Science.gov

Sample records for improves nutrient uptake

  1. Summer cover crops and soil amendments to improve growth and nutrient uptake of okra

    SciTech Connect

    Wang, Q.R.; Li, Y.C.; Klassen, W.

    2006-04-15

    A pot experiment with summer cover crops and soil amendments was conducted in two consecutive years to elucidate the effects of these cover crops and soil amendments on 'Clemson Spineless 80' okra (Abelmoschus esculentus) yields and biomass production, and the uptake and distribution of soil nutrients and trace elements. The cover crops were sunn hemp (Crotalaria juncea), cowpea (Vigna unguiculata), velvetbean (Mucuna deeringiana), and sorghum sudan-grass (Sorghum bicolor x S. bicolor var. sudanense) with fallow as the control. The organic soil amendments were biosolids (sediment from wastewater plants), N-Viro Soil (a mixture of biosolids and coal ash), coal ash (a combustion by-product from power plants), co-compost (a mixture of 3 biosolids: 7 yard waste), and yard waste compost (mainly from leaves and branches of trees and shrubs, and grass clippings) with a soil-incorporated cover crop as the control. As a subsequent vegetable crop, okra was grown after the cover crops, alone or together with the organic soil amendments, had been incorporated. All of the cover crops, except sorghum sudangrass in 2002-03, significantly improved okra fruit yields and the total biomass production. Both cover crops and soil amendments can substantially improve nutrient uptake and distribution. The results suggest that cover crops and appropriate amounts of soil amendments can be used to improve soil fertility and okra yield without adverse environmental effects or risk of contamination of the fruit. Further field studies will be required to confirm these findings.

  2. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    PubMed Central

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  3. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    PubMed

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  4. Application of microbial inoculants promote plant growth, increased nutrient uptake and improve root morphology of corn plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing fertilizers impacts from agriculture is a world-wide concern, both from an environmental and human health perspective. One way to reduce impacts of fertilizers is by enhancing plant uptake which improves nutrient use efficiency and also potentially reduce the amounts of fertilizer needed. ...

  5. The Role of Diatom Nanostructures in Biasing Diffusion to Improve Uptake in a Patchy Nutrient Environment

    PubMed Central

    Mitchell, James G.; Seuront, Laurent; Doubell, Mark J.; Losic, Dusan; Voelcker, Nicolas H.; Seymour, Justin; Lal, Ratnesh

    2013-01-01

    Background Diatoms are important single-celled autotrophs that dominate most lit aquatic environments and are distinguished by surficial frustules with intricate designs of unknown function. Principal Findings We show that some frustule designs constrain diffusion to positively alter nutrient uptake. In nutrient gradients of 4 to 160 times over <5 cm, the screened-chambered morphology of Coscincodiscus sp. biases the nutrient diffusion towards the cell by at least 3.8 times the diffusion to the seawater. In contrast, the open-chambers of Thalassiosira eccentrica produce at least a 1.3 times diffusion advantage to the membrane over Coscincodiscus sp. when nutrients are homogeneous. Significance Diffusion constraint explains the success of particular diatom species at given times and the overall success of diatoms. The results help answer the unresolved question of how adjacent microplankton compete. Furthermore, diffusion constraint by supramembrane nanostructures to alter molecular diffusion suggests that microbes compete via supramembrane topology, a competitive mechanism not considered by the standard smooth-surface equations used for nutrient uptake nor in microbial ecology and cell physiology. PMID:23667421

