using that feature. This work provides a first attempt to demonstrate the capability and versatility of hydroPSO to work as an optimizer of a coupled flow and transport model for contaminant migration.
A computational intelligence approach to the Mars Precision Landing problem
NASA Astrophysics Data System (ADS)
Birge, Brian Kent, III
Various proposed Mars missions, such as the Mars Sample Return Mission (MRSR) and the Mars Smart Lander (MSL), require precise re-entry terminal position and velocity states. This is to achieve mission objectives including rendezvous with a previous landed mission, or reaching a particular geographic landmark. The current state of the art footprint is in the magnitude of kilometers. For this research a Mars Precision Landing is achieved with a landed footprint of no more than 100 meters, for a set of initial entry conditions representing worst guess dispersions. Obstacles to reducing the landed footprint include trajectory dispersions due to initial atmospheric entry conditions (entry angle, parachute deployment height, etc.), environment (wind, atmospheric density, etc.), parachute deployment dynamics, unavoidable injection error (propagated error from launch on), etc. Weather and atmospheric models have been developed. Three descent scenarios have been examined. First, terminal re-entry is achieved via a ballistic parachute with concurrent thrusting events while on the parachute, followed by a gravity turn. Second, terminal re-entry is achieved via a ballistic parachute followed by gravity turn to hover and then thrust vector to desired location. Third, a guided parafoil approach followed by vectored thrusting to reach terminal velocity is examined. The guided parafoil is determined to be the best architecture. The purpose of this study is to examine the feasibility of using a computational intelligence strategy to facilitate precision planetary re-entry, specifically to take an approach that is somewhat more intuitive and less rigid, and see where it leads. The test problems used for all research are variations on proposed Mars landing mission scenarios developed by NASA. A relatively recent method of evolutionary computation is Particle Swarm Optimization (PSO), which can be considered to be in the same general class as Genetic Algorithms. An improvement over the regular PSO algorithm, allowing tracking of nonstationary error functions is detailed. Continued refinement of PSO in the larger research community comes from attempts to understand human-human social interaction as well as analysis of the emergent behavior. Using PSO and the parafoil scenario, optimized reference trajectories are created for an initial condition set of 76 states, representing the convex hull of 2001 states from an early Monte Carlo analysis. The controls are a set series of bank angles followed by a set series of 3DOF thrust vectoring. The reference trajectories are used to train an Artificial Neural Network Reference Trajectory Generator (ANNTraG), with the (marginal) ability to generalize a trajectory from initial conditions it has never been presented. The controls here allow continuous change in bank angle as well as thrust vector. The optimized reference trajectories represent the best achievable trajectory given the initial condition. Steps toward a closed loop neural controller with online learning updates are examined. The inner loop of the simulation employs the Program to Optimize Simulated Trajectories (POST) as the basic model, containing baseline dynamics and state generation. This is controlled from a MATLAB shell that directs the optimization, learning, and control strategy. Using mainly bank angle guidance coupled with CI strategies, the set of achievable reference trajectories are shown to be 88% under 10 meters, a significant improvement in the state of the art. Further, the automatic real-time generation of realistic reference trajectories in the presence of unknown initial conditions is shown to have promise. The closed loop CI guidance strategy is outlined. An unexpected advance came from the effort to optimize the optimization, where the PSO algorithm was improved with the capability for tracking a changing error environment.
Adaptive power allocation schemes based on IAFS algorithm for OFDM-based cognitive radio systems
NASA Astrophysics Data System (ADS)
Zhang, Shuying; Zhao, Xiaohui; Liang, Cong; Ding, Xu
2017-01-01
In cognitive radio (CR) systems, reasonable power allocation can increase transmission rate of CR users or secondary users (SUs) as much as possible and at the same time insure normal communication among primary users (PUs). This study proposes an optimal power allocation scheme for the OFDM-based CR system with one SU influenced by multiple PU interference constraints. This scheme is based on an improved artificial fish swarm (IAFS) algorithm in combination with the advantage of conventional artificial fish swarm (ASF) algorithm and particle swarm optimisation (PSO) algorithm. In performance comparison of IAFS algorithm with other intelligent algorithms by simulations, the superiority of the IAFS algorithm is illustrated; this superiority results in better performance of our proposed scheme than that of the power allocation algorithms proposed by the previous studies in the same scenario. Furthermore, our proposed scheme can obtain higher transmission data rate under the multiple PU interference constraints and the total power constraint of SU than that of the other mentioned works.
NASA Astrophysics Data System (ADS)
Sridhar, R.; Jeevananthan, S.; Dash, S. S.; Vishnuram, Pradeep
2017-05-01
Maximum Power Point Trackers (MPPTs) are power electronic conditioners used in photovoltaic (PV) system to ensure that PV structures feed maximum power for the given ambient temperature and sun's irradiation. When the PV panels are shaded by a fraction due to any environment hindrances then, conventional MPPT trackers may fail in tracking the appropriate peak power as there will be multi power peaks. In this work, a shuffled frog leap algorithm (SFLA) is proposed and it successfully identifies the global maximum power point among other local maxima. The SFLA MPPT is compared with a well-entrenched conventional perturb and observe (P&O) MPPT algorithm and a global search particle swarm optimisation (PSO) MPPT. The simulation results reveal that the proposed algorithm is highly advantageous than P&O, as it tracks nearly 30% more power for a given shading pattern. The credible nature of the proposed SFLA is ensured when it outplays PSO MPPT in convergence. The whole system is realised in MATLAB/Simulink environment.
Ibraheem; Hasan, Naimul; Hussein, Arkan Ahmed
2014-01-01
This Paper presents the design of decentralized automatic generation controller for an interconnected power system using PID, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The designed controllers are tested on identical two-area interconnected power systems consisting of thermal power plants. The area interconnections between two areas are considered as (i) AC tie-line only (ii) Asynchronous tie-line. The dynamic response analysis is carried out for 1% load perturbation. The performance of the intelligent controllers based on GA and PSO has been compared with the conventional PID controller. The investigations of the system dynamic responses reveal that PSO has the better dynamic response result as compared with PID and GA controller for both type of area interconnection.
NASA Astrophysics Data System (ADS)
Luu, Keurfon; Noble, Mark; Gesret, Alexandrine; Belayouni, Nidhal; Roux, Pierre-François
2018-04-01
Seismic traveltime tomography is an optimization problem that requires large computational efforts. Therefore, linearized techniques are commonly used for their low computational cost. These local optimization methods are likely to get trapped in a local minimum as they critically depend on the initial model. On the other hand, global optimization methods based on MCMC are insensitive to the initial model but turn out to be computationally expensive. Particle Swarm Optimization (PSO) is a rather new global optimization approach with few tuning parameters that has shown excellent convergence rates and is straightforwardly parallelizable, allowing a good distribution of the workload. However, while it can traverse several local minima of the evaluated misfit function, classical implementation of PSO can get trapped in local minima at later iterations as particles inertia dim. We propose a Competitive PSO (CPSO) to help particles to escape from local minima with a simple implementation that improves swarm's diversity. The model space can be sampled by running the optimizer multiple times and by keeping all the models explored by the swarms in the different runs. A traveltime tomography algorithm based on CPSO is successfully applied on a real 3D data set in the context of induced seismicity.
NASA Astrophysics Data System (ADS)
Gamshadzaei, Mohammad Hossein; Rahimzadegan, Majid
2017-10-01
Identification of water extents in Landsat images is challenging due to surfaces with similar reflectance to water extents. The objective of this study is to provide stable and accurate methods for identifying water extents in Landsat images based on meta-heuristic algorithms. Then, seven Landsat images were selected from various environmental regions in Iran. Training of the algorithms was performed using 40 water pixels and 40 nonwater pixels in operational land imager images of Chitgar Lake (one of the study regions). Moreover, high-resolution images from Google Earth were digitized to evaluate the results. Two approaches were considered: index-based and artificial intelligence (AI) algorithms. In the first approach, nine common water spectral indices were investigated. AI algorithms were utilized to acquire coefficients of optimal band combinations to extract water extents. Among the AI algorithms, the artificial neural network algorithm and also the ant colony optimization, genetic algorithm, and particle swarm optimization (PSO) meta-heuristic algorithms were implemented. Index-based methods represented different performances in various regions. Among AI methods, PSO had the best performance with average overall accuracy and kappa coefficient of 93% and 98%, respectively. The results indicated the applicability of acquired band combinations to extract accurately and stably water extents in Landsat imagery.
Non linear predictive control of a LEGO mobile robot
NASA Astrophysics Data System (ADS)
Merabti, H.; Bouchemal, B.; Belarbi, K.; Boucherma, D.; Amouri, A.
2014-10-01
Metaheuristics are general purpose heuristics which have shown a great potential for the solution of difficult optimization problems. In this work, we apply the meta heuristic, namely particle swarm optimization, PSO, for the solution of the optimization problem arising in NLMPC. This algorithm is easy to code and may be considered as alternatives for the more classical solution procedures. The PSO- NLMPC is applied to control a mobile robot for the tracking trajectory and obstacles avoidance. Experimental results show the strength of this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modiri, A; Gu, X; Sawant, A
2014-06-15
Purpose: We present a particle swarm optimization (PSO)-based 4D IMRT planning technique designed for dynamic MLC tracking delivery to lung tumors. The key idea is to utilize the temporal dimension as an additional degree of freedom rather than a constraint in order to achieve improved sparing of organs at risk (OARs). Methods: The target and normal structures were manually contoured on each of the ten phases of a 4DCT scan acquired from a lung SBRT patient who exhibited 1.5cm tumor motion despite the use of abdominal compression. Corresponding ten IMRT plans were generated using the Eclipse treatment planning system. Thesemore » plans served as initial guess solutions for the PSO algorithm. Fluence weights were optimized over the entire solution space i.e., 10 phases × 12 beams × 166 control points. The size of the solution space motivated our choice of PSO, which is a highly parallelizable stochastic global optimization technique that is well-suited for such large problems. A summed fluence map was created using an in-house B-spline deformable image registration. Each plan was compared with a corresponding, internal target volume (ITV)-based IMRT plan. Results: The PSO 4D IMRT plan yielded comparable PTV coverage and significantly higher dose—sparing for parallel and serial OARs compared to the ITV-based plan. The dose-sparing achieved via PSO-4DIMRT was: lung Dmean = 28%; lung V20 = 90%; spinal cord Dmax = 23%; esophagus Dmax = 31%; heart Dmax = 51%; heart Dmean = 64%. Conclusion: Truly 4D IMRT that uses the temporal dimension as an additional degree of freedom can achieve significant dose sparing of serial and parallel OARs. Given the large solution space, PSO represents an attractive, parallelizable tool to achieve globally optimal solutions for such problems. This work was supported through funding from the National Institutes of Health and Varian Medical Systems. Amit Sawant has research funding from Varian Medical Systems, VisionRT Ltd. and Elekta.« less
NASA Astrophysics Data System (ADS)
Khehra, Baljit Singh; Pharwaha, Amar Partap Singh
2017-04-01
Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.
NASA Astrophysics Data System (ADS)
Ketabchi, Hamed; Ataie-Ashtiani, Behzad
2015-01-01
This paper surveys the literature associated with the application of evolutionary algorithms (EAs) in coastal groundwater management problems (CGMPs). This review demonstrates that previous studies were mostly relied on the application of limited and particular EAs, mainly genetic algorithm (GA) and its variants, to a number of specific problems. The exclusive investigation of these problems is often not the representation of the variety of feasible processes may be occurred in coastal aquifers. In this study, eight EAs are evaluated for CGMPs. The considered EAs are: GA, continuous ant colony optimization (CACO), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony optimization (ABC), harmony search (HS), shuffled complex evolution (SCE), and simplex simulated annealing (SIMPSA). The first application of PSO, ABC, HS, and SCE in CGMPs is reported here. Moreover, the four benchmark problems with different degree of difficulty and variety are considered to address the important issues of groundwater resources in coastal regions. Hence, the wide ranges of popular objective functions and constraints with the number of decision variables ranging from 4 to 15 are included. These benchmark problems are applied in the combined simulation-optimization model to examine the optimization scenarios. Some preliminary experiments are performed to select the most efficient parameters values for EAs to set a fair comparison. The specific capabilities of each EA toward CGMPs in terms of results quality and required computational time are compared. The evaluation of the results highlights EA's applicability in CGMPs, besides the remarkable strengths and weaknesses of them. The comparisons show that SCE, CACO, and PSO yield superior solutions among the EAs according to the quality of solutions whereas ABC presents the poor performance. CACO provides the better solutions (up to 17%) than the worst EA (ABC) for the problem with the highest decision variables and more complexity. In terms of computational time, PSO and SIMPSA are the fastest. SCE needs the highest computational time, even up to four times in comparison to the fastest EAs. CACO and PSO can be recommended for application in CGMPs, in terms of both abovementioned criteria.
NASA Astrophysics Data System (ADS)
Zhan, Liwei; Li, Chengwei
2017-02-01
A hybrid PSO-SVM-based model is proposed to predict the friction coefficient between aircraft tire and coating. The presented hybrid model combines a support vector machine (SVM) with particle swarm optimization (PSO) technique. SVM has been adopted to solve regression problems successfully. Its regression accuracy is greatly related to optimizing parameters such as the regularization constant C , the parameter gamma γ corresponding to RBF kernel and the epsilon parameter \\varepsilon in the SVM training procedure. However, the friction coefficient which is predicted based on SVM has yet to be explored between aircraft tire and coating. The experiment reveals that drop height and tire rotational speed are the factors affecting friction coefficient. Bearing in mind, the friction coefficient can been predicted using the hybrid PSO-SVM-based model by the measured friction coefficient between aircraft tire and coating. To compare regression accuracy, a grid search (GS) method and a genetic algorithm (GA) are used to optimize the relevant parameters (C , γ and \\varepsilon ), respectively. The regression accuracy could be reflected by the coefficient of determination ({{R}2} ). The result shows that the hybrid PSO-RBF-SVM-based model has better accuracy compared with the GS-RBF-SVM- and GA-RBF-SVM-based models. The agreement of this model (PSO-RBF-SVM) with experiment data confirms its good performance.
Optimizing of a high-order digital filter using PSO algorithm
NASA Astrophysics Data System (ADS)
Xu, Fuchun
2018-04-01
A self-adaptive high-order digital filter, which offers opportunity to simplify the process of tuning parameters and further improve the noise performance, is presented in this paper. The parameters of traditional digital filter are mainly tuned by complex calculation, whereas this paper presents a 5th order digital filter to obtain outstanding performance and the parameters of the proposed filter are optimized by swarm intelligent algorithm. Simulation results with respect to the proposed 5th order digital filter, SNR>122dB and the noise floor under -170dB are obtained in frequency range of [5-150Hz]. In further simulation, the robustness of the proposed 5th order digital is analyzed.
Khomri, Bilal; Christodoulidis, Argyrios; Djerou, Leila; Babahenini, Mohamed Chaouki; Cheriet, Farida
2018-05-01
Retinal vessel segmentation plays an important role in the diagnosis of eye diseases and is considered as one of the most challenging tasks in computer-aided diagnosis (CAD) systems. The main goal of this study was to propose a method for blood-vessel segmentation that could deal with the problem of detecting vessels of varying diameters in high- and low-resolution fundus images. We proposed to use the particle swarm optimization (PSO) algorithm to improve the multiscale line detection (MSLD) method. The PSO algorithm was applied to find the best arrangement of scales in the MSLD method and to handle the problem of multiscale response recombination. The performance of the proposed method was evaluated on two low-resolution (DRIVE and STARE) and one high-resolution fundus (HRF) image datasets. The data include healthy (H) and diabetic retinopathy (DR) cases. The proposed approach improved the sensitivity rate against the MSLD by 4.7% for the DRIVE dataset and by 1.8% for the STARE dataset. For the high-resolution dataset, the proposed approach achieved 87.09% sensitivity rate, whereas the MSLD method achieves 82.58% sensitivity rate at the same specificity level. When only the smallest vessels were considered, the proposed approach improved the sensitivity rate by 11.02% and by 4.42% for the healthy and the diabetic cases, respectively. Integrating the proposed method in a comprehensive CAD system for DR screening would allow the reduction of false positives due to missed small vessels, misclassified as red lesions. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Tsai, Jinn-Tsong; Chou, Ping-Yi; Chou, Jyh-Horng
2015-11-01
The aim of this study is to generate vector quantisation (VQ) codebooks by integrating principle component analysis (PCA) algorithm, Linde-Buzo-Gray (LBG) algorithm, and evolutionary algorithms (EAs). The EAs include genetic algorithm (GA), particle swarm optimisation (PSO), honey bee mating optimisation (HBMO), and firefly algorithm (FF). The study is to provide performance comparisons between PCA-EA-LBG and PCA-LBG-EA approaches. The PCA-EA-LBG approaches contain PCA-GA-LBG, PCA-PSO-LBG, PCA-HBMO-LBG, and PCA-FF-LBG, while the PCA-LBG-EA approaches contain PCA-LBG, PCA-LBG-GA, PCA-LBG-PSO, PCA-LBG-HBMO, and PCA-LBG-FF. All training vectors of test images are grouped according to PCA. The PCA-EA-LBG used the vectors grouped by PCA as initial individuals, and the best solution gained by the EAs was given for LBG to discover a codebook. The PCA-LBG approach is to use the PCA to select vectors as initial individuals for LBG to find a codebook. The PCA-LBG-EA used the final result of PCA-LBG as an initial individual for EAs to find a codebook. The search schemes in PCA-EA-LBG first used global search and then applied local search skill, while in PCA-LBG-EA first used local search and then employed global search skill. The results verify that the PCA-EA-LBG indeed gain superior results compared to the PCA-LBG-EA, because the PCA-EA-LBG explores a global area to find a solution, and then exploits a better one from the local area of the solution. Furthermore the proposed PCA-EA-LBG approaches in designing VQ codebooks outperform existing approaches shown in the literature.
Tengku Hashim, Tengku Juhana; Mohamed, Azah
2017-01-01
The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate. PMID:28991919
Tengku Hashim, Tengku Juhana; Mohamed, Azah
2017-01-01
The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate.
An Approach to Economic Dispatch with Multiple Fuels Based on Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Sriyanyong, Pichet
2011-06-01
Particle Swarm Optimization (PSO), a stochastic optimization technique, shows superiority to other evolutionary computation techniques in terms of less computation time, easy implementation with high quality solution, stable convergence characteristic and independent from initialization. For this reason, this paper proposes the application of PSO to the Economic Dispatch (ED) problem, which occurs in the operational planning of power systems. In this study, ED problem can be categorized according to the different characteristics of its cost function that are ED problem with smooth cost function and ED problem with multiple fuels. Taking the multiple fuels into account will make the problem more realistic. The experimental results show that the proposed PSO algorithm is more efficient than previous approaches under consideration as well as highly promising in real world applications.
Harzallah, Arij; Hammami, Mohamed; Kępczyńska, Malgorzata A; Hislop, David C; Arch, Jonathan R S; Cawthorne, Michael A; Zaibi, Mohamed S
2016-01-01
The potentially beneficial effects of pomegranate peel (PPE), flower (PFE) and seed oil (PSO) extracts, in comparison with rosiglitazone, on adiposity, lipid profile, glucose homoeostasis, as well as on the underlying inflammatory mechanisms, were examined in high-fat and high-sucrose (HF/HS) diet-induced obese (DIO) mice. Body weight, body fat, energy expenditure, food and liquid intake, blood glucose, and plasma levels of insulin, lipids and cytokines were measured. After two weeks, PSO (2 ml/kg/day) and rosiglitazone (3 mg/kg/day) had not improved glucose intolerance. After 4 weeks, both treatments significantly reduced fasting blood glucose and an insulin tolerance test showed that they also improved insulin sensitivity. Treatment with PPE, PFE and PSO, reduced the plasma levels of the pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α), and PFE increased the level of the anti-inflammatory cytokine interleukin-10 (IL-10). PPE, PFE and PSO have anti-inflammatory properties. PSO also improved insulin sensitivity.
2013-01-01
Background The information of electromyographic signals can be used by Myoelectric Control Systems (MCSs) to actuate prostheses. These devices allow the performing of movements that cannot be carried out by persons with amputated limbs. The state of the art in the development of MCSs is based on the use of individual principal component analysis (iPCA) as a stage of pre-processing of the classifiers. The iPCA pre-processing implies an optimization stage which has not yet been deeply explored. Methods The present study considers two factors in the iPCA stage: namely A (the fitness function), and B (the search algorithm). The A factor comprises two levels, namely A1 (the classification error) and A2 (the correlation factor). Otherwise, the B factor has four levels, specifically B1 (the Sequential Forward Selection, SFS), B2 (the Sequential Floating Forward Selection, SFFS), B3 (Artificial Bee Colony, ABC), and B4 (Particle Swarm Optimization, PSO). This work evaluates the incidence of each one of the eight possible combinations between A and B factors over the classification error of the MCS. Results A two factor ANOVA was performed on the computed classification errors and determined that: (1) the interactive effects over the classification error are not significative (F0.01,3,72 = 4.0659 > f AB = 0.09), (2) the levels of factor A have significative effects on the classification error (F0.02,1,72 = 5.0162 < f A = 6.56), and (3) the levels of factor B over the classification error are not significative (F0.01,3,72 = 4.0659 > f B = 0.08). Conclusions Considering the classification performance we found a superiority of using the factor A2 in combination with any of the levels of factor B. With respect to the time performance the analysis suggests that the PSO algorithm is at least 14 percent better than its best competitor. The latter behavior has been observed for a particular configuration set of parameters in the search algorithms. Future works will investigate the effect of these parameters in the classification performance, such as length of the reduced size vector, number of particles and bees used during optimal search, the cognitive parameters in the PSO algorithm as well as the limit of cycles to improve a solution in the ABC algorithm. PMID:24369728
Color Image Enhancement Using Multiscale Retinex Based on Particle Swarm Optimization Method
NASA Astrophysics Data System (ADS)
Matin, F.; Jeong, Y.; Kim, K.; Park, K.
2018-01-01
This paper introduces, a novel method for the image enhancement using multiscale retinex and practical swarm optimization. Multiscale retinex is widely used image enhancement technique which intemperately pertains on parameters such as Gaussian scales, gain and offset, etc. To achieve the privileged effect, the parameters need to be tuned manually according to the image. In order to handle this matter, a developed retinex algorithm based on PSO has been used. The PSO method adjusted the parameters for multiscale retinex with chromaticity preservation (MSRCP) attains better outcome to compare with other existing methods. The experimental result indicates that the proposed algorithm is an efficient one and not only provides true color loyalty in low light conditions but also avoid color distortion at the same time.
Hossain, Monowar; Mekhilef, Saad; Afifi, Firdaus; Halabi, Laith M; Olatomiwa, Lanre; Seyedmahmoudian, Mehdi; Horan, Ben; Stojcevski, Alex
2018-01-01
In this paper, the suitability and performance of ANFIS (adaptive neuro-fuzzy inference system), ANFIS-PSO (particle swarm optimization), ANFIS-GA (genetic algorithm) and ANFIS-DE (differential evolution) has been investigated for the prediction of monthly and weekly wind power density (WPD) of four different locations named Mersing, Kuala Terengganu, Pulau Langkawi and Bayan Lepas all in Malaysia. For this aim, standalone ANFIS, ANFIS-PSO, ANFIS-GA and ANFIS-DE prediction algorithm are developed in MATLAB platform. The performance of the proposed hybrid ANFIS models is determined by computing different statistical parameters such as mean absolute bias error (MABE), mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R2). The results obtained from ANFIS-PSO and ANFIS-GA enjoy higher performance and accuracy than other models, and they can be suggested for practical application to predict monthly and weekly mean wind power density. Besides, the capability of the proposed hybrid ANFIS models is examined to predict the wind data for the locations where measured wind data are not available, and the results are compared with the measured wind data from nearby stations.
NASA Astrophysics Data System (ADS)
Essa, Khalid S.; Elhussein, Mahmoud
2018-04-01
A new efficient approach to estimate parameters that controlled the source dimensions from magnetic anomaly profile data in light of PSO algorithm (particle swarm optimization) has been presented. The PSO algorithm has been connected in interpreting the magnetic anomaly profiles data onto a new formula for isolated sources embedded in the subsurface. The model parameters deciphered here are the depth of the body, the amplitude coefficient, the angle of effective magnetization, the shape factor and the horizontal coordinates of the source. The model parameters evaluated by the present technique, generally the depth of the covered structures were observed to be in astounding concurrence with the real parameters. The root mean square (RMS) error is considered as a criterion in estimating the misfit between the observed and computed anomalies. Inversion of noise-free synthetic data, noisy synthetic data which contains different levels of random noise (5, 10, 15 and 20%) as well as multiple structures and in additional two real-field data from USA and Egypt exhibits the viability of the approach. Thus, the final results of the different parameters are matched with those given in the published literature and from geologic results.
Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong
2018-01-01
Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control. PMID:29461469
Zhang, Sen; Jiang, Haihe; Yin, Yixin; Xiao, Wendong; Zhao, Baoyong
2018-02-20
Gas utilization ratio (GUR) is an important indicator that is used to evaluate the energy consumption of blast furnaces (BFs). Currently, the existing methods cannot predict the GUR accurately. In this paper, we present a novel data-driven model for predicting the GUR. The proposed approach utilized both the TS fuzzy neural network (TS-FNN) and the particle swarm algorithm (PSO) to predict the GUR. The particle swarm algorithm (PSO) is applied to optimize the parameters of the TS-FNN in order to decrease the error caused by the inaccurate initial parameter. This paper also applied the box graph (Box-plot) method to eliminate the abnormal value of the raw data during the data preprocessing. This method can deal with the data which does not obey the normal distribution which is caused by the complex industrial environments. The prediction results demonstrate that the optimization model based on PSO and the TS-FNN approach achieves higher prediction accuracy compared with the TS-FNN model and SVM model and the proposed approach can accurately predict the GUR of the blast furnace, providing an effective way for the on-line blast furnace distribution control.
Mekhilef, Saad; Afifi, Firdaus; Halabi, Laith M.; Olatomiwa, Lanre; Seyedmahmoudian, Mehdi; Stojcevski, Alex
2018-01-01
In this paper, the suitability and performance of ANFIS (adaptive neuro-fuzzy inference system), ANFIS-PSO (particle swarm optimization), ANFIS-GA (genetic algorithm) and ANFIS-DE (differential evolution) has been investigated for the prediction of monthly and weekly wind power density (WPD) of four different locations named Mersing, Kuala Terengganu, Pulau Langkawi and Bayan Lepas all in Malaysia. For this aim, standalone ANFIS, ANFIS-PSO, ANFIS-GA and ANFIS-DE prediction algorithm are developed in MATLAB platform. The performance of the proposed hybrid ANFIS models is determined by computing different statistical parameters such as mean absolute bias error (MABE), mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R2). The results obtained from ANFIS-PSO and ANFIS-GA enjoy higher performance and accuracy than other models, and they can be suggested for practical application to predict monthly and weekly mean wind power density. Besides, the capability of the proposed hybrid ANFIS models is examined to predict the wind data for the locations where measured wind data are not available, and the results are compared with the measured wind data from nearby stations. PMID:29702645
Command and Control of Teams of Autonomous Units
2012-06-01
done by a hybrid genetic algorithm (GA) particle swarm optimization ( PSO ) algorithm called PIDGION-alternate. This training algorithm is an ANN ...human controller will recognize the behaviors as being safe and correct. As the HyperNEAT approach produces Artificial Neural Nets ( ANN ), we can...optimization technique that generates efficient ANN controls from simple environmental feedback. FALCONET has been tested showing that it can produce
NASA Astrophysics Data System (ADS)
Serdaroğlu, M.; Nacak, B.; Karabıyıkoğlu, M.; Tepe, M.; Baykara, I.; Kökmen, Y.
2017-09-01
In this study, the effects of adding pumpkin seed oil (PSO) in water emulsion to model system chicken meat emulsions (MSME) on product quality and oxidative stability were investigated. MSME were produced by replacing 25% (P25) and 50% (P50) of beef fat with PSO-in-water emulsion (PSO/W) while control treatment was prepared with only beef fat. Addition of PSO/W to the formulation resulted in significant differences in chemical composition and pH values of both raw and cooked MSME treatments. The use of PSO/W produced significant improvements to emulsion stability, oxidative stability and cooking yield of MSME. It was determined that the use of PSO/W formulation results in decreased total expressible fluid values and increased cooking yields of the emulsions. It was observed that the highest cooking yield and the lowest total expressible fluid were found in the sample containing 50% PSO/W. It should be a feasible strategy to produce fat-reduced meat products with healthier lipid profiles by using PSO/W.
Identification of eggs from different production systems based on hyperspectra and CS-SVM.
Sun, J; Cong, S L; Mao, H P; Zhou, X; Wu, X H; Zhang, X D
2017-06-01
1. To identify the origin of table eggs more accurately, a method based on hyperspectral imaging technology was studied. 2. The hyperspectral data of 200 samples of intensive and extensive eggs were collected. Standard normalised variables combined with a Savitzky-Golay were used to eliminate noise, then stepwise regression (SWR) was used for feature selection. Grid search algorithm (GS), genetic search algorithm (GA), particle swarm optimisation algorithm (PSO) and cuckoo search algorithm (CS) were applied by support vector machine (SVM) methods to establish an SVM identification model with the optimal parameters. The full spectrum data and the data after feature selection were the input of the model, while egg category was the output. 3. The SWR-CS-SVM model performed better than the other models, including SWR-GS-SVM, SWR-GA-SVM, SWR-PSO-SVM and others based on full spectral data. The training and test classification accuracy of the SWR-CS-SVM model were respectively 99.3% and 96%. 4. SWR-CS-SVM proved effective for identifying egg varieties and could also be useful for the non-destructive identification of other types of egg.
Determination of the carmine content based on spectrum fluorescence spectral and PSO-SVM
NASA Astrophysics Data System (ADS)
Wang, Shu-tao; Peng, Tao; Cheng, Qi; Wang, Gui-chuan; Kong, De-ming; Wang, Yu-tian
2018-03-01
Carmine is a widely used food pigment in various food and beverage additives. Excessive consumption of synthetic pigment shall do harm to body seriously. The food is generally associated with a variety of colors. Under the simulation context of various food pigments' coexistence, we adopted the technology of fluorescence spectroscopy, together with the PSO-SVM algorithm, so that to establish a method for the determination of carmine content in mixed solution. After analyzing the prediction results of PSO-SVM, we collected a bunch of data: the carmine average recovery rate was 100.84%, the root mean square error of prediction (RMSEP) for 1.03e-04, 0.999 for the correlation coefficient between the model output and the real value of the forecast. Compared with the prediction results of reverse transmission, the correlation coefficient of PSO-SVM was 2.7% higher, the average recovery rate for 0.6%, and the root mean square error was nearly one order of magnitude lower. According to the analysis results, it can effectively avoid the interference caused by pigment with the combination of the fluorescence spectrum technique and PSO-SVM, accurately determining the content of carmine in mixed solution with an effect better than that of BP.
Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms
Vázquez, Roberto A.
2015-01-01
Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems. PMID:26221132
Zhang, Yong-Feng; Chiang, Hsiao-Dong
2017-09-01
A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.
