Design of a fault-tolerant reversible control unit in molecular quantum-dot cellular automata
NASA Astrophysics Data System (ADS)
Bahadori, Golnaz; Houshmand, Monireh; Zomorodi-Moghadam, Mariam
Quantum-dot cellular automata (QCA) is a promising emerging nanotechnology that has been attracting considerable attention due to its small feature size, ultra-low power consuming, and high clock frequency. Therefore, there have been many efforts to design computational units based on this technology. Despite these advantages of the QCA-based nanotechnologies, their implementation is susceptible to a high error rate. On the other hand, using the reversible computing leads to zero bit erasures and no energy dissipation. As the reversible computation does not lose information, the fault detection happens with a high probability. In this paper, first we propose a fault-tolerant control unit using reversible gates which improves on the previous design. The proposed design is then synthesized to the QCA technology and is simulated by the QCADesigner tool. Evaluation results indicate the performance of the proposed approach.
Magnetization reversal in circular vortex dots of small radius.
Goiriena-Goikoetxea, M; Guslienko, K Y; Rouco, M; Orue, I; Berganza, E; Jaafar, M; Asenjo, A; Fernández-Gubieda, M L; Fernández Barquín, L; García-Arribas, A
2017-08-10
We present a detailed study of the magnetic behavior of Permalloy (Ni 80 Fe 20 alloy) circular nanodots with small radii (30 nm and 70 nm) and different thicknesses (30 nm or 50 nm). Despite the small size of the dots, the measured hysteresis loops manifestly display the features of classical vortex behavior with zero remanence and lobes at high magnetic fields. This is remarkable because the size of the magnetic vortex core is comparable to the dot diameter, as revealed by magnetic force microscopy and micromagnetic simulations. The dot ground states are close to the border of the vortex stability and, depending on the dot size, the magnetization distribution combines attributes of the typical vortex, single domain states or even presents features resembling magnetic skyrmions. An analytical model of the dot magnetization reversal, accounting for the large vortex core size, is developed to explain the observed behavior, providing a rather good agreement with the experimental results. The study extends the understanding of magnetic nanodots beyond the classical vortex concept (where the vortex core spins have a negligible influence on the magnetic behavior) and can therefore be useful for improving emerging spintronic applications, such as spin-torque nano-oscillators. It also delimits the feasibility of producing a well-defined vortex configuration in sub-100 nm dots, enabling the intracellular magneto-mechanical actuation for biomedical applications.
Designing Nanoscale Counter Using Reversible Gate Based on Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Moharrami, Elham; Navimipour, Nima Jafari
2018-04-01
Some new technologies such as Quantum-dot Cellular Automata (QCA) is suggested to solve the physical limits of the Complementary Metal-Oxide Semiconductor (CMOS) technology. The QCA as one of the novel technologies at nanoscale has potential applications in future computers. This technology has some advantages such as minimal size, high speed, low latency, and low power consumption. As a result, it is used for creating all varieties of memory. Counter circuits as one of the important circuits in the digital systems are composed of some latches, which are connected to each other in series and actually they count input pulses in the circuit. On the other hand, the reversible computations are very important because of their ability in reducing energy in nanometer circuits. Improving the energy efficiency, increasing the speed of nanometer circuits, increasing the portability of system, making smaller components of the circuit in a nuclear size and reducing the power consumption are considered as the usage of reversible logic. Therefore, this paper aims to design a two-bit reversible counter that is optimized on the basis of QCA using an improved reversible gate. The proposed reversible structure of 2-bit counter can be increased to 3-bit, 4-bit and more. The advantages of the proposed design have been shown using QCADesigner in terms of the delay in comparison with previous circuits.
Brightness checkerboard lattice method for the calibration of the coaxial reverse Hartmann test
NASA Astrophysics Data System (ADS)
Li, Xinji; Hui, Mei; Li, Ning; Hu, Shinan; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin
2018-01-01
The coaxial reverse Hartmann test (RHT) is widely used in the measurement of large aspheric surfaces as an auxiliary method for interference measurement, because of its large dynamic range, highly flexible test with low frequency of surface errors, and low cost. And the accuracy of the coaxial RHT depends on the calibration. However, the calibration process remains inefficient, and the signal-to-noise ratio limits the accuracy of the calibration. In this paper, brightness checkerboard lattices were used to replace the traditional dot matrix. The brightness checkerboard method can reduce the number of dot matrix projections in the calibration process, thus improving efficiency. An LCD screen displayed a brightness checkerboard lattice, in which the brighter checkerboard and the darker checkerboard alternately arranged. Based on the image on the detector, the relationship between the rays at certain angles and the photosensitive positions of the detector coordinates can be obtained. And a differential de-noising method can effectively reduce the impact of noise on the measurement results. Simulation and experimentation proved the feasibility of the method. Theoretical analysis and experimental results show that the efficiency of the brightness checkerboard lattices is about four times that of the traditional dot matrix, and the signal-to-noise ratio of the calibration is significantly improved.
Bandyopadhyay, Purnima; Lang, Elza A S; Rasaputra, Komal S; Steinman, Howard M
2013-08-01
The genome of the Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, encodes two virulence-associated type 4 secretion systems (T4SSs), the Dot/Icm type 4B (T4BSS) and the Lvh type 4A (T4ASS). Broth stationary-phase cultures of most dot/icm mutants are defective in entry and evasion of phagosome acidification. However, those virulence defects can be reversed by incubating broth cultures of dot/icm mutants in water, termed water stress (WS). WS reversal requires the lvh T4ASS locus, suggesting an interaction between the two T4SSs in producing Legionella virulence phenotypes. In the current work, the loss of WS reversal in a dotA Δlvh mutant of strain JR32 was shown to be attributable to loss of the lvh virD4 gene, encoding the putative coupling protein of the T4ASS. Transformation of a dotA Δlvh mutant with virD4 also reversed entry and phagosome acidification defects in broth cultures. In addition, broth cultures of Δlvh and ΔvirD4 mutants, which were dot/icm(+), showed 5-fold and >6-fold increases in translocation of the Dot/Icm translocation substrates, proteins RalF and SidD, respectively. These data demonstrate that the Lvh T4ASS functions in both broth stationary-phase cultures conventionally used for infection and cultures exposed to WS treatment. Our studies in a dotA Δlvh mutant and in a dot/icm(+) background establish that VirD4 and the Lvh T4ASS contribute to virulence phenotypes and are consistent with independent functioning of Dot/Icm and Lvh T4SSs or functional substitution of the Lvh VirD4 protein for a component(s) of the Dot/Icm T4BSS.
Bandyopadhyay, Purnima; Lang, Elza A. S.; Rasaputra, Komal S.
2013-01-01
The genome of the Philadelphia-1 strain of Legionella pneumophila, the causative organism of Legionnaires' disease, encodes two virulence-associated type 4 secretion systems (T4SSs), the Dot/Icm type 4B (T4BSS) and the Lvh type 4A (T4ASS). Broth stationary-phase cultures of most dot/icm mutants are defective in entry and evasion of phagosome acidification. However, those virulence defects can be reversed by incubating broth cultures of dot/icm mutants in water, termed water stress (WS). WS reversal requires the lvh T4ASS locus, suggesting an interaction between the two T4SSs in producing Legionella virulence phenotypes. In the current work, the loss of WS reversal in a dotA Δlvh mutant of strain JR32 was shown to be attributable to loss of the lvh virD4 gene, encoding the putative coupling protein of the T4ASS. Transformation of a dotA Δlvh mutant with virD4 also reversed entry and phagosome acidification defects in broth cultures. In addition, broth cultures of Δlvh and ΔvirD4 mutants, which were dot/icm+, showed 5-fold and >6-fold increases in translocation of the Dot/Icm translocation substrates, proteins RalF and SidD, respectively. These data demonstrate that the Lvh T4ASS functions in both broth stationary-phase cultures conventionally used for infection and cultures exposed to WS treatment. Our studies in a dotA Δlvh mutant and in a dot/icm+ background establish that VirD4 and the Lvh T4ASS contribute to virulence phenotypes and are consistent with independent functioning of Dot/Icm and Lvh T4SSs or functional substitution of the Lvh VirD4 protein for a component(s) of the Dot/Icm T4BSS. PMID:23729650
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van de Wiele, Ben; Fin, Samuele; Pancaldi, Matteo
2016-05-28
Various proposals for future magnetic memories, data processing devices, and sensors rely on a precise control of the magnetization ground state and magnetization reversal process in periodically patterned media. In finite dot arrays, such control is hampered by the magnetostatic interactions between the nanomagnets, leading to the non-uniform magnetization state distributions throughout the sample while reversing. In this paper, we evidence how during reversal typical geometric arrangements of dots in an identical magnetization state appear that originate in the dominance of either Global Configurational Anisotropy or Nearest-Neighbor Magnetostatic interactions, which depends on the fields at which the magnetization reversal setsmore » in. Based on our findings, we propose design rules to obtain the uniform magnetization state distributions throughout the array, and also suggest future research directions to achieve non-uniform state distributions of interest, e.g., when aiming at guiding spin wave edge-modes through dot arrays. Our insights are based on the Magneto-Optical Kerr Effect and Magnetic Force Microscopy measurements as well as the extensive micromagnetic simulations.« less
NASA Astrophysics Data System (ADS)
Li, Xinji; Hui, Mei; Zhao, Zhu; Liu, Ming; Dong, Liquan; Kong, Lingqin; Zhao, Yuejin
2018-05-01
A differential computation method is presented to improve the precision of calibration for coaxial reverse Hartmann test (RHT). In the calibration, the accuracy of the distance measurement greatly influences the surface shape test, as demonstrated in the mathematical analyses. However, high-precision absolute distance measurement is difficult in the calibration. Thus, a differential computation method that only requires the relative distance was developed. In the proposed method, a liquid crystal display screen successively displayed two regular dot matrix patterns with different dot spacing. In a special case, images on the detector exhibited similar centroid distributions during the reflector translation. Thus, the critical value of the relative displacement distance and the centroid distributions of the dots on the detector were utilized to establish the relationship between the rays at certain angles and the detector coordinates. Experiments revealed the approximately linear behavior of the centroid variation with the relative displacement distance. With the differential computation method, we increased the precision of traditional calibration 10-5 rad root mean square. The precision of the RHT was increased by approximately 100 nm.
Size-Dependent Optoelectronic Properties and Controlled Doping of Semiconductor Quantum Dots
NASA Astrophysics Data System (ADS)
Engel, Jesse Hart
Given a rapidly developing world, the need exists for inexpensive renewable energy alternatives to help avoid drastic climate change. Photovoltaics have the potential to fill the energy needs of the future, but significant cost decreases are necessary for widespread adoption. Semiconductor nanocrystals, also known as quantum dots, are a nascent technology with long term potential to enable inexpensive and high efficiency photovoltaics. When deposited as a film, quantum dots form unique nanocomposites whose electronic and optical properties can be broadly tuned through manipulation of their individual constituents. The contents of this thesis explore methods to understand and optimize the optoelectronic properties of PbSe quantum dot films for use in photovoltaic applications. Systematic optimization of photovoltaic performance is demonstrated as a function of nanocrystal size, establishing the potential for utilizing extreme quantum confinement to improve device energetics and alignment. Detailed investigations of the mechanisms of electrical transport are performed, revealing that electronic coupling in quantum dot films is significantly less than often assumed based on optical shifts. A method is proposed to employ extended regions of built-in electrical field, through controlled doping, to sidestep issues of poor transport. To this end, treatments with chemical redox agents are found to effect profound and reversible doping within nanocrystal films, sufficient to enable their use as chemical sensors, but lacking the precision required for optoelectronic applications. Finally, a novel doping method employing "redox buffers" is presented to enact precise, stable, and reversible charge-transfer doping in porous semiconductor films. An example of oxidatively doping PbSe quantum dot thin films is presented, and the future potential for redox buffers in photovoltaic applications is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkhomenko, Ya. A.; Ivanov, E. V.; Moiseev, K. D., E-mail: mkd@iropt2.ioffe.rssi.ru
2013-11-15
The electrical and electroluminescence properties of a single narrow-gap heterostructure based on a p-n junction in indium arsenide, containing a single layer of InSb quantum dots in the InAs matrix, are studied. The presence of quantum dots has a significant effect on the shape of the reverse branch of the current-voltage characteristic of the heterostructure. Under reverse bias, the room-temperature electroluminescence spectra of the heterostructure with quantum dots, in addition to a negative-luminescence band with a maximum at the wavelength {lambda} = 3.5 {mu}m, contained a positive-luminescence emission band at 3.8 {mu}m, caused by radiative transitions involving localized states ofmore » quantum dots at the type-II InSb/InAs heterointerface.« less
Bandyopadhyay, Purnima; Sumer, Eren U.; Jayakumar, Deepak; Liu, Shuqing; Xiao, Huifang
2012-01-01
Legionella pneumophila, the causative agent of Legionnaires' disease, is a ubiquitous freshwater bacterium whose virulence phenotypes require a type IV secretion system (T4SS). L. pneumophila strain JR32 contains two virulence-associated T4SSs, the Dot/Icm and Lvh T4SSs. Defective entry and phagosome acidification phenotypes of dot/icm mutants are conditional and reversed by incubating broth-grown stationary-phase cultures in water (WS treatment) prior to infection, as a mimic of the aquatic environment of Legionella. Reversal of dot/icm virulence defects requires the Lvh T4SS and is associated with a >10-fold induction of LpnE, a tetratricopeptide repeat (TPR)-containing protein. In the current study, we demonstrated that defective entry and phagosome acidification phenotypes of mutants with changes in LpnE and EnhC, another TPR-containing protein, were similarly reversed by WS treatment. In contrast to dot/icm mutants for which the Lvh T4SS was required, reversal for the ΔlpnE or the ΔenhC mutant required that the other TPR-containing protein be present. The single and double ΔlpnE and ΔenhC mutants showed a hypersensitivity to sodium ion, a phenotype associated with dysfunction of the Dot/Icm T4SS. The ΔlpnE single and the ΔlpnE ΔenhC double mutant showed 3- to 9-fold increases in translocation of Dot/Icm T4SS substrates, LegS2/SplY and LepB. Taken together, these data identify TPR-containing proteins in a second mechanism by which the WS mimic of a Legionella environmental niche can reverse virulence defects of broth-grown cultures and implicate LpnE and EnhC directly or indirectly in translocation of Dot/Icm T4SS protein substrates. PMID:22563053
Matching and correlation computations in stereoscopic depth perception.
Doi, Takahiro; Tanabe, Seiji; Fujita, Ichiro
2011-03-02
A fundamental task of the visual system is to infer depth by using binocular disparity. To encode binocular disparity, the visual cortex performs two distinct computations: one detects matched patterns in paired images (matching computation); the other constructs the cross-correlation between the images (correlation computation). How the two computations are used in stereoscopic perception is unclear. We dissociated their contributions in near/far discrimination by varying the magnitude of the disparity across separate sessions. For small disparity (0.03°), subjects performed at chance level to a binocularly opposite-contrast (anti-correlated) random-dot stereogram (RDS) but improved their performance with the proportion of contrast-matched (correlated) dots. For large disparity (0.48°), the direction of perceived depth reversed with an anti-correlated RDS relative to that for a correlated one. Neither reversed nor normal depth was perceived when anti-correlation was applied to half of the dots. We explain the decision process as a weighted average of the two computations, with the relative weight of the correlation computation increasing with the disparity magnitude. We conclude that matching computation dominates fine depth perception, while both computations contribute to coarser depth perception. Thus, stereoscopic depth perception recruits different computations depending on the disparity magnitude.
ERIC Educational Resources Information Center
Hecker, JayEtta Z.
A series of reviews of the Department of Transportation's (DOT's) Job Access and Reverse Commute (Job Access) Program explored DOT's and grantees' challenges in implementing the Job Access program and the status of DOT's program evaluation efforts. DOT and grantees faced significant challenges in implementing the Job Access program. DOT's process…
NASA Astrophysics Data System (ADS)
Jung, Kyung-Ho; Park, Jin Won; Paik, Jin-Young; Lee, Eun Jeong; Choe, Yearn Seong; Lee, Kyung-Han
2012-12-01
In this study, we investigated the effects of hydrazinonicotinamide (HYNIC)—a bifunctional crosslinker widely used to 99mTc radiolabel protein and nanoparticles for imaging studies—on quantum dot opsonization, macrophage engulfment and in vivo kinetics. In streptavidin-coated quantum dots (SA-QDots), conjugation with HYNIC increased the net negative charge without affecting the zeta potential. Confocal microscopy and fluorescence-activated cell sorting showed HYNIC attachment to suppress SA-QDot engulfment by macrophages. Furthermore, HYNIC conjugation suppressed surface opsonization by serum protein including IgG. When intravenously injected into mice, HYNIC conjugation significantly prolonged the circulation of SA-QDots and reduced their hepatosplenic uptake. Diminished reticuloendothelial system clearance of SA-QDots and aminoPEG-QDots by HYNIC conjugation was also demonstrated by in vivo and ex vivo optical imaging. The effects of HYNIC on the opsonization, phagocytosis and in vivo kinetics of quantum dots were reversed by removal of the hydrazine component from HYNIC. Thus, surface functionalization with HYNIC can improve the in vivo kinetics of quantum dots by reducing phagocytosis via suppression of surface opsonization.
NASA Astrophysics Data System (ADS)
Madami, Marco; Gubbiotti, Gianluca; Tacchi, Silvia; Carlotti, Giovanni
2017-11-01
Single- or multi-layered planar magnetic dots, with lateral dimensions ranging from tens to hundreds of nanometers, are used as elemental switches in current and forthcoming devices for information and communication technology (ICT), including magnetic memories, spin-torque oscillators and nano-magnetic logic gates. In this review article, we will first discuss energy dissipation during irreversible switching protocols of dots of different dimensions, ranging from a few tens of nanometers to the micrometric range. Then we will focus on the fundamental energy limits of adiabatic (slow) erasure and reversal of a magnetic nanodot, showing that dissipationless operation is achievable, provided that both dynamic reversibility (arbitrarily slow application of external fields) and entropic reversibility (no free entropy increase) are insured. However, recent theoretical and experimental tests of magnetic-dot erasure reveal that intrinsic defects related to materials imperfections such as roughness or polycrystallinity, may cause an excess of dissipation if compared to the minimum theoretical limit. We will conclude providing an outlook on the most promising strategies to achieve a new generation of power-saving nanomagnetic logic devices based on clusters of interacting dots and on straintronics.
Energy dissipation dataset for reversible logic gates in quantum dot-cellular automata.
Bahar, Ali Newaz; Rahman, Mohammad Maksudur; Nahid, Nur Mohammad; Hassan, Md Kamrul
2017-02-01
This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T =2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.
NASA Astrophysics Data System (ADS)
Iyyappan, I.; Ponmurugan, M.
2017-09-01
We study the performance of a three-terminal thermoelectric device such as heat engine and refrigerator with broken time-reversal symmetry by applying the unified trade-off figure of merit (\\dotΩ criterion) which accounts for both useful energy and losses. For the heat engine, we find that a thermoelectric device working under the maximum \\dotΩ criterion gives a significantly better performance than a device working at maximum power output. Within the framework of linear irreversible thermodynamics such a direct comparison is not possible for refrigerators, however, our study indicates that, for refrigerator, the maximum cooling load gives a better performance than the maximum \\dotΩ criterion for a larger asymmetry. Our results can be useful to choose a suitable optimization criterion for operating a real thermoelectric device with broken time-reversal symmetry.
Ahmad, Peer Zahoor; Quadri, S M K; Ahmad, Firdous; Bahar, Ali Newaz; Wani, Ghulam Mohammad; Tantary, Shafiq Maqbool
2017-12-01
Quantum-dot cellular automata, is an extremely small size and a powerless nanotechnology. It is the possible alternative to current CMOS technology. Reversible QCA logic is the most important issue at present time to reduce power losses. This paper presents a novel reversible logic gate called the F-Gate. It is simplest in design and a powerful technique to implement reversible logic. A systematic approach has been used to implement a novel single layer reversible Full-Adder, Full-Subtractor and a Full Adder-Subtractor using the F-Gate. The proposed Full Adder-Subtractor has achieved significant improvements in terms of overall circuit parameters among the most previously cost-efficient designs that exploit the inevitable nano-level issues to perform arithmetic computing. The proposed designs have been authenticated and simulated using QCADesigner tool ver. 2.0.3.
Amaral, Jose Jussi; Wan, Jacky; Rodarte, Andrea L.; ...
2014-10-22
The design and development of multifunctional composite materials from artificial nano-constituents is one of the most compelling current research areas. This drive to improve over nature and produce ‘meta-materials’ has met with some success, but results have proven limited with regards to both the demonstration of synergistic functionalities and in the ability to manipulate the material properties post-fabrication and in situ. Here, magnetic nanoparticles (MNPs) and semiconducting quantum dots (QDs) are co-assembled in a nematic liquid crystalline (LC) matrix, forming composite structures in which the emission intensity of the quantum dots is systematically and reversibly controlled with a small appliedmore » magnetic field (<100 mT). This magnetic field-driven brightening, ranging between a two- to three-fold peak intensity increase, is a truly cooperative effect: the LC phase transition creates the co-assemblies, the clustering of the MNPs produces LC re-orientation at atypical low external field, and this re-arrangement produces compaction of the clusters, resulting in the detection of increased QD emission. These results demonstrate a synergistic, reversible, and an all-optical process to detect magnetic fields and additionally, as the clusters are self-assembled in a fluid medium, they offer the possibility for these sensors to be used in broad ranging fluid-based applications.« less
Galyean, A A; Behr, M R; Cash, K J
2018-01-21
Nanosensors present a biological monitoring method that is biocompatible, reversible, and nano-scale, and they offer many advantages over traditional organic indicators. Typical ionophore-based nanosensors incorporate nile-blue derivative pH indicators but suffer from photobleaching while quantum dot alternatives pose a potential toxicity risk. In order to address this challenge, sodium selective nanosensors containing carbon dots and a pH-sensitive quencher molecule were developed based on an ion-exchange theory and a decoupled recognition element from the pH indicator. Carbon dots were synthesized and integrated into nanosensors containing a pH-indicator, an analyte-binding ligand (ionophore), and a charge-balancing additive. These nanosensors are ion-selective against potassium (selectivity coefficient of 0.4) and lithium (selectivity coefficient of 0.9). Reversible nanosensor response to sodium is also demonstrated. The carbon dot nanosensors are resistant to changes in optical properties for at least 12 h and display stable selectivity to physiologically-relevant sodium (alpha = 0.5 of 200 mM NaCl) for a minimum of 6 days.
NASA Astrophysics Data System (ADS)
Stebliy, Maxim; Ognev, Alexey; Samardak, Alexander; Chebotkevich, Ludmila; Verba, Roman; Melkov, Gennadiy; Tiberkevich, Vasil; Slavin, Andrei
2015-06-01
Magnetization reversal in finite chains and square arrays of closely packed cylindrical magnetic dots, having vortex ground state in the absence of the external bias field, has been studied experimentally by measuring static hysteresis loops, and also analyzed theoretically. It has been shown that the field Bn of a vortex nucleation in a dot as a function of the finite number N of dots in the array's side may exhibit a monotonic or an oscillatory behavior depending on the array geometry and the direction of the external bias magnetic field. The oscillations in the dependence Bn(N) are shown to be caused by the quantization of the collective soft spin wave mode, which corresponds to the vortex nucleation in a finite array of dots. These oscillations are directly related to the form and symmetry of the dispersion law of the soft SW mode: the oscillation could appear only if the minimum of the soft mode spectrum is not located at any of the symmetric points inside the first Brillouin zone of the array's lattice. Thus, the purely static measurements of the hysteresis loops in finite arrays of coupled magnetic dots can yield important information about the properties of the collective spin wave excitations in these arrays.
Generalized description of few-electron quantum dots at zero and nonzero magnetic fields
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2007-01-01
We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.
2013-01-01
In this work, we investigated the effects of quantum dot (QD) annealing (as-grown, 600°C-annealed, and 750°C-annealed) on the preliminary performances of 1.3-μm InAs-InGaAs-GaAs quantum dot electroabsorption modulators (QD-EAMs). Both extinction ratio and insertion loss were found to vary inversely with the annealing temperature. Most importantly, the 3-dB response of the 750°C-annealed lumped-element QD-EAM was found to be 1.6 GHz at zero reverse bias voltage - the lowest reverse bias voltage reported. We believe that this work will be beneficial to researchers working on on-chip integration of QD-EAMs with other devices since energy consumption will be an important consideration. PMID:23388169
Brown, Patrick R; Lunt, Richard R; Zhao, Ni; Osedach, Timothy P; Wanger, Darcy D; Chang, Liang-Yi; Bawendi, Moungi G; Bulović, Vladimir
2011-07-13
The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of a MoO(3) interlayer between the PbS colloidal quantum dot film and the top-contact anode. Through a combination of current-voltage characterization, circuit modeling, Mott-Schottky analysis, and external quantum efficiency measurements performed with bottom- and top-illumination, these enhancements are shown to stem from the elimination of a reverse-bias Schottky diode present at the PbS/anode interface. The incorporation of the high-work-function MoO(3) layer pins the Fermi level of the top contact, effectively decoupling the device performance from the work function of the anode and resulting in a high open-circuit voltage (0.59 ± 0.01 V) for a range of different anode materials. Corresponding increases in short-circuit current and fill factor enable 1.5-fold, 2.3-fold, and 4.5-fold enhancements in photovoltaic device efficiency for gold, silver, and ITO anodes, respectively, and result in a power conversion efficiency of 3.5 ± 0.4% for a device employing a gold anode.
Gallardo, E; Martínez, L J; Nowak, A K; van der Meulen, H P; Calleja, J M; Tejedor, C; Prieto, I; Granados, D; Taboada, A G; García, J M; Postigo, P A
2010-06-07
We study the optical emission of single semiconductor quantum dots weakly coupled to a photonic-crystal micro-cavity. The linearly polarized emission of a selected quantum dot changes continuously its polarization angle, from nearly perpendicular to the cavity mode polarization at large detuning, to parallel at zero detuning, and reversing sign for negative detuning. The linear polarization rotation is qualitatively interpreted in terms of the detuning dependent mixing of the quantum dot and cavity states. The present result is relevant to achieve continuous control of the linear polarization in single photon emitters.
Quantum optics with nanowires (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zwiller, Val
2017-02-01
Nanowires offer new opportunities for nanoscale quantum optics; the quantum dot geometry in semiconducting nanowires as well as the material composition and environment can be engineered with unprecedented freedom to improve the light extraction efficiency. Quantum dots in nanowires are shown to be efficient single photon sources, in addition because of the very small fine structure splitting, we demonstrate the generation of entangled pairs of photons from a nanowire. By doping a nanowire and making ohmic contacts on both sides, a nanowire light emitting diode can be obtained with a single quantum dot as the active region. Under forward bias, this will act as an electrically pumped source of single photons. Under reverse bias, an avalanche effect can multiply photocurrent and enables the detection of single photons. Another type of nanowire under study in our group is superconducting nanowires for single photon detection, reaching efficiencies, time resolution and dark counts beyond currently available detectors. We will discuss our first attempts at combining semiconducting nanowire based single photon emitters and superconducting nanowire single photon detectors on a chip to realize integrated quantum circuits.
Magnetically Defined Qubits on 3D Topological Insulators
NASA Astrophysics Data System (ADS)
Ferreira, Gerson J.; Loss, Daniel
2014-03-01
We explore potentials that break time-reversal symmetry to confine the surface states of 3D topological insulators into quantum wires and quantum dots. A magnetic domain wall on a ferromagnet insulator cap layer provides interfacial states predicted to show the quantum anomalous Hall effect. Here, we show that confinement can also occur at magnetic domain heterostructures, with states extended in the inner domain, as well as interfacial QAHE states at the surrounding domain walls. The proposed geometry allows the isolation of the wire and dot from spurious circumventing surface states. For the quantum dots, we find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate for quantum computing qubits. See [Ferreira and Loss, Phys. Rev. Lett. 111, 106802 (2013)]. We explore potentials that break time-reversal symmetry to confine the surface states of 3D topological insulators into quantum wires and quantum dots. A magnetic domain wall on a ferromagnet insulator cap layer provides interfacial states predicted to show the quantum anomalous Hall effect. Here, we show that confinement can also occur at magnetic domain heterostructures, with states extended in the inner domain, as well as interfacial QAHE states at the surrounding domain walls. The proposed geometry allows the isolation of the wire and dot from spurious circumventing surface states. For the quantum dots, we find that highly spin-polarized quantized QAHE states at the dot edge constitute a promising candidate for quantum computing qubits. See [Ferreira and Loss, Phys. Rev. Lett. 111, 106802 (2013)]. We acknowledge support from the Swiss NSF, NCCR Nanoscience, NCCR QSIT, and the Brazillian Research Support Center Initiative (NAP Q-NANO) from Pró-Reitoria de Pesquisa (PRP/USP).
Undoped Si/SiGe Depletion-Mode Few-Electron Double Quantum Dots
NASA Astrophysics Data System (ADS)
Borselli, Matthew; Huang, Biqin; Ross, Richard; Croke, Edward; Holabird, Kevin; Hazard, Thomas; Watson, Christopher; Kiselev, Andrey; Deelman, Peter; Alvarado-Rodriguez, Ivan; Schmitz, Adele; Sokolich, Marko; Gyure, Mark; Hunter, Andrew
2011-03-01
We have successfully formed a double quantum dot in the sSi/SiGe material system without need for intentional dopants. In our design, a two-dimensional electron gas is formed in a strained silicon well by forward biasing a global gate. Lateral definition of quantum dots is established with reverse-biased gates with ~ 40 nm critical dimensions. Low-temperature capacitance and Hall measurements confirm electrons are confined in the Si-well with mobilities > 10 4 cm 2 / V - s . Further characterization identifies practical gate bias limits for this design and will be compared to simulation. Several double dot devices have been brought into the few-electron Coulomb blockade regime as measured by through-dot transport. Honeycomb diagrams and nonlinear through-dot transport measurements are used to quantify dot capacitances and addition energies of several meV. Sponsored by United States Department of Defense. Approved for Public Release, Distribution Unlimited.
La Rosa, Marcello; Denisov, Sergey A.
2018-01-01
Abstract The size‐tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface‐bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self‐assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 μs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer. PMID:29383800
What does the dot-probe task measure? A reverse correlation analysis of electrocortical activity.
Thigpen, Nina N; Gruss, L Forest; Garcia, Steven; Herring, David R; Keil, Andreas
2018-06-01
The dot-probe task is considered a gold standard for assessing the intrinsic attentive selection of one of two lateralized visual cues, measured by the response time to a subsequent, lateralized response probe. However, this task has recently been associated with poor reliability and conflicting results. To resolve these discrepancies, we tested the underlying assumption of the dot-probe task-that fast probe responses index heightened cue selection-using an electrophysiological measure of selective attention. Specifically, we used a reverse correlation approach in combination with frequency-tagged steady-state visual potentials (ssVEPs). Twenty-one participants completed a modified dot-probe task in which each member of a pair of lateralized face cues, varying in emotional expression (angry-angry, neutral-angry, neutral-neutral), flickered at one of two frequencies (15 or 20 Hz), to evoke ssVEPs. One cue was then replaced by a response probe, and participants indicated the probe orientation (0° or 90°). We analyzed the ssVEP evoked by the cues as a function of response speed to the subsequent probe (i.e., a reverse correlation analysis). Electrophysiological measures of cue processing varied with probe hemifield location: Faster responses to left probes were associated with weak amplification of the preceding left cue, apparent only in a median split analysis. By contrast, faster responses to right probes were systematically and parametrically predicted by diminished visuocortical selection of the preceding right cue. Together, these findings highlight the poor validity of the dot-probe task, in terms of quantifying intrinsic, nondirected attentive selection irrespective of probe/cue location. © 2018 Society for Psychophysiological Research.
Reversible Flip-Flops in Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Rad, Samaneh Kazemi; Heikalabad, Saeed Rasouli
2017-09-01
Quantum-dot cellular automata is a new technology to design the efficient combinational and sequential circuits at the nano-scale. This technology has many desirable advantages compared to the CMOS technology such as low power consumption, less occupation area and low latency. These features make it suitable for use in flip-flop design. In this paper, with knowing the characteristics of reversible logic, we design new structures for flip-flops. The operations of these structures are evaluated with QCADesigner Version 2.0.3 simulator. In addition, we calculate the power dissipation of these structures by QCAPro tool. The results illustrated that proposed structures are efficient compared to the previous ones.
Berry phase jumps and giant nonreciprocity in Dirac quantum dots
NASA Astrophysics Data System (ADS)
Rodriguez-Nieva, Joaquin F.; Levitov, Leonid S.
2016-12-01
We predict that a strong nonreciprocity in the resonance spectra of Dirac quantum dots can be induced by the Berry phase. The nonreciprocity arises in relatively weak magnetic fields and is manifest in anomalously large field-induced splittings of quantum dot resonances which are degenerate at B =0 due to time-reversal symmetry. This exotic behavior, which is governed by field-induced jumps in the Berry phase of confined electronic states, is unique to quantum dots in Dirac materials and is absent in conventional quantum dots. The effect is strong for gapless Dirac particles and can overwhelm the B -induced orbital and Zeeman splittings. A finite Dirac mass suppresses the effect. The nonreciprocity, predicted for generic two-dimensional Dirac materials, is accessible through Faraday and Kerr optical rotation measurements and scanning tunneling spectroscopy.
A solid state source of photon triplets based on quantum dot molecules
Khoshnegar, Milad; Huber, Tobias; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed
2017-01-01
Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices. PMID:28604705
Malic Acid Carbon Dots: From Super-resolution Live-Cell Imaging to Highly Efficient Separation.
Zhi, Bo; Cui, Yi; Wang, Shengyang; Frank, Benjamin P; Williams, Denise N; Brown, Richard P; Melby, Eric S; Hamers, Robert J; Rosenzweig, Zeev; Fairbrother, D Howard; Orr, Galya; Haynes, Christy L
2018-06-15
As-synthesized malic acid carbon dots are found to possess photoblinking properties that are outstanding and superior compared to those of conventional dyes. Considering their excellent biocompatibility, malic acid carbon dots are suitable for super-resolution fluorescence localization microscopy under a variety of conditions, as we demonstrate in fixed and live trout gill epithelial cells. In addition, during imaging experiments, the so-called "excitation wavelength-dependent" emission was not observed for individual as-made malic acid carbon dots, which motivated us to develop a time-saving and high-throughput separation technique to isolate malic acid carbon dots into fractions of different particle size distributions using C 18 reversed-phase silica gel column chromatography. This post-treatment allowed us to determine how particle size distribution influences the optical properties of malic acid carbon dot fractions, that is, optical band gap energies and photoluminescence behaviors.
NASA Astrophysics Data System (ADS)
Hughes, S.; Gotoh, H.; Kamada, H.
2006-09-01
We present a theoretical study of photon-coupled single quantum dots in a semiconductor. A series of optical effects are demonstrated, including a subradiant dark resonance, superradiance, reversible spontaneous emission decay, and pronounced exciton entanglement. Both classical and quantum optical approaches are presented using a self-consistent formalism that treats real and virtual photon exchange on an equal footing and can account for different quantum dot properties, surface effects, and retardation in the dipole-dipole coupling, all of which are shown to play a non-negligible role.
Girgis, E; Portugal, R D; Loosvelt, H; Van Bael, M J; Gordon, I; Malfait, M; Temst, K; Van Haesendonck, C; Leunissen, L H A; Jonckheere, R
2003-10-31
Magnetization reversal was studied in square arrays of square Co/CoO dots with lateral size varying between 200 and 900 nm. While reference nonpatterned Co/CoO films show the typical shift and increased width of the hysteresis loop due to exchange bias, the patterned samples reveal a pronounced size dependence. In particular, an anomaly appears in the upper branch of the magnetization cycle and becomes stronger as the dot size decreases. This anomaly, which is absent at room temperature in the patterned samples, can be understood in terms of a competition between magnetostatic interdot interaction and exchange anisotropy during the magnetic switching process.
La Rosa, Marcello; Denisov, Sergey A; Jonusauskas, Gediminas; McClenaghan, Nathan D; Credi, Alberto
2018-03-12
The size-tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface-bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self-assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 μs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Pump dependence of the dynamics of quantum dot based waveguide absorbers
NASA Astrophysics Data System (ADS)
Viktorov, Evgeny A.; Erneux, Thomas; Piwonski, Tomasz; Pulka, Jaroslaw; Huyet, Guillaume; Houlihan, John
2012-06-01
The nonlinear two stage recovery of quantum dot based reverse-biased waveguide absorbers is investigated experimentally and analytically as a function of the initial ground state occupation probability of the dot. The latter is controlled experimentally by the pump pulse power. The slow stage of the recovery is exponential and its basic timescale is independent of pump power. The fast stage of the recovery is a logistic function which we analyze in detail. The relative strength of slow to fast components is highlighted and the importance of higher order absorption processes at the highest pump level is demonstrated.
Synthesis of Bi2S3 quantum dots for sensitized solar cells by reverse SILAR
NASA Astrophysics Data System (ADS)
Singh, Navjot; Sharma, J.; Tripathi, S. K.
2016-05-01
Quantum Dot Sensitized Solar cells (QDSSC) have great potential to replace silicon-based solar cells. Quantum dots of various materials and sizes could be used to convert most of the visible light into the electrical current. This paper put emphasis on the synthesis of Bismuth Sulphide quantum dots and selectivity of the anionic precursor by Successive Ionic Layer Adsorption Reaction (SILAR). Bismuth Sulfide (Bi2S3) (group V - Vi semiconductor) is strong contestant for cadmium free solar cells due to its optimum band gap for light harvesting. Optical, structural and electrical measurements are reported and discussed. Problem regarding the choice of precursor for anion extraction is discussed. Band gap of the synthesized quantum dots is 1.2 eV which does not match with the required energy band gap of bismuth sulfide that is 1.7eV.
Properties and applications of submicron magnetic structures
NASA Astrophysics Data System (ADS)
Silevitch, Daniel Marc
The interactions between an array of magnetic dots and a superconducting thin film were studied using transport measurements and magnetic imaging. The transport measurements examined the enhancement in the pinning of flux vortices when the vortex lattice was commensurate with the dot array. The degradation of the pinning enhancement due to the controlled introduction of disorder into the dot lattice was studied. Enhanced pinning was observed to persist in disordered arrays when the vortex lattice had the same density as the dot lattice. When the vortex density was an integral multiple of the dot lattice density, the enhanced pinning was suppressed with increasing disorder. Magnetic imaging was carried out on superconductors with ordered arrays of pinning sites. The vortices were observed to form regions of local order even when the vortex density was less than the dot density. There were also a significant number of vortices pinned in the interstitials of the dot lattice, indicating that the pinning potential is comparable in strength to the inter-vortex repulsion. The transport properties of ferromagnetic nanowires were also investigated. The behavior of straight nanowires was studied as a function of the magnitude and angle of the applied magnetic field. A model was developed for the magnetization behavior of the nanowire which reproduced the observed transport properties. The magnetic reversal properties were examined and found to be consistent with the curling mode of reversal, and an estimate for the initial nucleation volume was obtained. This behavior was compared to the behavior of mechanically bent nanowires. The bent wires were qualitatively similar to two independent straight wires. The bent wires, however, also showed interaction effects due to the domain configuration that had an effect on the magnetization behavior. An estimate for the energy barrier of nucleating a domain wall in a nanowire was derived from these interaction effects. A resistance contribution due to the domain configuration was isolated; the resistance was found to decrease in the presence of a domain wall.
Improved dot size uniformity and luminescense of InAs quantum dots on InP substrate
NASA Technical Reports Server (NTRS)
Qiu, Y.; Uhl, D.
2002-01-01
InAs self-organized quantum dots have been grown in InGaAs quantum well on InP substrates by metalorganic vapor phase epitaxy. Atomic Force Microscopy confirmed of quantum dot formation with dot density of 3X10(sup 10) cm(sup -2). Improved dot size uniformity and strong room temperature photoluminescence up to 2 micron were observed after modifying the InGaAs well.
NASA Astrophysics Data System (ADS)
Medepalli, Krishnakiran; Alphenaar, Bruce W.; Keynton, Robert S.; Sethu, Palaniappan
2013-05-01
A major challenge with the use of quantum dots (QDs) for cellular imaging and biomolecular delivery is the attainment of QDs freely dispersed inside the cells. Conventional methods such as endocytosis, lipids based delivery and electroporation are associated with delivery of QDs in vesicles and/or as aggregates that are not monodispersed. In this study, we demonstrate a new technique for reversible permeabilization of cells to enable the introduction of freely dispersed QDs within the cytoplasm. Our approach combines osmosis driven fluid transport into cells achieved by creating a hypotonic environment and reversible permeabilization using low concentrations of cell permeabilization agents like Saponin. Our results confirm that highly efficient endocytosis-free intracellular delivery of QDs can be accomplished using this method. The best results were obtained when the cells were treated with 50 μg ml-1 Saponin in a hypotonic buffer at a 3:2 physiological buffer:DI water ratio for 5 min at 4 ° C.
Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors.
Malinowski, Pawel E; Georgitzikis, Epimitheas; Maes, Jorick; Vamvaka, Ioanna; Frazzica, Fortunato; Van Olmen, Jan; De Moor, Piet; Heremans, Paul; Hens, Zeger; Cheyns, David
2017-12-10
Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III-V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10 -6 A/cm² at -2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors.
NASA Astrophysics Data System (ADS)
Joo, So-Yeong; Park, Hyun-Su; Kim, Do-yeon; Kim, Bum-Sung; Lee, Chan Gi; Kim, Woo-Byoung
2018-01-01
In this study, we have developed an effective amino passivation process for quantum dots (QDs) at room temperature and have investigated a passivation mechanism using a photo-assisted chemical method. As a result of the reverse reaction of the H2O molecules, the etching kinetics of the photo-assisted chemical method increased upon increasing the 3-amino-1-propanol (APOL)/H2O ratio of the etching solution. Photon-excited electron-hole pairs lead to strong bonding between the organic and surface atoms of the QDs, and results in an increase of the quantum yield (QY%). This passivation method is also applicable to CdSe/ZnSe core/shell structures of QDs, due to the passivation of mid-gap defects states at the interface. The QY% of the as-synthesized CdSe QDs is dramatically enhanced by the amino passivation from 37% to 75% and the QY% of the CdSe/ZnSe core/shell QDs is also improved by ˜28%.
Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.
Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang
2014-02-26
A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.
Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays
Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang
2014-01-01
A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz·deg·s−1) and good linearity were observed. PMID:24577520
Improved Low Temperature Performance of Supercapacitors
NASA Technical Reports Server (NTRS)
Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe
2013-01-01
Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary
Fritz, M L; Miller, J R; Bayoh, M N; Vulule, J M; Landgraf, J R; Walker, E D
2013-12-01
A DNA-DNA hybridization method, reverse dot blot analysis (RDBA), was used to identify Anopheles gambiae s.s. and Anopheles arabiensis (Diptera: Culicidae) hosts. Of 299 blood-fed and semi-gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; of these, 69.5% were An. arabiensis and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable with those of conventional polymerase chain reaction (PCR) followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome b gene. Of the 174 amplicon-producing samples used to compare these two methods, 147 were identifiable by direct sequencing and 139 of these were identifiable by RDBA. Anopheles arabiensis bloodmeals were mostly (94.6%) bovine in origin, whereas An. gambiae s.s. fed upon humans more than 91.8% of the time. Tests by RDBA detected that two of 112 An. arabiensis contained blood from more than one host species, whereas PCR and direct sequencing did not. Recent use of insecticide-treated bednets in Kisian is likely to have caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. Reverse dot blot analysis provides an opportunity to study changes in host-feeding by members of the An. gambiae complex in response to the broadening distribution of vector control measures targeting host-selection behaviours. © 2013 The Royal Entomological Society.
DOT2: Macromolecular Docking With Improved Biophysical Models
Roberts, Victoria A.; Thompson, Elaine E.; Pique, Michael E.; Perez, Martin S.; Eyck, Lynn Ten
2015-01-01
Computational docking is a useful tool for predicting macromolecular complexes, which are often difficult to determine experimentally. Here we present the DOT2 software suite, an updated version of the DOT intermolecular docking program. DOT2 provides straightforward, automated construction of improved biophysical models based on molecular coordinates, offering checkpoints that guide the user to include critical features. DOT has been updated to run more quickly, allow flexibility in grid size and spacing, and generate a complete list of favorable candidate configu-rations. Output can be filtered by experimental data and rescored by the sum of electrostatic and atomic desolvation energies. We show that this rescoring method improves the ranking of correct complexes for a wide range of macromolecular interactions, and demonstrate that biologically relevant models are essential for biologically relevant results. The flexibility and versatility of DOT2 accommodate realistic models of complex biological systems, improving the likelihood of a successful docking outcome. PMID:23695987
Yi, Dong Kee
2008-09-01
A reverse microemulsion technique has been used to synthesize quantum dot nanocomposites within a SiO2 surface coating. With this approach, the unique optical properties of the CdSe/ZnS quantum dots were preserved. CdSe/ZnS/SiO2 nanoparticles were homogeneously distributed in a tetramethyl orthosilicate ethanol solution and gelation process was initiated within a 10 min, and was left over night at room temperature and dried fully to achieve a solid SiO, monolith. The resulting monolith was transparent and fluorescent under ultraviolet (UV) lamp. Moreover the monolith produced was crack-free. Further studies on the photo stability of the monolith were performed using a high power UV LED device. Remarkably, quantum dots in the SiO, monolith showed better photo stability compared with those dispersed in a polymer matrix.
Dual responsive supramolecular hydrogel with electrochemical activity.
Du, Ping; Liu, Jianghua; Chen, Guosong; Jiang, Ming
2011-08-02
Supramolecular materials with reversible responsiveness to environmental changes are of particular research interest in recent years. Inclusion complexation between cyclodextrin (CD) and ferrocene (Fc) is well-known and extensively studied because of its reversible association-dissociation controlled by the redox state of Fc. Although there are quite a few reported nanoscale materials incorporating this host-guest pair, polymeric hydrogels with electrochemical activity based on this interactive pair are still rare. Taking advantage of our previous reported hybrid inclusion complex (HIC) hydrogel structure, a new Fc-HIC was designed and obtained with β-CD-modified quantum dots as the core and Fc-ended diblock co-polymer p(DMA-b-NIPAM) as the shell, to achieve an electrochemically active hydrogel at elevated temperatures. Considering the two independent cross-linking strategies in the network structure, i.e., the interchain aggregation of pNIPAM and inclusion complexation between CD and Fc on the surface of the quantum dots, the hydrogel was fully thermo-reversible and its gel-sol transition was achieved after the addition of either an oxidizing agent or a competitive guest to Fc.
NASA Technical Reports Server (NTRS)
Prasad, Sheo S.; Lee, Timothy J.
1994-01-01
Possible existence and chemistry of ClO (center dot) O2 was originally proposed to explain the Norrish-Neville effect that O2 suppresses chlorine photosensitized loss of ozone. It was also thought that ClO (center dot) O2 might have some atmospheric chemistry significance. Recently, doubts have been cast on this proposal, because certain laboratory data seem to imply that the equilibrium constant of the title reaction is so small that ClO (center dot) O2 may be too unstable to matter. However, those data create only a superficial illusion to that effect, because on a closer analysis they do not disprove a moderately stable and chemically significant ClO (center dot) O2. Furthermore, our state-of-the-science accurate computational chemistry calculations also suggest that ClO (center dot) O2 may be a weakly bound ClOOO radical with a reactive (2)A ground electronic state. There is therefore a need to design and perform definitive experimental tests of the existence and chemistry of the ClO (center dot) O2 species, which we discuss and which have the potential to mediate the chlorine-catalyzed stratospheric ozone depletion.
Low-Cost, High-Performance Analog Optical Links
2006-12-01
connected by tunnel junctions, which permit the forward conduction of current when they are reverse biased . Hence a key step in the development of the... bias voltage, where the measured IV is shown by the dotted curve. The common tunnel junction IV model assumed a triangular-shaped band structure. A... tunneling characteristics with negative differential resistance and a resistance under reverse bias around 12 Ω. This was higher than the previously grown
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perron, Justin K., E-mail: jperron@csusm.edu; Joint Quantum Institute, National Institute of Standards and Technology, Gaithersburg, Maryland 20899; National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Pauli-spin blockade (PSB) is a transport phenomenon in double quantum dots that allows for a type of spin to charge conversion often used to probe fundamental physics such as spin relaxation and singlet-triplet coupling. In this paper, we theoretically explore Pauli-spin blockade as a function of magnetic field B applied parallel to the substrate. In the well-studied low magnetic field regime, where PSB occurs in the forward (1, 1) → (0, 2) tunneling direction, we highlight some aspects of PSB that are not discussed in detail in existing literature, including the change in size of both bias triangles measured inmore » the forward and reverse biasing directions as a function of B. At higher fields, we predict a crossover to “reverse PSB” in which current is blockaded in the reverse direction due to the occupation of a spin singlet as opposed to the traditional triplet blockade that occurs at low fields. The onset of reverse PSB coincides with the development of a tail like feature in the measured bias triangles and occurs when the Zeeman energy of the polarized triplet equals the exchange energy in the (0, 2) charge configuration. In Si quantum dots, these fields are experimentally accessible; thus, this work suggests a way to observe a crossover in magnetic field to qualitatively different behavior.« less
Sadeghi, S M
2014-09-01
When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.
Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors †
Georgitzikis, Epimitheas; Vamvaka, Ioanna; Frazzica, Fortunato; Van Olmen, Jan; De Moor, Piet; Heremans, Paul; Hens, Zeger; Cheyns, David
2017-01-01
Imaging in the infrared wavelength range has been fundamental in scientific, military and surveillance applications. Currently, it is a crucial enabler of new industries such as autonomous mobility (for obstacle detection), augmented reality (for eye tracking) and biometrics. Ubiquitous deployment of infrared cameras (on a scale similar to visible cameras) is however prevented by high manufacturing cost and low resolution related to the need of using image sensors based on flip-chip hybridization. One way to enable monolithic integration is by replacing expensive, small-scale III–V-based detector chips with narrow bandgap thin-films compatible with 8- and 12-inch full-wafer processing. This work describes a CMOS-compatible pixel stack based on lead sulfide quantum dots (PbS QD) with tunable absorption peak. Photodiode with a 150-nm thick absorber in an inverted architecture shows dark current of 10−6 A/cm2 at −2 V reverse bias and EQE above 20% at 1440 nm wavelength. Optical modeling for top illumination architecture can improve the contact transparency to 70%. Additional cooling (193 K) can improve the sensitivity to 60 dB. This stack can be integrated on a CMOS ROIC, enabling order-of-magnitude cost reduction for infrared sensors. PMID:29232871
Schubert, Teresa; Reilhac, Caroline; McCloskey, Michael
2018-06-01
How are reading and writing related? In this study, we address the relationship between letter identification and letter production, uncovering a link in which production information can be used to identify letters presented dynamically. By testing an individual with a deficit in letter identification, we identified a benefit which would be masked by ceiling effects in unimpaired readers. In Experiment 1 we found that letter stimuli defined by the direction of dot motion (tiny dots within letter move leftward, background dots move rightward) provided no advantage over static letters. In Experiment 2, we tested dynamic stimuli in which the letter shapes emerged over time: drawn as they would be written, drawn in reverse, or with the letter shape filled in randomly. Improved identification was observed only for letters drawn as they are typically written. These results demonstrate that information about letter production can be integrated into letter identification, and point to bi-directional connections between stored letter production information (used for writing) and abstract letter identity representations (used in both reading and writing). The links from stored production information to abstract letter identities allow the former to activate the latter. We also consider the implications of our results for remediation of acquired letter identification deficits, including letter-drawing treatments and the underlying cause of their efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao
2016-10-01
The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.
Pure ultraviolet emission from ZnO quantum dots-based/GaN heterojunction diodes by MgO interlayer
NASA Astrophysics Data System (ADS)
Chen, Cheng; Liang, Renli; Chen, Jingwen; Zhang, Jun; Wang, Shuai; Zhao, Chong; Zhang, Wei; Dai, Jiangnan; Chen, Changqing
2017-07-01
We demonstrate the fabrication and characterization of ZnO/GaN-based heterojunction light-emitting diodes (LEDs) by using air-stable and solution-processable ZnO quantum dots (QDs) with a thin MgO interlayer acting as an electron blocking layer (EBL). The ZnO QDs/MgO/ p-GaN heterojunction can only display electroluminescence (EL) characteristic in reverse bias regime. Under sufficient reverse bias, a fairly pure ultraviolet EL emission located at 370 nm deriving from near band edge of ZnO with a full width at half maximum (FWHM) of 8.3 nm had been obtained, while the deep-level emission had been almost totally suppressed. The EL origination and corresponding carrier transport mechanisms were investigated qualitatively in terms of photoluminescence (PL) results and energy band diagram.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Raghavan, Siju Cherikkattil; Shivaprakash, N. Channegowda; Sindhu, Sukumaran Nair
2017-11-01
A new derivative of di-4-isopropyl benzyl substituted propylenedioxythiophene (ProDOT-IPBz2) monomer was synthesized and its resultant polymer was prepared by chemical and electrochemical methods. The chemical polymerization was carried out in a hexane/water reverse microemulsion system using sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as self-assembling template. Chemically synthesized PProDOT-IPBz2 was formed as thin nanobelts with high aspect ratio (3:100), and it was found to be soluble in common organic solvents. The electrochemical and electrochromic (EC) properties of PProDOT-IPBz2 films were studied and it was found that PProDOT-IPBz2 films showed high transparency at oxidized state (+1.0 V) and dark purple color formed at reduced state (-1.0 V). The color contrast of solution cast film was calculated to be 37% T at 550 nm, however electropolymerized PProDOT-IPBz2 film exhibited a color contrast of 48% at 550 nm with switching speed of ∼1 s, and the coloration efficiency was calculated to be 305 cm2C-1.
NASA Astrophysics Data System (ADS)
Carlotti, G.; Gubbiotti, G.; Madami, M.; Tacchi, S.; Stamps, R. L.
2014-05-01
Micromagnetic simulations at room temperature (300 K) have been carried out in order to analyse the magnetic eigenmodes (frequency and spatial profile) in elliptical dots with sub-100 nm lateral size. Features are found that are qualitatively different from those typical of larger dots because of the dominant role played by the exchange-energy. These features can be understood most simply in terms of nodal planes defined relative to the orientation of the static magnetization. A new, generalized labeling scheme is proposed that simplifies discussion and comparison of modes from different geometries. It is shown that the lowest-frequency mode for small dots is characterized by an in-phase precession of spins, without nodal planes, but with a maximum amplitude at the edges. This mode softens at an applied switching field with magnitude comparable to the coercive field and determines specific aspects of magnetization reversal. This characteristic behavior can be relevant for optimization of microwave assisting switching as well as for maximizing interdot coupling in dense arrays of dots.
Photoluminescence Intermittency and Photo-Bleaching of Single Colloidal Quantum Dot.
Qin, Haiyan; Meng, Renyang; Wang, Na; Peng, Xiaogang
2017-04-01
Photoluminescence (PL) blinking of single colloidal quantum dot (QD)-PL intensity switching between different brightness states under constant excitation-and photo-bleaching are roadblocks for most applications of QDs. This progress report shall treat PL blinking and photo-bleaching both as photochemical events, namely, PL blinking as reversible and photo-bleaching being irreversible ones. Most studies on single-molecule spectroscopy of QDs in literature are related to PL blinking, which invites us to concentrate our discussions on the PL blinking, including its brief history in 20 years, analysis methods, competitive mechanisms and different strategies to battle it. In terms of suppression of the PL blinking, wavefunction confinement-confining photo-generated electron and hole within the core and inner portion of the shell of a core/shell QD-demonstrates significant advantages. This strategy yields nearly non-blinking QDs with their emission peaks covering most part of the visible window. As expected, the resulting QDs from this new strategy also show substantially improved anti-bleaching features. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrochemical and Capacitive Properties of Carbon Dots/Reduced Graphene Oxide Supercapacitors.
Dang, Yong-Qiang; Ren, Shao-Zhao; Liu, Guoyang; Cai, Jiangtao; Zhang, Yating; Qiu, Jieshan
2016-11-14
There is much recent interest in graphene-based composite electrode materials because of their excellent mechanical strengths, high electron mobilities, and large specific surface areas. These materials are good candidates for applications in supercapacitors. In this work, a new graphene-based electrode material for supercapacitors was fabricated by anchoring carbon dots (CDs) on reduced graphene oxide (rGO). The capacitive properties of electrodes in aqueous electrolytes were systematically studied by galvanostatic charge-discharge measurements, cyclic voltammetry, and electrochemical impedance spectroscopy. The capacitance of rGO was improved when an appropriate amount of CDs were added to the material. The CD/rGO electrode exhibited a good reversibility, excellent rate capability, fast charge transfer, and high specific capacitance in 1 M H₂SO₄. Its capacitance was as high as 211.9 F/g at a current density of 0.5 A/g. This capacitance was 74.3% higher than that of a pristine rGO electrode (121.6 F/g), and the capacitance of the CD/rGO electrode retained 92.8% of its original value after 1000 cycles at a CDs-to-rGO ratio of 5:1.
Kada, T; Asahi, S; Kaizu, T; Harada, Y; Tamaki, R; Okada, Y; Kita, T
2017-07-19
We studied the effects of the internal electric field on two-step photocarrier generation in InAs/GaAs quantum dot superlattice (QDSL) intermediate-band solar cells (IBSCs). The external quantum efficiency of QDSL-IBSCs was measured as a function of the internal electric field intensity, and compared with theoretical calculations accounting for interband and intersubband photoexcitations. The extra photocurrent caused by the two-step photoexcitation was maximal for a reversely biased electric field, while the current generated by the interband photoexcitation increased monotonically with increasing electric field intensity. The internal electric field in solar cells separated photogenerated electrons and holes in the superlattice (SL) miniband that played the role of an intermediate band, and the electron lifetime was extended to the microsecond scale, which improved the intersubband transition strength, therefore increasing the two-step photocurrent. There was a trade-off relation between the carrier separation enhancing the two-step photoexcitation and the electric-field-induced carrier escape from QDSLs. These results validate that long-lifetime electrons are key to maximising the two-step photocarrier generation in QDSL-IBSCs.
Improved Dot Diffusion For Image Halftoning
1999-01-01
The dot diffusion method for digital halftoning has the advantage of parallelism unlike the error diffusion method. The method was recently improved...by optimization of the so-called class matrix so that the resulting halftones are comparable to the error diffused halftones . In this paper we will...first review the dot diffusion method. Previously, 82 class matrices were used for dot diffusion method. A problem with this size of class matrix is
Has the DOTS Strategy Improved Case Finding or Treatment Success? An Empirical Assessment
Obermeyer, Ziad; Abbott-Klafter, Jesse; Murray, Christopher J. L.
2008-01-01
Background Nearly fifteen years after the start of WHO's DOTS strategy, tuberculosis remains a major global health problem. Given the lack of empirical evidence that DOTS reduces tuberculosis burden, considerable debate has arisen about its place in the future of global tuberculosis control efforts. An independent evaluation of DOTS, one of the most widely-implemented and longest-running interventions in global health, is a prerequisite for meaningful improvements to tuberculosis control efforts, including WHO's new Stop TB Strategy. We investigate the impact of the expansion of the DOTS strategy on tuberculosis case finding and treatment success, using only empirical data. Methods and Findings We study the effect of DOTS using time-series cross-sectional methods. We first estimate the impact of DOTS expansion on case detection, using reported case notification data and controlling for other determinants of change in notifications, including HIV prevalence, GDP, and country-specific effects. We then estimate the effect of DOTS expansion on treatment success. DOTS programme variables had no statistically significant impact on case detection in a wide range of models and specifications. DOTS population coverage had a significant effect on overall treatment success rates, such that countries with full DOTS coverage benefit from at least an 18% increase in treatment success (95% CI: 5–31%). Conclusions The DOTS technical package improved overall treatment success. By contrast, DOTS expansion had no effect on case detection. This finding is less optimistic than previous analyses. Better epidemiological and programme data would facilitate future monitoring and evaluation efforts. PMID:18320042
Stability of the mode-locking regime in tapered quantum-dot lasers
NASA Astrophysics Data System (ADS)
Bardella, P.; Drzewietzki, L.; Rossetti, M.; Weber, C.; Breuer, S.