  6. Efficacies of designer biochars in improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil layer.

    PubMed

    Sigua, G C; Novak, J M; Watts, D W; Johnson, M G; Spokas, K

    2016-01-01

    In the Coastal Plains region of the United States, the hard setting subsoil layer of Norfolk soils results in low water holding capacity and nutrient retention, which often limits root development. In this region, the Norfolk soils are under intensive crop production that further depletes nutrients and reduces organic carbon (C). Incorporation of pyrolyzed organic residues or "biochars" can provide an alternative recalcitrant C source. However, biochar quality and effect can be inconsistent and different biochars react differently in soils. We hypothesized that addition of different designer biochars will have variable effects on biomass and nutrient uptake of winter wheat. The objective of this study was to investigate the effects of designer biochars on biomass productivity and nutrient uptake of winter wheat (Triticum aestivum L.) in a Norfolk's hard setting subsoil layer. Biochars were added to Norfolk's hard setting subsoil layer at the rate of 40 Mg ha(-1). The different sources of biochars were: plant-based (pine chips, PC); animal-based (poultry litter, PL); 50:50 blend (50% PC:50% PL); 80:20 blend (80% PC:20% PL); and hardwood (HW). Aboveground and belowground biomass and nutrient uptake of winter wheat varied significantly (p⩽0.0001) with the different designer biochar applications. The greatest increase in the belowground biomass of winter wheat over the control was from 80:20 blend of PC:PL (81%) followed by HW (76%), PC (59%) and 50:50 blend of PC:PL (9%). However, application of PL resulted in significant reduction of belowground biomass by about 82% when compared to the control plants. The average uptake of P, K, Ca, Mg, Na, Al, Fe, Cu and Zn in both the aboveground and belowground biomass of winter wheat varied remarkably with biochar treatments. Overall, our results showed promising significance for the treatment of a Norfolk's hard setting subsoil layer since designer biochars did improve both aboveground/belowground biomass and nutrient uptake

  7. Dynamic model of flexible phytoplankton nutrient uptake

    PubMed Central

    Bonachela, Juan A.; Raghib, Michael; Levin, Simon A.

    2011-01-01

    The metabolic machinery of marine microbes can be remarkably plastic, allowing organisms to persist under extreme nutrient limitation. With some exceptions, most theoretical approaches to nutrient uptake in phytoplankton are largely dominated by the classic Michaelis–Menten (MM) uptake functional form, whose constant parameters cannot account for the observed plasticity in the uptake apparatus. Following seminal ideas by earlier researchers, we propose a simple cell-level model based on a dynamic view of the uptake process whereby the cell can regulate the synthesis of uptake proteins in response to changes in both internal and external nutrient concentrations. In our flexible approach, the maximum uptake rate and nutrient affinity increase monotonically as the external nutrient concentration decreases. For low to medium nutrient availability, our model predicts uptake and growth rates larger than the classic MM counterparts, while matching the classic MM results for large nutrient concentrations. These results have important consequences for global coupled models of ocean circulation and biogeochemistry, which lack this regulatory mechanism and are thus likely to underestimate phytoplankton abundances and growth rates in oligotrophic regions of the ocean. PMID:22143781

  8. Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement.

    PubMed

    Ding, Jun; Bierma, Jan; Smith, Mark R; Poliner, Eric; Wolfe, Carole; Hadduck, Alex N; Zara, Severino; Jirikovic, Mallori; van Zee, Kari; Penner, Michael H; Patton-Vogt, Jana; Bakalinsky, Alan T

    2013-08-01

    Acetic acid inhibition of yeast fermentation has a negative impact in several industrial processes. As an initial step in the construction of a Saccharomyces cerevisiae strain with increased tolerance for acetic acid, mutations conferring resistance were identified by screening a library of deletion mutants in a multiply auxotrophic genetic background. Of the 23 identified mutations, 11 were then introduced into a prototrophic laboratory strain for further evaluation. Because none of the 11 mutations was found to increase resistance in the prototrophic strain, potential interference by the auxotrophic mutations themselves was investigated. Mutants carrying single auxotrophic mutations were constructed and found to be more sensitive to growth inhibition by acetic acid than an otherwise isogenic prototrophic strain. At a concentration of 80 mM acetic acid at pH 4.8, the initial uptake of uracil, leucine, lysine, histidine, tryptophan, phosphate, and glucose was lower in the prototrophic strain than in a non-acetic acid-treated control. These findings are consistent with two mechanisms by which nutrient uptake may be inhibited. Intracellular adenosine triphosphate (ATP) levels were severely decreased upon acetic acid treatment, which likely slowed ATP-dependent proton symport, the major form of transport in yeast for nutrients other than glucose. In addition, the expression of genes encoding some nutrient transporters was repressed by acetic acid, including HXT1 and HXT3 that encode glucose transporters that operate by facilitated diffusion. These results illustrate how commonly used genetic markers in yeast deletion libraries complicate the effort to isolate strains with increased acetic acid resistance.