NASA Astrophysics Data System (ADS)
Zubaidi, Salah L.; Dooley, Jayne; Alkhaddar, Rafid M.; Abdellatif, Mawada; Al-Bugharbee, Hussein; Ortega-Martorell, Sandra
2018-06-01
Valid and dependable water demand prediction is a major element of the effective and sustainable expansion of municipal water infrastructures. This study provides a novel approach to quantifying water demand through the assessment of climatic factors, using a combination of a pretreatment signal technique, a hybrid particle swarm optimisation algorithm and an artificial neural network (PSO-ANN). The Singular Spectrum Analysis (SSA) technique was adopted to decompose and reconstruct water consumption in relation to six weather variables, to create a seasonal and stochastic time series. The results revealed that SSA is a powerful technique, capable of decomposing the original time series into many independent components including trend, oscillatory behaviours and noise. In addition, the PSO-ANN algorithm was shown to be a reliable prediction model, outperforming the hybrid Backtracking Search Algorithm BSA-ANN in terms of fitness function (RMSE). The findings of this study also support the view that water demand is driven by climatological variables.
Constructing DNA Barcode Sets Based on Particle Swarm Optimization.
Wang, Bin; Zheng, Xuedong; Zhou, Shihua; Zhou, Changjun; Wei, Xiaopeng; Zhang, Qiang; Wei, Ziqi
2018-01-01
Following the completion of the human genome project, a large amount of high-throughput bio-data was generated. To analyze these data, massively parallel sequencing, namely next-generation sequencing, was rapidly developed. DNA barcodes are used to identify the ownership between sequences and samples when they are attached at the beginning or end of sequencing reads. Constructing DNA barcode sets provides the candidate DNA barcodes for this application. To increase the accuracy of DNA barcode sets, a particle swarm optimization (PSO) algorithm has been modified and used to construct the DNA barcode sets in this paper. Compared with the extant results, some lower bounds of DNA barcode sets are improved. The results show that the proposed algorithm is effective in constructing DNA barcode sets.
NASA Astrophysics Data System (ADS)
Akhoondzadeh, M.
2014-02-01
A powerful earthquake of Mw = 7.7 struck the Saravan region (28.107° N, 62.053° E) in Iran on 16 April 2013. Up to now nomination of an automated anomaly detection method in a non linear time series of earthquake precursor has been an attractive and challenging task. Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) have revealed strong potentials in accurate time series prediction. This paper presents the first study of an integration of ANN and PSO method in the research of earthquake precursors to detect the unusual variations of the thermal and total electron content (TEC) seismo-ionospheric anomalies induced by the strong earthquake of Saravan. In this study, to overcome the stagnation in local minimum during the ANN training, PSO as an optimization method is used instead of traditional algorithms for training the ANN method. The proposed hybrid method detected a considerable number of anomalies 4 and 8 days preceding the earthquake. Since, in this case study, ionospheric TEC anomalies induced by seismic activity is confused with background fluctuations due to solar activity, a multi-resolution time series processing technique based on wavelet transform has been applied on TEC signal variations. In view of the fact that the accordance in the final results deduced from some robust methods is a convincing indication for the efficiency of the method, therefore the detected thermal and TEC anomalies using the ANN + PSO method were compared to the results with regard to the observed anomalies by implementing the mean, median, Wavelet, Kalman filter, Auto-Regressive Integrated Moving Average (ARIMA), Support Vector Machine (SVM) and Genetic Algorithm (GA) methods. The results indicate that the ANN + PSO method is quite promising and deserves serious attention as a new tool for thermal and TEC seismo anomalies detection.
Li, Desheng
2014-01-01
This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem.
Al-Rajab, Murad; Lu, Joan; Xu, Qiang
2017-07-01
This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.
Razavi Termeh, Seyed Vahid; Kornejady, Aiding; Pourghasemi, Hamid Reza; Keesstra, Saskia
2018-02-15
Flood is one of the most destructive natural disasters which cause great financial and life losses per year. Therefore, producing susceptibility maps for flood management are necessary in order to reduce its harmful effects. The aim of the present study is to map flood hazard over the Jahrom Township in Fars Province using a combination of adaptive neuro-fuzzy inference systems (ANFIS) with different metaheuristics algorithms such as ant colony optimization (ACO), genetic algorithm (GA), and particle swarm optimization (PSO) and comparing their accuracy. A total number of 53 flood locations areas were identified, 35 locations of which were randomly selected in order to model flood susceptibility and the remaining 16 locations were used to validate the models. Learning vector quantization (LVQ), as one of the supervised neural network methods, was employed in order to estimate factors' importance. Nine flood conditioning factors namely: slope degree, plan curvature, altitude, topographic wetness index (TWI), stream power index (SPI), distance from river, land use/land cover, rainfall, and lithology were selected and the corresponding maps were prepared in ArcGIS. The frequency ratio (FR) model was used to assign weights to each class within particular controlling factor, then the weights was transferred into MATLAB software for further analyses and to combine with metaheuristic models. The ANFIS-PSO was found to be the most practical model in term of producing the highly focused flood susceptibility map with lesser spatial distribution related to highly susceptible classes. The chi-square result attests the same, where the ANFIS-PSO had the highest spatial differentiation within flood susceptibility classes over the study area. The area under the curve (AUC) obtained from ROC curve indicated the accuracy of 91.4%, 91.8%, 92.6% and 94.5% for the respective models of FR, ANFIS-ACO, ANFIS-GA, and ANFIS-PSO ensembles. So, the ensemble of ANFIS-PSO was introduced as the premier model in the study area. Furthermore, LVQ results revealed that slope degree, rainfall, and altitude were the most effective factors. As regards the premier model, a total area of 44.74% was recognized as highly susceptible to flooding. The results of this study can be used as a platform for better land use planning in order to manage the highly susceptible zones to flooding and reduce the anticipated losses. Copyright © 2017 Elsevier B.V. All rights reserved.
Handwritten digits recognition using HMM and PSO based on storks
NASA Astrophysics Data System (ADS)
Yan, Liao; Jia, Zhenhong; Yang, Jie; Pang, Shaoning
2010-07-01
A new method for handwritten digits recognition based on hidden markov model (HMM) and particle swarm optimization (PSO) is proposed. This method defined 24 strokes with the sense of directional, to make up for the shortage that is sensitive in choice of stating point in traditional methods, but also reduce the ambiguity caused by shakes. Make use of excellent global convergence of PSO; improving the probability of finding the optimum and avoiding local infinitesimal obviously. Experimental results demonstrate that compared with the traditional methods, the proposed method can make most of the recognition rate of handwritten digits improved.
Particle Swarm Optimization with Double Learning Patterns.
Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian
2016-01-01
Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz
This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variablesmore » that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.« less
Multivariable optimization of liquid rocket engines using particle swarm algorithms
NASA Astrophysics Data System (ADS)
Jones, Daniel Ray
Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.
NASA Astrophysics Data System (ADS)
Kamaruddin, Saadi Bin Ahmad; Marponga Tolos, Siti; Hee, Pah Chin; Ghani, Nor Azura Md; Ramli, Norazan Mohamed; Nasir, Noorhamizah Binti Mohamed; Ksm Kader, Babul Salam Bin; Saiful Huq, Mohammad
2017-03-01
Neural framework has for quite a while been known for its ability to handle a complex nonlinear system without a logical model and can learn refined nonlinear associations gives. Theoretically, the most surely understood computation to set up the framework is the backpropagation (BP) count which relies on upon the minimization of the mean square error (MSE). However, this algorithm is not totally efficient in the presence of outliers which usually exist in dynamic data. This paper exhibits the modelling of quadriceps muscle model by utilizing counterfeit smart procedures named consolidated backpropagation neural network nonlinear autoregressive (BPNN-NAR) and backpropagation neural network nonlinear autoregressive moving average (BPNN-NARMA) models in view of utilitarian electrical incitement (FES). We adapted particle swarm optimization (PSO) approach to enhance the performance of backpropagation algorithm. In this research, a progression of tests utilizing FES was led. The information that is gotten is utilized to build up the quadriceps muscle model. 934 preparing information, 200 testing and 200 approval information set are utilized as a part of the improvement of muscle model. It was found that both BPNN-NAR and BPNN-NARMA performed well in modelling this type of data. As a conclusion, the neural network time series models performed reasonably efficient for non-linear modelling such as active properties of the quadriceps muscle with one input, namely output namely muscle force.
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Sahithi, V. V. D.; Rao, C. S. P.
2016-09-01
The lot sizing problem deals with finding optimal order quantities which minimizes the ordering and holding cost of product mix. when multiple items at multiple levels with all capacity restrictions are considered, the lot sizing problem become NP hard. Many heuristics were developed in the past have inevitably failed due to size, computational complexity and time. However the authors were successful in the development of PSO based technique namely iterative improvement binary particles swarm technique to address very large capacitated multi-item multi level lot sizing (CMIMLLS) problem. First binary particle Swarm Optimization algorithm is used to find a solution in a reasonable time and iterative improvement local search mechanism is employed to improvise the solution obtained by BPSO algorithm. This hybrid mechanism of using local search on the global solution is found to improve the quality of solutions with respect to time thus IIBPSO method is found best and show excellent results.
Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy.
Nouri, S; Hosseini Pooya, S M; Soltani Nabipour, J
2017-03-01
The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients. This study evaluates the accuracy of some artificial intelligence methods including neural network and those of combination with genetic algorithm as well as particle swarm optimization (PSO) estimating tumor positions in real-time radiotherapy. One hundred recorded signals of three external markers were used as input data. The signals from 3 markers thorough 10 breathing cycles of a patient treated via a cyber-knife for a lung tumor were used as data input. Then, neural network method and its combination with genetic or PSO algorithms were applied determining the tumor locations using MATLAB© software program. The accuracies were obtained 0.8%, 12% and 14% in neural network, genetic and particle swarm optimization algorithms, respectively. The internal target volume (ITV) should be determined based on the applied neural network algorithm on training steps.
Li, Desheng
2014-01-01
This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem. PMID:24851085
Particle Swarm Optimization Approach in a Consignment Inventory System
NASA Astrophysics Data System (ADS)
Sharifyazdi, Mehdi; Jafari, Azizollah; Molamohamadi, Zohreh; Rezaeiahari, Mandana; Arshizadeh, Rahman
2009-09-01
Consignment Inventory (CI) is a kind of inventory which is in the possession of the customer, but is still owned by the supplier. This creates a condition of shared risk whereby the supplier risks the capital investment associated with the inventory while the customer risks dedicating retail space to the product. This paper considers both the vendor's and the retailers' costs in an integrated model. The vendor here is a warehouse which stores one type of product and supplies it at the same wholesale price to multiple retailers who then sell the product in independent markets at retail prices. Our main aim is to design a CI system which generates minimum costs for the two parties. Here a Particle Swarm Optimization (PSO) algorithm is developed to calculate the proper values. Finally a sensitivity analysis is performed to examine the effects of each parameter on decision variables. Also PSO performance is compared with genetic algorithm.
Estimating SPT-N Value Based on Soil Resistivity using Hybrid ANN-PSO Algorithm
NASA Astrophysics Data System (ADS)
Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd
2018-04-01
Standard Penetration Resistance (N value) is used in many empirical geotechnical engineering formulas. Meanwhile, soil resistivity is a measure of soil’s resistance to electrical flow. For a particular site, usually, only a limited N value data are available. In contrast, resistivity data can be obtained extensively. Moreover, previous studies showed evidence of a correlation between N value and resistivity value. Yet, no existing method is able to interpret resistivity data for estimation of N value. Thus, the aim is to develop a method for estimating N-value using resistivity data. This study proposes a hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) method to estimate N value using resistivity data. Five different ANN-PSO models based on five boreholes were developed and analyzed. The performance metrics used were the coefficient of determination, R2 and mean absolute error, MAE. Analysis of result found that this method can estimate N value (R2 best=0.85 and MAEbest=0.54) given that the constraint, Δ {\\bar{l}}ref, is satisfied. The results suggest that ANN-PSO method can be used to estimate N value with good accuracy.
NASA Astrophysics Data System (ADS)
Khatir, Samir; Dekemele, Kevin; Loccufier, Mia; Khatir, Tawfiq; Abdel Wahab, Magd
2018-02-01
In this paper, a technique is presented for the detection and localization of an open crack in beam-like structures using experimentally measured natural frequencies and the Particle Swarm Optimization (PSO) method. The technique considers the variation in local flexibility near the crack. The natural frequencies of a cracked beam are determined experimentally and numerically using the Finite Element Method (FEM). The optimization algorithm is programmed in MATLAB. The algorithm is used to estimate the location and severity of a crack by minimizing the differences between measured and calculated frequencies. The method is verified using experimentally measured data on a cantilever steel beam. The Fourier transform is adopted to improve the frequency resolution. The results demonstrate the good accuracy of the proposed technique.
Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.
Pan, Indranil; Das, Saptarshi
2016-05-01
This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT
2017-01-01
Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of “premature convergence,” that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment. PMID:29181020
Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT.
Nie, Xiaohua; Wang, Wei; Nie, Haoyao
2017-01-01
Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of "premature convergence," that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.
Traveling Salesman Problem for Surveillance Mission Using Particle Swarm Optimization
2001-03-20
design of experiments, results of the experiments, and qualitative and quantitative analysis . Conclusions and recommendations based on the qualitative and...characterize the algorithm. Such analysis and comparison between LK and a non-deterministic algorithm produces claims such as "Lin-Kernighan algorithm takes... based on experiments 5 and 6. All other parameters are the same as the baseline (see 4.2.1.2). 4.2.2.6 Experiment 10 - Fine Tuning PSO AS: 85,95% Global
Particle Swarm Optimization with Double Learning Patterns
Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian
2016-01-01
Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747
Daily River Flow Forecasting with Hybrid Support Vector Machine – Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Zaini, N.; Malek, M. A.; Yusoff, M.; Mardi, N. H.; Norhisham, S.
2018-04-01
The application of artificial intelligence techniques for river flow forecasting can further improve the management of water resources and flood prevention. This study concerns the development of support vector machine (SVM) based model and its hybridization with particle swarm optimization (PSO) to forecast short term daily river flow at Upper Bertam Catchment located in Cameron Highland, Malaysia. Ten years duration of historical rainfall, antecedent river flow data and various meteorology parameters data from 2003 to 2012 are used in this study. Four SVM based models are proposed which are SVM1, SVM2, SVM-PSO1 and SVM-PSO2 to forecast 1 to 7 day ahead of river flow. SVM1 and SVM-PSO1 are the models with historical rainfall and antecedent river flow as its input, while SVM2 and SVM-PSO2 are the models with historical rainfall, antecedent river flow data and additional meteorological parameters as input. The performances of the proposed model are measured in term of RMSE and R2 . It is found that, SVM2 outperformed SVM1 and SVM-PSO2 outperformed SVM-PSO1 which meant the additional meteorology parameters used as input to the proposed models significantly affect the model performances. Hybrid models SVM-PSO1 and SVM-PSO2 yield higher performances as compared to SVM1 and SVM2. It is found that hybrid models are more effective in forecasting river flow at 1 to 7 day ahead at the study area.
Bao, Hongda; He, Shouyu; Liu, Zhen; Zhu, Zezhang; Qiu, Yong; Zhu, Feng
2015-03-01
A retrospective radiographical study. To compare compensatory behavior of coronal and sagittal alignment after pedicle subtraction osteotomy (PSO) and Smith-Petersen osteotomy (SPO) for degenerative kyphoscoliosis. There was a paucity of literature paying attention to the postoperative imbalance after PSO or SPO and natural evolution of the imbalance. A retrospective study was performed on 68 consecutive patients with degenerative kyphoscoliosis treated by lumbar PSO (25 patients) or SPO (43 patients) procedures at a single institution. Long-cassette standing radiographs were taken preoperatively, postoperatively, and at the last follow-up and radiographical parameters were measured. The lower instrumented vertebral level and level of osteotomy were compared between the patients with and without improvement. Negative sagittal vertical axis (SVA) was observed in the PSO group postoperatively, implying an overcorrection of SVA. This negative SVA improved spontaneously during follow-up (P < 0.05). Coronal balance was found to worsen immediately postoperatively in the SPO group (P < 0.05). At the last follow-up, spontaneous improvement was observed in 15 patients and the average coronal balance decreased to 16.35 mm. For the 15 patients with improved coronal balance, fusion at L5 or above was more common compared with the 11 patients with persisted postoperative imbalance (P = 0.027), whereas no difference in term of levels of osteotomy was found (P > 0.05). The overcorrection of SVA is more often seen in the PSO group. The coronal imbalance is more likely to occur in the SPO group. The postoperative sagittal imbalance often spontaneously improves with time. Lower instrumented vertebra at S1 or with pelvic fixation should be regarded as potential risk factors for persistent coronal imbalance in patients with SPO. 3.
NASA Astrophysics Data System (ADS)
Ghulam Saber, Md; Arif Shahriar, Kh; Ahmed, Ashik; Hasan Sagor, Rakibul
2016-10-01
Particle swarm optimization (PSO) and invasive weed optimization (IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square (RMS) deviation is determined and compared.
Machining Parameters Optimization using Hybrid Firefly Algorithm and Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Farahlina Johari, Nur; Zain, Azlan Mohd; Haszlinna Mustaffa, Noorfa; Udin, Amirmudin
2017-09-01
Firefly Algorithm (FA) is a metaheuristic algorithm that is inspired by the flashing behavior of fireflies and the phenomenon of bioluminescent communication and the algorithm is used to optimize the machining parameters (feed rate, depth of cut, and spindle speed) in this research. The algorithm is hybridized with Particle Swarm Optimization (PSO) to discover better solution in exploring the search space. Objective function of previous research is used to optimize the machining parameters in turning operation. The optimal machining cutting parameters estimated by FA that lead to a minimum surface roughness are validated using ANOVA test.
NASA Astrophysics Data System (ADS)
Buyuk, Ersin; Karaman, Abdullah
2017-04-01
We estimated transmissivity and storage coefficient values from the single well water-level measurements positioned ahead of the mining face by using particle swarm optimization (PSO) technique. The water-level response to the advancing mining face contains an semi-analytical function that is not suitable for conventional inversion shemes because the partial derivative is difficult to calculate . Morever, the logaritmic behaviour of the model create difficulty for obtaining an initial model that may lead to a stable convergence. The PSO appears to obtain a reliable solution that produce a reasonable fit between water-level data and model function response. Optimization methods have been used to find optimum conditions consisting either minimum or maximum of a given objective function with regard to some criteria. Unlike PSO, traditional non-linear optimization methods have been used for many hydrogeologic and geophysical engineering problems. These methods indicate some difficulties such as dependencies to initial model, evolution of the partial derivatives that is required while linearizing the model and trapping at local optimum. Recently, Particle swarm optimization (PSO) became the focus of modern global optimization method that is inspired from the social behaviour of birds of swarms, and appears to be a reliable and powerful algorithms for complex engineering applications. PSO that is not dependent on an initial model, and non-derivative stochastic process appears to be capable of searching all possible solutions in the model space either around local or global optimum points.
Hybrid PSO-ASVR-based method for data fitting in the calibration of infrared radiometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Sen; Li, Chengwei, E-mail: heikuanghit@163.com
2016-06-15
The present paper describes a hybrid particle swarm optimization-adaptive support vector regression (PSO-ASVR)-based method for data fitting in the calibration of infrared radiometer. The proposed hybrid PSO-ASVR-based method is based on PSO in combination with Adaptive Processing and Support Vector Regression (SVR). The optimization technique involves setting parameters in the ASVR fitting procedure, which significantly improves the fitting accuracy. However, its use in the calibration of infrared radiometer has not yet been widely explored. Bearing this in mind, the PSO-ASVR-based method, which is based on the statistical learning theory, is successfully used here to get the relationship between the radiationmore » of a standard source and the response of an infrared radiometer. Main advantages of this method are the flexible adjustment mechanism in data processing and the optimization mechanism in a kernel parameter setting of SVR. Numerical examples and applications to the calibration of infrared radiometer are performed to verify the performance of PSO-ASVR-based method compared to conventional data fitting methods.« less
NASA Astrophysics Data System (ADS)
Rayhana, N.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.; Sazli, M.; Yahya, Z. R.
2017-09-01
This study presents the application of optimisation method to reduce the warpage of side arm part. Autodesk Moldflow Insight software was integrated into this study to analyse the warpage. The design of Experiment (DOE) for Response Surface Methodology (RSM) was constructed and by using the equation from RSM, Particle Swarm Optimisation (PSO) was applied. The optimisation method will result in optimised processing parameters with minimum warpage. Mould temperature, melt temperature, packing pressure, packing time and cooling time was selected as the variable parameters. Parameters selection was based on most significant factor affecting warpage stated by previous researchers. The results show that warpage was improved by 28.16% for RSM and 28.17% for PSO. The warpage improvement in PSO from RSM is only by 0.01 %. Thus, the optimisation using RSM is already efficient to give the best combination parameters and optimum warpage value for side arm part. The most significant parameters affecting warpage are packing pressure.
Analytical Model-Based Design Optimization of a Transverse Flux Machine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz
This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variablesmore » that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.« less
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.
Fan, Mingyi; Hu, Jiwei; Cao, Rensheng; Xiong, Kangning; Wei, Xionghui
2017-12-21
Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) magnetic nanocomposites were prepared and then applied in the Cu(II) removal from aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and superconduction quantum interference device magnetometer were performed to characterize the nZVI/rGO nanocomposites. In order to reduce the number of experiments and the economic cost, response surface methodology (RSM) combined with artificial intelligence (AI) techniques, such as artificial neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), has been utilized as a major tool that can model and optimize the removal processes, because a tremendous advance has recently been made on AI that may result in extensive applications. Based on RSM, ANN-GA and ANN-PSO were employed to model the Cu(II) removal process and optimize the operating parameters, e.g., operating temperature, initial pH, initial concentration and contact time. The ANN-PSO model was proven to be an effective tool for modeling and optimizing the Cu(II) removal with a low absolute error and a high removal efficiency. Furthermore, the isotherm, kinetic, thermodynamic studies and the XPS analysis were performed to explore the mechanisms of Cu(II) removal process.
NASA Astrophysics Data System (ADS)
Sun, Congcong; Wang, Zhijie; Liu, Sanming; Jiang, Xiuchen; Sheng, Gehao; Liu, Tianyu
2017-05-01
Wind power has the advantages of being clean and non-polluting and the development of bundled wind-thermal generation power systems (BWTGSs) is one of the important means to improve wind power accommodation rate and implement “clean alternative” on generation side. A two-stage optimization strategy for BWTGSs considering wind speed forecasting results and load characteristics is proposed. By taking short-term wind speed forecasting results of generation side and load characteristics of demand side into account, a two-stage optimization model for BWTGSs is formulated. By using the environmental benefit index of BWTGSs as the objective function, supply-demand balance and generator operation as the constraints, the first-stage optimization model is developed with the chance-constrained programming theory. By using the operation cost for BWTGSs as the objective function, the second-stage optimization model is developed with the greedy algorithm. The improved PSO algorithm is employed to solve the model and numerical test verifies the effectiveness of the proposed strategy.
An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network.
Cheng, Jing; Xia, Linyuan
2016-08-31
Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm.
An Effective Cuckoo Search Algorithm for Node Localization in Wireless Sensor Network
Cheng, Jing; Xia, Linyuan
2016-01-01
Localization is an essential requirement in the increasing prevalence of wireless sensor network (WSN) applications. Reducing the computational complexity, communication overhead in WSN localization is of paramount importance in order to prolong the lifetime of the energy-limited sensor nodes and improve localization performance. This paper proposes an effective Cuckoo Search (CS) algorithm for node localization. Based on the modification of step size, this approach enables the population to approach global optimal solution rapidly, and the fitness of each solution is employed to build mutation probability for avoiding local convergence. Further, the approach restricts the population in the certain range so that it can prevent the energy consumption caused by insignificant search. Extensive experiments were conducted to study the effects of parameters like anchor density, node density and communication range on the proposed algorithm with respect to average localization error and localization success ratio. In addition, a comparative study was conducted to realize the same localization task using the same network deployment. Experimental results prove that the proposed CS algorithm can not only increase convergence rate but also reduce average localization error compared with standard CS algorithm and Particle Swarm Optimization (PSO) algorithm. PMID:27589756
NASA Astrophysics Data System (ADS)
Bonakdari, Hossein; Zaji, Amir Hossein
2018-03-01
In many hydraulic structures, side weirs have a critical role. Accurately predicting the discharge coefficient is one of the most important stages in the side weir design process. In the present paper, a new high efficient side weir is investigated. To simulate the discharge coefficient of these side weirs, three novel soft computing methods are used. The process includes modeling the discharge coefficient with the hybrid Adaptive Neuro-Fuzzy Interface System (ANFIS) and three optimization algorithms, namely Differential Evaluation (ANFIS-DE), Genetic Algorithm (ANFIS-GA) and Particle Swarm Optimization (ANFIS-PSO). In addition, sensitivity analysis is done to find the most efficient input variables for modeling the discharge coefficient of these types of side weirs. According to the results, the ANFIS method has higher performance when using simpler input variables. In addition, the ANFIS-DE with RMSE of 0.077 has higher performance than the ANFIS-GA and ANFIS-PSO methods with RMSE of 0.079 and 0.096, respectively.
Zhang, Bo; Duan, Haibin
2017-01-01
Three-dimension path planning of uninhabited combat aerial vehicle (UCAV) is a complicated optimal problem, which mainly focused on optimizing the flight route considering the different types of constrains under complex combating environment. A novel predator-prey pigeon-inspired optimization (PPPIO) is proposed to solve the UCAV three-dimension path planning problem in dynamic environment. Pigeon-inspired optimization (PIO) is a new bio-inspired optimization algorithm. In this algorithm, map and compass operator model and landmark operator model are used to search the best result of a function. The prey-predator concept is adopted to improve global best properties and enhance the convergence speed. The characteristics of the optimal path are presented in the form of a cost function. The comparative simulation results show that our proposed PPPIO algorithm is more efficient than the basic PIO, particle swarm optimization (PSO), and different evolution (DE) in solving UCAV three-dimensional path planning problems.
Si, Lei; Wang, Zhongbin; Liu, Xinhua; Tan, Chao; Liu, Ze; Xu, Jing
2016-01-01
Shearers play an important role in fully mechanized coal mining face and accurately identifying their cutting pattern is very helpful for improving the automation level of shearers and ensuring the safety of coal mining. The least squares support vector machine (LSSVM) has been proven to offer strong potential in prediction and classification issues, particularly by employing an appropriate meta-heuristic algorithm to determine the values of its two parameters. However, these meta-heuristic algorithms have the drawbacks of being hard to understand and reaching the global optimal solution slowly. In this paper, an improved fly optimization algorithm (IFOA) to optimize the parameters of LSSVM was presented and the LSSVM coupled with IFOA (IFOA-LSSVM) was used to identify the shearer cutting pattern. The vibration acceleration signals of five cutting patterns were collected and the special state features were extracted based on the ensemble empirical mode decomposition (EEMD) and the kernel function. Some examples on the IFOA-LSSVM model were further presented and the results were compared with LSSVM, PSO-LSSVM, GA-LSSVM and FOA-LSSVM models in detail. The comparison results indicate that the proposed approach was feasible, efficient and outperformed the others. Finally, an industrial application example at the coal mining face was demonstrated to specify the effect of the proposed system. PMID:26771615
Fast-match on particle swarm optimization with variant system mechanism
NASA Astrophysics Data System (ADS)
Wang, Yuehuang; Fang, Xin; Chen, Jie
2018-03-01
Fast-Match is a fast and effective algorithm for approximate template matching under 2D affine transformations, which can match the target with maximum similarity without knowing the target gesture. It depends on the minimum Sum-of-Absolute-Differences (SAD) error to obtain the best affine transformation. The algorithm is widely used in the field of matching images because of its fastness and robustness. In this paper, our approach is to search an approximate affine transformation over Particle Swarm Optimization (PSO) algorithm. We treat each potential transformation as a particle that possesses memory function. Each particle is given a random speed and flows throughout the 2D affine transformation space. To accelerate the algorithm and improve the abilities of seeking the global excellent result, we have introduced the variant system mechanism on this basis. The benefit is that we can avoid matching with huge amount of potential transformations and falling into local optimal condition, so that we can use a few transformations to approximate the optimal solution. The experimental results prove that our method has a faster speed and a higher accuracy performance with smaller affine transformation space.
NASA Astrophysics Data System (ADS)
He, Runnan; Wang, Kuanquan; Li, Qince; Yuan, Yongfeng; Zhao, Na; Liu, Yang; Zhang, Henggui
2017-12-01
Cardiovascular diseases are associated with high morbidity and mortality. However, it is still a challenge to diagnose them accurately and efficiently. Electrocardiogram (ECG), a bioelectrical signal of the heart, provides crucial information about the dynamical functions of the heart, playing an important role in cardiac diagnosis. As the QRS complex in ECG is associated with ventricular depolarization, therefore, accurate QRS detection is vital for interpreting ECG features. In this paper, we proposed a real-time, accurate, and effective algorithm for QRS detection. In the algorithm, a proposed preprocessor with a band-pass filter was first applied to remove baseline wander and power-line interference from the signal. After denoising, a method combining K-Nearest Neighbor (KNN) and Particle Swarm Optimization (PSO) was used for accurate QRS detection in ECGs with different morphologies. The proposed algorithm was tested and validated using 48 ECG records from MIT-BIH arrhythmia database (MITDB), achieved a high averaged detection accuracy, sensitivity and positive predictivity of 99.43, 99.69, and 99.72%, respectively, indicating a notable improvement to extant algorithms as reported in literatures.
Adam, Asrul; Shapiai, Mohd Ibrahim; Tumari, Mohd Zaidi Mohd; Mohamad, Mohd Saberi; Mubin, Marizan
2014-01-01
Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model.
PSO-based methods for medical image registration and change assessment of pigmented skin
NASA Astrophysics Data System (ADS)
Kacenjar, Steve; Zook, Matthew; Balint, Michael
2011-03-01
There are various scientific and technological areas in which it is imperative to rapidly detect and quantify changes in imagery over time. In fields such as earth remote sensing, aerospace systems, and medical imaging, searching for timedependent, regional changes across deformable topographies is complicated by varying camera acquisition geometries, lighting environments, background clutter conditions, and occlusion. Under these constantly-fluctuating conditions, the use of standard, rigid-body registration approaches often fail to provide sufficient fidelity to overlay image scenes together. This is problematic because incorrect assessments of the underlying changes of high-level topography can result in systematic errors in the quantification and classification of interested areas. For example, in the current naked-eye detection strategies of melanoma, a dermatologist often uses static morphological attributes to identify suspicious skin lesions for biopsy. This approach does not incorporate temporal changes which suggest malignant degeneration. By performing the co-registration of time-separated skin imagery, a dermatologist may more effectively detect and identify early morphological changes in pigmented lesions; enabling the physician to detect cancers at an earlier stage resulting in decreased morbidity and mortality. This paper describes an image processing system which will be used to detect changes in the characteristics of skin lesions over time. The proposed system consists of three main functional elements: 1.) coarse alignment of timesequenced imagery, 2.) refined alignment of local skin topographies, and 3.) assessment of local changes in lesion size. During the coarse alignment process, various approaches can be used to obtain a rough alignment, including: 1.) a manual landmark/intensity-based registration method1, and 2.) several flavors of autonomous optical matched filter methods2. These procedures result in the rough alignment of a patient's back topography. Since the skin is a deformable membrane, this process only provides an initial condition for subsequent refinements in aligning the localized topography of the skin. To achieve a refined enhancement, a Particle Swarm Optimizer (PSO) is used to optimally determine the local camera models associated with a generalized geometric transform. Here the optimization process is driven using the minimization of entropy between the multiple time-separated images. Once the camera models are corrected for local skin deformations, the images are compared using both pixel-based and regional-based methods. Limits on the detectability of change are established by the fidelity to which the algorithm corrects for local skin deformation and background alterations. These limits provide essential information in establishing early-warning thresholds for Melanoma detection. Key to this work is the development of a PSO alignment algorithm to perform the refined alignment in local skin topography between the time sequenced imagery (TSI). Test and validation of this alignment process is achieved using a forward model producing known geometric artifacts in the images and afterwards using a PSO algorithm to demonstrate the ability to identify and correct for these artifacts. Specifically, the forward model introduces local translational, rotational, and magnification changes within the image. These geometric modifiers are expected during TSI acquisition because of logistical issues to precisely align the patient to the image recording geometry and is therefore of paramount importance to any viable image registration system. This paper shows that the PSO alignment algorithm is effective in autonomously determining and mitigating these geometric modifiers. The degree of efficacy is measured by several statistically and morphologically based pre-image filtering operations applied to the TSI imagery before applying the PSO alignment algorithm. These trade studies show that global image threshold binarization provides rapid and superior convergence characteristics relative to that of morphologically based methods.
Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.
Subasi, Abdulhamit
2013-06-01
Support vector machine (SVM) is an extensively used machine learning method with many biomedical signal classification applications. In this study, a novel PSO-SVM model has been proposed that hybridized the particle swarm optimization (PSO) and SVM to improve the EMG signal classification accuracy. This optimization mechanism involves kernel parameter setting in the SVM training procedure, which significantly influences the classification accuracy. The experiments were conducted on the basis of EMG signal to classify into normal, neurogenic or myopathic. In the proposed method the EMG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT) and a set of statistical features were extracted from these sub-bands to represent the distribution of wavelet coefficients. The obtained results obviously validate the superiority of the SVM method compared to conventional machine learning methods, and suggest that further significant enhancements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. The PSO-SVM yielded an overall accuracy of 97.41% on 1200 EMG signals selected from 27 subject records against 96.75%, 95.17% and 94.08% for the SVM, the k-NN and the RBF classifiers, respectively. PSO-SVM is developed as an efficient tool so that various SVMs can be used conveniently as the core of PSO-SVM for diagnosis of neuromuscular disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.
Particle Swarm Optimization approach to defect detection in armour ceramics.
Kesharaju, Manasa; Nagarajah, Romesh
2017-03-01
In this research, various extracted features were used in the development of an automated ultrasonic sensor based inspection system that enables defect classification in each ceramic component prior to despatch to the field. Classification is an important task and large number of irrelevant, redundant features commonly introduced to a dataset reduces the classifiers performance. Feature selection aims to reduce the dimensionality of the dataset while improving the performance of a classification system. In the context of a multi-criteria optimization problem (i.e. to minimize classification error rate and reduce number of features) such as one discussed in this research, the literature suggests that evolutionary algorithms offer good results. Besides, it is noted that Particle Swarm Optimization (PSO) has not been explored especially in the field of classification of high frequency ultrasonic signals. Hence, a binary coded Particle Swarm Optimization (BPSO) technique is investigated in the implementation of feature subset selection and to optimize the classification error rate. In the proposed method, the population data is used as input to an Artificial Neural Network (ANN) based classification system to obtain the error rate, as ANN serves as an evaluator of PSO fitness function. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Farhat, I. A. H.; Alpha, C.; Gale, E.; Atia, D. Y.; Stein, A.; Isakovic, A. F.
The scaledown of magnetic tunnel junctions (MTJ) and related nanoscale spintronics devices poses unique challenges for energy optimization of their performance. We demonstrate the dependence of the switching current on the scaledown variable, while considering the influence of geometric parameters of MTJ, such as the free layer thickness, tfree, lateral size of the MTJ, w, and the anisotropy parameter of the MTJ. At the same time, we point out which values of the saturation magnetization, Ms, and anisotropy field, Hk, can lead to lowering the switching current and overall decrease of the energy needed to operate an MTJ. It is demonstrated that scaledown via decreasing the lateral size of the MTJ, while allowing some other parameters to be unconstrained, can improve energy performance by a measurable factor, shown to be the function of both geometric and physical parameters above. Given the complex interdependencies among both families of parameters, we developed a particle swarm optimization (PSO) algorithm that can simultaneously lower energy of operation and the switching current density. Results we obtained in scaledown study and via PSO optimization are compared to experimental results. Support by Mubadala-SRC 2012-VJ-2335 is acknowledged, as are staff at Cornell-CNF and BNL-CFN.
Obtaining orthotropic elasticity tensor using entries zeroing method.
NASA Astrophysics Data System (ADS)
Gierlach, Bartosz; Danek, Tomasz
2017-04-01
A generally anisotropic elasticity tensor obtained from measurements can be represented by a tensor belonging to one of eight material symmetry classes. Knowledge of symmetry class and orientation is helpful for describing physical properties of a medium. For each non-trivial symmetry class except isotropic this problem is nonlinear. A common method of obtaining effective tensor is a choosing its non-trivial symmetry class and minimizing Frobenius norm between measured and effective tensor in the same coordinate system. Global optimization algorithm has to be used to determine the best rotation of a tensor. In this contribution, we propose a new approach to obtain optimal tensor, with the assumption that it is orthotropic (or at least has a similar shape to the orthotropic one). In orthotropic form tensor 24 out of 36 entries are zeros. The idea is to minimize the sum of squared entries which are supposed to be equal to zero through rotation calculated with optimization algorithm - in this case Particle Swarm Optimization (PSO) algorithm. Quaternions were used to parametrize rotations in 3D space to improve computational efficiency. In order to avoid a choice of local minima we apply PSO several times and only if we obtain similar results for the third time we consider it as a correct value and finish computations. To analyze obtained results Monte-Carlo method was used. After thousands of single runs of PSO optimization, we obtained values of quaternion parts and plot them. Points concentrate in several points of the graph following the regular pattern. It suggests the existence of more complex symmetry in the analyzed tensor. Then thousands of realizations of generally anisotropic tensor were generated - each tensor entry was replaced with a random value drawn from normal distribution having a mean equal to measured tensor entry and standard deviation of the measurement. Each of these tensors was subject of PSO based optimization delivering quaternion for optimal rotation. Computations were parallelized with OpenMP to decrease computational time what enables different tensors to be processed by different threads. As a result the distributions of rotated tensor entries values were obtained. For the entries which were to be zeroed we can observe almost normal distributions having mean equal to zero or sum of two normal distributions having inverse means. Non-zero entries represent different distributions with two or three maxima. Analysis of obtained results shows that described method produces consistent values of quaternions used to rotate tensors. Despite of less complex target function in a process of optimization in comparison to common approach, entries zeroing method provides results which can be applied to obtain an orthotropic tensor with good reliability. Modification of the method can produce also a tool for obtaining effective tensors belonging to another symmetry classes. This research was supported by the Polish National Science Center under contract No. DEC-2013/11/B/ST10/0472.
NASA Astrophysics Data System (ADS)
Inclan, Eric; Lassester, Jack; Geohegan, David; Yoon, Mina
Optimization algorithms (OA) coupled with numerical methods enable researchers to identify and study (meta) stable nanoclusters without the control restrictions of empirical methods. An algorithm's performance is governed by two factors: (1) its compatibility with an objective function, (2) the dimension of a design space, which increases with cluster size. Although researchers often tune an algorithm's user-defined parameters (UDP), tuning is not guaranteed to improve performance. In this research, Particle Swarm (PSO) and Differential Evolution (DE), are compared by tuning their UDP in a multi-objective optimization environment (MOE). Combined with a Kolmogorov Smirnov test for statistical significance, the MOE enables the study of the Pareto Front (PF), made of the UDP settings that trade-off between best performance in energy minimization (``effectiveness'') based on force-field potential energy, and best convergence rate (``efficiency''). By studying the PF, this research finds that UDP values frequently suggested in the literature do not provide best effectiveness for these methods. Additionally, monotonic convergence is found to significantly improve efficiency without sacrificing effectiveness for very small systems, suggesting better compatibility. Work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
Odili, Julius Beneoluchi; Mohmad Kahar, Mohd Nizam; Noraziah, A
2017-01-01
In this paper, an attempt is made to apply the African Buffalo Optimization (ABO) to tune the parameters of a PID controller for an effective Automatic Voltage Regulator (AVR). Existing metaheuristic tuning methods have been proven to be quite successful but there were observable areas that need improvements especially in terms of the system's gain overshoot and steady steady state errors. Using the ABO algorithm where each buffalo location in the herd is a candidate solution to the Proportional-Integral-Derivative parameters was very helpful in addressing these two areas of concern. The encouraging results obtained from the simulation of the PID Controller parameters-tuning using the ABO when compared with the performance of Genetic Algorithm PID (GA-PID), Particle-Swarm Optimization PID (PSO-PID), Ant Colony Optimization PID (ACO-PID), PID, Bacteria-Foraging Optimization PID (BFO-PID) etc makes ABO-PID a good addition to solving PID Controller tuning problems using metaheuristics.
The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.
Han, Gaining; Fu, Weiping; Wang, Wen
2016-01-01
In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.
Reconfiguration of Smart Distribution Network in the Presence of Renewable DG’s Using GWO Algorithm
NASA Astrophysics Data System (ADS)
Siavash, M.; Pfeifer, C.; Rahiminejad, A.; Vahidi, B.
2017-08-01
In this paper, the optimal reconfiguration of smart distribution system is performed with the aim of active power loss reduction and voltage stability improvement. The distribution network is considered equipped with wind turbines and solar cells as Renewable DG’s (RDG’s). Because of the presence of smart metering devices, the network state is known accurately at any moment. Based on the network conditions (the amount of load and generation of RDG’s), the optimal configuration of the network is obtained. The optimization problem is solved using a recently introduced method known as Grey Wolf Optimizer (GWO). The proposed approach is applied on 69-bus radial test system and the results of the GWO are compared to those of Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). The results show the effectiveness of the proposed approach and the selected optimization method.
The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm
Han, Gaining; Fu, Weiping; Wang, Wen
2016-01-01
In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability. PMID:26880881
Raut, Sangeeta; Raut, Smita; Sharma, Manisha; Srivastav, Chaitanya; Adhikari, Basudam; Sen, Sudip Kumar
2015-09-01
In the present study, artificial neural network (ANN) modelling coupled with particle swarm optimization (PSO) algorithm was used to optimize the process variables for enhanced low density polyethylene (LDPE) degradation by Curvularia lunata SG1. In the non-linear ANN model, temperature, pH, contact time and agitation were used as input variables and polyethylene bio-degradation as the output variable. Further, on application of PSO to the ANN model, the optimum values of the process parameters were as follows: pH = 7.6, temperature = 37.97 °C, agitation rate = 190.48 rpm and incubation time = 261.95 days. A comparison between the model results and experimental data gave a high correlation coefficient ([Formula: see text]). Significant enhancement of LDPE bio-degradation using C. lunata SG1by about 48 % was achieved under optimum conditions. Thus, the novelty of the work lies in the application of combination of ANN-PSO as optimization strategy to enhance the bio-degradation of LDPE.
Lehman, Ronald A; Kang, Daniel G; Wagner, Scott C; Paik, Haines; Cardoso, Mario J; Bernstock, Joshua D; Dmitriev, Anton E
2015-07-01
Transverse connectors (TCs) are often used to improve the rigidity of posterior spinal instrumentation as previous investigations have suggested that TCs enhance torsional rigidity in long-segment thoracic constructs. Posterior osteotomies, such as pedicle subtraction osteotomy (PSO), are used in severe thoracic deformities and provide a significant amount of correction; as a consequence, however, PSOs also induce three-column spinal instability. In theory, augmentation of longitudinal constructs with TC after a thoracic PSO may provide additional rigidity, but the concept has not been previously evaluated. To evaluate the biomechanical contribution of TC to the rigidity of a long-segment pedicle screw-rod construct after a thoracic PSO. An in vitro fresh-frozen human cadaveric biomechanical analysis. Seven human cadaveric thoracic spines were prepared and instrumented from T4-T10 with bilateral pedicle screws/rods and a PSO was performed at T7. Intact range of motion (ROM) testing was performed with nondestructive loading and analyzed by loading modality (axial rotation [AR], flexion/extension [FE], and lateral bending [LB]). Range of motion analysis was performed in the unaugmented construct, the construct augmented with one TC, and the construct augmented with two TCs. After PSO and an unaugmented longitudinal pedicle screw-rod construct, T4-T10 (overall construct) and T6-T8 (PSO site) ROMs were significantly reduced in all planes of motion compared with intact condition (AR: 11.8° vs. 31.7°; FE: 2.4° vs. 12.3°; 3.4° vs. 17.9°, respectively, p<.05). Augmentation of longitudinal construct with either one or two TCs did not significantly increase construct rigidity in FE or LB compared with the unaugmented construct (p>.05). In contrast, during AR, global ROM was significantly reduced by 43% and 48% at T6-T8 (1.7° and 1.2° vs. 2.38°, respectively) after addition of one and two TCs (p<.05), respectively. One TC did not significantly reduce torsional ROM from the intact state. Two TCs significantly improved torsional rigidity of the entire construct and at the PSO site, with no differences in rigidity for FE and LB or with the addition of only one TC. In the setting of a PSO and long-segment pedicle screw-rod construct, augmentation with at least two TCs should be considered to improve torsional rigidity. Published by Elsevier Inc.
A Comprehensive Review of Swarm Optimization Algorithms
2015-01-01
Many swarm optimization algorithms have been introduced since the early 60’s, Evolutionary Programming to the most recent, Grey Wolf Optimization. All of these algorithms have demonstrated their potential to solve many optimization problems. This paper provides an in-depth survey of well-known optimization algorithms. Selected algorithms are briefly explained and compared with each other comprehensively through experiments conducted using thirty well-known benchmark functions. Their advantages and disadvantages are also discussed. A number of statistical tests are then carried out to determine the significant performances. The results indicate the overall advantage of Differential Evolution (DE) and is closely followed by Particle Swarm Optimization (PSO), compared with other considered approaches. PMID:25992655
NASA Astrophysics Data System (ADS)
Sue-Ann, Goh; Ponnambalam, S. G.
This paper focuses on the operational issues of a Two-echelon Single-Vendor-Multiple-Buyers Supply chain (TSVMBSC) under vendor managed inventory (VMI) mode of operation. To determine the optimal sales quantity for each buyer in TSVMBC, a mathematical model is formulated. Based on the optimal sales quantity can be obtained and the optimal sales price that will determine the optimal channel profit and contract price between the vendor and buyer. All this parameters depends upon the understanding of the revenue sharing between the vendor and buyers. A Particle Swarm Optimization (PSO) is proposed for this problem. Solutions obtained from PSO is compared with the best known results reported in literature.
Feature weighting using particle swarm optimization for learning vector quantization classifier
NASA Astrophysics Data System (ADS)
Dongoran, A.; Rahmadani, S.; Zarlis, M.; Zakarias
2018-03-01
This paper discusses and proposes a method of feature weighting in classification assignments on competitive learning artificial neural network LVQ. The weighting feature method is the search for the weight of an attribute using the PSO so as to give effect to the resulting output. This method is then applied to the LVQ-Classifier and tested on the 3 datasets obtained from the UCI Machine Learning repository. Then an accuracy analysis will be generated by two approaches. The first approach using LVQ1, referred to as LVQ-Classifier and the second approach referred to as PSOFW-LVQ, is a proposed model. The result shows that the PSO algorithm is capable of finding attribute weights that increase LVQ-classifier accuracy.
Jeong, Dong Wook; Choi, Eun Jung; Kim, Yun Jin; Lee, Jeong Gyu; Yi, Yu Hyeon; Cha, Hyeong Soo
2014-01-01
Pumpkin seed oil (PSO) has been shown to block the action of 5-alpha reductase and to have antiandrogenic effects on rats. This randomized, placebo-controlled, double-blind study was designed to investigate the efficacy and tolerability of PSO for treatment of hair growth in male patients with mild to moderate androgenetic alopecia (AGA). 76 male patients with AGA received 400 mg of PSO per day or a placebo for 24 weeks. Change over time in scalp hair growth was evaluated by four outcomes: assessment of standardized clinical photographs by a blinded investigator; patient self-assessment scores; scalp hair thickness; and scalp hair counts. Reports of adverse events were collected throughout the study. After 24 weeks of treatment, self-rated improvement score and self-rated satisfaction scores in the PSO-treated group were higher than in the placebo group (P = 0.013, 0.003). The PSO-treated group had more hair after treatment than at baseline, compared to the placebo group (P < 0.001). Mean hair count increases of 40% were observed in PSO-treated men at 24 weeks, whereas increases of 10% were observed in placebo-treated men (P < 0.001). Adverse effects were not different in the two groups. PMID:24864154
Adam, Asrul; Mohd Tumari, Mohd Zaidi; Mohamad, Mohd Saberi
2014-01-01
Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model. PMID:25243236
Ogdie, Alexis; Grewal, Sungat K; Noe, Megan H; Shin, Daniel B; Takeshita, Junko; Chiesa Fuxench, Zelma C; Carr, Rotonya M; Gelfand, Joel M
2018-04-01
Relatively little is known about the risk for incident liver disease in psoriasis (PsO), psoriatic arthritis (PsA), and rheumatoid arthritis (RA). We performed a cohort study among patients with PsO, PsA, or RA and matched controls in The Health Improvement Network from 1994 to 2014. Outcomes of interest were any liver disease, nonalcoholic fatty liver disease, and cirrhosis (any etiology). Among patients with PsO (N = 197,130), PsA (N = 12,308), RA (N = 54,251), and matched controls (N = 1,279,754), the adjusted hazard ratios for any liver disease were elevated among patients with PsO (without systemic therapy [ST] 1.37; with ST 1.97), PsA (without ST 1.38; with ST 1.67), and RA without an ST (1.49) but not elevated in patients with RA prescribed an ST (0.96). Incident nonalcoholic fatty liver disease was highest in patients with PsO prescribed an ST (2.23) and PsA with an ST (2.11). The risk of cirrhosis was highest among patients with PsO with an ST (2.62) and PsA without an ST (3.15). Additionally, the prevalence of liver disease and cirrhosis increased in a stepwise fashion with increasing body surface area affected by PsO (P for trend <0.001). More so than RA, PsO and PsA are associated with liver disease, particularly nonalcoholic fatty liver disease and cirrhosis, and this was true even among patients without ST exposure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
A LiDAR data-based camera self-calibration method
NASA Astrophysics Data System (ADS)
Xu, Lijun; Feng, Jing; Li, Xiaolu; Chen, Jianjun
2018-07-01
To find the intrinsic parameters of a camera, a LiDAR data-based camera self-calibration method is presented here. Parameters have been estimated using particle swarm optimization (PSO), enhancing the optimal solution of a multivariate cost function. The main procedure of camera intrinsic parameter estimation has three parts, which include extraction and fine matching of interest points in the images, establishment of cost function, based on Kruppa equations and optimization of PSO using LiDAR data as the initialization input. To improve the precision of matching pairs, a new method of maximal information coefficient (MIC) and maximum asymmetry score (MAS) was used to remove false matching pairs based on the RANSAC algorithm. Highly precise matching pairs were used to calculate the fundamental matrix so that the new cost function (deduced from Kruppa equations in terms of the fundamental matrix) was more accurate. The cost function involving four intrinsic parameters was minimized by PSO for the optimal solution. To overcome the issue of optimization pushed to a local optimum, LiDAR data was used to determine the scope of initialization, based on the solution to the P4P problem for camera focal length. To verify the accuracy and robustness of the proposed method, simulations and experiments were implemented and compared with two typical methods. Simulation results indicated that the intrinsic parameters estimated by the proposed method had absolute errors less than 1.0 pixel and relative errors smaller than 0.01%. Based on ground truth obtained from a meter ruler, the distance inversion accuracy in the experiments was smaller than 1.0 cm. Experimental and simulated results demonstrated that the proposed method was highly accurate and robust.
Adaptive particle swarm optimization for optimal orbital elements of binary stars
NASA Astrophysics Data System (ADS)
Attia, Abdel-Fattah
2016-12-01
The paper presents an adaptive particle swarm optimization (APSO) as an alternative method to determine the optimal orbital elements of the star η Bootis of MK type G0 IV. The proposed algorithm transforms the problem of finding periodic orbits into the problem of detecting global minimizers as a function, to get a best fit of Keplerian and Phase curves. The experimental results demonstrate that the proposed approach of APSO generally more accurate than the standard particle swarm optimization (PSO) and other published optimization algorithms, in terms of solution accuracy, convergence speed and algorithm reliability.
A PSO-Based Hybrid Metaheuristic for Permutation Flowshop Scheduling Problems
Zhang, Le; Wu, Jinnan
2014-01-01
This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature. PMID:24672389
A PSO-based hybrid metaheuristic for permutation flowshop scheduling problems.
Zhang, Le; Wu, Jinnan
2014-01-01
This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and the total flowtime and proposes a hybrid metaheuristic based on the particle swarm optimization (PSO). To enhance the exploration ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated. To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature.
Yagi, Mitsuru; Kaneko, Shinjiro; Yato, Yoshiyuki; Asazuma, Takashi; Machida, Masafumi
2016-08-01
Pedicle subtraction osteotomy (PSO) is widely used to treat severe fixed sagittal imbalance. However, the effect of PSO on balance has not been fully documented. The aim of this study was to assess dynamic walking balance after PSO to treat fixed sagittal imbalance. Gait and balance were assessed in 15 consecutive adult female patients who had been treated by PSO for a fixed sagittal imbalance and compare patients' preop and postop dynamic walking balance with that of 15 age- and gender-matched healthy volunteers (HV). Each patient's chart, X-rays, pre and postop SRS22 outcome scores, and ODI were reviewed. Means were compared by Mann-Whitney U test and Chi-square test. The mean age was 66.3 years (51-74 years). The mean follow-up was 2.7 years (2-3.5 years). The C7PL and GL, measured on the force platform, were both improved from 24.2 ± 7.3 cm and 27.6 ± 9.4 to 5.4 ± 2.6 cm and 7.2 ± 3.4 cm, respectively. The baseline hip ROM was significantly smaller in patients compared to HV, whereas no significant difference was observed in the knee or ankle ROM. The pelvic tilt (preop -0.4° ± 1.4°, postop 8.9° ± 1.0°), and maximum hip-extension angle (preop -1.2° ± 14.2°, postop -11.2° ± 7.2°) were also improved after surgery. Cadence (116 s/min), stance-swing ratio (stance 63.2 % vs. swing 36.8 %), and stride (98.0 cm) were all increased after surgery. On the other hand, gait velocity was significantly slower in the PSO group at both pre and postop than in HV (PSO 53.3 m/min at preop and 58.8 m/min at postop vs. HV 71.1 m/min, p = 0.04). Despite a mild residual spinal-pelvic malalignment, PSO restored sagittal alignment and balance satisfactorily and has improved the gait pattern.
An algorithmic framework for multiobjective optimization.
Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization.
An Algorithmic Framework for Multiobjective Optimization
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
Page, Tessa; Nguyen, Huong Thi Huynh; Hilts, Lindsey; Ramos, Lorena; Hanrahan, Grady
2012-06-01
This work reveals a computational framework for parallel electrophoretic separation of complex biological macromolecules and model urinary metabolites. More specifically, the implementation of a particle swarm optimization (PSO) algorithm on a neural network platform for multiparameter optimization of multiplexed 24-capillary electrophoresis technology with UV detection is highlighted. Two experimental systems were examined: (1) separation of purified rabbit metallothioneins and (2) separation of model toluene urinary metabolites and selected organic acids. Results proved superior to the use of neural networks employing standard back propagation when examining training error, fitting response, and predictive abilities. Simulation runs were obtained as a result of metaheuristic examination of the global search space with experimental responses in good agreement with predicted values. Full separation of selected analytes was realized after employing optimal model conditions. This framework provides guidance for the application of metaheuristic computational tools to aid in future studies involving parallel chemical separation and screening. Adaptable pseudo-code is provided to enable users of varied software packages and modeling framework to implement the PSO algorithm for their desired use.
Load management as a smart grid concept for sizing and designing of hybrid renewable energy systems
NASA Astrophysics Data System (ADS)
Eltamaly, Ali M.; Mohamed, Mohamed A.; Al-Saud, M. S.; Alolah, Abdulrahman I.
2017-10-01
Optimal sizing of hybrid renewable energy systems (HRES) to satisfy load requirements with the highest reliability and lowest cost is a crucial step in building HRESs to supply electricity to remote areas. Applying smart grid concepts such as load management can reduce the size of HRES components and reduce the cost of generated energy considerably. In this article, sizing of HRES is carried out by dividing the load into high- and low-priority parts. The proposed system is formed by a photovoltaic array, wind turbines, batteries, fuel cells and a diesel generator as a back-up energy source. A smart particle swarm optimization (PSO) algorithm using MATLAB is introduced to determine the optimal size of the HRES. The simulation was carried out with and without division of the load to compare these concepts. HOMER software was also used to simulate the proposed system without dividing the loads to verify the results obtained from the proposed PSO algorithm. The results show that the percentage of division of the load is inversely proportional to the cost of the generated energy.
Xu, Yingjie; Gao, Tian
2016-01-01
Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343
NASA Astrophysics Data System (ADS)
Lagos, Soledad R.; Velis, Danilo R.
2018-02-01
We perform the location of microseismic events generated in hydraulic fracturing monitoring scenarios using two global optimization techniques: Very Fast Simulated Annealing (VFSA) and Particle Swarm Optimization (PSO), and compare them against the classical grid search (GS). To this end, we present an integrated and optimized workflow that concatenates into an automated bash script the different steps that lead to the microseismic events location from raw 3C data. First, we carry out the automatic detection, denoising and identification of the P- and S-waves. Secondly, we estimate their corresponding backazimuths using polarization information, and propose a simple energy-based criterion to automatically decide which is the most reliable estimate. Finally, after taking proper care of the size of the search space using the backazimuth information, we perform the location using the aforementioned algorithms for 2D and 3D usual scenarios of hydraulic fracturing processes. We assess the impact of restricting the search space and show the advantages of using either VFSA or PSO over GS to attain significant speed-ups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornelakis, Aris
2010-12-15
Particle Swarm Optimization (PSO) is a highly efficient evolutionary optimization algorithm. In this paper a multiobjective optimization algorithm based on PSO applied to the optimal design of photovoltaic grid-connected systems (PVGCSs) is presented. The proposed methodology intends to suggest the optimal number of system devices and the optimal PV module installation details, such that the economic and environmental benefits achieved during the system's operational lifetime period are both maximized. The objective function describing the economic benefit of the proposed optimization process is the lifetime system's total net profit which is calculated according to the method of the Net Present Valuemore » (NPV). The second objective function, which corresponds to the environmental benefit, equals to the pollutant gas emissions avoided due to the use of the PVGCS. The optimization's decision variables are the optimal number of the PV modules, the PV modules optimal tilt angle, the optimal placement of the PV modules within the available installation area and the optimal distribution of the PV modules among the DC/AC converters. (author)« less
Gu, Li; Xue, Lichun; Song, Qi; Wang, Fengji; He, Huaqin; Zhang, Zhongyi
2016-12-01
During commercial transactions, the quality of flue-cured tobacco leaves must be characterized efficiently, and the evaluation system should be easily transferable across different traders. However, there are over 3000 chemical compounds in flue-cured tobacco leaves; thus, it is impossible to evaluate the quality of flue-cured tobacco leaves using all the chemical compounds. In this paper, we used Support Vector Machine (SVM) algorithm together with 22 chemical compounds selected by ReliefF-Particle Swarm Optimization (R-PSO) to classify the fragrant style of flue-cured tobacco leaves, where the Accuracy (ACC) and Matthews Correlation Coefficient (MCC) were 90.95% and 0.80, respectively. SVM algorithm combined with 19 chemical compounds selected by R-PSO achieved the best assessment performance of the aromatic quality of tobacco leaves, where the PCC and MSE were 0.594 and 0.263, respectively. Finally, we constructed two online tools to classify the fragrant style and evaluate the aromatic quality of flue-cured tobacco leaf samples. These tools can be accessed at http://bioinformatics.fafu.edu.cn/tobacco .
Optimized Hyper Beamforming of Linear Antenna Arrays Using Collective Animal Behaviour
Ram, Gopi; Mandal, Durbadal; Kar, Rajib; Ghoshal, Sakti Prasad
2013-01-01
A novel optimization technique which is developed on mimicking the collective animal behaviour (CAB) is applied for the optimal design of hyper beamforming of linear antenna arrays. Hyper beamforming is based on sum and difference beam patterns of the array, each raised to the power of a hyperbeam exponent parameter. The optimized hyperbeam is achieved by optimization of current excitation weights and uniform interelement spacing. As compared to conventional hyper beamforming of linear antenna array, real coded genetic algorithm (RGA), particle swarm optimization (PSO), and differential evolution (DE) applied to the hyper beam of the same array can achieve reduction in sidelobe level (SLL) and same or less first null beam width (FNBW), keeping the same value of hyperbeam exponent. Again, further reductions of sidelobe level (SLL) and first null beam width (FNBW) have been achieved by the proposed collective animal behaviour (CAB) algorithm. CAB finds near global optimal solution unlike RGA, PSO, and DE in the present problem. The above comparative optimization is illustrated through 10-, 14-, and 20-element linear antenna arrays to establish the optimization efficacy of CAB. PMID:23970843
Illias, Hazlee Azil; Chai, Xin Rui; Abu Bakar, Ab Halim; Mokhlis, Hazlie
2015-01-01
It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.
2015-01-01
It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works. PMID:26103634
Effects of Pomegranate Seed Oil on Metabolic State of Patients with Type 2 Diabetes Mellitus.
Faghihimani, Zahra; Mirmiran, Parvin; Sohrab, Golbon; Iraj, Bijan; Faghihimani, Elham
2016-01-01
Rapid increasing prevalence of diabetes mellitus is a serious health concern in the world. New data determined that the pathogenesis of diabetes mellitus is chronic low-grade inflammation, resulting insulin resistance. Pomegranate seed oil (PSO) has anti-inflammatory effects; though it may reduce insulin resistance and improve glycemia in diabetes mellitus. The present study has been designed to investigate the effects of PSO as a natural dietary component on metabolic state of patients with Type 2 diabetes mellitus. In a randomized double-blind clinical trial study, 80 patients (28 men) with Type 2 diabetes were randomly allocated to the intervention and control groups. The intervention group consumed PSO capsules, containing 1000 mg PSO twice daily (2000 mg PSO), whereas controls take placebo for 8 weeks. The participants followed their previous dietary patterns and medication use. Dietary factors and metabolic factors including lipid profile, fasting plasma sugar, and insulin and were assayed at the baseline and after 8 weeks. Participants in two intervention and control group were similar regarding anthropometric and the dietary factors at baseline and after trial ( P > 0.05). Mean level of total cholesterol, triglyceride, low-density lipoprotein-cholesterol, and high-density lipoprotein was not different significantly between groups after trial ( P > 0.05). Consumption of PSO did not significantly affect the levels of parameters such as fasting blood sugar (FBS), insulin, HbA1c, alanine transferase, and homeostasis model assessment-insulin resistance. Consumption of 2000mg PSO per day for 8 weeks had no effect on FBS, insulin resistance and lipid profile in diabetic patients.
FPGA implementation of neuro-fuzzy system with improved PSO learning.
Karakuzu, Cihan; Karakaya, Fuat; Çavuşlu, Mehmet Ali
2016-07-01
This paper presents the first hardware implementation of neuro-fuzzy system (NFS) with its metaheuristic learning ability on field programmable gate array (FPGA). Metaheuristic learning of NFS for all of its parameters is accomplished by using the improved particle swarm optimization (iPSO). As a second novelty, a new functional approach, which does not require any memory and multiplier usage, is proposed for the Gaussian membership functions of NFS. NFS and its learning using iPSO are implemented on Xilinx Virtex5 xc5vlx110-3ff1153 and efficiency of the proposed implementation tested on two dynamic system identification problems and licence plate detection problem as a practical application. Results indicate that proposed NFS implementation and membership function approximation is as effective as the other approaches available in the literature but requires less hardware resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ant-cuckoo colony optimization for feature selection in digital mammogram.