2018-02-01
We study numerically and experimentally the role of the injection current and reverse bias voltage on the pulse stability of tapered, passively mode-locked, Quantum Dot (QD) lasers. By using a multi-section delayed differential equation and introducing in the model the QD inhomogenous broadening, we are able to predict the onset of leading and trailing edge instabilities in the emitted pulse trains and to identify specific trends of stability in dependence on the laser biasing conditions. The numerical results are confirmed experimentally trough amplitude and timing stability analysis of the pulses.
NASA Astrophysics Data System (ADS)
Hersch, Roger David; Crété, Frédérique
2004-12-01
Dot gain is different when dots are printed alone, printed in superposition with one ink or printed in superposition with two inks. In addition, the dot gain may also differ depending on which solid ink the considered halftone layer is superposed. In a previous research project, we developed a model for computing the effective surface coverage of a dot according to its superposition conditions. In the present contribution, we improve the Yule-Nielsen modified Neugebauer model by integrating into it our effective dot surface coverage computation model. Calibration of the reproduction curves mapping nominal to effective surface coverages in every superposition condition is carried out by fitting effective dot surfaces which minimize the sum of square differences between the measured reflection density spectra and reflection density spectra predicted according to the Yule-Nielsen modified Neugebauer model. In order to predict the reflection spectrum of a patch, its known nominal surface coverage values are converted into effective coverage values by weighting the contributions from different reproduction curves according to the weights of the contributing superposition conditions. We analyze the colorimetric prediction improvement brought by our extended dot surface coverage model for clustered-dot offset prints, thermal transfer prints and ink-jet prints. The color differences induced by the differences between measured reflection spectra and reflection spectra predicted according to the new dot surface estimation model are quantified on 729 different cyan, magenta, yellow patches covering the full color gamut. As a reference, these differences are also computed for the classical Yule-Nielsen modified spectral Neugebauer model incorporating a single halftone reproduction curve for each ink. Taking into account dot surface coverages according to different superposition conditions considerably improves the predictions of the Yule-Nielsen modified Neugebauer model. In the case of offset prints, the mean difference between predictions and measurements expressed in CIE-LAB CIE-94 ΔE94 values is reduced at 100 lpi from 1.54 to 0.90 (accuracy improvement factor: 1.7) and at 150 lpi it is reduced from 1.87 to 1.00 (accuracy improvement factor: 1.8). Similar improvements have been observed for a thermal transfer printer at 600 dpi, at lineatures of 50 and 75 lpi. In the case of an ink-jet printer at 600 dpi, the mean ΔE94 value is reduced at 75 lpi from 3.03 to 0.90 (accuracy improvement factor: 3.4) and at 100 lpi from 3.08 to 0.91 (accuracy improvement factor: 3.4).
NASA Astrophysics Data System (ADS)
Hersch, Roger David; Crete, Frederique
2005-01-01
Dot gain is different when dots are printed alone, printed in superposition with one ink or printed in superposition with two inks. In addition, the dot gain may also differ depending on which solid ink the considered halftone layer is superposed. In a previous research project, we developed a model for computing the effective surface coverage of a dot according to its superposition conditions. In the present contribution, we improve the Yule-Nielsen modified Neugebauer model by integrating into it our effective dot surface coverage computation model. Calibration of the reproduction curves mapping nominal to effective surface coverages in every superposition condition is carried out by fitting effective dot surfaces which minimize the sum of square differences between the measured reflection density spectra and reflection density spectra predicted according to the Yule-Nielsen modified Neugebauer model. In order to predict the reflection spectrum of a patch, its known nominal surface coverage values are converted into effective coverage values by weighting the contributions from different reproduction curves according to the weights of the contributing superposition conditions. We analyze the colorimetric prediction improvement brought by our extended dot surface coverage model for clustered-dot offset prints, thermal transfer prints and ink-jet prints. The color differences induced by the differences between measured reflection spectra and reflection spectra predicted according to the new dot surface estimation model are quantified on 729 different cyan, magenta, yellow patches covering the full color gamut. As a reference, these differences are also computed for the classical Yule-Nielsen modified spectral Neugebauer model incorporating a single halftone reproduction curve for each ink. Taking into account dot surface coverages according to different superposition conditions considerably improves the predictions of the Yule-Nielsen modified Neugebauer model. In the case of offset prints, the mean difference between predictions and measurements expressed in CIE-LAB CIE-94 ΔE94 values is reduced at 100 lpi from 1.54 to 0.90 (accuracy improvement factor: 1.7) and at 150 lpi it is reduced from 1.87 to 1.00 (accuracy improvement factor: 1.8). Similar improvements have been observed for a thermal transfer printer at 600 dpi, at lineatures of 50 and 75 lpi. In the case of an ink-jet printer at 600 dpi, the mean ΔE94 value is reduced at 75 lpi from 3.03 to 0.90 (accuracy improvement factor: 3.4) and at 100 lpi from 3.08 to 0.91 (accuracy improvement factor: 3.4).
Wen, Lei; Gao, Fangliang; Zhang, Shuguang; Li, Guoqiang
2016-08-01
The growth process of InAs quantum dots grown on GaAs (511)A substrates has been studied by atomic force microscopy. According to the atomic force microscopy studies for quantum dots grown with varying InAs coverage, a noncoherent nucleation of quantum dots is observed. Moreover, due to the long migration length of In atoms, the Ostwald ripening process is aggravated, resulting in the bad uniformity of InAs quantum dots on GaAs (511)A. In order to improve the uniformity of nucleation, the growth rate is increased. By studying the effects of increased growth rates on the growth of InAs quantum dots, it is found that the uniformity of InAs quantum dots is greatly improved as the growth rates increase to 0.14 ML s(-1) . However, as the growth rates increase further, the uniformity of InAs quantum dots becomes dual-mode, which can be attributed to the competition between Ostwald ripening and strain relaxation processes. The results in this work provide insights regarding the competition between thermal dynamical barriers and the growth kinetics in the growth of InAs quantum dots, and give guidance to improve the size uniformity of InAs quantum dots on (N11)A substrates. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Trask, Erik Harold
The plasma parameters and characteristics of the Irvine Field-Reversed Configuration (IFRC) are summarized in this thesis. Particular emphasis is placed on the development of the different diagnostics used to make measurements in the experiment, as well as the measurements themselves. Whenever possible, actual measurements are used in lieu of theoretical or analytical fits to data. Analysis of magnetic probes (B-dots) comprises the bulk of what is known about the IFRC. From these B-dot probes, the magnetic field structure in a two dimensional plane at constant toroidal position has been determined, and has been found to be consistent with a field-reversed configuration. Peak reversed fields of approximately 250 Gauss have been observed. Further analyses have been developed to extract information from the magnetic field structure, including components of the electric field, the current density, and plasma pressure in the same two dimensional plane. Electric field magnitudes reach 600 V/m, concurrent with current densities greater than 105 Amps/m2 and thermal pressures over 200 Pa. Spectroscopic analysis of hydrogen lines has been done to make estimates of the electron temperature, while spectroscopic measurements of the Doppler broadening of the Halpha line31 have allowed an estimate of the ion temperature. Particle losses out one axial end plane measured by an array of Faraday cups quantify the how well the configuration traps particles. Spectral information derived from B-dot probes indicates that there is substantial power present at frequencies lying between the hydrogen cyclotron and mean gyrofrequency. These various measurements are used to find the following parameters that characterize the Irvine FRC: (1) Electromagnetic and thermal stored energies as functions of time. (2) Power balance, including input power from the field coils, resistive heating, power lost by particle transport and radiation, and particle and energy confinement times. (3) Strong correlations between magnetic fluctuations and particle loss.
Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers
NASA Astrophysics Data System (ADS)
Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan
2018-02-01
The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm2 was demonstrated.
Elimination of Bimodal Size in InAs/GaAs Quantum Dots for Preparation of 1.3-μm Quantum Dot Lasers.
Su, Xiang-Bin; Ding, Ying; Ma, Ben; Zhang, Ke-Lu; Chen, Ze-Sheng; Li, Jing-Lun; Cui, Xiao-Ran; Xu, Ying-Qiang; Ni, Hai-Qiao; Niu, Zhi-Chuan
2018-02-21
The device characteristics of semiconductor quantum dot lasers have been improved with progress in active layer structures. Self-assembly formed InAs quantum dots grown on GaAs had been intensively promoted in order to achieve quantum dot lasers with superior device performances. In the process of growing high-density InAs/GaAs quantum dots, bimodal size occurs due to large mismatch and other factors. The bimodal size in the InAs/GaAs quantum dot system is eliminated by the method of high-temperature annealing and optimized the in situ annealing temperature. The annealing temperature is taken as the key optimization parameters, and the optimal annealing temperature of 680 °C was obtained. In this process, quantum dot growth temperature, InAs deposition, and arsenic (As) pressure are optimized to improve quantum dot quality and emission wavelength. A 1.3-μm high-performance F-P quantum dot laser with a threshold current density of 110 A/cm 2 was demonstrated.
Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots
NASA Astrophysics Data System (ADS)
Mongin, Cédric; Moroz, Pavel; Zamkov, Mikhail; Castellano, Felix N.
2018-02-01
The generation and transfer of triplet excitons across semiconductor nanomaterial-molecular interfaces will play an important role in emerging photonic and optoelectronic technologies, and understanding the rules that govern such phenomena is essential. The ability to cooperatively merge the photophysical properties of semiconductor quantum dots with those of well-understood and inexpensive molecular chromophores is therefore paramount. Here we show that 1-pyrenecarboxylic acid-functionalized CdSe quantum dots undergo thermally activated delayed photoluminescence. This phenomenon results from a near quantitative triplet-triplet energy transfer from the nanocrystals to 1-pyrenecarboxylic acid, producing a molecular triplet-state 'reservoir' that thermally repopulates the photoluminescent state of CdSe through endothermic reverse triplet-triplet energy transfer. The photoluminescence properties are systematically and predictably tuned through variation of the quantum dot-molecule energy gap, temperature and the triplet-excited-state lifetime of the molecular adsorbate. The concepts developed are likely to be applicable to semiconductor nanocrystals interfaced with molecular chromophores, enabling potential applications of their combined excited states.
Laser-Induced-Fluorescence Photogrammetry and Videogrammetry
NASA Technical Reports Server (NTRS)
Danehy, Paul; Jones, Tom; Connell, John; Belvin, Keith; Watson, Kent
2004-01-01
An improved method of dot-projection photogrammetry and an extension of the method to encompass dot-projection videogrammetry overcome some deficiencies of dot-projection photogrammetry as previously practiced. The improved method makes it possible to perform dot-projection photogrammetry or videogrammetry on targets that have previously not been amenable to dot-projection photogrammetry because they do not scatter enough light. Such targets include ones that are transparent, specularly reflective, or dark. In standard dot-projection photogrammetry, multiple beams of white light are projected onto the surface of an object of interest (denoted the target) to form a known pattern of bright dots. The illuminated surface is imaged in one or more cameras oriented at a nonzero angle or angles with respect to a central axis of the illuminating beams. The locations of the dots in the image(s) contain stereoscopic information on the locations of the dots, and, hence, on the location, shape, and orientation of the illuminated surface of the target. The images are digitized and processed to extract this information. Hardware and software to implement standard dot-projection photogrammetry are commercially available. Success in dot-projection photogrammetry depends on achieving sufficient signal-to-noise ratios: that is, it depends on scattering of enough light by the target so that the dots as imaged in the camera(s) stand out clearly against the ambient-illumination component of the image of the target. In one technique used previously to increase the signal-to-noise ratio, the target is illuminated by intense, pulsed laser light and the light entering the camera(s) is band-pass filtered at the laser wavelength. Unfortunately, speckle caused by the coherence of the laser light engenders apparent movement in the projected dots, thereby giving rise to errors in the measurement of the centroids of the dots and corresponding errors in the computed shape and location of the surface of the target. The improved method is denoted laser-induced-fluorescence photogrammetry.
Current rectification in a double quantum dot through fermionic reservoir engineering
NASA Astrophysics Data System (ADS)
Malz, Daniel; Nunnenkamp, Andreas
2018-04-01
Reservoir engineering is a powerful tool for the robust generation of quantum states or transport properties. Using both a weak-coupling quantum master equation and the exact solution, we show that directional transport of electrons through a double quantum dot can be achieved through an appropriately designed electronic environment. Directionality is attained through the interference of coherent and dissipative coupling. The relative phase is tuned with an external magnetic field, such that directionality can be reversed, as well as turned on and off dynamically. Our work introduces fermionic-reservoir engineering, paving the way to a new class of nanoelectronic devices.
Bistable resistive memory behavior in gelatin-CdTe quantum dot composite film
NASA Astrophysics Data System (ADS)
Vallabhapurapu, Sreedevi; Rohom, Ashwini; Chaure, N. B.; Du, Shengzhi; Srinivasan, Ananthakrishnan
2018-05-01
Bistable memory behavior has been observed for the first time in gelatin type A thin film dispersed with functionalized CdTe quantum dots. The two terminal device with the polymer nanocomposite layer sandwiched between an indium tin oxide coated glass plate and an aluminium top electrode performs as a bistable resistive random access memory module. Butterfly shaped (O-shaped with a hysteresis in forward and reverse sweeps) current-voltage response is observed in this device. The conduction mechanism leading to the bistable electrical switching has been deduced to be a combination of ohmic and electron hopping.
Dynamic physiological modeling for functional diffuse optical tomography
Diamond, Solomon Gilbert; Huppert, Theodore J.; Kolehmainen, Ville; Franceschini, Maria Angela; Kaipio, Jari P.; Arridge, Simon R.; Boas, David A.
2009-01-01
Diffuse optical tomography (DOT) is a noninvasive imaging technology that is sensitive to local concentration changes in oxy- and deoxyhemoglobin. When applied to functional neuroimaging, DOT measures hemodynamics in the scalp and brain that reflect competing metabolic demands and cardiovascular dynamics. The diffuse nature of near-infrared photon migration in tissue and the multitude of physiological systems that affect hemodynamics motivate the use of anatomical and physiological models to improve estimates of the functional hemodynamic response. In this paper, we present a linear state-space model for DOT analysis that models the physiological fluctuations present in the data with either static or dynamic estimation. We demonstrate the approach by using auxiliary measurements of blood pressure variability and heart rate variability as inputs to model the background physiology in DOT data. We evaluate the improvements accorded by modeling this physiology on ten human subjects with simulated functional hemodynamic responses added to the baseline physiology. Adding physiological modeling with a static estimator significantly improved estimates of the simulated functional response, and further significant improvements were achieved with a dynamic Kalman filter estimator (paired t tests, n = 10, P < 0.05). These results suggest that physiological modeling can improve DOT analysis. The further improvement with the Kalman filter encourages continued research into dynamic linear modeling of the physiology present in DOT. Cardiovascular dynamics also affect the blood-oxygen-dependent (BOLD) signal in functional magnetic resonance imaging (fMRI). This state-space approach to DOT analysis could be extended to BOLD fMRI analysis, multimodal studies and real-time analysis. PMID:16242967
NASA Astrophysics Data System (ADS)
Devi, Sushila; Brogi, B. B.; Ahluwalia, P. K.; Chand, S.
2018-06-01
Electronic transport through asymmetric parallel coupled quantum dot system hybridized between normal leads has been investigated theoretically in the Coulomb blockade regime by using Non-Equilibrium Green Function formalism. A new decoupling scheme proposed by Rabani and his co-workers has been adopted to close the chain of higher order Green's functions appearing in the equations of motion. For resonant tunneling case; the calculations of current and differential conductance have been presented during transition of coupled quantum dot system from series to symmetric parallel configuration. It has been found that during this transition, increase in current and differential conductance of the system occurs. Furthermore, clear signatures of negative differential conductance and negative current appear in series case, both of which disappear when topology of system is tuned to asymmetric parallel configuration.
Zero field reversal probability in thermally assisted magnetization reversal
NASA Astrophysics Data System (ADS)
Prasetya, E. B.; Utari; Purnama, B.
2017-11-01
This paper discussed about zero field reversal probability in thermally assisted magnetization reversal (TAMR). Appearance of reversal probability in zero field investigated through micromagnetic simulation by solving stochastic Landau-Lifshitz-Gibert (LLG). The perpendicularly anisotropy magnetic dot of 50×50×20 nm3 is considered as single cell magnetic storage of magnetic random acces memory (MRAM). Thermally assisted magnetization reversal was performed by cooling writing process from near/almost Curie point to room temperature on 20 times runs for different randomly magnetized state. The results show that the probability reversal under zero magnetic field decreased with the increase of the energy barrier. The zero-field probability switching of 55% attained for energy barrier of 60 k B T and the reversal probability become zero noted at energy barrier of 2348 k B T. The higest zero-field switching probability of 55% attained for energy barrier of 60 k B T which corespond to magnetif field of 150 Oe for switching.
Semiconductor Quantum Dots with Photoresponsive Ligands.
Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume
2016-10-01
Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.
Samal, Monica; Mohapatra, Priya Ranjan; Yun, Kyu Sik
2015-09-01
A diblock copolymer poly(2-vinyl pyridine)-b-poly(n-hexyl isocyanate) (P2VP-b-PHIC) is used for the present study. It has two blocks; a rod-shaped PHIC block that adopts a helical conformation, and a coil shaped P2VP block. In a polar solvent such as THF both PHIC and P2VP blocks are soluble. In mixtures of two solvents, such as THF and methanol, while the solubility of P2VP component is augmented that of PHIC is decreased leading to formation of reversed micelles. The pyridine nitrogen in P2VP block is a reactive site. It forms complexes with a suitable metal ion, such as Cd2+. The micelle is employed as a nanoreactor for synthesis of CdS quantum dot (QD). In this paper, the micellization behaviour of the copolymer and the use of the micelles for synthesis and controlled growth of CdS nanocrystals are demonstrated.
Label-Free Carbon-Dots-Based Ratiometric Fluorescence pH Nanoprobes for Intracellular pH Sensing.
Shangguan, Jingfang; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Liu, Jinquan; Tang, Jinlu; Yang, Xue; Huang, Jin
2016-08-02
Measuring pH in living cells is of great importance for better understanding cellular functions as well as providing pivotal assistance for early diagnosis of diseases. In this work, we report the first use of a novel kind of label-free carbon dots for intracellular ratiometric fluorescence pH sensing. By simple one-pot hydrothermal treatment of citric acid and basic fuchsin, the carbon dots showing dual emission bands at 475 and 545 nm under single-wavelength excitation were synthesized. It is demonstrated that the fluorescence intensities of the as-synthesized carbon dots at the two emissions are pH-sensitive simultaneously. The intensity ratio (I475 nm/I545 nm) is linear against pH values from 5.2 to 8.8 in buffer solution, affording the capability as ratiometric probes for intracellular pH sensing. It also displays that the carbon dots show excellent reversibility and photostability in pH measurements. With this nanoprobe, quantitative fluorescence imaging using the ratio of two emissions (I475 nm/I545 nm) for the detection of intracellular pH were successfully applied in HeLa cells. In contrast to most of the reported nanomaterials-based ratiometric pH sensors which rely on the attachment of additional dyes, these carbon-dots-based ratiometric probes are low in toxicity, easy to synthesize, and free from labels.
NASA Astrophysics Data System (ADS)
Jiang, Tongtong; Shen, Mohan; Dai, Peng; Wu, Mingzai; Yu, Xinxin; Li, Guang; Xu, Xiaoliang; Zeng, Haibo
2017-10-01
The work reports the fabrication of Cu doped Zn-In-S (CZIS) alloy quantum dots (QDs) using dodecanethiol and oleic acid as stabilizing ligands. With the increase of doped Cu element, the photoluminescence (PL) peak is monotonically red shifted. After coating ZnS shell, the PL quantum yield of CZIS QDs can reach 78%. Using reverse micelle microemulsion method, CZIS/ZnS QDs@SiO2 multi-core nanospheres were synthesized to improve the colloidal stability and avoid the aggregation of QDs. The obtained multi-core nanospheres were dispersed in curing adhesive, and applied as a color conversion layer in down converted light-emitting diodes. After encapsulation in curing adhesive, the newly designed LEDs show artifically regulated color coordinates with varying the weight ratio of green QDs and red QDs, and the concentrations of these two types of QDs. Moreover, natural white and warm white LEDs with correlated color temperature of 5287, 6732, 2731, and 3309 K can be achieved, which indicates that CZIS/ZnS QDs@SiO2 nanostructures are promising color conversion layer material for solid-state lighting application.
NASA Astrophysics Data System (ADS)
Wang, Linlin; Shen, Yizhong; Liu, Shaopu; Yang, Jidong; Liang, Wanjun; Li, Dan; He, Youqiu
2015-02-01
The interactions of topotecan hydrochloride (THC), neutral red (NR) and thioglycolic acid (TGA) capped CdTe/CdS quantum dots (QDs) built a solid base for the controlling of the fluorescent reversible regulation of the system. This study was developed by means of ultraviolet-visible (UV-vis) absorption, fluorescence (FL), resonance Rayleigh scattering (RRS) spectroscopy and transmission electron microscopy (TEM). Corresponding experimental results revealed that the fluorescence of TGA-CdTe/CdS QDs could be effectively quenched by NR, while the RRS of the QDs enhanced gradually with the each increment of NR concentration. After the addition of THC, the strong covalent conjugation between NR and THC which was in carboxylate state enabled NR to be dissociated from the surface of TGA-CdTe/CdS QDs to form more stable complex with THC, thereby enhancing the fluorescence of the TGA-CdTe/CdS QDs-NR system. What is more, through analyzing the optical properties and experimental data of the reaction between TGA-CdTe/CdS QDs and NR, the possible reaction mechanism of the whole system was discussed. This combination of multiple spectroscopic techniques could contribute to the investigation for the fluorescent reversible regulation of QDs and a method could also be established to research the interactions between camptothecin drugs and dyes.
Identification and characterization of jute LTR retrotransposons:
Ahmed, Salim; Shafiuddin, MD; Azam, Muhammad Shafiul; Islam, Md. Shahidul; Ghosh, Ajit
2011-01-01
Long Terminal Repeat (LTR) retrotransposons constitute a significant part of eukaryotic genomes and play an important role in genome evolution especially in plants. Jute is an important fiber crop with a large genome of 1,250 Mbps. This genome is still mostly unexplored. In this study we aimed at identifying and characterizing the LTR retrotransposons of jute with a view to understanding the jute genome better. In this study, the Reverse Transcriptase domain of Ty1-copia and Ty3-gypsy LTR retrotransposons of jute were amplified by degenerate primers and their expressions were examined by reverse transcription PCR. Copy numbers of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy elements were determined by dot blot analysis. Sequence analysis revealed higher heterogeneity among Ty1-copia retrotransposons than Ty3-gypsy and clustered each of them in three groups. Copy number of RT genes in Ty1-copia was found to be higher than that of Ty3-gypsy elements from dot blot hybridization. Cumulatively Ty1-copia and Ty3-gypsy may constitute around 19% of the jute genome where two groups of Ty1-copia were found to be transcriptionally active. Since the LTR retrotransposons constitute a large portion of jute genome, these findings imply the importance of these elements in the evolution of jute genome. PMID:22016842
Seo, Hyunwoong; Ichida, Daiki; Hashimoto, Shinji; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Nam, Sang-Hun; Boo, Jin-Hyo
2016-05-01
The multiple exciton generation characteristics of quantum dots have been expected to enhance the performance of photochemical solar cells. In previous work, we first introduced Si quantum dot for sensitized solar cells. The Si quantum dots were fabricated by multi-hollow discharge plasma chemical vapor deposition, and were characterized optically and morphologically. The Si quantum dot-sensitized solar cells had poor performance due to significant electron loss by charge recombination. Although the large Si particle size resulted in the exposure of a large TiO2 surface area, there was a limit to ho much the particle size could be decreased due to the reduced absorbance of small particles. Therefore, this work focused on decreasing the internal impedance to improve charge transfer. TiO2 was electronically modified by doping with vanadium, which can improve electron transfer in the TiO2 network, and which is stable in the redox electrolyte. Photogenerated electrons can more easily arrive at the conductive electrode due to the decreased internal impedance. The dark photovoltaic properties confirmed the reduction of charge recombination, and the photon-to-current conversion efficiency reflected the improved electron transfer. Impedance analysis confirmed a decrease in internal impedance and an increased electron lifetime. Consequently, these improvements by vanadium doping enhanced the overall performance of Si quantum dot-sensitized solar cells.
Spatially and time-resolved magnetization dynamics driven by spin-orbit torques
NASA Astrophysics Data System (ADS)
Baumgartner, Manuel; Garello, Kevin; Mendil, Johannes; Avci, Can Onur; Grimaldi, Eva; Murer, Christoph; Feng, Junxiao; Gabureac, Mihai; Stamm, Christian; Acremann, Yves; Finizio, Simone; Wintz, Sebastian; Raabe, Jörg; Gambardella, Pietro
2017-10-01
Current-induced spin-orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin-orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin-orbit torques and the Dzyaloshinskii-Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.
1.55-μm mode-locked quantum-dot lasers with 300 MHz frequency tuning range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Bimberg, D.
2015-01-19
Passive mode-locking of two-section quantum-dot mode-locked lasers grown by metalorganic vapor phase epitaxy on InP is reported. 1250-μm long lasers exhibit a wide tuning range of 300 MHz around the fundamental mode-locking frequency of 33.48 GHz. The frequency tuning is achieved by varying the reverse bias of the saturable absorber from 0 to −2.2 V and the gain section current from 90 to 280 mA. 3 dB optical spectra width of 6–7 nm leads to ex-facet optical pulses with full-width half-maximum down to 3.7 ps. Single-section quantum-dot mode-locked lasers show 0.8 ps broad optical pulses after external fiber-based compression. Injection current tuning from 70 tomore » 300 mA leads to 30 MHz frequency tuning.« less
Wang, Beibei; Wang, Shujun; Wang, Yanfang; Lv, Yan; Wu, Hao; Ma, Xiaojun; Tan, Mingqian
2016-01-01
To prepare fluorescent carbon dots for loading cationic anticancer drug through donor-quenched nanosurface energy transfer in visible sensing of drug release. Highly fluorescent carbon dots (CDs) were prepared by a facile hydrothermal approach from citric acid and o-phenylenediamine. The obtained CDs showed a high quantum yield of 46 % and exhibited good cytocompatibility even at 1 mg/ml. The cationic anticancer drug doxorubicin (DOX) can be loaded onto the negatively charged CDs through electrostatic interactions. Additionally, the fluorescent CDs feature reversible donor-quenched mode nanosurface energy transfer. When loading the energy receptor DOX, the donor CDs' fluorescence was switched "off", while it turned "on" again after DOX release from the surface through endocytic uptake. Most DOX molecules were released from the CDs after 6 h incubation and entered cell nuclear region after 8 h, suggesting the drug delivery system may have potential for visible sensing in drug release.
What are the reasons for low use of graphene quantum dots in immunosensing of cancer biomarkers?
Hasanzadeh, Mohammad; Shadjou, Nasrin
2017-02-01
Graphene quantum dots-based immunosensors have recently gained importance for detecting antigens and biomarkers responsible for cancer diagnosis. This paper reports a literature survey of the applications of graphene quantum dots for sensing cancer biomarkers. The survey sought to explore three questions: (1) Do graphene quantum dots improve immunosensing technology? (2) If so, can graphene quantum dots have a critical, positive impact on construction of immuno-devices? And (3) What is the reason for some troubles in the application of this technology? The number of published papers in the field seems positively answer the first two questions. However additional efforts must be made to move from the bench to the real diagnosis. Some approaches to improve the analytical performance of graphene quantum dots-based immunosensors through their figures of merit have been also discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Koga, M.; Matsumoto, M.; Kusunose, H.
2018-05-01
We study a local antisymmetric spin-orbit (ASO) coupling effect on a triangular-triple-quantum-dot (TTQD) system as a theoretical proposal for a new application of the Kondo physics to nanoscale devices. The electric polarization induced by the Kondo effect is strongly correlated with the spin configurations and molecular orbital degrees of freedom in the TTQD. In particular, an abrupt sign reversal of the emergent electric polarization is associated with a quantum critical point in a magnetic field, which can also be controlled by the ASO coupling that changes the mixing weight of different orbital components in the TTQD ground state.
Black Hole Disk Accretion in Supernovae
NASA Astrophysics Data System (ADS)
Nomura, H.; Mineshige, S.; Hirose, M.; Nomoto, K.; Suzuki, T.
Hydrodynamical disk accretion flow onto a new-born black hole in a supernova is studied using the SPH (Smoothed Particle Hydrodynamics) method. It has been suggested that a mass of ~0.1Modot falls back to a black hole by a reverse shock. If the progenitor was rotating before the explosion, the accreting material should have a certain amount of angular momentum, thus forming an accretion disk. Disk material will eventually accrete towards the central object via viscosity with a supercritical accretion rate, dotM / dotMc > 106, for first several tens of days. (Here, dotMc is the Eddington luminosity divided by c2.) We then expect that such an accretion disk is optically thick and advection-dominated; that is, the disk is so hot that produced energy and photons are advected inward rather than being radiated away. Thus, the disk luminosity is much less than the Eddington luminosity (~1038erg s-1). The disk becomes hot and dense; for dotM / dotMc ~106 and the viscosity parameter alphavis ~0.01, for example, T ~109K and rho ~103gcm-3 in the vicinity of the central object. Efficient nucleosynthesis is hence expected even for reasonable viscosity magnitudes, although produced elements may be swallowed by the black hole.
Zhou, Xiaolong; Wang, Xina; Feng, Xi; Zhang, Kun; Peng, Xiaoniu; Wang, Hanbin; Liu, Chunlei; Han, Yibo; Wang, Hao; Li, Quan
2017-07-12
Carbon dots (C dots, size < 10 nm) have been conventionally decorated onto semiconductor matrixes for photocatalytic H 2 evolution, but the efficiency is largely limited by the low loading ratio of the C dots on the photocatalyst. Here, we propose an inverse structure of Cd 0.5 Zn 0.5 S quantum dots (QDs) loaded onto the onionlike carbon (OLC) matrix for noble metal-free photocatalytic H 2 evolution. Cd 0.5 Zn 0.5 S QDs (6.9 nm) were uniformly distributed on an OLC (30 nm) matrix with both upconverted and downconverted photoluminescence property. Such an inverse structure allows the full optimization of the QD/OLC interfaces for effective energy transfer and charge separation, both of which contribute to efficient H 2 generation. An optimized H 2 generation rate of 2018 μmol/h/g (under the irradiation of visible light) and 58.6 μmol/h/g (under the irradiation of 550-900 nm light) was achieved in the Cd 0.5 Zn 0.5 S/OLC composite samples. The present work shows that using the OLC matrix in such a reverse construction is a promising strategy for noble metal-free solar hydrogen production.
NASA Astrophysics Data System (ADS)
Roche, T.; Thompson, M. C.; Mendoza, R.; Allfrey, I.; Garate, E.; Romero, J.; Douglass, J.
2016-11-01
External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ˜5 ms. The addition of the external copper coils effectively increases this time to ˜7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.
Roche, T; Thompson, M C; Mendoza, R; Allfrey, I; Garate, E; Romero, J; Douglass, J
2016-11-01
External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ∼5 ms. The addition of the external copper coils effectively increases this time to ∼7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M. C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roche, T., E-mail: troche@trialphaenergy.com; Thompson, M. C.; Mendoza, R.
2016-11-15
External flux conserving coils were installed onto the exterior of the C-2U [M. W. Binderbauer et al., Phys. Plasmas 22, 056110 (2015)] confinement vessel to increase the flux confinement time of the system. The 0.5 in. stainless steel vessel wall has a skin time of ∼5 ms. The addition of the external copper coils effectively increases this time to ∼7 ms. This led to better-confined/longer-lived field-reversed configuration (FRC) plasmas. The fringing fields generated by the external coils have the side effect of rendering external field measurements invalid. Such measurements were key to the previous method of excluded flux calculation [M.more » C. Thompson et al., Rev. Sci. Instrum. 83, 10D709 (2012)]. A new array of B-dot probes and Rogowski coils were installed to better determine the amount of flux leaked out of the system and ultimately provide a more robust measurement of plasma parameters related to pressure balance including the excluded flux radius. The B-dot probes are surface mountable chip inductors with inductance of 33 μH capable of measuring the DC magnetic field and transient field, due to resistive current decay in the wall/coils, when coupled with active integrators. The Rogowski coils measure the total change in current in each external coil (150 A/2 ms). Currents were also actively driven in the external coils. This renders the assumption of total flux conservation invalid which further complicates the analysis process. The ultimate solution to these issues and the record breaking resultant FRC lifetimes will be presented.« less
Surface treatment of nanocrystal quantum dots after film deposition
Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro
2015-02-03
Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.
Abdullah-Al-Shafi, Md; Bahar, Ali Newaz; Bhuiyan, Mohammad Maksudur Rahman; Shamim, S M; Ahmed, Kawser
2018-08-01
Quantum-dot cellular automata (QCA) as nanotechnology is a pledging contestant that has incredible prospective to substitute complementary metal-oxide-semiconductor (CMOS) because of its superior structures such as intensely high device thickness, minimal power depletion with rapid operation momentum. In this study, the dataset of average output polarization (AOP) for fundamental reversible logic circuits is organized as presented in (Abdullah-Al-Shafi and Bahar, 2017; Bahar et al., 2016; Abdullah-Al-Shafi et al., 2015; Abdullah-Al-Shafi, 2016) [1-4]. QCADesigner version 2.0.3 has been utilized to survey the AOP of reversible circuits at separate temperature point in Kelvin (K) unit.
Strategies for improving traveler information.
DOT National Transportation Integrated Search
2011-01-01
This project developed a clear, concise, and fiscally sound plan to improve traveler information : for the Michigan Department of Transportation (DOT). The DOT has a long history of innovation : in the field of ITS, including a robust traveler inform...
Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids.
Gilmore, Rachel H; Lee, Elizabeth M Y; Weidman, Mark C; Willard, Adam P; Tisdale, William A
2017-02-08
Energetic disorder in quantum dot solids adversely impacts charge carrier transport in quantum dot solar cells and electronic devices. Here, we use ultrafast transient absorption spectroscopy to show that homogeneously broadened PbS quantum dot arrays (σ hom 2 :σ inh 2 > 19:1, σ inh /k B T < 0.4) can be realized if quantum dot batches are sufficiently monodisperse (δ ≲ 3.3%). The homogeneous line width is found to be an inverse function of quantum dot size, monotonically increasing from ∼25 meV for the largest quantum dots (5.8 nm diameter/0.92 eV energy) to ∼55 meV for the smallest (4.1 nm/1.3 eV energy). Furthermore, we show that intrinsic charge carrier hopping rates are faster for smaller quantum dots. This finding is the opposite of the mobility trend commonly observed in device measurements but is consistent with theoretical predictions. Fitting our data to a kinetic Monte Carlo model, we extract charge carrier hopping times ranging from 80 ps for the smallest quantum dots to over 1 ns for the largest, with the same ethanethiol ligand treatment. Additionally, we make the surprising observation that, in slightly polydisperse (δ ≲ 4%) quantum dot solids, structural disorder has a greater impact than energetic disorder in inhibiting charge carrier transport. These findings emphasize how small improvements in batch size dispersity can have a dramatic impact on intrinsic charge carrier hopping behavior and will stimulate further improvements in quantum dot device performance.
Banik, R M; Santhiagu, A
2006-09-01
The effect of agitation rate and dissolved oxygen tension (DOT) on growth and gellan production by Sphingomonas paucimobilis was studied. Higher cell growth of 5.4 g l(-1) was obtained at 700 rpm but maximum gellan (15 g l(-1)) was produced at 500 rpm. DOT levels above 20% had no effect on cell growth but gellan yield was increased to 23 g l(-1 )with increase in DOT level to 100%. Higher DOT levels improved the viscosity and molecular weight of the polymer with change in acetate and glycerate content of the polymer.
NASA Astrophysics Data System (ADS)
Delagrange, R.; Weil, R.; Kasumov, A.; Ferrier, M.; Bouchiat, H.; Deblock, R.
2018-05-01
In a quantum dot hybrid superconducting junction, the behavior of the supercurrent is dominated by Coulomb blockade physics, which determines the magnetic state of the dot. In particular, in a single level quantum dot singly occupied, the sign of the supercurrent can be reversed, giving rise to a π-junction. This 0 - π transition, corresponding to a singlet-doublet transition, is then driven by the gate voltage or by the superconducting phase in the case of strong competition between the superconducting proximity effect and Kondo correlations. In a two-level quantum dot, such as a clean carbon nanotube, 0- π transitions exist as well but, because more cotunneling processes are allowed, are not necessarily associated to a magnetic state transition of the dot. In this proceeding, after a review of 0- π transitions in Josephson junctions, we present measurements of current-phase relation in a clean carbon nanotube quantum dot, in the single and two-level regimes. In the single level regime, close to orbital degeneracy and in a regime of strong competition between local electronic correlations and superconducting proximity effect, we find that the phase diagram of the phase-dependent transition is a universal characteristic of a discontinuous level-crossing quantum transition at zero temperature. In the case where the two levels are involved, the nanotube Josephson current exhibits a continuous 0 - π transition, independent of the superconducting phase, revealing a different physical mechanism of the transition.
Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption.
Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming
2016-12-01
Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques.
Binder-free ZnO@ZnSnO3 quantum dots core-shell nanorod array anodes for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Tan, Hsiang; Cho, Hsun-Wei; Wu, Jih-Jen
2018-06-01
In this work, ZnSnO3 quantum dots (QDs), instead of commonly used conductive carbon, are grown on the ZnO nanorod (NR) array to construct the binder-free ZnO@ZnSnO3 QDs core-shell NR array electrode on carbon cloth for lithium-ion battery. The ZnO@ZnSnO3 QDs core-shell NR array electrode exhibits excellent lithium storage performance with an improved cycling performance and superior rate capability compared to the ZnO NR array electrode. At a current density of 200 mAg-1, 15.8% capacity loss is acquired in the ZnO@ZnSnO3 QDs core-shell NR array electrode after 110 cycles with capacity retention of 1073 mAhg-1. Significant increases in reversible capacities from 340 to 545 mAhg-1 and from 95 to 390 mAhg-1 at current densities of 1000 and 2000 mAg-1, respectively, are achieved as the ZnO NR arrays are coated with the ZnSnO3 QD shells. The remarkably improved electrochemical performances result from that the configuration of binder-free ZnO@ZnSnO3 QDs core-shell NR array electrode not only facilitates the charge transfer through the solid electrolyte interface and the electronic/ionic conduction boundary as well as lithium ion diffusion but also effectively accommodates the volume change during repeated charge/discharge processes.
Interventions to improve adherence to tuberculosis treatment: systematic review and meta-analysis.
Müller, A M; Osório, C S; Silva, D R; Sbruzzi, G; de Tarso, P; Dalcin, Roth
2018-07-01
One of the most serious problems in tuberculosis (TB) control is non-adherence to treatment. Several strategies have been developed to improve adherence and increase the cure rate. To systematically review interventions to improve adherence to anti-tuberculosis treatment. We performed a systematic review and meta-analysis of 22 randomised clinical trials (RCTs) to ascertain whether providing directly observed treatment, short-course (DOTS), financial incentives, food incentives and/or patient education/counselling improved adherence to anti-tuberculosis treatment. The primary outcome was cure rate; secondary outcomes were default and mortality rates. Sources used were Medline (accessed via PubMed), Cochrane Central, LILACS (Literatura Latino Americana em Ciências da Saúde, Latin American and Caribbean Health Sciences Literature) and Embase from inception to October 2015. A significant increase in cure rates, by 18% with DOTS and by 16% with patient education and counselling, was observed. In addition, the default rate decreased by 49% with DOTS, by 26% with financial incentives and by 13% with patient education and counselling. There was no statistically significant reduction in mortality rates with these interventions. Use of DOTS and patient education/counselling significantly improved cure rates; DOTS, patient education/counselling and financial incentives led to a reduction in the default rate.
Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate
NASA Astrophysics Data System (ADS)
Usami, Shigeyoshi; Ando, Yuto; Tanaka, Atsushi; Nagamatsu, Kentaro; Deki, Manato; Kushimoto, Maki; Nitta, Shugo; Honda, Yoshio; Amano, Hiroshi; Sugawara, Yoshihiro; Yao, Yong-Zhao; Ishikawa, Yukari
2018-04-01
Dislocations that cause a reverse leakage current in vertical p-n diodes on a GaN free-standing substrate were investigated. Under a high reverse bias, dot-like leakage spots were observed using an emission microscope. Subsequent cathodoluminescence (CL) observations revealed that the leakage spots coincided with part of the CL dark spots, indicating that some types of dislocation cause reverse leakage. When etch pits were formed on the dislocations by KOH etching, three sizes of etch pits were obtained (large, medium, and small). Among these etch pits, only the medium pits coincided with leakage spots. Additionally, transmission electron microscopy observations revealed that pure screw dislocations are present under the leakage spots. The results revealed that 1c pure screw dislocations are related to the reverse leakage in vertical p-n diodes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-05
... Buckle Assemblies AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Scientific seat restraint rotary buckle assemblies (buckle). This proposed AD is prompted by several reports... checking the P/N on the reverse side of the buckle assembly against the P/N listed in Appendix 1 of the SB...
1300 nm wavelength InAs quantum dot photodetector grown on silicon.
Sandall, Ian; Ng, Jo Shien; David, John P R; Tan, Chee Hing; Wang, Ting; Liu, Huiyun
2012-05-07
The optical and electrical properties of InAs quantum dots epitaxially grown on a silicon substrate have been investigated to evaluate their potential as both photodiodes and avalanche photodiodes (APDs) operating at a wavelength of 1300 nm. A peak responsivity of 5 mA/W was observed at 1280 nm, with an absorption tail extending beyond 1300 nm, while the dark currents were two orders of magnitude lower than those reported for Ge on Si photodiodes. The diodes exhibited avalanche breakdown at 22 V reverse bias which is probably dominated by impact ionisation occurring in the GaAs and AlGaAs barrier layers. A red shift in the absorption peak of 61.2 meV was measured when the reverse bias was increased from 0 to 22 V, which we attributed to the quantum confined stark effect. This shift also leads to an increase in the responsivity at a fixed wavelength as the bias is increased, yielding a maximum increase in responsivity by a factor of 140 at the wavelength of 1365 nm, illustrating the potential for such a structure to be used as an optical modulator.
Quantum dot-containing polymer particles with thermosensitive fluorescence.
Generalova, Alla N; Oleinikov, Vladimir A; Sukhanova, Alyona; Artemyev, Mikhail V; Zubov, Vitaly P; Nabiev, Igor
2013-01-15
Composite polymer particles consisting of a solid poly(acrolein-co-styrene) core and a poly(N-vinylcaprolactam) (PVCL) polymer shell doped with CdSe/ZnS semiconductor quantum dots (QDs) were fabricated. The temperature response of the composite particles was observed as a decrease in their hydrodynamic diameter upon heating above the lower critical solution temperature of the thermosensitive PVCL polymer. Embedding QDs in the PVCL shell yields particles whose fluorescence is sensitive to temperature changes. This sensitivity was determined by the dependence of the QD fluorescence intensity on the distances between them in the PVCL shell, which reversibly change as a result of the temperature-driven conformational changes in the polymer. The QD-containing thermosensitive particles were assembled with protein molecules in such a way that they retained their thermosensitive properties, including the completely reversible temperature dependence of their fluorescence response. The composite particles developed can be used as local temperature sensors, as carriers for biomolecules, as well as in biosensing and various bioassays employing optical detection schemes. Copyright © 2012 Elsevier B.V. All rights reserved.
Yamazaki, Yudai; Sato, Daisuke; Yamashiro, Koya; Tsubaki, Atsuhiro; Yamaguchi, Yui; Takehara, Nana; Maruyama, Atsuo
2017-01-01
Acute aerobic exercise at a mild intensity improves cognitive function. However, the response to exercise exhibits inter-individual differences, and the mechanisms underlying these differences remain unclear. The objective of this study was to determine potential factors in the brain that underlie differential responses to exercise in terms of cognitive improvement using functional near-infrared spectroscopy. Fourteen healthy subjects participated in these experiments. Participants performed a low intensity cycling exercise at 30% maximal oxygen uptake (VO 2peak ) for 10 min and performed a spatial memory task before and after exercising (5 and 30 min). The spatial memory task comprised two levels of difficulty (low: 1-dot EXERCISE, high: 3-dot EXERCISE). Cortical oxy-hemoglobin (O 2 Hb) levels were recorded using near-infrared spectroscopy during both the exercise and the spatial memory task phases. Regions of interests included the dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and frontopolar area (FPA). The participants were divided into two groups depending on whether they were responders (improved task reaction time) or non-responders (no improvement). Subsequently, we analyzed the group characteristics and differences in the change in O 2 Hb levels during exercise and spatial working memory tasks. Acute mild exercise significantly improved mean reaction times in the 1-dot memory task but not in the 3-dot task across the participants. In the 1-dot EXERCISE, 10 subjects were responders and four subjects were non-responders, whereas in the 3-dot EXERCISE, seven subjects were non-responders. In responders, during exercise, we found higher O 2 Hb levels in the right VLPFC response for the 1-dot memory task. Acute mild exercise caused inter-individual differences in spatial memory improvement, which were associated with changes in O 2 Hb activity in the prefrontal area during the exercise phase but not during the actual spatial memory task. Therefore, individuals who respond with higher reactivity to mild intensity exercise in the VLPFC might obtain larger spatial working memory improvements following exercise than non-responders.
CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells
NASA Astrophysics Data System (ADS)
Lin, Yibing; Lin, Yu; Meng, Yongming; Tu, Yongguang; Zhang, Xiaolong
2015-07-01
SnO2 nanoparticles were synthesized by hydrothermal method and applied to photo-electrodes of quantum dots-sensitized solar cells (QDSSCs). After sensitizing SnO2 films via CdS quantum dots, CdSe quantum dots was decorated on the surface of CdS/SnO2 photo-electrodes to further improve the power conversion efficiency. CdS and CdSe quantum dots were deposited by successive ionic layer absorption and reaction method (SILAR) and chemical bath deposition method (CBD) respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to identify the surface profile and crystal structure of SnO2 photo-electrodes before and after deposited quantum dots. After CdSe co-sensitized process, an overall power conversion efficiency of 1.78% was obtained in CdSe/CdS/SnO2 QDSSC, which showed 66.4% improvement than that of CdS/SnO2 QDSSC.
Enhanced Photon Extraction from a Nanowire Quantum Dot Using a Bottom-Up Photonic Shell
NASA Astrophysics Data System (ADS)
Jeannin, Mathieu; Cremel, Thibault; Häyrynen, Teppo; Gregersen, Niels; Bellet-Amalric, Edith; Nogues, Gilles; Kheng, Kuntheak
2017-11-01
Semiconductor nanowires offer the possibility to grow high-quality quantum-dot heterostructures, and, in particular, CdSe quantum dots inserted in ZnSe nanowires have demonstrated the ability to emit single photons up to room temperature. In this paper, we demonstrate a bottom-up approach to fabricate a photonic fiberlike structure around such nanowire quantum dots by depositing an oxide shell using atomic-layer deposition. Simulations suggest that the intensity collected in our NA =0.6 microscope objective can be increased by a factor 7 with respect to the bare nanowire case. Combining microphotoluminescence, decay time measurements, and numerical simulations, we obtain a fourfold increase in the collected photoluminescence from the quantum dot. We show that this improvement is due to an increase of the quantum-dot emission rate and a redirection of the emitted light. Our ex situ fabrication technique allows a precise and reproducible fabrication on a large scale. Its improved extraction efficiency is compared to state-of-the-art top-down devices.
NASA Astrophysics Data System (ADS)
Marsella, Alessandra; Valentini, Paola; Tarantino, Paolo; Congedo, Maurizio; Pompa, Pier Paolo
2016-04-01
We report a simple, rapid and low-cost test, based on gold nanoparticles, for the naked-eye colorimetric detection of a signature of single nucleotide polymorphisms (SNPs) relevant for the personalized medicine of psoriasis patients. We validated the colorimetric assay on real-world DNA samples from a cohort of 30 psoriasis patients and we compared the results, in double-blind, with those obtained with two state-of-the-art instrumental techniques, namely reverse dot blotting and direct sequencing, finding 100% agreement. We demonstrated high accuracy, sensitivity and specificity of the colorimetric test that can be easily adapted for the genotypization of different SNPs, important for the pharmacogenomics of various diseases, and in other fields, such as food traceability and population structure analysis.
Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang
2016-12-07
Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.
Producing Quantum Dots by Spray Pyrolysis
NASA Technical Reports Server (NTRS)
Banger, Kulbinder; Jin, Michael H.; Hepp, Aloysius
2006-01-01
An improved process for making nanocrystallites, commonly denoted quantum dots (QDs), is based on spray pyrolysis. Unlike the process used heretofore, the improved process is amenable to mass production of either passivated or non-passivated QDs, with computer control to ensure near uniformity of size.
Bandyopadhyay, Purnima; Liu, Shuqing; Gabbai, Carolina B; Venitelli, Zeah; Steinman, Howard M
2007-02-01
Legionella pneumophila, the causative organism of Legionnaires' disease, is a fresh-water bacterium and intracellular parasite of amoebae. This study examined the effects of incubation in water and amoeba encystment on L. pneumophila strain JR32 and null mutants in dot/icm genes encoding a type IVB secretion system required for entry, delayed acidification of L. pneumophila-containing phagosomes, and intracellular multiplication when stationary-phase bacteria infect amoebae and macrophages. Following incubation of stationary-phase cultures in water, mutants in dotA and dotB, essential for function of the type IVB secretion system, exhibited entry and delay of phagosome acidification comparable to that of strain JR32. Following encystment in Acanthamoeba castellanii and reversion of cysts to amoeba trophozoites, dotA and dotB mutants exhibited intracellular multiplication in amoebae. The L. pneumophila Lvh locus, encoding a type IVA secretion system homologous to that in Agrobacterium tumefaciens, was required for restoration of entry and intracellular multiplication in dot/icm mutants following incubation in water and amoeba encystment and was required for delay of phagosome acidification in strain JR32. These data support a model in which the Dot/Icm type IVB secretion system is conditionally rather than absolutely required for L. pneumophila virulence-related phenotypes. The data suggest that the Lvh type IVA secretion system, previously thought to be dispensable, is involved in virulence-related phenotypes under conditions mimicking the spread of Legionnaires' disease from environmental niches. Since environmental amoebae are implicated as reservoirs for an increasing number of environmental pathogens and for drug-resistant bacteria, the environmental mimics developed here may be useful in virulence studies of other pathogens.
Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola
2016-01-01
Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442
Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola
2016-07-18
Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.
NASA Astrophysics Data System (ADS)
Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola
2016-07-01
Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique.
Side impact test and analysis of a DOT-112 tank car.
DOT National Transportation Integrated Search
2016-12-01
As part of a program to improve transportation safety for tank cars, Transportation Technology Center, Inc. (TTCI) has conducted a side impact test on a DOT-112 tank car to evaluate the performance of the DOT-112 under dynamic impact conditions and t...
DOT National Transportation Integrated Search
2006-08-01
The Department of Transportations (DOT) research, development, and technology (RD&T) budget totaled $1.1 billion in fiscal year 2005. DOTs Research and Innovative Technology Administration (RITA)which includes the Bureau of Transportation St...
NASA Astrophysics Data System (ADS)
Tang, Yakun; Liu, Lang; Wang, Xingchao; Jia, Dianzeng; Xia, Wei; Zhao, Zongbin; Qiu, Jieshan
2016-07-01
TiO2 quantum dots embedded in bamboo-like porous carbon nanotubes have been constructed through the pyrolysis of sulfonated polymer nanotubes and TiO2 hybrids. The TiO2 quantum dots are formed during the pyrolysis, due to the space confinement within the highly cross-linked copolymer networks. The sulfonation degree of the polymer nanotubes is a critical factor to ensure the formation of the unique interpenetrating structure. The nanocomposites exhibit high reversible capacity of 523 mAh g-1 at 100 mA g-1 after 200 cycles, excellent rate capability and superior long-term cycling stability at high current density, which could attain a high discharge capacity of 189 mAh g-1 at 2000 mA g-1 for up to 2000 cycles. The enhanced electrochemical performance of the nanocomposites benefit from the uniform distribution of TiO2 quantum dots, high electronic conductivity of porous carbons and unique interpenetrating structure, which simultaneously solved the major problems of TiO2 anode facing the pulverization, loss of electrical contact and particle aggregation.
The impact of quantum dot filling on dual-band optical transitions via intermediate quantum states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Jiang, E-mail: jiang.wu@ucl.ac.uk; Passmore, Brandon; Manasreh, M. O.
2015-08-28
InAs/GaAs quantum dot infrared photodetectors with different doping levels were investigated to understand the effect of quantum dot filling on both intraband and interband optical transitions. The electron filling of self-assembled InAs quantum dots was varied by direct doping of quantum dots with different concentrations. Photoresponse in the near infrared and middle wavelength infrared spectral region was observed from samples with low quantum dot filling. Although undoped quantum dots were favored for interband transitions with the absence of a second optical excitation in the near infrared region, doped quantum dots were preferred to improve intraband transitions in the middle wavelengthmore » infrared region. As a result, partial filling of quantum dot was required, to the extent of maintaining a low dark current, to enhance the dual-band photoresponse through the confined electron states.« less
Reconfigurable quadruple quantum dots in a silicon nanowire transistor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betz, A. C., E-mail: ab2106@cam.ac.uk; Broström, M.; Gonzalez-Zalba, M. F.
2016-05-16
We present a reconfigurable metal-oxide-semiconductor multi-gate transistor that can host a quadruple quantum dot in silicon. The device consists of an industrial quadruple-gate silicon nanowire field-effect transistor. Exploiting the corner effect, we study the versatility of the structure in the single quantum dot and the serial double quantum dot regimes and extract the relevant capacitance parameters. We address the fabrication variability of the quadruple-gate approach which, paired with improved silicon fabrication techniques, makes the corner state quantum dot approach a promising candidate for a scalable quantum information architecture.
Quantum funneling in blended multi-band gap core/shell colloidal quantum dot solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neo, Darren C. J.; Assender, Hazel E.; Watt, Andrew A. R., E-mail: Andrew.watt@materials.ox.ac.uk
2015-09-07
Multi-band gap heterojunction solar cells fabricated from a blend of 1.2 eV and 1.4 eV PbS colloidal quantum dots (CQDs) show poor device performance due to non-radiative recombination. To overcome this, a CdS shell is epitaxially formed around the PbS core using cation exchange. From steady state and transient photoluminescence measurements, we understand the nature of charge transfer between these quantum dots. Photoluminescence decay lifetimes are much longer in the PbS/CdS core/shell blend compared to PbS only, explained by a reduction in non-radiative recombination resulting from CdS surface passivation. PbS/CdS heterojunction devices sustain a higher open-circuit voltage and lower reverse saturation currentmore » as compared to PbS-only devices, implying lower recombination rates. Further device performance enhancement is attained by modifying the composition profile of the CQD species in the absorbing layer resulting in a three dimensional quantum cascade structure.« less
One-step synthesis of multi-emission carbon nanodots for ratiometric temperature sensing
NASA Astrophysics Data System (ADS)
Nguyen, Vanthan; Yan, Lihe; Xu, Huanhuan; Yue, Mengmeng
2018-01-01
Measuring temperature with greater precision at localized small length scales or in a nonperturbative manner is a necessity in widespread applications, such as integrated photonic devices, micro/nano electronics, biology, and medical diagnostics. To this context, use of nanoscale fluorescent temperature probes is regarded as the most promising method for temperature sensing because they are noninvasive, accurate, and enable remote micro/nanoscale imaging. Here, we propose a novel ratiometric fluorescent sensor for nanothermometry using carbon nanodots (C-dots). The C-dots were synthesized by one-step method using femtosecond laser ablation and exhibit unique multi-emission property due to emissions from abundant functional groups on its surface. The as-prepared C-dots demonstrate excellent ratiometric temperature sensing under single wavelength excitation that achieves high temperature sensitivity with a 1.48% change per °C ratiometric response over wide-ranging temperature (5-85 °C) in aqueous buffer. The ratiometric sensor shows excellent reversibility and stability, holding great promise for the accurate measurement of temperature in many practical applications.
Hierarchical colorant-based direct binary search halftoning.
He, Zhen
2010-07-01
Colorant-based direct binary search (CB-DBS) halftoning proposed in provides an image quality benchmark for dispersed-dot halftoning algorithms. The objective of this paper is to further push the image quality limit. An algorithm called hierarchical colorant-based direct binary search (HCB-DBS) is developed in this paper. By appropriately integrating yellow colorant into dot-overlapping and dot-positioning controls, it is demonstrated that HCB-DBS can achieve better halftone texture of both individual and joint dot-color planes, without compromising the dot distribution of more visible halftone of cyan and magenta colorants. The input color specification is first converted from colorant space to dot-color space with minimum brightness variation principle for full dot-overlapping control. The dot-colors are then split into groups based upon dot visibility. Hierarchical monochrome DBS halftoning is applied to make dot-positioning decision for each group, constrained on the already generated halftone of the groups with higher priority. And dot-coloring is decided recursively with joint monochrome DBS halftoning constrained on the related total dot distribution. Experiments show HCB-DBS improves halftone texture for both individual and joint dot-color planes. And it reduces the halftone graininess and free of color mottle artifacts, comparing to CB-DBS.
Doi, Takahiro; Fujita, Ichiro
2014-01-01
Three-dimensional visual perception requires correct matching of images projected to the left and right eyes. The matching process is faced with an ambiguity: part of one eye's image can be matched to multiple parts of the other eye's image. This stereo correspondence problem is complicated for random-dot stereograms (RDSs), because dots with an identical appearance produce numerous potential matches. Despite such complexity, human subjects can perceive a coherent depth structure. A coherent solution to the correspondence problem does not exist for anticorrelated RDSs (aRDSs), in which luminance contrast is reversed in one eye. Neurons in the visual cortex reduce disparity selectivity for aRDSs progressively along the visual processing hierarchy. A disparity-energy model followed by threshold nonlinearity (threshold energy model) can account for this reduction, providing a possible mechanism for the neural matching process. However, the essential computation underlying the threshold energy model is not clear. Here, we propose that a nonlinear modification of cross-correlation, which we term “cross-matching,” represents the essence of the threshold energy model. We placed half-wave rectification within the cross-correlation of the left-eye and right-eye images. The disparity tuning derived from cross-matching was attenuated for aRDSs. We simulated a psychometric curve as a function of graded anticorrelation (graded mixture of aRDS and normal RDS); this simulated curve reproduced the match-based psychometric function observed in human near/far discrimination. The dot density was 25% for both simulation and observation. We predicted that as the dot density increased, the performance for aRDSs should decrease below chance (i.e., reversed depth), and the level of anticorrelation that nullifies depth perception should also decrease. We suggest that cross-matching serves as a simple computation underlying the match-based disparity signals in stereoscopic depth perception. PMID:25360107
Reversible Ligand Binding Reactions: Why Do Biochemistry Students Have Trouble Connecting the Dots?
ERIC Educational Resources Information Center
Sears, Duane W.; Thompson, Scott E.; Saxon, S. Robin
2007-01-01
Adaptive chemical behavior is essential for an organism's function and survival, and it is no surprise that biological systems are capable of responding both rapidly and selectively to chemical changes in the environment. To elucidate an organism's biochemistry, its chemical reactions need to be characterized in ways that reflect the normal…
Magnetization reversal assisted by half antivortex states in nanostructured circular cobalt disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lara, A.; Aliev, F. G., E-mail: farkhad.aliev@uam.es; Dobrovolskiy, O. V.
2014-11-03
The half antivortex, a fundamental topological structure which determines magnetization reversal of submicron magnetic devices with domain walls, has been suggested also to play a crucial role in spin torque induced vortex core reversal in circular disks. Here, we report on magnetization reversal in circular disks with nanoholes through consecutive metastable states with half antivortices. In-plane anisotropic magnetoresistance and broadband susceptibility measurements accompanied by micromagnetic simulations reveal that cobalt (Co) disks with two and three linearly arranged nanoholes directed at 45° and 135° with respect to the external magnetic field show reproducible step-like changes in the anisotropic magnetoresistance and magneticmore » permeability due to transitions between different intermediate states mediated by vortices and half antivortices confined to the dot nanoholes and edges, respectively. Our findings are relevant for the development of multi-hole based spintronic and magnetic memory devices.« less
Development of a Higher Fidelity Model for the Cascade Distillation Subsystem (CDS)
NASA Technical Reports Server (NTRS)
Perry, Bruce; Anderson, Molly
2014-01-01
Significant improvements have been made to the ACM model of the CDS, enabling accurate predictions of dynamic operations with fewer assumptions. The model has been utilized to predict how CDS performance would be impacted by changing operating parameters, revealing performance trade-offs and possibilities for improvement. CDS efficiency is driven by the THP coefficient of performance, which in turn is dependent on heat transfer within the system. Based on the remaining limitations of the simulation, priorities for further model development include: center dot Relaxing the assumption of total condensation center dot Incorporating dynamic simulation capability for the buildup of dissolved inert gasses in condensers center dot Examining CDS operation with more complex feeds center dot Extending heat transfer analysis to all surfaces
Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu
2017-01-01
N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures’ refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times. PMID:28045442
Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu
2017-01-01
N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures' refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times.