  9. Efficacies of designer biochars in improving biomass and nutrient uptake of winter wheat grown in a hard setting subsoil layer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Coastal Plains region of the United States, the hard setting subsoil layer of Norfolk soils results in low water holding capacity and nutrient retention, which often limits root development. In this region, the Norfolk soils are under intensive crop production that further depletes nutrients ...

  10. Prospects for optimizing soil microbial functioning to improve plant nutrient uptake and soil carbon sequestration under elevated CO2

    NASA Astrophysics Data System (ADS)

    Nie, M.; Pendall, E. G.

    2013-12-01

    Potential to mitigate climate change through increasing plant productivity and its carbon (C) input to soil may be limited by soil nitrogen (N) availability. Using a novel 13C-CO2 and 15N-soil dual labeling method, we investigated whether plant growth-promoting bacteria would interact with atmospheric CO2 concentration to alter plant productivity and soil C storage. We grew Bouteloua gracilis under ambient (380 ppm) or elevated CO2 (700 ppm) in climate-controlled chambers, and plant individuals were grown with or without Pseudomonas fluorescens inoculum, which can produce N catabolic enzymes. We observed that both eCO2 and P. fluorescens increased plant productivity and its C allocation to soil. P. fluorescens relative to eCO2 enhanced plant N uptake from soil organic matter, which highly correlated with soil N enzyme activities and rhizosphere exudate C. More importantly, P. fluorescens increased microbial biomass and deceased specific microbial respiration in comparison with eCO2. These results indicate that application of plant growth-promoting bacteria can increase microbial C utilization efficiency with subsequent N mineralization from soil organic matter, and may improve plant N availability and soil C sequestration. Together, our findings highlight the potential of plant growth-promoting bacteria for global change mitigation by terrestrial ecosystems.

  11. Endocytotic uptake of nutrients in carnivorous plants.

    PubMed

    Adlassnig, Wolfram; Koller-Peroutka, Marianne; Bauer, Sonja; Koshkin, Edith; Lendl, Thomas; Lichtscheidl, Irene K

    2012-07-01

    Carnivorous plants trap, digest and absorb animals in order to supplement their mineral nutrition. Nutrients absorbed by the plant include different nitrogen species, phosphate, potassium, trace elements and small organic compounds. Uptake is usually thought to be performed via specific channels, but this study provides evidence that endocytosis is involved as well. Traps of the carnivorous plants Nepenthes coccinea, Nepenthes ventrata, Cephalotus follicularis, Drosophyllum lusitanicum, Drosera capensis, Dionaea muscipula, Aldrovanda vesiculosa, Genlisea violacea × lobata, Sarracenia psittacina and Sarracenia purpurea were stained with methylene blue in order to identify possible sites of uptake. The permeable parts of the traps were incubated with fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) and other fluorescent endocytosis markers, combined with the soluble protein BSA or respiratory inhibitors. Uptake was studied by confocal microscopy. In Nepenthes, small fluorescent vesicles became visible 1 h after incubation with FITC-BSA. These vesicles fused to larger compartments within 30 h. A similar behaviour was found in the related genera Drosera, Dionaea, Aldrovanda and Drosophyllum but also in Cephalotus with glands of different evolutionary origin. In Genlisea and Sarracenia, no evidence for endocytosis was found. We propose that in many carnivorous plants, nutrient uptake by carriers is supplemented by endocytosis, which enables absorption and intracellular digestion of whole proteins. The advantage for the plant of reducing secretion of enzymes for extracellular digestion is evident.

  12. Fertilizer and soil management practices for improving the efficiency of nutrient uptake and use in northern highbush blueberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highbush blueberry is a long-lived perennial crop well-adapted to acidic soils. Plants acquire primarily NH4-N and tolerate relatively low concentrations of P and cations in the soil and high concentrations of plant available metals such as Al and Mn. Recently, we found that optimal leaf nutrient co...

  13. NUTRIENT UPTAKE: A Microcomputer Program to Predict Nutrient Absorption from Soil by Roots.

    ERIC Educational Resources Information Center

    Oates, Kenneth; Barber, S. A.

    1987-01-01

    Discusses the use of a computer program designed to solve the mathematical model associated with soil nutrient uptake by plant roots and to predict the nutrient uptake. Describes a user-friendly personal computer version of this program. (TW)

  14. Nutrient uptake of peanut genotypes under different water regimes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a serious environmental stress limiting growth and productivity in peanut and other crops. Nutrient uptake of peanut is reduced under drought conditions, which reduces yield. The objectives of this study were to investigate nutrient uptake of peanut genotypes in response to drought and ...