Jona, J B; Nagaveni, N
2014-01-15
Digital mammogram is the only effective screening method to detect the breast cancer. Gray Level Co-occurrence Matrix (GLCM) textural features are extracted from the mammogram. All the features are not essential to detect the mammogram. Therefore identifying the relevant feature is the aim of this work. Feature selection improves the classification rate and accuracy of any classifier. In this study, a new hybrid metaheuristic named Ant-Cuckoo Colony Optimization a hybrid of Ant Colony Optimization (ACO) and Cuckoo Search (CS) is proposed for feature selection in Digital Mammogram. ACO is a good metaheuristic optimization technique but the drawback of this algorithm is that the ant will walk through the path where the pheromone density is high which makes the whole process slow hence CS is employed to carry out the local search of ACO. Support Vector Machine (SVM) classifier with Radial Basis Kernal Function (RBF) is done along with the ACO to classify the normal mammogram from the abnormal mammogram. Experiments are conducted in miniMIAS database. The performance of the new hybrid algorithm is compared with the ACO and PSO algorithm. The results show that the hybrid Ant-Cuckoo Colony Optimization algorithm is more accurate than the other techniques.
A bat algorithm with mutation for UCAV path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi
2012-01-01
Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models.
A novel approach for dimension reduction of microarray.
Aziz, Rabia; Verma, C K; Srivastava, Namita
2017-12-01
This paper proposes a new hybrid search technique for feature (gene) selection (FS) using Independent component analysis (ICA) and Artificial Bee Colony (ABC) called ICA+ABC, to select informative genes based on a Naïve Bayes (NB) algorithm. An important trait of this technique is the optimization of ICA feature vector using ABC. ICA+ABC is a hybrid search algorithm that combines the benefits of extraction approach, to reduce the size of data and wrapper approach, to optimize the reduced feature vectors. This hybrid search technique is facilitated by evaluating the performance of ICA+ABC on six standard gene expression datasets of classification. Extensive experiments were conducted to compare the performance of ICA+ABC with the results obtained from recently published Minimum Redundancy Maximum Relevance (mRMR) +ABC algorithm for NB classifier. Also to check the performance that how ICA+ABC works as feature selection with NB classifier, compared the combination of ICA with popular filter techniques and with other similar bio inspired algorithm such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The result shows that ICA+ABC has a significant ability to generate small subsets of genes from the ICA feature vector, that significantly improve the classification accuracy of NB classifier compared to other previously suggested methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
A global optimization algorithm inspired in the behavior of selfish herds.
Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián
2017-10-01
In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.
Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM
NASA Astrophysics Data System (ADS)
Sheng, Hanlin; Zhang, Tianhong
2017-08-01
In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.
Mutation particle swarm optimization of the BP-PID controller for piezoelectric ceramics
NASA Astrophysics Data System (ADS)
Zheng, Huaqing; Jiang, Minlan
2016-01-01
PID control is the most common used method in industrial control because its structure is simple and it is easy to implement. PID controller has good control effect, now it has been widely used. However, PID method has a few limitations. The overshoot of the PID controller is very big. The adjustment time is long. When the parameters of controlled plant are changing over time, the parameters of controller could hardly change automatically to adjust to changing environment. Thus, it can't meet the demand of control quality in the process of controlling piezoelectric ceramic. In order to effectively control the piezoelectric ceramic and improve the control accuracy, this paper replaced the learning algorithm of the BP with the mutation particle swarm optimization algorithm(MPSO) on the process of the parameters setting of BP-PID. That designed a better self-adaptive controller which is combing the BP neural network based on mutation particle swarm optimization with the conventional PID control theory. This combination is called the MPSO-BP-PID. In the mechanism of the MPSO, the mutation operation is carried out with the fitness variance and the global best fitness value as the standard. That can overcome the precocious of the PSO and strengthen its global search ability. As a result, the MPSO-BP-PID can complete controlling the controlled plant with higher speed and accuracy. Therefore, the MPSO-BP-PID is applied to the piezoelectric ceramic. It can effectively overcome the hysteresis, nonlinearity of the piezoelectric ceramic. In the experiment, compared with BP-PID and PSO-BP-PID, it proved that MPSO is effective and the MPSO-BP-PID has stronger adaptability and robustness.
An Interactive Astronaut-Robot System with Gesture Control
Liu, Jinguo; Luo, Yifan; Ju, Zhaojie
2016-01-01
Human-robot interaction (HRI) plays an important role in future planetary exploration mission, where astronauts with extravehicular activities (EVA) have to communicate with robot assistants by speech-type or gesture-type user interfaces embedded in their space suits. This paper presents an interactive astronaut-robot system integrating a data-glove with a space suit for the astronaut to use hand gestures to control a snake-like robot. Support vector machine (SVM) is employed to recognize hand gestures and particle swarm optimization (PSO) algorithm is used to optimize the parameters of SVM to further improve its recognition accuracy. Various hand gestures from American Sign Language (ASL) have been selected and used to test and validate the performance of the proposed system. PMID:27190503
Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo
2017-01-01
In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human planner intervention. A comparison of the results with the optimized solution obtained using a similar optimization model but with human planner intervention revealed that the proposed algorithm produced optimized plans superior to that developed using the manual plan. The proposed algorithm can generate admissible solutions within reasonable computational times and can be used to develop fully automated IMRT treatment planning methods, thus reducing human planners' workloads during iterative processes. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam SM, Jahangir
2017-01-01
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems. PMID:28422080
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2017-04-19
As a high performance-cost ratio solution for differential pressure measurement, piezo-resistive differential pressure sensors are widely used in engineering processes. However, their performance is severely affected by the environmental temperature and the static pressure applied to them. In order to modify the non-linear measuring characteristics of the piezo-resistive differential pressure sensor, compensation actions should synthetically consider these two aspects. Advantages such as nonlinear approximation capability, highly desirable generalization ability and computational efficiency make the kernel extreme learning machine (KELM) a practical approach for this critical task. Since the KELM model is intrinsically sensitive to the regularization parameter and the kernel parameter, a searching scheme combining the coupled simulated annealing (CSA) algorithm and the Nelder-Mead simplex algorithm is adopted to find an optimal KLEM parameter set. A calibration experiment at different working pressure levels was conducted within the temperature range to assess the proposed method. In comparison with other compensation models such as the back-propagation neural network (BP), radius basis neural network (RBF), particle swarm optimization optimized support vector machine (PSO-SVM), particle swarm optimization optimized least squares support vector machine (PSO-LSSVM) and extreme learning machine (ELM), the compensation results show that the presented compensation algorithm exhibits a more satisfactory performance with respect to temperature compensation and synthetic compensation problems.
A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement
NASA Astrophysics Data System (ADS)
Brunetti, Giuseppe; Šimůnek, Jiří; Piro, Patrizia
2016-09-01
The increasing frequency of flooding events in urban catchments related to an increase in impervious surfaces highlights the inadequacy of traditional urban drainage systems. Low Impact Development (LID) techniques have proven to be a viable and effective alternative by reducing stormwater runoff and increasing the infiltration and evapotranspiration capacity of urban areas. However, the lack of adequate modeling tools represents a barrier in designing and constructing such systems. This paper investigates the suitability of a mechanistic model, HYDRUS-1D, to correctly describe the hydraulic behavior of permeable pavement installed at the University of Calabria. Two different scenarios of describing the hydraulic behavior of the permeable pavement system were analyzed: the first one uses a single-porosity model for all layers of the permeable pavement; the second one uses a dual-porosity model for the base and sub-base layers. Measured and modeled month-long hydrographs were compared using the Nash-Sutcliffe efficiency (NSE) index. A Global Sensitivity Analysis (GSA) followed by a Monte Carlo filtering highlighted the influence of the wear layer on the hydraulic behavior of the pavement and identified the ranges of parameters generating behavioral solutions. Reduced ranges were then used in the calibration procedure conducted with the metaheuristic Particle swarm optimization (PSO) algorithm for the estimation of hydraulic parameters. The best fit value for the first scenario was NSE = 0.43; for the second scenario, it was NSE = 0.81, indicating that the dual-porosity approach is more appropriate for describing the variably-saturated flow in the base and sub-base layers. Estimated parameters were validated using an independent, month-long set of measurements, resulting in NSE values of 0.43 and 0.86 for the first and second scenarios, respectively. The improvement in correspondence between measured and modeled hydrographs confirmed the reliability of the combination of GSA and PSO in dealing with highly dimensional optimization problems. Obtained results have demonstrated that PSO, due to its easiness of implementation and effectiveness, can represent a new and viable alternative to traditional optimization algorithms for the inverse estimation of unsaturated hydraulic properties. Finally, the results confirmed the suitability and the accuracy of HYDRUS-1D in correctly describing the hydraulic behavior of permeable pavements.
Swarm Intelligence for Optimizing Hybridized Smoothing Filter in Image Edge Enhancement
NASA Astrophysics Data System (ADS)
Rao, B. Tirumala; Dehuri, S.; Dileep, M.; Vindhya, A.
In this modern era, image transmission and processing plays a major role. It would be impossible to retrieve information from satellite and medical images without the help of image processing techniques. Edge enhancement is an image processing step that enhances the edge contrast of an image or video in an attempt to improve its acutance. Edges are the representations of the discontinuities of image intensity functions. For processing these discontinuities in an image, a good edge enhancement technique is essential. The proposed work uses a new idea for edge enhancement using hybridized smoothening filters and we introduce a promising technique of obtaining best hybrid filter using swarm algorithms (Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)) to search for an optimal sequence of filters from among a set of rather simple, representative image processing filters. This paper deals with the analysis of the swarm intelligence techniques through the combination of hybrid filters generated by these algorithms for image edge enhancement.
Energy and operation management of a microgrid using particle swarm optimization
NASA Astrophysics Data System (ADS)
Radosavljević, Jordan; Jevtić, Miroljub; Klimenta, Dardan
2016-05-01
This article presents an efficient algorithm based on particle swarm optimization (PSO) for energy and operation management (EOM) of a microgrid including different distributed generation units and energy storage devices. The proposed approach employs PSO to minimize the total energy and operating cost of the microgrid via optimal adjustment of the control variables of the EOM, while satisfying various operating constraints. Owing to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties and market prices, a probabilistic approach in the EOM is introduced. The proposed method is examined and tested on a typical grid-connected microgrid including fuel cell, gas-fired microturbine, wind turbine, photovoltaic and energy storage devices. The obtained results prove the efficiency of the proposed approach to solve the EOM of the microgrids.
Multi-Robot, Multi-Target Particle Swarm Optimization Search in Noisy Wireless Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Derr; Milos Manic
Multiple small robots (swarms) can work together using Particle Swarm Optimization (PSO) to perform tasks that are difficult or impossible for a single robot to accomplish. The problem considered in this paper is exploration of an unknown environment with the goal of finding a target(s) at an unknown location(s) using multiple small mobile robots. This work demonstrates the use of a distributed PSO algorithm with a novel adaptive RSS weighting factor to guide robots for locating target(s) in high risk environments. The approach was developed and analyzed on multiple robot single and multiple target search. The approach was further enhancedmore » by the multi-robot-multi-target search in noisy environments. The experimental results demonstrated how the availability of radio frequency signal can significantly affect robot search time to reach a target.« less
Basic firefly algorithm for document clustering
NASA Astrophysics Data System (ADS)
Mohammed, Athraa Jasim; Yusof, Yuhanis; Husni, Husniza
2015-12-01
The Document clustering plays significant role in Information Retrieval (IR) where it organizes documents prior to the retrieval process. To date, various clustering algorithms have been proposed and this includes the K-means and Particle Swarm Optimization. Even though these algorithms have been widely applied in many disciplines due to its simplicity, such an approach tends to be trapped in a local minimum during its search for an optimal solution. To address the shortcoming, this paper proposes a Basic Firefly (Basic FA) algorithm to cluster text documents. The algorithm employs the Average Distance to Document Centroid (ADDC) as the objective function of the search. Experiments utilizing the proposed algorithm were conducted on the 20Newsgroups benchmark dataset. Results demonstrate that the Basic FA generates a more robust and compact clusters than the ones produced by K-means and Particle Swarm Optimization (PSO).
Acar, Ümit; Parrino, Vincenzo; Kesbiç, Osman Sabri; Lo Paro, Giuseppe; Saoca, Concetta; Abbate, Francesco; Yılmaz, Sevdan; Fazio, Francesco
2018-01-01
This study is aimed to assess the effects of pomegranate seed oil (PSO) supplementation on growth performance, some hematological, biochemical and immunological parameters, and disease resistance against Yersinia ruckeri in cultured rainbow trout Oncorhynchus mykiss (Walbaum, 1792). 240 fish in total were randomly assigned into four triplicate groups (20 fish/per aquarium) corresponding to four dietary treatments: control (PSO0; no addition of PSO), 0.5% (PSO5), 1.00% (PSO10), and 2.00% (PSO20) of PSO, respectively. After the 60 day-feeding trial, fish blood samples were collected and compared. Statistical analysis (one-way ANOVA) showed a significant (P < 0.05) effect of PSO on red blood cell count, hemoglobin concentration, mean corpuscular volume, mean corpuscular hemoglobin concentration, cholesterol, aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase parameters in PSO5 and PSO10 with regard to control. Moreover, a pronounced (P < 0.05) increased in weight gain, growth and feed conversion was found in fish fed with PSO supplemented diets. After the feeding trial, fish were challenged with Y. ruckeri and survival recorded for 20 days. Cumulative survival was 45.10% in fish fed with the control diet, whereas in fish fed with PSO5, PSO10, and PSO20 supplemented diets, survival was 58.82, 56.86, and 56.86%, respectively. In conclusion, dietary administration of PSO induced a reduction in mortality of rainbow trout infected with Y. ruckeri, intercalary significant differences occurred on growth performance and some blood values among treated groups. These positive effects of PSO could be considered for new applications in aquaculture. PMID:29875694
Particle swarm optimization algorithm for optimizing assignment of blood in blood banking system.
Olusanya, Micheal O; Arasomwan, Martins A; Adewumi, Aderemi O
2015-01-01
This paper reports the performance of particle swarm optimization (PSO) for the assignment of blood to meet patients' blood transfusion requests for blood transfusion. While the drive for blood donation lingers, there is need for effective and efficient management of available blood in blood banking systems. Moreover, inherent danger of transfusing wrong blood types to patients, unnecessary importation of blood units from external sources, and wastage of blood products due to nonusage necessitate the development of mathematical models and techniques for effective handling of blood distribution among available blood types in order to minimize wastages and importation from external sources. This gives rise to the blood assignment problem (BAP) introduced recently in literature. We propose a queue and multiple knapsack models with PSO-based solution to address this challenge. Simulation is based on sets of randomly generated data that mimic real-world population distribution of blood types. Results obtained show the efficiency of the proposed algorithm for BAP with no blood units wasted and very low importation, where necessary, from outside the blood bank. The result therefore can serve as a benchmark and basis for decision support tools for real-life deployment.
NASA Astrophysics Data System (ADS)
Gerist, Saleheh; Maheri, Mahmoud R.
2016-12-01
In order to solve structural damage detection problem, a multi-stage method using particle swarm optimization is presented. First, a new spars recovery method, named Basis Pursuit (BP), is utilized to preliminarily identify structural damage locations. The BP method solves a system of equations which relates the damage parameters to the structural modal responses using the sensitivity matrix. Then, the results of this stage are subsequently enhanced to the exact damage locations and extents using the PSO search engine. Finally, the search space is reduced by elimination of some low damage variables using micro search (MS) operator embedded in the PSO algorithm. To overcome the noise present in structural responses, a method known as Basis Pursuit De-Noising (BPDN) is also used. The efficiency of the proposed method is investigated by three numerical examples: a cantilever beam, a plane truss and a portal plane frame. The frequency response is used to detect damage in the examples. The simulation results demonstrate the accuracy and efficiency of the proposed method in detecting multiple damage cases and exhibit its robustness regarding noise and its advantages compared to other reported solution algorithms.
2018-01-01
Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site. PMID:29370230
Illias, Hazlee Azil; Zhao Liang, Wee
2018-01-01
Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results. In this work, a hybrid support vector machine (SVM) with modified evolutionary particle swarm optimisation (EPSO) algorithm was proposed to determine the transformer fault type. The superiority of the modified PSO technique with SVM was evaluated by comparing the results with the actual fault diagnosis, unoptimised SVM and previous reported works. Data reduction was also applied using stepwise regression prior to the training process of SVM to reduce the training time. It was found that the proposed hybrid SVM-Modified EPSO (MEPSO)-Time Varying Acceleration Coefficient (TVAC) technique results in the highest correct identification percentage of faults in a power transformer compared to other PSO algorithms. Thus, the proposed technique can be one of the potential solutions to identify the transformer fault type based on DGA data on site.
PSO Based PI Controller Design for a Solar Charger System
Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng
2013-01-01
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713
PSO based PI controller design for a solar charger system.
Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng
2013-01-01
Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).
RTDS implementation of an improved sliding mode based inverter controller for PV system.
Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M
2016-05-01
This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Agrawal, Shikha; Silakari, Sanjay; Agrawal, Jitendra
2015-11-01
A novel parameter automation strategy for Particle Swarm Optimization called APSO (Adaptive PSO) is proposed. The algorithm is designed to efficiently control the local search and convergence to the global optimum solution. Parameters c1 controls the impact of the cognitive component on the particle trajectory and c2 controls the impact of the social component. Instead of fixing the value of c1 and c2 , this paper updates the value of these acceleration coefficients by considering time variation of evaluation function along with varying inertia weight factor in PSO. Here the maximum and minimum value of evaluation function is use to gradually decrease and increase the value of c1 and c2 respectively. Molecular energy minimization is one of the most challenging unsolved problems and it can be formulated as a global optimization problem. The aim of the present paper is to investigate the effect of newly developed APSO on the highly complex molecular potential energy function and to check the efficiency of the proposed algorithm to find the global minimum of the function under consideration. The proposed algorithm APSO is therefore applied in two cases: Firstly, for the minimization of a potential energy of small molecules with up to 100 degrees of freedom and finally for finding the global minimum energy conformation of 1,2,3-trichloro-1-flouro-propane molecule based on a realistic potential energy function. The computational results of all the cases show that the proposed method performs significantly better than the other algorithms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chisholm, A; Nelson, P A; Pearce, C J; Littlewood, A J; Kane, K; Henry, A L; Thorneloe, R; Hamilton, M P; Lavallee, J; Lunt, M; Griffiths, C E M; Cordingley, L; Bundy, C
2017-03-01
Psoriasis is a common long-term, immune-mediated skin condition associated with behavioural factors (e.g. smoking, excess alcohol, obesity), which increase the risk of psoriasis onset, flares and comorbidities. Motivational interviewing (MI) is an evidence-based approach to health-related behaviour change that has been used successfully for patients with long-term conditions. This study assessed change in clinicians' MI skills and psoriasis knowledge following Psoriasis and Wellbeing (Pso Well ® ) training. To investigate whether the Pso Well training intervention improves clinicians' MI skills and knowledge about psoriasis-related comorbidities and risk factors; and to explore the acceptability and feasibility of the Pso Well training content, delivery and evaluation. Clinicians attended the 1-day training programme focused on MI skills development in the context of psoriasis. MI skills were assessed pre- and post-training using the Behaviour Change Counselling Index. Knowledge about psoriasis-related comorbidity and risk factors was assessed with a novel 22-point measure developed for the study. Interviews with clinicians were analysed qualitatively to identify perceptions about the feasibility and acceptability of the training. Sixty-one clinicians completed the training (35 dermatology nurses, 23 dermatologists and three primary-care clinicians). Clinicians' MI skills (P < 0·001) and knowledge (P < 0·001) increased significantly post-training. Clinicians found the training valuable and relevant to psoriasis management. Attendance at the Pso Well training resulted in improvements in clinicians' knowledge and skills to manage psoriasis holistically. Clinicians deemed the training itself and the assessment procedures used both feasible and acceptable. Future research should investigate how this training may influence patient outcomes. © 2016 British Association of Dermatologists.
Cardiac arrhythmia beat classification using DOST and PSO tuned SVM.
Raj, Sandeep; Ray, Kailash Chandra; Shankar, Om
2016-11-01
The increase in the number of deaths due to cardiovascular diseases (CVDs) has gained significant attention from the study of electrocardiogram (ECG) signals. These ECG signals are studied by the experienced cardiologist for accurate and proper diagnosis, but it becomes difficult and time-consuming for long-term recordings. Various signal processing techniques are studied to analyze the ECG signal, but they bear limitations due to the non-stationary behavior of ECG signals. Hence, this study aims to improve the classification accuracy rate and provide an automated diagnostic solution for the detection of cardiac arrhythmias. The proposed methodology consists of four stages, i.e. filtering, R-peak detection, feature extraction and classification stages. In this study, Wavelet based approach is used to filter the raw ECG signal, whereas Pan-Tompkins algorithm is used for detecting the R-peak inside the ECG signal. In the feature extraction stage, discrete orthogonal Stockwell transform (DOST) approach is presented for an efficient time-frequency representation (i.e. morphological descriptors) of a time domain signal and retains the absolute phase information to distinguish the various non-stationary behavior ECG signals. Moreover, these morphological descriptors are further reduced in lower dimensional space by using principal component analysis and combined with the dynamic features (i.e based on RR-interval of the ECG signals) of the input signal. This combination of two different kinds of descriptors represents each feature set of an input signal that is utilized for classification into subsequent categories by employing PSO tuned support vector machines (SVM). The proposed methodology is validated on the baseline MIT-BIH arrhythmia database and evaluated under two assessment schemes, yielding an improved overall accuracy of 99.18% for sixteen classes in the category-based and 89.10% for five classes (mapped according to AAMI standard) in the patient-based assessment scheme respectively to the state-of-art diagnosis. The results reported are further compared to the existing methodologies in literature. The proposed feature representation of cardiac signals based on symmetrical features along with PSO based optimization technique for the SVM classifier reported an improved classification accuracy in both the assessment schemes evaluated on the benchmark MIT-BIH arrhythmia database and hence can be utilized for automated computer-aided diagnosis of cardiac arrhythmia beats. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks.
Luo, Junhai; Fan, Liying
2017-03-30
Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization.
A Two-Phase Time Synchronization-Free Localization Algorithm for Underwater Sensor Networks
Luo, Junhai; Fan, Liying
2017-01-01
Underwater Sensor Networks (UWSNs) can enable a broad range of applications such as resource monitoring, disaster prevention, and navigation-assistance. Sensor nodes location in UWSNs is an especially relevant topic. Global Positioning System (GPS) information is not suitable for use in UWSNs because of the underwater propagation problems. Hence, some localization algorithms based on the precise time synchronization between sensor nodes that have been proposed for UWSNs are not feasible. In this paper, we propose a localization algorithm called Two-Phase Time Synchronization-Free Localization Algorithm (TP-TSFLA). TP-TSFLA contains two phases, namely, range-based estimation phase and range-free evaluation phase. In the first phase, we address a time synchronization-free localization scheme based on the Particle Swarm Optimization (PSO) algorithm to obtain the coordinates of the unknown sensor nodes. In the second phase, we propose a Circle-based Range-Free Localization Algorithm (CRFLA) to locate the unlocalized sensor nodes which cannot obtain the location information through the first phase. In the second phase, sensor nodes which are localized in the first phase act as the new anchor nodes to help realize localization. Hence, in this algorithm, we use a small number of mobile beacons to help obtain the location information without any other anchor nodes. Besides, to improve the precision of the range-free method, an extension of CRFLA achieved by designing a coordinate adjustment scheme is updated. The simulation results show that TP-TSFLA can achieve a relative high localization ratio without time synchronization. PMID:28358342
McLeod, Deborah; Curran, Janet; Dumont, Serge; White, Maureen; Charles, Grant
2014-05-01
The Interprofessional Psychosocial Oncology Distance Education (IPODE) project was designed as an approach to the problems of feasibility and accessibility in specialty health professional education, in this case, psychosocial oncology (PSO). In this article, we report the evaluation findings from the first three years of the project in relation to one IPODE course, which was offered as a graduate level university elective in nine Canadian universities and as a continuing education (CE) option to health professionals between January 2008 and May 2010. The evaluation included a pre and post questionnaire that explored how an interprofessional (IP), web-based, PSO course influenced participants' knowledge, attitudes and beliefs about IP, person-centered PSO care. It also examined what attributes of a web-based platform were most effective in delivering an IP PSO course. The study yielded two key findings. First, web-based learning in a pan-Canadian and cross-university collaboration is a viable alternative to providing specialty education and significantly improves knowledge, attitudes and beliefs about IP, person-centered PSO care. Second, a web-based platform with real-time seminars, discussion boards and multiple audio visual resources that privilege first person illness narratives were important elements in expanding knowledge and shifting attitudes about IP practice and person-centered care in regards to PSO. In their evaluation, course participants highlighted a variety of ways in which the course expanded their vision about what constitutes an IP team and increased their confidence in interacting with healthcare professionals from professions other than their own.
Energy efficient model based algorithm for control of building HVAC systems.
Kirubakaran, V; Sahu, Chinmay; Radhakrishnan, T K; Sivakumaran, N
2015-11-01
Energy efficient designs are receiving increasing attention in various fields of engineering. Heating ventilation and air conditioning (HVAC) control system designs involve improved energy usage with an acceptable relaxation in thermal comfort. In this paper, real time data from a building HVAC system provided by BuildingLAB is considered. A resistor-capacitor (RC) framework for representing thermal dynamics of the building is estimated using particle swarm optimization (PSO) algorithm. With objective costs as thermal comfort (deviation of room temperature from required temperature) and energy measure (Ecm) explicit MPC design for this building model is executed based on its state space representation of the supply water temperature (input)/room temperature (output) dynamics. The controllers are subjected to servo tracking and external disturbance (ambient temperature) is provided from the real time data during closed loop control. The control strategies are ported on a PIC32mx series microcontroller platform. The building model is implemented in MATLAB and hardware in loop (HIL) testing of the strategies is executed over a USB port. Results indicate that compared to traditional proportional integral (PI) controllers, the explicit MPC's improve both energy efficiency and thermal comfort significantly. Copyright © 2015 Elsevier Inc. All rights reserved.
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system. PMID:24693243
Chen, Ying; Liu, Yuanning; Zhu, Xiaodong; Chen, Huiling; He, Fei; Pang, Yutong
2014-01-01
For building a new iris template, this paper proposes a strategy to fuse different portions of iris based on machine learning method to evaluate local quality of iris. There are three novelties compared to previous work. Firstly, the normalized segmented iris is divided into multitracks and then each track is estimated individually to analyze the recognition accuracy rate (RAR). Secondly, six local quality evaluation parameters are adopted to analyze texture information of each track. Besides, particle swarm optimization (PSO) is employed to get the weights of these evaluation parameters and corresponding weighted coefficients of different tracks. Finally, all tracks' information is fused according to the weights of different tracks. The experimental results based on subsets of three public and one private iris image databases demonstrate three contributions of this paper. (1) Our experimental results prove that partial iris image cannot completely replace the entire iris image for iris recognition system in several ways. (2) The proposed quality evaluation algorithm is a self-adaptive algorithm, and it can automatically optimize the parameters according to iris image samples' own characteristics. (3) Our feature information fusion strategy can effectively improve the performance of iris recognition system.
NASA Astrophysics Data System (ADS)
Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun
2018-03-01
This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.
Receiver Diversity Combining Using Evolutionary Algorithms in Rayleigh Fading Channel
Akbari, Mohsen; Manesh, Mohsen Riahi
2014-01-01
In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods. PMID:25045725
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
NASA Astrophysics Data System (ADS)
Lee, Chien-Cheng; Huang, Shin-Sheng; Shih, Cheng-Yuan
2010-12-01
This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB) with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO) algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
A Bat Algorithm with Mutation for UCAV Path Planning
Wang, Gaige; Guo, Lihong; Duan, Hong; Liu, Luo; Wang, Heqi
2012-01-01
Path planning for uninhabited combat air vehicle (UCAV) is a complicated high dimension optimization problem, which mainly centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. Original bat algorithm (BA) is used to solve the UCAV path planning problem. Furthermore, a new bat algorithm with mutation (BAM) is proposed to solve the UCAV path planning problem, and a modification is applied to mutate between bats during the process of the new solutions updating. Then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic BA. The realization procedure for original BA and this improved metaheuristic approach BAM is also presented. To prove the performance of this proposed metaheuristic method, BAM is compared with BA and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, PBIL, PSO, and SGA. The experiment shows that the proposed approach is more effective and feasible in UCAV path planning than the other models. PMID:23365518
Particle swarm optimization algorithm based low cost magnetometer calibration
NASA Astrophysics Data System (ADS)
Ali, A. S.; Siddharth, S., Syed, Z., El-Sheimy, N.
2011-12-01
Inertial Navigation Systems (INS) consist of accelerometers, gyroscopes and a microprocessor provide inertial digital data from which position and orientation is obtained by integrating the specific forces and rotation rates. In addition to the accelerometers and gyroscopes, magnetometers can be used to derive the absolute user heading based on Earth's magnetic field. Unfortunately, the measurements of the magnetic field obtained with low cost sensors are corrupted by several errors including manufacturing defects and external electro-magnetic fields. Consequently, proper calibration of the magnetometer is required to achieve high accuracy heading measurements. In this paper, a Particle Swarm Optimization (PSO) based calibration algorithm is presented to estimate the values of the bias and scale factor of low cost magnetometer. The main advantage of this technique is the use of the artificial intelligence which does not need any error modeling or awareness of the nonlinearity. The estimated bias and scale factor errors from the proposed algorithm improve the heading accuracy and the results are also statistically significant. Also, it can help in the development of the Pedestrian Navigation Devices (PNDs) when combined with the INS and GPS/Wi-Fi especially in the indoor environments
A Novel Hybrid Firefly Algorithm for Global Optimization.
Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao
Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate.
A Novel Hybrid Firefly Algorithm for Global Optimization
Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao
2016-01-01
Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate. PMID:27685869
Skull removal in MR images using a modified artificial bee colony optimization algorithm.
Taherdangkoo, Mohammad
2014-01-01
Removal of the skull from brain Magnetic Resonance (MR) images is an important preprocessing step required for other image analysis techniques such as brain tissue segmentation. In this paper, we propose a new algorithm based on the Artificial Bee Colony (ABC) optimization algorithm to remove the skull region from brain MR images. We modify the ABC algorithm using a different strategy for initializing the coordinates of scout bees and their direction of search. Moreover, we impose an additional constraint to the ABC algorithm to avoid the creation of discontinuous regions. We found that our algorithm successfully removed all bony skull from a sample of de-identified MR brain images acquired from different model scanners. The obtained results of the proposed algorithm compared with those of previously introduced well known optimization algorithms such as Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) demonstrate the superior results and computational performance of our algorithm, suggesting its potential for clinical applications.
Intelligent control for PMSM based on online PSO considering parameters change
NASA Astrophysics Data System (ADS)
Song, Zhengqiang; Yang, Huiling
2018-03-01
A novel online particle swarm optimization method is proposed to design speed and current controllers of vector controlled interior permanent magnet synchronous motor drives considering stator resistance variation. In the proposed drive system, the space vector modulation technique is employed to generate the switching signals for a two-level voltage-source inverter. The nonlinearity of the inverter is also taken into account due to the dead-time, threshold and voltage drop of the switching devices in order to simulate the system in the practical condition. Speed and PI current controller gains are optimized with PSO online, and the fitness function is changed according to the system dynamic and steady states. The proposed optimization algorithm is compared with conventional PI control method in the condition of step speed change and stator resistance variation, showing that the proposed online optimization method has better robustness and dynamic characteristics compared with conventional PI controller design.