Safety Information, Transportation & Public Facilities, State of Alaska
Department of Transportation & Public Facilities/ Safety Information Search DOT&PF State of Alaska DOT&PF> Safety Information DOT&PF Safety Information link to 511 511.alaska.gov - Traveler Information link to AHSO Alaska Highway Safety Office link to HSIP Highway Safety Improvement Program link to
Quantum-dot cellular automata: Review and recent experiments (invited)
NASA Astrophysics Data System (ADS)
Snider, G. L.; Orlov, A. O.; Amlani, I.; Zuo, X.; Bernstein, G. H.; Lent, C. S.; Merz, J. L.; Porod, W.
1999-04-01
An introduction to the operation of quantum-dot cellular automata is presented, along with recent experimental results. Quantum-dot cellular automata (QCA) is a transistorless computation paradigm that addresses the issues of device density and interconnection. The basic building blocks of the QCA architecture, such as AND, OR, and NOT are presented. The experimental device is a four-dot QCA cell with two electrometers. The dots are metal islands, which are coupled by capacitors and tunnel junctions. An improved design of the cell is presented in which all four dots of the cell are coupled by tunnel junctions. The operation of this basic cell is confirmed by the externally controlled polarization change of the cell.
Semiconductor quantum dot scintillation under gamma-ray irradiation.
Létant, S E; Wang, T-F
2006-12-01
We recently demonstrated the ability of semiconductor quantum dots to convert alpha radiation into visible photons. In this letter, we report on the scintillation of quantum dots under gamma irradiation and compare the energy resolution of the 59 keV line of americium-241 obtained with our quantum dot-glass nanocomposite to that of a standard sodium iodide scintillator. A factor 2 improvement is demonstrated experimentally and interpreted theoretically using a combination of energy-loss and photon-transport models.
NASA Astrophysics Data System (ADS)
Lim, Hwain; Lee, Kyu Seung; Liu, Yang; Kim, Hak Yong; Son, Dong Ick
2018-05-01
We report the synthesis and characterization of the carbon quantum dots (C-dots) easily obtained from citric acid and ethanediamine, and also investigated structural, optical and electrical properties. The C-dots have extraordinary optical and electrical features such as absorption of ultraviolet range and effective interface for charge separation and transport in active layer, which make them attractive materials for applications in photovoltaic devices (PV). The C-dots play important roles in charge extraction in the PV structures, they can be synthesized by a simple method and used to insert in active layer of polymer solar cells. In this study, we demonstrate that improve charge transport properties of inverted polymer solar cells (iPSCs) with C-dots and structural, optical and electrical properties of C-dots. As a result, iPSCs with C-dots showed enhancement of more than 30% compared with that of the contrast device in power conversion efficiency.
NASA Astrophysics Data System (ADS)
Lin, Xin; Pan, Hui; Xu, Huai-Zhe
2010-12-01
We have theoretically analyzed the quasibound states in a graphene quantum dot (GQD) with a magnetic flux Φ in the centre. It is shown that the two-fold time reversal degeneracy is broken and the quasibound states of GQD with positive/negative angular momentum shifted upwards / downwards with increasing the magnetic flux. The variation of the quasibound energy depends linearly on the magnetic flux, which is quite different from the parabolic relationship for Schrödinger electrons. The GQD's quasibound states spectrum shows an obvious Aharonov—Bohm (AB) oscillations with the magnetic flux. It is also shown that the quasibound state with energy equal to the barrier height becomes a bound state completely confined in GQD.
Attitudes and Influences toward Choosing a Business Major: The Case of Information Systems
ERIC Educational Resources Information Center
Downey, James P.; McGaughey, Ronnie; Roach, David
2011-01-01
Declining enrollment in MIS Departments in Colleges of Business has been the norm for many if not most universities since the dot.com bust of 2000. This has serious repercussions for the departments involved, students, and the companies that hire MIS graduates. In order to reverse this trend, an understanding of the important factors which…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuppens, H.; Marynen, P.; Cassiman, J.J.
1993-12-01
The authors have previously shown that about 85% of the mutations in 194 Belgian cystic fibrosis alleles could be detected by a reverse dot-blot assay. In the present study, 50 Belgian chromosomes were analyzed for mutations in the cystic fibrosis transmembrane conductance regulator gene by means of direct solid phase automatic sequencing of PCR products of individual exons. Twenty-six disease mutations and 14 polymorphisms were found. Twelve of these mutations and 3 polymorphisms were not described before. With the exception of one mutant allele carrying two mutations, these mutations were the only mutations found in the complete coding region andmore » their exon/intron boundaries. The total sensitivity of mutant CF alleles that could be identified was 98.5%. Given the heterogeneity of these mutations, most of them very rare, CFTR mutation screening still remains rather complex in the population, and population screening, whether desirable or not, does not appear to be technically feasible with the methods currently available. 24 refs., 1 fig., 2 tabs.« less
Gammino, V M; Taylor, A B; Rich, M L; Bayona, J; Becerra, M C; Bonilla, C; Gelmanova, I; Hollo, V; Jaramillo, E; Keshavjee, S; Leimane, V; Mitnick, C D; Quelapio, M I D; Riektsina, V; Tupasi, T E; Wells, C D; Zignol, M; Cegielski, P J
2011-10-01
Multidrug-resistant tuberculosis programs in DOTS-Plus pilot sites in five countries. To calculate sputum conversion time and its relationship to treatment outcome, document the frequency of culture reversions and examine concordance of smear and culture to assess the potential consequences of monitoring by smear microscopy alone. Retrospective cohort analysis of 1926 patients receiving individualized, second-line therapy. Among 1385 sputum culture-positive cases at baseline, 1146 (83%) experienced at least one culture conversion during treatment. Conversion, however, was not sustained in all patients: 201 (15%) experienced initial culture conversion and at least one subsequent culture reversion to positive; 1064 (77%) achieved sustained culture conversion. Median time to culture conversion was 3 months. Among 206 patients whose nal conversion occurred 7-18 months after the initiation of therapy, 71% were cured or had completed treatment. Prolonged treatment for patients with delayed conversion may be beneficial, as 71% of late converters still achieved cure or completed treatment. This has implications for programs with de ned end points for treatment failure. The interval between rst and nal conversion among patients whose initial con- version is not sustained raises concern with respect to the ongoing debate regarding duration of treatment and the definition of cure.
Yuan, Biao; Guan, Shanyue; Sun, Xingming; Li, Xiaoming; Zeng, Haibo; Xie, Zheng; Chen, Ping; Zhou, Shuyun
2018-05-09
Carbon dots (CDs) have potentials to be utilized in optoelectronic devices, bioimaging, and photocatalysis. The majority of the current CDs with high quantum yield to date were limited in the blue light emission region. Herein, on the basis of surface electron-state engineering, we report a kind of CDs with reversible switching ability between green and red photoluminescence with a quantum yield (QY) of both up to 80%. Highly efficient green and red solid-state luminescence is realized by doping CDs into a highly transparent matrix of methyltriethoxysilane and 3-triethoxysilylpropylamine to form CDs/gel glasses composites with QYs of 80 and 78%. The CDs/gel glasses show better transmittance in visible light bands and excellent thermal stability. A blue-pumped CDs/gel glasses phosphor-based trichromatic white light-emitting diode (WLED) is realized, whose color rendering index is 92.9. The WLED gets the highest luminous efficiency of 71.75 lm W -1 in CDs-based trichromatic WLEDs. This work opens a door for developing highly efficient green- and red-emissive switching CDs which were used as phosphors for WLEDs and have the tendency for applications in other fields, such as sensing, bioimaging, and photocatalysis.
NASA Astrophysics Data System (ADS)
Sasamal, Trailokya Nath; Singh, Ashutosh Kumar; Ghanekar, Umesh
2018-04-01
Nanotechnologies, remarkably Quantum-dot Cellular Automata (QCA), offer an attractive perspective for future computing technologies. In this paper, QCA is investigated as an implementation method for designing area and power efficient reversible logic gates. The proposed designs achieve superior performance by incorporating a compact 2-input XOR gate. The proposed design for Feynman, Toffoli, and Fredkin gates demonstrates 28.12, 24.4, and 7% reduction in cell count and utilizes 46, 24.4, and 7.6% less area, respectively over previous best designs. Regarding the cell count (area cover) that of the proposed Peres gate and Double Feynman gate are 44.32% (21.5%) and 12% (25%), respectively less than the most compact previous designs. Further, the delay of Fredkin and Toffoli gates is 0.75 clock cycles, which is equal to the delay of the previous best designs. While the Feynman and Double Feynman gates achieve a delay of 0.5 clock cycles, equal to the least delay previous one. Energy analysis confirms that the average energy dissipation of the developed Feynman, Toffoli, and Fredkin gates is 30.80, 18.08, and 4.3% (for 1.0 E k energy level), respectively less compared to best reported designs. This emphasizes the beneficial role of using proposed reversible gates to design complex and power efficient QCA circuits. The QCADesigner tool is used to validate the layout of the proposed designs, and the QCAPro tool is used to evaluate the energy dissipation.
Yasmin, Rubina; Barber, Cheryl A.; Castro, Talita; Malamud, Daniel; Kim, Beum Jun; Zhu, Hui; Montagna, Richard A.; Abrams, William R.
2018-01-01
In recent years, there have been increasing numbers of infectious disease outbreaks that spread rapidly to population centers resulting from global travel, population vulnerabilities, environmental factors, and ecological disasters such as floods and earthquakes. Some examples of the recent outbreaks are the Ebola epidemic in West Africa, Middle East respiratory syndrome coronavirus (MERS-Co) in the Middle East, and the Zika outbreak through the Americas. We have created a generic protocol for detection of pathogen RNA and/or DNA using loop-mediated isothermal amplification (LAMP) and reverse dot-blot for detection (RDB) and processed automatically in a microfluidic device. In particular, we describe how a microfluidic assay to detect HIV viral RNA was converted to detect Zika virus (ZIKV) RNA. We first optimized the RT-LAMP assay to detect ZIKV RNA using a benchtop isothermal amplification device. Then we implemented the assay in a microfluidic device that will allow analyzing 24 samples simultaneously and automatically from sample introduction to detection by RDB technique. Preliminary data using saliva samples spiked with ZIKV showed that our diagnostic system detects ZIKV RNA in saliva. These results will be validated in further experiments with well-characterized ZIKV human specimens of saliva. The described strategy and methodology to convert the HIV diagnostic assay and platform to a ZIKV RNA detection assay provides a model that can be readily utilized for detection of the next emerging or re-emerging infectious disease. PMID:29401479
Sabalza, Maite; Yasmin, Rubina; Barber, Cheryl A; Castro, Talita; Malamud, Daniel; Kim, Beum Jun; Zhu, Hui; Montagna, Richard A; Abrams, William R
2018-01-01
In recent years, there have been increasing numbers of infectious disease outbreaks that spread rapidly to population centers resulting from global travel, population vulnerabilities, environmental factors, and ecological disasters such as floods and earthquakes. Some examples of the recent outbreaks are the Ebola epidemic in West Africa, Middle East respiratory syndrome coronavirus (MERS-Co) in the Middle East, and the Zika outbreak through the Americas. We have created a generic protocol for detection of pathogen RNA and/or DNA using loop-mediated isothermal amplification (LAMP) and reverse dot-blot for detection (RDB) and processed automatically in a microfluidic device. In particular, we describe how a microfluidic assay to detect HIV viral RNA was converted to detect Zika virus (ZIKV) RNA. We first optimized the RT-LAMP assay to detect ZIKV RNA using a benchtop isothermal amplification device. Then we implemented the assay in a microfluidic device that will allow analyzing 24 samples simultaneously and automatically from sample introduction to detection by RDB technique. Preliminary data using saliva samples spiked with ZIKV showed that our diagnostic system detects ZIKV RNA in saliva. These results will be validated in further experiments with well-characterized ZIKV human specimens of saliva. The described strategy and methodology to convert the HIV diagnostic assay and platform to a ZIKV RNA detection assay provides a model that can be readily utilized for detection of the next emerging or re-emerging infectious disease.
Staircase Quantum Dots Configuration in Nanowires for Optimized Thermoelectric Power
Li, Lijie; Jiang, Jian-Hua
2016-01-01
The performance of thermoelectric energy harvesters can be improved by nanostructures that exploit inelastic transport processes. One prototype is the three-terminal hopping thermoelectric device where electron hopping between quantum-dots are driven by hot phonons. Such three-terminal hopping thermoelectric devices have potential in achieving high efficiency or power via inelastic transport and without relying on heavy-elements or toxic compounds. We show in this work how output power of the device can be optimized via tuning the number and energy configuration of the quantum-dots embedded in parallel nanowires. We find that the staircase energy configuration with constant energy-step can improve the power factor over a serial connection of a single pair of quantum-dots. Moreover, for a fixed energy-step, there is an optimal length for the nanowire. Similarly for a fixed number of quantum-dots there is an optimal energy-step for the output power. Our results are important for future developments of high-performance nanostructured thermoelectric devices. PMID:27550093
The upper spatial limit for perception of displacement is affected by preceding motion.
Stefanova, Miroslava; Mateeff, Stefan; Hohnsbein, Joachim
2009-03-01
The upper spatial limit D(max) for perception of apparent motion of a random dot pattern may be strongly affected by another, collinear, motion that precedes it [Mateeff, S., Stefanova, M., &. Hohnsbein, J. (2007). Perceived global direction of a compound of real and apparent motion. Vision Research, 47, 1455-1463]. In the present study this phenomenon was studied with two-dimensional motion stimuli. A random dot pattern moved alternately in the vertical and oblique direction (zig-zag motion). The vertical motion was of 1.04 degrees length; it was produced by three discrete spatial steps of the dots. Thereafter the dots were displaced by a single spatial step in oblique direction. Each motion lasted for 57ms. The upper spatial limit for perception of the oblique motion was measured under two conditions: the vertical component of the oblique motion and the vertical motion were either in the same or in opposite directions. It was found that the perception of the oblique motion was strongly influenced by the relative direction of the vertical motion that preceded it; in the "same" condition the upper spatial limit was much shorter than in the "opposite" condition. Decreasing the speed of the vertical motion reversed this effect. Interpretations based on networks of motion detectors and on Gestalt theory are discussed.
Amjadi, Mohammad; Jalili, Roghayeh; Manzoori, Jamshid L
2016-05-01
A novel fluorescent nanosensor using molecularly imprinted silica nanospheres embedded CdTe quantum dots (CdTe@SiO2 @MIP) was developed for detection and quantification of chloramphenicol (CAP). The imprinted sensor was prepared by synthesis of molecularly imprinting polymer (MIP) on the hydrophilic CdTe quantum dots via reverse microemulsion method using small amounts of solvents. The resulting CdTe@SiO2 @MIP nanoparticles were characterized by fluorescence, UV-vis absorption and FT-IR spectroscopy and transmission electron microscopy. They preserved 48% of fluorescence quantum yield of the parent quantum dots. CAP remarkably quenched the fluorescence of prepared CdTe@SiO2 @MIP, probably via electron transfer mechanism. Under the optimal conditions, the relative fluorescence intensity of CdTe@SiO2 @MIP decreased with increasing CAP by a Stern-Volmer type equation in the concentration range of 40-500 µg L(-1). The corresponding detection limit was 5.0 µg L(-1). The intra-day and inter-day values for the precision of the proposed method were all <4%. The developed sensor had a good selectivity and was applied to determine CAP in spiked human and bovine serum and milk samples with satisfactory results. Copyright © 2015 John Wiley & Sons, Ltd.
Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals.
Vallaitis, T; Bonk, R; Guetlein, J; Hillerkuss, D; Li, J; Brenot, R; Lelarge, F; Duan, G H; Freude, W; Leuthold, J
2010-03-15
Experimentally we find a 10 dB input power dynamic range advantage for amplification of phase encoded signals with quantum dot SOA as compared to low-confinement bulk SOA. An analysis of amplitude and phase effects shows that this improvement can be attributed to the lower alpha-factor found in QD SOA.
Vehicle registration compliance in Wisconsin : [summary].
DOT National Transportation Integrated Search
2015-03-01
The Wisconsin Department of Transportation (WisDOT) conducted an investigation : to improve its passenger vehicle registration processes, with the goals to modernize : techniques, reduce costs, enhance security and maximize compliance. WisDOTs : D...
Improving communications for MDOT's DBE program : research spotlight.
DOT National Transportation Integrated Search
2012-09-01
The U.S. Department of Transportation : (DOT) mandates state DOTs to establish : goals that ensure participation in transportation projects by businesses owned : by historically disadvantaged individuals. : MDOTs Office of Business Development : (...
NASA Astrophysics Data System (ADS)
Ratnesh, R. K.; Mehata, Mohan Singh
2017-02-01
We report two port synthesis of CdSe/CdS/ZnS core-multi-shell quantum dots (Q-dots) and their structural properties. The multi-shell structures of Q-dots were developed by using successive ionic layer adsorption and reaction (SILAR) technique. The obtained Q-dots show high crystallinity with the step-wise adjustment of lattice parameters in the radial direction. The size of the core and core-shell Q-dots estimated by transmission electron microscopy images and absorption spectra is about 3.4 and 5.3 nm, respectively. The water soluble Q-dots (scheme-1) were prepared by using ligand exchange method, and the effect of pH was discussed regarding the variation of quantum yield (QY). The decrease of a lifetime of core-multi-shell Q-dots with respect to core CdSe indicates that the shell growth may be tuned by the lifetimes. Thus, the study clearly demonstrates that the core-shell approach can be used to substantially improve the optical properties of Q-dots desired for various applications.
NASA Astrophysics Data System (ADS)
Palmstrom, Axel F.; Santra, Pralay K.; Bent, Stacey F.
2015-07-01
Nanostructured materials offer key advantages for third-generation photovoltaics, such as the ability to achieve high optical absorption together with enhanced charge carrier collection using low cost components. However, the extensive interfacial areas in nanostructured photovoltaic devices can cause high recombination rates and a high density of surface electronic states. In this feature article, we provide a brief review of some nanostructured photovoltaic technologies including dye-sensitized, quantum dot sensitized and colloidal quantum dot solar cells. We then introduce the technique of atomic layer deposition (ALD), which is a vapor phase deposition method using a sequence of self-limiting surface reaction steps to grow thin, uniform and conformal films. We discuss how ALD has established itself as a promising tool for addressing different aspects of nanostructured photovoltaics. Examples include the use of ALD to synthesize absorber materials for both quantum dot and plasmonic solar cells, to grow barrier layers for dye and quantum dot sensitized solar cells, and to infiltrate coatings into colloidal quantum dot solar cell to improve charge carrier mobilities as well as stability. We also provide an example of monolayer surface modification in which adsorbed ligand molecules on quantum dots are used to tune the band structure of colloidal quantum dot solar cells for improved charge collection. Finally, we comment on the present challenges and future outlook of the use of ALD for nanostructured photovoltaics.
Liu, Jiancong; Wang, Ning; Yu, Yue; Yan, Yan; Zhang, Hongyue; Li, Jiyang; Yu, Jihong
2017-01-01
Thermally activated delayed fluorescence (TADF) materials are inspiring intensive research in optoelectronic applications. To date, most of the TADF materials are limited to metal-organic complexes and organic molecules with lifetimes of several microseconds/milliseconds that are sensitive to oxygen. We report a facial and general “dots-in-zeolites” strategy to in situ confine carbon dots (CDs) in zeolitic matrices during hydrothermal/solvothermal crystallization to generate high-efficient TADF materials with ultralong lifetimes. The resultant CDs@zeolite composites exhibit high quantum yields up to 52.14% and ultralong lifetimes up to 350 ms at ambient temperature and atmosphere. This intriguing TADF phenomenon is due to the fact that nanoconfined space of zeolites can efficiently stabilize the triplet states of CDs, thus enabling the reverse intersystem crossing process for TADF. Meanwhile, zeolite frameworks can also hinder oxygen quenching to present TADF behavior at air atmosphere. This design concept introduces a new perspective to develop materials with unique TADF performance and various novel delayed fluorescence–based applications. PMID:28560347
Sapienza, Luca; Liu, Jin; Song, Jin Dong; Fält, Stefan; Wegscheider, Werner; Badolato, Antonio; Srinivasan, Kartik
2017-07-24
We report on a combined photoluminescence imaging and atomic force microscopy study of single, isolated self-assembled InAs quantum dots. The motivation of this work is to determine an approach that allows to assess single quantum dots as candidates for quantum nanophotonic devices. By combining optical and scanning probe characterization techniques, we find that single quantum dots often appear in the vicinity of comparatively large topographic features. Despite this, the quantum dots generally do not exhibit significant differences in their non-resonantly pumped emission spectra in comparison to quantum dots appearing in defect-free regions, and this behavior is observed across multiple wafers produced in different growth chambers. Such large surface features are nevertheless a detriment to applications in which single quantum dots are embedded within nanofabricated photonic devices: they are likely to cause large spectral shifts in the wavelength of cavity modes designed to resonantly enhance the quantum dot emission, thereby resulting in a nominally perfectly-fabricated single quantum dot device failing to behave in accordance with design. We anticipate that the approach of screening quantum dots not only based on their optical properties, but also their surrounding surface topographies, will be necessary to improve the yield of single quantum dot nanophotonic devices.
Heat current through an artificial Kondo impurity beyond linear response
NASA Astrophysics Data System (ADS)
Sierra, Miguel A.; Sánchez, David
2018-03-01
We investigate the heat current of a strongly interacting quantum dot in the presence of a voltage bias in the Kondo regime. Using the slave-boson mean-field theory, we discuss the behavior of the energy flow and the Joule heating. We find that both contributions to the heat current display interesting symmetry properties under reversal of the applied dc bias. We show that the symmetries arise from the behavior of the dot transmission function. Importantly, the transmission probability is a function of both energy and voltage. This allows us to analyze the heat current in the nonlinear regime of transport. We observe that nonlinearities appear already for voltages smaller than the Kondo temperature. Finally, we suggest to use the contact and electric symmetry coefficients as a way to measure pure energy currents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores, J.; Sears, J.; Schael, I.P.
1990-08-01
We have synthesized {sup 32}P-labeled hybridization probes from a hyperdivergent region (nucleotides 51 to 392) of the rotavirus gene encoding the VP7 glycoprotein by using the polymerase chain reaction method. Both RNA (after an initial reverse transcription step) and cloned cDNA from human rotavirus serotypes 1 through 4 could be used as templates to amplify this region. High-stringency hybridization of each of the four probes to rotavirus RNAs dotted on nylon membranes allowed the specific detection of corresponding sequences and thus permitted identification of the serotype of the strains dotted. The procedure was useful when applied to rotaviruses isolated frommore » field studies.« less
Roadway safety design workbook.
DOT National Transportation Integrated Search
2009-07-01
Highway safety is an ongoing concern to the Texas Department of Transportation (TxDOT). As part of its : proactive commitment to improving highway safety, TxDOT is moving toward including quantitative safety : analyses earlier in the project developm...
Highway safety design workshops.
DOT National Transportation Integrated Search
2010-11-01
Highway safety is an ongoing concern for the Texas Department of Transportation (TxDOT). As part of its : proactive commitment to improving highway safety, TxDOT is moving toward including quantitative safety : analyses earlier in the project develop...
Strategic spectrum plan : November 2005.
DOT National Transportation Integrated Search
2005-11-01
The United States Department of Transportation (DOT) occupies a leadership role in the : global transportation network. The people of DOT are dedicated to improving : transportation in the United States and around the world by making it safer, simple...
Resolving discrete pulsar spin-down states with current and future instrumentation
NASA Astrophysics Data System (ADS)
Shaw, B.; Stappers, B. W.; Weltevrede, P.
2018-04-01
An understanding of pulsar timing noise offers the potential to improve the timing precision of a large number of pulsars as well as facilitating our understanding of pulsar magnetospheres. For some sources, timing noise is attributable to a pulsar switching between two different spin-down rates (\\dot{ν }). Such transitions may be common but difficult to resolve using current techniques. In this work, we use simulations of \\dot{ν }-variable pulsars to investigate the likelihood of resolving individual \\dot{ν } transitions. We inject step changes in the value of \\dot{ν } with a wide range of amplitudes and switching time-scales. We then attempt to redetect these transitions using standard pulsar timing techniques. The pulse arrival-time precision and the observing cadence are varied. Limits on \\dot{ν } detectability based on the effects such transitions have on the timing residuals are derived. With the typical cadences and timing precision of current timing programmes, we find that we are insensitive to a large region of Δ \\dot{ν } parameter space that encompasses small, short time-scale switches. We find, where the rotation and emission states are correlated, that using changes to the pulse shape to estimate \\dot{ν } transition epochs can improve detectability in certain scenarios. The effects of cadence on Δ \\dot{ν } detectability are discussed, and we make comparisons with a known population of intermittent and mode-switching pulsars. We conclude that for short time-scale, small switches, cadence should not be compromised when new generations of ultra-sensitive radio telescopes are online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahiri, Debdutta; Choi, Yongseong; Yusuf, S. M.
2016-02-23
We have investigated the microscopic origin of temperature and magnetic-field actuated magnetization reversal in Cu0.73Mn0.77[Fe(CN)(6)]center dot zH(2)O, using XMCD. Our results show a fair deviation from the mean-field-theory in the form of different ordering temperatures of Fe and Mn sublattices. A preferential sign reversal of Mn spin under magnetic field and different spin cant angles for the two sublattices have also been observed. An antiferromagnetic coupling between the Fe and Mn sublattices along with different ordering temperatures (sublattice decoupling) for these sublattices explain the temperature-dependent magnetization reversal. Whereas, Mn spin reversal alone (under external magnetic field) is responsible for themore » observed field-dependent magnetization reversal. The dissimilar magnetic behavior of Fe and Mn sublattices in this cubic 3d-orbital system has been understood by invoking disparity and competition among inter-sublattice magnetic control parameters, viz. magnetic Zeeman energy, exchange coupling constant and magnetic anisotropy constant. Our results have significant design implications for future magnetic switches, by optimizing the competition among these magnetic control parameters.« less
Clinical Potential of Quantum Dots
Iga, Arthur M.; Robertson, John H. P.; Winslet, Marc C.; Seifalian, Alexander M.
2007-01-01
Advances in nanotechnology have led to the development of novel fluorescent probes called quantum dots. Quantum dots have revolutionalized the processes of tagging molecules within research settings and are improving sentinel lymph node mapping and identification in vivo studies. As the unique physical and chemical properties of these fluorescent probes are being unraveled, new potential methods of early cancer detection, rapid spread and therapeutic management, that is, photodynamic therapy are being explored. Encouraging results of optical and real time identification of sentinel lymph nodes and lymph flow using quantum dots in vivo models are emerging. Quantum dots have also superseded many of the limitations of organic fluorophores and are a promising alternative as a research tool. In this review, we examine the promising clinical potential of quantum dots, their hindrances for clinical use and the current progress in abrogating their inherent toxicity. PMID:18317518
McDaniel, Hunter
2017-10-17
Common approaches to synthesizing alloyed quantum dots employ high-cost, air-sensitive phosphine complexes as the selenium precursor. Disclosed quantum dot synthesis embodiments avoid these hazardous and air-sensitive selenium precursors. Certain embodiments utilize a combination comprising a thiol and an amine that together reduce and complex the elemental selenium to form a highly reactive selenium precursor at room temperature. The same combination of thiol and amine acts as the reaction solvent, stabilizing ligand, and sulfur source in the synthesis of quantum dot cores. A non-injection approach may also be used. The optical properties of the quantum dots synthesized by this new approach can be finely tuned for a variety of applications by controlling size and/or composition of size and composition. Further, using the same approach, a shell can be grown around a quantum dot core that improves stability, luminescence efficiency, and may reduce toxicity.
NASA Technical Reports Server (NTRS)
Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.
2014-01-01
SHM/FM theory has been successfully applied to the selection of the baseline set Abort Triggers for the NASA SLS center dot Quantitative assessment played a useful role in the decision process ? M&FM, which is new within NASA MSFC, required the most "new" work, as this quantitative analysis had never been done before center dot Required development of the methodology and tool to mechanize the process center dot Established new relationships to the other groups ? The process is now an accepted part of the SLS design process, and will likely be applied to similar programs in the future at NASA MSFC ? Future improvements center dot Improve technical accuracy ?Differentiate crew survivability due to an abort, vs. survivability even no immediate abort occurs (small explosion with little debris) ?Account for contingent dependence of secondary triggers on primary triggers ?Allocate "? LOC Benefit" of each trigger when added to the previously selected triggers. center dot Reduce future costs through the development of a specialized tool ? Methodology can be applied to any manned/unmanned vehicle, in space or terrestrial
NASA Astrophysics Data System (ADS)
Fukuda, Takeshi; Sasaki, Hironao
2018-03-01
We present the synthesis protocol of a red emissive InP/ZnS quantum dot with a 1-dodecanthiol ligand and its application to a quantum dot light-emitting diode. The ligand change from oleylamine to 1-dodecanthiol, which were connected around the InP/ZnS quantum dot, was confirmed by Fourier-transform infrared spectroscopy and thermal analysis. The absorption peak was blue-shifted by changing 1-dodecanthiol ligands from oleylamine ligands to prevent the unexpected nucleation of the InP core. In addition, the luminance of the light-emitting device was improved by using the InP/ZnS quantum dot with 1-dodecanthiol ligands, and the maximum current efficiency of 7.2 × 10-3 cd/A was achieved. The 1-dodecanthiol ligand is often used for capping to reduce the number of surface defects and/or prevent unexpected core growth, resulting in reduced Auger recombination. This result indicates that 1-dodecanthiol ligands prevent the deactivation of excitons while injecting carriers by applying a voltage, resulting in a high luminance efficiency.
Ferradal, Silvina L; Eggebrecht, Adam T; Hassanpour, Mahlega; Snyder, Abraham Z; Culver, Joseph P
2014-01-15
Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available. Copyright © 2013. Published by Elsevier Inc.
DOT National Transportation Integrated Search
2009-08-01
Applying Intelligent Transportation Systems (ITS) to arterial systems allows TxDOT to significantly enhance : transportation system operation efficiency and improve traffic mobility. However, no guidelines are available to : assist TxDOT staff in sel...
Development of safety performance monitoring procedures.
DOT National Transportation Integrated Search
2010-02-01
Highway safety is an ongoing concern to the Texas Department of Transportation (TxDOT). As part of its : proactive commitment to improving highway safety, TxDOT is moving toward including quantitative safety : analyses earlier in the project developm...
Li, Zhiming; Huang, Peng; Lin, Jing; He, Rong; Liu, Bing; Zhang, Xiaomin; Yang, Sen; Xi, Peng; Zhang, Xuejun; Ren, Qiushi; Cui, Daxiang
2010-08-01
Angiogenesis is essential for the development of malignant tumors and provides important targets for tumor diagnosis and therapy. Quantum dots have been broadly investigated for their potential application in cancer molecular imaging. In present work, CdSe quantum dots were synthesized, polyamidoamine dendrimers were used to modify surface of quantum dots and improve their solubility in water solution. Then, dendrimer-modified CdSe quantum dots were conjugated with arginine-glycine-aspartic acid (RGD) peptides. These prepared nanoprobes were injected into nude mice loaded with melanoma (A375) tumor xenografts via tail vessels, IVIS imaging system was used to image the targeting and bio-distribution of as-prepared nanoprobes. The dendrimer-modified quantum dots exhibit water-soluble, high quantum yield, and good biocompatibility. RGD-conjugated quantum dots can specifically target human umbilical vein endothelial cells (HUVEC) and A375 melanoma cells, as well as nude mice loaded with A735 melanoma cells. High-performance RGD-conjugated dendrimers modified quantum dot-based nanoprobes have great potential in application such as tumor diagnosis and therapy.
NASA Astrophysics Data System (ADS)
Verma, Upendra Kumar; Kumar, Brijesh
2017-10-01
We have modeled a multilayer quantum dot organic solar cell that explores the current-voltage characteristic of the solar cell whose characteristics can be tuned by varying the fabrication parameters of the quantum dots (QDs). The modeled device consists of a hole transport layer (HTL) which doubles up as photon absorbing layer, several quantum dot layers, and an electron transport layer (ETL). The conduction of charge carriers in HTL and ETL has been modeled by the drift-diffusion transport mechanism. The conduction and recombination in the quantum dot layers are described by a system of coupled rate equations incorporating tunneling and bimolecular recombination. Analysis of QD-solar cells shows improved device performance compared to the similar bilayer and trilayer device structures without QDs. Keeping other design parameters constant, solar cell characteristics can be controlled by the quantum dot layers. Bimolecular recombination coefficient of quantum dots is a prime factor which controls the open circuit voltage (VOC) without any significant reduction in short circuit current (JSC).
Enhanced photocatalytic H2-production activity of C-dots modified g-C3N4/TiO2 nanosheets composites.
Li, Yang; Feng, Xionghan; Lu, Zhexue; Yin, Hui; Liu, Fan; Xiang, Quanjun
2018-03-01
As a new carbon-based material, carbon dots (C-dots) have got widely preference because of its excellent electronic transfer capability. In this work, a novel ternary layered C-dots/g-C 3 N 4 /TiO 2 nanosheets (CGT) composite photocatalysts were prepared by impregnation precipitation methods. The optimal ternary CGT composite samples revealed high photocatalytic hydrogen evolution rate in triethanolamine aqueous solutions, which exceeded the rate of the optimal g-C 3 N 4 /TiO 2 composite sample by a factor of 5 times. The improved photocatalytic activity is owed to the positive effects of C-dots and layered heterojunction structure of TiO 2 nanosheets and g-C 3 N 4 sheets. C-dots in the CGT composites can serve as electron reservoirs to capture the photo-induced electrons. The well-defined layered heterojunction structure of CGT provides the intimate contact and the strong interaction of anatase TiO 2 nanosheets and g-C 3 N 4 sheets via face-to-face orientation, which restrains the recombination of photogenerated charge carriers, and thus enhances the photocatalytic H 2 -production activity. Electron paramagnetic resonance and transient photocurrent response proved the strong interaction and improved interfacial charge transfer of TiO 2 nanosheets and g-C 3 N 4 sheets, respectively. The mechanism of improving the photocatalytic H 2 -evolution activity was further confirmed by time-resolved fluorescence, electron paramagnetic resonance, transient photocurrent response and electrochemical impedance spectroscopy. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cochran, Jeffrey M.; Busch, David R.; Ban, Han Y.; Kavuri, Venkaiah C.; Schweiger, Martin J.; Arridge, Simon R.; Yodh, Arjun G.
2017-02-01
We present high spatial density, multi-modal, parallel-plate Diffuse Optical Tomography (DOT) imaging systems for the purpose of breast tumor detection. One hybrid instrument provides time domain (TD) and continuous wave (CW) DOT at 64 source fiber positions. The TD diffuse optical spectroscopy with PMT- detection produces low-resolution images of absolute tissue scattering and absorption while the spatially dense array of CCD-coupled detector fibers (108 detectors) provides higher-resolution CW images of relative tissue optical properties. Reconstruction of the tissue optical properties, along with total hemoglobin concentration and tissue oxygen saturation, is performed using the TOAST software suite. Comparison of the spatially-dense DOT images and MR images allows for a robust validation of DOT against an accepted clinical modality. Additionally, the structural information from co-registered MR images is used as a spatial prior to improve the quality of the functional optical images and provide more accurate quantification of the optical and hemodynamic properties of tumors. We also present an optical-only imaging system that provides frequency domain (FD) DOT at 209 source positions with full CCD detection and incorporates optical fringe projection profilometry to determine the breast boundary. This profilometry serves as a spatial constraint, improving the quality of the DOT reconstructions while retaining the benefits of an optical-only device. We present initial images from both human subjects and phantoms to display the utility of high spatial density data and multi-modal information in DOT reconstruction with the two systems.
Reversal of an ancient sex chromosome to an autosome in Drosophila.
Vicoso, Beatriz; Bachtrog, Doris
2013-07-18
Although transitions of sex-determination mechanisms are frequent in species with homomorphic sex chromosomes, heteromorphic sex chromosomes are thought to represent a terminal evolutionary stage owing to chromosome-specific adaptations such as dosage compensation or an accumulation of sex-specific mutations. Here we show that an autosome of Drosophila, the dot chromosome, was ancestrally a differentiated X chromosome. We analyse the whole genome of true fruitflies (Tephritidae), flesh flies (Sarcophagidae) and soldier flies (Stratiomyidae) to show that genes located on the dot chromosome of Drosophila are X-linked in outgroup species, whereas Drosophila X-linked genes are autosomal. We date this chromosomal transition to early drosophilid evolution by sequencing the genome of other Drosophilidae. Our results reveal several puzzling aspects of Drosophila dot chromosome biology to be possible remnants of its former life as a sex chromosome, such as its minor feminizing role in sex determination or its targeting by a chromosome-specific regulatory mechanism. We also show that patterns of biased gene expression of the dot chromosome during early embryogenesis, oogenesis and spermatogenesis resemble that of the current X chromosome. Thus, although sex chromosomes are not necessarily evolutionary end points and can revert back to an autosomal inheritance, the highly specialized genome architecture of this former X chromosome suggests that severe fitness costs must be overcome for such a turnover to occur.
Create your own stimulus: Manipulating movements according to social categories
Koppensteiner, Markus; Primes, Georg; Stephan, Pia
2017-01-01
People ascribe purposeful behaviour to the movements of artificial objects and social qualities to human body motion. We investigated how people associate simple motion cues with social categories. For a first rating-experiment we converted the body movements of speakers into stick-figure animations; for a second rating-experiment we used animations of one single dot. Rating-experiments were “reversed” because we asked participants to alter the movements (i.e., vertical amplitude, horizontal amplitude, and velocity) of the stimuli according to different instructions (e.g., create a stimulus of high dominance). Participants equipped stick figures and dot animations with expansive movements to represent high dominance. Expansive and fast movements (i.e., high velocity) were mainly associated with high aggressiveness. Fast movements were also associated with low friendliness, low trustworthiness, and low competence. Overall, patterns found for stick figure and dot animations were similar indicating that certain motion cues convey social information even when only a dot and no body form is visible. The “reverse approach” we propose here makes the impact of different components directly observable. The data generated by this method offers better insights into the interplay of these components and the ways in which they form meaningful patterns. The proposed method can be extended to other types of nonverbal cues and a variety of social categories. PMID:28339490
Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling.
Lent, Craig S; Liu, Mo; Lu, Yuhui
2006-08-28
We examine power dissipation in different clocking schemes for molecular quantum-dot cellular automata (QCA) circuits. 'Landauer clocking' involves the adiabatic transition of a molecular cell from the null state to an active state carrying data. Cell layout creates devices which allow data in cells to interact and thereby perform useful computation. We perform direct solutions of the equation of motion for the system in contact with the thermal environment and see that Landauer's Principle applies: one must dissipate an energy of at least k(B)T per bit only when the information is erased. The ideas of Bennett can be applied to keep copies of the bit information by echoing inputs to outputs, thus embedding any logically irreversible circuit in a logically reversible circuit, at the cost of added circuit complexity. A promising alternative which we term 'Bennett clocking' requires only altering the timing of the clocking signals so that bit information is simply held in place by the clock until a computational block is complete, then erased in the reverse order of computation. This approach results in ultralow power dissipation without additional circuit complexity. These results offer a concrete example in which to consider recent claims regarding the fundamental limits of binary logic scaling.
Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling
NASA Astrophysics Data System (ADS)
Lent, Craig S.; Liu, Mo; Lu, Yuhui
2006-08-01
We examine power dissipation in different clocking schemes for molecular quantum-dot cellular automata (QCA) circuits. 'Landauer clocking' involves the adiabatic transition of a molecular cell from the null state to an active state carrying data. Cell layout creates devices which allow data in cells to interact and thereby perform useful computation. We perform direct solutions of the equation of motion for the system in contact with the thermal environment and see that Landauer's Principle applies: one must dissipate an energy of at least kBT per bit only when the information is erased. The ideas of Bennett can be applied to keep copies of the bit information by echoing inputs to outputs, thus embedding any logically irreversible circuit in a logically reversible circuit, at the cost of added circuit complexity. A promising alternative which we term 'Bennett clocking' requires only altering the timing of the clocking signals so that bit information is simply held in place by the clock until a computational block is complete, then erased in the reverse order of computation. This approach results in ultralow power dissipation without additional circuit complexity. These results offer a concrete example in which to consider recent claims regarding the fundamental limits of binary logic scaling.
Materials Science Research Rack Onboard the International Space Station
NASA Technical Reports Server (NTRS)
Reagan, Shawn E.; Lehman, John R.; Frazier, Natalie C.
2014-01-01
The Materials Science Research Rack (MSRR) is a highly automated facility developed in a joint venture/partnership between NASA and ESA center dot Allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses onboard the International Space Station (ISS) center dot Multi-user facility for high temperature materials science research center dot Launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module ?Research goals center dot Provide means of studying materials processing in space to develop a better understanding of the chemical and physical mechanisms involved center dot Benefit materials science research via the microgravity environment of space where the researcher can better isolate the effects of gravity during solidification on the properties of materials center dot Use the knowledge gained from experiments to make reliable predictions about conditions required on Earth to achieve improved materials
Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes
NASA Astrophysics Data System (ADS)
Peng, Zhuoyin; Liu, Yueli; Wu, Lei; Zhao, Yinghan; Chen, Keqiang; Chen, Wen
2016-12-01
Surface states are significant factor for the enhancement of electrochemical performance in CuInS2 quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S2- ligand capped CuInS2 quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S2- ligand enhances the UV-vis absorption and electron-hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S2- ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S2--capped CuInS2 quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.
NASA Astrophysics Data System (ADS)
Carlotti, G.; Madami, M.; Gubbiotti, G.; Tacchi, S.
2014-02-01
Sub-200 nm patterned magnetic dots are key elements for the design of magnetic switches, memory cells or elementary units of nanomagnetic logic circuits. In this paper, we analyse by micromagnetic simulations the magnetization reversal, the dissipated energy and the excited spin eigenmodes in bistable magnetic switches, consisting of elliptical nanodots with 100×60 nm lateral dimensions. Two different strategies for reversal are considered and the relative results compared: (i) the irreversible switching obtained by the application of an external field along the easy axis, in the direction opposite to the initial magnetization; (ii) the precessional switching accomplished by the application of a short magnetic field pulse, oriented perpendicular to the initial magnetization direction. The obtained results are discussed in terms of deviation from the macrospin behavior, energy dissipation and characteristics of the spectrum of spin eigenmodes excited during the magnetization reversal process.
Validity and feasibility of the EMG direct observation tool (EMG-DOT).
Leep Hunderfund, Andrea N; Rubin, Devon I; Laughlin, Ruple S; Sorenson, Eric J; Watson, James C; Jones, Lyell K; Juul, Dorthea; Park, Yoon Soo
2016-04-26
To develop a new workplace-based EMG direct observation tool (EMG-DOT) and gather validity evidence supporting its use for assessing electrodiagnostic skills among postgraduate medical trainees. The EMG-DOT was developed by experts using an iterative process. Validity evidence from content, response process, internal structure, relations to other variables, and consequences of testing was collected during the 2013-2014 academic year. Of 3,412 studies performed by trainees during the study period, 299 (9%) were assessed using the EMG-DOT. Of these, 203 (68%) involved a physician rater and 96 (32%) involved a technician rater. The 14-item EMG-DOT had excellent internal-consistency reliability (Cronbach α 0.94). Correlations between individual items and criterion-referenced global ratings of performance ranged from 0.36 to 0.72 (all p < 0.001). Mean total scores increased from 70% to 80% over 4 months of the EMG rotation (p < 0.001) despite a corresponding significant increase in case complexity (0.21-0.74 on a 3-point rating scale; p < 0.001). Trainees reported that the observational assessment exercise improved their knowledge or skills in 82% of encounters (188/230) and that feedback generated by the EMG-DOT improved the quality of care provided to patients in 58% (133/230). Trainees were "satisfied" or "very satisfied" with the observational assessment exercise in 96% of encounters (234/243). This study provides validity evidence supporting the use of EMG-DOT scores to assess electrodiagnostic skills of residents and fellows. The EMG-DOT can be used to inform milestone-based assessments of trainee performance in neurology, child neurology, physical medicine and rehabilitation, neuromuscular, and clinical neurophysiology training programs. © 2016 American Academy of Neurology.
Calibration factors handbook : safety prediction models calibrated with Texas highway system.
DOT National Transportation Integrated Search
2009-10-01
Highway safety is an ongoing concern to the Texas Department of Transportation (TxDOT). As part of its : proactive commitment to improving highway safety, TxDOT is moving toward including quantitative safety : analyses earlier in the project developm...
Clarus success stories : using Clarus data to improve operations
DOT National Transportation Integrated Search
2010-06-25
Since Clarus was introduced in 2004, interest in and use of the system has increased substantially. By May 31, 2009, 33 state departments of transportation (DOT), three local DOTs, and three Canadian provinces were contributing their Road Weather Inf...
Dundalk area truck impact study : final project report
DOT National Transportation Integrated Search
2006-11-01
The Baltimore City DOT requested the U.S. DOTs John A. Volpe National Transportation : Systems Center (Volpe Center) to assist the City in improving residents quality of life and the : ease of businesses in moving freight in and through the far...
Framework for development of TxDOT construction inspector training program.
DOT National Transportation Integrated Search
2017-02-01
To meet the need for a larger number of inspectors and to improve the experience and knowledge level on inspectors, the Texas Department of Transportation (TxDOT) is reviewing construction inspector training needs and training programs that are avail...
Implementing benchmarking recommendations in the Offices of Construction for the Iowa DOT
DOT National Transportation Integrated Search
1998-01-01
The Iowa DOT's Offices of Construction are seeking ways to use benchmarking, the concepts of quality management, and outside facilitation to improve their methods and processes. Iowa State University researchers and the Offices of Construction Benchm...
Single-molecule quantum dot as a Kondo simulator
NASA Astrophysics Data System (ADS)
Hiraoka, R.; Minamitani, E.; Arafune, R.; Tsukahara, N.; Watanabe, S.; Kawai, M.; Takagi, N.
2017-06-01
Structural flexibility of molecule-based systems is key to realizing the novel functionalities. Tuning the structure in the atomic scale enables us to manipulate the quantum state in the molecule-based system. Here we present the reversible Hamiltonian manipulation in a single-molecule quantum dot consisting of an iron phthalocyanine molecule attached to an Au electrode and a scanning tunnelling microscope tip. We precisely controlled the position of Fe2+ ion in the molecular cage by using the tip, and tuned the Kondo coupling between the molecular spins and the Au electrode. Then, we realized the crossover between the strong-coupling Kondo regime and the weak-coupling regime governed by spin-orbit interaction in the molecule. The results open an avenue to simulate low-energy quantum many-body physics and quantum phase transition through the molecular flexibility.
Tan, Mingqian; Zhang, Lingxin; Tang, Rong; Song, Xiaojie; Li, Yimin; Wu, Hao; Wang, Yanfang; Lv, Guojun; Liu, Wanfa; Ma, Xiaojun
2013-10-15
Carbon dots (C-dots) are a class of novel fluorescent nanomaterials, which have drawn great attention for their potential applications in bio-nanotechnology. Multicolor C-dots have been synthesized by chemical nitric acid oxidation using the reproducible plant soot as raw material. TEM analysis reveals that the prepared C-dots have an average size of 3.1 nm. The C-dots are well dispersed in aqueous solution and are strongly fluorescent under the irradiation of ultra-violet light. X-ray photoelectron spectroscopy characterization demonstrates that the O/C atomic ratio for C-dots change to from 0.207 to 0.436 due to the chemical oxidation process. The photo bleaching experiment reveals that the C-dots show excellent photostability as compared with the conventional organic dyes, fluorescein and rhodamine B. The fluorescence intensity of the C-dots did not change significantly in the pH range of 3-10. To further enhance the fluorescence quantum yield, the C-dots were surface modified with four types of passivation ligands, 4,7,10-trioxa-1,13-tridecanediamine (TTDDA), poly-L-lysine (PLL), cysteine and chitosan and the fluorescence quantum yields of the TTDDA, PLL, cysteine and chitosan passivated C-dots were improved 1.53-, 5.94-, 2.00- and 3.68-fold, respectively. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The bio-application of the C-dots as fluorescent bio-probes was evaluated in cell imaging and ex vivo fish imaging, which suggests that the C-dots may have potential applications in biolabeling and bioimaging. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhang, Quanxin; Zhang, Geping; Sun, Xiaofeng; Yin, Keyang; Li, Hongguang
2017-05-31
Dye-sensitized solar cells (DSSCs) are highly promising since they can potentially solve global energy issues. The development of new photosensitizers is the key to fully realizing perspectives proposed to DSSCs. Being cheap and nontoxic, carbon quantum dots (CQDs) have emerged as attractive candidates for this purpose. However, current methodologies to build up CQD-sensitized solar cells (CQDSCs) result in an imperfect apparatus with extremely low power conversion efficiencies (PCEs). Herein, we present a simple strategy of growing carbon quantum dots (CQDs) onto TiO₂ surfaces in situ. The CQDs/TiO₂ hybridized photoanode was then used to construct solar cell with an improved PCE of 0.87%, which is higher than all of the reported CQDSCs adopting the simple post-adsorption method. This result indicates that an in situ growing strategy has great advantages in terms of optimizing the performance of CQDSCs. In addition, we have also found that the mechanisms dominating the performance of CQDSCs are different from those behind the solar cells using inorganic semiconductor quantum dots (ISQDs) as the photosensitizers, which re-confirms the conclusion that the characteristics of CQDs differ from those of ISQDs.
A Nanowire-Based Plasmonic Quantum Dot Laser.
Ho, Jinfa; Tatebayashi, Jun; Sergent, Sylvain; Fong, Chee Fai; Ota, Yasutomo; Iwamoto, Satoshi; Arakawa, Yasuhiko
2016-04-13
Quantum dots enable strong carrier confinement and exhibit a delta-function like density of states, offering significant improvements to laser performance and high-temperature stability when used as a gain medium. However, quantum dot lasers have been limited to photonic cavities that are diffraction-limited and further miniaturization to meet the demands of nanophotonic-electronic integration applications is challenging based on existing designs. Here we introduce the first quantum dot-based plasmonic laser to reduce the cross-sectional area of nanowire quantum dot lasers below the cutoff limit of photonic modes while maintaining the length in the order of the lasing wavelength. Metal organic chemical vapor deposition grown GaAs-AlGaAs core-shell nanowires containing InGaAs quantum dot stacks are placed directly on a silver film, and lasing was observed from single nanowires originating from the InGaAs quantum dot emission into the low-loss higher order plasmonic mode. Lasing threshold pump fluences as low as ∼120 μJ/cm(2) was observed at 7 K, and lasing was observed up to 125 K. Temperature stability from the quantum dot gain, leading to a high characteristic temperature was demonstrated. These results indicate that high-performance, miniaturized quantum dot lasers can be realized with plasmonics.
Goswami, Prasenjit N; Mandal, Debranjan; Rath, Arup K
2018-01-18
Surface chemistry plays a crucial role in determining the electronic properties of quantum dot solids and may well be the key to mitigate loss processes involved in quantum dot solar cells. Surface ligands help to maintain the shape and size of the individual dots in solid films, to preserve the clean energy band gap of the individual particles and to control charge carrier conduction across solid films, in turn regulating their performance in photovoltaic applications. In this report, we show that the changes in size, shape and functional groups of small chain organic ligands enable us to modulate mobility, dielectric constant and carrier doping density of lead sulfide quantum dot solids. Furthermore, we correlate these results with performance, stability and recombination processes in the respective photovoltaic devices. Our results highlight the critical role of surface chemistry in the electronic properties of quantum dots. The role of the size, functionality and the surface coverage of the ligands in determining charge transport properties and the stability of quantum dot solids have been discussed. Our findings, when applied in designing new ligands with higher mobility and improved passivation of quantum dot solids, can have important implications for the development of high-performance quantum dot solar cells.
Yang, Yuzhao; Lin, Xiaofeng; Li, Wenlang; Ou, Jiemei; Yuan, Zhongke; Xie, Fangyan; Hong, Wei; Yu, Dingshan; Ma, Yuguang; Chi, Zhenguo; Chen, Xudong
2017-05-03
Cathode interlayers (CILs) with low-cost, low-toxicity, and excellent cathode modification ability are necessary for the large-scale industrialization of polymer solar cells (PSCs). In this contribution, we demonstrated one-pot synthesized carbon quantum dots (C-dots) with high production to serve as efficient CIL for inverted PSCs. The C-dots were synthesized by a facile, economical microwave pyrolysis in a household microwave oven within 7 min. Ultraviolet photoelectron spectroscopy (UPS) studies showed that the C-dots possessed the ability to form a dipole at the interface, resulting in the decrease of the work function (WF) of cathode. External quantum efficiency (EQE) measurements and 2D excitation-emission topographical maps revealed that the C-dots down-shifted the high energy near-ultraviolet light to low energy visible light to generate more photocurrent. Remarkably improvement of power conversion efficiency (PCE) was attained by incorporation of C-dots as CIL. The PCE was boosted up from 4.14% to 8.13% with C-dots as CIL, which is one of the best efficiency for i-PSCs used carbon based materials as interlayers. These results demonstrated that C-dots can be a potential candidate for future low cost and large area PSCs producing.
Medina Ramos, Jonnathan; Zhang, Weiwei; Yoon, Kichul; ...
2018-03-08
Bismuth electrodes undergo distinctive electrochemically induced structural changes in nonaqueous imidazolium ([Im])(+))-based ionic liquid solutions under cathodic polarization. In situ X-ray reflectivity (XR) studies have been undertaken to probe well-ordered Bi (001) films which originally contain a native Bi 2O 3 layer. This oxide layer gets reduced to Bi(0)during the first cyclic voltammetry (CV) scan in acetonitrile solutions containing 1-butyl-3-methylimidazolium ([BMIM](+)) electrolytes. Approximately 60% of the Bi (001) Bragg peak reflectivity is lost during a potential sweep between -1.5 and -1.9 V vs Ag/AgCI due to a similar to 4-10% thinning and a similar to 40% decrease in lateral sizemore » of Bi (001) domains, which are mostly reversed during the anodic scan. Repeated potential cycling enhances the thinning and roughening of the films, suggesting that partial dissolution of Bi ensues during negative polarization. The mechanism of this behavior is understood through molecular dynamics simulations using ReaxFF and density functional theory (DFT) calculations. Both approaches indicate that [Im] + cations bind to the metal surface more strongly than tetrabutylammonium (TBA +) as the potential and the charge on the Bi surface become more negative. ReaxFF simulations predict a higher degree of disorder for a negatively charged Bi (001) slab in the presence of the [Im](+)cations and substantial migration of Bi atoms from the surface. DFT simulations show the formation of Bi center dot center dot center dot[Im] + complexes that lead to the dissolution of Bi atoms from step edges on the Bi (001) surface at potentials between -1.65 and -1.95 V. Bi desorption from a flat terrace requires a potential of approximately -2.25 V. Together, these results suggest the formation of a Bi center dot center dot center dot[Im] + complex through partial cathodic corrosion of the Bi film under conditions (potential and electrolyte composition) that favor the catalytic reduction of CO 2 .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina Ramos, Jonnathan; Zhang, Weiwei; Yoon, Kichul
Bismuth electrodes undergo distinctive electrochemically induced structural changes in nonaqueous imidazolium ([Im])(+))-based ionic liquid solutions under cathodic polarization. In situ X-ray reflectivity (XR) studies have been undertaken to probe well-ordered Bi (001) films which originally contain a native Bi 2O 3 layer. This oxide layer gets reduced to Bi(0)during the first cyclic voltammetry (CV) scan in acetonitrile solutions containing 1-butyl-3-methylimidazolium ([BMIM](+)) electrolytes. Approximately 60% of the Bi (001) Bragg peak reflectivity is lost during a potential sweep between -1.5 and -1.9 V vs Ag/AgCI due to a similar to 4-10% thinning and a similar to 40% decrease in lateral sizemore » of Bi (001) domains, which are mostly reversed during the anodic scan. Repeated potential cycling enhances the thinning and roughening of the films, suggesting that partial dissolution of Bi ensues during negative polarization. The mechanism of this behavior is understood through molecular dynamics simulations using ReaxFF and density functional theory (DFT) calculations. Both approaches indicate that [Im] + cations bind to the metal surface more strongly than tetrabutylammonium (TBA +) as the potential and the charge on the Bi surface become more negative. ReaxFF simulations predict a higher degree of disorder for a negatively charged Bi (001) slab in the presence of the [Im](+)cations and substantial migration of Bi atoms from the surface. DFT simulations show the formation of Bi center dot center dot center dot[Im] + complexes that lead to the dissolution of Bi atoms from step edges on the Bi (001) surface at potentials between -1.65 and -1.95 V. Bi desorption from a flat terrace requires a potential of approximately -2.25 V. Together, these results suggest the formation of a Bi center dot center dot center dot[Im] + complex through partial cathodic corrosion of the Bi film under conditions (potential and electrolyte composition) that favor the catalytic reduction of CO 2 .« less
Development of a Quantum Dot, 0.6 eV InGaAs Thermophotovoltaic (TPV) Converter
NASA Technical Reports Server (NTRS)
Forbes, David; Sinharoy, Samar; Raffalle, Ryne; Weizer, Victor; Homann, Natalie; Valko, Thomas; Bartos,Nichole; Scheiman, David; Bailey, Sheila
2007-01-01
Thermophotovoltaic (TPV) power conversion has to date demonstrated conversion efficiencies exceeding 20% when coupled to a heat source. Current III-V semiconductor TPV technology makes use of planar devices with bandgaps tailored to the heat source. The efficiency can be improved further by increasing the collection efficiency through the incorporation of InAs quantum dots. The use of these dots can provide sub-gap absorption and thus improve the cell short circuit current without the normal increase in dark current associated with lowering the bandgap. We have developed self-assembled InAs quantum dots using the Stranski-Krastanov growth mode on 0.74 eV In0.53GaAs lattice-matched to InP and also on lattice-mismatched 0.6 eV In0.69GaAs grown on InP through the use of a compositionally graded InPAsx buffer structure, by metalorganic vapor phase epitaxy (MOVPE). Atomic force microscopy (AFM) measurements showed that the most reproducible dot pattern was obtained with 5 monolayers of InAs grown at 450 C. The lattice mismatch between InAs and In0.69GaAs is only 2.1%, compared to 3.2% between InAs and In0.53GaAs. The smaller mismatch results in lower strain, making dot formation somewhat more complicated, resulting in quantum dashes, rather than well defined quantum dots in the lattice-mismatched case. We have fabricated 0.6 eV InGaAs planer TPV cells with and without the quantum dashes
Han, Zhi-zhong; Ren, Li-li; Pan, Hai-bo; Li, Chun-yan; Chen, Jing-hua; Chen, Jian-zhong
2015-11-01
In this work, cadmium nitrate hexahydrate [Cd(NO₃)₂ · 6H₂O] is as a source of cadmium, zinc nitrate [Zn(NO₃)₂] as a source of zinc source, and NaHSe as a source of selenium which was prepared through reducing the elemental selenium with sodium borohydride (NaBH₄). Then water-soluble Cd₁₋xZnxSe ternary quantum dots with different component were prepared by colloid chemistry. The as-prepared Cd₁₋xZnx Se ternary quantum dots exhibit stable fluorescent property in aqueous solution, and can still maintain good dispersivity at room temperature for four months. Powder X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM) were used to analyze crystal structure and morphology of the prepared Cd₁₋xZnxSe. It is found that the as-prepared ternary quantum dots are cubic phase, show as sphere, and the average of particle size is approximate 4 nm. The spectral properties and energy band structure of the as-prepared ternary quantum dots were modulated through changing the atom ratio of elements Zn and Cd. Compared with binary quantum dots CdSe and ZnSe, the ultraviolet-visible (UV-Visible) absorption spectrum and fluorescence (FL) emission spectrum of ternary quantum dots are both red-shift. The composites (Cd₀.₅ Zn₀.₅ Se@TNTs) of Cd₀.₅ Zn₀.₅ Se ternary quantum dots and TiO₂ nanotubes (TNTs) were prepared by directly immerging TNTs into quantum dots dispersive solution for 5 hours. TEM image shows that the Cd₀.₅ Zn₀.₅ Se ternary quantum dots were closely combined to nanotube surface. The infrared spectra show that the Ti-Se bond was formed between Cd₀.₅ Zn₀.₅ Se ternary quantum dots and TiO₂ nanotubes, which improve the stability of the composite. Compared to pristine TNTs, UV-Visible absorption spectrum of the composites is significantly enhanced in the visible region of light. And the absorption band edge of Cd₀.₅Zn₀.₅ Se@TNTs red-shift from 400 to 700 nm. The recombination of the photogenerated electron-hole pairs was restrained with the as-prepared ternary quantum dots. Therefore, the visible-light photocatalytic efficiency was greatly improved. After visible-light irradiation for 60 min, the degradation of Cd₀.₅ Zn₀.₅ Se@TNTs photocatalysts for RhB is nearly 100%, which is about 3. 3 times of that of pristine TNTs and 2. 5 times of that of pure Cd₀.₅ Zn₀.₅ Se ternary quantum dots, respectively.