  15. Nutrient uptake and mineralization during leaf decay in streams - a model simulation

    SciTech Connect

    Webster, Jackson; Newbold, J. Denis; Thomas, Steve; Valett, H. Maurice; Mulholland, Patrick J

    2009-01-01

    We developed a stoichiometrically explicit computer model to examine how heterotrophic uptake of nutrients and microbial mineralization occurring during the decay of leaves in streams may be important in modifying nutrient concentrations. The simulations showed that microbial uptake can substantially decrease stream nutrient concentrations during the initial phases of decomposition, while mineralization may produce increases in concentrations during later stages of decomposition. The simulations also showed that initial nutrient content of the leaves can affect the stream nutrient concentration dynamics and determine whether nitrogen or phosphorus is the limiting nutrient. Finally, the simulations suggest a net retention (uptake > mineralization) of nutrients in headwater streams, which is balanced by export of particulate organic nutrients to downstream reaches. Published studies support the conclusion that uptake can substantially change stream nutrient concentrations. On the other hand, there is little published evidence that mineralization also affects nutrient concentrations. Also, there is little information on direct microbial utilization of nutrients contained in the decaying leaves themselves. Our results suggest several directions for research that will improve our understanding of the complex relationship between leaf decay and nutrient dynamics in streams.

  16. A new compensated root water and nutrient uptake model implemented in HYDRUS programs

    NASA Astrophysics Data System (ADS)

    Simunek, Jiri; Hopmans, Jan W.; Lazarovitch, Naftali

    2010-05-01

    Plant root water and nutrient uptake is one of the most important processes in subsurface unsaturated flow and transport modeling, as root uptake controls actual plant evapotranspiration, water recharge and nutrient leaching to the groundwater. Root water uptake in unsaturated flow models is usually uncompensated and nutrient uptake is simulated assuming that all uptake is passive. We present a new compensated root water and nutrient uptake model, implemented in HYDRUS programs. The so-called root adaptability factor (Jarvis, 1989) is used to represent a threshold value above which reduced root water or nutrient uptake in water- or nutrient-stressed parts of the root zone is fully compensated for by increased uptake in other soil regions that are less stressed. Using a critical value of the water stress index, water uptake compensation is proportional to the water stress response function. Total root nutrient uptake is determined from the total of active and passive nutrient uptake. The partitioning between passive and active uptake is controlled by the a priori defined concentration value c_max. Passive nutrient uptake is simulated by multiplying root water uptake with the dissolved nutrient concentration, for soil solution concentration values below c_max. Passive nutrient uptake is thus zero when c_max is equal to zero. As the active nutrient uptake is obtained from the difference between plant nutrient demand and passive nutrient uptake (using Michaelis-Menten kinetics), the presented model thus implies that reduced passive nutrient uptake is compensated for by active nutrient uptake. In addition, the proposed root uptake model includes compensation for active nutrient uptake, in a similar way as used for root water uptake. The proposed root water and nutrient uptake model is demonstrated by several hypothetical and real examples, for plants supplied by water due to capillary rise from groundwater and surface drip irrigation.

  17. Through form to function: root hair development and nutrient uptake

    NASA Technical Reports Server (NTRS)

    Gilroy, S.; Jones, D. L.

    2000-01-01

    Root hairs project from the surface of the root to aid nutrient and water uptake and to anchor the plant in the soil. Their formation involves the precise control of cell fate and localized cell growth. We are now beginning to unravel the complexities of the molecular interactions that underlie this developmental regulation. In addition, after years of speculation, nutrient transport by root hairs has been demonstrated clearly at the physiological and molecular level, with evidence for root hairs being intense sites of H(+)-ATPase activity and involved in the uptake of Ca(2+), K(+), NH(4)(+), NO(3)(-), Mn(2+), Zn(2+), Cl(-) and H(2)PO(4)(-).