NASA Astrophysics Data System (ADS)
Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.
2018-03-01
The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.
NASA Astrophysics Data System (ADS)
Mahapatra, Prasant Kumar; Sethi, Spardha; Kumar, Amod
2015-10-01
In conventional tool positioning technique, sensors embedded in the motion stages provide the accurate tool position information. In this paper, a machine vision based system and image processing technique for motion measurement of lathe tool from two-dimensional sequential images captured using charge coupled device camera having a resolution of 250 microns has been described. An algorithm was developed to calculate the observed distance travelled by the tool from the captured images. As expected, error was observed in the value of the distance traversed by the tool calculated from these images. Optimization of errors due to machine vision system, calibration, environmental factors, etc. in lathe tool movement was carried out using two soft computing techniques, namely, artificial immune system (AIS) and particle swarm optimization (PSO). The results show better capability of AIS over PSO.
Cogniet, A; Aunoble, S; Rigal, J; Demezon, H; Sadikki, R; Le Huec, J C
2016-08-01
Pedicle subtraction osteotomy (PSO) is one of the surgical options for treating alignment disorders of the fused spine (due to post-surgical fusion or related to arthritis). It enables satisfactory sagittal realignment and improved function due to economic sagittal balance. The aim of this study was to analyze clinical and radiological results of PSO after a minimum follow-up of 2 years and demonstrate the benefit of sub-group analysis as a function of pelvic incidence (PI). A descriptive prospective single center study of 63 patients presenting with spinal global malalignment who underwent correction by PSO. Function was assessed by the Oswestry disability index (ODI), a visual analog scale of lumbar pain (VAS) and a SF-36 questionnaire. Radiographic analyses of pre- and post-operative pelvic-spinal parameters were performed on X-rays obtained by EOS(®) imaging after 3D modeling. Global analysis and analysis of sub-groups as a function of pelvic incidence were performed and the full balance integrated index (FBI) was calculated. this series showed a marked clinical improvement and significant progress of functional scores. Global post-operative radiological analysis showed a significant improvement in all pelvic and spinal parameters. The mean correction obtained after PSO was 31.7° ± 8.4°, hence global improvement of lumbar lordosis of 22°. The sagittal vertical angle (SVA) decreased from +9 cm before surgery to +4.3 cm after surgery. Sub-group analysis demonstrated greater improvement in pelvic tilt, sacral slope and spinal parameters of patients with a small or moderate pelvic incidence; all had an FBI index <10°. Most of the pelvic and spinal parameters of patients with a large pelvic incidence were insufficiently corrected and they had an FBI index >10° PSO is a surgical procedure enabling correction of multiplane rigid spinal deformities that require major sagittal correction. It was seen to be highly effective in patients with a small or moderate pelvic incidence (PI <60°) but was sometimes less effective in patients with large pelvic incidence due to insufficient lordosis correction. Clinical results were highly correlated with the value of the FBI index.
Optimization of hydraulic turbine governor parameters based on WPA
NASA Astrophysics Data System (ADS)
Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao
2018-01-01
The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.
Gravity inversion of a fault by Particle swarm optimization (PSO).
Toushmalani, Reza
2013-01-01
Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. In this paper we introduce and use this method in gravity inverse problem. We discuss the solution for the inverse problem of determining the shape of a fault whose gravity anomaly is known. Application of the proposed algorithm to this problem has proven its capability to deal with difficult optimization problems. The technique proved to work efficiently when tested to a number of models.
Nonlinear calibration for petroleum water content measurement using PSO
NASA Astrophysics Data System (ADS)
Li, Mingbao; Zhang, Jiawei
2008-10-01
A new algorithmic for strapdown inertial navigation system (SINS) state estimation based on neural networks is introduced. In training strategy, the error vector and its delay are introduced. This error vector is made of the position and velocity difference between the estimations of system and the outputs of GPS. After state prediction and state update, the states of the system are estimated. After off-line training, the network can approach the status switching of SINS and after on-line training, the state estimate precision can be improved further by reducing network output errors. Then the network convergence is discussed. In the end, several simulations with different noise are given. The results show that the neural network state estimator has lower noise sensitivity and better noise immunity than Kalman filter.
Kim, Seongho; Carruthers, Nicholas; Lee, Joohyoung; Chinni, Sreenivasa; Stemmer, Paul
2016-12-01
Stable isotope labeling by amino acids in cell culture (SILAC) is a practical and powerful approach for quantitative proteomic analysis. A key advantage of SILAC is the ability to simultaneously detect the isotopically labeled peptides in a single instrument run and so guarantee relative quantitation for a large number of peptides without introducing any variation caused by separate experiment. However, there are a few approaches available to assessing protein ratios and none of the existing algorithms pays considerable attention to the proteins having only one peptide hit. We introduce new quantitative approaches to dealing with SILAC protein-level summary using classification-based methodologies, such as Gaussian mixture models with EM algorithms and its Bayesian approach as well as K-means clustering. In addition, a new approach is developed using Gaussian mixture model and a stochastic, metaheuristic global optimization algorithm, particle swarm optimization (PSO), to avoid either a premature convergence or being stuck in a local optimum. Our simulation studies show that the newly developed PSO-based method performs the best among others in terms of F1 score and the proposed methods further demonstrate the ability of detecting potential markers through real SILAC experimental data. No matter how many peptide hits the protein has, the developed approach can be applicable, rescuing many proteins doomed to removal. Furthermore, no additional correction for multiple comparisons is necessary for the developed methods, enabling direct interpretation of the analysis outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Kumar, Manjeet; Rawat, Tarun Kumar; Aggarwal, Apoorva
2017-03-01
In this paper, a new meta-heuristic optimization technique, called interior search algorithm (ISA) with Lèvy flight is proposed and applied to determine the optimal parameters of an unknown infinite impulse response (IIR) system for the system identification problem. ISA is based on aesthetics, which is commonly used in interior design and decoration processes. In ISA, composition phase and mirror phase are applied for addressing the nonlinear and multimodal system identification problems. System identification using modified-ISA (M-ISA) based method involves faster convergence, single parameter tuning and does not require derivative information because it uses a stochastic random search using the concepts of Lèvy flight. A proper tuning of control parameter has been performed in order to achieve a balance between intensification and diversification phases. In order to evaluate the performance of the proposed method, mean square error (MSE), computation time and percentage improvement are considered as the performance measure. To validate the performance of M-ISA based method, simulations has been carried out for three benchmarked IIR systems using same order and reduced order system. Genetic algorithm (GA), particle swarm optimization (PSO), cat swarm optimization (CSO), cuckoo search algorithm (CSA), differential evolution using wavelet mutation (DEWM), firefly algorithm (FFA), craziness based particle swarm optimization (CRPSO), harmony search (HS) algorithm, opposition based harmony search (OHS) algorithm, hybrid particle swarm optimization-gravitational search algorithm (HPSO-GSA) and ISA are also used to model the same examples and simulation results are compared. Obtained results confirm the efficiency of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Buell, Thomas J; Buchholz, Avery L; Quinn, John C; Mullin, Jeffrey P; Garces, Juanita; Mazur, Marcus D; Shaffrey, Mark E; Yen, Chun-Po; Shaffrey, Christopher I; Smith, Justin S
2018-06-16
Pedicle subtraction osteotomy (PSO) is an effective technique to correct fixed sagittal malalignment. A variation of this technique, the "trans-discal" or "extended" PSO (Schwab grade IV osteotomy), involves extending the posterior wedge resection of the index vertebra to include the superior adjacent disc for radical discectomy. The posterior wedge may be resected in asymmetric fashion to correct concurrent global coronal malalignment.This video illustrates the technical nuances of an extended asymmetrical lumbar PSO for adult spinal deformity. A 62-yr-old female with multiple prior lumbar fusions presented with worsening back pain and posture. Preoperative scoliosis X-rays demonstrated severe global sagittal and coronal malalignment (sagittal vertical axis [SVA, C7-plumbline] of 13.5 cm, pelvic incidence [PI] of 60°, lumbar lordosis [LL] of 14° [in kyphosis], pelvic tilt [PT] of 61°, thoracic kyphosis [TK] of 18°, and rightward coronal shift of 9.3 cm). The patient gave informed consent to surgery and for use of her imaging for medical publication. Briefly, surgery first involved transpedicular instrumentation from T10 to S1 with bilateral iliac screw fixation, and then T11-12 and T12-L1 Smith-Petersen osteotomies were performed. Next, an extended asymmetrical L4 PSO was performed and a 12° lordotic cage (9 × 14 × 40 mm) was placed at the PSO defect. Rods were placed from T10 to iliac bilaterally, and accessory supplemental rods spanning the PSO were attached. Postoperative scoliosis X-rays demonstrated improved alignment: SVA 5.5 cm, PI 60°, LL 55°, PT 36°, TK 37°, and 3.7 cm of rightward coronal shift. The patient had uneventful recovery.
NASA Astrophysics Data System (ADS)
Blöcher, Johanna; Kuraz, Michal
2017-04-01
In this contribution we propose implementations of the dual permeability model with different inter-domain exchange descriptions and metaheuristic optimization algorithms for parameter identification and mesh optimization. We compare variants of the coupling term with different numbers of parameters to test if a reduction of parameters is feasible. This can reduce parameter uncertainty in inverse modeling, but also allow for different conceptual models of the domain and matrix coupling. The different variants of the dual permeability model are implemented in the open-source objective library DRUtES written in FORTRAN 2003/2008 in 1D and 2D. For parameter identification we use adaptations of the particle swarm optimization (PSO) and Teaching-learning-based optimization (TLBO), which are population-based metaheuristics with different learning strategies. These are high-level stochastic-based search algorithms that don't require gradient information or a convex search space. Despite increasing computing power and parallel processing, an overly fine mesh is not feasible for parameter identification. This creates the need to find a mesh that optimizes both accuracy and simulation time. We use a bi-objective PSO algorithm to generate a Pareto front of optimal meshes to account for both objectives. The dual permeability model and the optimization algorithms were tested on virtual data and field TDR sensor readings. The TDR sensor readings showed a very steep increase during rapid rainfall events and a subsequent steep decrease. This was theorized to be an effect of artificial macroporous envelopes surrounding TDR sensors creating an anomalous region with distinct local soil hydraulic properties. One of our objectives is to test how well the dual permeability model can describe this infiltration behavior and what coupling term would be most suitable.
Jin, Junchen
2016-01-01
The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998
Lin, Kuan-Cheng; Hsieh, Yi-Hsiu
2015-10-01
The classification and analysis of data is an important issue in today's research. Selecting a suitable set of features makes it possible to classify an enormous quantity of data quickly and efficiently. Feature selection is generally viewed as a problem of feature subset selection, such as combination optimization problems. Evolutionary algorithms using random search methods have proven highly effective in obtaining solutions to problems of optimization in a diversity of applications. In this study, we developed a hybrid evolutionary algorithm based on endocrine-based particle swarm optimization (EPSO) and artificial bee colony (ABC) algorithms in conjunction with a support vector machine (SVM) for the selection of optimal feature subsets for the classification of datasets. The results of experiments using specific UCI medical datasets demonstrate that the accuracy of the proposed hybrid evolutionary algorithm is superior to that of basic PSO, EPSO and ABC algorithms, with regard to classification accuracy using subsets with a reduced number of features.
Du, Gang; Jiang, Zhibin; Diao, Xiaodi; Yao, Yang
2013-07-01
Takagi-Sugeno (T-S) fuzzy neural networks (FNNs) can be used to handle complex, fuzzy, uncertain clinical pathway (CP) variances. However, there are many drawbacks, such as slow training rate, propensity to become trapped in a local minimum and poor ability to perform a global search. In order to improve overall performance of variance handling by T-S FNNs, a new CP variance handling method is proposed in this study. It is based on random cooperative decomposing particle swarm optimization with double mutation mechanism (RCDPSO_DM) for T-S FNNs. Moreover, the proposed integrated learning algorithm, combining the RCDPSO_DM algorithm with a Kalman filtering algorithm, is applied to optimize antecedent and consequent parameters of constructed T-S FNNs. Then, a multi-swarm cooperative immigrating particle swarm algorithm ensemble method is used for intelligent ensemble T-S FNNs with RCDPSO_DM optimization to further improve stability and accuracy of CP variance handling. Finally, two case studies on liver and kidney poisoning variances in osteosarcoma preoperative chemotherapy are used to validate the proposed method. The result demonstrates that intelligent ensemble T-S FNNs based on the RCDPSO_DM achieves superior performances, in terms of stability, efficiency, precision and generalizability, over PSO ensemble of all T-S FNNs with RCDPSO_DM optimization, single T-S FNNs with RCDPSO_DM optimization, standard T-S FNNs, standard Mamdani FNNs and T-S FNNs based on other algorithms (cooperative particle swarm optimization and particle swarm optimization) for CP variance handling. Therefore, it makes CP variance handling more effective. Copyright © 2013 Elsevier Ltd. All rights reserved.
Armstrong, April W; Lynde, Charles W; McBride, Sandy R; Ståhle, Mona; Edson-Heredia, Emily; Zhu, Baojin; Amato, David; Nikaï, Enkeleida; Yang, Fan Emily; Gordon, Kenneth B
2016-06-01
Therapies that reduce psoriasis symptoms may improve work productivity. To assess the effect of ixekizumab therapy on work productivity, measured by the Work Productivity and Activity Impairment-Psoriasis (WPAI-PSO). Three multicenter, randomized double-blind phase 3 trials conducted during the following periods: December 2011 through August 2014 (UNCOVER-1), May 2012 through April 2015 (UNCOVER-2), and August 2012 through July 2014 (UNCOVER-3). Adult outpatients with moderate-to-severe chronic plaque psoriasis were included. In UNCOVER-1, patients were randomized 1:1:1 to subcutaneous placebo or 80 mg ixekizumab every 2 weeks (Q2W) or every 4 weeks (Q4W) for 12 weeks; UNCOVER-2 and UNCOVER-3 also had an etanercept arm (50 mg twice weekly). Maintenance of initial ixekizumab response was evaluated in UNCOVER-1 and UNCOVER-2 during a randomized withdrawal period following week 12 through week 60. The WPAI-PSO questionnaire was administered at baseline and week 12 for all patients and at weeks 24, 36, 52, and 60 for patients in UNCOVER-1 and UNCOVER-2. Change in work productivity from baseline as measured by WPAI-PSO scores. Across trials, 5101 patients consented; 3866 were randomized (mean [SD] age, UNCOVER-1, 45.7 [12.9] y, 68.1% male; UNCOVER-2: 45.0 [13.0] y, 67.1% male; UNCOVER-3: 45.8 [13.1] y, 68.2% male). At week 12 in UNCOVER-1, the ixekizumab Q4W and ixekizumab Q2W groups showed significantly greater improvements in WPAI-PSO scores (least squares mean change from baseline [SE]) relative to placebo: absenteeism (-3.5 [0.87], P < .001; -2.6 [0.84], P = .003, respectively, vs 0.2 [0.88]), presenteeism (-18.8 [1.28], P < .001; -18.3 [1.24], P < .001, vs 0.5 [1.30]), work productivity loss (-20.6 [1.38], P < .001; -19.8 [1.33], P < .001, vs -0.8 [1.40]), and activity impairment (-24.5 [1.18], P < .001; -25.2 [1.15], P < .001, vs 0.8 [1.18]). Similar results were obtained for UNCOVER-2 and UNCOVER-3, with the exception of absenteeism with ixekizumab Q4W in UNCOVER-2. Additionally, ixekizumab-treated patients showed significantly greater improvements in WPAI-PSO scores vs etanercept-treated patients: UNCOVER-2: presenteeism, work productivity loss, activity impairment (P < .001 both doses), UNCOVER-3: activity impairment (ie, regular activities outside of work) (ixekizumab Q2W; P = .009). Improvements in WPAI-PSO scores at week 12 were sustained to at least week 60. Ixekizumab-treated patients reported short- and long-term improvements in work productivity, which could lead to reduced productivity-related cost burden in patients with psoriasis. clinicaltrials.gov Identifiers: NCT01474512, NCT01597245, NCT01646177.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modiri, A; Hagan, A; Gu, X
Purpose 4D-IMRT planning, combined with dynamic MLC tracking delivery, utilizes the temporal dimension as an additional degree of freedom to achieve improved OAR-sparing. The computational complexity for such optimization increases exponentially with increase in dimensionality. In order to accomplish this task in a clinically-feasible time frame, we present an initial implementation of GPU-based 4D-IMRT planning based on particle swarm optimization (PSO). Methods The target and normal structures were manually contoured on ten phases of a 4DCT scan of a NSCLC patient with a 54cm3 right-lower-lobe tumor (1.5cm motion). Corresponding ten 3D-IMRT plans were created in the Eclipse treatment planning systemmore » (Ver-13.6). A vendor-provided scripting interface was used to export 3D-dose matrices corresponding to each control point (10 phases × 9 beams × 166 control points = 14,940), which served as input to PSO. The optimization task was to iteratively adjust the weights of each control point and scale the corresponding dose matrices. In order to handle the large amount of data in GPU memory, dose matrices were sparsified and placed in contiguous memory blocks with the 14,940 weight-variables. PSO was implemented on CPU (dual-Xeon, 3.1GHz) and GPU (dual-K20 Tesla, 2496 cores, 3.52Tflops, each) platforms. NiftyReg, an open-source deformable image registration package, was used to calculate the summed dose. Results The 4D-PSO plan yielded PTV coverage comparable to the clinical ITV-based plan and significantly higher OAR-sparing, as follows: lung Dmean=33%; lung V20=27%; spinal cord Dmax=26%; esophagus Dmax=42%; heart Dmax=0%; heart Dmean=47%. The GPU-PSO processing time for 14940 variables and 7 PSO-particles was 41% that of CPU-PSO (199 vs. 488 minutes). Conclusion Truly 4D-IMRT planning can yield significant OAR dose-sparing while preserving PTV coverage. The corresponding optimization problem is large-scale, non-convex and computationally rigorous. Our initial results indicate that GPU-based PSO with further software optimization can make such planning clinically feasible. This work was supported through funding from the National Institutes of Health and Varian Medical Systems.« less
Jiang, Zhongliang; Sun, Yu; Gao, Peng; Hu, Ying; Zhang, Jianwei
2016-01-01
Robots play more important roles in daily life and bring us a lot of convenience. But when people work with robots, there remain some significant differences in human-human interactions and human-robot interaction. It is our goal to make robots look even more human-like. We design a controller which can sense the force acting on any point of a robot and ensure the robot can move according to the force. First, a spring-mass-dashpot system was used to describe the physical model, and the second-order system is the kernel of the controller. Then, we can establish the state space equations of the system. In addition, the particle swarm optimization algorithm had been used to obtain the system parameters. In order to test the stability of system, the root-locus diagram had been shown in the paper. Ultimately, some experiments had been carried out on the robotic spinal surgery system, which is developed by our team, and the result shows that the new controller performs better during human-robot interaction.
The Ontario Psychosocial Oncology Framework: a quality improvement tool.
Li, Madeline; Green, Esther
2013-05-01
To overview the newly developed Psychosocial Health Care for Cancer Patients and Their Families: A Framework to Guide Practice in Ontario and Guideline Recommendations in the context of Canadian psychosocial oncology care and propose strategies for guideline uptake and implementation. Recommendations from the 2008 Institute of Medicine standard Cancer Care for the Whole Patient: Meeting Psychosocial Health Needs were adapted into the Ontario Psychosocial Oncology (PSO) Framework. Existing practice guidelines developed by the Canadian Partnership against Cancer and Cancer Care Ontario and standards developed by the Canadian Association of Psychosocial Oncology are supporting resources for adopting a quality improvement (QI) approach to the implementation of the framework in Ontario. The developed PSO Framework, including 31 specific actionable recommendations, is intended to improve the quality of comprehensive cancer care at both the provider and system levels. Important QI change management processes are described as Educate - raising awareness among medical teams of the significance of psychosocial needs of patients, Evidence - developing a research evidence base for patient care benefits from psychosocial interventions, and Electronics - using technology to collect patient reported outcomes of both physical and emotional symptoms. The Ontario PSO Framework is unique and valuable in providing actionable recommendations that can be implemented through QI processes. Overall, the result will be improved psychosocial health care for the cancer population. Copyright © 2012 John Wiley & Sons, Ltd.
Code of Federal Regulations, 2011 CFR
2011-10-01
... PROGRAM MEDICARE ADVANTAGE PROGRAM Provider-Sponsored Organizations § 422.386 Liquidity. (a) A PSO must... determine whether the PSO meets the requirement in paragraph (a) of this section, CMS will examine the following— (1) The PSO's timeliness in meeting current obligations; (2) The extent to which the PSO's...
Code of Federal Regulations, 2010 CFR
2010-10-01
... PROGRAM MEDICARE ADVANTAGE PROGRAM Provider-Sponsored Organizations § 422.386 Liquidity. (a) A PSO must... determine whether the PSO meets the requirement in paragraph (a) of this section, CMS will examine the following— (1) The PSO's timeliness in meeting current obligations; (2) The extent to which the PSO's...
Automatic PSO-Based Deformable Structures Markerless Tracking in Laparoscopic Cholecystectomy
NASA Astrophysics Data System (ADS)
Djaghloul, Haroun; Batouche, Mohammed; Jessel, Jean-Pierre
An automatic and markerless tracking method of deformable structures (digestive organs) during laparoscopic cholecystectomy intervention that uses the (PSO) behavour and the preoperative a priori knowledge is presented. The associated shape to the global best particles of the population determines a coarse representation of the targeted organ (the gallbladder) in monocular laparoscopic colored images. The swarm behavour is directed by a new fitness function to be optimized to improve the detection and tracking performance. The function is defined by a linear combination of two terms, namely, the human a priori knowledge term (H) and the particle's density term (D). Under the limits of standard (PSO) characteristics, experimental results on both synthetic and real data show the effectiveness and robustness of our method. Indeed, it outperforms existing methods without need of explicit initialization (such as active contours, deformable models and Gradient Vector Flow) on accuracy and convergence rate.
NASA Astrophysics Data System (ADS)
Meier-Augenstein, Wolfram; Kemp, Helen; Midwood, Andy
2013-04-01
Styrian Pumpkin Seed Oil is a premium single seed vegetable oil that is uniquely linked to the geographic region of Styria where it is grown and produced. In 1996, the strong regional ties of this typical Styrian speciality were recognised by the EU-Commission who declared "Styrian Pumpkin Seed Oil P.G.I." as a Protected Geographical Indication (article 5 VO(EWG) Nr. 2081/92). In 1998, more than 2,000 domestic pumpkin seed producers and 30 oil mills formed an association of Styrian pumpkin seed oil producers, which is now called the "Gemeinschaft Steirisches Kürbiskernöl g.g.A.". This producers' association was formed in order to protect the regionality and the high quality of Styrian Pumpkin Seed Oil P.G.I. Procedures implemented by this producers' association document every step in the process from pumpkin seeds to seed crushing in oil mills and finally bottling of Styrian Pumpkin Seed Oil P.G.I., keeping a contiguous record of all production steps including annual harvest amounts. This permits full traceability of every bottle of Styrian Pumpkin Seed Oil P.G.I from harvest to the finished, bottled products found on the shelf of delis and even supermarkets. Despite these efforts of the producers' association, there have been repeated claims of g.g.A. (P.G.I.) certified bottles of Styrian Pumpkin Seed Oil (PSO) having been analysed independently and shown to contain either mixtures of Styrian and non-Styrian PSO or no Styrian PSO at all. Since keeping records of annual harvest amounts of pumpkin seeds would make it very difficult for an "over-production" by mixing or substitution of alien PSO's to go unnoticed, we formed the hypothesis that the red-flagged bottles could have been counterfeits containing alien PSO with bottles sporting fake g.g.A. seals and fake serial numbers. An alternative hypothesis was that the chosen method of detection of allegedly misrepresented g.g.A. Styrian PSO resulted in a high number of false negatives thus incorrectly rejecting genuine Styrian PSO as alien PSO and mixtures of Styrian PSO with alien PSO. To investigate the potential of multivariate stable isotope analysis as a means to correctly distinguish between genuine Syrian PSOs and other PSOs, we purchased 13 + 1 PSOs (13 different brands) from high-street and on-line shops. Samples were given alpha-numerical sample IDs and were analysed in a single-blinded fashion. Based on 2H, 13C and 18O abundance values alone sensitivity and specificity were 0.75 (1 false negative; 3 true positives) and 0.86 (1 false positive; 6 true negatives), respectively. However, when combining stable isotope data with trace element data, sensitivity and specificity both improved with no false negatives or false positives being detected. Chemometric statistical analysis clearly separated the 3 g.g.A. certified Styrian PSOs from all but one other PSO, which was also a genuine Styrian PSO in as much as it was pressed from genuine Styrian pumpkin seeds though not by a Styrian oil mill and thus not qualifying for the g.g.A. mark.
TH-EF-BRB-04: 4π Dynamic Conformal Arc Therapy Dynamic Conformal Arc Therapy (DCAT) for SBRT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, T; Long, T; Tian, Z.
2016-06-15
Purpose: To develop an efficient and effective trajectory optimization methodology for 4π dynamic conformal arc treatment (4π DCAT) with synchronized gantry and couch motion; and to investigate potential clinical benefits for stereotactic body radiation therapy (SBRT) to breast, lung, liver and spine tumors. Methods: The entire optimization framework for 4π DCAT inverse planning consists of two parts: 1) integer programming algorithm and 2) particle swarm optimization (PSO) algorithm. The integer programming is designed to find an optimal solution for arc delivery trajectory with both couch and gantry rotation, while PSO minimize a non-convex objective function based on the selected trajectorymore » and dose-volume constraints. In this study, control point interaction is explicitly taken into account. Beam trajectory was modeled as a series of control points connected together to form a deliverable path. With linear treatment planning objectives, a mixed-integer program (MIP) was formulated. Under mild assumptions, the MIP is tractable. Assigning monitor units to control points along the path can be integrated into the model and done by PSO. The developed 4π DCAT inverse planning strategy is evaluated on SBRT cases and compared to clinically treated plans. Results: The resultant dose distribution of this technique was evaluated between 3D conformal treatment plan generated by Pinnacle treatment planning system and 4π DCAT on a lung SBRT patient case. Both plans share the same scale of MU, 3038 and 2822 correspondingly to 3D conformal plan and 4π DCAT. The mean doses for most of OARs were greatly reduced at 32% (cord), 70% (esophagus), 2.8% (lung) and 42.4% (stomach). Conclusion: Initial results in this study show the proposed 4π DCAT treatment technique can achieve better OAR sparing and lower MUs, which indicates that the developed technique is promising for high dose SBRT to reduce the risk of secondary cancer.« less
NASA Astrophysics Data System (ADS)
Sun, Yi; Cai, Haoyuan; Wang, Xiaoping
2017-12-01
A metamaterial-gold multilayer sensing structure designed using the particle swarm optimization (PSO) algorithm with an auxiliary grating is proposed for using in a surface plasmon resonance (SPR) sensor system based on the polarization control method. After numerical calculations and simulation analysis, it was found that the metamaterial sensing structure significantly improves the sensitivity of the SPR signal with intensity singularity. The metamaterial sensing structure also increases the penetration depth of evanescent wave, making it possible to detect low-molecular-weight biomolecules and larger cells such as bacteria. The auxiliary grating structure was designed to identify the refractive index of the sensing region on both sides of intensity singularity. The stability of recognition and the electric field intensity of the visible light band were also studied.
NASA Astrophysics Data System (ADS)
Ren, Yilong; Duan, Xitong; Wu, Lei; He, Jin; Xu, Wu
2017-06-01
With the development of the “VR+” era, the traditional virtual assembly system of power equipment has been unable to satisfy our growing needs. In this paper, based on the analysis of the traditional virtual assembly system of electric power equipment and the application of VR technology in the virtual assembly system of electric power equipment in our country, this paper puts forward the scheme of establishing the virtual assembly system of power equipment: At first, we should obtain the information of power equipment, then we should using OpenGL and multi texture technology to build 3D solid graphics library. After the completion of three-dimensional modeling, we can use the dynamic link library DLL package three-dimensional solid graphics generation program to realize the modularization of power equipment model library and power equipment model library generated hidden algorithm. After the establishment of 3D power equipment model database, we set up the virtual assembly system of 3D power equipment to separate the assembly operation of the power equipment from the space. At the same time, aiming at the deficiency of the traditional gesture recognition algorithm, we propose a gesture recognition algorithm based on improved PSO algorithm for BP neural network data glove. Finally, the virtual assembly system of power equipment can really achieve multi-channel interaction function.
42 CFR 422.352 - Basic requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (a) General rule. An organization is considered a PSO for purposes of a MA contract if the... definition of a PSO set forth in § 422.350 and other applicable requirements of this subpart; and (3) Is... that established and operate the PSO. (b) Provision of services. A PSO must demonstrate to CMS's...
42 CFR 3.104 - Secretarial actions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT PSO Requirements and Agency Procedures § 3.104 Secretarial actions. (a) Actions in response to certification submissions for initial and continued listing as a PSO. (1... the entity as a PSO, or maintain the listing of a PSO, if the Secretary determines that the entity...
42 CFR 422.352 - Basic requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (a) General rule. An organization is considered a PSO for purposes of a MA contract if the... definition of a PSO set forth in § 422.350 and other applicable requirements of this subpart; and (3) Is... that established and operate the PSO. (b) Provision of services. A PSO must demonstrate to CMS's...
42 CFR 3.110 - Assessment of PSO compliance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Assessment of PSO compliance. 3.110 Section 3.110... SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT PSO Requirements and Agency Procedures § 3.110 Assessment of PSO compliance. The Secretary may request information or conduct announced or unannounced...
Zhang, Heng; Xiong, Zhaokun; Ji, Fangzhou; Lai, Bo; Yang, Ping
2017-06-01
Shale gas drilling flowback fluid (SGDF) generated during shale gas extraction is of great concern due to its high total dissolved solid, radioactive elements and organic matter. To remove the toxic and refractory pollutants in SGDF and improve its biodegradability, a microsacle Fe 0 /Persulfate/O 3 process (mFe 0 /PS/O 3 ) was developed to pretreat this wastewater obtained from a shale gas well in southwestern China. First, effects of mFe 0 dosage, O 3 flow rate, PS dosage, pH values on the treatment efficiency of mFe 0 /PS/O 3 process were investigated through single-factor experiments. Afterward, the optimal conditions (i.e., pH = 6.7, mFe 0 dosage = 6.74 g/L, PS = 16.89 mmol/L, O 3 flow rate = 0.73 L/min) were obtained by using response surface methodology (RSM). Under the optimal conditions, high COD removal (75.3%) and BOD 5 /COD ratio (0.49) were obtained after 120 min treatment. Moreover, compared with control experiments (i.e., mFe 0 , O 3 , PS, mFe 0 /O 3 , mFe 0 /PS, O 3 /PS), mFe 0 /PS/O 3 system exerted better performance for pollutants removal in SGDF due to strong synergistic effect between mFe 0 , PS and O 3 . In addition, the decomposition or transformation of the organic pollutants in SGDF was analyzed by using GC-MS. Finally, the reaction mechanism of the mFe 0 /PS/O 3 process was proposed according to the analysis results of SEM-EDS and XRD. It can be concluded that high-efficient mFe 0 /PS/O 3 process was mainly resulted from the combination effect of direct oxidation by ozone and persulfate, heterogeneous and homogeneous catalytic oxidation, Fenton-like reaction and adsorption. Therefore, mFe 0 /PS/O 3 process was proven to be an effective method for pretreatment of SGDF prior to biological treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
2005-06-01
Time Fourier Transform WVD Wigner - Ville Distribution GA Genetic Algorithm PSO Particle Swarm Optimization JEM Jet Engine Modulation CPI...of the Wigner - Ville Distribution ( WVD ), cross-terms appear in the time-frequency image. As shown in Figure 9, which is a WVD of range bin 31 of...14 Figure 9. Wigner - Ville Distribution of Unfocused Range Bin 31 (After [3] and [5].) ...15
A Swarm Optimization approach for clinical knowledge mining.