What is the limit to case detection under the DOTS strategy for tuberculosis control?
Dye, Christopher; Watt, Catherine J; Bleed, Daniel M; Williams, Brian G
2003-01-01
In year 2000, the WHO DOTS strategy for tuberculosis (TB) control had been adopted by 148 out of 212 countries, but only 27% of all estimated sputum smear-positive patients were notified under DOTS in that year. Here we investigate the way in which gains in case detection under DOTS were made up until 2000 in an attempt to anticipate future progress towards the global target of 70% case detection. The analysis draws on annual reports of DOTS geographical coverage and case notifications, and focuses on the 22 high-burden countries (HBCs) that account for about 80% of new TB cases arising globally each year. Our principal observation is that, as TB programmes in the 22 HBCs have expanded geographically, the fraction of the estimated number of sputum smear-positive cases detected within designated DOTS areas has remained constant at 40-50% although there are significant differences between countries. This fraction is about the same as the percentage of all smear-positive cases notified annually to WHO via public health systems worldwide. The implication is that, unless the DOTS strategy can reach beyond traditional public health reporting systems, or unless these systems can be improved, case detection will not rise much above 40% in the 22 HBCs, or in the world as a whole, even when the geographical coverage of DOTS is nominally 100%. We estimate that, under full DOTS coverage, three-quarters of the undetected smear-positive cases will be living in India, China, Indonesia, Nigeria, Bangladesh and Pakistan. But case detection could also remain low in countries with smaller populations: in year 2000, over half of all smear-positive TB cases were living in 49 countries that detected less than 40% of cases within DOTS areas. Substantial efforts are therefore needed (a) to develop new case finding and management methods to bridge the gap between current and target case detection, and (b) to improve the accuracy of national estimates of TB incidence, above all by reinforcing and expanding routine surveillance.
DOT National Transportation Integrated Search
1999-11-01
The program implements DOT Human Factors Coordinating Committee (HFCC) recommendations for a coordinated Departmental Human Factors Research Program to advance the human-centered systems approach for enhancing transportation safety. Human error is a ...
2008-12-31
component hybrid nanocrystals constituting pentacene or single wall carbon nanotube (SWCNT) as well as through control of interfacial chemistry and linkage...nanotubes-quantum dot conjugates or pentacene -quantum dot composits into organic matrices significantly improved photoconductivity of polymer/nanocrystal
Im, Sang Hyuk; Lee, Yong Hui; Seok, Sang Il; Kim, Sung Woo; Kim, Sang-Wook
2010-12-07
We were able to attach CdSe quantum dots (QDs) having a ZnS inorganic glue layer directly to a mesoporous TiO(2) (mp-TiO(2)) surface by spray coating and thermal annealing. Quantum-dot-sensitized solar cells based on CdSe QDs having ZnS as the inorganic glue layer could easily transport generated charge carriers because of the intimate bonding between CdSe and mp-TiO(2). The application of spray pyrolysis deposition (SPD) to obtain additional CdSe layers improved the performance characteristics to V(oc) = 0.45 V, J(sc) = 10.7 mA/cm(2), fill factor = 35.8%, and power conversion efficiency = 1.7%. Furthermore, ZnS post-treatment improved the device performance to V(oc) = 0.57 V, J(sc) = 11.2 mA/cm(2), fill factor = 35.4%, and power conversion efficiency = 2.2%.
Microcomputer Selection Guide for Construction Field Offices. Revision.
1984-09-01
the system, and the monitor displays information on a video display screen. Microcomputer systems today are available in a variety of configura- tions...background. White on black monitors report- edly caule more eye fatigue, while amber is reported to cause the least eye fatigue. Reverse video ...The video should be amber or green display with a resolution of at least 640 x 200 dots per in. Additional features of the monitor include an
Bandgap engineered reverse type-I CdTe/InP/ZnS core-shell nanocrystals for the near-infrared.
Kim, Sunghoon; Shim, Wooyoung; Seo, Heonjin; Hyun Bae, Je; Sung, Jaeyoung; Choi, Seung Hong; Moon, Woo Kyung; Lee, Gwang; Lee, Bunyeoul; Kim, Sang-Wook
2009-03-14
New quantum dots were fabricated with a core/shell/shell structure consisting of CdTe core/InP shell/ZnS shell of which the InP shell causes a red-shift to the NIR region and the ZnS shell imparts photo-stability; toxicity tests on mammalian cells and NIR imaging of a mouse highlight their potential applications in biomedical imaging.
Yen, Y-F.; Rodwell, T. C.; Yen, M-Y.; Shih, H-C.; Hu, B-S.; Li, L-H.; Shie, Y-H.; Chuang, P.; Garfein, R. S.
2012-01-01
OBJECTIVE To determine whether patients receiving directly observed treatment (DOT) had lower all-cause mortality than those treated with self-administered treatment (SAT) and to identify factors associated with mortality among tuberculosis (TB) patients. DESIGN All TB patients in Taipei, Taiwan, diagnosed between 2006 and 2008 were included in a retrospective cohort study. RESULTS Among 3624 TB patients, 45.5% received DOT, which was disproptionately offered to older patients and those with more underlying illness and severe TB disease. After controlling for patient sociodemographic factors, clinical findings and underlying comorbidities, the odds of death was 40% lower (aOR 0.60, 95%CI 0.5–0.8) among patients treated with DOT than those on SAT. After adjusting for DOT, independent predictors of death included non-Taiwan birth, increasing age, male, unemployment, end-stage renal disease requiring dialysis, malignancy, acid-fast bacilli smear positivity and pleural effusion. CONCLUSION DOT was associated with lower all-cause mortality after controlling for confounding factors. DOT should be expanded in Taiwan to improve critical treatment outcomes among TB patients. PMID:22236917
Photoacoustic tomography guided diffuse optical tomography for small-animal model
NASA Astrophysics Data System (ADS)
Wang, Yihan; Gao, Feng; Wan, Wenbo; Zhang, Yan; Li, Jiao
2015-03-01
Diffuse optical tomography (DOT) is a biomedical imaging technology for noninvasive visualization of spatial variation about the optical properties of tissue, which can be applied to in vivo small-animal disease model. However, traditional DOT suffers low spatial resolution due to tissue scattering. To overcome this intrinsic shortcoming, multi-modal approaches that incorporate DOT with other imaging techniques have been intensively investigated, where a priori information provided by the other modalities is normally used to reasonably regularize the inverse problem of DOT. Nevertheless, these approaches usually consider the anatomical structure, which is different from the optical structure. Photoacoustic tomography (PAT) is an emerging imaging modality that is particularly useful for visualizing lightabsorbing structures embedded in soft tissue with higher spatial resolution compared with pure optical imaging. Thus, we present a PAT-guided DOT approach, to obtain the location a priori information of optical structure provided by PAT first, and then guide DOT to reconstruct the optical parameters quantitatively. The results of reconstruction of phantom experiments demonstrate that both quantification and spatial resolution of DOT could be highly improved by the regularization of feasible-region information provided by PAT.
Acute Effects of Plyometric and Resistance Training on Running Economy in Trained Runners.
Marcello, Richard T; Greer, Beau K; Greer, Anna E
2017-09-01
Marcello, RT, Greer, BK, and Greer, AE. Acute effects of plyometric and resistance training on running economy in trained runners. J Strength Cond Res 31(9): 2432-2437, 2017-Results regarding the acute effects of plyometrics and resistance training (PRT) on running economy (RE) are conflicting. Eight male collegiate distance runners (21 ± 1 years, 62.5 ± 7.8 ml·kg·min V[Combining Dot Above]O2 peak) completed V[Combining Dot Above]O2 peak and 1 repetition maximum (1RM) testing. Seven days later, subjects completed a 12 minutes RE test at 60 and 80% V[Combining Dot Above]O2 peak, followed by a PRT protocol or a rested condition of equal duration (CON). The PRT protocol consisted of 3 sets of 5 repetitions at 85% 1RM for barbell squats, Romanian deadlifts, and barbell lunges; the same volume was used for resisted lateral lunges, box jumps, and depth jumps. Subjects completed another RE test immediately after the treatments and 24 hours later. Subjects followed an identical protocol 6 days later with condition assignment reversed. Running economy was determined by both relative V[Combining Dot Above]O2 (ml·kg·min) and energy expenditure (EE) (kcal·min). There was a significant (p ≤ 0.05) between-trial increase in V[Combining Dot Above]O2 (37.1 ± 4.2 ml·kg·min PRT vs. 35.5 ± 3.9 ml·kg·min CON) and EE (11.4 ± 1.3 kcal·min PRT vs. 11.0 ± 1.4 kcal·min CON) immediately after PRT at 60% V[Combining Dot Above]O2 peak, but no significant changes were observed at 80% V[Combining Dot Above]O2 peak. Respiratory exchange ratio was significantly (p ≤ 0.05) reduced 24 hours after PRT (0.93 ± 0.0) as compared to the CON trial (0.96 ± 0.0) at 80% V[Combining Dot Above]O2 peak. Results indicate that high-intensity PRT may acutely impair RE in aerobically trained individuals at a moderate running intensity, but that the attenuation lasts less than 24 hours in duration.
Benefit/cost evaluation of MoDOT's total striping and delineation program : phase II.
DOT National Transportation Integrated Search
2011-06-01
In 2005 and 2006, the Missouri Department of Transportation (MoDOT) undertook a major program, known as the Smooth Roads Initiative (SRI), to improve both the rideability and the visibility of over 2,300 mi of major roadways in Missouri. MRIGlobal pr...
Improving lab compaction specifications for flexible bases within the Texas DOT.
DOT National Transportation Integrated Search
2009-04-01
In Test Methods Tex-113-E and Tex-114-E, the Texas Department of Transportation (TxDOT) employs an impact hammer method of sample compaction for laboratory preparation of road base and subgrade materials for testing. In this third and final report do...
DOT National Transportation Integrated Search
2011-10-01
The objective of this project was to develop fleet location, route decision, material selection, and treatment procedures for winter snow removal operations to improve MoDOTs services and lower costs. This work uses a systematic, heuristic-based o...
Kuo, Wen-Shuo; Chen, Hua-Han; Chen, Shih-Yao; Chang, Chia-Yuan; Chen, Pei-Chi; Hou, Yung-I; Shao, Yu-Ting; Kao, Hui-Fang; Lilian Hsu, Chih-Li; Chen, Yi-Chun; Chen, Shean-Jen; Wu, Shang-Rung; Wang, Jiu-Yao
2017-03-01
Reactive oxygen species is the main contributor to photodynamic therapy. The results of this study show that a nitrogen-doped graphene quantum dot, serving as a photosensitizer, was capable of generating a higher amount of reactive oxygen species than a nitrogen-free graphene quantum dot in photodynamic therapy when photoexcited for only 3 min of 670 nm laser exposure (0.1 W cm -2 ), indicating highly improved antimicrobial effects. In addition, we found that higher nitrogen-bonding compositions of graphene quantum dots more efficiently performed photodynamic therapy actions than did the lower compositions that underwent identical treatments. Furthermore, the intrinsically emitted luminescence from nitrogen-doped graphene quantum dots and high photostability simultaneously enabled it to act as a promising contrast probe for tracking and localizing bacteria in biomedical imaging. Thus, the dual modality of nitrogen-doped graphene quantum dots presents possibilities for future clinical applications, and in particular multidrug resistant bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling and simulation of InGaN/GaN quantum dots solar cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aissat, A., E-mail: sakre23@yahoo.fr; LASICOMLaboratory, Faculty of Sciences, University of Blida 1; Benyettou, F.
2016-07-25
Currently, quantum dots have attracted attention in the field of optoelectronics, and are used to overcome the limits of a conventional solar cell. Here, an In{sub 0.25}Ga{sub 0.75}N/GaN Quantum Dots Solar Cell has been modeled and simulated using Silvaco Atlas. Our results show that the short circuit current increases with the insertion of the InGaN quantum dots inside the intrinsic region of a GaN pin solar cell. In contrary, the open circuit voltage decreases. A relative optimization of the conversion efficiency of 54.77% was achieved comparing a 5-layers In{sub 0.25}Ga{sub 0.75}N/GaN quantum dots with pin solar cell. The conversion efficiencymore » begins to decline beyond 5-layers quantum dots introduced. Indium composition of 10 % improves relatively the efficiency about 42.58% and a temperature of 285 K gives better conversion efficiency of 13.14%.« less
NASA Astrophysics Data System (ADS)
Kumara, K.; Shetty, T. C. S.; Patil, P. S.; Maidur, Shivaraj R.; Dharmaprakash, S. M.
2018-04-01
Graphene quantum dots (GQDs) have drawn more attention due to their multifunctional characteristics which can be used for various applications. However, literature on nonlinear optical (NLO) properties of GQDs is scarcely available. Therefore more investigations are required on NLO properties of GQDs. We report preparation of GQDs from pyrolysis method using citric acid as starting material. Third order nonlinear optical (TNLO) properties are studied using Z-scan technique employing continuous wavelength laser. Study reveals that GQD's show self defocusing effect. This is due to thermal heating of solvent which leads to negative nonlinear refractive index of the material. Open aperture (OA) Z-scan reveals reverse saturation absorption (RSA) nature of the material indicating optical limiting (OL) property. A broad UV absorbance spectrum reveals photoluminescence (PL) emission of the material which is independent of excitation wavelength.
Bahar, Ali Newaz; Waheed, Sajjad
2016-01-01
The fundamental logical element of a quantum-dot cellular automata (QCA) circuit is majority voter gate (MV). The efficiency of a QCA circuit is depends on the efficiency of the MV. This paper presents an efficient single layer five-input majority voter gate (MV5). The structure of proposed MV5 is very simple and easy to implement in any logical circuit. This proposed MV5 reduce number of cells and use conventional QCA cells. However, using MV5 a multilayer 1-bit full-adder (FA) is designed. The functional accuracy of the proposed MV5 and FA are confirmed by QCADesigner a well-known QCA layout design and verification tools. Furthermore, the power dissipation of proposed circuits are estimated, which shows that those circuits dissipate extremely small amount of energy and suitable for reversible computing. The simulation outcomes demonstrate the superiority of the proposed circuit.
Quantum interference effect in electron tunneling through a quantum-dot-ring spin valve
2011-01-01
Spin-dependent transport through a quantum-dot (QD) ring coupled to ferromagnetic leads with noncollinear magnetizations is studied theoretically. Tunneling current, current spin polarization and tunnel magnetoresistance (TMR) as functions of the bias voltage and the direct coupling strength between the two leads are analyzed by the nonequilibrium Green's function technique. It is shown that the magnitudes of these quantities are sensitive to the relative angle between the leads' magnetic moments and the quantum interference effect originated from the inter-lead coupling. We pay particular attention on the Coulomb blockade regime and find the relative current magnitudes of different magnetization angles can be reversed by tuning the inter-lead coupling strength, resulting in sign change of the TMR. For large enough inter-lead coupling strength, the current spin polarizations for parallel and antiparallel magnetic configurations will approach to unit and zero, respectively. PACS numbers: PMID:21711779
Singh, Akash Ranjan; Pakhare, Abhijit; Kokane, Arun M; Shewade, Hemant Deepak; Chauhan, Ashish; Singh, Abhishek; Gangwar, Arti; Thakur, Prahlad Singh
2017-12-01
Community-based direct observed treatment (DOT) providers are an important bridge for the national tuberculosis programme in India to reach the unreached. The present study has explored the knowledge, attitude, practice and barriers perceived by the community-based DOT providers. Mixed-methods study design was used among 41 community-based DOT providers (Accredited Social Health Activist (ASHAs)) working in 67 villages from a primary health center in Raisen district of Madhya Pradesh, India. The cross-sectional quantitative component assessed the knowledge and practices and three focus-group discussions explored the attitude and perceived barriers related to DOT provision. 'Adequate knowledge' and 'satisfactory practice' related to DOT provision was seen in 14 (34%) and 13 (32%) ASHAs respectively. Only two (5%) received any amount of honorarium for completion of DOT in last 3years. The focus-group discussions revealed unfavourable attitude; inadequate training and supervision, non-payment of honorarium, issues related to assured services after referral and patient related factors as the barriers to satisfactory practice of DOT. Study revealed inadequate knowledge and unsatisfactory practice related to DOT provision among ASHAs. Innovations addressing the perceived barriers to improve practice of DOT provision by ASHAs are urgently required. Copyright © 2017 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2012-12-01
The objective of this project is to identify, evaluate and synthesize best practices that can be implemented to minimize the effects of deicer corrosion on DOT winter : vehicles and equipment, such as design improvements, maintenance practices, and t...
DOT National Transportation Integrated Search
2016-06-01
Improving work zone road safety is an issue of great interest due to the high number of crashes observed in work : zones. Departments of Transportation (DOTs) use a variety of methods to inform drivers of upcoming work zones. One method : used by DOT...
Li, Ludong; Gu, Leilei; Lou, Zheng; Fan, Zhiyong; Shen, Guozhen
2017-04-25
Here we report the fabrication of high-performance ultraviolet photodetectors based on a heterojunction device structure in which ZnO quantum dots were used to decorate Zn 2 SnO 4 nanowires. Systematic investigations have shown their ultrahigh light-to-dark current ratio (up to 6.8 × 10 4 ), specific detectivity (up to 9.0 × 10 17 Jones), photoconductive gain (up to 1.1 × 10 7 ), fast response, and excellent stability. Compared with a pristine Zn 2 SnO 4 nanowire, a quantum dot decorated nanowire demonstrated about 10 times higher photocurrent and responsivity. Device physics modeling showed that their high performance originates from the rational energy band engineering, which allows efficient separation of electron-hole pairs at the interfaces between ZnO quantum dots and a Zn 2 SnO 4 nanowire. As a result of band engineering, holes migrate to ZnO quantum dots, which increases electron concentration and lifetime in the nanowire conduction channel, leading to significantly improved photoresponse. The enhancement mechanism found in this work can also be used to guide the design of high-performance photodetectors based on other nanomaterials. Furthermore, flexible ultraviolet photodetectors were fabricated and integrated into a 10 × 10 device array, which constitutes a high-performance flexible ultraviolet image sensor. These intriguing results suggest that the band alignment engineering on nanowires can be rationally achieved using compound semiconductor quantum dots. This can lead to largely improved device performance. Particularly for ZnO quantum dot decorated Zn 2 SnO 4 nanowires, these decorated nanowires may find broad applications in future flexible and wearable electronics.
Kawatsu, L; Sato, N; Ngamvithayapong-Yanai, J; Ishikawa, N
2013-07-01
Since 2000, the Public Health Centre (PHC) in Shinjuku, an area of Tokyo with one of the largest homeless populations in Japan, has been implementing PHC-based DOTS treatment for homeless tuberculosis (TB) patients, with much epidemiological success. Anecdotal evidence indicates that homeless patients treated under DOTS have experienced various positive changes. However, this experience has not yet been systematically analysed. To explore the changes experienced by homeless TB patients, and to discuss the possible role of PHC-based DOTS treatment in effecting these changes. A qualitative study via in-depth interviews with 18 ex-homeless patients who completed DOTS-based treatment at Shinjuku City PHC. The data were analysed using the interpretive content analysis method. The various changes experienced by the participants were categorised into five sub-categories of empowerment, including improved mental health and interpersonal relationships. Some of these changes were attributable to the participants undergoing PHC-based DOTS, which, by addressing their various emotional needs, helped to trigger patient empowerment. Based on our findings, a model of empowerment using PHC-based DOTS was constructed. PHC-based DOTS not only successfully controlled TB, it also empowered homeless patients by addressing their emotional needs. The interpersonal skills of the nurses played a critical role in this process.
Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices.
Moyen, Eric; Kanwat, Anil; Cho, Sinyoung; Jun, Haeyeon; Aad, Roy; Jang, Jin
2018-05-10
Perovskite quantum dots have recently emerged as a promising light source for optoelectronic applications. However, integrating them into devices while preserving their outstanding optical properties remains challenging. Due to their ionic nature, perovskite quantum dots are extremely sensitive and degrade on applying the simplest processes. To maintain their colloidal stability, they are surrounded by organic ligands; these prevent efficient charge carrier injection in devices and have to be removed. Here we report on a simple method, where a moderate thermal process followed by exposure to UV in air can efficiently remove ligands and increase the photo-luminescence of the room temperature synthesized perovskite quantum dot thin films. Annealing is accompanied by a red shift of the emission wavelength, usually attributed to the coalescence and irreversible degradation of the quantum dots. We show that it is actually related to the relaxation of the quantum dots upon the ligand removal, without the creation of non-radiative recombining defects. The quantum dot surface, as devoid of ligands, is subsequently photo-oxidized and smoothened upon exposure to UV in air, which drastically enhances their photo-luminescence. This adequate combination of treatments improves by more than an order of magnitude the performances of perovskite quantum dot light emitting diodes.
Perspective: The future of quantum dot photonic integrated circuits
NASA Astrophysics Data System (ADS)
Norman, Justin C.; Jung, Daehwan; Wan, Yating; Bowers, John E.
2018-03-01
Direct epitaxial integration of III-V materials on Si offers substantial manufacturing cost and scalability advantages over heterogeneous integration. The challenge is that epitaxial growth introduces high densities of crystalline defects that limit device performance and lifetime. Quantum dot lasers, amplifiers, modulators, and photodetectors epitaxially grown on Si are showing promise for achieving low-cost, scalable integration with silicon photonics. The unique electrical confinement properties of quantum dots provide reduced sensitivity to the crystalline defects that result from III-V/Si growth, while their unique gain dynamics show promise for improved performance and new functionalities relative to their quantum well counterparts in many devices. Clear advantages for using quantum dot active layers for lasers and amplifiers on and off Si have already been demonstrated, and results for quantum dot based photodetectors and modulators look promising. Laser performance on Si is improving rapidly with continuous-wave threshold currents below 1 mA, injection efficiencies of 87%, and output powers of 175 mW at 20 °C. 1500-h reliability tests at 35 °C showed an extrapolated mean-time-to-failure of more than ten million hours. This represents a significant stride toward efficient, scalable, and reliable III-V lasers on on-axis Si substrates for photonic integrate circuits that are fully compatible with complementary metal-oxide-semiconductor (CMOS) foundries.
Depth from Edge and Intensity Based Stereo.
1982-09-01
a Mars Viking vehicle, and a random dotted coffee jar. Assessment of the algorithm is a bit difficult: it uses a fairly simple control structure with...correspondences. This use of an evaluation function estimator allowed the introduction of the extensive pruning of a branch and bound algorithm. Even with it...Figure 3-6). This is the edge reversal constraint, and was integral to the pruning . As it happens, this same constraint is the key to the use of the
NASA Astrophysics Data System (ADS)
Dewey, S.; Morison, J.; Kwok, R.; Dickinson, S.; Morison, D.; Andersen, R.
2017-12-01
Model and sparse observational evidence has shown the ocean current speed in the Beaufort Gyre to have increased and recently stabilized. However, full-basin altimetric observations of dynamic ocean topography (DOT) and ocean surface currents have yet to be applied to the dynamics of gyre stabilization. DOT fields from retracked CryoSat-2 retrievals in Arctic Ocean leads have enabled us to calculate 2-month average ocean geostrophic currents. These currents are crucial to accurately computing ice-ocean stress, especially because they have accelerated so that their speed rivals that of the overlying sea ice. Given these observations, we can shift our view of the Beaufort Gyre as a system in which the wind drives the ice and the ice drives a passive ocean to a system with the following feedback: After initial input of energy by wind, ice velocity decreases due to water drag and internal ice stress and the ocean drives the ice, reversing Ekman pumping and decelerating the gyre. This reversal changes the system from a persistently convergent regime to one in which freshwater is released from the gyre and doming of the gyre decreases, without any change in long-term average wind stress curl. Through these processes, the ice-ocean stress provides a key feedback in Beaufort Gyre stabilization.
Guo, Qian; Yu, Yan; Zhu, Yan Ling; Zhao, Xiu Qin; Liu, Zhi Guang; Zhang, Yuan Yuan; Li, Gui Lian; Wei, Jian Hao; Wu, Yi Mou; Wan, Kang Lin
2015-01-01
A PCR-reverse dot blot hybridization (RDBH) assay was developed for rapid detection of rpoB gene mutations in 'hot mutation region' of Mycobacterium tuberculosis (M. tuberculosis). 12 oligonucleotide probes based on the wild-type and mutant genotype rpoB sequences of M. tuberculosis were designed to screen the most frequent wild-type and mutant genotypes for diagnosing RIF resistance. 300 M. tuberculosis clinical isolates were detected by RDBH, conventional drug-susceptibility testing (DST) and DNA sequencing to evaluate the RDBH assay. The sensitivity and specificity of the RDBH assay were 91.2% (165/181) and 98.3% (117/119), respectively, as compared to DST. When compared with DNA sequencing, the accuracy, positive predictive value (PPV) and negative predictive value (NPV) of the RDBH assay were 97.7% (293/300), 98.2% (164/167), and 97.0% (129/133), respectively. Furthermore, the results indicated that the most common mutations were in codons 531 (48.6%), 526 (25.4%), 516 (8.8%), and 511 (6.6%), and the combinative mutation rate was 15 (8.3%). One and two strains of insertion and deletion were found among all strains, respectively. Our findings demonstrate that the RDBH assay is a rapid, simple and sensitive method for diagnosing RIF-resistant tuberculosis. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Sharma, Vinay; Kaur, Navpreet; Tiwari, Pranav; Mobin, Shaikh M
2018-05-01
Carbon-based nano materials are developed as a cytocompatible alternative to semiconducting quantum dots for bioimaging and fluorescence-based sensing. The green alternatives for the synthesis of carbon materials are imminent. The present study demonstrates microwave based one step quick synthesis of fluorescent carbon material (FCM) having three variants: (i) un-doped fluorescent carbon material (UFCM) (ii) nitrogen doped FCM (N@FCM), and (iii) nitrogen & phosphorus co-doped FCM (N-P@FCM) using sugarcane extract as a carbon source. The N doping was performed using ethylenediamine and phosphoric acid was used for P doping. The heteroatom doped FCM were synthesized due to insolubility of UFCM in water. Unlike, UFCM, the N@FCM and N-P@FCM were found to be highly soluble in water. The N-P@FCM shows highest quantum yield among the three. The N-P@FCM was explored for alkaline pH sensing and it shows a quenching of fluorescence in the pH range 09-14. The sensing behaviour shows reversibility and high selectivity. Further, the sensor was also investigated for their biocompatibility and hence employed as a promising multicolour probe for cancer cell imaging. The generality in cell imaging was investigated by flow cytometry. The hetero-atom doped green carbon-dots may open new avenues for sensing and selective cellular targeting. Copyright © 2018 Elsevier B.V. All rights reserved.
Wu, Qi; Sun, Yaming; Zhang, Xiaoli; Zhang, Xia; Dong, Shuqing; Qiu, Hongdeng; Wang, Litao; Zhao, Liang
2017-04-07
Graphene quantum dots (GQDs), which possess hydrophobic, hydrophilic, π-π stacking and hydrogen bonding properties, have great prospect in HPLC. In this study, a novel GQDs bonded silica stationary phase was prepared and applied in multiple separation modes including normal phase, reversed phase and hydrophilic chromatography mode. Alkaloids, nucleosides and nucleobases were chosen as test compounds to evaluate the separation performance of this column in hydrophilic chromatographic mode. The tested polar compounds achieved baseline separation and the resolutions reached 2.32, 4.62, 7.79, 1.68 for thymidine, uridine, adenosine, cytidine and guanosine. This new column showed satisfactory chromatographic performance for anilines, phenols and polycyclic aromatic hydrocarbons in normal and reversed phase mode. Five anilines were completely separated within 10min under the condition of mobile phase containing only 10% methanol. The effect of water content, buffer concentration and pH on chromatographic separation was further investigated, founding that this new stationary phase showed a complex retention mechanism of partitioning, adsorption and electrostatic interaction in hydrophilic chromatography mode, and the multiple retention interactions such as π-π stacking and π-π electron-donor-acceptor interaction played an important role during the separation process. This GQDs bonded column, which allows us to adjust appropriate chromatography mode according to the properties of analytes, has possibility in actual application after further research. Copyright © 2017 Elsevier B.V. All rights reserved.
Fritz, Megan L; Miller, James R; Bayoh, M Nabie; Vulule, John M; Landgraf, Jeffrey R; Walker, Edward D
2012-01-01
A DNA-DNA hybridization method, reverse dot blot analysis (RDBA), was used for identification of Anopheles gambiae s.s. and An. arabiensis hosts. Of 299 blood fed and half gravid An. gambiae s.l. collected from Kisian, Kenya, 244 individuals were identifiable to species; 69.5% were An. arabiensis, and 29.5% were An. gambiae s.s. Host identifications with RDBA were comparable to conventional PCR followed by direct sequencing of amplicons of the vertebrate mitochondrial cytochrome B gene. Of the 174 amplicon-producing samples used for comparison of these two methods, 147 were identifiable by direct sequencing, and 139 of these same by RDBA. An. arabiensis blood meals were mostly (>90%) bovine in origin, whereas An. gambiae s.s. fed upon humans > 90% of the time. RDBA detected that 2 of 112 An. arabiensis had blood from more than one host species, whereas PCR and direct sequencing did not. Recent insecticide-treated bednet (ITN) use in Kisian has likely caused the shift in the dominant vector species from An. gambiae s.s. to An. arabiensis. RDBA provides an opportunity to study changes in host-feeding by members of the An. gambiae complex as a response to the broadening distribution of vector control measures targeting host-selection behaviors. PMID:24188164
2016-03-21
ORIGINAL PAPER Silicon solar cell efficiency improvement employing the photoluminescent, down-shifting effects of carbon and CdTe quantum dots Elias...smaller influence on solar cell performance, they are con- sidered to be a more attractive option due to their afford- ability and minimal impact in the...Photovoltaics Solar cells Introduction There is a generalized trend to demonstrate higher solar cell efficiency with more affordable devices to promote
Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications
Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing
2017-01-01
Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided. PMID:28788080
Aptamer-Modified Semiconductor Quantum Dots for Biosensing Applications.
Wen, Lin; Qiu, Liping; Wu, Yongxiang; Hu, Xiaoxiao; Zhang, Xiaobing
2017-07-28
Semiconductor quantum dots have attracted extensive interest in the biosensing area because of their properties, such as narrow and symmetric emission with tunable colors, high quantum yield, high stability and controllable morphology. The introduction of various reactive functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these ligands, aptamers exhibit many advantages including small size, high chemical stability, simple synthesis with high batch-to-batch consistency and convenient modification. More importantly, it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches, is discussed. Finally, our perspectives on the challenges and opportunities in this promising field are provided.
NASA Astrophysics Data System (ADS)
Ma, Wenjuan; Gao, Feng; Duan, Linjing; Zhu, Qingzhen; Wang, Xin; Zhang, Wei; Wu, Linhui; Yi, Xi; Zhao, Huijuan
2012-03-01
We obtain absorption and scattering reconstructed images by incorporating a priori information of target location obtained from fluorescence diffuse optical tomography (FDOT) into the diffuse optical tomography (DOT). The main disadvantage of DOT lies in the low spatial resolution resulting from highly scattering nature of tissue in the near-infrared (NIR), but one can use it to monitor hemoglobin concentration and oxygen saturation simultaneously, as well as several other cheomphores such as water, lipids, and cytochrome-c-oxidase. Up to date, extensive effort has been made to integrate DOT with other imaging modalities such as MRI, CT, to obtain accurate optical property maps of the tissue. However, the experimental apparatus is intricate. In this study, DOT image reconstruction algorithm that incorporates a prior structural information provided by FDOT is investigated in an attempt to optimize recovery of a simulated optical property distribution. By use of a specifically designed multi-channel time-correlated single photon counting system, the proposed scheme in a transmission mode is experimentally validated to achieve simultaneous reconstruction of the fluorescent yield, lifetime, absorption and scattering coefficient. The experimental results demonstrate that the quantitative recovery of the tumor optical properties has doubled and the spatial resolution improves as well by applying the new improved method.
Environmental Barrier Coatings Having a YSZ Top Coat
NASA Technical Reports Server (NTRS)
Lee, Kang N.; Gray, Hugh (Technical Monitor)
2002-01-01
Environmental barrier coatings (EBCs) with a Si bond coat, a yttria-stabilized zirconia (YSZ) top coat, and various intermediate coats were investigated. EBCs were processed by atmospheric pressure plasma spraying. The EBC durability was determined by thermal cycling tests in water vapor at 1300 C and 1400 C, and in air at 1400 C and 1500 C. EBCs with a mullite (3Al2O3 (dot) 2SiO2) + BSAS (1 - xBaO (dot) xSrO (dot) Al2O3 (dot) 2SiO2) intermediate coat were more durable than EBCs with a mullite intermediate coat, while EBCs with a mullite/BSAS duplex intermediate coat resulted in inferior durability. The improvement with a mullite + BSAS intermediate coat was attributed to enhanced compliance of the intermediate coat due to the addition of a low modulus BSAS second phase. Mullite + BSAS/YSZ and BSAS/YSZ interfaces produced a low melting (less than 1400 C) reaction product, which is expected to degrade the EBC performance by increasing the thermal conductivity. EBCs with a mullite + BSAS / graded mullite + YSZ intermediate coat showed the best durability among the EBCs investigated in this study. This improvement was attributed to diffused CTE (Coefficient of Thermal Expansion) mismatch stress and improved chemical stability due to the compositionally graded mullite+YSZ layer.
Study on the fluorescence characteristics of carbon dots
NASA Astrophysics Data System (ADS)
Mao, Xiao-Jiao; Zheng, Hu-Zhi; Long, Yi-Juan; Du, Juan; Hao, Jian-Yu; Wang, Ling-Ling; Zhou, Dong-Bo
2010-02-01
Herein, we prepared water-soluble fluorescent carbon dots with diameter about 1.5 nm from cheap commercial lampblack. These fluorescent carbon nanoparticles are stable toward photobleaching and stable in water for more than half a year without fluorescence decrease. In order to improve its fluorescence properties, we passivated these nanoparticles with bisamino-terminated polyethylene glycol (PEG 1500N). Therefore, both fluorescence quantum yield and lifetime increased after this progress. In addition, the passivated carbon dots were more inert to solvent than the bare one and showed different responses to pH change.
Colloidal quantum dot solar cells exploiting hierarchical structuring.
Labelle, André J; Thon, Susanna M; Masala, Silvia; Adachi, Michael M; Dong, Haopeng; Farahani, Maryam; Ip, Alexander H; Fratalocchi, Andrea; Sargent, Edward H
2015-02-11
Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells that feature transfer-stamped solution-processed pyramid-shaped electrodes employed in a hierarchically structured device. The pyramids increase, by up to a factor of 2, the external quantum efficiency of the device at absorption-limited wavelengths near the absorber band edge. We show that absorption enhancement can be optimized with increased pyramid angle with an appreciable net improvement in power conversion efficiency, that is, with the gain in current associated with improved absorption and extraction overcoming the smaller fractional decrease in open-circuit voltage associated with increased junction area. We show that the hierarchical combination of micron-scale structured electrodes with nanoscale films provides for an optimized enhancement at absorption-limited wavelengths. We fabricate 54.7° pyramid-patterned electrodes, conformally apply the quantum dot films, and report pyramid CQD solar cells that exhibit a 24% improvement in overall short-circuit current density with champion devices providing a power conversion efficiency of 9.2%.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-02
... collection supports the U.S. DOT's Environmental Stewardship Strategic Goal. U.S. DOT will be better able to evaluate how SAFETEA-LU Section 6009 may improve environmental decision-making and expedite environmental... jurisdiction over park, recreation areas, or wildlife and waterfowl refuges, and citizen/advocacy groups will...
DOT National Transportation Integrated Search
2016-03-01
The Texas Department of Transportation (TxDOT) is the sponsor of the project. The : project goals are to: (1) produce a framework for Texas freight transportation system in : 2055 and (2) develop a set of rail planning recommendations that will be...
A rapid low-cost high-density DNA-based multi-detection test for routine inspection of meat species.
Lin, Chun Chi; Fung, Lai Ling; Chan, Po Kwok; Lee, Cheuk Man; Chow, Kwok Fai; Cheng, Shuk Han
2014-02-01
The increasing occurrence of food frauds suggests that species identification should be part of food authentication. Current molecular-based species identification methods have their own limitations or drawbacks, such as relatively time-consuming experimental steps, expensive equipment and, in particular, these methods cannot identify mixed species in a single experiment. This project proposes an improved method involving PCR amplification of the COI gene and detection of species-specific sequences by hybridisation. Major innovative breakthrough lies in the detection of multiple species, including pork, beef, lamb, horse, cat, dog and mouse, from a mixed sample within a single experiment. The probes used are species-specific either in sole or mixed species samples. As little as 5 pg of DNA template in the PCR is detectable in the proposed method. By designing species-specific probes and adopting reverse dot blot hybridisation and flow-through hybridisation, a low-cost high-density DNA-based multi-detection test suitable for routine inspection of meat species was developed. © 2013.
Bae, Wan Ki; Park, Young-Shin; Lim, Jaehoon; Lee, Donggu; Padilha, Lazaro A.; McDaniel, Hunter; Robel, Istvan; Lee, Changhee; Pietryga, Jeffrey M.; Klimov, Victor I.
2013-01-01
Development of light-emitting diodes (LEDs) based on colloidal quantum dots is driven by attractive properties of these fluorophores such as spectrally narrow, tunable emission and facile processibility via solution-based methods. A current obstacle towards improved LED performance is an incomplete understanding of the roles of extrinsic factors, such as non-radiative recombination at surface defects, versus intrinsic processes, such as multicarrier Auger recombination or electron-hole separation due to applied electric field. Here we address this problem with studies that correlate the excited state dynamics of structurally engineered quantum dots with their emissive performance within LEDs. We find that because of significant charging of quantum dots with extra electrons, Auger recombination greatly impacts both LED efficiency and the onset of efficiency roll-off at high currents. Further, we demonstrate two specific approaches for mitigating this problem using heterostructured quantum dots, either by suppressing Auger decay through the introduction of an intermediate alloyed layer, or by using an additional shell that impedes electron transfer into the quantum dot to help balance electron and hole injection. PMID:24157692
Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.
2013-01-01
Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149
Self-organization of colloidal PbS quantum dots into highly ordered superlattices.
Baranov, Alexander V; Ushakova, Elena V; Golubkov, Valery V; Litvin, Aleksandr P; Parfenov, Peter S; Fedorov, Anatoly V; Berwick, Kevin
2015-01-13
X-ray structural analysis, together with steady-state and transient optical spectroscopy, is used for studying the morphology and optical properties of quantum dot superlattices (QDSLs) formed on glass substrates by the self-organization of PbS quantum dots with a variety of surface ligands. The diameter of the PbS QDs varies from 2.8 to 8.9 nm. The QDSL's period is proportional to the dot diameter, increasing slightly with dot size due to the increase in ligand layer thickness. Removal of the ligands has a number of effects on the morphology of QDSLs formed from the dots of different sizes: for small QDs the reduction in the amount of ligands obstructs the self-organization process, impairing the ordering of the QDSLs, while for large QDs the ordering of the superlattice structure is improved, with an interdot distance as low as 0.4 nm allowing rapid charge carrier transport through the QDSLs. QDSL formation does not induce significant changes to the absorption and photoluminescence spectra of the QDs. However, the luminescence decay time is reduced dramatically, due to the appearance of nonradiative relaxation channels.
NASA Astrophysics Data System (ADS)
Kuhlmann, Andreas V.; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.
2013-07-01
Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 107 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.
[Patient-centered medicine for tuberculosis medical services].
Fujita, Akira; Narita, Tomoyo
2012-12-01
The 2011 edition of Specific Guiding Principles for Tuberculosis Prevention calls for a streamlined medical services system capable of providing medical care that is customized to the patient's needs. The new 21st Century Japanese version of the Directly Observed Treatment Short Course (DOTS) expands the indication of DOTS to all tuberculosis (TB) patients in need of treatment. Hospital DOTS consists of comprehensive, patient-centered support provided by a DOTS care team. For DOTS in the field, health care providers should select optimal administration support based on patient profiles and local circumstances. In accordance with medical fee revisions for 2012, basic inpatient fees have been raised and new standards for TB hospitals have been established, the result of efforts made by the Japanese Society for Tuberculosis and other associated groups. It is important that the medical care system be improved so that patients can actively engage themselves as a member of the team, for the ultimate goal of practicing patient-centered medicine. We have organized this symposium to explore the best ways for practicing patient-centered medicine in treating TB. It is our sincere hope that this symposium will lead to improved medical treatment for TB patients. 1. Providing patient-centered TB service via utilization of collaborative care pathway: Akiko MATSUOKA (Hiroshima Prefectural Tobu Public Health Center) We have been using two types of collaborative care pathway as one of the means of providing patient-centered TB services since 2008. The first is the clinical pathway, which is mainly used by TB specialist doctors to communicate with local practitioners on future treatment plan (e.g. medication and treatment duration) of patients. The clinical pathway was first piloted in Onomichi district and its use was later expanded to the whole of Hiroshima prefecture. The second is the regional care pathway, which is used to share treatment progress, test results and other necessary patient information among the relevant parties. The regional care pathway was developed by the Tobu Public Health Center. It is currently being used by several other public health centers in Hiroshima. Utilization of these two pathways has resulted in improved adherence, treatment being offered at local clinics, shorter hospitalization and better treatment outcomes. 2. Patient-centered DOTS in Funabashi-city: Akiko UOZUMI (Funabashi-city Public Health Center) In Funabashi-city, all TB patients, including those with LTBI, are treated under DOTS which recognizes and tries to accommodate the various different needs of each individual patient. For example, various types of DOTS are offered, such as pharmacy-based DOTS and DOTS supported by caregivers of nursing homes. This enables public health nurses to take into consideration both the results of risk assessment and convenience for the patient, and choose DOTS which most effectively support the patient. Furthermore, DOTS in principle is offered face-to-face, so that DOTS providers may not only build relationship of trust with the patient, but also to collect and analyze the necessary information regarding the patient and respond timely when problems arise. Such effort has directly contributed to improved default and treatment rate. 3. Hospital DOTS and clinical path for the treatment of tuberculosis: Kentaro SAKASHITA, Akira FUJITA (Tokyo Metropolitan Tama Medical Center) We introduced a version of hospital DOTS at Tama Medical Center (formerly Fuchu Hospital) in 2004. As part of this three-stage version, patients are allowed to progress to the next stage if they meet the step-up criteria. Following the introduction of this hospital DOTS, the occurrence of drug administration-related incidents decreased and support for patient adherence became easier for health care workers than before. In 2006, we developed a clinical path based on this hospital DOTS with consistent eligibility criteria for patients. This clinical path helped increase the efficiency of medical services in the TB ward. In conclusion, a patient's initiative for tuberculosis treatment can be supported through our hospital's TB treatment system. 4. Survey of TB patients' understanding and satisfaction of hospital DOTS: Yoko NAGATA, Minako URAKAWA, Noriko KOBAYASHI, Seiya KATO (Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association) We surveyed the satisfaction and understanding of recently discharged TB patients regarding DOTS to analyze how to better implement DOTS. The questionnaire consisted of nine items covering knowledge of TB, comfort in talking to and asking questions of the medical staff, explanations given to family members, and motivation for continuing medication. Two hundred and eight of the 228 patients who accepted the questionnaire responded (response rate: 91.2%). The level of understanding and satisfaction tended to be higher among patients in hospitals that employed a primary nursing system, more coverage and duration of DOT, and audiovisual materials for patient education. The level of understanding and satisfaction also tended to be slightly higher among institutions that conducted in-hospital conferences and collaborated with public health centers more frequently. 5. Medical cooperative system against tuberculosis elimination: Dai YOSHIZAWA (Tuberculosis and Infectious disease control division, Ministry of Health, Labour and Welfare) There are 3 points we should consider. First, despite one of the intermediate burden countries, emphasis for infectious incidence is insufficient. Besides new incidence decreases gradually, increased ratio of the elderly causes necessity of implementation against each complications. The second is how find infectious one, especially from high burden countries, before they spread it. Final, unspecific symptoms suffer the patients and medical staff. It's the key of implementation that spread of tuberculosis must be caused by delayed diagnosis.
Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour
2018-06-01
The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.
NASA Astrophysics Data System (ADS)
Kim, Jin; Song, Sung Ho; Jin, Yoonhee; Park, Hyun-Ji; Yoon, Hyewon; Jeon, Seokwoo; Cho, Seung-Woo
2016-04-01
The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy.The applicability of graphene quantum dots (GQDs) for the in vitro and in vivo live imaging and tracking of different types of human stem cells is investigated. GQDs synthesized by the modified graphite intercalated compound method show efficient cellular uptake with improved biocompatibility and highly sensitive optical properties, indicating their feasibility as a bio-imaging probe for stem cell therapy. Electronic supplementary information (ESI) available: Additional results. See DOI: 10.1039/c6nr02143c
Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Heikalabad, Saeed Rasouli; Gadim, Mahya Rahimpour
2018-03-01
The quantum-dot cellular automata (QCA) can be replaced to overcome the limitation of CMOS technology. An arithmetic logic unit (ALU) is a basic structure of any computer devices. In this paper, design of improved single-bit arithmetic logic unit in quantum dot cellular automata is presented. The proposed structure for ALU has AND, OR, XOR and ADD operations. A unique 2:1 multiplexer, an ultra-efficient two-input XOR and a low complexity full adder are used in the proposed structure. Also, an extended design of this structure is provided for two-bit ALU in this paper. The proposed structure of ALU is simulated by QCADesigner and simulation result is evaluated. Evaluation results show that the proposed design has best performance in terms of area, complexity and delay compared to the previous designs.
Jo, Min Sung; Sadasivam, Karthikeyan Giri; Tawfik, Wael Z; Yang, Seung Bea; Lee, Jung Ju; Ha, Jun Seok; Moon, Young Boo; Ryu, Sang Wan; Lee, June Key
2013-01-01
n-type GaN epitaxial layers were regrown on the patterned n-type GaN substrate (PNS) with different size of silicon dioxide (SiO2) nano dots to improve the crystal quality and optical properties. PNS with SiO2 nano dots promotes epitaxial lateral overgrowth (ELOG) for defect reduction and also acts as a light scattering point. Transmission electron microscopy (TEM) analysis suggested that PNS with SiO2 nano dots have superior crystalline properties. Hall measurements indicated that incrementing values in electron mobility were clear indication of reduction in threading dislocation and it was confirmed by TEM analysis. Photoluminescence (PL) intensity was enhanced by 2.0 times and 3.1 times for 1-step and 2-step PNS, respectively.
Improved catalyzed reporter deposition, iCARD.
Lohse, Jesper; Petersen, Kenneth Heesche; Woller, Nina Claire; Pedersen, Hans Christian; Skladtchikova, Galina; Jørgensen, Rikke Malene
2014-06-18
Novel reporters have been synthesized with extended hydrophilic linkers that in combination with polymerizing cross-linkers result in very efficient reporter deposition. By utilizing antibodies to stain HER2 proteins in a cell line model it is demonstrated that the method is highly specific and sensitive with virtually no background. The detection of HER2 proteins in tissue was used to visualize individual antigens as small dots visible in a microscope. Image analysis-assisted counting of fluorescent or colored dots allowed assessment of relative protein levels in tissue. Taken together, we have developed novel reporters that improve the CARD method allowing highly sensitive in situ detection of proteins in tissue. Our findings suggest that in situ protein quantification in biological samples can be performed by object recognition and enumeration of dots, rather than intensity-based fluorescent or colorimetric assays.
An improved P300 pattern in BCI to catch user’s attention
NASA Astrophysics Data System (ADS)
Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej
2017-06-01
Objective. Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. Approach. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. Main results. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p < 0.05) compared to the honeycomb-shaped stimulus without red dots. Significance. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.
An improved P300 pattern in BCI to catch user's attention.
Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej
2017-06-01
Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p < 0.05) compared to the honeycomb-shaped stimulus without red dots. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.
Importance of Antecedent Beach and Surf-Zone Morphology to Wave Runup Predictions
2016-10-01
position on the dune, the laser reflects well off of the water surface when foam is present (blue dots, Figure 1B). Maximum range of measurement...depends upon the amount of breaking and foam present in the surf-zone at any given time, but rarely exceeds 150 m for this laser scanner. Drawbacks to...determined by reverse-shoaling data from the FRF’s 11 m Acoustic Wave and Current (AWAC) profiler to deep water values. Local water levels (tide and surge
Quantum Dots of InAs/GaSb Type II Superlattice for Infrared Sensing
2002-01-01
QWIP )[1]. Unfortunately, fast Auger recombination rate in such interband detectors[2] and high thermal generation rate in the Electronic mail: razcghi...detectors operating at different cutoff wavelength[5]. The major noise component at zero bias is the Johnson noise , and hence the detectivity of the...which leads to a Johnson noise limited detectivity of about 3.71xl0..cm’HzŖ /W. Under reverse bias, the I/f noise will show up. However with
Electrotunable artificial molecules based on van der Waals heterostructures
Zhang, Zhuo-Zhi; Song, Xiang-Xiang; Luo, Gang; Deng, Guang-Wei; Mosallanejad, Vahid; Taniguchi, Takashi; Watanabe, Kenji; Li, Hai-Ou; Cao, Gang; Guo, Guang-Can; Nori, Franco; Guo, Guo-Ping
2017-01-01
Quantum confinement has made it possible to detect and manipulate single-electron charge and spin states. The recent focus on two-dimensional (2D) materials has attracted significant interests on possible applications to quantum devices, including detecting and manipulating either single-electron charging behavior or spin and valley degrees of freedom. However, the most popular model systems, consisting of tunable double-quantum-dot molecules, are still extremely difficult to realize in these materials. We show that an artificial molecule can be reversibly formed in atomically thin MoS2 sandwiched in hexagonal boron nitride, with each artificial atom controlled separately by electrostatic gating. The extracted values for coupling energies at different regimes indicate a single-electron transport behavior, with the coupling strength between the quantum dots tuned monotonically. Moreover, in the low-density regime, we observe a decrease of the conductance with magnetic field, suggesting the observation of Coulomb blockade weak anti-localization. Our experiments demonstrate for the first time the realization of an artificial quantum-dot molecule in a gated MoS2 van der Waals heterostructure, which could be used to investigate spin-valley physics. The compatibility with large-scale production, gate controllability, electron-hole bipolarity, and new quantum degrees of freedom in the family of 2D materials opens new possibilities for quantum electronics and its applications. PMID:29062893
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu,S.; Gu, J.; Belknap, B.
2006-01-01
When myosin is attached to actin in a muscle cell, various structures in the filaments are formed. The two strongly bound states (A{center_dot}M{center_dot}ADP and A{center_dot}M) and the weakly bound A{center_dot}M{center_dot}ATP states are reasonably well understood. The orientation of the strongly bound myosin heads is uniform ('stereospecific' attachment), and the attached heads exhibit little spatial fluctuation. In the prehydrolysis weakly bound A{center_dot}M{center_dot}ATP state, the orientations of the attached myosin heads assume a wide range of azimuthal and axial angles, indicating considerable flexibility in the myosin head. The structure of the other weakly bound state, A{center_dot}M{center_dot}ADP{center_dot}P{sub i}, however, is poorly understood. Thismore » state is thought to be the critical pre-power-stroke state, poised to make the transition to the strongly binding, force-generating states, and hence it is of particular interest for understanding the mechanism of contraction. However, because of the low affinity between myosin and actin in the A{center_dot}M{center_dot}ADP{center_dot}P{sub i} state, the structure of this state has eluded determination both in isolated form and in muscle cells. With the knowledge recently gained in the structures of the weakly binding M{center_dot}ATP, M{center_dot}ADP{center_dot}P{sub i} states and the weakly attached A{center_dot}M{center_dot}ATP state in muscle fibers, it is now feasible to delineate the in vivo structure of the attached state of A{center_dot}M{center_dot}ADP{center_dot}P{sub i}. The series of experiments presented in this article were carried out under relaxing conditions at 25{sup o}C, where {approx}95% of the myosin heads in the skinned rabbit psoas muscle contain the hydrolysis products. The affinity for actin is enhanced by adding polyethylene glycol (PEG) or by lowering the ionic strength in the bathing solution. Solution kinetics and binding constants were determined in the presence and in the absence of PEG. When the binding between actin and myosin was increased, both the myosin layer lines and the actin layer lines increased in intensity, but the intensity profiles did not change. The configuration (mode) of attachment in the A{center_dot}M{center_dot}ADP{center_dot}P{sub i} state is thus unique among the intermediate attached states of the cross-bridge ATP hydrolysis cycle. One of the simplest explanations is that both myosin filaments and actin filaments are stabilized (e.g., undergo reduced spatial fluctuations) by the attachment. The alignment of the myosin heads in the thick filaments and the alignment of the actin monomers in the thin filaments are improved as a result. The compact atomic structure of M{center_dot}ADP{center_dot}P{sub i} with strongly coupled domains may contribute to the unique attachment configuration: the 'primed' myosin heads may function as 'transient struts' when attached to the thin filaments.« less
Jiang, Lei; You, Ting; Deng, Wei-Qiao
2013-10-18
In this work Nb-doped anatase TiO2 nanocrystals are used as the photoanode of quantum-dot-sensitized solar cells. A solar cell with CdS/CdSe quantum dots co-sensitized 2.5 mol% Nb-doped anatase TiO2 nanocrystals can achieve a photovoltaic conversion efficiency of 3.3%, which is almost twice as high as the 1.7% obtained by a cell based on undoped TiO2 nanocrystals. The incident photon-to-current conversion efficiency can reach as high as 91%, which is a record for all quantum-dot-sensitized solar cells. Detailed analysis shows that such an enhancement is due to improved lifetime and diffusion length of electrons in the solar cell.
Zhang, Yugang; Li, Guopeng; Zhang, Ting; Song, Zihang; Wang, Hui; Zhang, Zhongping; Jiang, Yang
2018-03-01
The selenium dioxide was used as the precursor to synthesize wide-size-ranged CdSe quantum dots (2.4-5.7 nm) via hot-injection route. The CdSe quantum dots are featured with high crystalline, monodisperse, zinc blende structure and wide emission region (530-635 nm). In order to improve the stability and quantum yield, a phosphine-free single-molecular precursor approach is used to obtain CdSe/CdS core/shell quantum dots. The CdSe/CdS quantum dots are highly fluorescent with quantum yield up to 65%, and persist the good monodispersity and high crystallinity. Moreover, the quantum dots white light-emitting-diodes are fabricated by using the resultant red emission core/shell quantum dots and Y3Al5O12:Ce3+ yellow phosphors as color-conversion layers on a blue InGaN chip. The prepared light-emitting-diodes show good performance with CIE-1931 coordinated of (0.3583, 0.3349), an Ra of 92.9, and a Tc of 4410 K at 20 mA, which indicate that the combination of red-emission QDs and yellow phophors as a promising approach to obtain warm WLEDs with good color rendering.
Organic Dots Based on AIEgens for Two-Photon Fluorescence Bioimaging.
Lou, Xiaoding; Zhao, Zujin; Tang, Ben Zhong
2016-12-01
Two-photon fluorescence imaging technique is a powerful bioanalytical approach in terms of high photostability, low photodamage, high spatiotemporal resolution. Recently, fluorescent organic dots comprised of organic emissive cores and a polymeric matrix are emerging as promising contrast reagents for two-photon fluorescence imaging, owing to their numerous merits of high and tunable fluorescence, good biocompatibility, strong photobleaching resistance, and multiple surface functionality. The emissive core is crucial for organic dots to get high brightness but many conventional chromophores often encounter a severe problem of fluorescence quenching when they form aggregates. To solve this problem, fluorogens featuring aggregation-induced emission (AIE) can fluoresce strongly in aggregates, and thus become ideal candidates for fluorescent organic dots. In addition, two-photon absorption property of the dots can be readily improved by just increase loading contents of AIE fluorogen (AIEgen). Hence, organic dots based on AIEgens have exhibited excellent performances in two-photon fluorescence in vitro cellular imaging, and in vivo vascular architecture visualization of mouse skin, muscle, brain and skull bone. In view of the rapid advances in this important research field, here, we highlight representative fluorescent organic dots with an emissive core of AIEgen aggregate, and discuss their great potential in bioimaging applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Byeonggwan; Koh, Jong Kwan; Kim, Jeonghun; Chi, Won Seok; Kim, Jong Hak; Kim, Eunkyoung
2012-11-01
A solid-state polymerizable monomer, 2,5-dibromo-3,4-propylenedioxythiophene (DBProDOT), was synthesized at 25 °C to produce a conducting polymer, poly(3,4-propylenedioxythiophene) (PProDOT). Crystallographic studies revealed a short interplane distance between DBProDOT molecules, which was responsible for polymerization at low temperature with a lower activation energy and higher exothermic reaction than 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) or its derivatives. Upon solid-state polymerization (SSP) of DBProDOT at 25 °C, PProDOT was obtained in a self-doped state with tribromide ions and an electrical conductivity of 0.05 S cm⁻¹, which is considerably higher than that of chemically-polymerized PProDOT (2×10⁻⁶ S cm⁻¹). Solid-state ¹³C NMR spectroscopy and DFT calculations revealed polarons in PProDOT and a strong perturbation of carbon nuclei in thiophenes as a result of paramagnetic broadening. DBProDOT molecules deeply penetrated and polymerized to fill nanocrystalline TiO₂ pores with PProDOT, which functioned as a hole-transporting material (HTM) for I₂-free solid-state dye-sensitized solar cells (ssDSSCs). With the introduction of an organized mesoporous TiO₂ (OM-TiO₂) layer, the energy conversion efficiency reached 3.5 % at 100 mW cm⁻², which was quite stable up to at least 1500 h. The cell performance and stability was attributed to the high stability of PProDOT, with the high conductivity and improved interfacial contact of the electrode/HTM resulting in reduced interfacial resistance and enhanced electron lifetime. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cavity-Enhanced Optical Readout of a Single Solid-State Spin
NASA Astrophysics Data System (ADS)
Sun, Shuo; Kim, Hyochul; Solomon, Glenn S.; Waks, Edo
2018-05-01
We demonstrate optical readout of a single spin using cavity quantum electrodynamics. The spin is based on a single trapped electron in a quantum dot that has a poor branching ratio of 0.43. Selectively coupling one of the optical transitions of the quantum dot to the cavity mode results in a spin-dependent cavity reflectivity that enables spin readout by monitoring the reflected intensity of an incident optical field. Using this approach, we demonstrate spin-readout fidelity of 0.61. Achieving this fidelity using resonance fluorescence from a bare dot would require 43 times improvement in photon collection efficiency.
Study on the fluorescence characteristics of carbon dots.