  18. Optimizing Nutrient Uptake in Biological Transport Networks

    NASA Astrophysics Data System (ADS)

    Ronellenfitsch, Henrik; Katifori, Eleni

    2013-03-01

    Many biological systems employ complex networks of vascular tubes to facilitate transport of solute nutrients, examples include the vascular system of plants (phloem), some fungi, and the slime-mold Physarum. It is believed that such networks are optimized through evolution for carrying out their designated task. We propose a set of hydrodynamic governing equations for solute transport in a complex network, and obtain the optimal network architecture for various classes of optimizing functionals. We finally discuss the topological properties and statistical mechanics of the resulting complex networks, and examine correspondence of the obtained networks to those found in actual biological systems.

  19. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems.

    PubMed

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, [Formula: see text] generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth.

  20. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems

    PubMed Central

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md. Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•- generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763

  1. Impact of FGD gypsum on soil fertility and plant nutrient uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Use of FGD gypsum is thought to improve soil productivity and increase plant production. Thus, a study was conducted to evaluate the effects of FGD gypsum on yield, plant nutrient uptake and soil productivity. The study was conducted on an established bermudagrass pasture. Poultry litter was applied...

  2. Estimating uncertainty in ambient and saturation nutrient uptake metrics from nutrient pulse releases in stream ecosystems

    DOE PAGES

    Brooks, Scott C.; Brandt, Craig C.; Griffiths, Natalie A.

    2016-10-07

    Nutrient spiraling is an important ecosystem process characterizing nutrient transport and uptake in streams. Various nutrient addition methods are used to estimate uptake metrics; however, uncertainty in the metrics is not often evaluated. A method was developed to quantify uncertainty in ambient and saturation nutrient uptake metrics estimated from saturating pulse nutrient additions (Tracer Additions for Spiraling Curve Characterization; TASCC). Using a Monte Carlo (MC) approach, the 95% confidence interval (CI) was estimated for ambient uptake lengths (Sw-amb) and maximum areal uptake rates (Umax) based on 100,000 datasets generated from each of four nitrogen and five phosphorous TASCC experiments conductedmore » seasonally in a forest stream in eastern Tennessee, U.S.A. Uncertainty estimates from the MC approach were compared to the CIs estimated from ordinary least squares (OLS) and non-linear least squares (NLS) models used to calculate Sw-amb and Umax, respectively, from the TASCC method. The CIs for Sw-amb and Umax were large, but were not consistently larger using the MC method. Despite the large CIs, significant differences (based on nonoverlapping CIs) in nutrient metrics among seasons were found with more significant differences using the OLS/NLS vs. the MC method. Lastly, we suggest that the MC approach is a robust way to estimate uncertainty, as the calculation of Sw-amb and Umax violates assumptions of OLS/NLS while the MC approach is free of these assumptions. The MC approach can be applied to other ecosystem metrics that are calculated from multiple parameters, providing a more robust estimate of these metrics and their associated uncertainties.« less

  3. Estimating uncertainty in ambient and saturation nutrient uptake metrics from nutrient pulse releases in stream ecosystems

    SciTech Connect

    Brooks, Scott C.; Brandt, Craig C.; Griffiths, Natalie A.

    2016-10-07

    Nutrient spiraling is an important ecosystem process characterizing nutrient transport and uptake in streams. Various nutrient addition methods are used to estimate uptake metrics; however, uncertainty in the metrics is not often evaluated. A method was developed to quantify uncertainty in ambient and saturation nutrient uptake metrics estimated from saturating pulse nutrient additions (Tracer Additions for Spiraling Curve Characterization; TASCC). Using a Monte Carlo (MC) approach, the 95% confidence interval (CI) was estimated for ambient uptake lengths (Sw-amb) and maximum areal uptake rates (Umax) based on 100,000 datasets generated from each of four nitrogen and five phosphorous TASCC experiments conducted seasonally in a forest stream in eastern Tennessee, U.S.A. Uncertainty estimates from the MC approach were compared to the CIs estimated from ordinary least squares (OLS) and non-linear least squares (NLS) models used to calculate Sw-amb and Umax, respectively, from the TASCC method. The CIs for Sw-amb and Umax were large, but were not consistently larger using the MC method. Despite the large CIs, significant differences (based on nonoverlapping CIs) in nutrient metrics among seasons were found with more significant differences using the OLS/NLS vs. the MC method. Lastly, we suggest that the MC approach is a robust way to estimate uncertainty, as the calculation of Sw-amb and Umax violates assumptions of OLS/NLS while the MC approach is free of these assumptions. The MC approach can be applied to other ecosystem metrics that are calculated from multiple parameters, providing a more robust estimate of these metrics and their associated uncertainties.