Christopher, J Jabez; Nehemiah, H Khanna; Kannan, A
2015-10-01
Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Iliyasu, Abdullah M; Fatichah, Chastine
2017-12-19
A quantum hybrid (QH) intelligent approach that blends the adaptive search capability of the quantum-behaved particle swarm optimisation (QPSO) method with the intuitionistic rationality of traditional fuzzy k -nearest neighbours (Fuzzy k -NN) algorithm (known simply as the Q-Fuzzy approach) is proposed for efficient feature selection and classification of cells in cervical smeared (CS) images. From an initial multitude of 17 features describing the geometry, colour, and texture of the CS images, the QPSO stage of our proposed technique is used to select the best subset features (i.e., global best particles) that represent a pruned down collection of seven features. Using a dataset of almost 1000 images, performance evaluation of our proposed Q-Fuzzy approach assesses the impact of our feature selection on classification accuracy by way of three experimental scenarios that are compared alongside two other approaches: the All-features (i.e., classification without prior feature selection) and another hybrid technique combining the standard PSO algorithm with the Fuzzy k -NN technique (P-Fuzzy approach). In the first and second scenarios, we further divided the assessment criteria in terms of classification accuracy based on the choice of best features and those in terms of the different categories of the cervical cells. In the third scenario, we introduced new QH hybrid techniques, i.e., QPSO combined with other supervised learning methods, and compared the classification accuracy alongside our proposed Q-Fuzzy approach. Furthermore, we employed statistical approaches to establish qualitative agreement with regards to the feature selection in the experimental scenarios 1 and 3. The synergy between the QPSO and Fuzzy k -NN in the proposed Q-Fuzzy approach improves classification accuracy as manifest in the reduction in number cell features, which is crucial for effective cervical cancer detection and diagnosis.
Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials
NASA Astrophysics Data System (ADS)
Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei
2016-11-01
Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.
Automatic Calibration of a Semi-Distributed Hydrologic Model Using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Bekele, E. G.; Nicklow, J. W.
2005-12-01
Hydrologic simulation models need to be calibrated and validated before using them for operational predictions. Spatially-distributed hydrologic models generally have a large number of parameters to capture the various physical characteristics of a hydrologic system. Manual calibration of such models is a very tedious and daunting task, and its success depends on the subjective assessment of a particular modeler, which includes knowledge of the basic approaches and interactions in the model. In order to alleviate these shortcomings, an automatic calibration model, which employs an evolutionary optimization technique known as Particle Swarm Optimizer (PSO) for parameter estimation, is developed. PSO is a heuristic search algorithm that is inspired by social behavior of bird flocking or fish schooling. The newly-developed calibration model is integrated to the U.S. Department of Agriculture's Soil and Water Assessment Tool (SWAT). SWAT is a physically-based, semi-distributed hydrologic model that was developed to predict the long term impacts of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use, and management conditions. SWAT was calibrated for streamflow and sediment concentration. The calibration process involves parameter specification, whereby sensitive model parameters are identified, and parameter estimation. In order to reduce the number of parameters to be calibrated, parameterization was performed. The methodology is applied to a demonstration watershed known as Big Creek, which is located in southern Illinois. Application results show the effectiveness of the approach and model predictions are significantly improved.
Chatterjee, Sankhadeep; Dey, Nilanjan; Shi, Fuqian; Ashour, Amira S; Fong, Simon James; Sen, Soumya
2018-04-01
Dengue fever detection and classification have a vital role due to the recent outbreaks of different kinds of dengue fever. Recently, the advancement in the microarray technology can be employed for such classification process. Several studies have established that the gene selection phase takes a significant role in the classifier performance. Subsequently, the current study focused on detecting two different variations, namely, dengue fever (DF) and dengue hemorrhagic fever (DHF). A modified bag-of-features method has been proposed to select the most promising genes in the classification process. Afterward, a modified cuckoo search optimization algorithm has been engaged to support the artificial neural (ANN-MCS) to classify the unknown subjects into three different classes namely, DF, DHF, and another class containing convalescent and normal cases. The proposed method has been compared with other three well-known classifiers, namely, multilayer perceptron feed-forward network (MLP-FFN), artificial neural network (ANN) trained with cuckoo search (ANN-CS), and ANN trained with PSO (ANN-PSO). Experiments have been carried out with different number of clusters for the initial bag-of-features-based feature selection phase. After obtaining the reduced dataset, the hybrid ANN-MCS model has been employed for the classification process. The results have been compared in terms of the confusion matrix-based performance measuring metrics. The experimental results indicated a highly statistically significant improvement with the proposed classifier over the traditional ANN-CS model.
NASA Astrophysics Data System (ADS)
Tang, J. L.; Cai, C. Z.; Xiao, T. T.; Huang, S. J.
2012-07-01
The electrical conductivity of solid oxide fuel cell (SOFC) cathode is one of the most important indices affecting the efficiency of SOFC. In order to improve the performance of fuel cell system, it is advantageous to have accurate model with which one can predict the electrical conductivity. In this paper, a model utilizing support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter optimization was established to modeling and predicting the electrical conductivity of Ba0.5Sr0.5Co0.8Fe0.2 O3-δ-xSm0.5Sr0.5CoO3-δ (BSCF-xSSC) composite cathode under two influence factors, including operating temperature (T) and SSC content (x) in BSCF-xSSC composite cathode. The leave-one-out cross validation (LOOCV) test result by SVR strongly supports that the generalization ability of SVR model is high enough. The absolute percentage error (APE) of 27 samples does not exceed 0.05%. The mean absolute percentage error (MAPE) of all 30 samples is only 0.09% and the correlation coefficient (R2) as high as 0.999. This investigation suggests that the hybrid PSO-SVR approach may be not only a promising and practical methodology to simulate the properties of fuel cell system, but also a powerful tool to be used for optimal designing or controlling the operating process of a SOFC system.
Cat Swarm Optimization algorithm for optimal linear phase FIR filter design.
Saha, Suman Kumar; Ghoshal, Sakti Prasad; Kar, Rajib; Mandal, Durbadal
2013-11-01
In this paper a new meta-heuristic search method, called Cat Swarm Optimization (CSO) algorithm is applied to determine the best optimal impulse response coefficients of FIR low pass, high pass, band pass and band stop filters, trying to meet the respective ideal frequency response characteristics. CSO is generated by observing the behaviour of cats and composed of two sub-models. In CSO, one can decide how many cats are used in the iteration. Every cat has its' own position composed of M dimensions, velocities for each dimension, a fitness value which represents the accommodation of the cat to the fitness function, and a flag to identify whether the cat is in seeking mode or tracing mode. The final solution would be the best position of one of the cats. CSO keeps the best solution until it reaches the end of the iteration. The results of the proposed CSO based approach have been compared to those of other well-known optimization methods such as Real Coded Genetic Algorithm (RGA), standard Particle Swarm Optimization (PSO) and Differential Evolution (DE). The CSO based results confirm the superiority of the proposed CSO for solving FIR filter design problems. The performances of the CSO based designed FIR filters have proven to be superior as compared to those obtained by RGA, conventional PSO and DE. The simulation results also demonstrate that the CSO is the best optimizer among other relevant techniques, not only in the convergence speed but also in the optimal performances of the designed filters. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan
2016-01-01
An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C6H6), toluene (C7H8), formaldehyde (CH2O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms’ applications in all E-nose application areas. PMID:27529247
Meira, L B; Fonseca, M B; Averbeck, D; Schenberg, A C; Henriques, J A
1992-11-01
Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.
Code of Federal Regulations, 2010 CFR
2010-10-01
... policy. A PSO, or the legal entity of which the PSO is a component, may apply to CMS to use the financial... financial resources of a guarantor, a PSO must submit to CMS— (1) Documentation that the guarantor meets the... including other guarantees, intangibles and restricted reserves) equal to three times the amount of the PSO...
Code of Federal Regulations, 2011 CFR
2011-10-01
... policy. A PSO, or the legal entity of which the PSO is a component, may apply to CMS to use the financial... financial resources of a guarantor, a PSO must submit to CMS— (1) Documentation that the guarantor meets the... including other guarantees, intangibles and restricted reserves) equal to three times the amount of the PSO...
PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.
Ng, Marcus C K; Fong, Simon; Siu, Shirley W I
2015-06-01
Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .
Design and Analysis of Self-Adapted Task Scheduling Strategies in Wireless Sensor Networks
Guo, Wenzhong; Xiong, Naixue; Chao, Han-Chieh; Hussain, Sajid; Chen, Guolong
2011-01-01
In a wireless sensor network (WSN), the usage of resources is usually highly related to the execution of tasks which consume a certain amount of computing and communication bandwidth. Parallel processing among sensors is a promising solution to provide the demanded computation capacity in WSNs. Task allocation and scheduling is a typical problem in the area of high performance computing. Although task allocation and scheduling in wired processor networks has been well studied in the past, their counterparts for WSNs remain largely unexplored. Existing traditional high performance computing solutions cannot be directly implemented in WSNs due to the limitations of WSNs such as limited resource availability and the shared communication medium. In this paper, a self-adapted task scheduling strategy for WSNs is presented. First, a multi-agent-based architecture for WSNs is proposed and a mathematical model of dynamic alliance is constructed for the task allocation problem. Then an effective discrete particle swarm optimization (PSO) algorithm for the dynamic alliance (DPSO-DA) with a well-designed particle position code and fitness function is proposed. A mutation operator which can effectively improve the algorithm’s ability of global search and population diversity is also introduced in this algorithm. Finally, the simulation results show that the proposed solution can achieve significant better performance than other algorithms. PMID:22163971
Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets.
Best, Myron G; Sol, Nik; In 't Veld, Sjors G J G; Vancura, Adrienne; Muller, Mirte; Niemeijer, Anna-Larissa N; Fejes, Aniko V; Tjon Kon Fat, Lee-Ann; Huis In 't Veld, Anna E; Leurs, Cyra; Le Large, Tessa Y; Meijer, Laura L; Kooi, Irsan E; Rustenburg, François; Schellen, Pepijn; Verschueren, Heleen; Post, Edward; Wedekind, Laurine E; Bracht, Jillian; Esenkbrink, Michelle; Wils, Leon; Favaro, Francesca; Schoonhoven, Jilian D; Tannous, Jihane; Meijers-Heijboer, Hanne; Kazemier, Geert; Giovannetti, Elisa; Reijneveld, Jaap C; Idema, Sander; Killestein, Joep; Heger, Michal; de Jager, Saskia C; Urbanus, Rolf T; Hoefer, Imo E; Pasterkamp, Gerard; Mannhalter, Christine; Gomez-Arroyo, Jose; Bogaard, Harm-Jan; Noske, David P; Vandertop, W Peter; van den Broek, Daan; Ylstra, Bauke; Nilsson, R Jonas A; Wesseling, Pieter; Karachaliou, Niki; Rosell, Rafael; Lee-Lewandrowski, Elizabeth; Lewandrowski, Kent B; Tannous, Bakhos A; de Langen, Adrianus J; Smit, Egbert F; van den Heuvel, Michel M; Wurdinger, Thomas
2017-08-14
Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs), have emerged as promising biomarker sources for non-invasive detection of cancer. Here we demonstrate that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels from platelet RNA-sequencing libraries (n = 779). This resulted in accurate TEP-based detection of early- and late-stage non-small-cell lung cancer (n = 518 late-stage validation cohort, accuracy, 88%; AUC, 0.94; 95% CI, 0.92-0.96; p < 0.001; n = 106 early-stage validation cohort, accuracy, 81%; AUC, 0.89; 95% CI, 0.83-0.95; p < 0.001), independent of age of the individuals, smoking habits, whole-blood storage time, and various inflammatory conditions. PSO enabled selection of gene panels to diagnose cancer from TEPs, suggesting that swarm intelligence may also benefit the optimization of diagnostics readout of other liquid biopsy biosources. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mallick, S.; Kar, R.; Mandal, D.; Ghoshal, S. P.
2016-07-01
This paper proposes a novel hybrid optimisation algorithm which combines the recently proposed evolutionary algorithm Backtracking Search Algorithm (BSA) with another widely accepted evolutionary algorithm, namely, Differential Evolution (DE). The proposed algorithm called BSA-DE is employed for the optimal designs of two commonly used analogue circuits, namely Complementary Metal Oxide Semiconductor (CMOS) differential amplifier circuit with current mirror load and CMOS two-stage operational amplifier (op-amp) circuit. BSA has a simple structure that is effective, fast and capable of solving multimodal problems. DE is a stochastic, population-based heuristic approach, having the capability to solve global optimisation problems. In this paper, the transistors' sizes are optimised using the proposed BSA-DE to minimise the areas occupied by the circuits and to improve the performances of the circuits. The simulation results justify the superiority of BSA-DE in global convergence properties and fine tuning ability, and prove it to be a promising candidate for the optimal design of the analogue CMOS amplifier circuits. The simulation results obtained for both the amplifier circuits prove the effectiveness of the proposed BSA-DE-based approach over DE, harmony search (HS), artificial bee colony (ABC) and PSO in terms of convergence speed, design specifications and design parameters of the optimal design of the analogue CMOS amplifier circuits. It is shown that BSA-DE-based design technique for each amplifier circuit yields the least MOS transistor area, and each designed circuit is shown to have the best performance parameters such as gain, power dissipation, etc., as compared with those of other recently reported literature.
Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing
Abubaker, Ahmad; Baharum, Adam; Alrefaei, Mahmoud
2015-01-01
This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, “MOPSOSA”. The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets. PMID:26132309
New HCFA regulations clarify PSO requirements.
Brock, T H
1998-06-01
In March and April of 1998, HCFA promulgated regulations regarding various requirements for provider-sponsored organizations (PSOs). These regulations define what constitutes an affiliated provider to a PSO, identify what percentage of services must be provided directly to beneficiaries by PSO affiliated providers, define what constitutes provider ownership in a PSO, and set minimum capitalization and liquidity standards for PSOs.
42 CFR 422.514 - Minimum enrollment requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... individuals if the organization is a PSO) are enrolled for the purpose of receiving health benefits from the organization; or (2) At least 1,500 individuals (or 500 individuals if the organization is a PSO) are enrolled... individuals residing outside of urbanized areas as defined in § 412.62(f) (or, in the case of a PSO, the PSO...
42 CFR 422.514 - Minimum enrollment requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... individuals if the organization is a PSO) are enrolled for the purpose of receiving health benefits from the organization; or (2) At least 1,500 individuals (or 500 individuals if the organization is a PSO) are enrolled... individuals residing outside of urbanized areas as defined in § 412.62(f) (or, in the case of a PSO, the PSO...
42 CFR 3.108 - Correction of deficiencies, revocation, and voluntary relinquishment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... HUMAN SERVICES GENERAL PROVISIONS PATIENT SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT PSO... entity as a PSO if he determines— (i) The PSO is not fulfilling the certifications made to the Secretary as required by § 3.102; (ii) The PSO has not met the two contract requirement, as required by § 3.102...
2016-03-01
89 3.1.3 NLP Improvement...3.2.1.2 NLP Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.2 Multiple-burn Planar LEO to GEO Transfer...101 3.2.2.1 PSO Initial Guess Generation . . . . . . . . . . . . . . . . . . . . . 101 3.2.2.2 NLP Improvement
Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks
Robinson, Y. Harold; Rajaram, M.
2015-01-01
Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique. PMID:26819966
Firefly Mating Algorithm for Continuous Optimization Problems
Ritthipakdee, Amarita; Premasathian, Nol; Jitkongchuen, Duangjai
2017-01-01
This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima. PMID:28808442
Firefly Mating Algorithm for Continuous Optimization Problems.
Ritthipakdee, Amarita; Thammano, Arit; Premasathian, Nol; Jitkongchuen, Duangjai
2017-01-01
This paper proposes a swarm intelligence algorithm, called firefly mating algorithm (FMA), for solving continuous optimization problems. FMA uses genetic algorithm as the core of the algorithm. The main feature of the algorithm is a novel mating pair selection method which is inspired by the following 2 mating behaviors of fireflies in nature: (i) the mutual attraction between males and females causes them to mate and (ii) fireflies of both sexes are of the multiple-mating type, mating with multiple opposite sex partners. A female continues mating until her spermatheca becomes full, and, in the same vein, a male can provide sperms for several females until his sperm reservoir is depleted. This new feature enhances the global convergence capability of the algorithm. The performance of FMA was tested with 20 benchmark functions (sixteen 30-dimensional functions and four 2-dimensional ones) against FA, ALC-PSO, COA, MCPSO, LWGSODE, MPSODDS, DFOA, SHPSOS, LSA, MPDPGA, DE, and GABC algorithms. The experimental results showed that the success rates of our proposed algorithm with these functions were higher than those of other algorithms and the proposed algorithm also required fewer numbers of iterations to reach the global optima.
Modeling level change in Lake Urmia using hybrid artificial intelligence approaches
NASA Astrophysics Data System (ADS)
Esbati, M.; Ahmadieh Khanesar, M.; Shahzadi, Ali
2017-06-01
The investigation of water level fluctuations in lakes for protecting them regarding the importance of these water complexes in national and regional scales has found a special place among countries in recent years. The importance of the prediction of water level balance in Lake Urmia is necessary due to several-meter fluctuations in the last decade which help the prevention from possible future losses. For this purpose, in this paper, the performance of adaptive neuro-fuzzy inference system (ANFIS) for predicting the lake water level balance has been studied. In addition, for the training of the adaptive neuro-fuzzy inference system, particle swarm optimization (PSO) and hybrid backpropagation-recursive least square method algorithm have been used. Moreover, a hybrid method based on particle swarm optimization and recursive least square (PSO-RLS) training algorithm for the training of ANFIS structure is introduced. In order to have a more fare comparison, hybrid particle swarm optimization and gradient descent are also applied. The models have been trained, tested, and validated based on lake level data between 1991 and 2014. For performance evaluation, a comparison is made between these methods. Numerical results obtained show that the proposed methods with a reasonable error have a good performance in water level balance prediction. It is also clear that with continuing the current trend, Lake Urmia will experience more drop in the water level balance in the upcoming years.
Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-02-16
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.
Zhou, Yuexi; Wang, Yeyao; Shi, Ping
2018-01-01
Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths. PMID:29462929
NASA Astrophysics Data System (ADS)
Hertono, G. F.; Ubadah; Handari, B. D.
2018-03-01
The traveling salesman problem (TSP) is a famous problem in finding the shortest tour to visit every vertex exactly once, except the first vertex, given a set of vertices. This paper discusses three modification methods to solve TSP by combining Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and 3-Opt Algorithm. The ACO is used to find the solution of TSP, in which the PSO is implemented to find the best value of parameters α and β that are used in ACO.In order to reduce the total of tour length from the feasible solution obtained by ACO, then the 3-Opt will be used. In the first modification, the 3-Opt is used to reduce the total tour length from the feasible solutions obtained at each iteration, meanwhile, as the second modification, 3-Opt is used to reduce the total tour length from the entire solution obtained at every iteration. In the third modification, 3-Opt is used to reduce the total tour length from different solutions obtained at each iteration. Results are tested using 6 benchmark problems taken from TSPLIB by calculating the relative error to the best known solution as well as the running time. Among those modifications, only the second and third modification give satisfactory results except the second one needs more execution time compare to the third modifications.
de Andrade, H H; Marques, E K; Schenberg, A C; Henriques, J A
1989-06-01
The induction of mitotic gene conversion and crossing-over in Saccharomyces cerevisiae diploid cells homozygous for the pso4-1 mutation was examined in comparison to the corresponding wild-type strain. The pso4-1 mutant strain was found to be completely blocked in mitotic recombination induced by photoaddition of mono- and bifunctional psoralen derivatives as well as by mono- (HN1) and bifunctional (HN2) nitrogen mustards or 254 nm UV radiation in both stationary and exponential phases of growth. Concerning the lethal effect, diploids homozygous for the pso4-1 mutation are more sensitive to all agents tested in any growth phase. However, this effect is more pronounced in the G2 phase of the cell cycle. These results imply that the ploidy effect and the resistance of budding cells are under the control of the PSO4 gene. On the other hand, the pso4-1 mutant is mutationally defective for all agents used. Therefore, the pso4-1 mutant has a generalized block in both recombination and mutation ability. This indicates that the PSO4 gene is involved in an error-prone repair pathway which relies on a recombinational mechanism, strongly suggesting an analogy between the pso4-1 mutation and the RecA or LexA mutation of Escherichia coli.
76 FR 21744 - Agency Information Collection Activities: Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-18
... outcomes and (1) is assembled or developed by a provider for reporting to a PSO and is reported to a PSO or (2) is developed by a PSO for the conduct of patient safety activities. Civil money penalties may be... be listed as a PSO by the Secretary must certify that it meets certain requirements and, upon listing...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yuanchong; Long, Charles N.; Rossow, William B.
2010-01-01
Based on monthly-3-hourly and 3-hourly mean surface radiative fluxes and their associated meteorological parameters for 2004 from the International Satellite Cloud Climatology Project-FD (ISCCP-FD) and the Radiative Flux Analysis method-Produced Surface Observations (RFA-PSO) for 15 high-quality-controlled surface stations, operated by the Baseline Surface Radiation Network (BSRN), the Atmospheric Radiation Measurement (ARM) and the National Oceanic and Atmospheric Administration's Surface Radiation budget network (SURFRAD), this work, goes beyond the previous validation for FD against surface observation by introducing the Meteorological Similarity Comparison Method (MSCM) to make a more precise, mutual evaluation of both FD and PSO products. The comparison results inmore » substantial uncertainty reduction and provides reasonable physical explanations for the flux differences. This approach compares fluxes for cases where the atmospheric and surface physical properties (specifically, the input parameters for radiative transfer model) are as close as possible to the values determined at the observational sites by matching the RFA-produced cloud fraction (CF) and/or optical thickness (Tau), etc., or alternatively, by directly changing the model input variables for FD to match PSO values, and using such-produced matched sub-datasets to make more accurate comparisons based on more similar meteorological environments between FD and PSO. The crucial part is the availability of flux-associated meteorological parameters from RFA-PSO, which was only recently made available that makes this work possible. For surface downwelling shortwave(SW) flux (SWdn) and its two components, diffuse (Dif) and direct (Dir), uncertainty for monthly mean is 15, 15 and 17 W/m 2, respectively, smaller than the separately estimated uncertainty values from both FD and PSO. When applying MSCM by reducing their CF difference, the differences can be reduced by a factor of 2. The strength of MSCM is particularly shown in the comparisons of diurnal variations. For clear sky, reducing the FD values of aerosol optical depth (AOD) by 50% to approximately match the PSO values brings all downward SW flux components into substantial agreement. For cloudy scenes, when both CF and Tau are matched to within 0.1 – 0.25 and ~10, respectively, the majority of the SW flux components have nearly-perfect agreement between FD and PSO. The best restriction differences are not zero indicates the influence of other parameters that are not accounted for yet. For longwave (LW) fluxes, general evaluation also confirms uncertainty values for FD and PSO less than separately estimated. When applying MSCM to CF and surface air temperature, the agreement is substantially improved. For downwelling LW diurnal variation comparison, FD shows good agreement with PSO for both RFA-defined or true clear sky but overestimates the amplitude for cloudy sky by 3-7 W/m 2, which may be caused by different sensitivities to cirrus clouds. For upwelling LW diurnal cycle, the situation is reversed; FD now underestimates the diurnal amplitude for all and clear sky but generally agrees for overcast (CF > 0.7). The combined effect of downwelling and upwelling LW fluxes results in FD's underestimates of the diurnal variation of the net-LW-loss for all the scenes by up to 10 W/m 2, although the daily mean net loss is more accurate. Therefore, in terms of amplitude and phase, both FD and PSO seem to have caught correct diurnal variations.« less
The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis
A Rashid, Ahmad Safuan; Ali, Nazri
2014-01-01
Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652
The contribution of particle swarm optimization to three-dimensional slope stability analysis.
Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen
2014-01-01
Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.
Enhanced pid vs model predictive control applied to bldc motor
NASA Astrophysics Data System (ADS)
Gaya, M. S.; Muhammad, Auwal; Aliyu Abdulkadir, Rabiu; Salim, S. N. S.; Madugu, I. S.; Tijjani, Aminu; Aminu Yusuf, Lukman; Dauda Umar, Ibrahim; Khairi, M. T. M.
2018-01-01
BrushLess Direct Current (BLDC) motor is a multivariable and highly complex nonlinear system. Variation of internal parameter values with environment or reference signal increases the difficulty in controlling the BLDC effectively. Advanced control strategies (like model predictive control) often have to be integrated to satisfy the control desires. Enhancing or proper tuning of a conventional algorithm results in achieving the desired performance. This paper presents a performance comparison of Enhanced PID and Model Predictive Control (MPC) applied to brushless direct current motor. The simulation results demonstrated that the PSO-PID is slightly better than the PID and MPC in tracking the trajectory of the reference signal. The proposed scheme could be useful algorithms for the system.
NASA Astrophysics Data System (ADS)
Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza
2017-06-01
Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.
Optimization of C4.5 algorithm-based particle swarm optimization for breast cancer diagnosis
NASA Astrophysics Data System (ADS)
Muslim, M. A.; Rukmana, S. H.; Sugiharti, E.; Prasetiyo, B.; Alimah, S.
2018-03-01
Data mining has become a basic methodology for computational applications in the field of medical domains. Data mining can be applied in the health field such as for diagnosis of breast cancer, heart disease, diabetes and others. Breast cancer is most common in women, with more than one million cases and nearly 600,000 deaths occurring worldwide each year. The most effective way to reduce breast cancer deaths was by early diagnosis. This study aims to determine the level of breast cancer diagnosis. This research data uses Wisconsin Breast Cancer dataset (WBC) from UCI machine learning. The method used in this research is the algorithm C4.5 and Particle Swarm Optimization (PSO) as a feature option and to optimize the algorithm. C4.5. Ten-fold cross-validation is used as a validation method and a confusion matrix. The result of this research is C4.5 algorithm. The particle swarm optimization C4.5 algorithm has increased by 0.88%.
PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems
Mohamed, Mohamed A.; Eltamaly, Ali M.; Alolah, Abdulrahman I.
2016-01-01
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000
PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems.
Mohamed, Mohamed A; Eltamaly, Ali M; Alolah, Abdulrahman I
2016-01-01
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers.
A novel global Harmony Search method based on Ant Colony Optimisation algorithm
NASA Astrophysics Data System (ADS)
Fouad, Allouani; Boukhetala, Djamel; Boudjema, Fares; Zenger, Kai; Gao, Xiao-Zhi
2016-03-01
The Global-best Harmony Search (GHS) is a stochastic optimisation algorithm recently developed, which hybridises the Harmony Search (HS) method with the concept of swarm intelligence in the particle swarm optimisation (PSO) to enhance its performance. In this article, a new optimisation algorithm called GHSACO is developed by incorporating the GHS with the Ant Colony Optimisation algorithm (ACO). Our method introduces a novel improvisation process, which is different from that of the GHS in the following aspects. (i) A modified harmony memory (HM) representation and conception. (ii) The use of a global random switching mechanism to monitor the choice between the ACO and GHS. (iii) An additional memory consideration selection rule using the ACO random proportional transition rule with a pheromone trail update mechanism. The proposed GHSACO algorithm has been applied to various benchmark functions and constrained optimisation problems. Simulation results demonstrate that it can find significantly better solutions when compared with the original HS and some of its variants.
Dauner, Allison L.; Valks, Andrea; Forshey, Brett M.; Long, Kanya C.; Thaisomboonsuk, Butsaya; Sierra, Gloria; Picos, Victor; Talmage, Sara; Morrison, Amy C.; Halsey, Eric S.; Comach, Guillermo; Yasuda, Chadwick; Loeffelholz, Michael; Jarman, Richard G.; Fernandez, Stefan; An, Ung Sam; Kochel, Tadeusz J.; Jasper, Louis E.; Wu, Shuenn-Jue L.
2015-01-01
We evaluated four dengue diagnostic devices from Alere, including the SD Bioline Dengue Duo (nonstructural [NS] 1 Ag and IgG/IgM), the Panbio Dengue Duo Cassette (IgM/IgG) rapid diagnostic tests (RDTs), and the Panbio dengue IgM and IgG capture enzyme-linked immunosorbent assays (ELISAs) in a prospective, controlled, multicenter study in Peru, Venezuela, Cambodia, and the United States, using samples from 1,021 febrile individuals. Archived, well-characterized samples from an additional 135 febrile individuals from Thailand were also used. Reference testing was performed on all samples using an algorithm involving virus isolation, in-house IgM and IgG capture ELISAs, and plaque reduction neutralization tests (PRNT) to determine the infection status of the individual. The primary endpoints were the clinical sensitivities and specificities of these devices. The SD Bioline Dengue Duo had an overall sensitivity of 87.3% (95% confidence interval [CI], 84.1 to 90.2%) and specificity of 86.8% (95% CI, 83.9 to 89.3%) during the first 14 days post-symptom onset (p.s.o.). The Panbio Dengue Duo Cassette demonstrated a sensitivity of 92.1% (87.8 to 95.2%) and specificity of 62.2% (54.5 to 69.5%) during days 4 to 14 p.s.o. The Panbio IgM capture ELISA had a sensitivity of 87.6% (82.7 to 91.4%) and specificity of 88.1% (82.2 to 92.6%) during days 4 to 14 p.s.o. Finally, the Panbio IgG capture ELISA had a sensitivity of 69.6% (62.1 to 76.4%) and a specificity of 88.4% (82.6 to 92.8%) during days 4 to 14 p.s.o. for identification of secondary dengue infections. This multicountry prospective study resulted in reliable real-world performance data that will facilitate data-driven laboratory test choices for managing patient care during dengue outbreaks. PMID:25588659
NASA Astrophysics Data System (ADS)
Borni, A.; Abdelkrim, T.; Zaghba, L.; Bouchakour, A.; Lakhdari, A.; Zarour, L.
2017-02-01
In this paper the model of a grid connected hybrid system is presented. The hybrid system includes a variable speed wind turbine controlled by aFuzzy MPPT control, and a photovoltaic generator controlled with PSO Fuzzy MPPT control to compensate the power fluctuations caused by the wind in a short and long term, the inverter currents injected to the grid is controlled by a decoupled PI current control. In the first phase, we start by modeling of the conversion system components; the wind system is consisted of a turbine coupled to a gearless permanent magnet generator (PMG), the AC/DC and DC-DC (Boost) converter are responsible to feed the electric energy produced by the PMG to the DC-link. The solar system consists of a photovoltaic generator (GPV) connected to a DC/DC boost converter controlled by a PSO fuzzy MPPT control to extract at any moment the maximum available power at the GPV terminals, the system is based on maximum utilization of both of sources because of their complementary. At the end. The active power reached to the DC-link is injected to the grid through a DC/AC inverter, this function is achieved by controlling the DC bus voltage to keep it constant and close to its reference value, The simulation studies have been performed using Matlab/Simulink. It can be concluded that a good control system performance can be achieved.
NASA Astrophysics Data System (ADS)
Tolson, B.; Matott, L. S.; Gaffoor, T. A.; Asadzadeh, M.; Shafii, M.; Pomorski, P.; Xu, X.; Jahanpour, M.; Razavi, S.; Haghnegahdar, A.; Craig, J. R.