Mao, Xiao-Jiao; Zheng, Hu-Zhi; Long, Yi-Juan; Du, Juan; Hao, Jian-Yu; Wang, Ling-Ling; Zhou, Dong-Bo
2010-02-01
Herein, we prepared water-soluble fluorescent carbon dots with diameter about 1.5 nm from cheap commercial lampblack. These fluorescent carbon nanoparticles are stable toward photobleaching and stable in water for more than half a year without fluorescence decrease. In order to improve its fluorescence properties, we passivated these nanoparticles with bisamino-terminated polyethylene glycol (PEG(1500 N)). Therefore, both fluorescence quantum yield and lifetime increased after this progress. In addition, the passivated carbon dots were more inert to solvent than the bare one and showed different responses to pH change. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Li, Xue; Xu, Zhen-Rui; Tang, Na; Ye, Cui; Zhu, Xiao-Ling; Zhou, Ting; Zhao, Zhi-He
2016-11-01
This study aims to determine the effectiveness of a messaging app (WeChat) in improving patients' compliance and reducing the duration of orthodontic treatment (DOT). A randomized controlled trial was performed in a dental hospital and a clinic from August 2012 to May 2015. Orthodontic patients were included at the beginning of treatment. Patients with multiphase treatment or braceless technique were excluded. Participants were randomized to WeChat group (received regular reminders and educational messages) or control group (received conventional management) and were followed up until the treatment was completed. Primary outcome measure was DOT. Others were late and failed attendance, bracket bond failure, and oral hygiene condition. One hundred twelve patients in each group participated and completed the trial. DOT in WeChat group were 7.3 weeks shorter (P = 0.007). There were less failed attendance (3.1 vs. 10.9 %, P < 0.001), late attendance (20.1 vs. 29.9 %, P < 0.001), and bracket bond failure (11.8 vs. 16.1 %, P < 0.001) in WeChat group than control. There was no difference in orthodontic plaque index nor modified gingivitis index between the two groups before and after treatment. Number of failed attendances was identified as an independent factor affecting DOT (P = 0.004; HR = 0.89, 95 % CI 0.84 to 0.95). The intervention with WeChat is effective in reducing the treatment duration and bracket bond failure, and improving the attendance in orthodontic patients. DOT can be reduced by improving patient's compliance. The messaging app is useful for outpatient education and management.
NASA Astrophysics Data System (ADS)
Mumin, Md Abdul; Xu, William Z.; Charpentier, Paul A.
2015-08-01
The dispersion of light-absorbing inorganic nanomaterials in transparent plastics such as poly(ethylene-co-vinyl acetate) (PEVA) is of enormous current interest in emerging solar materials, including photovoltaic (PV) modules and commercial greenhouse films. Nanocrystalline semiconductor or quantum dots (QDs) have the potential to absorb UV light and selectively emit visible light, which can control plant growth in greenhouses or enhance PV panel efficiencies. This work provides a new and simple approach for loading mesoporous silica-encapsulated QDs into PEVA. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm size were synthesized using a modified facile approach based on pyrolysis of the single-molecule precursors and capping the CdS QDs with a thin layer of ZnS. To make both the bare and core-shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interactions. By careful experimental tuning, this encapsulation technique enhanced the quantum yield (˜65%) and photostability compared to the bare QDs. Both the encapsulated bare and core-shell QDs were then melt-mixed with EVA pellets using a mini twin-screw extruder and pressed into thin films with controlled thickness. The results demonstrated for the first time that mesoporous silica not only enhanced the quantum yield and photostability of the QDs but also improved the compatibility and dispersibility of QDs throughout the PEVA films. The novel light selective films show high visible light transmission (˜90%) and decreased UV transmission (˜75%).
Mumin, Md Abdul; Xu, William Z; Charpentier, Paul A
2015-08-07
The dispersion of light-absorbing inorganic nanomaterials in transparent plastics such as poly(ethylene-co-vinyl acetate) (PEVA) is of enormous current interest in emerging solar materials, including photovoltaic (PV) modules and commercial greenhouse films. Nanocrystalline semiconductor or quantum dots (QDs) have the potential to absorb UV light and selectively emit visible light, which can control plant growth in greenhouses or enhance PV panel efficiencies. This work provides a new and simple approach for loading mesoporous silica-encapsulated QDs into PEVA. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm size were synthesized using a modified facile approach based on pyrolysis of the single-molecule precursors and capping the CdS QDs with a thin layer of ZnS. To make both the bare and core-shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interactions. By careful experimental tuning, this encapsulation technique enhanced the quantum yield (∼65%) and photostability compared to the bare QDs. Both the encapsulated bare and core-shell QDs were then melt-mixed with EVA pellets using a mini twin-screw extruder and pressed into thin films with controlled thickness. The results demonstrated for the first time that mesoporous silica not only enhanced the quantum yield and photostability of the QDs but also improved the compatibility and dispersibility of QDs throughout the PEVA films. The novel light selective films show high visible light transmission (∼90%) and decreased UV transmission (∼75%).
Chen, Li; Chen, Weilin; Li, Jianping; Wang, Jiabo; Wang, Enbo
2017-07-21
Electron recombination occurring at the TiO 2 /quantum dot sensitizer/electrolyte interface is the key reason for hindering further efficiency improvements to quantum dot sensitized solar cells (QDSCs). Polyoxometalate (POM) can act as an electron-transfer medium to decrease electron recombination in a photoelectric device owing to its excellent oxidation/reduction properties and thermostability. A POM/TiO 2 electronic interface layer prepared by a simple layer-by-layer self-assembly method was added between fluorine-doped tin oxide (FTO) and mesoporous TiO 2 in the photoanode of QDSCs, and the effect on the photovoltaic performance was systematically investigated. Photovoltaic experimental results and the electron transmission mechanism show that the POM/TiO 2 electronic interface layer in the QDSCs can clearly suppress electron recombination, increase the electron lifetime, and result in smoother electron transmission. In summary, the best conversion efficiency of QDSCs with POM/TiO 2 electronic interface layers increases to 8.02 %, which is an improvement of 25.1 % compared with QDSCs without POM/TiO 2 . This work first builds an electron-transfer bridge between FTO and the quantum dot sensitizer and paves the way for further improved efficiency of QDSCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
McDaniel, Hunter; Fuke, Nobuhiro; Makarov, Nikolay S.; Pietryga, Jeffrey M.; Klimov, Victor I.
2013-01-01
Solution-processed semiconductor quantum dot solar cells offer a path towards both reduced fabrication cost and higher efficiency enabled by novel processes such as hot-electron extraction and carrier multiplication. Here we use a new class of low-cost, low-toxicity CuInSexS2−x quantum dots to demonstrate sensitized solar cells with certified efficiencies exceeding 5%. Among other material and device design improvements studied, use of a methanol-based polysulfide electrolyte results in a particularly dramatic enhancement in photocurrent and reduced series resistance. Despite the high vapour pressure of methanol, the solar cells are stable for months under ambient conditions, which is much longer than any previously reported quantum dot sensitized solar cell. This study demonstrates the large potential of CuInSexS2−x quantum dots as active materials for the realization of low-cost, robust and efficient photovoltaics as well as a platform for investigating various advanced concepts derived from the unique physics of the nanoscale size regime. PMID:24322379
NASA Astrophysics Data System (ADS)
Liou, L. L.; Jenkins, T.; Huang, C. I.
1997-06-01
The d.c. power limitation of a conventional HBT with dot geometry was studied theoretically using combined electro-thermal and transmission line models. In most cases, the thermal runaway occurs at a power level lower than that set by the intrinsic electronic property of the device. The dependence of the d.c. thermal runaway threshold power density, Pmax, on the emitter dot radius and emitter ballast resistance was calculated. Increasing emitter dot radius lowers Pmax. Although ballast resistance increases Pmax, the effect reduces as the emitter dot radius increases. This is caused by the non-uniform potential distribution in the base layer. When thermal runaway is considered, the nonuniform base-emitter potential offsets the improvement of the power handling capability by the physical ballast resistance. Conventional HBTs with a large radius (greater than 4 μm) exhibit a small Pmax caused by thermal effect. This threshold power density can be increased drastically by using the thermal shunt technique.
Growing High-Quality InAs Quantum Dots for Infrared Lasers
NASA Technical Reports Server (NTRS)
Qiu, Yueming; Uhl, David
2004-01-01
An improved method of growing high-quality InAs quantum dots embedded in lattice-matched InGaAs quantum wells on InP substrates has been developed. InAs/InGaAs/InP quantum dot semiconductor lasers fabricated by this method are capable of operating at room temperature at wavelengths greater than or equal to 1.8 mm. Previously, InAs quantum dot lasers based on InP substrates have been reported only at low temperature of 77 K at a wavelength of 1.9 micrometers. In the present method, as in the prior method, one utilizes metalorganic vapor phase epitaxy to grow the aforementioned semiconductor structures. The development of the present method was prompted in part by the observation that when InAs quantum dots are deposited on an InGaAs layer, some of the InAs in the InGaAs layer becomes segregated from the layer and contributes to the formation of the InAs quantum dots. As a result, the quantum dots become highly nonuniform; some even exceed a critical thickness, beyond which they relax. In the present method, one covers the InGaAs layer with a thin layer of GaAs before depositing the InAs quantum dots. The purpose and effect of this thin GaAs layer is to suppress the segregation of InAs from the InGaAs layer, thereby enabling the InAs quantum dots to become nearly uniform (see figure). Devices fabricated by this method have shown near-room-temperature performance.
Improvements to rural intersections to improve motorist compliance.
DOT National Transportation Integrated Search
2014-10-01
The Texas Department of Transportation (TxDOT) has placed improving safety as one of its top objectives. : Improving safety in rural intersections is a means to improve roadway safety especially in rural districts such : as the districts in West Texa...
Hibbard, Paul B; Scott-Brown, Kenneth C; Haigh, Emma C; Adrain, Melanie
2014-01-01
One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon.
Hibbard, Paul B.; Scott-Brown, Kenneth C.; Haigh, Emma C.; Adrain, Melanie
2014-01-01
One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon. PMID:24416195
NASA Astrophysics Data System (ADS)
Kinnischtzke, Laura A.
We report on several experiments using single excitons confined to single semiconductor quantum dots (QDs). Electric and magnetic fields have previously been used as experimental knobs to understand and control individual excitons in single quantum dots. We realize new ways of electric field control by changing materials and device geometry in the first two experiments with strain-based InAs QDs. A standard Schottky diode heterostructure is demonstrated with graphene as the Schottky gate material, and its performance is bench-marked against a diode with a standard gate material, semi-transparent nickel-chromium (NiCr). This change of materials increases the photon collection rate by eliminating absorption in the metallic NiCr layer. A second set of experiments investigates the electric field response of QDs as a possible metrology source. A linear voltage potential drop in a plane near the QDs is used to describe how the spatially varying voltage profile is also imparted on the QDs. We demonstrate a procedure to map this voltage profile as a preliminary route towards a full quantum sensor array. Lastly, InAs QDs are explored as potential spin-photon interfaces. We describe how a magnetic field is used to realize a reversible exchange of information between light and matter, including a discussion of the polarization-dependence of the photoluminesence, and how that can be linked to the spin of a resident electron or hole. We present evidence of this in two wavelength regimes for InAs quantum dots, and discuss how an external magnetic field informs the spin physics of these 2-level systems. This thesis concludes with the discovery of a new class of quantum dots. As-yet unidentified defect states in single layer tungsten diselenide (WSe 2 ) are shown to host quantum light emission. We explore the spatial extent of electron confinement and tentatively identify a radiative lifetime of 1 ns for these single photon emitters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nan, Feng; Shen, Mingrong; Fang, Liang, E-mail: zhkang@suda.edu.cn, E-mail: lfang@suda.edu.cn
Carbon quantum dots (CQDs) coated BiVO{sub 4} inverse opal (io-BiVO{sub 4}) structure that shows dramatic improvement of photoelectrochemical hydrogen generation has been fabricated using electrodeposition with a template. The io-BiVO{sub 4} maximizes photon trapping through slow light effect, while maintaining adequate surface area for effective redox reactions. CQDs are then incorporated to the io-BiVO{sub 4} to further improve the photoconversion efficiency. Due to the strong visible light absorption property of CQDs and enhanced separation of the photoexcited electrons, the CQDs coated io-BiVO{sub 4} exhibit a maximum photo-to-hydrogen conversion efficiency of 0.35%, which is 6 times higher than that of themore » pure BiVO{sub 4} thin films. This work is a good example of designing composite photoelectrode by combining quantum dots and photonic crystal.« less
NASA Astrophysics Data System (ADS)
Li, Jinfeng; Zhang, Xinyuan; Liu, Chunyu; Li, Zhiqi; He, Yeyuan; Zhang, Zhihui; Shen, Liang; Guo, Wenbin; Ruan, Shengping
2017-07-01
In this work, poly(9,9-dioctylfluorene)-co-(4,7-di-2-thienyl-2,1,3-benzothiadiazole) (PF-5DTBT) and copolymer poly(styrene-co-maleic anhydride) (PSMA) dots were prepared as additive for active layer doping to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs), which based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM). A high efficiency of 7.40% was achieved due to increase of short-circuit current (Jsc) and fill factor (FF). The operation mechanism of OSCs doping with polymer dots was investigated, which demonstrated that the efficiency enhancement ascribes to improvement of electrical properties, such as exciton generation, exction dissociation, charge transport, and charge collection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzmán, Álvaro, E-mail: guzman@die.upm.es; Yamamoto, Kenji; Ulloa, J. M.
2015-07-06
InAs/GaAs{sub 1−x}Sb{sub x} Quantum Dot (QD) infrared photodetectors are analyzed by photocurrent spectroscopy. We observe that the integrated responsivity of the devices is improved with the increasing Sb mole fraction in the capping layer, up to 4.2 times for x = 17%. Since the QD layers are not vertically aligned, the vertical transport of the carriers photogenerated within the QDs takes place mainly through the bulk material and the wetting layer of the additional QD regions. The lower thickness of the wetting layer for high Sb contents results in a reduced capture probability of the photocarriers, thus increasing the photoconductive gain andmore » hence, the responsivity of the device. The growth of not vertically aligned consecutive QD layers with a thinner wetting layer opens a possibility to improve the performance of quantum dot infrared photodetectors.« less
Howell, Embry M; Kigozi, N Gladys; Heunis, J Christo
2018-04-07
There is uncertainty about how directly observed treatment (DOT) support for tuberculosis (TB) can be delivered most effectively and how DOT support can simultaneously be used to strengthen human immunodeficiency virus (HIV) prevention and control among TB patients. This study describes how DOT support by community health workers (CHWs) was used in four municipalities in the Free State province - a high TB/HIV burden, poorly-resourced setting - to provide HIV outreach, referrals, and health education for TB patients. The study was part of a larger cross-sectional study of HIV counselling and testing (HCT) among 1101 randomly-selected TB patients registered at 40 primary health care (PHC) facilities (clinics and community health centres) across small town/rural and large town/urban settings. Univariate analysis of percentages, chi-square tests and t-tests for difference in means were used to describe differences between the types of TB treatment support and patient characteristics, as well as the types of - and patient satisfaction with - HIV information and referrals received from various types of treatment supporters including home-based DOT supporters, clinic-based DOT supporters or support from family/friends/employers. Multivariate logistic regression was used to predict the likelihood of not having receiving home-based DOT and of never having received HIV counselling. The independent variables include poverty-related health and socio-economic risk factors for poor outcomes. Statistical significance is shown using a 95% confidence interval and a 0.05 p-value. Despite the fact that DOT support for all TB patients was the goal of South African health policy at the time (2012), most TB patients were not receiving formal DOT support. Only 155 (14.1%) were receiving home-based DOT, while 114 (10.4%) received clinic-based DOT. TB patients receiving home-based DOT reported higher rates of HIV counselling than other patients. Public health providers should train DOT supporters to provide HIV prevention and target DOT to those at greatest risk of HIV, particularly those at greatest socio-economic risk.
Allisse, Maxime; Bui, Hung Tien; Léger, Luc; Comtois, Alain-Steve; Leone, Mario
2018-05-07
Allisse, M, Bui, HT, Léger, L, Comtois, A-S, and Leone, M. Updating the skating multistage aerobic test and correction for V[Combining Dot Above]O2max prediction using a new skating economy index in elite youth ice hockey players. J Strength Cond Res XX(X): 000-000, 2018-A number of field tests, including the skating multistage aerobic test (SMAT), have been developed to predict V[Combining Dot Above]O2max in ice hockey players. The SMAT, like most field tests, assumes that participants who reach a given stage have the same oxygen uptake, which is not usually true. Thus, the objectives of this research are to update the V[Combining Dot Above]O2 values during the SMAT using a portable breath-by-breath metabolic analyzer and to propose a simple index of skating economy to improve the prediction of oxygen uptake. Twenty-six elite hockey players (age 15.8 ± 1.3 years) participated in this study. The oxygen uptake was assessed using a portable metabolic analyzer (K4b) during an on-ice maximal shuttle skate test. To develop an index of skating economy called the skating stride index (SSI), the number of skating strides was compiled for each stage of the test. The SMAT enabled the prediction of the V[Combining Dot Above]O2max (ml·kg·min) from the maximal velocity (m·s) and the SSI (skating strides·kg) using the following regression equation: V[Combining Dot Above]O2max = (14.94 × maximal velocity) + (3.68 × SSI) - 24.98 (r = 0.95, SEE = 1.92). This research allowed for the update of the oxygen uptake values of the SMAT and proposed a simple measure of skating efficiency for a more accurate evaluation of V[Combining Dot Above]O2max in elite youth hockey players. By comparing the highest and lowest observed SSI scores in our sample, it was noted that the V[Combining Dot Above]O2 values can vary by up to 5 ml·kg·min. Our results suggest that skating economy should be included in the prediction of V[Combining Dot Above]O2max to improve prediction accuracy.
Polymer as an Additive in the Emitting Layer for High-Performance Quantum Dot Light-Emitting Diodes.
Liang, Feng; Liu, Yuan; Hu, Yun; Shi, Ying-Li; Liu, Yu-Qiang; Wang, Zhao-Kui; Wang, Xue-Dong; Sun, Bao-Quan; Liao, Liang-Sheng
2017-06-14
A facile but effective method is proposed to improve the performance of quantum dot light-emitting diodes (QLEDs) by incorporating a polymer, poly(9-vinlycarbazole) (PVK), as an additive into the CdSe/CdS/ZnS quantum dot (QD) emitting layer (EML). It is found that the charge balance of the device with the PVK-added EML was greatly improved. In addition, the film morphology of the hole-transporting layer (HTL) which is adjacent to the EML, is substantially improved. The surface roughness of the HTL is reduced from 5.87 to 1.38 nm, which promises a good contact between the HTL and the EML, resulting in low leakage current. With the improved charge balance and morphology, a maximum external quantum efficiency (EQE) of 16.8% corresponding to the current efficiency of 19.0 cd/A is achievable in the red QLEDs. The EQE is 1.6 times as high as that (10.5%) of the reference QLED, comprising a pure QD EML. This work demonstrates that incorporating some polymer molecules into the QD EML as additives could be a facile route toward high-performance QLEDs.
Tavakoli, Mohammad Mahdi; Simchi, Abdolreza; Fan, Zhiyong; Aashuri, Hossein
2016-01-07
We present a novel chemical procedure to prepare three-dimensional graphene networks (3DGNs) as a transparent conductive film to enhance the photovoltaic performance of PbS quantum-dot (QD) solar cells. It is shown that 3DGN electrodes enhance electron extraction, yielding a 30% improvement in performance compared with the conventional device.
Chen, Yiwen; Zhang, Lahong; Hong, Liquan; Luo, Xian; Chen, Juping; Tang, Leiming; Chen, Jiahuan; Liu, Xia; Chen, Zhaojun
2018-06-01
Making a correct and rapid diagnosis is essential for managing pulmonary tuberculosis (PTB), particularly multidrug-resistant tuberculosis. We aimed to evaluate the efficacy of the combination of simultaneous amplification testing (SAT) and reverse dot blot (RDB) for the rapid detection of Mycobacterium tuberculosis (MTB) and drug-resistant mutants in respiratory samples. 225 suspected PTB and 32 non-TB pulmonary disease samples were collected. All sputum samples were sent for acid-fast bacilli smear, SAT, culture and drug susceptibility testing (DST) by the BACTEC TM MGIT TM 960 system. 53 PTB samples were tested by both RDB and DNA sequencing to identify drug resistance genes and mutated sites. The SAT positive rate (64.9%) was higher than the culture positive rate (55.1%), with a coincidence rate of 83.7%. The sensitivity and specificity of SAT for diagnosing PTB were 66.7% and 100%, respectively, while those for culture were 53.9% and 84.2%, respectively. RDB has high sensitivity and specificity in identifying drug resistance genes and mutated sites. The results of RDB correlated well with those of DST and DNA sequencing, with coincidence rates of 92.5% and 98.1%, respectively. The combination of SAT and RDB is promising for rapidly detecting PTB and monitoring drug resistance in clinical laboratories. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients
NASA Astrophysics Data System (ADS)
Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier
2016-05-01
We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics.We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02200f
Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume
NASA Technical Reports Server (NTRS)
Force, Dale A.
2013-01-01
GPS has been used for spacecraft navigation for many years center dot In support of this, the US has committed that future GPS satellites will continue to provide signals in the Space Service Volume center dot NASA is working with international agencies to obtain similar commitments from other providers center dot In support of this effort, I simulated multi-constellation navigation in the Space Service Volume In this presentation, I extend the work to examine the navigational benefits and drawbacks of the new constellations center dot A major benefit is the reduced geometric dilution of precision (GDOP). I show that there is a substantial reduction in GDOP by using all of the GNSS constellations center dot The increased number of GNSS satellites broadcasting does produce mutual interference, raising the noise floor. A near/far signal problem can also occur where a nearby satellite drowns out satellites that are far away. - In these simulations, no major effect was observed Typically, the use of multi-constellation GNSS navigation improves GDOP by a factor of two or more over GPS alone center dot In addition, at the higher altitudes, four satellite solutions can be obtained much more often center dot This show the value of having commitments to provide signals in the Space Service Volume Besides a commitment to provide a minimum signal in the Space Service Volume, detailed signal gain information is useful for mission planning center dot Knowledge of group and phase delay over the pattern would also reduce the navigational uncertainty
Ahmad, Riris Andono; Mahendradhata, Yodi; Utarini, Adi; de Vlas, Sake J
2011-04-01
To understand determinants of care-seeking patterns and diagnostic delay amongst tuberculosis (TB) patients diagnosed at direct observed treatment short course (DOTS) facilities in Jogjakarta, Indonesia. Cross-sectional survey amongst newly diagnosed TB patients in 89 DOTS facilities whose history of care-seeking was reconstructed through retrospective interviews gathering data on socio-demographic determinants, onset of TB symptoms, type of health facilities visited, duration of each care-seeking action were recorded. Two hundred and fifty-three TB patients were included in the study whose median duration of patients' delay was 1 week and whose total duration of diagnostic delay was 5.4 weeks. The median number of visits was 4. Many of the patients' socio-demographic determinants were not associated with the care-seeking patterns, and no socio-demographic determinants were associated with the duration of diagnostic delay. More than 60% of TB patients started their care-seeking processes outside DOTS facilities, but the number of visits in DOTS facilities was greater during the overall care-seeking process. Surprisingly, patient's immediate visits to a DOTS facility did not correspond to shorter diagnostic delay. Diagnostic delay in Jogjakarta province was not associated with patients' socio demographic factors, but rather with the health system providing DOTS services. This suggests that strengthening the health system and improving diagnostic quality within DOTS services is now a more rational strategy than expanding the TB programme to engage more providers. © 2010 Blackwell Publishing Ltd.
Zhang, HaiYang; Ehiri, John; Yang, Huan; Tang, Shenglan; Li, Ying
2016-01-01
Background Poor adherence to tuberculosis (TB) treatment can lead to prolonged infectivity and poor treatment outcomes. Directly observed treatment (DOT) seeks to improve adherence to TB treatment by observing patients while they take their anti-TB medication. Although community-based DOT (CB-DOT) programs have been widely studied and promoted, their effectiveness has been inconsistent. The aim of this study was to critical appraise and summarize evidence of the effects of CB-DOT on TB treatment outcomes. Methods Studies published up to the end of February 2015 were identified from three major international literature databases: Medline/PubMed, EBSCO, and EMBASE. Unpublished data from the grey literature were identified through Google and Google Scholar searches. Results Seventeen studies involving 12,839 pulmonary TB patients (PTB) in eight randomized controlled trials (RCTs) and nine cohort studies from 12 countries met the criteria for inclusion in this review and 14 studies were included in meta-analysis. Compared with clinic-based DOT, pooled results of RCTs for all PTB cases (including smear-negative or -positive, new or retreated TB cases) and smear-positive PTB cases indicated that CB-DOT promoted successful treatment [pooled RRs (95%CIs): 1.11 (1.02–1.19) for all PTB cases and 1.11 (1.02–1.19) for smear-positive PTB cases], and completed treatment [pooled RRs (95%CIs): 1.74(1.05, 2.90) for all PTB cases and 2.22(1.16, 4.23) for smear-positive PTB cases], reduced death [pooled RRs (95%CIs): 0.44 (0.26–0.72) for all PTB cases and 0.39 (0.23–0.66) for smear-positive PTB cases], and transfer out [pooled RRs (95%CIs): 0.37 (0.23–0.61) for all PTB cases and 0.42 (0.25–0.70) for smear-positive PTB cases]. Pooled results of all studies (RCTs and cohort studies) with all PTB cases demonstrated that CB-DOT promoted successful treatment [pooled RR (95%CI): 1.13 (1.03–1.24)] and curative treatment [pooled RR (95%CI): 1.24 (1.04–1.48)] compared with self-administered treatment. Conclusions CB-DOT did improved TB treatment outcomes according to the pooled results of included studies in this review. Studies on strategies for implementation of patient-centered and community-centered CB-DOT deserve further attention. PMID:26849656
NASA Astrophysics Data System (ADS)
Mozdbar, Afsaneh; Nouralishahi, Amideddin; Fatemi, Shohreh; Mirakhori, Ghazaleh
2018-01-01
In the recent decade, Carbon Quantum Dots (CQDs) have attracted lots of attention due to their excellent properties such as tunable photoluminescence, high chemical stability, low toxicity, and biocompatibility. Among all synthesis methods, the hydrothermal/solvothermal rout has been considered as one of the most common and simplest method. The type of precursors can affect the size of CQDs and determine their surface functional groups, the essential properties that deeply influence the optical specifications. In this work, the effect of different precursors on the final properties of carbon quantum dots is investigated. The carbon quantum dots were synthesized by hydrothermal/solvothermal rout using citric acid, thiourea, ethylamine and monoethanolamine as precursors in almost the same conditions of time and temperature. Resultant CQDs were characterized by using FTIR, UV-Visible Spectroscopy and Photoluminescence (PL) analysis. The results of UV-Vis spectroscopy showed that quantum dots synthesized from monoethanolamine have wider absorption band rather than the CQDs from other precursors and the absorption edge shifted from about 270 nm for ethylamine to about 470 nm in monoethanolamine. Furthermore, the results demonstrate that using citric acid and monoethanolamine as precursor improved production efficiency and emission quantum yield of the carbon dots.
Transparent Ultra-High-Loading Quantum Dot/Polymer Nanocomposite Monolith for Gamma Scintillation.
Liu, Chao; Li, Zhou; Hajagos, Tibor Jacob; Kishpaugh, David; Chen, Dustin Yuan; Pei, Qibing
2017-06-27
Spectroscopic gamma-photon detection has widespread applications for research, defense, and medical purposes. However, current commercial detectors are either prohibitively expensive for wide deployment or incapable of producing the characteristic gamma photopeak. Here we report the synthesis of transparent, ultra-high-loading (up to 60 wt %) Cd x Zn 1-x S/ZnS core/shell quantum dot/polymer nanocomposite monoliths for gamma scintillation by in situ copolymerization of the partially methacrylate-functionalized quantum dots in a monomer solution. The efficient Förster resonance energy transfer of the high-atomic-number quantum dots to lower-band-gap organic dyes enables the extraction of quantum-dot-borne excitons for photon production, resolving the problem of severe light yield deterioration found in previous nanoparticle-loaded scintillators. As a result, the nanocomposite scintillator exhibited simultaneous improvements in both light yield (visible photons produced per MeV of gamma-photon energy) and gamma attenuation. With these enhancements, a 662 keV Cs-137 gamma photopeak with 9.8% resolution has been detected using a 60 wt % quantum-dot nanocomposite scintillator, demonstrating the potential of such a nanocomposite system in the development of high-performance low-cost spectroscopic gamma detectors.
Magnetic bubbles and domain evolution in Fe/Gd multilayer nanodots
NASA Astrophysics Data System (ADS)
Wang, T. T.; Liu, W.; Dai, Z. M.; Zhao, X. T.; Zhao, X. G.; Zhang, Z. D.
2018-04-01
The formation of magnetic bubbles and the domain-evolution processes, induced by a perpendicular magnetic field in Fe/Gd multilayer films and nanodots, have been investigated. At room temperature, the stripe domains in a continuous film transform into magnetic bubbles in an external field, while bubbles form spontaneously in nanodots due to the existence of shape anisotropy. When the temperature decreases to 20 K, the enhancement of the perpendicular magnetic anisotropy of the samples results in an increase of the domain size in the continuous film and the magnetization-reversal behavior of each nanodot becomes independent, and most reversed dots do not depend on each other, indicating the magnetic characteristics of a single domain. The present research provides further understanding of the evolution of magnetic bubbles in the Fe/Gd system and suggests their promising applications in patterned recording materials.
Chlorine doped graphene quantum dots: Preparation, properties, and photovoltaic detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jianhong; Xiang, Jinzhong, E-mail: jzhxiang@ynu.edu.cn; Tang, Libin, E-mail: scitang@163.com
Graphene quantum dots (GQDs) are becoming one of the hottest advanced functional materials because of the opening of the bandgap due to quantum confinement effect, which shows unique optical and electrical properties. The chlorine doped GQDs (Cl-GQDs) have been fabricated by chemical exfoliation of HCl treated carbon fibers (CFs), which were prepared from degreasing cotton through an annealing process at 1000 °C for 30 min. Raman study shows that both G and 2D peaks of GQDs may be redshifted (softened) by chlorine doping, leading to an n-type doping. The first vertical (Cl)-GQDs based photovoltaic detectors have been demonstrated, both the light absorbingmore » and electron-accepting roles for (Cl)-GQDs in photodetection have been found, resulting in an exceptionally big ratio of photocurrent to dark current as high as ∼10{sup 5} at room temperature using a 405 nm laser irradiation under the reverse bias voltage. The study expands the application of (Cl)-GQDs to the important optoelectronic detection devices.« less
Shot noise of charge current in a quantum dot responded by rotating and oscillating magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hong-Kang, E-mail: zhaohonk@yahoo.com; Zou, Wei-Ke; Chen, Qiao
We have investigated the shot noise and Fano factor of the dynamic spin-polarized quantum dot under the perturbations of a rotating magnetic field (RMF), and an oscillating magnetic field (OMF) by employing the non-equilibrium Green's function approach. The shot noise is enhanced from sub-Poissonian to super-Poissonian due to the application of RMF and OMF, and it is controlled sensitively by the tilt angle θ of RMF. The magnitude of shot noise increases as the photon energy ℏω of OMF increases, and its valley eventually is reversed to peaks as the photon energy is large enough. Double-peak structure of Fano factormore » is exhibited as the frequency of OMF increases to cover a large regime. The Zeeman energy μ{sub 0}B{sub 0} acts as an effective gate bias to exhibit resonant behavior, and novel peak emerges associated with the applied OMF.« less
Tansakul, Chittreeya; Lilie, Erin; Walter, Eric D.; Rivera, Frank; Wolcott, Abraham; Zhang, Jin Z.; Millhauser, Glenn L.
2010-01-01
Quantum dot (QD) fluorescence is effectively quenched at low concentration by nitroxides bearing amine or carboxylic acid ligands. The association constants and fluorescence quenching of CdSe QDs with these derivatized nitroxides have been examined using electron paramagnetic resonance (EPR) and fluorescence spectroscopy. The EPR spectra in the non-protic solvent toluene are extremely sensitive to intermolecular and intramolecular hydrogen bonding of the functionalized nitroxides. Fluorescence measurements show that quenching of QD luminescence is nonlinear, with a strong dependence on the distance between the radical and the QD. The quenched fluorescence is restored when the surface-bound nitroxides are converted to hydroxylamines by mild reducing agents, or trapped by carbon radicals to form alkoxyamines. EPR studies indicate that photoreduction of the nitroxide occurs in toluene solution upon photoexcitation at 365 nm. However, photolysis in benzene solution gives no photoreduction, suggesting that photoreduction in toluene is independent of the quenching mechanism. The fluorescence quenching of QDs by nitroxide binding is a reversible process. PMID:20473339
Enhanced amplified spontaneous emission in a quantum dot-doped polymer-dispersed liquid crystal
NASA Astrophysics Data System (ADS)
Cao, Mingxuan; Zhang, Yating; Song, Xiaoxian; Che, Yongli; Zhang, Haiting; Yan, Chao; Dai, Haitao; Liu, Guang; Zhang, Guizhong; Yao, Jianquan
2016-07-01
Quantum dot-doped polymer-dispersed liquid crystals (QD-PDLCs) were prepared by photoinitiated polymerization and sealed in capillary tubes. The concentration of QDs in the PDLC was 1 wt%. Amplified spontaneous emission (ASE) of the quantum dot-doped polymer-dispersed liquid crystals was observed with 532 nm wavelength laser excitation. The threshold for ASE was 6 mJ cm-2, which is much lower than that for homogeneous quantum dot-doped polymer (25 mJ cm-2). The threshold for ASE was dramatically enhanced when the working temperature exceeded the clearing point of the liquid crystal; this result demonstrates that multi-scattering caused by the liquid crystals effectively improved the path length or dwell time of light in the gain region, which played a key role in decreasing the threshold for ASE.
Geopotential Model Improvement Using POCM_4B Dynamic Ocean Topography Information: PGM2000A
NASA Technical Reports Server (NTRS)
Pavlis, N. K.; Chinn, D. S.; Cox, C. M.; Lemoine, Frank G.; Smith, David E. (Technical Monitor)
2000-01-01
The two-year mean (1993-1994) Dynamic Ocean Topography (DOT) field implied by the POCM_4B circulation model was used to develop normal equations for DOT, in a surface spherical harmonic representation. These normal equations were combined with normal equations from satellite tracking data, surface gravity data, and altimeter data from TOPEX/Poseidon and ERS-1. Several least-squares combination solutions were developed in this fashion, by varying parameters such as the maximum degree of the estimated DOT and the relative weights of the different data. The solutions were evaluated in terms of orbit fit residuals, GPS/Leveling-derived undulations, and independent DOT information from in situ WOCE hydrographic data. An optimal solution was developed in this fashion which was originally presented at the 1998 EGS meeting in Nice, France. This model, designated here PGM2000A, maintains the orbit and land geoid modeling performance of EGM96, while improving its marine geoid modeling capability. In addition, PGM2000A's error spectrum is considerably more realistic than those of other contemporary gravitational models and agrees well with the error spectrum of EGM96. We will present the development and evaluation of PGM2000A, with particular emphasis on the weighting of the DOT information implied by POCM_4B. We will also present an inter-comparison of PGM2000A with the GRIM5-C1 and TEG-4 models. Directions for future work and problematic areas will be identified.
Intermittent regime of brain activity at the early, bias-guided stage of perceptual learning.
Nikolaev, Andrey R; Gepshtein, Sergei; van Leeuwen, Cees
2016-11-01
Perceptual learning improves visual performance. Among the plausible mechanisms of learning, reduction of perceptual bias has been studied the least. Perceptual bias may compensate for lack of stimulus information, but excessive reliance on bias diminishes visual discriminability. We investigated the time course of bias in a perceptual grouping task and studied the associated cortical dynamics in spontaneous and evoked EEG. Participants reported the perceived orientation of dot groupings in ambiguous dot lattices. Performance improved over a 1-hr period as indicated by the proportion of trials in which participants preferred dot groupings favored by dot proximity. The proximity-based responses were compromised by perceptual bias: Vertical groupings were sometimes preferred to horizontal ones, independent of dot proximity. In the evoked EEG activity, greater amplitude of the N1 component for horizontal than vertical responses indicated that the bias was most prominent in conditions of reduced visual discriminability. The prominence of bias decreased in the course of the experiment. Although the bias was still prominent, prestimulus activity was characterized by an intermittent regime of alternating modes of low and high alpha power. Responses were more biased in the former mode, indicating that perceptual bias was deployed actively to compensate for stimulus uncertainty. Thus, early stages of perceptual learning were characterized by episodes of greater reliance on prior visual preferences, alternating with episodes of receptivity to stimulus information. In the course of learning, the former episodes disappeared, and biases reappeared only infrequently.
Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata
NASA Astrophysics Data System (ADS)
Mishra, Prashant Kumar; Chattopadhyay, Manju K.
2018-03-01
Lower power consumption is an essential demand for portable multimedia system using digital signal processing algorithms and architectures. Quantum dot cellular automata (QCA) is a rising nano technology for the development of high performance ultra-dense low power digital circuits. QCA based several efficient binary and decimal arithmetic circuits are implemented, however important improvements are still possible. This paper demonstrate Mirror Adder circuit design in QCA. We present comparative study of mirror adder cells designed using conventional CMOS technique and mirror adder cells designed using quantum-dot cellular automata. QCA based mirror adders are better in terms of area by order of three.
Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell
Halim, Mohammad A.
2012-01-01
Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%. PMID:28348320
Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell.
Halim, Mohammad A
2012-12-27
Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley - Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun's broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.
Getahun, Belete; Nkosi, Zethu Zerish
2017-01-01
Background Directly observed treatment, short course (DOTS) strategy has been a cornerstone for Tuberculosis (TB) control programs in developing countries. However, in Ethiopia satisfaction level of patients’ with TB with the this strategy is not well understood. Therefore, the study aimed to assess the satisfaction level of patients with TB with the DOTS. Method Explanatory sequential mixed method design was carried out in Addis Ababa, Ethiopia. Interviewer-administered questionnaire with 601 patients with TB who were on follow-up was employed in the quantitative approach. In the qualitative approach telephonic-interview with 25 persons lost to follow-up and focus group discussions with 23 TB experts were conducted. Result Sixty seven percent of respondent was satisfied with the DOTS. Rural residency (AOR = 3.4, 95% CI 1.6, 7.6), having TB symptoms (AOR = 0.6, 95% CI 0.4, 0.94) and treatment supporter (AOR = 4.3, 95%CI 2.7, 6.8) were associated with satisfaction with DOTS. In qualitative finding, all persons lost to follow-up were dissatisfied while TB experts enlightened lack of evidence to affirm the satisfaction level of patients with DOTS. Explored factors contributing to satisfaction include: on time availability of health care providers, DOTS service delivery process, general condition of health care facilities, nutritional support and transportation. Conclusion DOTS is limited to satisfy patients with TB and lacks a consistent system that determines the satisfaction level of patients with TB. Therefore, DOTS strategy needs to have a system to captures patients’ satisfaction level to respond on areas that need progress to improve DOTS service quality. PMID:28182754
Effects of dental magnification lenses on indirect vision: a pilot study.
Hoerler, Sarah B; Branson, Bonnie G; High, Anne M; Mitchell, Tanya Villalpando
2012-01-01
The purpose of this pilot study was to evaluate the effect of magnification lenses on the indirect vision skills of dental hygiene students. This pilot study examined the accuracy and efficiency of dental hygiene students' indirect vision skills while using traditional safety lenses and magnification lenses. The sample was comprised of 14 students in their final semester of a dental hygiene program. A crossover study approach was utilized, with each participant randomly assigned to a specific order of eyewear. The study included evaluation of each participant taking part in 2 separate clinical sessions. During the first session, each participant completed a clinical exercise on a dental manikin marked with 15 dots throughout the oral cavity while wearing the randomly as signed eyewear, and then completed a similar exercise on a differently marked dental manikin while wearing the randomly assigned eyewear. This procedure was repeated at a second clinical session, however, the dental manikin and eyewear pairings were reversed. Accuracy was measured on the number of correctly identified dots and efficiency was measured by the time it took to identify the dots. Perceptions of the participants' use of magnification lenses and the participants' opinion of the use of magnification lenses in a dental hygiene curriculum were evaluated using a questionnaire. Comparing the mean of the efficiency scores, students are more efficient at identifying indirect vision points with the use of magnification lenses (3 minutes, 36 seconds) than with traditional safety lenses (3 minutes, 56 seconds). Comparing the measurement of accuracy, students are more accurate at identifying indirect vision points with traditional safety lenses (84%) as com pared to magnification lenses (79%). Overall, the students report ed an increased quality of dental hygiene treatment provided in the clinical setting and an improved clinical posture while treating patients with the use of magnification lenses. This study did not produce statistically significant data to support the use of magnification lenses to enhance indirect vision skills among dental hygiene students, however, students perceived that their indirect vision skills were enhanced by the use of magnification lenses.
ECO-ITS : Intelligent Transportation System Applications to Improve Environmental Performance
DOT National Transportation Integrated Search
2012-05-01
This report describes recent research supported by the US DOTs AERIS program, building upon existing work through developing and improving data collection methods, developing new data fusion techniques to improve estimates, and applying appropriat...
Sayedi, M.; Rashidi, M.; Manzoor, L.; Seddiq, M. K.; Ikram, N.
2017-01-01
Tuberculosis (TB) is a major public health problem in Afghanistan, but experience in implementing effective strategies to prevent and control TB in urban areas and conflict zones is limited. This study shares programmatic experience in implementing DOTS in the large city of Kabul. We analyzed data from the 2009–2015 reports of the National TB Program (NTP) for Kabul City and calculated treatment outcomes and progress in case notification using rates, ratios, and confidence interval. Urban DOTS was implemented by the NTP in partnership with United States Agency for International Development (USAID)-funded TB projects, the World Health Organization (WHO), and the private sector. Between 2009 and 2015, the number of DOTS-providing centers in Kabul increased from 22 to 85. In total, 24,619 TB patients were enrolled in TB treatment during this period. The case notification rate for all forms of TB increased from 59 per 100,000 population to 125 per 100,000. The case notification rate per 100,000 population for sputum-smear-positive TB increased from 25 to 33. The treatment success rate for all forms of TB increased from 31% to 67% and from 47% to 77% for sputum-smear-positive TB cases. The treatment success rate for private health facilities increased from 52% in 2010 to 80% in 2015. In 2013, contact screening was introduced, and the TB yield was 723 per 100,000—more than two times higher than the estimated national prevalence of 340 per 100,000. Contact screening contributed to identifying 2,509 child contacts of people with TB, and 76% of those children received isoniazid preventive therapy. The comprehensive urban DOTS program significantly improved service accessibility, TB case finding, and treatment outcomes in Kabul. Public- and private-sector involvement also improved treatment outcomes; however, the treatment success rate remains higher in private health facilities. While the treatment success rate increased significantly, it remains lower than the national average, and more efforts are needed to improve treatment outcomes in Kabul. We recommend that the urban DOTS approach be replicated in other countries and cities in Afghanistan with settings similar to Kabul. PMID:28562675
Qader, G; Hamim, A; Sayedi, M; Rashidi, M; Manzoor, L; Seddiq, M K; Ikram, N; Suarez, P G
2017-01-01
Tuberculosis (TB) is a major public health problem in Afghanistan, but experience in implementing effective strategies to prevent and control TB in urban areas and conflict zones is limited. This study shares programmatic experience in implementing DOTS in the large city of Kabul. We analyzed data from the 2009-2015 reports of the National TB Program (NTP) for Kabul City and calculated treatment outcomes and progress in case notification using rates, ratios, and confidence interval. Urban DOTS was implemented by the NTP in partnership with United States Agency for International Development (USAID)-funded TB projects, the World Health Organization (WHO), and the private sector. Between 2009 and 2015, the number of DOTS-providing centers in Kabul increased from 22 to 85. In total, 24,619 TB patients were enrolled in TB treatment during this period. The case notification rate for all forms of TB increased from 59 per 100,000 population to 125 per 100,000. The case notification rate per 100,000 population for sputum-smear-positive TB increased from 25 to 33. The treatment success rate for all forms of TB increased from 31% to 67% and from 47% to 77% for sputum-smear-positive TB cases. The treatment success rate for private health facilities increased from 52% in 2010 to 80% in 2015. In 2013, contact screening was introduced, and the TB yield was 723 per 100,000-more than two times higher than the estimated national prevalence of 340 per 100,000. Contact screening contributed to identifying 2,509 child contacts of people with TB, and 76% of those children received isoniazid preventive therapy. The comprehensive urban DOTS program significantly improved service accessibility, TB case finding, and treatment outcomes in Kabul. Public- and private-sector involvement also improved treatment outcomes; however, the treatment success rate remains higher in private health facilities. While the treatment success rate increased significantly, it remains lower than the national average, and more efforts are needed to improve treatment outcomes in Kabul. We recommend that the urban DOTS approach be replicated in other countries and cities in Afghanistan with settings similar to Kabul.
NASA Astrophysics Data System (ADS)
Bilal, Bisma; Ahmed, Suhaib; Kakkar, Vipan
2018-02-01
The challenges which the CMOS technology is facing toward the end of the technology roadmap calls for an investigation of various logical and technological solutions to CMOS at the nano scale. Two such paradigms which are considered in this paper are the reversible logic and the quantum-dot cellular automata (QCA) nanotechnology. Firstly, a new 3 × 3 reversible and universal gate, RG-QCA, is proposed and implemented in QCA technology using conventional 3-input majority voter based logic. Further the gate is optimized by using explicit interaction of cells and this optimized gate is then used to design an optimized modular full adder in QCA. Another configuration of RG-QCA gate, CRG-QCA, is then proposed which is a 4 × 4 gate and includes the fault tolerant characteristics and parity preserving nature. The proposed CRG-QCA gate is then tested to design a fault tolerant full adder circuit. Extensive comparisons of gate and adder circuits are drawn with the existing literature and it is envisaged that our proposed designs perform better and are cost efficient in QCA technology.
Evans, Travis C; Britton, Jennifer C
2018-09-01
Abnormal threat-related attention in anxiety disorders is most commonly assessed and modified using the dot-probe paradigm; however, poor psychometric properties of reaction-time measures may contribute to inconsistencies across studies. Typically, standard attention measures are derived using average reaction-times obtained in experimentally-defined conditions. However, current approaches based on experimentally-defined conditions are limited. In this study, the psychometric properties of a novel response-based computation approach to analyze dot-probe data are compared to standard measures of attention. 148 adults (19.19 ± 1.42 years, 84 women) completed a standardized dot-probe task including threatening and neutral faces. We generated both standard and response-based measures of attention bias, attentional orientation, and attentional disengagement. We compared overall internal consistency, number of trials necessary to reach internal consistency, test-retest reliability (n = 72), and criterion validity obtained using each approach. Compared to standard attention measures, response-based measures demonstrated uniformly high levels of internal consistency with relatively few trials and varying improvements in test-retest reliability. Additionally, response-based measures demonstrated specific evidence of anxiety-related associations above and beyond both standard attention measures and other confounds. Future studies are necessary to validate this approach in clinical samples. Response-based attention measures demonstrate superior psychometric properties compared to standard attention measures, which may improve the detection of anxiety-related associations and treatment-related changes in clinical samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Assessment of using ultrasound images as prior for diffuse optical tomography regularization matrix
NASA Astrophysics Data System (ADS)
Althobaiti, Murad; Vavadi, Hamed; Zhu, Quing
2017-02-01
Imaging of tissue with Ultrasound-guided diffuse optical tomography (DOT) is a rising imaging technique to map hemoglobin concentrations within tissue for breast cancer detection and diagnosis. Near-infrared optical imaging received a lot of attention in research as a possible technique to be used for such purpose especially for breast tumors. Since DOT images contrast is closely related to oxygenation and deoxygenating of the hemoglobin, which is an important factor in differentiating malignant and benign tumors. One of the optical imaging modalities used is the diffused optical tomography (DOT); which probes deep scattering tissue (1-5cm) by NIR optical source-detector probe and detects NIR photons in the diffusive regime. The photons in the diffusive regime usually reach the detector without significant information about their source direction and the propagation path. Because of that, the optical reconstruction problem of the medium characteristics is ill-posed even with the tomography and Back-projection techniques. The accurate recovery of images requires an effective image reconstruction method. Here, we illustrate a method in which ultrasound images are encoded as prior for regularization of the inversion matrix. Results were evaluated using phantom experiments of low and high absorption contrasts. This method improves differentiation between the low and the high contrasts targets. Ultimately, this method could improve malignant and benign cases by increasing reconstructed absorption ratio of malignant to benign. Besides that, the phantom results show improvements in target shape as well as the spatial resolution of the DOT reconstructed images.
Singlet vs. triplet interelectronic repulsion in confined atoms
NASA Astrophysics Data System (ADS)
Sarsa, A.; Buendía, E.; Gálvez, F. J.; Katriel, J.
2018-06-01
Hund's multiplicity rule invariably holds for the ground configurations of few-electron atoms as well as those of multi-electron quantum dots. However, the ordering of the corresponding interelectronic repulsions exhibits a reversal in the former but not in the latter system, upon varying the system parameters. Here, we investigate the transition between these two types of behaviour by studying few-electron atoms confined in spherical cavities. "Counter-intuitive" ordering of the interelectronic repulsions is confirmed when the nuclear charge is low enough and the cavity radius is large enough.
1992-05-01
especially true for friend-enemy or danger-safe designations. Dots, dashes, shapes, and video effects are recommended. Care must be taken to avoid visual...MAY 92 10.3 Screen Design - Format 10.3.1.4 Use of Contrasting Features Use contrasting features such as inverse video and color to call attention to...captions. Do not use reverse video or highlighting for labels. 13.2.3.2 Formatting For single fields, locate the caption to the left of the entry fields
2012-2016 Iowa Transportation Improvement Program.
DOT National Transportation Integrated Search
2011-06-01
"The Iowa Transportation Improvement Program (Program) is published to inform : Iowans of planned investments in our states transportation system. : The Iowa Transportation Commission (Commission) and Iowa Department of : Transportation (Iowa DOT)...
Adejumo, Olusola Adedeji; Daniel, Olusoji James; Otesanya, Andrew Folarin; Salisu-Olatunj, Shukrat Olajumoke; Abdur-Razzaq, Husseine A
2017-01-01
The engagement of private practitioners in the public-private mix of tuberculosis (TB) management started in 2007 in Lagos State Nigeria. This study compared the treatment outcomes of patients managed at private for profit (PFP) and private not for profit (PNFP) directly observed treatment short course (DOTS) facilities. A retrospective review of treatment cards of TB patients managed between January 1, 2012, and June 30, 2012, in seven PFP and four PNFP DOTS facilities that served as treatment and microscopy center under the Lagos State TB and Leprosy Control Programme (LSTBLCP) at least 2 years before data collection was conducted. A total of 372 treatment cards of TB patients were reviewed, of which 132 (35.5%) and 240 (64.5%) were from PFP and PNFP DOTS facilities, respectively. Treatment success rate was higher among patients managed at PFP (89.4%) DOTS facilities than PNFP (81.3%) DOTS facilities ( P = 0.04). The proportion of patients lost to follow-up (12.5% vs. 8.3%), dead (3.3% vs. 1.5%) and treatment failure (2.5% vs. 0.8%) was higher among patients managed at PNFP DOTS facilities ( P > 0.05). The odds that patients treated at PFP DOTS facilities had treatment success were about four times higher than PNFP DOTS facilities when other variables have been controlled for ( P < 0.05). There is need by the LSTBLCP to engage more private practitioners to increase case detection and improve treatment outcomes of TB patients.
Beyond attentional bias: a perceptual bias in a dot-probe task.
Bocanegra, Bruno R; Huijding, Jorg; Zeelenberg, René
2012-12-01
Previous dot-probe studies indicate that threat-related face cues induce a bias in spatial attention. Independently of spatial attention, a recent psychophysical study suggests that a bilateral fearful face cue improves low spatial-frequency perception (LSF) and impairs high spatial-frequency perception (HSF). Here, we combine these separate lines of research within a single dot-probe paradigm. We found that a bilateral fearful face cue, compared with a bilateral neutral face cue, speeded up responses to LSF targets and slowed down responses to HSF targets. This finding is important, as it shows that emotional cues in dot-probe tasks not only bias where information is preferentially processed (i.e., an attentional bias in spatial location), but also bias what type of information is preferentially processed (i.e., a perceptual bias in spatial frequency). PsycINFO Database Record (c) 2012 APA, all rights reserved.
Psychophysical estimation of the effects of aging on direction-of-heading judgments
NASA Astrophysics Data System (ADS)
Raghuram, Aparna; Lakshminarayanan, Vasudevan
2011-11-01
We conducted psychophysical experiments on direction-of-heading judgments using old and young subjects. Subjects estimated heading directions on a translation perpendicular to the vertical plane (frontoparallel); we found that heading judgments were affected by age. Increasing the random dot density in the stimulus from 24 to 400 dots did not improve threshold significantly. Older subjects started performing worse at the highest dots condition of 400. The speed of the radial motion was important, as heading judgments with slower radial motion were difficult to judge than faster radial motion, as the focus of expansion was easier to locate owing to the larger displacement of dots. Gender differences indicated that older women had a higher threshold than older men. This was only significant for the faster simulated radial speed. A general trend of women having a higher threshold than men was noticed.
Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si
NASA Astrophysics Data System (ADS)
Jung, Daehwan; Herrick, Robert; Norman, Justin; Turnlund, Katherine; Jan, Catherine; Feng, Kaiyin; Gossard, Arthur C.; Bowers, John E.
2018-04-01
We investigate the impact of threading dislocation density on the reliability of 1.3 μm InAs quantum dot lasers epitaxially grown on Si. A reduction in the threading dislocation density from 2.8 × 108 cm-2 to 7.3 × 106 cm-2 has improved the laser lifetime by about five orders of magnitude when aged continuous-wave near room temperature (35 °C). We have achieved extrapolated lifetimes (time to double initial threshold) more than 10 × 106 h. An accelerated laser aging test at an elevated temperature (60 °C) reveals that p-modulation doped quantum dot lasers on Si retain superior reliability over unintentionally doped ones. These results suggest that epitaxially grown quantum dot lasers could be a viable approach to realize a reliable, scalable, and efficient light source on Si.
Tailoring Quantum Dot Assemblies to Extend Exciton Coherence Times and Improve Exciton Transport
NASA Astrophysics Data System (ADS)
Seward, Kenton; Lin, Zhibin; Lusk, Mark
2012-02-01
The motion of excitons through nanostructured assemblies plays a central role in a wide range of physical phenomena including quantum computing, molecular electronics, photosynthetic processes, excitonic transistors and light emitting diodes. All of these technologies are severely handicapped, though, by quasi-particle lifetimes on the order of a nanosecond. The movement of excitons must therefore be as efficient as possible in order to move excitons meaningful distances. This is problematic for assemblies of small Si quantum dots (QDs), where excitons quickly localize and entangle with dot phonon modes. Ensuing exciton transport is then characterized by a classical random walk reduced to very short distances because of efficient recombination. We use a combination of master equation (Haken-Strobl) formalism and density functional theory to estimate the rate of decoherence in Si QD assemblies and its impact on exciton mobility. Exciton-phonon coupling and Coulomb interactions are calculated as a function of dot size, spacing and termination to minimize the rate of intra-dot phonon entanglement. This extends the time over which more efficient exciton transport, characterized by partial coherence, can be maintained.
Kagoya, Yuki; Nakatsugawa, Munehide; Saso, Kayoko; Guo, Tingxi; Anczurowski, Mark; Wang, Chung-Hsi; Butler, Marcus O; Arrowsmith, Cheryl H; Hirano, Naoto
2018-05-15
Adoptive T-cell therapy is a promising therapeutic approach for cancer patients. The use of allogeneic T-cell grafts will improve its applicability and versatility provided that inherent allogeneic responses are controlled. T-cell activation is finely regulated by multiple signaling molecules that are transcriptionally controlled by epigenetic mechanisms. Here we report that inhibiting DOT1L, a histone H3-lysine 79 methyltransferase, alleviates allogeneic T-cell responses. DOT1L inhibition reduces miR-181a expression, which in turn increases the ERK phosphatase DUSP6 expression and selectively ameliorates low-avidity T-cell responses through globally suppressing T-cell activation-induced gene expression alterations. The inhibition of DOT1L or DUSP6 overexpression in T cells attenuates the development of graft-versus-host disease, while retaining potent antitumor activity in xenogeneic and allogeneic adoptive immunotherapy models. These results suggest that DOT1L inhibition may enable the safe and effective use of allogeneic antitumor T cells by suppressing unwanted immunological reactions in adoptive immunotherapy.
Ju, Enguo; Liu, Zhen; Du, Yingda; Tao, Yu; Ren, Jinsong; Qu, Xiaogang
2014-06-24
Probes for detecting highly reactive oxygen species (hROS) are critical to both understanding the etiology of the disease and optimizing therapeutic interventions. However, problems such as low stability due to autoxidation and photobleaching and unsuitability for biological application in vitro and in vivo, as well as the high cost and complex procedure in synthesis and modification, largely limit their application. In this work, binary heterogeneous nanocomplexes (termed as C-dots-AuNC) constructed from gold clusters and carbon dots were reported. The fabrication takes full advantages of the inherent active groups on the surface of the nanoparticles to avoid tedious modification and chemical synthetic processes. Additionally, the assembly endowed C-dots-AuNC with improved performance such as the fluorescence enhancement of AuNCs and stability of C-dots to hROS. Moreover, the dual-emission property allows sensitive imaging and monitoring of the hROS signaling in living cells with high contrast. Importantly, with high physiological stability and excellent biocompatibility, C-dots-AuNC allows for the detection of hROS in the model of local ear inflammation.
2013-2017 Iowa Transportation Improvement Program.
DOT National Transportation Integrated Search
2012-06-01
The Iowa Transportation Improvement Program (Program) is published to inform you : of planned investments in our states transportation system. The Iowa Transportation : Commission (Commission) and Iowa Department of Transportation (DOT) are commit...
Kapella, B K; Anuwatnonthakate, A; Komsakorn, S; Moolphate, S; Charusuntonsri, P; Limsomboon, P; Wattanaamornkiat, W; Nateniyom, S; Varma, J K
2009-02-01
Thailand's Tuberculosis (TB) Active Surveillance Network in four provinces in Thailand. As treatment default is common in mobile and foreign populations, we evaluated risk factors for default among non-Thai TB patients in Thailand. Observational cohort study using TB program data. Analysis was restricted to patients with an outcome categorized as cured, completed, failure or default. We used multivariate analysis to identify factors associated with default, including propensity score analysis, to adjust for factors associated with receiving directly observed treatment (DOT). During October 2004-September 2006, we recorded data for 14359 TB patients, of whom 995 (7%) were non-Thais. Of the 791 patients analyzed, 313 (40%) defaulted. In multivariate analysis, age>or=45 years (RR 1.47, 95%CI 1.25-1.74), mobility (RR 2.36, 95%CI 1.77-3.14) and lack of DOT (RR 2.29, 95%CI 1.45-3.61) were found to be significantly associated with default among non-Thais. When controlling for propensity to be assigned DOT, the risk of default remained increased in those not assigned DOT (RR 1.99, 95%CI 1.03-3.85). In non-Thai TB patients, DOT was the only modifiable factor associated with default. Using DOT may help improve TB treatment outcomes in non-Thai TB patients.
Physics of Quantum Structures in Photovoltaic Devices
NASA Technical Reports Server (NTRS)
Raffaelle, Ryne P.; Andersen, John D.
2005-01-01
There has been considerable activity recently regarding the possibilities of using various nanostructures and nanomaterials to improve photovoltaic conversion of solar energy. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of three-dimensional arrays of zero-dimensional conductors (i.e., quantum dots) in an ordinary p-i-n solar cell structure. Quantum dots and other nanostructured materials may also prove to have some benefits in terms of temperature coefficients and radiation degradation associated with space solar cells. Two-dimensional semiconductor superlattices have already demonstrated some advantages in this regard. It has also recently been demonstrated that semiconducting quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. Improvement in thin film cells utilizing conjugated polymers has also be achieved through the use of one-dimensional quantum structures such as carbon nanotubes. It is believed that carbon nanotubes may contribute to both the disassociation as well as the carrier transport in the conjugated polymers used in certain thin film photovoltaic cells. In this paper we will review the underlying physics governing some of the new photovoltaic nanostructures being pursued, as well as the the current methods being employed to produce III-V, II-VI, and even chalcopyrite-based nanomaterials and nanostructures for solar cells.
Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors
NASA Astrophysics Data System (ADS)
Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti
2013-05-01
Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm-2, representing a more than 200% improvement over that of bare CNT electrodes.
Graphene quantum dots-carbon nanotube hybrid arrays for supercapacitors.
Hu, Yue; Zhao, Yang; Lu, Gewu; Chen, Nan; Zhang, Zhipan; Li, Hui; Shao, Huibo; Qu, Liangti
2013-05-17
Graphene quantum dots (GQDs) have been successfully deposited onto aligned carbon nanotubes (CNTs) by a benign electrochemical method and the capacitive properties of the as-formed GQD/CNT hybrid arrays were evaluated in symmetrical supercapacitors. It was found that supercapacitors fabricated from GQD/CNT hybrid arrays exhibited a high capacitance of 44 mF cm(-2), representing a more than 200% improvement over that of bare CNT electrodes.
NASA Astrophysics Data System (ADS)
Zhang, Rupeng; Wang, Yu; Jia, Mengqiu; Xu, Junjie; Pan, Erzhuang
2018-04-01
Committed to research high-performance sodium-ion batteries(SIBs) and lithium-ion batteries(LIBs) anode materials is attractive but challenging. Among the many promising anode materials, sulfides are considered as promising available anode material. In this paper, we successfully synthesized uniformly dispersed ZnS quantum dots (QDs) with sub-10-nm-scale on graphene nanosheets via a facile hydrothermal method. The prepared ZnS/graphene composites was studied as a dual anode for sodium-ion and lithium-ion batteries. Tested against SIBs, the nanocomposites exhibits an impressive specific capacity of 491 mAh/g at 100 mA/g after 100 cycles. Tested against LIBs, the nanocomposites delivers a superior specific capacity of 759 mAh/g at 100 mA/g after 100 cycles. This excellent performance is mainly due to the fact that graphene can improve the conductivity of the composites and effectively prevent the agglomeration and pulverization of ZnS quantum dots during cycling. Meanwhile, ZnS quantum dots with sub-10-nm-scale may also shorten diffuse path and reduce migration barrier, which is in favor of the full utilization of the active material and the improvement of the stability of the structure
The geographic epidemiology of Mycobacterium tuberculosis disease in Baltimore, 1971-1995
NASA Astrophysics Data System (ADS)
Obasanjo, Olugbenga Olufemi
Given the reemergence of Tuberculosis (TB) in the United States (U.S.) in the 1980s and 1990s, several strategies have emerged to combat the disease. A successful tool has been Directly Observed Therapy (DOT). Chaulk, et al. showed that DOT was responsible for the maintaining the decline in TB rates in Baltimore through the corresponding period of an upswing in rates nationally. In this study, we measure the impact of DOT on the geographic pattern of TB in Baltimore. We used Geographical Information System (GIS) methods to compare the geographic patterns of TB in Baltimore before and after the introduction of DOT in the city. We identified both predictors of TB, and differences in geographic units in Baltimore over time. We measured the impact of the introduction of DOT and Rifampin on various treatment outcomes for TB at about the same time. Despite the drop in numbers of TB cases, the spatial distribution of cases generally remained unchanged until 1995. This was confirmed by the fact that similar predictors were identified in all of the years that were analyzed. However, higher proportions of TB cases were found among blacks and females in more recent years. Death rates have increased significantly while corresponding relapse rates and the mean length of therapy have declined significantly. Rifampin was associated with a longer length of therapy before DOT, but with a shorter duration of therapy following the introduction of DOT. In all of the years analyzed, losses to follow-up (LTFU) do not differ from those completing therapy and are not spatially clustered relative to those completing therapy. DOT has been effective in reducing the numbers of TB cases in Baltimore city-wide without an emphasis on so-called "high-risk" patients for LTFU. Thus, any declines in TB case rates are not due to a decline in a particular group or geographic sector of the city. Universal DOT is effective and does not cause a geographic clustering of difficult-to-reach patients. This study effectively quantifies the effect of DOT in ensuring treatment completion for TB. This study also identifies changing patterns of TB disease in the city. These changing patterns, along with a leveling-off in the reduction of the annual incidence of TB in Baltimore, imply that newer approaches to controlling TB in the city need to be developed. Improving case findings through contact tracing and the use of Deoxyribonucleic Acid (DNA) fingerprinting are two strategies that have been added to strengthen and improve the TB control program. This study will provide a mechanism by which to measure the success of these new programs.
Surface Stabilized InP/GaP/ZnS Quantum Dots with Mg Ions for WLED Application.
Park, Joong Pill; Kim, Sang-Wook
2016-05-01
One of the most highlighted cadmium-free quantum dots (QDs), InP-based QDs, have improved their optical properties. However, InP-based QDs have some practical drawbacks, for example, stability, compared with CdSe-based QDs. Poor stability of InP-based QDs yields critical problems, such as agglomeration and photoluminescence quenching in light emitting diode (LED). It has to be solved for applications and most research has focused on thick outer shells as an effective solution. We introduced magnesium cations for improving stability of InP-based QDs. We applied very small amounts of Mg cations as surface stabilizers, as a result, stability of QDs is clearly improved. Then, QD based LED chips also yield improved values including RA of 84.4, CCT of 3799 K, and luminous efficiency of 129.57 Im/W, which are highly improved data compared with our previous results.
76 FR 5083 - Disadvantaged Business Enterprise: Program Improvements
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... 2105-AD75 Disadvantaged Business Enterprise: Program Improvements AGENCY: Office of the Secretary (OST), DOT. ACTION: Final rule. SUMMARY: This rule improves the administration of the Disadvantaged Business... inflation, providing for expedited interstate certification, adding provisions to foster small business...
NASA Astrophysics Data System (ADS)
Wu, Zong-Kwei J.
2006-12-01
Photodetectors based on intraband infrared absorption in the quantum dots have demonstrated improved performance over its quantum well counterpart by lower dark current, relative temperature insensitivity, and its ability for normal incidence operation. Various scattering processes, including phonon emission/absorption and carrier-carrier scattering, are critical in understanding device operation on the fundamental level. In previous studies, our group has investigated carrier dynamics in both low- and high-density regime. Ultrafast electron-hole scattering and the predicted phonon bottleneck effect in intrinsic quantum dots have been observed. Further examination on electron dynamics in unipolar structures is presented in this thesis. We used n-doped quantum dot in mid-infrared photodetector device structure to study the electron dynamics in unipolar structure. Differential transmission spectroscopy with mid-infrared intraband pump and optical interband probe was implemented to measure the electron dynamics directly without creating extra electron-hole pair, Electron relaxation after excitation was measured under various density and temperature conditions. Rapid capture into quantum dot within ˜ 10 ps was observed due to Auger-type electron-electron scattering. Intradot relaxation from the quantum dot excited state to the ground state was also observed on the time scale of 100 ps. With highly doped electron density in the structure, the inter-sublevel relaxation is dominated by Auger-type electron-electron scattering and the phonon bottleneck effect is circumvented. Nanosecond-scale recovery in larger-sized quantum dots was observed, not intrinsic to electron dynamics but due to band-bending and built-in voltage drift. An ensemble Monte Carlo simulation was also established to model the dynamics in quantum dots and in goad agreement with the experimental results. We presented a comprehensive picture of electron dynamics in the unipolar quantum dot structure. Although the phonon bottleneck is circumvented with high doped electron density, relaxation processes in unipolar quantum dots have been measured with time scales longer than that of bipolar systems. The results explain the operation principles of the quantum dot infrared photodetector on a microscopic level and provide basic understanding for future applications and designs.
Scudamore, Eric M; Barry, Vaughn W; Coons, John M
2018-04-01
Scudamore, EM, Barry, VW, and Coons, JM. An Evaluation of time-trial-based predictions of V[Combining Dot Above]O2max and recommended training paces for collegiate and recreational runners. J Strength Cond Res 32(4): 1137-1143, 2018-The purpose of the current study was to determine the accuracy of Jack Daniels' VDOT Running Calculator for the prediction of V[Combining Dot Above]O2max, and recommendations of interval and training paces (pIN and pTH) in samples of National Collegiate Athletic Association Division 1 track athletes (ATH, n = 11) and recreational runners (REC; n = 9). Predicted variable data were obtained using results from indoor 5-km time-trials. Data from the VDOT Calculator were compared with laboratory-tested V[Combining Dot Above]O2max, pace at V[Combining Dot Above]O2max (V[Combining Dot Above]O2maxpace), and lactate threshold pace (LTpace). Results indicated that VDOT underestimated V[Combining Dot Above]O2max in ATH (t(10) = -6.00, p < 0.001, d = 1.75) and REC (t(8) = -8.96, p < 0.001, d = 3.44). Follow-up between-groups analysis indicated that the difference between VDOT and V[Combining Dot Above]O2max was significantly greater in REC than in ATH (p = 0.0031, d = 1.59). pIN was slower than V[Combining Dot Above]O2maxpace in REC (t(8) = -4.26, p = 0.003, d = 1.76), but not different in ATH (t(10) = 0.52, p = 0.614, d = 0.14). Conversely, pTH was faster than LTpace in ATH (t(8) = -4.17, p = 0.003, d = 1.49), but not different in REC (t(8) = 1.64, p = 0.139, d = 0.57). Practically, pTH can be confidently used for threshold training regardless of the ability level. pIN also seemed to be accurate for ATH, but may be not be optimal for improving V[Combining Dot Above]O2max in REC. Practitioners should interpret VDOT with caution as it may underestimate V[Combining Dot Above]O2max.
Enhancing Motion-In-Depth Perception of Random-Dot Stereograms.
Zhang, Di; Nourrit, Vincent; De Bougrenet de la Tocnaye, Jean-Louis
2018-07-01
Random-dot stereograms have been widely used to explore the neural mechanisms underlying binocular vision. Although they are a powerful tool to stimulate motion-in-depth (MID) perception, published results report some difficulties in the capacity to perceive MID generated by random-dot stereograms. The purpose of this study was to investigate whether the performance of MID perception could be improved using an appropriate stimulus design. Sixteen inexperienced observers participated in the experiment. A training session was carried out to improve the accuracy of MID detection before the experiment. Four aspects of stimulus design were investigated: presence of a static reference, background texture, relative disparity, and stimulus contrast. Participants' performance in MID direction discrimination was recorded and compared to evaluate whether varying these factors helped MID perception. Results showed that only the presence of background texture had a significant effect on MID direction perception. This study provides suggestions for the design of 3D stimuli in order to facilitate MID perception.
Research and application on imaging technology of line structure light based on confocal microscopy
NASA Astrophysics Data System (ADS)
Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen
2009-11-01
In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.
Wang, Jianhao; Fan, Jie; Li, Jinchen; Liu, Li; Wang, Jianpeng; Jiang, Pengju; Liu, Xiaoqian; Qiu, Lin
2017-02-01
Herein, a Förster resonance energy transfer system was designed, which consisted of CdSe/ZnS quantum dots donor and mCherry fluorescent protein acceptor. The quantum dots and the mCherry proteins were conjugated to permit Förster resonance energy transfer. Capillary electrophoresis with fluorescence detection was used for the analyses for the described system. The quantum dots and mCherry were sequentially injected into the capillary, while the real-time fluorescence signal of donor and acceptor was simultaneously monitored by two channels with fixed wavelength detectors. An effective separation of complexes from free donor and acceptor was achieved. Results showed quantum dots and hexahistidine tagged mCherry had high affinity and the assembly was affected by His 6 -mCherry/quantum dot molar ratio. The kinetics of the self-assembly was calculated using the Hill equation. The microscopic dissociation constant values for out of- and in-capillary assays were 10.49 and 23.39 μM, respectively. The capillary electrophoresis with fluorescence detection that monitored ligands competition assay further delineated the different binding capacities of histidine containing peptide ligands for binding sites on quantum dots. This work demonstrated a novel approach for the improvement of Förster resonance energy transfer for higher efficiency, increased sensitivity, intuitionistic observation, and low sample requirements of the in-capillary probing system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dutta, Dipankar
2016-02-09
The diagnosis of Transient Ischaemic Attack (TIA) can be difficult and 50-60% of patients seen in TIA clinics turn out to be mimics. Many of these mimics have high ABCD2 scores and fill urgent TIA clinic slots inappropriately. A TIA diagnostic tool may help non-specialists make the diagnosis with greater accuracy and improve TIA clinic triage. The only available diagnostic score (Dawson et al) is limited in scope and not widely used. The Diagnosis of TIA (DOT) Score is a new and internally validated web and mobile app based diagnostic tool which encompasses both brain and retinal TIA. The score was derived retrospectively from a single centre TIA clinic database using stepwise logistic regression by backwards elimination to find the best model. An optimum cutpoint was obtained for the score. The derivation and validation cohorts were separate samples drawn from the years 2010/12 and 2013 respectively. Receiver Operating Characteristic (ROC) curves and area under the curve (AUC) were calculated and the diagnostic accuracy of DOT was compared to the Dawson score. A web and smartphone calculator were designed subsequently. The derivation cohort had 879 patients and the validation cohort 525. The final model had seventeen predictors and had an AUC of 0.91 (95% CI: 0.89-0.93). When tested on the validation cohort, the AUC for DOTS was 0.89 (0.86-0.92) while that of the Dawson score was 0.77 (0.73-0.81). The sensitivity and specificity of the DOT score were 89% (CI: 84%-93%) and 76% (70%-81%) respectively while those of the Dawson score were 83% (78%-88%) and 51% (45%-57%). Other diagnostic accuracy measures (DOT vs. Dawson) include positive predictive values (75% vs. 58%), negative predictive values (89% vs. 79%), positive likelihood ratios (3.67 vs. 1.70) and negative likelihood ratios (0.15 vs. 0.32). The DOT score shows promise as a diagnostic tool for TIA and requires independent external validation before it can be widely used. It could potentially improve the triage of patients assessed for suspected TIA.
Snyder, Robert E; Marlow, Mariel A; Phuphanich, Melissa E; Riley, Lee W; Maciel, Ethel Leonor Noia
2016-09-20
Brazil's National Tuberculosis Control Program seeks to improve tuberculosis (TB) treatment in vulnerable populations. Slum residents are more vulnerable to TB due to a variety of factors, including their overcrowded living conditions, substandard infrastructure, and limited access to healthcare compared to their non-slum dwelling counterparts. Directly observed treatment (DOT) has been suggested to improve TB treatment outcomes among vulnerable populations, but the program's differential effectiveness among urban slum and non-slum residents is not known. We retrospectively compared the impact of DOT on TB treatment outcome in residents of slum and non-slum census tracts in Rio de Janeiro reported to the Brazilian Notifiable Disease Database in 2010. Patient residential addresses were geocoded to census tracts from the 2010 Brazilian Census, which were identified as slum (aglomerados subnormais -AGSN) and non-slum (non-AGSN) by the Census Bureau. Homeless and incarcerated cases as well as those geocoded outside the city's limits were excluded from analysis. In 2010, 6,601 TB cases were geocoded within Rio de Janeiro; 1,874 (27.4 %) were residents of AGSN, and 4,794 (72.6 %) did not reside in an AGSN area. DOT coverage among AGSN cases was 35.2 % (n = 638), while the coverage in non-AGSN cases was 26.2 % (n = 1,234). Clinical characteristics, treatment, follow-up, cure, death and abandonment were similar in both AGSN and non-AGSN TB patients. After adjusting for covariates, AGSN TB cases on DOT had 1.67 (95 % CI: 1.17, 2.4) times the risk of cure, 0.61 (95 % CI: 0.41, 0.90) times the risk of abandonment, and 0.1 (95 % CI: 0.01, 0.77) times the risk of death from TB compared to non-AGSN TB cases not on DOT. While DOT coverage was low among TB cases in both AGSN and non-AGSN communities, it had a greater impact on TB cure rate in AGSN than in non-AGSN populations in the city of Rio de Janeiro.
Working towards TB elimination the WHO Regional Strategic Plan (2006-2015).
Nair, Nani; Cooreman, Erwin
2006-03-01
DOTS has expanded rapidly in the South-East Asia Region over the period of the Partnership's first Global Plan (2001-2005), with almost 100% geographical coverage achieved in 2005. All countries have made impressive progress in improving coverage and quality. This progress has been made possible through strong political commitment and large investments in TB control for improved infrastructure, reliable drug supply, increased staffing, improved laboratory services, and intensified training and supervision. Accomplishing the objectives outlined in this document will require sustaining the progress in all countries and particularly in the five high burden countries for achieving major regional and global impact. National TB programmes will need to be supported to maintain or surpass the 70% case detection and 85% treatment success rates. The achievement of the TB-related targets linked to the MDGs will also depend on how effectively initiatives such as DOTS-Plus, PPM DOTS and interventions for TB/ HIV among others, are implemented. National governments and development partners must fulfill their commitments to mobilizing and sustaining adequate resources to support the full range of activities envisaged. The benefits of full and effective implementation of all the planned interventions would be substantial. These will result in 20 to 25 million TB cases being treated in DOTS program mes and more than 150 000 drug-resistant cases receiving treatment through DOTS-Plus during the period 2006-2015. In addition, at least 250 000 HIV-infected TB patients may also receive anti-retroviral therapy. As a consequence, the prevalence of TB is expected to fall below 175/100 000 and the number of TB deaths is expected to fall to between 100 000 and 150 000 per year. There would also be substantial economic benefits given that TB disproportionately affects adults in their most productive years. Considering these aspects, it is expected that the TB incidence will decline significantly during this period so that the Millennium Development Goals would be met by or ahead of 2015.
Han, Jianhua; Yin, Xuewen; Nan, Hui; Zhou, Yu; Yao, Zhibo; Li, Jianbao; Oron, Dan; Lin, Hong
2017-08-01
The combination of perovskite solar cells and quantum dot solar cells has significant potential due to the complementary nature of the two constituent materials. In this study, solar cells (SCs) with a hybrid CH 3 NH 3 PbI 3 /SnS quantum dots (QDs) absorber layer are fabricated by a facile and universal in situ crystallization method, enabling easy embedding of the QDs in perovskite layer. Compared with SCs based on CH 3 NH 3 PbI 3 , SCs using CH 3 NH 3 PbI 3 /SnS QDs hybrid films as absorber achieves a 25% enhancement in efficiency, giving rise to an efficiency of 16.8%. The performance improvement can be attributed to the improved crystallinity of the absorber, enhanced photo-induced carriers' separation and transport within the absorber layer, and improved incident light utilization. The generality of the methods used in this work paves a universal pathway for preparing other perovskite/QDs hybrid materials and the synthesis of entire nontoxic perovskite/QDs hybrid structure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.
Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans
2014-11-12
A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.
Faustino, Célia; Rijo, Patrícia; Reis, Catarina Pinto
2017-06-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with amyloid-β peptide misfolding and aggregation. Neurotrophic factors, such as nerve growth factor (NGF), can prevent neuronal damage and rescue the cholinergic neurons that undergo cell death in AD, reverse deposition of extracellular amyloid plaques and improve cognitive deficits. However, NGF administration is hampered by the poor pharmacokinetic profile of the therapeutic protein and its inability to cross the blood-brain barrier, which requires specialised drug delivery systems (DDS) for efficient NGF delivery to the brain. This review covers the main therapeutic approaches that have been developed for NGF delivery targeting the brain, from polymeric implants to gene and cell-based therapies, focusing on the role of nanoparticulate systems for the sustained release of NGF in the brain as a neuroprotective and disease-modifying approach toward AD. Lipid- and polymer-based delivery systems, magnetic nanoparticles and quantum dots are specifically addressed as promising nanotechnological strategies to overcome the current limitations of NGF-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luminescent Quantum Dot Bioconjugates in Fluorescence Resonance Energy Transfer (FRET) Assays
NASA Astrophysics Data System (ADS)
Clapp, Aaron; Medintz, Igor; Goldman, Ellen; Anderson, George; Mauro, J. Matthew; Mattoussi, Hedi
2003-03-01
Colloidal semiconductor quantum dots (QDs) such as those made of CdSe-ZnS core-shell nanocrystals offer a promising alternative to organic dyes in a variety of biological tagging applications. They exhibit high resistance to chemical and photo-degradations, are highly luminescent, and show unique size-specific optical and spectroscopic properties. We have previously demonstrated a useful method for attaching proteins to CdSe-ZnS QDs using dihydrolipoic acid (DHLA) surface capping groups and electrostatic self-assembly in aqueous environments. We have used this conjugation strategy to build solution-based QD-conjugate sensors based on fluorescence resonance energy transfer (FRET) between QD donors and dye-labeled protein acceptors. Specific binding between the QD-ligand donor and dye-labeled receptor was achieved. In another example, the dye receptor was grafted directly onto the protein, then immobilized onto the QD surface via an electrostatic self-assembly process. The QD-complexes were optically excited in a region where absorption of the dye is negligible compared to that of the nanocrystals. We observed a continuous decrease of the QD emission accompanied by a steady and pronounced increase of the acceptor emission as the ratio of dye to QD was increased. The results of these experiments suggest efficient resonance energy transfer between the QD donor and the dye acceptor upon ligand-receptor binding. We will present these data and discuss other aspects such as donor-acceptor separation distance, degree of overlap between absorption of the acceptor and emission of the QD, and reverse FRET (upon ligand-receptor release) in a reversible assay.
DOT National Transportation Integrated Search
2012-09-01
Intermodal transportation : system planning, design, : improvement, performance : evaluation, or economic : assessments include safety : improvements because they : lower the overall cost of : transportation. State Departments of Transportation (DOTs...
NASA Astrophysics Data System (ADS)
Huang, Bo-Jia; Kao, Li-Chi; Brahma, Sanjaya; Jeng, Yu-En; Chiu, Shang-Jui; Ku, Ching-Shun; Lo, Kuang-Yao
2017-05-01
Oxide- and defect-free metal/semiconductor interface is important to improve Ohmic contact for the suppression of electron scattering and the avoidance of an extrinsic surface state in estimating the barrier of the Schottky contact at the nanodevice interface. This study reports the growth mechanism of Zn quantum dots coherently grown on Si(1 1 1) and the physical phenomena of the crystalline, nonlinear optics, and the chemical states of Zn quantum dots. Epitaxial Zn quantum dots were coherently formed on a non-oxide Si(1 1 1) surface through the liquid- to solid-phase transformation as a result of pattern matching between the Zn(0 0 2) and Si(1 1 1) surfaces. The growth mechanism of constrained Zn quantum dots grown through strategic magnetron radio frequency sputtering is complex. Some factors, such as substrate temperature, hydrogen gas flow, and negative DC bias, influence the configuration of epitaxial Zn quantum dots. In particular, hydrogen gas plays an important role in reducing the ZnO+ and native oxide that is bombarded by accelerated ions, thereby enhancing the Zn ion surface diffusion. The reduction reaction can be inspected by distinguishing the chemical states of ZnO/Zn quantum dots from natural oxidation or the states of Zn 3d through the analysis of x-ray absorption near the edge structure spectrum. The complex growth mechanism can be systematically understood by analyzing a noncancelled anisotropic 3 m dipole from reflective second harmonic generation and inspecting the evolution between the Zn(0 0 2) and Zn(1 1 1) peaks of the collective ZnO/Zn quantum dots in synchrotron XRD.
Martel, Clothilde; Vignaud, Guillaume; Liozon, Eric; Magy, Laurent; Gallouedec, Gael; Ly, Kim; Bezanahary, Holly; Cypierre, Anne; Lapébie, François-Xavier; Palat, Sylvain; Gondran, Guillaume; Jauberteau, Marie-Odile; Fauchais, Anne-Laure
2016-01-01
Idiopathic inflammatory myopathies (IIM) are heterogeneous autoimmune diseases with wide clinical spectrum that may lead to delayed diagnosis. The aim of this study was to examine the impact of IIM-specific dot-blot assay on diagnostic process of patients presenting with muscular or systemic symptoms evocating of IIM. We collected all the prescriptions of an IIM specific dot-blot assay (8 autoantigens including Jo-1, PL-7, PL-12, SRP, Mi-2, Ku, PM/Scl and Scl-70) over a 38-month period. 316 myositis dot-blot assays (MSD) were performed in 274 patients (156 women, mean age 53±10.6 years) referring for muscular and/or systemic symptoms suggesting IIM. The timing of dot prescription through the diagnostic process was highly variable: without (35%), concomitantly (16%) or after electromyographic studies (35%). Fifty-nine patients (22%) had IIM according to Bohan and Peter's criteria. Among them, 29 (49%) had positive dot (8 Jo-1, 6 PM-Scl, 5 PL-12, 5 SRP, 2 Mi-2, 2 PL-7 and 1 Ku). Various other diagnoses were performed including 35 autoimmune disease or granulomatosis (12%), 19 inflammatory rheumatic disease (7%), 16 non inflammatory muscular disorders (6%), 10 drug-induced myalgia (4%), 11 infectious myositis (4%). Except 11 borderline SRP results and one transient PM-Scl, MSD was positive only in one case of IIM. Dot allowed clinicians to correct diagnosis in 4 cases and improved the diagnosis of IIM subtypes in 4 cases. This study reflects the interest of myositis dot in the rapid diagnosis process of patients with non-specific muscular symptoms leading to various diagnoses including IIM.
2011-12-01
communication links using VCSEL arrays [1, 2], medical imaging using super luminescent diodes [3], and tunable lasers capable of remotely sensing...increase the efficiency of solar cells [6, 7, 8], vastly improve photo detector sensitivity [9], and provide optical memory storage densities predicted...semiconductor lasers” Applied Physics B: Lasers and Optics, Volume 90, Number 2, 2008, Pages 339-343. 6. Nozik, A.J. “Quantum dot solar cells
Broomhead, Sean; Mars, Maurice
2012-01-01
The return on investment (ROI) for utilizing the SIMpill electronic treatment adherence solution as an adjunct to directly observed treatment short-course (DOTS) is assessed using data from a 2005 pilot of the SIMpill solution among new smear-positive tuberculosis (TB) patients in the Northern Cape Province. The value of this cost minimization analysis (CMA), for use by public health planners in low-resource settings as a precursor to more rigorous assessment, is discussed. The retrospective analysis compares the costs and health outcomes of the DOTS-SIMpill cohort with DOTS-only controls. Hypothetical 5-year cash flows are generated and discounted to estimate net present values (NPVs). Comparison between the DOTS-SIMpill pilot cohort and DOTS-only supported controls, for a hypothetical implementation of 1,000 devices, over 5 years, demonstrates positive ROI for the DOTS-SIMpill cohort based on improved health outcomes and reduced average cost per patient. The net stream is shown to be positive from the first year. Discounted NPV is ZAR 3,255,256 (US$ 493,221) for a cohort that would have started mid 2005 and ZAR 3,747,636 (US$ 487,339) starting mid 2010. This is an ROI of 23% over the 5-year period. The addition of electronic treatment adherence support technology can help to improve TB outcomes and lower average cost per patient by reducing treatment failure and the associated higher cost and burden on limited resources. CMA is an appropriate initial analysis for health planners to highlight options that may justify more sophisticated methods such as cost effectiveness analysis or full cost benefit analysis where a preferred option is immediately revealed. CMA is proposed as a tool for use by public health planners in low-resource settings to evaluate the ROI of treatment adherence technology postpilot and prior to implementation.
Nachega, Jean B; Skinner, Donald; Jennings, Larissa; Magidson, Jessica F; Altice, Frederick L; Burke, Jessica G; Lester, Richard T; Uthman, Olalekan A; Knowlton, Amy R; Cotton, Mark F; Anderson, Jean R; Theron, Gerhard B
2016-01-01
Objective To examine the acceptability and feasibility of mobile health (mHealth)/short message service (SMS) and community-based directly observed antiretroviral therapy (cDOT) as interventions to improve antiretroviral therapy (ART) adherence for preventing mother-to-child human immunodeficiency virus (HIV) transmission (PMTCT). Design and methods A mixed-method approach was used. Two qualitative focus group discussions with HIV-infected pregnant women (n=20) examined the acceptability and feasibility of two ART adherence interventions for PMTCT: 1) SMS text messaging and 2) patient-nominated cDOT supporters. Additionally, 109 HIV-infected, pregnant South African women (18–30 years old) receiving PMTCT services under single-tablet antiretroviral therapy regimen during pregnancy and breastfeeding and continuing for life (“Option B+”) were interviewed about mobile phone access, SMS use, and potential treatment supporters. Setting A community primary care clinic in Cape Town, South Africa. Participants HIV-infected pregnant women. Main outcomes Acceptability and feasibility of mHealth and cDOT interventions. Results Among the 109 women interviewed, individual mobile phone access and SMS use were high (>90%), and 88.1% of women were interested in receiving SMS ART adherence support messages such as reminders, motivation, and medication updates. Nearly all women (95%) identified at least one person close to them to whom they had disclosed their HIV status and would nominate as a cDOT supporter. Focus group discussions revealed that cDOT supporters and adherence text messages were valued, but some concerns regarding supporter time availability and risk of unintended HIV status disclosure were expressed. Conclusion mHealth and/or cDOT supporter as interventions to improve ART adherence are feasible in this setting. However, safe HIV status disclosure to treatment supporters and confidentiality of text messaging content about HIV and ART were deemed crucial. PMID:27175068
NASA Astrophysics Data System (ADS)
Qin, Zhuanping; Ma, Wenjuan; Ren, Shuyan; Geng, Liqing; Li, Jing; Yang, Ying; Qin, Yingmei
2017-02-01
Endoscopic DOT has the potential to apply to cancer-related imaging in tubular organs. Although the DOT has relatively large tissue penetration depth, the endoscopic DOT is limited by the narrow space of the internal tubular tissue, so as to the relatively small penetration depth. Because some adenocarcinomas including cervical adenocarcinoma are located in deep canal, it is necessary to improve the imaging resolution under the limited measurement condition. To improve the resolution, a new FOCUSS algorithm along with the image reconstruction algorithm based on the effective detection range (EDR) is developed. This algorithm is based on the region of interest (ROI) to reduce the dimensions of the matrix. The shrinking method cuts down the computation burden. To reduce the computational complexity, double conjugate gradient method is used in the matrix inversion. For a typical inner size and optical properties of the cervix-like tubular tissue, reconstructed images from the simulation data demonstrate that the proposed method achieves equivalent image quality to that obtained from the method based on EDR when the target is close the inner boundary of the model, and with higher spatial resolution and quantitative ratio when the targets are far from the inner boundary of the model. The quantitative ratio of reconstructed absorption and reduced scattering coefficient can be up to 70% and 80% under 5mm depth, respectively. Furthermore, the two close targets with different depths can be separated from each other. The proposed method will be useful to the development of endoscopic DOT technologies in tubular organs.
Gross, Robert; Tierney, Camlin; Andrade, Adriana; Lalama, Christina; Rosenkranz, Susan; Eshleman, Susan H.; Flanigan, Timothy; Santana, Jorge; Salomon, Nadim; Reisler, Ronald; Wiggins, Ilene; Hogg, Evelyn; Flexner, Charles; Mildvan, Donna
2009-01-01
Context Success of antiretroviral therapy depends on high rates of adherence, but few interventions are effective. Objective Determine if modified directly observed therapy (mDOT) improves initial antiretroviral success. Design Open-label randomized trial comparing mDOT and self-administered therapy with lopinavir/ritonavir soft gel capsules 800 mg/200 mg, emtricitabine 200 mg, and either extended release stavudine 100 mg or tenofovir 300 mg, all once daily. Setting 23 U.S. AIDS Clinical Trials Group (ACTG) sites and one in South Africa between October 2002 and January 2006. Participants Plasma HIV RNA ≥2000 copies/ml and antiretroviral-naïve. 82 participants received mDOT and 161 self-administration. Participants were predominantly male (79%), median age 38 years, with 84 Latinos (35%), 74 non-Latino blacks (30%), and 79 non-Latino whites (33%). Intervention mDOT Monday through Friday for 24 weeks. Main Outcome Measure(s) Primary outcome was week 24 virologic success and secondary outcomes were week 48 virologic success, clinical progression, and adherence. Results mDOT had greater virologic success over 24 weeks [0.91 (95% CI: 0.81, 0.95)] than self-administered therapy [0.84 (95% CI: 0.77, 0.89)], but the difference [0.07 (lower bound 95% CI: −0.01)] did not reach the pre-specified threshold of 0.075. Over 48 weeks, virologic success was not significantly different between mDOT [0.72 (95% CI: 0.61, 0.81)] and self-administered therapy [0.78 (95% CI: 0.70, 0.84)], [−0.06 (95% CI: −0.18, 0.07); p=0.19)]. Conclusions The potential benefit of mDOT was marginal and not sustained after mDOT was discontinued. mDOT should not be incorporated routinely for care of treatment naïve HIV-1 infected patients. PMID:19597072
Xu, Hesheng Victor; Zheng, Xin Ting; Zhao, Yanli; Tan, Yen Nee
2018-06-13
Natural amino acids possess side chains with different functional groups (R groups), which make them excellent precursors for programmable synthesis of biomolecule-derived nanodots (biodots) with desired properties. Herein, we report the first systematic study to uncover the material design rules of biodot synthesis from 20 natural α-amino acids via a green hydrothermal approach. The as-synthesized amino acid biodots (AA dots) are comprehensively characterized to establish a structure-property relationship between the amino acid precursors and the corresponding photoluminescent properties of AA dots. It was found that the amino acids with reactive R groups, including amine, hydroxyl, and carboxyl functional groups form unique C-O-C/C-OH and N-H bonds in the AA dots which stabilize the surface defects, giving rise to brightly luminescent AA dots. Furthermore, the AA dots were found to be amorphous and the length of the R group was observed to affect the final morphology (e.g., disclike nanostructure, nanowire, or nanomesh) of the AA dots, which in turn influence their photoluminescent properties. It is noteworthy to highlight that the hydroxyl-containing amino acids, that is, Ser and Thr, form the brightest AA dots with a quantum yield of 30.44% and 23.07%, respectively, and possess high photostability with negligible photobleaching upon continuous UV exposure for 3 h. Intriguingly, by selective mixing of Ser or Thr with another amino acid precursor, the resulting mixed AA dots could inherit unique properties such as improved photostability and significant red shift in their emission wavelength, producing enhanced green and red fluorescent intensity. Moreover, our cellular studies demonstrate that the as-synthesized AA dots display outstanding biocompatibility and excellent intracellular uptake, which are highly desirable for imaging applications. We envision that the material design rules discovered in this study will be broadly applicable for the rational selection of amino acid precursors in the tailored synthesis of biodots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mombrú, Dominique; Romero, Mariano, E-mail: mromero@fq.edu.uy; Faccio, Ricardo, E-mail: rfaccio@fq.edu.uy
In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. Inmore » addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of ~3–8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications. - Highlights: • In situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion. • Polyaniline charge carriers at the interface and charge interactions between quantum dots. • Easy extrapolation to sol-gel derived quantum dots into polymer host as potential electrode materials.« less
Nanostructured Materials for Solar Cells
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Raffaelle, Ryne; Castro, Stephanie; Fahey, S.; Gennett, T.; Tin, P.
2003-01-01
The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties.
NASA Astrophysics Data System (ADS)
Zhao, Mei-Xia; Zhu, Bing-Jie
2016-04-01
Quantum dots (QDs), nano-carriers for drugs, can help realize the targeting of drugs, and improve the bioavailability of drugs in biological fields. And, a QD nano-carrier system for drugs has the potential to realize early detection, monitoring, and localized treatments of specific disease sites. In addition, QD nano-carrier systems for drugs can improve stability of drugs, lengthen circulation time in vivo, enhance targeted absorption, and improve the distribution and metabolism process of drugs in organization. So, the development of QD nano-carriers for drugs has become a hotspot in the fields of nano-drug research in recent years. In this paper, we review the advantages and applications of the QD nano-carriers for drugs in biological fields.
Joining the Dots: The Challenge of Creating Coherent School Improvement
ERIC Educational Resources Information Center
Robinson, Viviane; Bendikson, Linda; McNaughton, Stuart; Wilson, Aaron; Zhu, Tong
2017-01-01
Background/Context: Sustained school improvement requires adequate organizational and instructional coherence, yet, in typical high schools, subject department organization, norms of teacher professional autonomy, and involvement in multiple initiatives present powerful obstacles to forging a coherent approach to improvement. This study examines…
NASA Astrophysics Data System (ADS)
Lin, Yuting; Ghijsen, Michael; Thayer, David; Nalcioglu, Orhan; Gulsen, Gultekin
2011-03-01
Dynamic contrast enhanced MRI (DCE-MRI) has been proven to be the most sensitive modality in detecting breast lesions. Currently available MR contrast agent, Gd-DTPA, is a low molecular weight extracellular agent and can diffuse freely from the vascular space into interstitial space. Due to this reason, DCE-MRI has low sensitivity in differentiating benign and malignant tumors. Meanwhile, diffuse optical tomography (DOT) can be used to provide enhancement kinetics of an FDA approved optical contrast agent, ICG, which behaves like a large molecular weight optical agent due to its binding to albumin. The enhancement kinetics of ICG may have a potential to distinguish between the malignant and benign tumors and hence improve the specificity. Our group has developed a high speed hybrid MRI-DOT system. The DOT is a fully automated, MR-compatible, multi-frequency and multi-spectral imaging system. Fischer-344 rats bearing subcutaneous R3230 tumor are injected simultaneously with Gd-DTPA (0.1nmol/kg) and IC-Green (2.5mg/kg). The enhancement kinetics of both contrast agents are recorded simultaneously with this hybrid MRI-DOT system and evaluated for different tumors.
Hopkins, Brian; Churchill, Andrew; Vogt, Stefan; Rönnqvist, Louise
2004-03-01
Following F. Zaal and R. J. Bootsma (1995), the authors studied whether the decelerative phase of a reaching movement could be modeled as a constant tau-dot strategy resulting in a soft collision with the object. Specifically, they investigated whether that strategy is sustained over different viewing conditions. Participants (N = 11) were required to reach for 15- and 50-mm objects at 2 different distances under 3 conditions in which visual availability of the immediate environment and of the reaching hand were varied. Tau-dot estimates and goodness-of-fit were highly similar across the 3 conditions. Only within-participant variability of tau-dot estimates was increased when environmental cues were removed. That finding suggests that the motor system uses a tau-dot strategy involving the intermodal (i.e., visual, proprioceptive, or both) specification of information to regulate the decelerative phase of reaching under restricted viewing conditions. The authors provide recommendations for improving the derivation of tau;(x) estimates and stress the need for further research on how time-to-contact information is used in the regulation of the dynamics of actions such as reaching.
Micro Dot Patterning on the Light Guide Panel Using Powder Blasting
Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam
2008-01-01
This study is to develop a micromachining technology for a light guide panel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a single injection process instead of existing screen printing processes. The micro powder blasting technique is applied to form micro dot patterns on the LGP mold surface. The optimal conditions for masking, laminating, exposure, and developing processes to form the micro dot patterns are first experimentally investigated. A LGP mold with masked micro patterns is then machined using the micro powder blasting method and the machinability of the micro dot patterns is verified. A prototype LGP is test- injected using the developed LGP mold and a shape analysis of the patterns and performance testing of the injected LGP are carried out. As an additional approach, matte finishing, a special surface treatment method, is applied to the mold surface to improve the light diffusion characteristics, uniformity and brightness of the LGP. The results of this study show that the applied powder blasting method can be successfully used to manufacture LGPs with micro patterns by just single injection using the developed mold and thereby replace existing screen printing methods. PMID:27879740
Improved performance of reclaimed asphalt pavement mixes.
DOT National Transportation Integrated Search
2014-08-07
Utilization of RAP in asphalt pavements has become an important strategy to help offset rising : raw material prices and to improve the sustainability of our transportation infrastructure. The : South Dakota DOT began to routinely use RAP in mainl...
Modern traffic control devices to improve safety at rural intersections.
DOT National Transportation Integrated Search
2011-12-01
"Engineers with the Texas Department of Transportation (TxDOT) frequently make changes to traffic control devices : (TCDs) to improve intersection safety. To use available funds judiciously, engineers make incremental changes in : order to select the...
Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells
NASA Astrophysics Data System (ADS)
Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong
2017-10-01
In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn-CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.
Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.
Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei
2018-03-01
Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.
Bhatt, Shreya; Bhatt, Madhuri; Kumar, Anshu; Vyas, Gaurav; Gajaria, Tejal; Paul, Parimal
2018-07-01
We report a one pot green strategy for the synthesis of carbon dots using tulsi leaves and their potential application in sensing of Cr(VI) selectively. The detection mechanism is based on the phenomenon called inner filter effect (IFE) and a good linear static quenching was observed in the range of 1.6 μM to 50 μM with a detection limit of 4.5 ppb. The reversible switching in fluorescence has been tested and a good recovery in fluorescence was observed up to three consecutive cycles upon addition of ascorbic acid as reducing agent. Also the low toxicity, high fluorescence and photostabilty of the CDs make them excellent imaging and patterning agent. The acid and alkali resistant property of these CDs makes it suitable for real sample analysis. The fluorescent CDs were applied for successful detection of Cr(VI) in water with spike-recoveries ranging from 93 to 99%. Copyright © 2018 Elsevier B.V. All rights reserved.
Enhancement of pumped current in quantum dots
NASA Astrophysics Data System (ADS)
Ramos, Juan Pablo; Foa, Luis; Apel, Victor Marcelo; Orellana, Pedro
A direct current usually requires the application of a non-zero potential difference between source and drain, but on nanoscale systems (NSS) it is possible to obtain a non-zero current while the potential difference is zero. The effect is known as quantum charge pumping (QCP) and it is due to the interference provided by the existence of a time-dependent potential (TDP). QCP can be generated by a TDP in non-adiabatic limit. An example of this is a system composed by a ring with a dot embedded on it, under the application of an oscillating TDP. By the action of a magnetic field across the system, a pumped current is generated, since time reversal symmetry is broken. Decoherence is crucial, both from a scientific and technological point of view. In NSS it is expected that decoherence, among others things, decreases the QCP amplitude. In this context, we study what is the effect of a bath on the pumped current in our system. We find that for certain values of magnetic flux, the bath-system produce amplification of the pumped current.
Interband optical pulse injection locking of quantum dot mode-locked semiconductor laser.
Kim, Jimyung; Delfyett, Peter J
2008-07-21
We experimentally demonstrate optical clock recovery from quantum dot mode-locked semiconductor lasers by interband optical pulse injection locking. The passively mode-locked slave laser oscillating on the ground state or the first excited state transition is locked through the injection of optical pulses generated via the opposite transition bands, i.e. the first excited state or the ground state transition from the hybridly mode-locked master laser, respectively. When an optical pulse train generated via the first excited state from the master laser is injected to the slave laser oscillating via ground state, the slave laser shows an asymmetric locking bandwidth around the nominal repetition rate of the slave laser. In the reverse injection case of, i.e. the ground state (master laser) to the first excited state (slave laser), the slave laser does not lock even though both lasers oscillate at the same cavity frequency. In this case, the slave laser only locks to higher injection rates as compared to its own nominal repetition rate, and also shows a large locking bandwidth of 6.7 MHz.
Wu, Le; Lin, Zheng-Zhong; Zhong, Hui-Ping; Peng, Ai-Hong; Chen, Xiao-Mei; Huang, Zhi-Yong
2017-08-15
A sensitive fluorescence sensor for the detection of malachite green (MG) was fabricated by grafting molecularly imprinted polymers (MIPs) onto the surface of CdTe quantum dots (QDs). The MIP-coated QDs were synthesized via a reverse microemulsion method using (3-aminopropyl)triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) as functional monomer and cross-linker, respectively. The optimum molar ratio of MG, functional monomer and cross-linker was 1:3:10. The MIP-coated QDs exhibited uniform spheres with diameter around 49nm and excellent fluorescence emission at λ ex 370nm. A linear relationship with two segments between the relative fluorescence intensities and the MG concentrations ranging from 0.08 to 20μmol·L -1 could be obtained with a detection limit of 12μg·kg -1 . The fluorescent probe was successfully applied to the determination of MG in fish samples with the spiked recoveries ranging from 94.3% to 109.5% which were in accordance with those of the measurement by HPLC-UV. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jaén, Karim E; Sigala, Juan-Carlos; Olivares-Hernández, Roberto; Niehaus, Karsten; Lara, Alvaro R
2017-07-04
Dissolved oxygen tension (DOT) is hardly constant and homogenously distributed in a bioreactor, which can have a negative impact in the metabolism and product synthesis. However, the effects of DOT on plasmid DNA (pDNA) production and quality have not been thoroughly investigated. In the present study, the effects of aerobic (DOT ≥30% air sat.), microaerobic (constant DOT = 3% air sat.) and oscillatory DOT (from 0 to 100% air sat.) conditions on pDNA production, quality and host performance were characterized. Microaerobic conditions had little effect on pDNA production, supercoiled fraction and sequence fidelity. By contrast, oscillatory DOT caused a 22% decrease in pDNA production compared with aerobic cultures. Although in aerobic cultures the pDNA supercoiled fraction was 98%, it decreased to 80% under heterogeneous DOT conditions. The different oxygen availabilities had no effect on the fidelity of the produced pDNA. The estimated metabolic fluxes indicated substantial differences at the level of the pentose phosphate pathway and TCA cycle under different conditions. Cyclic changes in fermentative pathway fluxes, as well as fast shifts in the fluxes through cytochromes, were also estimated. Model-based genetic modifications that can potentially improve the process performance are suggested. DOT heterogeneities strongly affected cell performance, pDNA production and topology. This should be considered when operating or scaling-up a bioreactor with deficient mixing. Constant microaerobic conditions affected the bacterial metabolism but not the amount or quality of pDNA. Therefore, pDNA production in microaerobic cultures may be an alternative for bioreactor operation at higher oxygen transfer rates.
Ryckaert, Jana; Correia, António; Tessier, Mickael D; Dupont, Dorian; Hens, Zeger; Hanselaer, Peter; Meuret, Youri
2017-11-27
Quantum dots can be used in white LEDs for lighting applications to fill the spectral gaps in the combined emission spectrum of the blue pumping LED and a broad band phosphor, in order to improve the source color rendering properties. Because quantum dots are low scattering materials, their use can also reduce the amount of backscattered light which can increase the overall efficiency of the white LED. The absorption spectrum and narrow emission spectrum of quantum dots can be easily tuned by altering their synthesis parameters. Due to the re-absorption events between the different luminescent materials and the light interaction with the LED package, determining the optimal quantum dot properties is a highly non-trivial task. In this paper we propose a methodology to select the optimal quantum dot to be combined with a broad band phosphor in order to realize a white LED with optimal luminous efficacy and CRI. The methodology is based on accurate and efficient simulations using the extended adding-doubling approach that take into account all the optical interactions. The method is elaborated for the specific case of a hybrid, remote phosphor white LED with YAG:Ce phosphor in combination with InP/CdxZn 1-x Se type quantum dots. The absorption and emission spectrum of the quantum dots are generated in function of three synthesis parameters (core size, shell size and cadmium fraction) by a semi-empirical 'quantum dot model' to include the continuous tunability of these spectra. The sufficiently fast simulations allow to scan the full parameter space consisting of these synthesis parameters and luminescent material concentrations in terms of CRI and efficacy. A conclusive visualization of the final performance allows to make a well-considered trade-off between these performance parameters. For the hybrid white remote phosphor LED with YAG:Ce and InP/CdxZn 1-x Se quantum dots a CRI Ra = 90 (with R9>50) and an overall efficacy of 110 lm/W is found.
NASA Astrophysics Data System (ADS)
Wolde, Seyoum; Lao, Yan-Feng; Unil Perera, A. G.; Zhang, Y. H.; Wang, T. M.; Kim, J. O.; Schuler-Sandy, Ted; Tian, Zhao-Bing; Krishna, S.
2017-06-01
We report experimental results showing how the noise in a Quantum-Dot Infrared photodetector (QDIP) and Quantum Dot-in-a-well (DWELL) varies with the electric field and temperature. At lower temperatures (below ˜100 K), the noise current of both types of detectors is dominated by generation-recombination (G-R) noise which is consistent with a mechanism of fluctuations driven by the electric field and thermal noise. The noise gain, capture probability, and carrier life time for bound-to-continuum or quasi-bound transitions in DWELL and QDIP structures are discussed. The capture probability of DWELL is found to be more than two times higher than the corresponding QDIP. Based on the analysis, structural parameters such as the numbers of active layers, the surface density of QDs, and the carrier capture or relaxation rate, type of material, and electric field are some of the optimization parameters identified to improve the gain of devices.
Di, Dawei; Perez-Wurfl, Ivan; Gentle, Angus; Kim, Dong-Ho; Hao, Xiaojing; Shi, Lei; Conibeer, Gavin; Green, Martin A
2010-08-01
As an important step towards the realisation of silicon-based tandem solar cells using silicon quantum dots embedded in a silicon dioxide (SiO(2)) matrix, single-junction silicon quantum dot (Si QD) solar cells on quartz substrates have been fabricated. The total thickness of the solar cell material is 420 nm. The cells contain 4 nm diameter Si quantum dots. The impacts of post-metallisation treatments such as phosphoric acid (H(3)PO(4)) etching, nitrogen (N(2)) gas anneal and forming gas (Ar: H(2)) anneal on the cells' electrical and photovoltaic properties are investigated. The Si QD solar cells studied in this work have achieved an open circuit voltage of 410 mV after various processes. Parameters extracted from dark I-V, light I-V and circular transfer length measurement (CTLM) suggest limiting mechanism in the Si QD solar cell operation and possible approaches for further improvement.
Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination
NASA Astrophysics Data System (ADS)
Li, Xiyan; Zhao, Yong-Biao; Fan, Fengjia; Levina, Larissa; Liu, Min; Quintero-Bermudez, Rafael; Gong, Xiwen; Quan, Li Na; Fan, James; Yang, Zhenyu; Hoogland, Sjoerd; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.
2018-03-01
The external quantum efficiencies of state-of-the-art colloidal quantum dot light-emitting diodes (QLEDs) are now approaching the limit set by the out-coupling efficiency. However, the brightness of these devices is constrained by the use of poorly conducting emitting layers, a consequence of the present-day reliance on long-chain organic capping ligands. Here, we report how conductive and passivating halides can be implemented in Zn chalcogenide-shelled colloidal quantum dots to enable high-brightness green QLEDs. We use a surface management reagent, thionyl chloride (SOCl2), to chlorinate the carboxylic group of oleic acid and graft the surfaces of the colloidal quantum dots with passivating chloride anions. This results in devices with an improved mobility that retain high external quantum efficiencies in the high-injection-current region and also feature a reduced turn-on voltage of 2.5 V. The treated QLEDs operate with a brightness of 460,000 cd m-2, significantly exceeding that of all previously reported solution-processed LEDs.
Design of a High-Power White Light Source with Colloidal Quantum Dots and Non-Rare-Earth Phosphors
NASA Astrophysics Data System (ADS)
Bicanic, Kristopher T.
This thesis describes the design process of a high-power white light source, using novel phosphor and colloidal quantum dot materials. To incorporate multiple light emitters, we generalized and extended a down-converting layer model. We employed a phosphor mixture comprising of YAG:Ce and K2TiF 6:Mn4+ powders to illustrate the effectiveness of the model. By incorporating experimental photophysical results from the phosphors and colloidal quantum dots, we modeled our system and chose the design suitable for high-power applications. We report a reduction in the correlated color temperature by 600K for phosphor and quantum dot systems, enabling the creation of a warm white light emission at power densities up to 5 kW/cm 2. Furthermore, at this high-power, their emission achieves the digital cinema initiative (DCI) requirements with a luminescence efficacy improvement up to 32% over the stand-alone ceramic YAG:Ce phosphor.
Lee, Sangdae; Kim, Giyoung; Moon, Jihea
2013-04-18
This study was conducted to develop a simple, rapid, and accurate lateral flow immunoassay (LFIA) detection method for point-of-care diagnosis. The one-dot LFIA for aflatoxin B1 (AFB1) was based on the modified competitive binding format using competition between AFB1 and colloidal gold-AFB1-BSA conjugate for antibody binding sites in the test zone. A Smartphone-based reading system consisting of a Samsung Galaxy S2 Smartphone, a LFIA reader, and a Smartphone application for the image acquisition and data analysis. The detection limit of one-dot LFIA for AFB1 is 5 μg/kg. This method provided semi-quantitative analysis of AFB1 samples in the range of 5 to 1,000 μg/kg. Using combination of the one-dot LFIA and the Smartphone-based reading system, it is possible to conduct a more fast and accurate point-of-care diagnosis.
Lee, Sangdae; Kim, Giyoung; Moon, Jihea
2013-01-01
This study was conducted to develop a simple, rapid, and accurate lateral flow immunoassay (LFIA) detection method for point-of-care diagnosis. The one-dot LFIA for aflatoxin B1 (AFB1) was based on the modified competitive binding format using competition between AFB1 and colloidal gold-AFB1-BSA conjugate for antibody binding sites in the test zone. A Smartphone-based reading system consisting of a Samsung Galaxy S2 Smartphone, a LFIA reader, and a Smartphone application for the image acquisition and data analysis. The detection limit of one-dot LFIA for AFB1 is 5 μg/kg. This method provided semi-quantitative analysis of AFB1 samples in the range of 5 to 1,000 μg/kg. Using combination of the one-dot LFIA and the Smartphone-based reading system, it is possible to conduct a more fast and accurate point-of-care diagnosis. PMID:23598499
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.
Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10{sup 7} and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dotmore » emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.« less
NASA Astrophysics Data System (ADS)
Boustanji, Hela; Jaziri, Sihem
2018-02-01
GaSb/GaAs type-II quantum-dot solar cells (QD SCs) have attracted attention as highly efficient intermediate band SCs due to their infrared absorption. Type-II QDs exhibited a staggered confinement potential, where only holes are strongly confined within the dots. Long wavelength light absorption of the QDSCs is enhanced through the improved carriers number in the IB. The absorption of dots depends on their shape, material quality, and composition. Therefore, the optical properties of the GaSbGaAs QDs before and after thermal treatment are studied. Our intraband studies have shown an extended absorption into the long wavelength region 1.77 μ {m}. The annealed QDs have shown significantly more infrared response of 7.2 μ {m} compared to as-grown sample. The photon absorption and hole extraction depend strongly on the thermal annealing process. In this context, emission of holes from localized states in GaSb QDs has been studied using conductance-voltage ( G- V ) characteristics.
Distribution of HLA-DQA1 alleles in Arab and Pakistani individuals from Dubai, United Arab Emirates.
Tahir, M A; al Khayat, A Q; al Shamali, F; Budowle, B; Novick, G E
1997-03-14
PCR-based typing of the HLA-DQA1 locus, using allele specific oligonucleotide (ASO) probes and reverse dot blot methodology was used to determine allelic distributions and construct a database for Arab and Pakistani individuals living in Dubai. Genotype and allelic frequencies were calculated, and the data were tested for departures from Hardy-Weinberg (HWE) equilibrium. The most frequent HLA-DQA1 alleles among Dubaian Arabs are DQA1 4 and 1.2. Among Pakistanis, the most frequent allele is also DQA1 4. No significant deviations from HWE were detected.
The state of the art of conventional flow visualization techniques for wind tunnel testing
NASA Technical Reports Server (NTRS)
Settles, G. S.
1982-01-01
Conventional wind tunnel flow visualization techniques which consist of surface flow methods, tracers, and optical methods are presented. Different surface flow methods are outlined: (1) liquid films (oil and fluorescent dye and UV lighting, renewable film via porous dispenser in model, volatile carrier fluid, cryogenic colored oil dots, oil film interferometry); (2) reactive surface treatment (reactive gas injection, reversible dye); (3) transition and heat transfer detectors (evaporation, sublimation, liquid crystals, phase change paints, IR thermography); and (4) tufts (fluorescent mini tufts, cryogenic suitability). Other methods are smoke wire techniques, vapor screens, and optical methods.
Gopi, Chandu V V M; Venkata-Haritha, M; Kim, Soo-Kyoung; Kim, Hee-Je
2015-01-14
This article describes the effect of manganese (Mn) doping in CdS to improve the photovoltaic performance of quantum dot sensitized solar cells (QDSSCs). The performances of the QDSSCs are examined in detail using a polysulfide electrolyte with a copper sulfide (CuS) counter electrode. Under the illumination of one sun (AM 1.5 G, 100 mW cm(-2)), 10 molar% Mn-doped CdS QDSSCs exhibit a power conversion efficiency (η) of 2.85%, which is higher than the value of 2.11% obtained with bare CdS. The improved photovoltaic performance is due to the impurities from Mn(2+) doping of CdS, which have an impact on the structure of the host material and decrease the surface roughness. The surface roughness and morphology of Mn-doped CdS nanoparticles can be characterised from atomic force microscopy images. Furthermore, the cell device based on the Mn-CdS electrode shows superior stability in the sulfide/polysulfide electrolyte in a working state for over 10 h, resulting in a highly reproducible performance, which is a serious challenge for the Mn-doped solar cell. Our finding provides an effective method for the fabrication of Mn-doped CdS QDs, which can pave the way to further improve the efficiency of future QDSSCs.
Efficient single photon detection by quantum dot resonant tunneling diodes.
Blakesley, J C; See, P; Shields, A J; Kardynał, B E; Atkinson, P; Farrer, I; Ritchie, D A
2005-02-18
We demonstrate that the resonant tunnel current through a double-barrier structure is sensitive to the capture of single photoexcited holes by an adjacent layer of quantum dots. This phenomenon could allow the detection of single photons with low dark count rates and high quantum efficiencies. The magnitude of the sensing current may be controlled via the thickness of the tunnel barriers. Larger currents give improved signal to noise and allow sub-mus photon time resolution.
Baumgarten, Thomas; Vazquez, José; Bastisch, Christian; Veron, Wilfried; Feuilloley, Marc G J; Nietzsche, Sandor; Wick, Lukas Y; Heipieper, Hermann J
2012-01-01
In order to cope with the toxicity imposed by the exposure to environmental hydrocarbons, many bacteria have developed specific adaptive responses such as modifications in the cell envelope. Here we compared the influence of n-alkanols and chlorophenols on the surface properties of the solvent-tolerant bacterium Pseudomonas putida DOT-T1E. In the presence of toxic concentrations of n-alkanols, this strain significantly increased its cell surface charge and hydrophobicity with changes depending on the chain length of the added n-alkanols. The adaptive response occurred within 10 min after the addition of the solvent and was demonstrated to be of physiological nature. Contrary to that, chlorophenols of similar hydrophobicity and potential toxicity as the corresponding alkanols caused only minor effects in the surface properties. To our knowledge, this is the first observation of differences in the cellular adaptive response of bacteria to compound classes of quasi equal hydrophobicity and toxicity. The observed adaptation of the physico-chemical surface properties of strain DOT-T1E to the presence of alkanols was reversible and correlated with changes in the composition of the lipopolysaccharide content of the cells. The reaction is explained by previously described reactions allowing the release of membrane vesicles that was demonstrated for cells affected by 1-octanol and heat shock, whereas no membrane vesicles were released after the addition of chlorophenols.
Kongkanand, Anusorn; Tvrdy, Kevin; Takechi, Kensuke; Kuno, Masaru; Kamat, Prashant V
2008-03-26
Different-sized CdSe quantum dots have been assembled on TiO2 films composed of particle and nanotube morphologies using a bifunctional linker molecule. Upon band-gap excitation, CdSe quantum dots inject electrons into TiO2 nanoparticles and nanotubes, thus enabling the generation of photocurrent in a photoelectrochemical solar cell. The results presented in this study highlight two major findings: (i) ability to tune the photoelectrochemical response and photoconversion efficiency via size control of CdSe quantum dots and (ii) improvement in the photoconversion efficiency by facilitating the charge transport through TiO2 nanotube architecture. The maximum IPCE (photon-to-charge carrier generation efficiency) obtained with 3 nm diameter CdSe nanoparticles was 35% for particulate TiO2 and 45% for tubular TiO2 morphology. The maximum IPCE observed at the excitonic band increases with decreasing particle size, whereas the shift in the conduction band to more negative potentials increases the driving force and favors fast electron injection. The maximum power-conversion efficiency =1% obtained with CdSe-TiO2 nanotube film highlights the usefulness of tubular morphology in facilitating charge transport in nanostructure-based solar cells. Ways to further improve power-conversion efficiency and maximize light-harvesting capability through the construction of a rainbow solar cell are discussed.
Dunnican, Ward J; Singh, T Paul; Ata, Ashar; Bendana, Emma E; Conlee, Thomas D; Dolce, Charles J; Ramakrishnan, Rakesh
2010-06-01
Reverse alignment (mirror image) visualization is a disconcerting situation occasionally faced during laparoscopic operations. This occurs when the camera faces back at the surgeon in the opposite direction from which the surgeon's body and instruments are facing. Most surgeons will attempt to optimize trocar and camera placement to avoid this situation. The authors' objective was to determine whether the intentional use of reverse alignment visualization during laparoscopic training would improve performance. A standard box trainer was configured for reverse alignment, and 34 medical students and junior surgical residents were randomized to train with either forward alignment (DIRECT) or reverse alignment (MIRROR) visualization. Enrollees were tested on both modalities before and after a 4-week structured training program specific to their modality. Student's t test was used to determine differences in task performance between the 2 groups. Twenty-one participants completed the study (10 DIRECT, 11 MIRROR). There were no significant differences in performance time between DIRECT or MIRROR participants during forward or reverse alignment initial testing. At final testing, DIRECT participants had improved times only in forward alignment performance; they demonstrated no significant improvement in reverse alignment performance. MIRROR participants had significant time improvement in both forward and reverse alignment performance at final testing. Reverse alignment imaging for laparoscopic training improves task performance for both reverse alignment and forward alignment tasks. This may be translated into improved performance in the operating room when faced with reverse alignment situations. Minimal lab training can account for drastic adaptation to this environment.