2015-12-01
We introduce asynchronous parallel implementations of the Dynamically Dimensioned Search (DDS) family of algorithms including DDS, discrete DDS, PA-DDS and DDS-AU. These parallel algorithms are unique from most existing parallel optimization algorithms in the water resources field in that parallel DDS is asynchronous and does not require an entire population (set of candidate solutions) to be evaluated before generating and then sending a new candidate solution for evaluation. One key advance in this study is developing the first parallel PA-DDS multi-objective optimization algorithm. The other key advance is enhancing the computational efficiency of solving optimization problems (such as model calibration) by combining a parallel optimization algorithm with the deterministic model pre-emption concept. These two efficiency techniques can only be combined because of the asynchronous nature of parallel DDS. Model pre-emption functions to terminate simulation model runs early, prior to completely simulating the model calibration period for example, when intermediate results indicate the candidate solution is so poor that it will definitely have no influence on the generation of further candidate solutions. The computational savings of deterministic model preemption available in serial implementations of population-based algorithms (e.g., PSO) disappear in synchronous parallel implementations as these algorithms. In addition to the key advances above, we implement the algorithms across a range of computation platforms (Windows and Unix-based operating systems from multi-core desktops to a supercomputer system) and package these for future modellers within a model-independent calibration software package called Ostrich as well as MATLAB versions. Results across multiple platforms and multiple case studies (from 4 to 64 processors) demonstrate the vast improvement over serial DDS-based algorithms and highlight the important role model pre-emption plays in the performance of parallel, pre-emptable DDS algorithms. Case studies include single- and multiple-objective optimization problems in water resources model calibration and in many cases linear or near linear speedups are observed.
Zhang, Liping; Zheng, Yanling; Wang, Kai; Zhang, Xueliang; Zheng, Yujian
2014-06-01
In this paper, by using a particle swarm optimization algorithm to solve the optimal parameter estimation problem, an improved Nash nonlinear grey Bernoulli model termed PSO-NNGBM(1,1) is proposed. To test the forecasting performance, the optimized model is applied for forecasting the incidence of hepatitis B in Xinjiang, China. Four models, traditional GM(1,1), grey Verhulst model (GVM), original nonlinear grey Bernoulli model (NGBM(1,1)) and Holt-Winters exponential smoothing method, are also established for comparison with the proposed model under the criteria of mean absolute percentage error and root mean square percent error. The prediction results show that the optimized NNGBM(1,1) model is more accurate and performs better than the traditional GM(1,1), GVM, NGBM(1,1) and Holt-Winters exponential smoothing method. Copyright © 2014. Published by Elsevier Ltd.
Nicetic; Watson, D M; Beattie, G A; Meats, A; Zheng, J
2001-01-01
From 1995 to 1999, four experiments were conducted on greenhouse roses to assess the effectiveness of the nC24 petroleum spray oil (PSO), D-C-Tron Plus, against two-spotted mite, Tetranychus urticae Koch (Acarina: Tetranychidae), and to determine how the oil could be most efficiently and effectively used in combination with the predatory mite Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae) in an integrated pest management program. The results showed that 0.5% PSO applied fortnightly to roses gave excellent protection from T urticae infestation when the mite population was not already established. However, PSO applied after roses were infested with T. urticae above the economic threshold only stabilised populations without reducing them below that threshold. Populations of P. persimilis in the upper and lower canopies were unchanged after two sprays of PSO at 7-day intervals, and application of PSO to the upper canopy was as effective in controlling T. urticae in the presence of P persimilis as spraying the entire plant. Combining PSO with P. persimilis gave better control of T. urticae than using P. persimilis alone. The most cost-effective use of PSO in the presence of P. persimilis is, therefore, to apply spray only to the upper canopy. This will not affect control of powdery mildew with PSO. Comparison of a control program for T urticae based on the monitored use of synthetic miticides with that based on calendar application of PSO revealed that both gave equally effective control. The benefits of combining PSO and P. persimilis in an integrated pest management program for T. urticae on roses over a program based on synthetic fungicides are discussed.
Chemical Profile and Antioxidant Activity of the Oil from Peony Seeds (Paeonia suffruticosa Andr.)
Yang, Xin; Song, Li-min; Xu, Qian; Li, Hong
2017-01-01
Peony seed oil (PSO) is a novel vegetable oil developed from the seeds of Paeonia suffruticosa Andr. The present study aimed to make an overall investigation on the chemical profile and antioxidant activities of PSO for reasonable development and utilization of this new resource food. Chemical analysis revealed that PSO was characterized by an uncommon high portion of α-linolenic acid (>38%), fairly low ratio of n-6 to n-3 polyunsaturated fatty acids (0.69), and much higher content of γ-tocopherol than various conventional seed oils. In vitro assay indicated that PSO is a more potent scavenger of free radicals than extra virgin olive oil. Moderate intake of PSO exhibited obvious protection against various oxidative damages such as tetrachloromethane-induced acute liver injury in mice and diet-induced hyperlipidemia in rats. The changes in the key indicators of oxidative injury and fatty acid composition in the liver caused by PSO administration were measured, and the results demonstrated that antioxidant properties of PSO are closely related to their characteristic chemical composition. Consequently, the present study provided new evidence for the health implications of PSO, which deserves further development for medical and nutritional use against oxidative damages that are associated with various diseases. PMID:29081895
Xu, Hui; Zhang, Yonggang; Zhao, Yongfei; Zhang, Xuesong; Xiao, Songhua; Wang, Yan
2015-02-01
Single pedicle subtraction osteotomy (PSO) has been used to correct ankylosing spondylitis (AS) kyphosis successfully, but this approach seems insufficient to correct severe kyphosis. Two-level PSO has been attempted to correct advanced kyphosis in recent years. However, studies have not yet compared outcomes between single and double PSOs, and the indications to perform two-level PSO are unclear. This study aimed to compare the radiologic and clinical outcomes between single- and two-level PSOs in correcting AS kyphosis. This work is a retrospective cohort study. Sixty patients were included. Thirty-seven underwent single-level PSO, and 23 underwent one stage two-level PSO. The radiologic analysis included thoracic kyphosis, thoracolumbar junction, lumbar lordosis, pelvic index, chin-brow vertical angle (CBVA), sagittal vertical axis (SVA), and pelvic tilt (PT). Clinical assessment was performed with a Scoliosis Research Society-22 (SRS-22) outcomes instrument. The operative time, blood loss, and complications were also documented. All of the aforementioned measurements were recorded before surgery, after surgery, and at the last follow-up. The outcomes were compared between the two groups. The operating time was 232±52 minutes for single- and 282±43 minutes for two-level PSOs. The blood loss was 1,240±542 mL (Level 1) and 2,202±737 mL (Level 2). The total spine correction was 43.2°±15.1° (Level 1) and 60.6°±19.1° (Level 2) (p<.001), the SVA correction was 13.2±10.6 cm (Level 1) and 23.6±10.2 cm (Level 2) (p<.001), and the PT correction was 10.1°±11.6° (Level 1) and 15.2°±10.8° (Level 2) (p<.001). The CBVA correction was 50.6°±17.8° (Level 1) and 51.4°±18.6° in (Level 2) (p>.05). All patients could walk with horizontal vision and lie on their backs postoperatively. The SRS-22 improved from 1.7±0.4 to 4.2±0.8 in the two-level group and 1.8±0.8 to 4.3±0.7 in the single-level group. The fusion of the osteotomy was achieved in each patient. The complications were similar in both groups. Pedicle subtraction osteotomy is an effective method to correct kyphosis with AS. Most patients can be successfully treated by single PSO. In severe patients, two-level PSO may be preferable because its correction ability is greater and spine curvature is better than that of single-level PSO. However, two-level PSO requires an increased operating time and results in increased blood loss. Nevertheless, the complications were similar between the two groups. Copyright © 2015 Elsevier Inc. All rights reserved.
Truong, B; Rich-Garg, N; Ehst, BD; Deodhar, AA; Ku, JH; Vakil-Gilani, K; Danve, A; Blauvelt, A
2015-01-01
Innovation What is already known about the topic: psoriasis (PsO) is a common skin disease with major impact on quality of life (QoL). Patient-reported data on QoL from large number of PsO patients with and without psoriatic arthritis (PsA) are limited. What this study adds: In a large cohort referred to a university psoriasis center, patients with PsO and concomitant PsA (~30% in this group) had greater degrees of skin and nail involvement and experienced greater negative impacts on QoL. Despite large numbers of patients with moderate-to-severe disease, use of systemic therapy by community practitioners was uncommon. Background PsO and PsA are common diseases that have marked adverse impacts on QoL. The disease features and patient-reported QoL data comparing PsO and PsA patients are limited. Objective To identify and compare demographics, clinical disease characteristics, and QoL scores in a large cohort of PsO patients with and without PsA. Methods All PsO patients seen in a psoriasis specialty clinic, named the Center of Excellence for Psoriasis and Psoriatic Arthritis, were enrolled in an observational cohort. Demographic, QoL, and clinical data were collected from patient-reported questionnaires and from physical examinations performed by Center of Excellence for Psoriasis and Psoriatic Arthritis dermatologists and a rheumatologists. Cross sectional descriptive data were collected and comparisons between patients with PsO alone and those with concomitant PsA are presented. Results A total of 568 patients were enrolled in the database. Mean age of PsO onset was 28 years and mean disease duration was 18 years. Those with family history had an earlier onset of PsO by ~7 years. Mean body surface area involvement with PsO was 14%. Mean body mass index was 30.7. Prevalence of PsA was 29.8%. PsA patients had a higher mean body surface area compared to patients with PsO alone (16.7% vs 13.4%, P<0.05), higher prevalence of psoriatic nail changes (54.4% vs 36%, P<0.0002), and worse QoL scores as assessed by the Short Form-12 (67 vs 52, P<0.00001), Psoriasis Quality of Life-12 questionnaire (62 vs 71, P<0.01), and Routine Assessment of Patient Index Data 3 (2.3 vs 4.7, P<0.01). Strikingly, 49% of patients with PsO had never received any systemic therapy. Conclusion These data highlight that PsO has marked negative impacts on QoL, while those patients with concomitant PsA are affected to a much greater degree. Despite large numbers of patients presenting with moderate-to-severe disease, use of systemic therapy for both PsO and PsA was uncommon. PMID:26622188
Tang, Fengna; Wang, Youqing
2017-11-01
Blood glucose (BG) regulation is a long-term task for people with diabetes. In recent years, more and more researchers have attempted to achieve automated regulation of BG using automatic control algorithms, called the artificial pancreas (AP) system. In clinical practice, it is equally important to guarantee the treatment effect and reduce the treatment costs. The main motivation of this study is to reduce the cure burden. The dynamic R-parameter economic model predictive control (R-EMPC) is chosen to regulate the delivery rates of exogenous hormones (insulin and glucagon). It uses particle swarm optimization (PSO) to optimize the economic cost function and the switching logic between insulin delivery and glucagon delivery is designed based on switching control theory. The proposed method is first tested on the standard subject; the result is compared with the switching PID and the switching MPC. The effect of the dynamic R-parameter on improving the control performance is illustrated by comparing the results of the EMPC and the R-EMPC. Finally, the robustness tests on meal change (size and timing), hormone sensitivity (insulin and glucagon), and subject variability are performed. All results show that the proposed method can improve the control performance and reduce the economic costs. The simulation results verify the effectiveness of the proposed algorithm on improving the tracking performance, enhancing robustness, and reducing economic costs. The method proposed in this study owns great worth in practical application.
Fuel Optimal, Finite Thrust Guidance Methods to Circumnavigate with Lighting Constraints
NASA Astrophysics Data System (ADS)
Prince, E. R.; Carr, R. W.; Cobb, R. G.
This paper details improvements made to the authors' most recent work to find fuel optimal, finite-thrust guidance to inject an inspector satellite into a prescribed natural motion circumnavigation (NMC) orbit about a resident space object (RSO) in geosynchronous orbit (GEO). Better initial guess methodologies are developed for the low-fidelity model nonlinear programming problem (NLP) solver to include using Clohessy- Wiltshire (CW) targeting, a modified particle swarm optimization (PSO), and MATLAB's genetic algorithm (GA). These initial guess solutions may then be fed into the NLP solver as an initial guess, where a different NLP solver, IPOPT, is used. Celestial lighting constraints are taken into account in addition to the sunlight constraint, ensuring that the resulting NMC also adheres to Moon and Earth lighting constraints. The guidance is initially calculated given a fixed final time, and then solutions are also calculated for fixed final times before and after the original fixed final time, allowing mission planners to choose the lowest-cost solution in the resulting range which satisfies all constraints. The developed algorithms provide computationally fast and highly reliable methods for determining fuel optimal guidance for NMC injections while also adhering to multiple lighting constraints.
Lienhardt, Andrea; Rabenschlag, Franziska; Panfil, Eva-Maria
2018-06-08
The practice of special observation in adults in the German-speaking part of Switzerland - a descriptive cross-sectional study Abstract. Psychiatric Special Observation (PSO) is an intervention often used by nurses to prevent service users of harming themselves or to protect others. The intervention ranges between control and therapy and is resource intensive. Despite the widespread use of PSO, there is still no data on the practice of the intervention in Switzerland. What is the current practice of PSO in adults in psychiatric hospitals in the German-speaking part of Switzerland? Descriptive cross-sectional study. Nurses from inpatient psychiatric services in the German-speaking part of Switzerland completed a questionnaire based on a concept analysis of PSO. 538 questionnaires were analysed. PSO was more often conducted intermittent than as constant observation. In more than one out of four cases, suicidality reasoned as a cause for prescription. Nurses generally used standardized instruments to assess the risk of harming oneself or others. The duration of PSO lasted eight hours or more in three out of four cases. In every fifth case, there was no validation of the need of the intervention taking place during one shift. Nurses have a neutral attitude towards the intervention and are experiencing no or weak negative feelings during performance of PSO. The results suggest that there is an inconsistent performance of PSO in Switzerland as well as in other countries. The validation of the need of the intervention is insufficient. To facilitate PSO as a justified performance, the preparation of an interprofessional guideline is recommended.
A possible role for CD26/DPPIV enzyme activity in the regulation of psoriatic pruritus.
Komiya, Eriko; Hatano, Ryo; Otsuka, Haruna; Itoh, Takumi; Yamazaki, Hiroto; Yamada, Taketo; Dang, Nam H; Tominaga, Mitsutoshi; Suga, Yasushi; Kimura, Utako; Takamori, Kenji; Morimoto, Chikao; Ohnuma, Kei
2017-06-01
Psoriasis (PSO) is one of the most common chronic inflammatory skin diseases, and pruritus affects approximately 60-90% of patients with PSO. However, the pathogenesis of pruritus in PSO remains unclear. Dipeptidyl peptidase IV (DPPIV) enzyme activity is involved in the regulation of peptide hormones, chemokines and neurotransmitters. Our aim is to evaluate for a potential association between DPPIV and an increased risk of pruritus, and to identify possible underlying treatment targets in affected patients. Utilizing clinical serum samples of PSO patients and in vivo experimental pruritus models, we evaluated for a potential association between DPPIV and an increased risk for pruritus, and attempted to identify possible underlying treatment targets in pruritus of PSO. We first showed that levels of DPPIV enzyme activity in sera of patients with PSO were significantly increased compared to those of healthy controls. We next evaluated levels of substance-P (SP), which is a neurotransmitter for pruritus and a substrate for DPPIV enzyme. Truncated form SP cleaved by DPPIV was significantly increased in sera of PSO. In an in vivo pruritus model induced by SP, scratching was decreased by treatment with a DPPIV inhibitor. Moreover, DPPIV-knockout mice showed attenuation of scratching induced by SP. Finally, scratching was decreased following the administration of a DPPIV inhibitor in an imiquimod-induced PSO model. On the other hand, scratching induced by imiquimod was increased in DPPIV overexpressing-mice. These results suggest that inhibition of DPPIV enzyme activity regulates pruritus in PSO. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Kumar Sahu, Rabindra; Panda, Sidhartha; Biswal, Ashutosh; Chandra Sekhar, G T
2016-03-01
In this paper, a novel Tilt Integral Derivative controller with Filter (TIDF) is proposed for Load Frequency Control (LFC) of multi-area power systems. Initially, a two-area power system is considered and the parameters of the TIDF controller are optimized using Differential Evolution (DE) algorithm employing an Integral of Time multiplied Absolute Error (ITAE) criterion. The superiority of the proposed approach is demonstrated by comparing the results with some recently published heuristic approaches such as Firefly Algorithm (FA), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) optimized PID controllers for the same interconnected power system. Investigations reveal that proposed TIDF controllers provide better dynamic response compared to PID controller in terms of minimum undershoots and settling times of frequency as well as tie-line power deviations following a disturbance. The proposed approach is also extended to two widely used three area test systems considering nonlinearities such as Generation Rate Constraint (GRC) and Governor Dead Band (GDB). To improve the performance of the system, a Thyristor Controlled Series Compensator (TCSC) is also considered and the performance of TIDF controller in presence of TCSC is investigated. It is observed that system performance improves with the inclusion of TCSC. Finally, sensitivity analysis is carried out to test the robustness of the proposed controller by varying the system parameters, operating condition and load pattern. It is observed that the proposed controllers are robust and perform satisfactorily with variations in operating condition, system parameters and load pattern. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
42 CFR 3.106 - Security requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., maintenance, storage, removal, disclosure, transmission and destruction. (b) Security framework. A PSO must... subsection. In addressing the framework that follows, the PSO may develop appropriate and scalable security...) Security management. A PSO must address: (i) Maintenance and effective implementation of written policies...
42 CFR 3.106 - Security requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., maintenance, storage, removal, disclosure, transmission and destruction. (b) Security framework. A PSO must... subsection. In addressing the framework that follows, the PSO may develop appropriate and scalable security...) Security management. A PSO must address: (i) Maintenance and effective implementation of written policies...
42 CFR 3.106 - Security requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., maintenance, storage, removal, disclosure, transmission and destruction. (b) Security framework. A PSO must... subsection. In addressing the framework that follows, the PSO may develop appropriate and scalable security...) Security management. A PSO must address: (i) Maintenance and effective implementation of written policies...
Design of minimum multiplier fractional order differentiator based on lattice wave digital filter.
Barsainya, Richa; Rawat, Tarun Kumar; Kumar, Manjeet
2017-01-01
In this paper, a novel design of fractional order differentiator (FOD) based on lattice wave digital filter (LWDF) is proposed which requires minimum number of multiplier for its structural realization. Firstly, the FOD design problem is formulated as an optimization problem using the transfer function of lattice wave digital filter. Then, three optimization algorithms, namely, genetic algorithm (GA), particle swarm optimization (PSO) and cuckoo search algorithm (CSA) are applied to determine the optimal LWDF coefficients. The realization of FOD using LWD structure increases the design accuracy, as only N number of coefficients are to be optimized for Nth order FOD. Finally, two design examples of 3rd and 5th order lattice wave digital fractional order differentiator (LWDFOD) are demonstrated to justify the design accuracy. The performance analysis of the proposed design is carried out based on magnitude response, absolute magnitude error (dB), root mean square (RMS) magnitude error, arithmetic complexity, convergence profile and computation time. Simulation results are attained to show the comparison of the proposed LWDFOD with the published works and it is observed that an improvement of 29% is obtained in the proposed design. The proposed LWDFOD approximates the ideal FOD and surpasses the existing ones reasonably well in mid and high frequency range, thereby making the proposed LWDFOD a promising technique for the design of digital FODs. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
A bio-inspired swarm robot coordination algorithm for multiple target searching
NASA Astrophysics Data System (ADS)
Meng, Yan; Gan, Jing; Desai, Sachi
2008-04-01
The coordination of a multi-robot system searching for multi targets is challenging under dynamic environment since the multi-robot system demands group coherence (agents need to have the incentive to work together faithfully) and group competence (agents need to know how to work together well). In our previous proposed bio-inspired coordination method, Local Interaction through Virtual Stigmergy (LIVS), one problem is the considerable randomness of the robot movement during coordination, which may lead to more power consumption and longer searching time. To address these issues, an adaptive LIVS (ALIVS) method is proposed in this paper, which not only considers the travel cost and target weight, but also predicting the target/robot ratio and potential robot redundancy with respect to the detected targets. Furthermore, a dynamic weight adjustment is also applied to improve the searching performance. This new method a truly distributed method where each robot makes its own decision based on its local sensing information and the information from its neighbors. Basically, each robot only communicates with its neighbors through a virtual stigmergy mechanism and makes its local movement decision based on a Particle Swarm Optimization (PSO) algorithm. The proposed ALIVS algorithm has been implemented on the embodied robot simulator, Player/Stage, in a searching target. The simulation results demonstrate the efficiency and robustness in a power-efficient manner with the real-world constraints.
Binyamin, Orli; Larush, Liraz; Frid, Kati; Keller, Guy; Friedman-Levi, Yael; Ovadia, Haim; Abramsky, Oded; Magdassi, Shlomo; Gabizon, Ruth
2015-01-01
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system and is associated with demyelination, neurodegeneration, and sensitivity to oxidative stress. In this work, we administered a nanodroplet formulation of pomegranate seed oil (PSO), denominated Nano-PSO, to mice induced for experimental autoimmune encephalomyelitis (EAE), an established model of MS. PSO comprises high levels of punicic acid, a unique polyunsaturated fatty acid considered as one of the strongest natural antioxidants. We show here that while EAE-induced mice treated with natural PSO presented some reduction in disease burden, this beneficial effect increased significantly when EAE mice were treated with Nano-PSO of specific size nanodroplets at much lower concentrations of the oil. Pathological examinations revealed that Nano-PSO administration dramatically reduced demyelination and oxidation of lipids in the brains of the affected animals, which are hallmarks of this severe neurological disease. We propose that novel formulations of natural antioxidants such as Nano-PSO may be considered for the treatment of patients suffering from demyelinating diseases. On the mechanistic side, our results demonstrate that lipid oxidation may be a seminal feature in both demyelination and neurodegeneration. PMID:26648720
Lee, Wei-Po; Hsiao, Yu-Ting; Hwang, Wei-Che
2014-01-16
To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks.
2014-01-01
Background To improve the tedious task of reconstructing gene networks through testing experimentally the possible interactions between genes, it becomes a trend to adopt the automated reverse engineering procedure instead. Some evolutionary algorithms have been suggested for deriving network parameters. However, to infer large networks by the evolutionary algorithm, it is necessary to address two important issues: premature convergence and high computational cost. To tackle the former problem and to enhance the performance of traditional evolutionary algorithms, it is advisable to use parallel model evolutionary algorithms. To overcome the latter and to speed up the computation, it is advocated to adopt the mechanism of cloud computing as a promising solution: most popular is the method of MapReduce programming model, a fault-tolerant framework to implement parallel algorithms for inferring large gene networks. Results This work presents a practical framework to infer large gene networks, by developing and parallelizing a hybrid GA-PSO optimization method. Our parallel method is extended to work with the Hadoop MapReduce programming model and is executed in different cloud computing environments. To evaluate the proposed approach, we use a well-known open-source software GeneNetWeaver to create several yeast S. cerevisiae sub-networks and use them to produce gene profiles. Experiments have been conducted and the results have been analyzed. They show that our parallel approach can be successfully used to infer networks with desired behaviors and the computation time can be largely reduced. Conclusions Parallel population-based algorithms can effectively determine network parameters and they perform better than the widely-used sequential algorithms in gene network inference. These parallel algorithms can be distributed to the cloud computing environment to speed up the computation. By coupling the parallel model population-based optimization method and the parallel computational framework, high quality solutions can be obtained within relatively short time. This integrated approach is a promising way for inferring large networks. PMID:24428926
Multicompare tests of the performance of different metaheuristics in EEG dipole source localization.
Escalona-Vargas, Diana Irazú; Lopez-Arevalo, Ivan; Gutiérrez, David
2014-01-01
We study the use of nonparametric multicompare statistical tests on the performance of simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE), when used for electroencephalographic (EEG) source localization. Such task can be posed as an optimization problem for which the referred metaheuristic methods are well suited. Hence, we evaluate the localization's performance in terms of metaheuristics' operational parameters and for a fixed number of evaluations of the objective function. In this way, we are able to link the efficiency of the metaheuristics with a common measure of computational cost. Our results did not show significant differences in the metaheuristics' performance for the case of single source localization. In case of localizing two correlated sources, we found that PSO (ring and tree topologies) and DE performed the worst, then they should not be considered in large-scale EEG source localization problems. Overall, the multicompare tests allowed to demonstrate the little effect that the selection of a particular metaheuristic and the variations in their operational parameters have in this optimization problem.
Gunavathi, Chellamuthu; Premalatha, Kandasamy
2014-01-01
Feature selection in cancer classification is a central area of research in the field of bioinformatics and used to select the informative genes from thousands of genes of the microarray. The genes are ranked based on T-statistics, signal-to-noise ratio (SNR), and F-test values. The swarm intelligence (SI) technique finds the informative genes from the top-m ranked genes. These selected genes are used for classification. In this paper the shuffled frog leaping with Lévy flight (SFLLF) is proposed for feature selection. In SFLLF, the Lévy flight is included to avoid premature convergence of shuffled frog leaping (SFL) algorithm. The SI techniques such as particle swarm optimization (PSO), cuckoo search (CS), SFL, and SFLLF are used for feature selection which identifies informative genes for classification. The k-nearest neighbour (k-NN) technique is used to classify the samples. The proposed work is applied on 10 different benchmark datasets and examined with SI techniques. The experimental results show that the results obtained from k-NN classifier through SFLLF feature selection method outperform PSO, CS, and SFL.
Optimizing Blasting’s Air Overpressure Prediction Model using Swarm Intelligence
NASA Astrophysics Data System (ADS)
Nur Asmawisham Alel, Mohd; Ruben Anak Upom, Mark; Asnida Abdullah, Rini; Hazreek Zainal Abidin, Mohd
2018-04-01
Air overpressure (AOp) resulting from blasting can cause damage and nuisance to nearby civilians. Thus, it is important to be able to predict AOp accurately. In this study, 8 different Artificial Neural Network (ANN) were developed for the purpose of prediction of AOp. The ANN models were trained using different variants of Particle Swarm Optimization (PSO) algorithm. AOp predictions were also made using an empirical equation, as suggested by United States Bureau of Mines (USBM), to serve as a benchmark. In order to develop the models, 76 blasting operations in Hulu Langat were investigated. All the ANN models were found to outperform the USBM equation in three performance metrics; root mean square error (RMSE), mean absolute percentage error (MAPE) and coefficient of determination (R2). Using a performance ranking method, MSO-Rand-Mut was determined to be the best prediction model for AOp with a performance metric of RMSE=2.18, MAPE=1.73% and R2=0.97. The result shows that ANN models trained using PSO are capable of predicting AOp with great accuracy.
NASA Astrophysics Data System (ADS)
Muscoloni, Alessandro; Vittorio Cannistraci, Carlo
2018-05-01
The investigation of the hidden metric space behind complex network topologies is a fervid topic in current network science and the hyperbolic space is one of the most studied, because it seems associated to the structural organization of many real complex systems. The popularity-similarity-optimization (PSO) model simulates how random geometric graphs grow in the hyperbolic space, generating realistic networks with clustering, small-worldness, scale-freeness and rich-clubness. However, it misses to reproduce an important feature of real complex networks, which is the community organization. The geometrical-preferential-attachment (GPA) model was recently developed in order to confer to the PSO also a soft community structure, which is obtained by forcing different angular regions of the hyperbolic disk to have a variable level of attractiveness. However, the number and size of the communities cannot be explicitly controlled in the GPA, which is a clear limitation for real applications. Here, we introduce the nonuniform PSO (nPSO) model. Differently from GPA, the nPSO generates synthetic networks in the hyperbolic space where heterogeneous angular node attractiveness is forced by sampling the angular coordinates from a tailored nonuniform probability distribution (for instance a mixture of Gaussians). The nPSO differs from GPA in other three aspects: it allows one to explicitly fix the number and size of communities; it allows one to tune their mixing property by means of the network temperature; it is efficient to generate networks with high clustering. Several tests on the detectability of the community structure in nPSO synthetic networks and wide investigations on their structural properties confirm that the nPSO is a valid and efficient model to generate realistic complex networks with communities.
An Inverse Neural Controller Based on the Applicability Domain of RBF Network Models
Alexandridis, Alex; Stogiannos, Marios; Papaioannou, Nikolaos; Zois, Elias; Sarimveis, Haralambos
2018-01-01
This paper presents a novel methodology of generic nature for controlling nonlinear systems, using inverse radial basis function neural network models, which may combine diverse data originating from various sources. The algorithm starts by applying the particle swarm optimization-based non-symmetric variant of the fuzzy means (PSO-NSFM) algorithm so that an approximation of the inverse system dynamics is obtained. PSO-NSFM offers models of high accuracy combined with small network structures. Next, the applicability domain concept is suitably tailored and embedded into the proposed control structure in order to ensure that extrapolation is avoided in the controller predictions. Finally, an error correction term, estimating the error produced by the unmodeled dynamics and/or unmeasured external disturbances, is included to the control scheme to increase robustness. The resulting controller guarantees bounded input-bounded state (BIBS) stability for the closed loop system when the open loop system is BIBS stable. The proposed methodology is evaluated on two different control problems, namely, the control of an experimental armature-controlled direct current (DC) motor and the stabilization of a highly nonlinear simulated inverted pendulum. For each one of these problems, appropriate case studies are tested, in which a conventional neural controller employing inverse models and a PID controller are also applied. The results reveal the ability of the proposed control scheme to handle and manipulate diverse data through a data fusion approach and illustrate the superiority of the method in terms of faster and less oscillatory responses. PMID:29361781
78 FR 6819 - Patient Safety Organizations: Voluntary Relinquishment From the BREF PSO
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-31
..., Center for Quality Improvement and Patient Safety, AHRQ, 540 Gaither Road, Rockville, MD 20850; Telephone... DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Healthcare Research and Quality Patient Safety... (AHRQ), HHS. ACTION: Notice of delisting. SUMMARY: The Patient Safety and Quality Improvement Act of...
An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm
NASA Astrophysics Data System (ADS)
Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin
2018-04-01
Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.
Damage identification of a TLP floating wind turbine by meta-heuristic algorithms
NASA Astrophysics Data System (ADS)
Ettefagh, M. M.
2015-12-01
Damage identification of the offshore floating wind turbine by vibration/dynamic signals is one of the important and new research fields in the Structural Health Monitoring (SHM). In this paper a new damage identification method is proposed based on meta-heuristic algorithms using the dynamic response of the TLP (Tension-Leg Platform) floating wind turbine structure. The Genetic Algorithms (GA), Artificial Immune System (AIS), Particle Swarm Optimization (PSO), and Artificial Bee Colony (ABC) are chosen for minimizing the object function, defined properly for damage identification purpose. In addition to studying the capability of mentioned algorithms in correctly identifying the damage, the effect of the response type on the results of identification is studied. Also, the results of proposed damage identification are investigated with considering possible uncertainties of the structure. Finally, for evaluating the proposed method in real condition, a 1/100 scaled experimental setup of TLP Floating Wind Turbine (TLPFWT) is provided in a laboratory scale and the proposed damage identification method is applied to the scaled turbine.
NASA Astrophysics Data System (ADS)
He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Dong, Hongxing
2014-12-01
Gabor descriptors have been widely used in iris texture representations. However, fixed basic Gabor functions cannot match the changing nature of diverse iris datasets. Furthermore, a single form of iris feature cannot overcome difficulties in iris recognition, such as illumination variations, environmental conditions, and device variations. This paper provides multiple local feature representations and their fusion scheme based on a support vector regression (SVR) model for iris recognition using optimized Gabor filters. In our iris system, a particle swarm optimization (PSO)- and a Boolean particle swarm optimization (BPSO)-based algorithm is proposed to provide suitable Gabor filters for each involved test dataset without predefinition or manual modulation. Several comparative experiments on JLUBR-IRIS, CASIA-I, and CASIA-V4-Interval iris datasets are conducted, and the results show that our work can generate improved local Gabor features by using optimized Gabor filters for each dataset. In addition, our SVR fusion strategy may make full use of their discriminative ability to improve accuracy and reliability. Other comparative experiments show that our approach may outperform other popular iris systems.