Quantum Dot Nanobioelectronics and Selective Antimicrobial Redox Interventions
NASA Astrophysics Data System (ADS)
Goodman, Samuel Martin
The unique properties of nanomaterials have engendered a great deal of interest in applying them for applications ranging from solid state physics to bio-imaging. One class of nanomaterials, known collectively as quantum dots, are defined as semiconducting crystals which have a characteristic dimension smaller than the excitonic radius of the bulk material which leads to quantum confinement effects. In this size regime, excited charge carriers behave like prototypical particles in a box, with their energy levels defined by the dimensions of the constituent particle. This is the source of the tunable optical properties which have drawn a great deal of attention with regards to finding appropriate applications for these materials. This dissertation is divided into multiple sections grouped by the type of application explored. The first sectoin investigates the energetic interactions of physically-coupled quantum dots and DNA, with the goal of gaining insight into how self-assembled molecular wires can bridge the energetic states of physically separated nanocrystals. Chapter 1 begins with an introduction to the properties of quantum dots, the conductive properties of DNA, and the common characterization methods used to characterize materials on the nanoscale. In Chapter 2 scanning tunneling measurements of QD-DNA constructs on the single particle level are presented which show the tunable coupling between the two materials and their resulting hybrid electronic structure. This is expanded upon in Chapter 3 where the conduction of photogenerated charges in QD-DNA hybrid thin films are characterized, which exhibit different charge transfer pathways through the constituent nucleobases depending on the energy of the incident light and resulting electrons. Complementary investigations of energy transfer mediated through DNA are presented in Chapter 4, with confirmation of Dexter-like transfer being facilitated through the oligonucleotides. The second section quantifies the use of cadmium telluride quantum dots as light-activated therapeutics for treating multi-drug resistant bacterial infectoins. A review of the physiological effects of cadmium chalcogenide quantum dots is first presented in Chapter 5 which provides a foundation for understanding the inherent toxicity of these materials. The phototoxic effect induced by CdTe quantum dots is then introduced in Chapter 6 showing the reduction in growth of gram-negative bacteria. Additional insight is provided in Chapter 7 which discusses the therapeutic mechanism and the oxygen-centered radical species which are formed by the application of light in aqueous media. The section closes with Chapter 8 describing efforts to improve the stability and bio-compatibility of the dots using various surface treatments, and shows that stability can be improved by the passivation of the quantum dots' anionic facets, though at the cost of overall radical generation.
Enhanced monolayer MoS2/InP heterostructure solar cells by graphene quantum dots
NASA Astrophysics Data System (ADS)
Wang, Peng; Lin, Shisheng; Ding, Guqiao; Li, Xiaoqiang; Wu, Zhiqian; Zhang, Shengjiao; Xu, Zhijuan; Xu, Sen; Lu, Yanghua; Xu, Wenli; Zheng, Zheyang
2016-04-01
We demonstrate significantly improved photovoltaic response of monolayer molybdenum disulfide (MoS2)/indium phosphide (InP) van der Waals heterostructure induced by graphene quantum dots (GQDs). Raman and photoluminescence measurements indicate that effective charge transfer takes place between GQDs and MoS2, which results in n-type doping of MoS2. The doping effect increases the barrier height at the MoS2/InP heterojunction, thus the averaged power conversion efficiency of MoS2/InP solar cells is improved from 2.1% to 4.1%. The light induced doping by GQD provides a feasible way for developing more efficient MoS2 based heterostructure solar cells.
Primer on the Highway Safety Improvement Program (HSIP)
DOT National Transportation Integrated Search
2014-09-16
The Highway Safety Improvement Program (HSIP) is a core Federal-aid program for State Departments of Transportation (State DOTs) administered by the Federal Highway Administration (FHWA). This is a major source of funding for safety projects on the n...
Xing, Yun; Smith, Andrew M; Agrawal, Amit; Ruan, Gang; Nie, Shuming
2006-01-01
Semiconductor quantum dots (QDs) are a new class of fluorescent labels with broad applications in biomedical imaging, disease diagnostics, and molecular and cell biology. In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. Recent advances have led to multifunctional nanoparticle probes that are highly bright and stable under complex in vitro and in vivo conditions. New designs involve encapsulating luminescent QDs with amphiphilic block copolymers, and linking the polymer coating to tumor-targeting ligands and drug-delivery functionalities. These improved QDs have opened new possibilities for real-time imaging and tracking of molecular targets in living cells, for multiplexed analysis of biomolecular markers in clinical tissue specimens, and for ultrasensitive imaging of malignant tumors in living animal models. In this article, we briefly discuss recent developments in bioaffinity QD probes and their applications in molecular profiling of individual cancer cells and clinical tissue specimens. PMID:17722280
NASA Astrophysics Data System (ADS)
Tian, Jianjun; Shen, Ting; Liu, Xiaoguang; Fei, Chengbin; Lv, Lili; Cao, Guozhong
2016-03-01
This work reports a PbS-quantum-dot-sensitized solar cell (QDSC) with power conversion efficiency (PCE) of 4%. PbS quantum dots (QDs) were grown on mesoporous TiO2 film using a successive ion layer absorption and reaction (SILAR) method. The growth of QDs was found to be profoundly affected by the concentration of the precursor solution. At low concentrations, the rate-limiting factor of the crystal growth was the adsorption of the precursor ions, and the surface growth of the crystal became the limiting factor in the high concentration solution. The optimal concentration of precursor solution with respect to the quantity and size of synthesized QDs was 0.06 M. To further increase the performance of QDSCs, the 30% deionized water of polysulfide electrolyte was replaced with methanol to improve the wettability and permeability of electrolytes in the TiO2 film, which accelerated the redox couple diffusion in the electrolyte solution and improved charge transfer at the interfaces between photoanodes and electrolytes. The stability of PbS QDs in the electrolyte was also improved by methanol to reduce the charge recombination and prolong the electron lifetime. As a result, the PCE of QDSC was increased to 4.01%.
Tian, Jianjun; Shen, Ting; Liu, Xiaoguang; Fei, Chengbin; Lv, Lili; Cao, Guozhong
2016-03-15
This work reports a PbS-quantum-dot-sensitized solar cell (QDSC) with power conversion efficiency (PCE) of 4%. PbS quantum dots (QDs) were grown on mesoporous TiO2 film using a successive ion layer absorption and reaction (SILAR) method. The growth of QDs was found to be profoundly affected by the concentration of the precursor solution. At low concentrations, the rate-limiting factor of the crystal growth was the adsorption of the precursor ions, and the surface growth of the crystal became the limiting factor in the high concentration solution. The optimal concentration of precursor solution with respect to the quantity and size of synthesized QDs was 0.06 M. To further increase the performance of QDSCs, the 30% deionized water of polysulfide electrolyte was replaced with methanol to improve the wettability and permeability of electrolytes in the TiO2 film, which accelerated the redox couple diffusion in the electrolyte solution and improved charge transfer at the interfaces between photoanodes and electrolytes. The stability of PbS QDs in the electrolyte was also improved by methanol to reduce the charge recombination and prolong the electron lifetime. As a result, the PCE of QDSC was increased to 4.01%.
Haq, Z; Khan, W; Rizwan, S
2013-03-01
A national-level study in four districts, one each in all four provinces of Pakistan, a high tuberculosis (TB) burden country. To examine how advocacy, communication and social mobilisation (ACSM) campaigns by the National Tuberculosis Programme (NTP) in Pakistan engaged the populations of interest, to what extent they were successful in promoting services and desired behaviours, and how these campaigns could be improved. This was a qualitative case study comprising 13 focus groups and 36 individual interviews in four districts. All three levels of the ACSM programme, i.e., planners, implementers and beneficiaries, were included among the respondents. Improved political commitment, availability of funds, partnership with the private sector, visibility of the NTP and access to directly observed treatment (DOT) were achieved. Individual and social environmental issues of poor patients and marginalised communities were addressed to some extent, and could be improved in the future. Empathy and respect from physicians, and better service delivery of the DOTS-based programme were desired by the patients. The strategic advocacy ensured political and financial commitment; however, identification and targeting of vulnerable populations, and carrying out context-based social mobilisation and effective counselling are crucial to increase the use of DOT. Evaluations should be built-in from the beginning to increase the evidence on effectiveness of ACSM campaigns.
Zhou, Zhenhe; Cao, Suxia; Li, Hengfen; Li, Youhui
2015-10-01
We hypothesized that treatment with escitalopram would improve cognitive bias and contribute to the recovery process for patients with major depressive disorder (MDD). Many previous studies have established that patients with MDD tend to pay selective attention to negative stimuli. The assessment of the level of cognitive bias is regarded as a crucial dimension of treatment outcomes for MDD. To our knowledge, no prior studies have been reported on the effects of treatment with escitalopram on attentional bias in MDD, employing a dot probe task of facial expression. We studied 25 patients with MDD and 25 controls, and used a dot probe task of facial expression to measure cognitive bias. The patients' psychopathologies were rated using the Hamilton Depression Scale (HAMD) at baseline and after 8 weeks of treatment with escitalopram. All participants performed the facial expression dot probe task. The results revealed that the 8 week escitalopram treatment decreased the HAMD scores. The patients with MDD at baseline exhibited an attentional bias towards negative faces, however, no significant bias toward either negative or happy faces were observed in the controls. After the 8 week escitalopram treatment, no significant bias toward negative faces was observed in the patient group. In conclusion, patients with MDD pay more attention to negative facial expressions, and treatment with escitalopram improves this attentional bias toward negative facial expressions. This is the first study, to our knowledge, on the effects of treatment with escitalopram on attentional bias in patients with MDD that has employed a dot probe task of facial expression. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%.
Santra, Pralay K; Kamat, Prashant V
2012-02-08
To make Quantum Dot Sensitized Solar Cells (QDSC) competitive, it is necessary to achieve power conversion efficiencies comparable to other emerging solar cell technologies. By employing Mn(2+) doping of CdS, we have now succeeded in significantly improving QDSC performance. QDSC constructed with Mn-doped-CdS/CdSe deposited on mesoscopic TiO(2) film as photoanode, Cu(2)S/Graphene Oxide composite electrode, and sulfide/polysulfide electrolyte deliver power conversion efficiency of 5.4%.
Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance.
Lan, Xinzheng; Voznyy, Oleksandr; Kiani, Amirreza; García de Arquer, F Pelayo; Abbas, Abdullah Saud; Kim, Gi-Hwan; Liu, Mengxia; Yang, Zhenyu; Walters, Grant; Xu, Jixian; Yuan, Mingjian; Ning, Zhijun; Fan, Fengjia; Kanjanaboos, Pongsakorn; Kramer, Illan; Zhitomirsky, David; Lee, Philip; Perelgut, Alexander; Hoogland, Sjoerd; Sargent, Edward H
2016-01-13
A solution-based passivation scheme is developed featuring the use of molecular iodine and PbS colloidal quantum dots (CQDs). The improved passivation translates into a longer carrier diffusion length in the solid film. This allows thicker solar-cell devices to be built while preserving efficient charge collection, leading to a certified power conversion efficiency of 9.9%, which is a new record in CQD solar cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014-01-01
Background Tuberculosis is a public health problem in Cameroon, just like in many other countries in the world. The National Tuberculosis Control Programme (PNLT) put in place by the state, aims to fight tuberculosis through the implementation of international directives (Directly Observed Treatment Short, DOTS). Despite the deployment of this strategy across the world, its implementation is difficult in the context of low-resource countries. Some expected results are not achieved. In Cameroon, the cure rate for patients with sputum positive pulmonary tuberculosis (TPM+) after 6 months is only about 65%, 20% below the target. This is mainly due to poor patient adherence to treatment. By relying on the potential of mobile Health, the objective of this study is to evaluate the effect of SMS reminders on the cure rate of TPM + patients, measured using 6-month bacilloscopy. Methods/design This is a blinded, randomised controlled multicentre study carried out in Cameroon. The research hypothesis is that sending daily SMS messages to remind patients to take their prescribed tuberculosis medication, together with the standard DOTS strategy, will increase the cure rate from 65% (control group: DOTS, no SMS intervention) to 85% (intervention group: DOTS, with SMS intervention) in a group of new TPM + patients. In accordance with each treatment centre, the participants will be randomly allocated into the two groups using a computer program: the intervention group and the control group. A member of the research team will send daily SMS messages. Study data will be collected by health professionals involved in the care of patients. Data analysis will be done by the intention-to-treat method. Discussion The achieving of expected outcomes by the PNLT through implementation of DOTS requires several challenges. Although it has been demonstrated that the DOTS strategy is effective in the fight against tuberculosis, its application remains difficult in developing countries. This study explores the potential of mHealth to support DOTS strategy. It will gather new evidence on the effectiveness of mHealth-based interventions and SMS reminders in the improvement of treatment adherence and the cure rate of tuberculosis patients, especially in a low-resource country such as Cameroon. Trial registration The trial is registered on the Pan-African Clinical Trials Registry (http://www.pactr.org) under unique identification number: PACTR201307000583416. PMID:24460827
Meeting the customer's needs for mobility and safety during construction and maintenance
DOT National Transportation Integrated Search
1998-09-01
The purpose of this quality improvement review was to assess the effectiveness of the FHWAs and State DOTs policies and procedures in enhancing safety, improving mobility, and increasing the efficiency of the NHS by reducing traffic congestion/...
NASA Astrophysics Data System (ADS)
Gakhar, Ruchi; Smith, York R.; Misra, Mano; Chidambaram, Dev
2015-11-01
The photoelectrochemical performance of CdSSe quantum dots tethered to a framework of vertically oriented titania (TiO2) nanotubes was studied. The TiO2/CdSSe framework demonstrated improved charge transfer due to its unique band edge structure, thus validating the higher photocurrent generation. The composite film led to an 11-fold enhancement in comparison to the control TiO2 film, implying that the ternary quantum dots and the nanotubular structure of TiO2 work in tandem to promote charge separation and favorably impact photoelectrochemical performance. Further, the results also suggest that structural and optoelectronic properties of TiO2 films are significantly affected by the thicknesses of the CdSSe layer.
Real-Time Nanoscopy by Using Blinking Enhanced Quantum Dots
Watanabe, Tomonobu M.; Fukui, Shingo; Jin, Takashi; Fujii, Fumihiko; Yanagida, Toshio
2010-01-01
Superresolution optical microscopy (nanoscopy) is of current interest in many biological fields. Superresolution optical fluctuation imaging, which utilizes higher-order cumulant of fluorescence temporal fluctuations, is an excellent method for nanoscopy, as it requires neither complicated optics nor illuminations. However, it does need an impractical number of images for real-time observation. Here, we achieved real-time nanoscopy by modifying superresolution optical fluctuation imaging and enhancing the fluctuation of quantum dots. Our developed quantum dots have higher blinking than commercially available ones. The fluctuation of the blinking improved the resolution when using a variance calculation for each pixel instead of a cumulant calculation. This enabled us to obtain microscopic images with 90-nm and 80-ms spatial-temporal resolution by using a conventional fluorescence microscope without any optics or devices. PMID:20923631
Gioannini, Mariangela; Dommermuth, Marius; Drzewietzki, Lukas; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Breuer, Stefan
2014-01-01
We exploit the coupled emission-states of a single-chip semiconductor InAs/GaAs quantum-dot laser emitting simultaneously on ground-state (λGS = 1245 nm) and excited-state (λES = 1175 nm) to demonstrate coupled-two-state self-mixing velocimetry for a moving diffuse reflector. A 13 Hz-narrow Doppler beat frequency signal at 317 Hz is obtained for a reflector velocity of 3 mm/s, which exemplifies a 66-fold improvement in width as compared to single-wavelength self-mixing velocimetry. Simulation results reveal the physical origin of this signal, the coupling of excited-state and ground-state photons via the carriers, which is unique for quantum-dot lasers and reproduce the experimental results with excellent agreement. PMID:25321809
Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun
2018-01-01
A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Attia, Moez; Gueddana, Amor; Chatta, Rihab; Morand, Alain
2013-09-01
The work presented in this paper develops a new formalism to design microdisks and microgears structures. The main objective is to study the optics and geometrics parameters influence on the microdisks and microgears structures resonance behavior. This study is conducted to choice a resonance structure with height quality factor Q to be associated with Quantum dot to form a single photon source. This new method aims to design resonant structures that are simpler and requires less computing performances than FDTD and Floquet Block methods. This formalism is based on simplifying Fourier transformed and using toeplitz matrix writing. This new writing allows designing all kind of resonance structures with any defect and any modification. In other study we have design a quantum dot emitting a photon at 1550 nm of the fundamental mode, but the quantum dot emits other photons at other wavelengths. The focus of the resonant structure and the quantum dot association is the resonance of the photon at 1550 nm and the elimination of all other photons with others energies. The quantum dot studied in [1] is an InAs/GaAs quantum dot, we design an GaAS microdisk and microgear and we compare the quality factor Q of this two structures and we conclude that the microgear is more appropriated to be associate to the quantum dot and increase the probability P1 to obtain a single photon source at 1550 nm and promotes the obtaining of single photon. The performance improving of the resonant structure is able to increase the success of quantum applications such as quantum gates based on single photon source.
Quantum dot coating of baculoviral vectors enables visualization of transduced cells and tissues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ying; Lo, Seong Loong; Zheng, Yuangang
2013-04-26
Highlights: •The use of quantum dot (QD)-labeled viral vectors for in vivo imaging is not well investigated. •A new method to label enveloped baculovirus with glutathione-capped CdTe QDs is developed. •The labeling enables the identification of transduced, cultured cells based on fluorescence. •The labeling also allows evaluation of viral transduction in a real-time manner in living mice. •The method has the potential to assess viral vector-based gene therapy protocols in future. -- Abstract: Imaging of transduced cells and tissues is valuable in developing gene transfer vectors and evaluating gene therapy efficacy. We report here a simple method to use brightmore » and photostable quantum dots to label baculovirus, an emerging gene therapy vector. The labeling was achieved through the non-covalent interaction of glutathione-capped CdTe quantum dots with the virus envelope, without the use of chemical conjugation. The quantum dot labeling was nondestructive to viral transduction function and enabled the identification of baculoviral vector-transduced, living cells based on red fluorescence. When the labeled baculoviral vectors were injected intravenously or intraventricularly for in vivo delivery of a transgene into mice, quantum dot fluorescence signals allow us monitor whether or not the injected tissues were transduced. More importantly, using a dual-color whole-body imaging technology, we demonstrated that in vivo viral transduction could be evaluated in a real-time manner in living mice. Thus, our method of labeling a read-to-use gene delivery vector with quantum dots could be useful towards the improvement of vector design and will have the potential to assess baculovirus-based gene therapy protocols in future.« less
2011-01-01
Background Fluorescence in situ hybridization (FISH) is very accurate method for measuring HER2 gene copies, as a sign of potential breast cancer. This method requires small tissue samples, and has a high sensitivity to detect abnormalities from a histological section. By using multiple colors, this method allows the detection of multiple targets simultaneously. The target parts in the cells become visible as colored dots. The HER-2 probes are visible as orange stained spots under a fluorescent microscope while probes for centromere 17 (CEP-17), the chromosome on which the gene HER-2/neu is located, are visible as green spots. Methods The conventional analysis involves the scoring of the ratio of HER-2/neu over CEP 17 dots within each cell nucleus and then averaging the scores for a number of 60 cells. A ratio of 2.0 of HER-2/neu to CEP 17 copy number denotes amplification. Several methods have been proposed for the detection and automated evaluation (dot counting) of FISH signals. In this paper the combined method based on the mathematical morphology (MM) and inverse multifractal (IMF) analysis is suggested. Similar method was applied recently in detection of microcalcifications in digital mammograms, and was very successful. Results The combined MM using top-hat and bottom-hat filters, and the IMF method was applied to FISH images from Molecular Biology Lab, Department of Pathology, Wielkoposka Cancer Center, Poznan. Initial results indicate that this method can be applied to FISH images for the evaluation of HER2/neu status. Conclusions Mathematical morphology and multifractal approach are used for colored dot detection and counting in FISH images. Initial results derived on clinical cases are promising. Note that the overlapping of colored dots, particularly red/orange dots, needs additional improvements in post-processing. PMID:21489192
Suwankeeree, Wongduan; Picheansathian, Wilawan
2014-03-01
The objective of this study is to review and synthesise the best available research evidence that investigates the effectiveness of strategies to promote adherence to treatment by patients with newly diagnosed pulmonary tuberculosis (TB). The search sought to find published and unpublished studies. The search covered articles published from 1990 to 2010 in English and Thai. The database search included Cumulative Index to Nursing and Allied Health Literature (CINAHL), EMBASE, Cochrane Library, PubMed, Science Direct, Current Content Connect, Thai Nursing Research Database, Thai thesis database, Digital Library of Thailand Research Fund, Research of National Research Council of Thailand and Database of Office of Higher Education Commission. Studies were additionally identified from reference lists of all studies retrieved. Eligible studies were randomised controlled trials that explored different strategies to promote adherence to TB treatment of patients with newly diagnosed pulmonary TB and also included quasiexperimental studies. Two of the investigators independently assessed the studies and then extracted and summarised data from eligible studies. Extracted data were entered into Review Manager software and analysed. A total of 7972 newly diagnosed pulmonary TB patients participated in 10 randomised controlled trials and eight quasiexperimental studies. The studies reported on the effectiveness of a number of specific interventions to improve adherence to TB treatment among newly diagnosed pulmonary TB patients. These interventions included directly observed treatment (DOT) coupled with alternative patient supervision options, case management with DOT, short-course directly observed treatment, the intensive triad-model programme and an intervention package aimed at improved counselling and communication, decentralisation of treatment, patient choice of a DOT supporter and reinforcement of supervision activities. This review found evidence of beneficial effects from the DOT with regard to the medication adherence among TB patients in terms of cure rate and success rate. However, no beneficial effect was found from DOT intervention with increasing completion rate. In addition, the combined interventions to improve adherence to tuberculosis treatment included case management with directly observed treatment short-course program, the intensive triad-model programme and intervention package. These interventions should be implemented by healthcare providers and tailored to local contexts and circumstances, wherever appropriate.
Lim, Sung Jun; Ma, Liang; Schleife, André; Smith, Andrew M.
2016-01-01
The surfaces of colloidal nanocrystals are complex interfaces between solid crystals, coordinating ligands, and liquid solutions. For fluorescent quantum dots, the properties of the surface vastly influence the efficiency of light emission, stability, and physical interactions, and thus determine their sensitivity and specificity when they are used to detect and image biological molecules. But after more than 30 years of study, the surfaces of quantum dots remain poorly understood and continue to be an important subject of both experimental and theoretical research. In this article, we review the physics and chemistry of quantum dot surfaces and describe approaches to engineer optimal fluorescent probes for applications in biomolecular imaging and sensing. We describe the structure and electronic properties of crystalline facets, the chemistry of ligand coordination, and the impact of ligands on optical properties. We further describe recent advances in compact coatings that have significantly improved their properties by providing small hydrodynamic size, high stability and fluorescence efficiency, and minimal nonspecific interactions with cells and biological molecules. While major progress has been made in both basic and applied research, many questions remain in the chemistry and physics of quantum dot surfaces that have hindered key breakthroughs to fully optimize their properties. PMID:28344357
Sasaki, Gordon H; Cohen, Andrew T
2002-08-01
The aging anterior midface is restored by reversing the contour undulations produced by sagging of the malar fat pad complex toward the nasolabial line. The convex irregularities include the exposed bulges of the post-septal fat, the unveiled malar bag, and the prominent nasolabial fold. The depressed irregularities are represented by the cresent-shaped hollow at the lid-cheek junction, the accentuated nasojugal groove, and the deepening nasolabial line. Repositioning of the ptotic malar fat pad, among other elements of meloplasty, represents a key procedure. In this study, the malar fat pad has been defined as a fan-shaped structure by external anatomic landmarks that correlate closely to the findings in cadaveric dissections and clinical cases, confirmed by the findings of spiral computed tomographic scanning. A simple but powerful adjustable and long-lasting percutaneous suture elevation technique was developed over the past 6 years by the senior author (G.H.S.) to reposition the fat pad in a superolateral direction. Through a dot incision within the nasolabial line, a permanent CV-3 Gore-Tex (or 4-0 clear Prolene) suspension suture, looped through a Gore-Tex anchor graft, suspends the malar fat pad in a direction perpendicular to the nasolabial line. A second suspension system is identically passed through another lower dot incision to broaden the repositioning vectors on the malar fat pad. Tension on each of the paired suture ends elevates the malar fat pad by 1 to 3 mm as measured from the nasolabial dot incisions. The sutures are fixed to the deep temporal fascia through a Gore-Tex tab, effectively stabilizing the soft-tissue repositioning. This maneuver may be performed in younger patients who present with an isolated malar fat pad ptosis without excess facial skin. The procedure may also be incorporated into open rhytidectomies to address this recalcitrant area along with superficial musculoaponeurotic system tightening. A total of 392 patients since 1995 underwent suture elevation of the malar fat pads. An outcome study indicated that the usage of two permanent sutures with Gore-Tex anchor grafts since 1998 resulted in improvement in midface rejuvenation of over 82 percent. Early and late complication rates were small and temporary. Patient acceptance was excellent, indicative of the benefits of anatomic repositioning of the malar fat pad complex.
High-Z Nanoparticle/Polymer Nanocomposites for Gamma-Ray Scintillation Detectors
NASA Astrophysics Data System (ADS)
Liu, Chao
An affordable and reliable solution for spectroscopic gamma-ray detection has long been sought after due to the needs from research, defense, and medical applications. Scintillators resolve gamma energy by proportionally converting a single high-energy photon into a number of photomultiplier-tube-detectable low-energy photons, which is considered a more affordable solution for general purposes compared to the delicate semiconductor detectors. An ideal scintillator should simultaneously exhibit the following characteristics: 1) high atomic number (Z) for high gamma stopping power and photoelectron production; 2) high light yield since the energy resolution is inversely proportional to the square root of light yield; 3) short emission decay lifetime; and 4) low cost and scalable production. However, commercial scintillators made from either inorganic single crystals or plastics fail to satisfy all requirements due to their intrinsic material properties and fabrication limitations. The concept of adding high-Z constituents into plastic scintillators to harness high Z, low cost, and fast emission in the resulting nanocomposite scintillators is not new in and of itself. Attempts have been made by adding organometallics, quantum dots, and scintillation nanocrystals into the plastic matrix. High-Z organometallics have long been used to improve the Z of plastic scintillators; however, their strong spin-orbit coupling effect entails careful triplet energy matching using expensive triplet emitters to avoid severe quenching of the light yield. On the other hand, reported quantum dot- and nanocrystal-polymer nanocomposites suffer from moderate Z and high optical loss due to aggregation and self-absorption at loadings higher than 10 wt%, limiting their potential for practical application. This dissertation strives to improve the performance of nanoparticle-based nanocomposite scintillators. One focus is to synthesize transparent nanocomposites with higher loadings of high-Z inorganic nanoparticles. A facile single-precursor method is first developed to synthesize HfO2 nanoparticles, the highest-Z simple oxide with band gap larger than polyvinyltoluene, with uniform size distribution around 5 nm. A nanoparticle-surface-modification protocol is then developed for the fabrication of transparent nanocomposite monoliths with high nanoparticle loadings (up to 40 wt%). Using this method, transparent HfO2-loaded blue-emitting nanocomposite scintillators (2 mm thick, transmittance at 550 nm >75%) have been fabricated capable of producing a full energy photopeak for 662 keV gamma rays, with the best deconvoluted photopeak energy resolution < 8%, representing a significant improvement over previous nanoparticle-based nanocomposite scintillators. Although the HfO2 work represents a great improvement over previous reports, it is also found in this system that the light yield deteriorates at higher nanoparticle loadings. This is attributed to the trapping of fast electron energy deposited in the non-emitting nanoparticles. To overcome this deterioration issue, a revisit to the previously proposed quantum-dot-loaded nanocomposite scintillator is made with significant improvements. Transparent, ultra-high-loading (up to 60 wt%) CdxZn1-xS/ZnS core/shell quantum dot/polymer nanocomposite monoliths are first synthesized by in situ copolymerization of the partially mathacrylate-functionalized quantum dots in a monomer solution. With efficient Forster resonance energy transfer from the high-atomic-number quantum dots to lower-band-gap organic dyes, quantum-dot-borne excitons are extracted for photon production. The resulting nanocomposites thus exhibit unprecedented simultaneous enhancements in both light yield (visible photons produced per MeV of gamma photon energy) and gamma attenuation power. In a best demonstration, a 60 wt% quantum-dot nanocomposite scintillator exhibits a light yield of 9255 photons/MeV and a photopeak resolution of 9.8% under 662 keV Cs-137 gamma irradiation, demonstrating the potential of this model system for future high-performance low-cost spectroscopic gamma detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Sweta; Nelemans, Gijs, E-mail: s.shah@astro.ru.nl
The discovery of the most compact detached white dwarf (WD) binary SDSS J065133.33+284423.3 has been discussed in terms of probing the tidal effects in WDs. This system is also a verification source for the space-based gravitational wave (GW) detector, eLISA, or the evolved Laser Interferometer Space Antenna, which will observe short-period compact Galactic binaries with P {sub orb} ≲ 5 hr. We address the prospects of performing tidal studies using eLISA binaries by showing the fractional uncertainties in the orbital decay rate, f-dot , and the rate of that decay, f{sup ¨} expected from both the GW and electromagnetic (EM)more » data for some of the high-f binaries. We find that f-dot and f{sup ¨} can be measured using GW data only for the most massive WD binaries observed at high frequencies. From timing the eclipses for ∼10 yr, we find that f-dot can be known to ∼0.1% for J0651. We find that from GW data alone, measuring the effects of tides in binaries is (almost) impossible. We also investigate the improvement in the knowledge of the binary parameters by combining the GW amplitude and inclination with EM data with and without f-dot . In our previous work, we found that EM data on distance constrained the 2σ uncertainty in chirp mass to 15%-25% whereas adding f-dot reduces it to 0.11%. EM data on f-dot also constrain the 2σ uncertainty in distance to 35%-19%. EM data on primary mass constrain the secondary mass m {sub 2} to factors of two to ∼40% whereas adding f-dot reduces this to 25%. Finally, using single-line spectroscopic data constrains 2σ uncertainties in both the m {sub 2}, d to factors of two to ∼40%. Adding EM data on f-dot reduces these 2σ uncertainties to ≤25% and 6%-19%, respectively. Thus we find that EM measurements of f-dot and radial velocity are valuable in constraining eLISA binary parameters.« less
Lara, Alvaro R; Leal, Lidia; Flores, Noemí; Gosset, Guillermo; Bolívar, Francisco; Ramírez, Octavio T
2006-02-05
Escherichia coli, expressing recombinant green fluorescent protein (GFP), was subjected to dissolved oxygen tension (DOT) oscillations in a two-compartment system for simulating gradients that can occur in large-scale bioreactors. Cells were continuously circulated between the anaerobic (0% DOT) and aerobic (10% DOT) vessels of the scale-down system to mimic an overall circulation time of 50 s, and a mean residence time in the anaerobic and aerobic compartments of 33 and 17 s, respectively. Transcription levels of mixed acid fermentation genes (ldhA, poxB, frdD, ackA, adhE, pflD, and fdhF), measured by quantitative RT-PCR, increased between 1.5- to over 6-fold under oscillatory DOT compared to aerobic cultures (constant 10% DOT). In addition, the transcription level of fumB increased whereas it decreased for sucA and sucB, suggesting that the tricarboxylic acid cycle was functioning as two open branches. Gene transcription levels revealed that cytrochrome bd, which has higher affinity to oxygen but lower energy efficiency, was preferred over cytochrome bO3 in oscillatory DOT cultures. Post-transcriptional processing limited heterologous protein production in the scale-down system, as inferred from similar gfp transcription but 19% lower GFP concentration compared to aerobic cultures. Simulated DOT gradients also affected the transcription of genes of the glyoxylate shunt (aceA), of global regulators of aerobic and anaerobic metabolism (fnr, arcA, and arcB), and other relevant genes (luxS, sodA, fumA, and sdhB). Transcriptional changes explained the observed alterations in overall stoichiometric and kinetic parameters, and production of ethanol and organic acids. Differences in transcription levels between aerobic and anaerobic compartments were also observed, indicating that E. coli can respond very fast to intermittent DOT conditions. The transcriptional responses of E. coli to DOT gradients reported here are useful for establishing rational scale-up criteria and strain design strategies for improved culture performance at large scales. (c) 2005 Wiley Periodicals, Inc.
Study of State Programs for Rail-Highway Grade Crossing Improvements
DOT National Transportation Integrated Search
1978-02-01
In response to a DOT study of rail-highway grade crossing safety in the United States, the Congress passed the Highway Safety Act of 1973 which earmarked funds specifically for grade crossing improvements. Law requires the states to establish program...
DOT National Transportation Integrated Search
2006-10-01
With the ongoing demand for improved infrastructure, the Maine Department of Transportation : (MaineDOT) continues to identify and evaluate new and innovative construction methods and materials. : The Departments Collector Highway Improvement Prog...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tummeltshammer, Clemens; Taylor, Alaric; Kenyon, Anthony J.
2014-11-07
We investigate homeotropically aligned fluorophores and Förster resonance energy transfer (FRET) for luminescent solar concentrators using Monte-Carlo ray tracing. The homeotropic alignment strongly improves the trapping efficiency, while FRET circumvents the low absorption at homeotropic alignment by separating the absorption and emission processes. We predict that this design doped with two organic dye molecules can yield a 82.9% optical efficiency improvement compared to a single, arbitrarily oriented dye molecule. We also show that quantum dots are prime candidates for absorption/donor fluorophores due to their wide absorption band. The potentially strong re-absorption and low quantum yield of quantum dots is notmore » a hindrance for this design.« less
Hybrid polymer/ZnO solar cells sensitized by PbS quantum dots
2012-01-01
Poly[2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylene)]/ZnO nanorod hybrid solar cells consisting of PbS quantum dots [QDs] prepared by a chemical bath deposition method were fabricated. An optimum coating of the QDs on the ZnO nanorods could strongly improve the performance of the solar cells. A maximum power conversion efficiency of 0.42% was achieved for the PbS QDs' sensitive solar cell coated by 4 cycles, which was increased almost five times compared with the solar cell without using PbS QDs. The improved efficiency is attributed to the cascade structure formed by the PbS QD coating, which results in enhanced open-circuit voltage and exciton dissociation efficiency. PMID:22313746
Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe3+
NASA Astrophysics Data System (ADS)
Sun, Chun; Zhang, Yu; Wang, Peng; Yang, Yue; Wang, Yu; Xu, Jian; Wang, Yiding; Yu, William W.
2016-02-01
Garlic was used as a green source to synthesize carbon dots (CDs) with a systematic study of the optical and structure properties. Ethylenediamine was added into the synthesis to improve the photoluminescence quantum yield (PL QY) of the CDs. Detailed structural and composition studies demonstrated that the content of N and the formation of C-N and C=N were critical to improve the PL QY. The as-synthesized CDs exhibited excellent stability in a wide pH range and high NaCl concentrations, rendering them applicable in complicated and harsh conditions. Quenching the fluorescence of the CDs in the presence of Fe3+ ion made these CDs a luminescent probe for selective detection of Fe3+ ion.
Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe(3.).
Sun, Chun; Zhang, Yu; Wang, Peng; Yang, Yue; Wang, Yu; Xu, Jian; Wang, Yiding; Yu, William W
2016-12-01
Garlic was used as a green source to synthesize carbon dots (CDs) with a systematic study of the optical and structure properties. Ethylenediamine was added into the synthesis to improve the photoluminescence quantum yield (PL QY) of the CDs. Detailed structural and composition studies demonstrated that the content of N and the formation of C-N and C=N were critical to improve the PL QY. The as-synthesized CDs exhibited excellent stability in a wide pH range and high NaCl concentrations, rendering them applicable in complicated and harsh conditions. Quenching the fluorescence of the CDs in the presence of Fe(3+) ion made these CDs a luminescent probe for selective detection of Fe(3+) ion.
Wang, Yong; Liu, Jinquan; Christiansen, Silke; Kim, Dong Ha; Gösele, Ulrich; Steinhart, Martin
2008-11-01
Nanopatterned thin carbon films were prepared by direct and expeditious carbonization of the block copolymer polystyrene- block-poly(2-vinylpyridine) (PS- b-P2VP) without the necessity of slow heating to the process temperature and of addition of further carbon precursors. Carbonaceous films having an ordered "dots-on-film" surface topology were obtained from reverse micelle monolayers. The regular nanoporous morphology of PS- b-P2VP films obtained by subjecting reverse micelle monolayers to swelling-induced surface reconstruction could likewise be transferred to carbon films thus characterized by ordered nanopit arrays. Stabilization of PS- b-P2VP by UV irradiation and the concurrent carbonization of both blocks were key to the conservation of the film topography. The approach reported here may enable the realization of a broad range of nanoscaled architectures for carbonaceous materials using a block copolymer ideally suited as a template because of the pronounced repulsion between its blocks and its capability to form highly ordered microdomain structures.
Ultrafast magnetization switching by spin-orbit torques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garello, Kevin, E-mail: kevin.garello@mat.ethz.ch; Avci, Can Onur; Baumgartner, Manuel
2014-11-24
Spin-orbit torques induced by spin Hall and interfacial effects in heavy metal/ferromagnetic bilayers allow for a switching geometry based on in-plane current injection. Using this geometry, we demonstrate deterministic magnetization reversal by current pulses ranging from 180 ps to ms in Pt/Co/AlO{sub x} dots with lateral dimensions of 90 nm. We characterize the switching probability and critical current I{sub c} as a function of pulse length, amplitude, and external field. Our data evidence two distinct regimes: a short-time intrinsic regime, where I{sub c} scales linearly with the inverse of the pulse length, and a long-time thermally assisted regime, where I{sub c} variesmore » weakly. Both regimes are consistent with magnetization reversal proceeding by nucleation and fast propagation of domains. We find that I{sub c} is a factor 3–4 smaller compared to a single domain model and that the incubation time is negligibly small, which is a hallmark feature of spin-orbit torques.« less
Reverse depletion effects and the determination of ligand density on some spherical bioparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chunxiang; Liu, Yanhui, E-mail: ionazati@itp.ac.cn; Fan, Yangtao
In cell environments crowded with macromolecules, the depletion effects act and assist in the assembly of a wide range of cellular structures, from the cytoskeleton to the chromatin loop, which are well accepted. But a recent quantum dot experiment indicated that the dimensions of the receptor–ligand complex have strong effects on the size-dependent exclusion of proteins in cell environments. In this article, a continuum elastic model is constructed to resolve the competition between the dimension of the receptor–ligand complex and depletion effects in the endocytosis of a spherical virus-like bioparticle. Our results show that the depletion effects do not alwaysmore » assist endocytosis of a spherical virus-like bioparticle; while the dimension of the ligand–receptor complex is larger than the size of a small bioparticle in cell environments, the depletion effects do not work and reverse effects appear. The ligand density covered on the virus can be identified quantitatively.« less
DotMapper: an open source tool for creating interactive disease point maps.
Smith, Catherine M; Hayward, Andrew C
2016-04-12
Molecular strain typing of tuberculosis isolates has led to increased understanding of the epidemiological characteristics of the disease and improvements in its control, diagnosis and treatment. However, molecular cluster investigations, which aim to detect previously unidentified cases, remain challenging. Interactive dot mapping is a simple approach which could aid investigations by highlighting cases likely to share epidemiological links. Current tools generally require technical expertise or lack interactivity. We designed a flexible application for producing disease dot maps using Shiny, a web application framework for the statistical software, R. The application displays locations of cases on an interactive map colour coded according to levels of categorical variables such as demographics and risk factors. Cases can be filtered by selecting combinations of these characteristics and by notification date. It can be used to rapidly identify geographic patterns amongst cases in molecular clusters of tuberculosis in space and time; generate hypotheses about disease transmission; identify outliers, and guide targeted control measures. DotMapper is a user-friendly application which enables rapid production of maps displaying locations of cases and their epidemiological characteristics without the need for specialist training in geographic information systems. Enhanced understanding of tuberculosis transmission using this application could facilitate improved detection of cases with epidemiological links and therefore lessen the public health impacts of the disease. It is a flexible system and also has broad international potential application to other investigations using geo-coded health information.
Srivastava, Nishant R; Troyk, Philip R; Dagnelie, Gislin
2014-01-01
In order to assess visual performance using a future cortical prosthesis device, the ability of normally sighted and low vision subjects to adapt to a dotted ‘phosphene’ image was studied. Similar studies have been conduced in the past and adaptation to phosphene maps has been shown but the phosphene maps used have been square or hexagonal in pattern. The phosphene map implemented for this testing is what is expected from a cortical implantation of the arrays of intracortical electrodes, generating multiple phosphenes. The dotted image created depends upon the surgical location of electrodes decided for implantation and the expected cortical response. The subjects under tests were required to perform tasks requiring visual inspection, eye–hand coordination and way finding. The subjects did not have any tactile feedback and the visual information provided was live dotted images captured by a camera on a head-mounted low vision enhancing system and processed through a filter generating images similar to the images we expect the blind persons to perceive. The images were locked to the subject’s gaze by means of video-based pupil tracking. In the detection and visual inspection task, the subject scanned a modified checkerboard and counted the number of square white fields on a square checkerboard, in the eye–hand coordination task, the subject placed black checkers on the white fields of the checkerboard, and in the way-finding task, the subjects maneuvered themselves through a virtual maze using a game controller. The accuracy and the time to complete the task were used as the measured outcome. As per the surgical studies by this research group, it might be possible to implant up to 650 electrodes; hence, 650 dots were used to create images and performance studied under 0% dropout (650 dots), 25% dropout (488 dots) and 50% dropout (325 dots) conditions. It was observed that all the subjects under test were able to learn the given tasks and showed improvement in performance with practice even with a dropout condition of 50% (325 dots). Hence, if a cortical prosthesis is implanted in human subjects, they might be able to perform similar tasks and with practice should be able to adapt to dotted images even with a low resolution of 325 dots of phosphene. PMID:19458397
... your inbox ! All-natural tips to improve your sex life Exercise, diet changes may help reverse ED ... problem , may reverse your ED and improve your sex life. They are easy to adopt and enrich ...
Ti Porous Film-Supported NiCo₂S₄ Nanotubes Counter Electrode for Quantum-Dot-Sensitized Solar Cells.
Deng, Jianping; Wang, Minqiang; Song, Xiaohui; Yang, Zhi; Yuan, Zhaolin
2018-04-17
In this paper, a novel Ti porous film-supported NiCo₂S₄ nanotube was fabricated by the acid etching and two-step hydrothermal method and then used as a counter electrode in a CdS/CdSe quantum-dot-sensitized solar cell. Measurements of the cyclic voltammetry, Tafel polarization curves, and electrochemical impedance spectroscopy of the symmetric cells revealed that compared with the conventional FTO (fluorine doped tin oxide)/Pt counter electrode, Ti porous film-supported NiCo₂S₄ nanotubes counter electrode exhibited greater electrocatalytic activity toward polysulfide electrolyte and lower charge-transfer resistance at the interface between electrolyte and counter electrode, which remarkably improved the fill factor, short-circuit current density, and power conversion efficiency of the quantum-dot-sensitized solar cell. Under illumination of one sun (100 mW/cm²), the quantum-dot-sensitized solar cell based on Ti porous film-supported NiCo₂S₄ nanotubes counter electrode achieved a power conversion efficiency of 3.14%, which is superior to the cell based on FTO/Pt counter electrode (1.3%).
Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y
2012-01-01
A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.
Quantum-dots-encoded-microbeads based molecularly imprinted polymer.
Liu, Yixi; Liu, Le; He, Yonghong; He, Qinghua; Ma, Hui
2016-03-15
Quantum dots encoded microbeads have various advantages such as large surface area, superb optical properties and the ability of multiplexing. Molecularly imprinted polymer that can mimic the natural recognition entities has high affinity and selectivity for the specific analyte. Here, the concept of utilizing the quantum dots encoded microbeads as the supporting material and the polydopamine as the functional monomer to form the core-shell molecular imprinted polymer was proposed for the first time. The resulted imprinted polymer can provide various merits: polymerization can complete in aqueous environment; fabrication procedure is facile and universal; the obvious economic advantage; the thickness of the imprinting layer is highly controllable; polydopamine coating can improve the biocompatibility of the quantum dot encoded microbeads. The rabbit IgG binding and flow cytometer experiment result showed the distinct advantages of this strategy: cost-saving, facile and fast preparation procedure. Most importantly, the ability for the multichannel detection, which makes the imprinted polydopamine modified encoded-beads very attractive in protein pre-concentration, recognition, separation and biosensing. Copyright © 2015 Elsevier B.V. All rights reserved.
Micro Dot Patterning on the Light Guide Panel Using Powder Blasting.
Jang, Ho Su; Cho, Myeong Woo; Park, Dong Sam
2008-02-08
This study is to develop a micromachining technology for a light guidepanel(LGP) mold, whereby micro dot patterns are formed on a LGP surface by a singleinjection process instead of existing screen printing processes. The micro powder blastingtechnique is applied to form micro dot patterns on the LGP mold surface. The optimalconditions for masking, laminating, exposure, and developing processes to form the microdot patterns are first experimentally investigated. A LGP mold with masked micro patternsis then machined using the micro powder blasting method and the machinability of themicro dot patterns is verified. A prototype LGP is test- injected using the developed LGPmold and a shape analysis of the patterns and performance testing of the injected LGP arecarried out. As an additional approach, matte finishing, a special surface treatment method,is applied to the mold surface to improve the light diffusion characteristics, uniformity andbrightness of the LGP. The results of this study show that the applied powder blastingmethod can be successfully used to manufacture LGPs with micro patterns by just singleinjection using the developed mold and thereby replace existing screen printing methods.
Pavan, Andrea; Boyce, Matthew; Ghin, Filippo
2016-10-01
Playing action video games enhances visual motion perception. However, there is psychophysical evidence that action video games do not improve motion sensitivity for translational global moving patterns presented in fovea. This study investigates global motion perception in action video game players and compares their performance to that of non-action video game players and non-video game players. Stimuli were random dot kinematograms presented in the parafovea. Observers discriminated the motion direction of a target random dot kinematogram presented in one of the four visual quadrants. Action video game players showed lower motion coherence thresholds than the other groups. However, when the task was performed at threshold, we did not find differences between groups in terms of distributions of reaction times. These results suggest that action video games improve visual motion sensitivity in the near periphery of the visual field, rather than speed response. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng
2016-12-01
A ZnO quantum dot photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W-1 and detectivity of more than 1.02 × 1013 Jones (Jones = cm Hz1/2 W-1) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W-1 to 1915 A W-1 and the detectivity is improved from 5.8 × 1012 to 1.0 × 1013 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.
Lan, Xinzheng; Voznyy, Oleksandr; García de Arquer, F Pelayo; Liu, Mengxia; Xu, Jixian; Proppe, Andrew H; Walters, Grant; Fan, Fengjia; Tan, Hairen; Liu, Min; Yang, Zhenyu; Hoogland, Sjoerd; Sargent, Edward H
2016-07-13
Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Klippenstein, Stephen J.; Zhou, Chong-Wen
The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of poly-unsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution towards soot formation. Based on our previous work on propene and the butene isomers (1-, 2- and isobutene), it was found that the reaction kinetics of H-atom addition to the C=C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations and flame speed measurements. In this study, the rate constants and thermodynamic properties formore » $$\\dot{H}$$-atom addition to 1,3-butadiene and related reactions on the $$\\dot{C}$$ 4H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero point energies, single point energies, rate constants, barrier heights and thermochemistry are systematically compared among the two quantum chemical methods. 1-methylallyl ($$\\dot{C}$$ 4H 71-3) and 3-buten-1- yl ($$\\dot{C}$$ 4H 71-4) radicals and C 2H 4 + $$\\dot{C}$$2H3 are found to be the most important channels and reactivity promoting products, respectively. We calculated that terminal addition is dominant (> 80%) compared to internal $$\\dot{H}$$-atom addition at all temperatures in the range 298 – 2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4H 6 + $$\\dot{H}$$ → products and C 2H 4 + $$\\dot{C}$$ 2H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H-atom abstraction by $$\\dot{H}$$ atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (> 70%) at temperatures in the range 298 – 2000 K. Lastly, by incorporating our calculated rate constants for both H-atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.« less
76 FR 3695 - Environmental Impact Statement: Interstate 64 Corridor, Virginia
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
...: Interstate 64 Corridor, Virginia AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of Intent... Transportation for potential transportation improvements along the Interstate 64 corridor in Virginia. FOR... improvements along the Interstate 64 corridor in Virginia. The approximate limits of the study are Interstate...
DOT National Transportation Integrated Search
2016-05-03
This report examines the state of the practice in the development and use of statewide transportation improvement programs (STIPs) by state departments of transportation (State DOTs). It includes the results of a scan of all 52 publicly-available STI...
Bishop, Z K; Foster, A P; Royall, B; Bentham, C; Clarke, E; Skolnick, M S; Wilson, L R
2018-05-01
We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electromechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.
Guo, Qiubo; Ma, Yifan; Chen, Tingting; Xia, Qiuying; Yang, Mei; Xia, Hui; Yu, Yan
2017-12-26
Metal sulfides are promising anode materials for sodium-ion batteries due to their large specific capacities. The practical applications of metal sulfides in sodium-ion batteries, however, are still limited due to their large volume expansion, poor cycling stability, and sluggish electrode kinetics. In this work, a two-dimensional heterostructure of CoS x (CoS and Co 9 S 8 ) quantum dots embedded N/S-doped carbon nanosheets (CoS x @NSC) is prepared by a sol-gel method. The CoS x quantum dots are in situ formed within ultrafine carbon nanosheets without further sulfidation, thus resulting in ultrafine CoS x particle size and embedded heterostructure. Meanwhile, enriched N and S codoping in the carbon nanosheets greatly enhances the electrical conductivity for the conductive matrix and creates more active sites for sodium storage. As a result, the hybrid CoS x @NSC electrode shows excellent rate capability (600 mAh g -1 at 0.2 A g -1 and 500 mAh g -1 at 10 A g -1 ) and outstanding cycling stability (87% capacity retention after 200 cycles at 1 A g -1 ), making it promising as an anode material for high-performance sodium-ion batteries. A CoS x @NSC//Na 0.44 MnO 2 full cell is demonstrated, and it can deliver a specific capacity of 414 mAh g -1 (based on the mass of CoS x @NSC) at a current density of 0.2 A g -1 .
Modeling photovoltaic performance in periodic patterned colloidal quantum dot solar cells.
Fu, Yulan; Dinku, Abay G; Hara, Yukihiro; Miller, Christopher W; Vrouwenvelder, Kristina T; Lopez, Rene
2015-07-27
Colloidal quantum dot (CQD) solar cells have attracted tremendous attention mostly due to their wide absorption spectrum window and potentially low processability cost. The ultimate efficiency of CQD solar cells is highly limited by their high trap state density. Here we show that the overall device power conversion efficiency could be improved by employing photonic structures that enhance both charge generation and collection efficiencies. By employing a two-dimensional numerical model, we have calculated the characteristics of patterned CQD solar cells based of a simple grating structure. Our calculation predicts a power conversion efficiency as high as 11.2%, with a short circuit current density of 35.2 mA/cm2, a value nearly 1.5 times larger than the conventional flat design, showing the great potential value of patterned quantum dot solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mumin, Md Abdul, E-mail: pcharpentier@eng.uwo.ca; Akhter, Kazi Farida, E-mail: pcharpentier@eng.uwo.ca; Charpentier, Paul A., E-mail: pcharpentier@eng.uwo.ca
Semiconductor nanocrystals (NCs) (also known as quantum dots, QDs) have attracted immense attention for their size-tunable optical properties that makes them impressive candidates for solar cells, light emitting devices, lasers, as well as biomedical imaging. However monodispersity, high and consistent photoluminescence, photostability, and biocompatibility are still major challenges. This work focuses on optimizing the photophysical properties and biocompatibility of QDs by forming core-shell nanostructures and their encapsulation by a carrier. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm sizes were synthesized using a facile approach based on pyrolysis of the single molecule precursors. After capping the CdS QDsmore » with a thin layer of ZnS to reduce toxicity, the photoluminescence and photostability of the core-shell QDs was significantly enhanced. To make both the bare and core/shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interaction. This encapsulation enhanced the quantum yield and photostability compared to the bare QDs by providing much stronger resistance to oxidation and Oswald ripening of QDs. Encapsulation also improved biocompatibility of QDs that was evaluated with human umbilical vein endothelial cell lines (HUVEC)« less
Valverde, Estefania J; Borrego, Juan J; Castro, Dolores
2016-12-01
The lymphocystis disease virus (LCDV), a member of the Iridoviridae family, infects a wide range of fish species including gilthead seabream (Sparus aurata L.), the most important species cultured in the Mediterranean. LCDV is difficult to propagate in cell culture and does not produce clear and consistent cytopathic effects (CPE), especially in samples collected from subclinically infected fish. An integrated cell culture reverse transcription-polymerase chain reaction (ICC-RT-PCR) assay, followed by dot-blot hybridization of the RT-PCR products, was developed to improve the detection of infectious LCDV. The sensitivity of the ICC-RT-PCR assay, which can be performed in 7 d, was at least 100-fold higher than viral diagnosis obtained by CPE development. The developed assay thus allows the determination of infectious titres in samples with low viral loads, including those from asymptomatic carrier fish, in which no CPE was recorded after a 14-d incubation period. The ICC-RT-PCR assay enables rapid, specific and sensitive detection and quantification of infectious LCDV, and may be a valuable tool in the study of aspects of LCDV infection including transmission or epizootiology. Copyright © 2016 Elsevier B.V. All rights reserved.
Fan fault diagnosis based on symmetrized dot pattern analysis and image matching
NASA Astrophysics Data System (ADS)
Xu, Xiaogang; Liu, Haixiao; Zhu, Hao; Wang, Songling
2016-07-01
To detect the mechanical failure of fans, a new diagnostic method based on the symmetrized dot pattern (SDP) analysis and image matching is proposed. Vibration signals of 13 kinds of running states are acquired on a centrifugal fan test bed and reconstructed by the SDP technique. The SDP pattern templates of each running state are established. An image matching method is performed to diagnose the fault. In order to improve the diagnostic accuracy, the single template, multiple templates and clustering fault templates are used to perform the image matching.
Improving Conflict Alert Performance Using Moving Target Detector Data.
1982-06-01
2 L136 IIIII I lIlS 1 1 10 11120 125 11111I ~1.6 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU Of SIANDARDg 19bi A DOT/FAA/RD-82/47 DOT/FAA/CT-81...Differences for Stochastic Case 23 7 Illustration of Scenarios for Warning Time Tests 30 8 Illustration of Scenarios Used for Nuisance Alert 35 Area...Nuisance Alert Area Analysis of Scenario 3 with a Target 64 Velocity of 480 Knots and SPMB= SPPB =2.8 nmi 12 Nuisance Alert Area Analysis of Scenario 3
Colloidal-Quantum-Dot Ring Lasers with Active Color Control.
le Feber, Boris; Prins, Ferry; De Leo, Eva; Rabouw, Freddy T; Norris, David J
2018-02-14
To improve the photophysical performance of colloidal quantum dots for laser applications, sophisticated core/shell geometries have been developed. Typically, a wider bandgap semiconductor is added as a shell to enhance the gain from the quantum-dot core. This shell is designed to electronically isolate the core, funnel excitons to it, and reduce nonradiative Auger recombination. However, the shell could also potentially provide a secondary source of gain, leading to further versatility in these materials. Here we develop high-quality quantum-dot ring lasers that not only exhibit lasing from both the core and the shell but also the ability to switch between them. We fabricate ring resonators (with quality factors up to ∼2500) consisting only of CdSe/CdS/ZnS core/shell/shell quantum dots using a simple template-stripping process. We then examine lasing as a function of the optical excitation power and ring radius. In resonators with quality factors >1000, excitons in the CdSe cores lead to red lasing with thresholds at ∼25 μJ/cm 2 . With increasing power, green lasing from the CdS shell emerges (>100 μJ/cm 2 ) and then the red lasing begins to disappear (>250 μJ/cm 2 ). We present a rate-equation model that can explain this color switching as a competition between exciton localization into the core and stimulated emission from excitons in the shell. Moreover, by lowering the quality factor of the cavity we can engineer the device to exhibit only green lasing. The mechanism demonstrated here provides a potential route toward color-switchable quantum-dot lasers.
NASA Astrophysics Data System (ADS)
Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Castiglioni, Jorge; Mombrú, Alvaro W.
2017-06-01
In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. In addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of 3-8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications.
Space, color, and direction of movement: how do they affect attention?
Verghese, Ashika; Anderson, Andrew J; Vidyasagar, Trichur R
2013-07-19
Paying attention improves performance, but is this improvement regardless of what we attend to? We explored the differences in performance between attending to a location and attending to a feature when perceiving global motion. Attention was first cued to one of four locations that had coherently moving dots, while the remaining three had randomly moving distracter dots. Participants then viewed a colored display, wherein the color of the coherently moving dots was cued instead of location. In the third task, participants identified the location that had a particular cued direction of motion. Most observers reported reductions of motion threshold in all three tasks compared to when no cue was provided. However, the attentional bias generated by location cues was significantly larger than the bias resulting from feature cues of direction or color. This effect is consistent with the idea that attention is largely controlled by a fronto-parietal network where spatial relations are preferentially processed. On the other hand, color could not be used as a cue to focus attention and integrate motion. This finding suggests that color relies heavily on processing by ventral temporal cortical areas, which may have little control over the global motion areas in the dorsal part of the brain.
Enhancing Thermoelectric Performance Using Nonlinear Transport Effects
NASA Astrophysics Data System (ADS)
Jiang, Jian-Hua; Imry, Yoseph
2017-06-01
We study nonlinear transport effects on the maximum efficiency and power for both inelastic and elastic thermoelectric generators. The former device refers to phonon-assisted hopping in double quantum dots, while the latter device is represented by elastic tunneling through a single quantum dot. We find that nonlinear thermoelectric transport can lead to enhanced efficiency and power for both types of devices. A comprehensive survey of various quantum-dot energy, temperature, and parasitic heat conduction reveals that the nonlinear transport-induced improvements of the maximum efficiency and power are overall much more significant for inelastic devices than for elastic devices, even for temperature biases as small as Th=1.2 Tc (Th and Tc are the temperatures of the hot and cold reservoirs, respectively). The underlying mechanism is revealed as due to the fact that, unlike the Fermi distribution, the Bose distribution is not bounded when the temperature bias increases. A large flux density of absorbed phonons leads to a great enhancement of the electrical current, output power, and energy efficiency, dominating over the concurrent increase of the parasitic heat current. Our study reveals that nonlinear transport effects can be a useful tool for improving thermoelectric performance.
Path perception during rotation: influence of instructions, depth range, and dot density
NASA Technical Reports Server (NTRS)
Li, Li; Warren, William H Jr
2004-01-01
How do observers perceive their direction of self-motion when traveling on a straight path while their eyes are rotating? Our previous findings suggest that information from retinal flow and extra-retinal information about eye movements are each sufficient to solve this problem for both perception and active control of self-motion [Vision Res. 40 (2000) 3873; Psych. Sci. 13 (2002) 485]. In this paper, using displays depicting translation with simulated eye rotation, we investigated how task variables such as instructions, depth range, and dot density influenced the visual system's reliance on retinal vs. extra-retinal information for path perception during rotation. We found that path errors were small when observers expected to travel on a straight path or with neutral instructions, but errors increased markedly when observers expected to travel on a curved path. Increasing depth range or dot density did not improve path judgments. We conclude that the expectation of the shape of an upcoming path can influence the interpretation of the ambiguous retinal flow. A large depth range and dense motion parallax are not essential for accurate path perception during rotation, but reference objects and a large field of view appear to improve path judgments.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., carbon bisulfide (disulfide), ethyl chloride, ethylene oxide, nickel carbonyl, spirits of nitroglycerin...; DOT-3B400; DOT-4AA480; DOT-4B400; DOT-4BA400; DOT-4BW400; DOT-3E1800; DOT-39; DOT-3AL400. Carbon...; DOT-3T1800; DOT-3HT2000; DOT-39; DOT-3AL1800. Carbon dioxide, refrigerated liquid (see paragraph (e...
Code of Federal Regulations, 2011 CFR
2011-10-01
..., carbon bisulfide (disulfide), ethyl chloride, ethylene oxide, nickel carbonyl, spirits of nitroglycerin...; DOT-3B400; DOT-4AA480; DOT-4B400; DOT-4BA400; DOT-4BW400; DOT-3E1800; DOT-39; DOT-3AL400. Carbon...; DOT-3T1800; DOT-3HT2000; DOT-39; DOT-3AL1800. Carbon dioxide, refrigerated liquid (see paragraph (e...
Inhibitory guidance in visual search: the case of movement-form conjunctions.
Dent, Kevin; Allen, Harriet A; Braithwaite, Jason J; Humphreys, Glyn W
2012-02-01
We used a probe-dot procedure to examine the roles of excitatory attentional guidance and distractor suppression in search for movement-form conjunctions. Participants in Experiment 1 completed a conjunction (moving X amongst moving Os and static Xs) and two single-feature (moving X amongst moving Os, and static X amongst static Os) conditions. "Active" participants searched for the target, whereas "passive" participants viewed the displays without responding. Subsequently, both groups located (left or right) a probe dot appearing in either an occupied or an unoccupied location. In the conjunction condition, the active group located probes presented on static distractors more slowly than probes presented on moving distractors, reversing the direction of the difference found within the passive group. This disadvantage for probes on static items was much stronger in conjunction than in single-feature search. The same pattern of results was replicated in Experiment 2, which used a go/no-go procedure. Experiment 3 extended the go/no-go procedure to the case of search for a static target and revealed increased probe localisation times as a consequence of active search, primarily for probes on moving distractor items. The results demonstrated attentional guidance by inhibition of distractors in conjunction search.
High efficiency transport of quantum dots into plant roots with the aid of silwet L-77.
Hu, Yong; Li, Jun; Ma, Lu; Peng, Qionglin; Feng, Wei; Zhang, Lu; He, Shibin; Yang, Fei; Huang, Jing; Li, Lijia
2010-08-01
Quantum dots (QDs) are a novel type of small, photostable and bright fluorophores that have been successfully applied to mammalian and human live cell imaging. In this study, highly dispersive water-soluble mercaptoacetic acid (MAA)-coated CdSe/ZnS QDs were synthesized, which were suitable for investigation as fluorescent probe labels. The treatment of maize seedling roots with QDs showed that the surfactant silwet L-77 aided the efficient transport of QDs into maize roots. Under a concentration ranging from 0.128 to 1.28 microM, QDs caused very low cytotoxicity on maize seed germination and root growth. The addition of mercuric chloride to the Hoagland solution resulted in a decrease of QD content in root tissues, and this decrease was reversed upon the addition of beta-mercaptoethanol, which suggests that mercury-sensitive processes play a significant role in regulating QD flow in the maize root system. We speculate that the apoplastic pathway can contribute substantially to the total quantity of QDs reaching the stele. Therefore, based on this transport approach, MAA-coated QDs can be utilized for live imaging in plant systems to verify known physiological processes. Copyright 2010 Elsevier Masson SAS. All rights reserved.
Powell, Mark W; Carnegie, Dale H; Burke, Thomas J
2006-01-01
to determine whether restoration of sensation, impaired due to diabetic peripheral neuropathy (DPN), would reduce the number of falls and the fear of falling and improve activities of daily living (ADL) in a Medicare-aged population. retrospective cohort study of patients with documented, monochromatic near-infrared phototherapy (MIRE)-mediated, symptomatic reversal of DPN. responses to a health status questionnaire following symptomatic reversal of DPN. 252 patients (mean age 76 years) provided health information following symptomatic reversal of diabetic neuropathy (mean duration 8.6 months). incidence of falls and fear of falling decreased within 1 month after reversal of peripheral neuropathy and remained low after 1 year. Likewise, improved ADL were evident soon after reversal of peripheral neuropathy and showed further improvement after 1 year. Overall, reversal of peripheral neuropathy in a clinician's office and subsequent use of MIRE at home was associated with a 78% reduction in falls, a 79% decrease in balance-related fear of falling and a 72% increase in ADL (P < 0.0002 for all results). reversal of peripheral neuropathy is associated with an immediate reduction in the absolute number of falls, a reduced fear of falling and improved ADL. These results suggest that symptomatic reversal of diabetic neuropathy will have a substantial favourable, long-term socioeconomic impact on patients with DPN and the Medicare system, and improve the quality of life for elderly patients with diabetes and peripheral neuropathy.
Waves, particles, and interactions in reduced dimensions
NASA Astrophysics Data System (ADS)
Zhang, Yiming
This thesis presents a set of experiments that study the interplay between the wave-particle duality of electrons and the interaction effects in systems of reduced dimensions. Both dc transport and measurements of current noise have been employed in the studies; in particular, techniques for efficiently measuring current noise have been developed specifically for these experiments. The first four experiments study current noise auto- and cross correlations in various mesoscopic devices, including quantum point contacts, single and double quantum dots, and graphene devices. In quantum point contacts, shot noise at zero magnetic field exhibits an asymmetry related to the 0.7 structure in conductance. The asymmetry in noise evolves smoothly into the symmetric signature of spin-resolved electron transmission at high field. Comparison to a phenomenological model with density-dependent level splitting yields good quantitative agreement. Additionally, a device-specific contribution to the finite-bias noise, particularly visible on conductance plateaus where shot noise vanishes, agrees with a model of bias-dependent electron heating. In a three-lead single quantum dot and a capacitively coupled double quantum dot, sign reversal of noise cross correlations have been observed in the Coulomb blockade regime, and found to be tunable by gate voltages and source-drain bias. In the limit of weak output tunneling, cross correlations in the three-lead dot are found to be proportional to the two-lead noise in excess of the Poissonian value. These results can be reproduced with master equation calculations that include multi-level transport in the single dot, and inter-dot charging energy in the double dot. Shot noise measurements in single-layer graphene devices reveal a Fano factor independent of carrier type and density, device geometry, and the presence of a p-n junction. This result contrasts with theory for ballistic graphene sheets and junctions, suggesting that the transport is disorder dominated. The next two experiments study magnetoresistance oscillations in electronic Fabry-Perot interferometers in the integer quantum Hall regime. Two types of resistance oscillations, as a function of perpendicular magnetic field and gate voltages, in two interferometers of different sizes can be distinguished by three experimental signatures. The oscillations observed in the small (2.0 mum2) device are understood to arise from Coulomb blockade, and those observed in the big (18 mum2) device from Aharonov-Bohm interference. Nonlinear transport in the big device reveals a checkerboard-like pattern of conductance oscillations as a function of dc bias and magnetic field. Edge-state velocities extracted from the checkerboard data are compared to model calculations and found to be consistent with a crossover from skipping orbits at low fields to E⃗ x B⃗ drift at high fields. Suppression of visibility as a function of bias and magnetic field is accounted for by including energy- and field-dependent dephasing of edge electrons.
Physiological responses to cold (10° C) in men after six months' practice of yoga exercises
NASA Astrophysics Data System (ADS)
Selvamurthy, W.; Ray, U. S.; Hegde, K. S.; Sharma, R. P.
1988-09-01
A study was conducted on 30 healthy soldiers (age: 40 46 years) to assess the effect of selected yogic exercises (asanas) on some physiological responses to cold exposure. They were randomly divided into two groups of 15 each. One group performed regular physical exercises of physical training (PT), while the other group practised yogic exercises. At the end of 6 months of training, both the groups were exposed together to cold stress at 10°C for 2 h, and the following parameters were periodically monitored during cold exposure: heart rate ( fH), blood pressure ( BP), cardiac output(dot Q_c ), oral temperature (Tor), skin temperature ( T sk), respiratory rate ( fR), minute ventilation(dot V_E ), oxygen consumption(dot V_{O_2 } ), and shivering response by integrated electromyogram (EMG). There were progressive increases in BP, fR,dot V_E ,dot V_{O_2 } , anddot Q_c and decreases in fH, T or and T sk during cold exposure in both the groups. However, the decrease in T or and the increases indot V_{O_2 } anddot V_E were relatively lower ( P<0.01) in the yoga group as compared to the PT group. The shivering response appeared much earlier and was more intense in the PT group. These findings suggest that practice of yoga exercises may improve cold tolerance.
Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.
Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K
2017-08-02
Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.
Inorganic-ligand exchanging time effect in PbS quantum dot solar cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Byung-Sung; Hong, John; Hou, Bo
2016-08-08
We investigate time-dependent inorganic ligand exchanging effect and photovoltaic performance of lead sulfide (PbS) nanocrystal films. With optimal processing time, volume shrinkage induced by residual oleic acid of the PbS colloidal quantum dot (CQD) was minimized and a crack-free film was obtained with improved flatness. Furthermore, sufficient surface passivation significantly increased the packing density by replacing from long oleic acid to a short iodide molecule. It thus facilities exciton dissociation via enhanced charge carrier transport in PbS CQD films, resulting in the improved power conversion efficiency from 3.39% to 6.62%. We also found that excess iodine ions on the PbSmore » surface rather hinder high photovoltaic performance of the CQD solar cell.« less
NASA Astrophysics Data System (ADS)
Fidlerová, Helena; Mĺkva, Miroslava
2016-06-01
Reverse logistics, the movement of materials back up the supply chain, is recognised by many organisations as an opportunity for adding value. The paper considers the theoretical framework and the conception of reverse logistics in literature and practice. The objective of the article is to propose tangible solutions which eliminate the imbalances in reverse logistics and improve the waste management in the company. The case study focuses on the improvement in the process of waste packaging in the context of sustainable development as a part of reverse logistics in the surveyed industrial company in Slovakia.
DOT National Transportation Integrated Search
2012-08-01
TxDOT project 0-6568 Use of Flashing Yellow Operations to Improve Safety at Signals with : Protected-Permissive Left Turn (PPLT) Operations has developed guidelines for : implementation of FYA PPLT displays including general guidelines on the F...
1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si
NASA Astrophysics Data System (ADS)
Shi, Bei; Zhu, Si; Li, Qiang; Tang, Chak Wah; Wan, Yating; Hu, Evelyn L.; Lau, Kei May
2017-03-01
Miniaturized laser sources can benefit a wide variety of applications ranging from on-chip optical communications and data processing, to biological sensing. There is a tremendous interest in integrating these lasers with rapidly advancing silicon photonics, aiming to provide the combined strength of the optoelectronic integrated circuits and existing large-volume, low-cost silicon-based manufacturing foundries. Using III-V quantum dots as the active medium has been proven to lower power consumption and improve device temperature stability. Here, we demonstrate room-temperature InAs/InAlGaAs quantum-dot subwavelength microdisk lasers epitaxially grown on (001) Si, with a lasing wavelength of 1563 nm, an ultralow-threshold of 2.73 μW, and lasing up to 60 °C under pulsed optical pumping. This result unambiguously offers a promising path towards large-scale integration of cost-effective and energy-efficient silicon-based long-wavelength lasers.
Giant photocurrent enhancement by transition metal doping in quantum dot sensitized solar cells
NASA Astrophysics Data System (ADS)
Rimal, Gaurab; Pimachev, Artem K.; Yost, Andrew J.; Poudyal, Uma; Maloney, Scott; Wang, Wenyong; Chien, TeYu; Dahnovsky, Yuri; Tang, Jinke
2016-09-01
A huge enhancement in the incident photon-to-current efficiency of PbS quantum dot (QD) sensitized solar cells by manganese doping is observed. In the presence of Mn dopants with relatively small concentration (4 at. %), the photoelectric current increases by an average of 300% (up to 700%). This effect cannot be explained by the light absorption mechanism because both the experimental and theoretical absorption spectra demonstrate several times decreases in the absorption coefficient. To explain such dramatic increase in the photocurrent we propose the electron tunneling mechanism from the LUMO of the QD excited state to the Zn2SnO4 (ZTO) semiconductor photoanode. This change is due to the presence of the Mn instead of Pb atom at the QD/ZTO interface. The ab initio calculations confirm this mechanism. This work proposes an alternative route for a significant improvement of the efficiency for quantum dot sensitized solar cells.
Guided self-assembly of lateral InAs/GaAs quantum-dot molecules for single molecule spectroscopy
Wang, L; Kiravittaya, S; Songmuang, R; Schmidt, OG; Krause, B; Metzger, TH
2006-01-01
We report on the growth and characterization of lateral InAs/GaAs (001) quantum-dot molecules (QDMs) suitable for single QDM optical spectroscopy. The QDMs, forming by depositing InAs on GaAs surfaces with self-assembled nanoholes, are aligned along the [] direction. The relative number of isolated single quantum dots (QDs) is substantially reduced by performing the growth on GaAs surfaces containing stepped mounds. Surface morphology and X-ray measurements suggest that the strain produced by InGaAs-filled nanoholes superimposed to the strain relaxation at the step edges are responsible for the improved QDM properties. QDMs are Ga-richer compared to single QDs, consistent with strain- enhanced intermixing. The high optical quality of single QDMs is probed by micro-photoluminescence spectroscopy in samples with QDM densities lower than 108 cm−2.
NASA Astrophysics Data System (ADS)
Suarez, Ernesto; Chan, Pik-Yiu; Lingalugari, Murali; Ayers, John E.; Heller, Evan; Jain, Faquir
2013-11-01
This paper describes the use of II-VI lattice-matched gate insulators in quantum dot gate three-state and flash nonvolatile memory structures. Using silicon-on-insulator wafers we have fabricated GeO x -cladded Ge quantum dot (QD) floating gate nonvolatile memory field-effect transistor devices using ZnS-Zn0.95Mg0.05S-ZnS tunneling layers. The II-VI heteroepitaxial stack is nearly lattice-matched and is grown using metalorganic chemical vapor deposition on a silicon channel. This stack reduces the interface state density, improving threshold voltage variation, particularly in sub-22-nm devices. Simulations using self-consistent solutions of the Poisson and Schrödinger equations show the transfer of charge to the QD layers in three-state as well as nonvolatile memory cells.
Quantitative fluorescence tomography using a trimodality system: in vivo validation
Lin, Yuting; Barber, William C.; Iwanczyk, Jan S.; Roeck, Werner W.; Nalcioglu, Orhan; Gulsen, Gultekin
2010-01-01
A fully integrated trimodality fluorescence, diffuse optical, and x-ray computed tomography (FT∕DOT∕XCT) system for small animal imaging is reported in this work. The main purpose of this system is to obtain quantitatively accurate fluorescence concentration images using a multimodality approach. XCT offers anatomical information, while DOT provides the necessary background optical property map to improve FT image accuracy. The quantitative accuracy of this trimodality system is demonstrated in vivo. In particular, we show that a 2-mm-diam fluorescence inclusion located 8 mm deep in a nude mouse can only be localized when functional a priori information from DOT is available. However, the error in the recovered fluorophore concentration is nearly 87%. On the other hand, the fluorophore concentration can be accurately recovered within 2% error when both DOT functional and XCT structural a priori information are utilized together to guide and constrain the FT reconstruction algorithm. PMID:20799770
Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.
Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin
2017-06-27
Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.
Generation of heralded entanglement between distant quantum dot hole spins
NASA Astrophysics Data System (ADS)
Delteil, Aymeric
Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. This work lays the groundwork for the realization of quantum repeaters and quantum networks on a chip.
Sökmen, Bülent; Witchey, Ronald L; Adams, Gene M; Beam, William C
2018-03-01
Sökmen, B, Witchey, RL, Adams, GM, and Beam, WC. Effects of sprint interval training with active recovery vs. endurance training on aerobic and anaerobic power, muscular strength, and sprint ability. J Strength Cond Res 32(3): 624-631, 2018-This study compared sprint interval training with active recovery (SITAR) to moderate-intensity endurance training (ET) in aerobic and anaerobic power, muscular strength, and sprint time results. Forty-two recreationally active adults were randomly assigned to a SITAR or ET group. Both groups trained 3× per week for 10 weeks at 75% of V[Combining Dot Above]O2max for 30 minutes weeks 1-4, with duration increasing to 35 minutes weeks 5-7 and 40 minutes weeks 8-10. While ET ran on a 400-m track without rest for the full training session, SITAR sprinted until the 200-m mark and recovered with fast walking or light jogging the second 200 m to the finish line in 3× original sprint time. Maximal oxygen consumption (V[Combining Dot Above]O2max), anaerobic treadmill run to exhaustion at 12.5 km·h at 20% incline, isokinetic leg extension and flexion strength at 60 and 300°·s, and 50 m sprint time were determined before and after training. Results showed a significant improvement (p ≤ 0.05) in absolute and relative V[Combining Dot Above]O2max, anaerobic treadmill run, and sprint time in both groups. Only SITAR showed significant improvements in isokinetic leg extension and flexion at 300°·s and decreases in body mass (p ≤ 0.05). SITAR also showed significantly greater improvement (p ≤ 0.05) over ET in anaerobic treadmill run and 50 m sprint time. These data suggest that SITAR is a time-efficient strategy to induce rapid adaptations in V[Combining Dot Above]O2max comparable to ET with added improvements in anaerobic power, isokinetic strength, and sprint time not observed with ET.
Force-Velocity-Power Assessment in Semiprofessional Rugby Union Players.
McMaster, Daniel T; Gill, Nicholas D; Cronin, John B; McGuigan, Michael R
2016-04-01
There is a constant and necessary evolution of training and assessment methods in the elite contact sports; as is required to continually improve the physical qualities of these respective athletes to match the growing sport and position-specific performance demands. Our aim was to examine the differences between ballistic upper body performance profiles and maximum upper body strength of elite rugby union forwards and backs. Twenty semiprofessional male rugby union players (age = 21.1 ± 3.0 years; mass = 94.9 ± 9.7 kg) were assessed for maximum bench press strength (1RM bench press = 121.3 ± 21.8 kg) and maximum throw power (Pmax), force (Fmax), and velocity (V[Combining Dot Above]max) from an incremental relative load testing protocol (15, 30, 45, 60, and 75% 1RM). Player rankings were also included to identify individual strength and weaknesses. The forwards were moderately stronger (effect size [ES] = 0.96; p = 0.01), produced significantly greater Fmax (ES = 1.17-1.41; p = 0.01) and were more powerful (ES = 0.57-0.64; p < 0.43) than the backs. V[Combining Dot Above]max differences were trivial to small (ES = -0.32 to -0.65; p > 0.15). There were inherent differences in strength and Fmax between the forwards and backs most likely because of the physical demands of these respective positions. Improvements in upper body strength may in turn improve ballistic force and power production, but not necessarily velocity capabilities. From the Fmax and V[Combining Dot Above]max observations, the forwards seem to be more force dominant and the backs more velocity dominant. Pmax, Fmax, and V[Combining Dot Above]max may be used to highlight proficient and deficient areas in ballistic upper body performance; the individual rankings could be further used to identify and possibly rectify individual deficiencies.
Li, Hui; Wen, Peng; Hoxie, Adam; Dun, Chaochao; Adhikari, Shiba; Li, Qi; Lu, Chang; Itanze, Dominique S; Jiang, Lin; Carroll, David; Lachgar, Abdou; Qiu, Yejun; Geyer, Scott M
2018-05-23
Colloidal semiconductor quantum dot (CQD)-based photocathodes for solar-driven hydrogen evolution have attracted significant attention because of their tunable size, nanostructured morphology, crystalline orientation, and band gap. Here, we report a thin film heterojunction photocathode composed of organic PEDOT:PSS as a hole transport layer, CdSe CQDs as a semiconductor light absorber, and conformal Pt layer deposited by atomic layer deposition (ALD) serving as both a passivation layer and cocatalyst for hydrogen evolution. In neutral aqueous solution, a PEDOT:PSS/CdSe/Pt heterogeneous photocathode with 200 cycles of ALD Pt produces a photocurrent density of -1.08 mA/cm 2 (AM-1.5G, 100 mW/cm 2 ) at a potential of 0 V versus reversible hydrogen electrode (RHE) ( j 0 ) in neutral aqueous solution, which is nearly 12 times that of the pristine CdSe photocathode. This composite photocathode shows an onset potential for water reduction at +0.46 V versus RHE and long-term stability with negligible degradation. In the acidic electrolyte (pH = 1), where the hydrogen evolution reaction is more favorable but stability is limited because of photocorrosion, a thicker Pt film (300 cycles) is shown to greatly improve the device stability and a j 0 of -2.14 mA/cm 2 is obtained with only 8.3% activity degradation after 6 h, compared with 80% degradation under the same conditions when the less conformal electrodeposition method is used to deposit the Pt layer. Electrochemical impedance spectroscopy and time-resolved photoluminescence results indicate that these enhancements stem from a lower bulk charge recombination rate, higher interfacial charge-transfer rate, and faster reaction kinetics. We believe that these interface engineering strategies can be extended to other colloidal semiconductors to construct more efficient and stable heterogeneous photoelectrodes for solar fuel production.
NASA Astrophysics Data System (ADS)
Nadhira, Vebi; Kurniadi, Deddy; Juliastuti, E.; Sutiswan, Adeline
2014-03-01
The importance of monitoring the quality of vegetables and fruits is prosperity by giving a competitive advantage for producer and providing a more healthy food for consumer. Diffuse Optical Tomography (DOT) is offering the possibility to detect the internal defects of the agricultural produce quality. Fluorescence diffuse optical tomography (FDOT) is the development of DOT, offering the possibilities to improve spatial resolution and to contrast image. The purpose of this research is to compare FDOT and DOT in forward analysis with continuous wave approach. The scattering and absorbing parameters of potatoes are used to represent the real condition. The object was illuminated by the NIR source from some positions on the boundary of object. A set of NIR detector are placed on the peripheral position of the object to measure the intensity of propagated or emitted light. In the simulation, we varied a condition of object then we analyzed the sensitivity of forward problem. The result of this study shows that FDOT has a better sensitivity than DOT and a better potential to monitor internal defects of agricultural produce because of the contrast value between optical and fluorescence properties of agricultural produce normal tissue and defects.
Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot.
Kawakami, E; Scarlino, P; Ward, D R; Braakman, F R; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K
2014-09-01
Nanofabricated quantum bits permit large-scale integration but usually suffer from short coherence times due to interactions with their solid-state environment. The outstanding challenge is to engineer the environment so that it minimally affects the qubit, but still allows qubit control and scalability. Here, we demonstrate a long-lived single-electron spin qubit in a Si/SiGe quantum dot with all-electrical two-axis control. The spin is driven by resonant microwave electric fields in a transverse magnetic field gradient from a local micromagnet, and the spin state is read out in the single-shot mode. Electron spin resonance occurs at two closely spaced frequencies, which we attribute to two valley states. Thanks to the weak hyperfine coupling in silicon, a Ramsey decay timescale of 1 μs is observed, almost two orders of magnitude longer than the intrinsic timescales in GaAs quantum dots, whereas gate operation times are comparable to those reported in GaAs. The spin echo decay time is ~40 μs, both with one and four echo pulses, possibly limited by intervalley scattering. These advances strongly improve the prospects for quantum information processing based on quantum dots.
Ligand-Asymmetric Janus Quantum Dots for Efficient Blue-Quantum Dot Light-Emitting Diodes.
Cho, Ikjun; Jung, Heeyoung; Jeong, Byeong Guk; Hahm, Donghyo; Chang, Jun Hyuk; Lee, Taesoo; Char, Kookheon; Lee, Doh C; Lim, Jaehoon; Lee, Changhee; Cho, Jinhan; Bae, Wan Ki
2018-06-19
We present ligand-asymmetric Janus quantum dots (QDs) to improve the device performance of quantum dot light-emitting diodes (QLEDs). Specifically, we devise blue QLEDs incorporating blue QDs with asymmetrically modified ligands, in which the bottom ligand of QDs in contact with ZnO electron-transport layer serves as a robust adhesive layer and an effective electron-blocking layer and the top ligand ensures uniform deposition of organic hole transport layers with enhanced hole injection properties. Suppressed electron overflow by the bottom ligand and stimulated hole injection enabled by the top ligand contribute synergistically to boost the balance of charge injection in blue QDs and therefore the device performance of blue QLEDs. As an ultimate achievement, the blue QLED adopting ligand-asymmetric QDs displays 2-fold enhancement in peak external quantum efficiency (EQE = 3.23%) compared to the case of QDs with native ligands (oleic acid) (peak EQE = 1.49%). The present study demonstrates an integrated strategy to control over the charge injection properties into QDs via ligand engineering that enables enhancement of the device performance of blue QLEDs and thus promises successful realization of white light-emitting devices using QDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadhira, Vebi, E-mail: vebi@tf.itb.ac.id; Kurniadi, Deddy, E-mail: vebi@tf.itb.ac.id; Juliastuti, E., E-mail: vebi@tf.itb.ac.id
The importance of monitoring the quality of vegetables and fruits is prosperity by giving a competitive advantage for producer and providing a more healthy food for consumer. Diffuse Optical Tomography (DOT) is offering the possibility to detect the internal defects of the agricultural produce quality. Fluorescence diffuse optical tomography (FDOT) is the development of DOT, offering the possibilities to improve spatial resolution and to contrast image. The purpose of this research is to compare FDOT and DOT in forward analysis with continuous wave approach. The scattering and absorbing parameters of potatoes are used to represent the real condition. The objectmore » was illuminated by the NIR source from some positions on the boundary of object. A set of NIR detector are placed on the peripheral position of the object to measure the intensity of propagated or emitted light. In the simulation, we varied a condition of object then we analyzed the sensitivity of forward problem. The result of this study shows that FDOT has a better sensitivity than DOT and a better potential to monitor internal defects of agricultural produce because of the contrast value between optical and fluorescence properties of agricultural produce normal tissue and defects.« less
Tanvejsilp, Pimwara; Loeb, Mark; Dushoff, Jonathan; Xie, Feng
2017-08-22
In Thailand, pharmaceutical care has been recently introduced to a tertiary hospital as an approach to improve adherence to tuberculosis (TB) treatment in addition to home visit and modified directly observed therapy (DOT). However, the economic impact of pharmaceutical care is not known. The aim of this study was to estimate healthcare resource uses and costs associated with pharmaceutical care compared with home visit and modified DOT in pulmonary TB patients in Thailand from a healthcare sector perspective inclusive of out-of-pocket expenditures. We conducted a retrospective study using data abstracted from the hospital billing database associated with pulmonary TB patients who began treatment between 2010 and 2013 in three hospitals in Thailand. We used generalized linear models to compare the costs by accounting for baseline characteristics. All costs were converted to international dollars (Intl$) RESULTS: The mean direct healthcare costs to the public payer were $519.96 (95%confidence interval [CI] 437.31-625.58) associated with pharmaceutical care, $1020.39 (95% CI 911.13-1154.11) for home visit, and $887.79 (95% CI 824.28-955.91) for modified DOT. The mean costs to patients were $175.45 (95% CI 130.26-230.48) for those receiving pharmaceutical care, $53.77 (95% CI 33.25-79.44) for home visit, and $49.33 (95% CI 34.03-69.30) for modified DOT. After adjustment for baseline characteristics, pharmaceutical care was associated with lower total direct costs compared with home visit (-$354.95; 95% CI -285.67 to -424.23) and modified DOT (-$264.61; 95% CI -198.76 to -330.46). After adjustment for baseline characteristics, pharmaceutical care was associated with lower direct costs compared with home visit and modified DOT.
Choowong, Jiraporn; Tillgren, Per; Söderbäck, Maja
2016-07-28
Thailand is 18th out of the 22 countries with the highest tuberculosis (TB) burden. It will be a challenge for Thailand to achieve the UN Millennium Development target for TB, as well as the new WHO targets for eliminating TB by 2035. More knowledge and a new approach are needed to tackle the complex challenges of managing the DOT program in Thailand. Contextual factors strongly influence the local implementation of evidence in practice. Using the PARIHS model, the aim has been to explore district leaders' perceptions of the management of the DOT program in Trang province, Thailand. A phenomenographic approach was used to explore the perceptions among district DOT program leaders in Trang province. We conducted semi-structured interviews with district leaders responsible for managing the DOT program in five districts. The analysis of the data transcriptions was done by grouping similarities and differences of perceptions, which were constructed in a hierarchical outcome space that shows a set of descriptive categories. The first descriptive category revealed a common perception of the leaders' duty and wish to comply with the NTP guidelines when managing and implementing the DOT program in their districts. More varied perceptions among the leaders concerned how to achieve successful treatment. Other perceptions concerned practical dilemmas, which included fear of infection, mutual distrust, and inadequate knowledge about TB. Further, the leaders perceived a need for improved management practices in implementing the TB guidelines. Using the PARIHS framework to gain a retrospective perspective on the district-level policy implementation of the DOT program and studying the leadership's perceptions about applying the guidelines to practice, has brought new knowledge about management practices. Additional support and resources from the regional level are needed to manage the challenges.
Yang, Huiyun; Wang, Haijun; Xiong, Chengyi; Chai, Yaqin; Yuan, Ruo
2018-05-22
In this work, poly[9,9-dioctylfluorenyl-2,7-diyl] (PFO) dots is discovered to display an appealing dual enhancement effect for the electrochemiluminescence (ECL) system of N-(aminobutyl)-N-(ethylisoluminol)/hydrogen peroxide (ABEI/H 2 O 2 ), which not only enhances the ECL intensity of ABEI but also catalyzes decomposition of H 2 O 2 to further amplify the ECL signal of ABEI. Owing to the electronegative property of PFO dots, electropositive ABEI-PEI as ECL reagent could be adsorbed on their surface and thus form a novel luminescence emitter (ABEI-PEI-PFO dots) with high ECL efficiency based on electrostatic attraction. Meanwhile, the water solubility and stability of this emitter are improved in virtue of the amine-rich property of ECL reagent (ABEI-PEI), which could increase the luminous efficiency of ECL reaction in aqueous solution. To increase the electron transfer efficiency, Pt nanoparticles (PtNPs) supported on reduced graphene oxide nanosheets (RGOs) via a onepot synthetic strategy are chosen as immobilizing platform for the ECL emitter (ABEI-PEI-PFO dots). Herein, the obtained dual-amplifed ABEI-PEI-PFO dots-RGOs/PtNPs complex is served as an ideal nanocarrier to capture detection antibody (Ab 2 ). According to sandwiched immunoreaction, a highly sensitive ECL immunosensor is constructed for the detection of kidney injury molecule-1 (KIM-1) with a linearity from 50 fg mL -1 to 1 ng mL -1 and a detection limit of 16.7 fg mL -1 . The developed ECL emitter combining dual amplified property for signal enhancement purpose would provide new thought and potential for sensitive bioanalysis and clinical application. Copyright © 2018 Elsevier B.V. All rights reserved.
Calibration of PMIS pavement performance prediction models.
DOT National Transportation Integrated Search
2012-02-01
Improve the accuracy of TxDOTs existing pavement performance prediction models through calibrating these models using actual field data obtained from the Pavement Management Information System (PMIS). : Ensure logical performance superiority patte...
Code of Federal Regulations, 2013 CFR
2013-10-01
...-3E1800. Chlorodifluroethane or 1-Chloro-1, 1-difluoroethane (R-142b) 100 DOT-3A150; DOT-3AA150; DOT-3B150...; DOT-3AL225. Dichlorodifluoromethane and difluoroethane mixture (constant boiling mixture) (R-500) (see...; DOT-4BW240; DOT-4E240; DOT-39. 1,1-Difluoroethane (R-152a) (see note 8) 79 DOT-3A150; DOT-3AA150; DOT...
Code of Federal Regulations, 2012 CFR
2012-10-01
...-3E1800. Chlorodifluroethane or 1-Chloro-1, 1-difluoroethane (R-142b) 100 DOT-3A150; DOT-3AA150; DOT-3B150...; DOT-3AL225. Dichlorodifluoromethane and difluoroethane mixture (constant boiling mixture) (R-500) (see...; DOT-4BW240; DOT-4E240; DOT-39. 1,1-Difluoroethane (R-152a) (see note 8) 79 DOT-3A150; DOT-3AA150; DOT...
NASA Astrophysics Data System (ADS)
Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Maximov, Mikhail V.; Omelchenko, Alexander V.
2015-05-01
Ways to improve beam divergence and energy consumption of quantum dot lasers emitting via the ground-state optical transitions by optimization of the key parameters of laser active region are discussed. It is shown that there exist an optimal cavity length, dispersion of inhomogeneous broadening and number of QD layers in active region allowing to obtain lasing spectrum of a given width at minimum injection current. The planar dielectric waveguide of the laser is optimized by analytical means for a better trade-off between high Γ-factor and low beam divergence.
Pulse-amplitude modulation of optical injection-locked quantum-dot lasers
NASA Astrophysics Data System (ADS)
Zhou, Yue-Guang; Wang, Cheng
2018-02-01
This work theoretically investigates the four-level pulse-amplitude modulation characteristics of quantum dot lasers subject to optical injection. The rate equation model takes into account carrier dynamics in the carrier reservoir, in the excited state, and in the ground state, as well as photon dynamics and phase dynamics of the electric field. It is found that the optical injection significantly improves the eye diagram quality through suppressing the relaxation oscillation, while the extinction ratio is reduced as well. In addition, both the adiabatic chirp and the transient chirp of the signal are substantially suppressed.
A 25.5 percent AMO gallium arsenide grating solar cell
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Godlewski, M. P.
1985-01-01
Recent calculations have shown that significant open circuit voltage gains are possible with a dot grating junction geometry. The feasibility of applying the dot geometry to the GaAs cell was investigated. This geometry is shown to result in voltages approach 1.120 V and efficiencies well over 25 percent (AMO) if good collection efficiency can be maintained. The latter is shown to be possible if one chooses the proper base resistivity and cell thickness. The above advances in efficiency are shown to be possible in the P-base cell with only minor improvements in existing technology.
A 25.5 percent AM0 gallium arsenide grating solar cell
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Godlewski, M. P.
1985-01-01
Recent calculations have shown that significant open circuit voltage gains are possible with a dot grating junction geometry. The feasibility of applying the dot geometry to the GaAs cell was investigated. This geometry is shown to result in voltage approach 1.120 V and efficiencies well over 25 percent (AM0) if good collection efficiency can be maintained. The latter is shown to be possible if one chooses the proper base resistivity and cell thickness. The above advances in efficiency are shown to be possible in the P-base cell with only minor improvements in existing technology.
NASA Astrophysics Data System (ADS)
Strein, Elisabeth
The work in this dissertation aims to improve the ability of hybrid polymer/quantum dot solar cells to harvest and utilize sunlight by contributing mechanistic insights into photocurrent generation. The mechanisms of charge transfer and energy transfer are explored spectroscopically in chapter three and both are found to contribute to photocurrent. Chapter four looks at excitation energy in excess of the bandgap and finds a rise in polaron yield which correlates with excess photon energy. Chapter two discusses details of the experimental techniques used to access the data discussed in the chapters that follow.
The Electronic Freight Management Initiative
DOT National Transportation Integrated Search
2006-04-01
This report discusses the Electronic Freight Management initiative, a U.S. Department of Transportation (DOT) sponsored research effort that partners with industry to improve the operating efficiencies, safety, and security of goods movement. The EFM...
2009 Iowa railroad system plan.
DOT National Transportation Integrated Search
2009-01-01
The 2009 Iowa Railroad System Plan is intended to guide the Iowa Department of Transportation (DOT) in its activities of promoting access to rail transportation, helping to improve the freight railroad transportation system, expanding passenger rail ...
Iowa DOT library services, collection & technology assessment.
DOT National Transportation Integrated Search
2014-07-01
Assesses the impact of library services on research projects, proposes methods to improve the impact of : library services on research projects, assesses current library technology systems and proposes upgrades, : assesses current library collection ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-01
... To Prepare an Environmental Impact Statement: San Francisco County, CA AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice to rescind a Notice of Intent to prepare an Environmental Impact... Environmental Impact Statement for improvements that were proposed for the Bayview Transportation Improvements...
DOT National Transportation Integrated Search
2005-07-01
The Iowa Department of Transportation (Iowa DOT), Nebraska Department of Roads : (NDOR), and the Federal Highway Administration (FHWA) are proposing improvements : to the interstate system in the Omaha/Council Bluffs metropolitan area, extending acro...
Graphene quantum dots-three-dimensional graphene composites for high-performance supercapacitors.
Chen, Qing; Hu, Yue; Hu, Chuangang; Cheng, Huhu; Zhang, Zhipan; Shao, Huibo; Qu, Liangti
2014-09-28
Graphene quantum dots (GQDs) have been successfully deposited onto the three-dimensional graphene (3DG) by a benign electrochemical method and the ordered 3DG structure remains intact after the uniform deposition of GQDs. In addition, the capacitive properties of the as-formed GQD-3DG composites are evaluated in symmetrical supercapacitors. It is found that the supercapacitor fabricated from the GQD-3DG composite is highly stable and exhibits a high specific capacitance of 268 F g(-1), representing a more than 90% improvement over that of the supercapacitor made from pure 3DG electrodes (136 F g(-1)). Owing to the convenience of the current method, it can be further used in other well-defined electrode materials, such as carbon nanotubes, carbon aerogels and conjugated polymers to improve the performance of the supercapacitors.
Li, Bo; Wang, Xudong; Guo, Yali; Iqbal, Anam; Dong, Yaping; Li, Wu; Liu, Weisheng; Qin, Wenwu; Chen, Shizhen; Zhou, Xin; Yang, Yunhuang
2016-04-07
A one-step hydrothermal method was developed to fabricate Fe3O4-carbon dots (Fe3O4-CDs) magnetic-fluorescent hybrid nanoparticles (NPs). Ferric ammonium citrate (FAC) was used as a cheap and nontoxic iron precursor and as the carbon source. Moreover, triethylenetetramine (TETA) was used to improve the adhesive strength of CDs on Fe3O4 and the fluorescence intensity of CDs. The prepared water-soluble hybrid NPs not only exhibit excellent superparamagnetic properties (Ms = 56.8 emu g(-1)), but also demonstrate excitation-independent photoluminescence for down-conversion and up-conversion at 445 nm. Moreover, the prepared water-soluble Fe3O4-CDs hybrid NPs have a dual modal imaging ability for both magnetic resonance imaging (MRI) and fluorescence imaging.
NASA Astrophysics Data System (ADS)
Chen, Chong; Ling, Lanyu; Li, Fumin
2017-01-01
In this paper, to improve the power conversion efficiencies (PCEs) of quantum dot-sensitized solar cells (QDSSCs) based on CdS-sensitized TiO2 nanotube (TNT) electrodes, two methods are employed on the basis of our previous work. First, by replacing the traditional single-sided working electrodes, double-sided transparent TNT/ITO (DTTO) electrodes are prepared to increase the loading amount of quantum dots (QDs) on the working electrodes. Second, to increase the light absorption of the CdS-sensitized DTTO electrodes and improve the efficiency of charge separation in CdS-sensitized QDSSCs, copper indium disulfide (CuInS2) is selected to cosensitize the DTTO electrodes with CdS, which has a complementary property of light absorption with CdS. The PCEs of QDSSCs based on these prepared QD-sensitized DTTO electrodes are measured. Our experimental results show that compared to those based on the CdS/DTTO electrodes without CuInS2, the PCEs of the QDSSCs based on CdS/CuInS2-sensitized DTTO electrode are significantly improved, which is mainly attributed to the increased light absorption and reduced charge recombination. Under simulated one-sun illumination, the best PCE of 1.42% is achieved for the QDSSCs based on CdS(10)/CuInS2/DTTO electrode, which is much higher than that (0.56%) of the QDSSCs based on CdS(10)/DTTO electrode.
Improving the Performance of PbS Quantum Dot Solar Cells by Optimizing ZnO Window Layer
NASA Astrophysics Data System (ADS)
Yang, Xiaokun; Hu, Long; Deng, Hui; Qiao, Keke; Hu, Chao; Liu, Zhiyong; Yuan, Shengjie; Khan, Jahangeer; Li, Dengbing; Tang, Jiang; Song, Haisheng; Cheng, Chun
2017-04-01
Comparing with hot researches in absorber layer, window layer has attracted less attention in PbS quantum dot solar cells (QD SCs). Actually, the window layer plays a key role in exciton separation, charge drifting, and so on. Herein, ZnO window layer was systematically investigated for its roles in QD SCs performance. The physical mechanism of improved performance was also explored. It was found that the optimized ZnO films with appropriate thickness and doping concentration can balance the optical and electrical properties, and its energy band align well with the absorber layer for efficient charge extraction. Further characterizations demonstrated that the window layer optimization can help to reduce the surface defects, improve the heterojunction quality, as well as extend the depletion width. Compared with the control devices, the optimized devices have obtained an efficiency of 6.7% with an enhanced V oc of 18%, J sc of 21%, FF of 10%, and power conversion efficiency of 58%. The present work suggests a useful strategy to improve the device performance by optimizing the window layer besides the absorber layer.
NASA Astrophysics Data System (ADS)
Bishop, Z. K.; Foster, A. P.; Royall, B.; Bentham, C.; Clarke, E.; Skolnick, M. S.; Wilson, L. R.
2018-05-01
We demonstrate electro-mechanical control of an on-chip GaAs optical beam splitter containing a quantum dot single-photon source. The beam splitter consists of two nanobeam waveguides, which form a directional coupler (DC). The splitting ratio of the DC is controlled by varying the out-of-plane separation of the two waveguides using electro-mechanical actuation. We reversibly tune the beam splitter between an initial state, with emission into both output arms, and a final state with photons emitted into a single output arm. The device represents a compact and scalable tuning approach for use in III-V semiconductor integrated quantum optical circuits.
PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Talapin, Dmitri V.; Murray, Christopher B.
2005-10-01
Initially poorly conducting PbSe nanocrystal solids (quantum dot arrays or superlattices) can be chemically ``activated'' to fabricate n- and p-channel field effect transistors with electron and hole mobilities of 0.9 and 0.2 square centimeters per volt-second, respectively; with current modulations of about 103 to 104; and with current density approaching 3 × 104 amperes per square centimeter. Chemical treatments engineer the interparticle spacing, electronic coupling, and doping while passivating electronic traps. These nanocrystal field-effect transistors allow reversible switching between n- and p-transport, providing options for complementary metal oxide semiconductor circuits and enabling a range of low-cost, large-area electronic, optoelectronic, thermoelectric, and sensing applications.
NASA Astrophysics Data System (ADS)
Lv, Xiaowei; Xiao, Xin; Cao, Minglei; Bu, Yi; Wang, Chuanqing; Wang, Mingkui; Shen, Yan
2018-05-01
Modification of semiconductor photoanodes with oxygen evolution catalyst (OEC) is an effective approach for improving photoelectrochemical (PEC) water splitting efficiency. In the configuration, how to increase the activity of OEC is crucial to further improve PEC performance. Herein, a ternary photoanode system was designed to enhance PEC efficiency of photoelectrodes through introducing carbon dots (CDs), NiFe-layered double hydroxide (NiFe-LDH) nanosheets on BiVO4 particles. Systematic research shows that NiFe-LDH serves as an OEC which accelerates oxygen evolution kinetics, while the introduction of CDs can further reduce charge transfer resistance and overpotential for oxygen evolution. Under the synergistic effect of NiFe-LDH and CDs, the photocurrent and incident photon to current conversion efficiency (IPCE) of the resulting CDs/NiFe-LDH/BiVO4 photoanode is improved significantly than those of the NiFe-LDH/BiVO4 electrode. Consequently, such a ternary heterostructure could be an alternative way to further enhance PEC water splitting performance.
Lu, Yanghua; Wu, Zhiqian; Xu, Wenli; Lin, Shisheng
2016-12-02
A ZnO quantum dot photo-doped graphene/h-BN/GaN-heterostructure ultraviolet photodetector with extremely high responsivity of more than 1915 A W -1 and detectivity of more than 1.02 × 10 13 Jones (Jones = cm Hz 1/2 W -1 ) has been demonstrated. The interfaced h-BN layer increases the barrier height at the graphene/GaN heterojunction, which decreases the dark current and improves the on/off current ratio of the device. The photo-doping effect increases the barrier height and carrier concentration at the graphene/h-BN/GaN heterojunction, thus the responsivity is improved from 1473 A W -1 to 1915 A W -1 and the detectivity is improved from 5.8 × 10 12 to 1.0 × 10 13 Jones. Moreover, all of the responsivity and detectivity values are the highest values among all the graphene-based ultraviolet photodetectors.
Conditional Dispersive Readout of a CMOS Single-Electron Memory Cell
NASA Astrophysics Data System (ADS)
Schaal, S.; Barraud, S.; Morton, J. J. L.; Gonzalez-Zalba, M. F.
2018-05-01
Quantum computers require interfaces with classical electronics for efficient qubit control, measurement, and fast data processing. Fabricating the qubit and the classical control layer using the same technology is appealing because it will facilitate the integration process, improving feedback speeds and offering potential solutions to wiring and layout challenges. Integrating classical and quantum devices monolithically, using complementary metal-oxide-semiconductor (CMOS) processes, enables the processor to profit from the most mature industrial technology for the fabrication of large-scale circuits. We demonstrate a CMOS single-electron memory cell composed of a single quantum dot and a transistor that locks charge on the quantum-dot gate. The single-electron memory cell is conditionally read out by gate-based dispersive sensing using a lumped-element L C resonator. The control field-effect transistor (FET) and quantum dot are fabricated on the same chip using fully depleted silicon-on-insulator technology. We obtain a charge sensitivity of δ q =95 ×10-6e Hz-1 /2 when the quantum-dot readout is enabled by the control FET, comparable to results without the control FET. Additionally, we observe a single-electron retention time on the order of a second when storing a single-electron charge on the quantum dot at millikelvin temperatures. These results demonstrate first steps towards time-based multiplexing of gate-based dispersive readout in CMOS quantum devices opening the path for the development of an all-silicon quantum-classical processor.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark; Perusich, Stephen; Whitten, Mary C.; Trejo, David; Zidek, Jason; Sampson, Jeffrey W.;
2009-01-01
Ceramics can be defmed as a material consisting of hard brittle properties produced from inorganic and nonmetallic minerals made by firing at high temperatures. These materials are compounds between metallic and nonmetallic elements and are either totally ionic, or predominately ionic but having some covalent character. This definition allows for a large range of materials, not all applicable to refractory applications. As this report is focused on potential ceramic materials for high temperature, aggressive exposure applications, the ceramics reviewed as part of this report will focus on refractory ceramics specifically designed and used for these applications. Ceramic materials consist of a wide variety of products. Callister (2000) 1 characterized ceramic materials into six classifications: glasses, clay products, refractories, cements, abrasives, and advanced ceramics. Figure 1 shows this classification system. This review will focus mainly on refractory ceramics and cements as in general, the other classifications are neither applicable nor economical for use in large structures such as the flame trench. Although much work has been done in advanced ceramics over the past decade or so, these materials are likely cost prohibitive and would have to be fabricated off-site, transported to the NASA facilities, and installed, which make these even less feasible. Although the authors reviewed the literature on advanced ceramic refractories 2 center dot 3 center dot 4 center dot 5 center dot 6 center dot 7 center dot 8 center dot 9 center dot 10 center dot 11 center dot 12 after the review it was concluded that these materials should not be ' the focus of this report. A review is in progress on materials and systems for prefabricated refractory ceramic panels, but this review is focusing more on typical refractory materials for prefabricated systems, which could make the system more economically feasible. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex. Refractory ceramics are used for a wide variety of applications. Figure 2 shows many ofthese applications, their life expectancy or requirement, and the exposure temperature for the refractory ceramic. Note that the exposure temperatures for refractory ceramics are very similar to the exposure conditions for specialty ceramics (rocket nozzles, space vehicle re-entry fields, etc.) and yet the life expectancy or requirement is relatively low. Currently NASA is repairing the refractory lining in the flame trench after every launch - although this is not a direct indication of low life expectancy, it does indicate that the current system may not be sufficiently durable to maximize economy. Better performing refractory ceramics are needed to improve the performance, economy, and safety during and after launches at the flame trenches at Kennedy Space Center (KSC). To achieve this goal a current study is underway to assess different refractory systems for possible use in the flame trenches at KSC. This report will target the potential applicability of refractory ceramics for use in the flame trenches. An overview of the different refractory ceramics will be provided (see Figure I). This will be followed with a brief description of the structure of refractory products, the properties and characteristics of different systems, the methodology for selecting refractories, and then a general design methodology. Based on these sections, future challenges and opportunities will be identified with the objective of improving the durability, performance, economy, and safety of the launch complex.
Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12.
Wang, Wei; Feng, Wenliang; Du, Jun; Xue, Weinan; Zhang, Linlin; Zhao, Leilei; Li, Yan; Zhong, Xinhua
2018-03-01
The improvement of sunlight utilization is a fundamental approach for the construction of high-efficiency quantum-dot-based solar cells (QDSCs). To boost light harvesting, cosensitized photoanodes are fabricated in this work by a sequential deposition of presynthesized Zn-Cu-In-Se (ZCISe) and CdSe quantum dots (QDs) on mesoporous TiO 2 films via the control of the interactions between QDs and TiO 2 films using 3-mercaptopropionic acid bifunctional linkers. By the synergistic effect of ZCISe-alloyed QDs with a wide light absorption range and CdSe QDs with a high extinction coefficient, the incident photon-to-electron conversion efficiency is significantly improved over single QD-based QDSCs. It is found that the performance of cosensitized photoanodes can be optimized by adjusting the size of CdSe QDs introduced. In combination with titanium mesh supported mesoporous carbon as a counterelectrode and a modified polysulfide solution as an electrolyte, a champion power conversion efficiency up to 12.75% (V oc = 0.752 V, J sc = 27.39 mA cm -2 , FF = 0.619) is achieved, which is, as far as it is known, the highest efficiency for liquid-junction QD-based solar cells reported. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots
NASA Astrophysics Data System (ADS)
Prado, Silvio J.; Marques, Gilmar E.; Alcalde, Augusto M.
2017-11-01
In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of {k \\cdot p} theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.
Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.
Prado, Silvio J; Marques, Gilmar E; Alcalde, Augusto M
2017-11-08
In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of [Formula: see text] theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.
NASA Astrophysics Data System (ADS)
Xu, Hui; Tian, Qinghua; Huang, Jun; Bao, Dongmei; Zhang, Zhengxi; Yang, Li
2017-11-01
Spinel Li4Ti5O12 (LTO) has attracted extensive attention as potential anode materials for power lithium-ion batteries due to its outstanding structural stability and remarkable safety. However, it's practical application yet be limited by such disadvantages of dissatisfied specific capacity, poor electron conductivity and low lithium-ion diffusion coefficient. Thus, design and preparation of LTO anodes with desirable performance is still a challenge. Herein, we have successfully and greatly improved the performance of LTO anodes, in terms of rate capability, life and specific capacity in particular via dot-to-face anatase TiO2in-situ decoration and hierarchical structure construction under a facile approach (directly using the tetrabutyl titanate as titanium source instead of specially prepared titanium oxide precursors). The as-prepared LTO-based anode (denoted as T-LTO) delivers an ultra-high reversible specific capacity of 196.5 mAh g-1 after 300 cycles at 20 mA g-1, and superior rate performance and even ultra-long life of more than 145.8 mAh g-1 at 28.5C between 1.0 and 3.0 V. The achieved outstanding electrochemical performance largely surpasses that of reportedly state-of-the-art LTO-based anode materials. This work may open up a broader vision into developing advanced LTO-based anode materials for lithium-ion batteries.
Negative ion treatment increases positive emotional processing in seasonal affective disorder.
Harmer, C J; Charles, M; McTavish, S; Favaron, E; Cowen, P J
2012-08-01
Antidepressant drug treatments increase the processing of positive compared to negative affective information early in treatment. Such effects have been hypothesized to play a key role in the development of later therapeutic responses to treatment. However, it is unknown whether these effects are a common mechanism of action for different treatment modalities. High-density negative ion (HDNI) treatment is an environmental manipulation that has efficacy in randomized clinical trials in seasonal affective disorder (SAD). The current study investigated whether a single session of HDNI treatment could reverse negative affective biases seen in seasonal depression using a battery of emotional processing tasks in a double-blind, placebo-controlled randomized study. Under placebo conditions, participants with seasonal mood disturbance showed reduced recognition of happy facial expressions, increased recognition memory for negative personality characteristics and increased vigilance to masked presentation of negative words in a dot-probe task compared to matched healthy controls. Negative ion treatment increased the recognition of positive compared to negative facial expression and improved vigilance to unmasked stimuli across participants with seasonal depression and healthy controls. Negative ion treatment also improved recognition memory for positive information in the SAD group alone. These effects were seen in the absence of changes in subjective state or mood. These results are consistent with the hypothesis that early change in emotional processing may be an important mechanism for treatment action in depression and suggest that these effects are also apparent with negative ion treatment in seasonal depression.
Lopez-Delgado, R; Zhou, Y; Zazueta-Raynaud, A; Zhao, H; Pelayo, J E; Vomiero, A; Álvarez-Ramos, M E; Rosei, F; Ayon, A
2017-10-26
Silicon solar cells have captured a large portion of the total market of photovoltaic devices mostly due to their relatively high efficiency. However, Silicon exhibits limitations in ultraviolet absorption because high-energy photons are absorbed at the surface of the solar cell, in the heavily doped region, and the photo-generated electron-hole pairs need to diffuse into the junction region, resulting in significant carrier recombination. One of the alternatives to improve the absorption range involves the use of down-shifting nano-structures able to interact with the aforementioned high energy photons. Here, as a proof of concept, we use downshifting CdSe/CdS quantum dots to improve the performance of a silicon solar cell. The incorporation of these nanostructures triggered improvements in the short circuit current density (J sc , from 32.5 to 37.0 mA/cm 2 ). This improvement led to a ∼13% increase in the power conversion efficiency (PCE), from 12.0 to 13.5%. Our results demonstrate that the application of down-shifting materials is a viable strategy to improve the efficiency of Silicon solar cells with mass-compatible techniques that could serve to promote their widespread utilization.
Improved QD-BRET conjugates for detection and imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing Yun; So, Min-kyung; Koh, Ai Leen
2008-08-01
Self-illuminating quantum dots, also known as QD-BRET conjugates, are a new class of quantum dot bioconjugates which do not need external light for excitation. Instead, light emission relies on the bioluminescence resonance energy transfer from the attached Renilla luciferase enzyme, which emits light upon the oxidation of its substrate. QD-BRET combines the advantages of the QDs (such as superior brightness and photostability, tunable emission, multiplexing) as well as the high sensitivity of bioluminescence imaging, thus holding the promise for improved deep tissue in vivo imaging. Although studies have demonstrated the superior sensitivity and deep tissue imaging potential, the stability ofmore » the QD-BRET conjugates in biological environment needs to be improved for long-term imaging studies such as in vivo cell tracking. In this study, we seek to improve the stability of QD-BRET probes through polymeric encapsulation with a polyacrylamide gel. Results show that encapsulation caused some activity loss, but significantly improved both the in vitro serum stability and in vivo stability when subcutaneously injected into the animal. Stable QD-BRET probes should further facilitate their applications for both in vitro testing as well as in vivo cell tracking studies.« less
Detection of CdSe quantum dot photoluminescence for security label on paper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isnaeni,, E-mail: isnaeni@lipi.go.id; Sugiarto, Iyon Titok; Bilqis, Ratu
CdSe quantum dot has great potential in various applications especially for emitting devices. One example potential application of CdSe quantum dot is security label for anti-counterfeiting. In this work, we present a practical approach of security label on paper using one and two colors of colloidal CdSe quantum dot, which is used as stamping ink on various types of paper. Under ambient condition, quantum dot is almost invisible. The quantum dot security label can be revealed by detecting emission of quantum dot using photoluminescence and cnc machine. The recorded quantum dot emission intensity is then analyzed using home-made program tomore » reveal quantum dot pattern stamp having the word ’RAHASIA’. We found that security label using quantum dot works well on several types of paper. The quantum dot patterns can survive several days and further treatment is required to protect the quantum dot. Oxidation of quantum dot that occurred during this experiment reduced the emission intensity of quantum dot patterns.« less
Hou, Hongshuai; Shao, Lidong; Zhang, Yan; Zou, Guoqiang; Chen, Jun; Ji, Xiaobo
2017-01-01
Large-area phosphorus-doped carbon nanosheets (P-CNSs) are first obtained from carbon dots (CDs) through self-assembly driving from thermal treatment with Na catalysis. This is the first time to realize the conversion from 0D CDs to 2D nanosheets doped with phosphorus. The sodium storage behavior of phosphorus-doped carbon material is also investigated for the first time. As anode material for sodium-ion batteries (SIBs), P-CNSs exhibit superb performances for electrochemical storage of sodium. When cycled at 0.1 A g -1 , the P-CNSs electrode delivers a high reversible capacity of 328 mAh g -1 , even at a high current density of 20 A g -1 , a considerable capacity of 108 mAh g -1 can still be maintained. Besides, this material also shows excellent cycling stability, at a current density of 5 A g -1 , the reversible capacity can still reach 149 mAh g -1 after 5000 cycles. This work will provide significant value for the development of both carbon materials and SIBs anode materials.
Mo, Runwei; Rooney, David; Sun, Kening; Yang, Hui Ying
2017-01-01
Flexible electrochemical energy storage devices have attracted extensive attention as promising power sources for the ever-growing field of flexible and wearable electronic products. However, the rational design of a novel electrode structure with a good flexibility, high capacity, fast charge–discharge rate and long cycling lifetimes remains a long-standing challenge for developing next-generation flexible energy-storage materials. Herein, we develop a facile and general approach to three-dimensional (3D) interconnected porous nitrogen-doped graphene foam with encapsulated Ge quantum dot/nitrogen-doped graphene yolk-shell nano architecture for high specific reversible capacity (1,220 mAh g−1), long cycling capability (over 96% reversible capacity retention from the second to 1,000 cycles) and ultra-high rate performance (over 800 mAh g−1 at 40 C). This work paves a way to develop the 3D interconnected graphene-based high-capacity electrode material systems, particularly those that suffer from huge volume expansion, for the future development of high-performance flexible energy storage systems. PMID:28051065
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo; Lucchesi, David
2003-07-01
In this paper we analyse quantitatively the concept of LAGEOS-type satellites in critical supplementary orbit configuration (CSOC) which has proved capable of yielding various observables for many tests of general relativity in the terrestrial gravitational field, with particular emphasis on the measurement of the Lense-Thirring effect. By using an entirely new pair of LAGEOS-type satellites in identical, supplementary orbits with, e.g., semimajor axes a = 12 000 km, eccentricity e = 0.05 and inclinations iS1 = 63.4° and iS2 = 116.6°, it would be possible to cancel out the impact of the mismodelling of the static part of the gravitational field of the Earth to a very high level of accuracy. The departures from the ideal supplementary orbital configuration due to the orbital injection errors would yield systematic gravitational errors of the order of a few per cent, according to the covariance matrix of the EGM96 gravity model up to degree l = 20. However, the forthcoming, new gravity models from the CHAMP and GRACE missions should greatly improve the situation. So, it should be possible to measure the gravitomagnetic shifts of the sum of their nodes Σ\\dotΩLT with an accuracy level perhaps less than 1%, of the difference of their perigees Δ\\dotωLT with an accuracy level of 5% and of ≡ Σ\\dotΩLT - Δ\\dotωLT with an accuracy level of 2.8%. Such results, which are due to the non-gravitational perturbations mismodelling, have been obtained for an observational time span of about 6 years and could be further improved by fitting and removing from the analysed time series the major time-varying perturbations which have known periodicities.
Effective depth of soil compaction : [brief].
DOT National Transportation Integrated Search
2015-05-01
The Wisconsin Department of Transportation (WisDOT) spends approximately 10 percent of : its improvement project budget on embankment construction each year. A critical aspect of : embankment construction is stability. It is needed to provide an acce...
Risk analysis based CWR track buckling safety evaluations
DOT National Transportation Integrated Search
2001-01-01
As part of the Federal Railroad Administrations (FRA) track systems research program, the US DOTS Volpe Center is conducting analytic and experimental investigations to evaluate track lateral strength and stability limits for improved safety an...
Improving striping operations through system optimization.
DOT National Transportation Integrated Search
2015-09-01
Striping operations generate a significant workload for Missouri Department of Transportation (MoDOT) maintenance : operations. The requirement for each striping crew to replenish its stock of paint and other consumable items from a bulk storage : fa...
2009 Iowa railroad system plan : cover.
DOT National Transportation Integrated Search
2009-01-01
The 2009 Iowa Railroad System Plan is intended to guide the Iowa Department of Transportation (DOT) in its activities of promoting access to rail transportation, helping to improve the freight railroad transportation system, expanding passenger rail ...
2009 Iowa railroad system plan : part I.
DOT National Transportation Integrated Search
2009-01-01
The 2009 Iowa Railroad System Plan is intended to guide the Iowa Department of Transportation (DOT) in its activities of promoting access to rail transportation, helping to improve the freight railroad transportation system, expanding passenger rail ...