A shrinking hypersphere PSO for engineering optimisation problems
NASA Astrophysics Data System (ADS)
Yadav, Anupam; Deep, Kusum
2016-03-01
Many real-world and engineering design problems can be formulated as constrained optimisation problems (COPs). Swarm intelligence techniques are a good approach to solve COPs. In this paper an efficient shrinking hypersphere-based particle swarm optimisation (SHPSO) algorithm is proposed for constrained optimisation. The proposed SHPSO is designed in such a way that the movement of the particle is set to move under the influence of shrinking hyperspheres. A parameter-free approach is used to handle the constraints. The performance of the SHPSO is compared against the state-of-the-art algorithms for a set of 24 benchmark problems. An exhaustive comparison of the results is provided statistically as well as graphically. Moreover three engineering design problems namely welded beam design, compressed string design and pressure vessel design problems are solved using SHPSO and the results are compared with the state-of-the-art algorithms.
Economic Load Dispatch Using Adaptive Social Acceleration Constant Based Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Jain, N. K.; Nangia, Uma; Jain, Jyoti
2018-04-01
In this paper, an Adaptive Social Acceleration Constant based Particle Swarm Optimization (ASACPSO) has been developed which uses the best value of social acceleration constant (Csg). Three formulations of Csg have been used to search for the best value of Csg. These three formulations led to the development of three algorithms-ALDPSO, AELDPSO-I and AELDPSO-II which were implemented for Economic Load Dispatch of IEEE 5 bus, 14 bus and 30 bus systems. The best value of Csg was selected based on the minimum number of Kounts i.e. number of function evaluations required to minimize the function. This value of Csg was directly used in basic PSO algorithm which led to the development of ASACPSO algorithm. ASACPSO was found to converge faster and give more accurate results compared to BPSO for IEEE 5, 14 and 30 bus systems.
Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour
2012-09-01
In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Multi-terminal pipe routing by Steiner minimal tree and particle swarm optimisation
NASA Astrophysics Data System (ADS)
Liu, Qiang; Wang, Chengen
2012-08-01
Computer-aided design of pipe routing is of fundamental importance for complex equipments' developments. In this article, non-rectilinear branch pipe routing with multiple terminals that can be formulated as a Euclidean Steiner Minimal Tree with Obstacles (ESMTO) problem is studied in the context of an aeroengine-integrated design engineering. Unlike the traditional methods that connect pipe terminals sequentially, this article presents a new branch pipe routing algorithm based on the Steiner tree theory. The article begins with a new algorithm for solving the ESMTO problem by using particle swarm optimisation (PSO), and then extends the method to the surface cases by using geodesics to meet the requirements of routing non-rectilinear pipes on the surfaces of aeroengines. Subsequently, the adaptive region strategy and the basic visibility graph method are adopted to increase the computation efficiency. Numeral computations show that the proposed routing algorithm can find satisfactory routing layouts while running in polynomial time.
Integrative modeling and novel particle swarm-based optimal design of wind farms
NASA Astrophysics Data System (ADS)
Chowdhury, Souma
To meet the energy needs of the future, while seeking to decrease our carbon footprint, a greater penetration of sustainable energy resources such as wind energy is necessary. However, a consistent growth of wind energy (especially in the wake of unfortunate policy changes and reported under-performance of existing projects) calls for a paradigm shift in wind power generation technologies. This dissertation develops a comprehensive methodology to explore, analyze and define the interactions between the key elements of wind farm development, and establish the foundation for designing high-performing wind farms. The primary contribution of this research is the effective quantification of the complex combined influence of wind turbine features, turbine placement, farm-land configuration, nameplate capacity, and wind resource variations on the energy output of the wind farm. A new Particle Swarm Optimization (PSO) algorithm, uniquely capable of preserving population diversity while addressing discrete variables, is also developed to provide powerful solutions towards optimizing wind farm configurations. In conventional wind farm design, the major elements that influence the farm performance are often addressed individually. The failure to fully capture the critical interactions among these factors introduces important inaccuracies in the projected farm performance and leads to suboptimal wind farm planning. In this dissertation, we develop the Unrestricted Wind Farm Layout Optimization (UWFLO) methodology to model and optimize the performance of wind farms. The UWFLO method obviates traditional assumptions regarding (i) turbine placement, (ii) turbine-wind flow interactions, (iii) variation of wind conditions, and (iv) types of turbines (single/multiple) to be installed. The allowance of multiple turbines, which demands complex modeling, is rare in the existing literature. The UWFLO method also significantly advances the state of the art in wind farm optimization by allowing simultaneous optimization of the type and the location of the turbines. Layout optimization (using UWFLO) of a hypothetical 25-turbine commercial-scale wind farm provides a remarkable 4.4% increase in capacity factor compared to a conventional array layout. A further 2% increase in capacity factor is accomplished when the types of turbines are also optimally selected. The scope of turbine selection and placement however depends on the land configuration and the nameplate capacity of the farm. Such dependencies are not clearly defined in the existing literature. We develop response surface-based models, which implicitly employ UWFLO, to quantify and analyze the roles of these other crucial design factors in optimal wind farm planning. The wind pattern at a site can vary significantly from year to year, which is not adequately captured by conventional wind distribution models. The resulting ill-predictability of the annual distribution of wind conditions introduces significant uncertainties in the estimated energy output of the wind farm. A new method is developed to characterize these wind resource uncertainties and model the propagation of these uncertainties into the estimated farm output. The overall wind pattern/regime also varies from one region to another, which demands turbines with capabilities uniquely suited for different wind regimes. Using the UWFLO method, we model the performance potential of currently available turbines for different wind regimes, and quantify their feature-based expected market suitability. Such models can initiate an understanding of the product variation that current turbine manufacturers should pursue, to adequately satisfy the needs of the naturally diverse wind energy market. The wind farm design problems formulated in this dissertation involve highly multimodal objective and constraint functions and a large number of continuous and discrete variables. An effective modification of the PSO algorithm is developed to address such challenging problems. Continuous search, as in conventional PSO, is implemented as the primary search strategy; discrete variables are then updated using a nearest-allowed-discrete-point criterion. Premature stagnation of particles due to loss of population diversity is one of the primary drawbacks of the basic PSO dynamics. A new measure of population diversity is formulated, which unlike existing metrics capture both the overall spread and the distribution of particles in the variable space. This diversity metric is then used to apply (i) an adaptive repulsion away from the best global solution in the case of continuous variables, and (ii) a stochastic update of the discrete variables. The new PSO algorithm provides competitive performance compared to a popular genetic algorithm, when applied to solve a comprehensive set of 98 mixed-integer nonlinear programming problems.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-21
... The Georgia Hospital Association Research and Education Foundation Patient Safety Organization (GHA... Hospital Association Research and Education Foundation Patient Safety Organization (GHA-PSO), PSO number... and Education Foundation Patient Safety Organization (GHA-PSO) was delisted effective at 12:00...
Zhao, Xiu-Ju; Chen, Yu-Lian; Fu, Bing; Zhang, Wen; Liu, Zhiguo; Zhuo, Hexian
2017-03-01
Understanding the metabolic and transcription basis of pumpkin seed oil (PSO) intervention on metabolic disease (MD) is essential to daily nutrition and health. This study analyzed the liver metabolic variations of Wistar rats fed normal diet (CON), high-fat diet (HFD) and high-fat plus PSO diet (PSO) to establish the relationship between the liver metabolite composition/transcript profile and the effects of PSO on MD. By using proton nuclear magnetic resonance spectroscopy together with multivariate data analysis, it was found that, compared with CON rats, HFD rats showed clear dysfunctions of choline metabolism, glucose metabolism and nucleotide and amino acid metabolism. Using quantitative real-time polymerase chain reaction (qPCR), it was found that, compared with HFD rats, PSO rats showed alleviated endoplasmic reticulum stress accompanied by lowered unfolded protein response. These findings provide useful information to understand the metabolic alterations triggered by MD and to evaluate the effects of PSO intervention. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Cao, Rensheng; Ruan, Wenqian; Wu, Xianliang; Wei, Xionghui
2018-01-01
Highly promising artificial intelligence tools, including neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), were applied in the present study to develop an approach for the evaluation of Se(IV) removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Both GA and PSO were used to optimize the parameters of ANN. The effect of operational parameters (i.e., initial pH, temperature, contact time and initial Se(IV) concentration) on the removal efficiency was examined using response surface methodology (RSM), which was also utilized to obtain a dataset for the ANN training. The ANN-GA model results (with a prediction error of 2.88%) showed a better agreement with the experimental data than the ANN-PSO model results (with a prediction error of 4.63%) and the RSM model results (with a prediction error of 5.56%), thus the ANN-GA model was an ideal choice for modeling and optimizing the Se(IV) removal by the nZVI/rGO composites due to its low prediction error. The analysis of the experimental data illustrates that the removal process of Se(IV) obeyed the Langmuir isotherm and the pseudo-second-order kinetic model. Furthermore, the Se 3d and 3p peaks found in XPS spectra for the nZVI/rGO composites after removing treatment illustrates that the removal of Se(IV) was mainly through the adsorption and reduction mechanisms. PMID:29543753
Cao, Rensheng; Fan, Mingyi; Hu, Jiwei; Ruan, Wenqian; Wu, Xianliang; Wei, Xionghui
2018-03-15
Highly promising artificial intelligence tools, including neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), were applied in the present study to develop an approach for the evaluation of Se(IV) removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Both GA and PSO were used to optimize the parameters of ANN. The effect of operational parameters (i.e., initial pH, temperature, contact time and initial Se(IV) concentration) on the removal efficiency was examined using response surface methodology (RSM), which was also utilized to obtain a dataset for the ANN training. The ANN-GA model results (with a prediction error of 2.88%) showed a better agreement with the experimental data than the ANN-PSO model results (with a prediction error of 4.63%) and the RSM model results (with a prediction error of 5.56%), thus the ANN-GA model was an ideal choice for modeling and optimizing the Se(IV) removal by the nZVI/rGO composites due to its low prediction error. The analysis of the experimental data illustrates that the removal process of Se(IV) obeyed the Langmuir isotherm and the pseudo-second-order kinetic model. Furthermore, the Se 3d and 3p peaks found in XPS spectra for the nZVI/rGO composites after removing treatment illustrates that the removal of Se(IV) was mainly through the adsorption and reduction mechanisms.
ANN-PSO Integrated Optimization Methodology for Intelligent Control of MMC Machining
NASA Astrophysics Data System (ADS)
Chandrasekaran, Muthumari; Tamang, Santosh
2017-08-01
Metal Matrix Composites (MMC) show improved properties in comparison with non-reinforced alloys and have found increased application in automotive and aerospace industries. The selection of optimum machining parameters to produce components of desired surface roughness is of great concern considering the quality and economy of manufacturing process. In this study, a surface roughness prediction model for turning Al-SiCp MMC is developed using Artificial Neural Network (ANN). Three turning parameters viz., spindle speed ( N), feed rate ( f) and depth of cut ( d) were considered as input neurons and surface roughness was an output neuron. ANN architecture having 3 -5 -1 is found to be optimum and the model predicts with an average percentage error of 7.72 %. Particle Swarm Optimization (PSO) technique is used for optimizing parameters to minimize machining time. The innovative aspect of this work is the development of an integrated ANN-PSO optimization method for intelligent control of MMC machining process applicable to manufacturing industries. The robustness of the method shows its superiority for obtaining optimum cutting parameters satisfying desired surface roughness. The method has better convergent capability with minimum number of iterations.
Xiao, Chuncai; Hao, Kuangrong; Ding, Yongsheng
2014-12-30
This paper creates a bi-directional prediction model to predict the performance of carbon fiber and the productive parameters based on a support vector machine (SVM) and improved particle swarm optimization (IPSO) algorithm (SVM-IPSO). In the SVM, it is crucial to select the parameters that have an important impact on the performance of prediction. The IPSO is proposed to optimize them, and then the SVM-IPSO model is applied to the bi-directional prediction of carbon fiber production. The predictive accuracy of SVM is mainly dependent on its parameters, and IPSO is thus exploited to seek the optimal parameters for SVM in order to improve its prediction capability. Inspired by a cell communication mechanism, we propose IPSO by incorporating information of the global best solution into the search strategy to improve exploitation, and we employ IPSO to establish the bi-directional prediction model: in the direction of the forward prediction, we consider productive parameters as input and property indexes as output; in the direction of the backward prediction, we consider property indexes as input and productive parameters as output, and in this case, the model becomes a scheme design for novel style carbon fibers. The results from a set of the experimental data show that the proposed model can outperform the radial basis function neural network (RNN), the basic particle swarm optimization (PSO) method and the hybrid approach of genetic algorithm and improved particle swarm optimization (GA-IPSO) method in most of the experiments. In other words, simulation results demonstrate the effectiveness and advantages of the SVM-IPSO model in dealing with the problem of forecasting.
42 CFR 3.212 - Nonidentification of patient safety work product.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., characteristic, or code except as permitted for re-identification; and (ii) The provider, PSO or responsible... identify the particular provider or reporter. (3) Re-identification. A provider, PSO, or responsible person... under this section to be re-identified by such provider, PSO, or responsible person, provided that: (i...
42 CFR 422.354 - Requirements for affiliated providers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Requirements for affiliated providers. A PSO that consists of two or more providers must demonstrate to CMS'S... with the PSO's operations; (3) Both, or all, providers are part of a controlled group of corporations... affiliated service group under section 414 of that Code. (b) Each affiliated provider of the PSO shares...
42 CFR 422.356 - Determining substantial financial risk and majority financial interest.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Determining substantial financial risk. The PSO must demonstrate to CMS's satisfaction that it apportions a significant part of the financial risk of the PSO enterprise under the MA contract to each affiliated provider. The PSO must demonstrate that the financial arrangements among its affiliated providers constitute...
42 CFR 422.356 - Determining substantial financial risk and majority financial interest.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Determining substantial financial risk. The PSO must demonstrate to CMS's satisfaction that it apportions a significant part of the financial risk of the PSO enterprise under the MA contract to each affiliated provider. The PSO must demonstrate that the financial arrangements among its affiliated providers constitute...
42 CFR 422.384 - Financial plan requirement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... plan. A financial plan must— (1) Cover the first 12 months after the estimated effective date of a PSO's MA contract; or (2) If the PSO is projecting losses, cover 12 months beyond the end of the period... timely manner, in accordance with the PSO's financial plan. (e) Guarantees and projected losses...
42 CFR 422.384 - Financial plan requirement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... plan. A financial plan must— (1) Cover the first 12 months after the estimated effective date of a PSO's MA contract; or (2) If the PSO is projecting losses, cover 12 months beyond the end of the period... timely manner, in accordance with the PSO's financial plan. (e) Guarantees and projected losses...
Continues administration of Nano-PSO significantly increased survival of genetic CJD mice.
Binyamin, Orli; Keller, Guy; Frid, Kati; Larush, Liraz; Magdassi, Shlomo; Gabizon, Ruth
2017-12-01
We have shown previously that Nano-PSO, a nanodroplet formulation of pomegranate seed oil, delayed progression of neurodegeneration signs when administered for a designated period of time to TgMHu2ME199K mice, modeling for genetic prion disease. In the present work, we treated these mice with a self-emulsion formulation of Nano-PSO or a parallel Soybean oil formulation from their day of birth until a terminal disease stage. We found that long term Nano-PSO administration resulted in increased survival of TgMHu2ME199K lines by several months. Interestingly, initiation of treatment at day 1 had no clinical advantage over initiation at day 70, however cessation of treatment at 9months of age resulted in the rapid loss of the beneficial clinical effect. Pathological studies revealed that treatment with Nano-PSO resulted in the reduction of GAG accumulation and lipid oxidation, indicating a strong neuroprotective effect. Contrarily, the clinical effect of Nano-PSO did not correlate with reduction in the levels of disease related PrP, the main prion marker. We conclude that long term administration of Nano-PSO is safe and may be effective in the prevention/delay of onset of neurodegenerative conditions such as genetic CJD. Copyright © 2017. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Xie, Fengle; Jiang, Zhansi; Jiang, Hui
2018-05-01
This paper presents a multi-damages identification method for Cantilever Beam. First, the damage location is identified by using the mode shape curvatures. Second, samples of varying damage severities at the damage location and their corresponding natural frequencies are used to construct the initial Kriging surrogate model. Then a particle swarm optimization (PSO) algorithm is employed to identify the damage severities based on Kriging surrogate model. The simulation study of a double-damaged cantilever beam demonstrated that the proposed method is effective.
Dai, Juan; Ji, Zhong; Du, Yubao
2017-08-01
Existing near-infrared non-invasive blood glucose detection modelings mostly detect multi-spectral signals with different wavelength, which is not conducive to the popularization of non-invasive glucose meter at home and does not consider the physiological glucose dynamics of individuals. In order to solve these problems, this study presented a non-invasive blood glucose detection model combining particle swarm optimization (PSO) and artificial neural network (ANN) by using the 1 550 nm near-infrared absorbance as the independent variable and the concentration of blood glucose as the dependent variable, named as PSO-2ANN. The PSO-2ANN model was based on two sub-modules of neural networks with certain structures and arguments, and was built up after optimizing the weight coefficients of the two networks by particle swarm optimization. The results of 10 volunteers were predicted by PSO-2ANN. It was indicated that the relative error of 9 volunteers was less than 20%; 98.28% of the predictions of blood glucose by PSO-2ANN were distributed in the regions A and B of Clarke error grid, which confirmed that PSO-2ANN could offer higher prediction accuracy and better robustness by comparison with ANN. Additionally, even the physiological glucose dynamics of individuals may be different due to the influence of environment, temper, mental state and so on, PSO-2ANN can correct this difference only by adjusting one argument. The PSO-2ANN model provided us a new prospect to overcome individual differences in blood glucose prediction.
42 CFR 3.102 - Process and requirements for initial and continued listing of PSOs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES GENERAL PROVISIONS PATIENT SAFETY ORGANIZATIONS AND PATIENT SAFETY WORK PRODUCT PSO Requirements... continued listing as a PSO by submitting a completed certification form that meets the requirements of this... delisted; (vi) Attest that the PSO will promptly notify the Secretary during its period of listing if it...
33 CFR 148.228 - What if a formal evidentiary hearing is necessary?
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 148.222 of this part are concluded, the Commandant (G-PSO), in coordination with the MARAD... resolved by a formal evidentiary hearing. (b) If the Commandant (G-PSO), in coordination with the MARAD...) The Commandant (G-PSO) files a request for assignment of an administrative law judge (ALJ) with the...
33 CFR 148.228 - What if a formal evidentiary hearing is necessary?
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 148.222 of this part are concluded, the Commandant (G-PSO), in coordination with the MARAD... resolved by a formal evidentiary hearing. (b) If the Commandant (G-PSO), in coordination with the MARAD...) The Commandant (G-PSO) files a request for assignment of an administrative law judge (ALJ) with the...
An Innovative Method of Teaching Electronic System Design with PSoC
ERIC Educational Resources Information Center
Ye, Zhaohui; Hua, Chengying
2012-01-01
Programmable system-on-chip (PSoC), which provides a microprocessor and programmable analog and digital peripheral functions in a single chip, is very convenient for mixed-signal electronic system design. This paper presents the experience of teaching contemporary mixed-signal electronic system design with PSoC in the Department of Automation,…
Bell, Janice F.; Huang, Jon Y.; Lazarakis, Nicholas C.; Edwards, Todd C.
2013-01-01
Objectives. We examined the association between perceived sexual orientation (PSO), bullying, and quality of life (QOL) among US adolescents. Methods. We analyzed data from the 2010 Washington State Healthy Youth Survey collected in public school grades 8, 10, and 12 (n = 27 752). Bullying status was characterized as never bullied, bullied because of PSO, or bullied for other reasons. Survey-weighted regression examined differences in QOL, depressed mood, and consideration of suicide by bullying status. Results. Among male students, 14%, 11%, and 9% reported being bullied because of PSO in 8th, 10th, and 12th grades, respectively; and among female students, 11%, 10%, and 6%. In all gender and grade strata, being bullied because of PSO was associated with lower QOL scores and increased the odds of depressed mood or consideration of suicide. Moreover, the magnitudes of these associations were greater than for being bullied for other reasons. Conclusions. Bullying because of PSO is widely prevalent and significantly affects several facets of youth QOL. Bully-prevention or harm-reduction programs must address bullying because of PSO. PMID:23678925
Patrick, Donald L; Bell, Janice F; Huang, Jon Y; Lazarakis, Nicholas C; Edwards, Todd C
2013-07-01
We examined the association between perceived sexual orientation (PSO), bullying, and quality of life (QOL) among US adolescents. We analyzed data from the 2010 Washington State Healthy Youth Survey collected in public school grades 8, 10, and 12 (n = 27,752). Bullying status was characterized as never bullied, bullied because of PSO, or bullied for other reasons. Survey-weighted regression examined differences in QOL, depressed mood, and consideration of suicide by bullying status. Among male students, 14%, 11%, and 9% reported being bullied because of PSO in 8th, 10th, and 12th grades, respectively; and among female students, 11%, 10%, and 6%. In all gender and grade strata, being bullied because of PSO was associated with lower QOL scores and increased the odds of depressed mood or consideration of suicide. Moreover, the magnitudes of these associations were greater than for being bullied for other reasons. Bullying because of PSO is widely prevalent and significantly affects several facets of youth QOL. Bully-prevention or harm-reduction programs must address bullying because of PSO.
A solution quality assessment method for swarm intelligence optimization algorithms.
Zhang, Zhaojun; Wang, Gai-Ge; Zou, Kuansheng; Zhang, Jianhua
2014-01-01
Nowadays, swarm intelligence optimization has become an important optimization tool and wildly used in many fields of application. In contrast to many successful applications, the theoretical foundation is rather weak. Therefore, there are still many problems to be solved. One problem is how to quantify the performance of algorithm in finite time, that is, how to evaluate the solution quality got by algorithm for practical problems. It greatly limits the application in practical problems. A solution quality assessment method for intelligent optimization is proposed in this paper. It is an experimental analysis method based on the analysis of search space and characteristic of algorithm itself. Instead of "value performance," the "ordinal performance" is used as evaluation criteria in this method. The feasible solutions were clustered according to distance to divide solution samples into several parts. Then, solution space and "good enough" set can be decomposed based on the clustering results. Last, using relative knowledge of statistics, the evaluation result can be got. To validate the proposed method, some intelligent algorithms such as ant colony optimization (ACO), particle swarm optimization (PSO), and artificial fish swarm algorithm (AFS) were taken to solve traveling salesman problem. Computational results indicate the feasibility of proposed method.
Ant Colony Optimization for Markowitz Mean-Variance Portfolio Model
NASA Astrophysics Data System (ADS)
Deng, Guang-Feng; Lin, Woo-Tsong
This work presents Ant Colony Optimization (ACO), which was initially developed to be a meta-heuristic for combinatorial optimization, for solving the cardinality constraints Markowitz mean-variance portfolio model (nonlinear mixed quadratic programming problem). To our knowledge, an efficient algorithmic solution for this problem has not been proposed until now. Using heuristic algorithms in this case is imperative. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The test results indicate that the ACO is much more robust and effective than Particle swarm optimization (PSO), especially for low-risk investment portfolios.
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Chandrawat, Rajesh Kumar; Garg, B. P.; Joshi, Varun
2017-07-01
Opening the new firm or branch with desired execution is very relevant to facility location problem. Along the lines to locate the new ambulances and firehouses, the government desires to minimize average response time for emergencies from all residents of cities. So finding the best location is biggest challenge in day to day life. These type of problems were named as facility location problems. A lot of algorithms have been developed to handle these problems. In this paper, we review five algorithms that were applied to facility location problems. The significance of clustering in facility location problems is also presented. First we compare Fuzzy c-means clustering (FCM) algorithm with alternating heuristic (AH) algorithm, then with Particle Swarm Optimization (PSO) algorithms using different type of distance function. The data was clustered with the help of FCM and then we apply median model and min-max problem model on that data. After finding optimized locations using these algorithms we find the distance from optimized location point to the demanded point with different distance techniques and compare the results. At last, we design a general example to validate the feasibility of the five algorithms for facilities location optimization, and authenticate the advantages and drawbacks of them.
Retention in porous layer pillar array planar separation platforms
Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.; ...
2016-08-11
Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thicknessmore » of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.« less
Hierarchical winner-take-all particle swarm optimization social network for neural model fitting.
Coventry, Brandon S; Parthasarathy, Aravindakshan; Sommer, Alexandra L; Bartlett, Edward L
2017-02-01
Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models.
Retention in porous layer pillar array planar separation platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.
Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thicknessmore » of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.« less
Niamul Islam, Naz; Hannan, M A; Mohamed, Azah; Shareef, Hussain
2016-01-01
Power system oscillation is a serious threat to the stability of multimachine power systems. The coordinated control of power system stabilizers (PSS) and thyristor-controlled series compensation (TCSC) damping controllers is a commonly used technique to provide the required damping over different modes of growing oscillations. However, their coordinated design is a complex multimodal optimization problem that is very hard to solve using traditional tuning techniques. In addition, several limitations of traditionally used techniques prevent the optimum design of coordinated controllers. In this paper, an alternate technique for robust damping over oscillation is presented using backtracking search algorithm (BSA). A 5-area 16-machine benchmark power system is considered to evaluate the design efficiency. The complete design process is conducted in a linear time-invariant (LTI) model of a power system. It includes the design formulation into a multi-objective function from the system eigenvalues. Later on, nonlinear time-domain simulations are used to compare the damping performances for different local and inter-area modes of power system oscillations. The performance of the BSA technique is compared against that of the popular particle swarm optimization (PSO) for coordinated design efficiency. Damping performances using different design techniques are compared in term of settling time and overshoot of oscillations. The results obtained verify that the BSA-based design improves the system stability significantly. The stability of the multimachine power system is improved by up to 74.47% and 79.93% for an inter-area mode and a local mode of oscillation, respectively. Thus, the proposed technique for coordinated design has great potential to improve power system stability and to maintain its secure operation.
Optimal placement of FACTS devices using optimization techniques: A review
NASA Astrophysics Data System (ADS)
Gaur, Dipesh; Mathew, Lini
2018-03-01
Modern power system is dealt with overloading problem especially transmission network which works on their maximum limit. Today’s power system network tends to become unstable and prone to collapse due to disturbances. Flexible AC Transmission system (FACTS) provides solution to problems like line overloading, voltage stability, losses, power flow etc. FACTS can play important role in improving static and dynamic performance of power system. FACTS devices need high initial investment. Therefore, FACTS location, type and their rating are vital and should be optimized to place in the network for maximum benefit. In this paper, different optimization methods like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) etc. are discussed and compared for optimal location, type and rating of devices. FACTS devices such as Thyristor Controlled Series Compensator (TCSC), Static Var Compensator (SVC) and Static Synchronous Compensator (STATCOM) are considered here. Mentioned FACTS controllers effects on different IEEE bus network parameters like generation cost, active power loss, voltage stability etc. have been analyzed and compared among the devices.
Cheng, Wen-Chang
2012-01-01
In this paper we propose a robust lane detection and tracking method by combining particle filters with the particle swarm optimization method. This method mainly uses the particle filters to detect and track the local optimum of the lane model in the input image and then seeks the global optimal solution of the lane model by a particle swarm optimization method. The particle filter can effectively complete lane detection and tracking in complicated or variable lane environments. However, the result obtained is usually a local optimal system status rather than the global optimal system status. Thus, the particle swarm optimization method is used to further refine the global optimal system status in all system statuses. Since the particle swarm optimization method is a global optimization algorithm based on iterative computing, it can find the global optimal lane model by simulating the food finding way of fish school or insects under the mutual cooperation of all particles. In verification testing, the test environments included highways and ordinary roads as well as straight and curved lanes, uphill and downhill lanes, lane changes, etc. Our proposed method can complete the lane detection and tracking more accurately and effectively then existing options. PMID:23235453
Alshamlan, Hala; Badr, Ghada; Alohali, Yousef
2015-01-01
An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems. PMID:25961028
Alshamlan, Hala; Badr, Ghada; Alohali, Yousef
2015-01-01
An artificial bee colony (ABC) is a relatively recent swarm intelligence optimization approach. In this paper, we propose the first attempt at applying ABC algorithm in analyzing a microarray gene expression profile. In addition, we propose an innovative feature selection algorithm, minimum redundancy maximum relevance (mRMR), and combine it with an ABC algorithm, mRMR-ABC, to select informative genes from microarray profile. The new approach is based on a support vector machine (SVM) algorithm to measure the classification accuracy for selected genes. We evaluate the performance of the proposed mRMR-ABC algorithm by conducting extensive experiments on six binary and multiclass gene expression microarray datasets. Furthermore, we compare our proposed mRMR-ABC algorithm with previously known techniques. We reimplemented two of these techniques for the sake of a fair comparison using the same parameters. These two techniques are mRMR when combined with a genetic algorithm (mRMR-GA) and mRMR when combined with a particle swarm optimization algorithm (mRMR-PSO). The experimental results prove that the proposed mRMR-ABC algorithm achieves accurate classification performance using small number of predictive genes when tested using both datasets and compared to previously suggested methods. This shows that mRMR-ABC is a promising approach for solving gene selection and cancer classification problems.
NASA Astrophysics Data System (ADS)
Jia, F.; Lichti, D.
2017-09-01
The optimal network design problem has been well addressed in geodesy and photogrammetry but has not received the same attention for terrestrial laser scanner (TLS) networks. The goal of this research is to develop a complete design system that can automatically provide an optimal plan for high-accuracy, large-volume scanning networks. The aim in this paper is to use three heuristic optimization methods, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO), to solve the first-order design (FOD) problem for a small-volume indoor network and make a comparison of their performances. The room is simplified as discretized wall segments and possible viewpoints. Each possible viewpoint is evaluated with a score table representing the wall segments visible from each viewpoint based on scanning geometry constraints. The goal is to find a minimum number of viewpoints that can obtain complete coverage of all wall segments with a minimal sum of incidence angles. The different methods have been implemented and compared in terms of the quality of the solutions, runtime and repeatability. The experiment environment was simulated from a room located on University of Calgary campus where multiple scans are required due to occlusions from interior walls. The results obtained in this research show that PSO and GA provide similar solutions while SA doesn't guarantee an optimal solution within limited iterations. Overall, GA is considered as the best choice for this problem based on its capability of providing an optimal solution and fewer parameters to tune.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-14
... only be applicable to PSOs that remove liquidity from the NYSE and that a PSO that provides liquidity...(kk). A PSO is a Primary Only (``PO'') Order that initially sweeps the Exchange's Book before being routed to the security's primary market. \\11\\ In limited circumstances where a PSO in a Tape A security...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-14
... routing fee applies as noted in the table. The Primary Sweep Order (PSO) is a market or limit order that... a PSO designation should be marketable. Non-marketable orders will function as regular limit orders... Primary Sweep Order (PSO) is a market or limit order that sweeps the NYSE Arca Book and routes any...
Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes
Bihamta, Mehdi; Hosseini, Azar; Ghorbani, Ahmad; Boroushaki, Mohammad Taher
2017-01-01
Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO) has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2)-induced damage in H9c2 cardiomyocytes. Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay. The level of reactive oxygen species (ROS) and lipid peroxidation were measured by fluorimetric methods. Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity. Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases. PMID:28265546