  4. Biotechnology of nutrient uptake and assimilation in plants.

    PubMed

    López-Arredondo, Damar L; Leyva-González, Marco A; Alatorre-Cobos, Fulgencio; Herrera-Estrella, Luis

    2013-01-01

    Plants require a complex balance of mineral nutrients to reproduce successfully. Because the availability of many of these nutrients in the soil is compromised by several factors, such as soil pH, cation presence, and microbial activity, crop plants depend directly on nutrients applied as fertilizers to achieve high yields. However, the excessive use of fertilizers is a major environmental concern due to nutrient leaching that causes water eutrophication and promotes toxic algae blooms. This situation generates the urgent need for crop plants with increased nutrient use efficiency and better-designed fertilization schemes. The plant biology revolution triggered by the development of efficient gene transfer systems for plant cells together with the more recent development of next-generation DNA and RNA sequencing and other omics platforms have advanced considerably our understanding on the molecular basis of plant nutrition and how plants respond to nutritional stress. To date, genes encoding sensors, transcription factors, transporters, and metabolic enzymes have been identified as potential candidates to improve nutrient use efficiency. In addition, the study of other genetic resources, such as bacteria and fungi, allows the identification of alternative mechanisms of nutrient assimilation, which are potentially applicable in plants. Although significant progress in this respect has been achieved by conventional breeding, in this review we focus on the biotechnological approaches reported to date aimed at boosting the use of the three most limiting nutrients in the majority of arable lands: nitrogen, phosphorus, and iron.

  5. Predictive modeling of transient storage and nutrient uptake: Implications for stream restoration

    USGS Publications Warehouse

    O'Connor, Ben L.; Hondzo, Miki; Harvey, Judson

    2010-01-01

    This study examined two key aspects of reactive transport modeling for stream restoration purposes: the accuracy of the nutrient spiraling and transient storage models for quantifying reach-scale nutrient uptake, and the ability to quantify transport parameters using measurements and scaling techniques in order to improve upon traditional conservative tracer fitting methods. Nitrate (NO3–) uptake rates inferred using the nutrient spiraling model underestimated the total NO3– mass loss by 82%, which was attributed to the exclusion of dispersion and transient storage. The transient storage model was more accurate with respect to the NO3– mass loss (±20%) and also demonstrated that uptake in the main channel was more significant than in storage zones. Conservative tracer fitting was unable to produce transport parameter estimates for a riffle-pool transition of the study reach, while forward modeling of solute transport using measured/scaled transport parameters matched conservative tracer breakthrough curves for all reaches. Additionally, solute exchange between the main channel and embayment surface storage zones was quantified using first-order theory. These results demonstrate that it is vital to account for transient storage in quantifying nutrient uptake, and the continued development of measurement/scaling techniques is needed for reactive transport modeling of streams with complex hydraulic and geomorphic conditions.

  6. Hydrologic and biologic influences on stream network nutrient concentrations: Interactions of hydrologic turnover and concentration-dependent nutrient uptake

    NASA Astrophysics Data System (ADS)

    Mallard, J. M.; McGlynn, B. L.; Covino, T. P.; Bergstrom, A.

    2012-12-01

    Stream networks lie in a crucial landscape position between terrestrial ecosystems and downstream water bodies. As such, whether inferring terrestrial watershed processes from watershed outlet nutrient signals or predicting the effect of observed terrestrial processes on stream nutrient signals, it is requisite to understand how stream networks can modulate terrestrial nutrient inputs. To date integrated understanding and modeling of physical and biological influences on nutrient concentrations at the stream network scale have been limited. However, watershed scale groundwater - surface water exchange (hydrologic turnover), concentration-variable biological uptake, and the interaction between the two can strongly modify stream water nutrient concentrations. Stream water and associated nutrients are lost to and replaced from groundwater with a distinct nutrient concentrations while in-stream nutrients can also be retained by biological processes at rates that vary with concentration. We developed an empirically based network scale model to simulate the interaction between hydrologic turnover and concentration-dependent nutrient uptake across stream networks. Exchange and uptake parameters were measured using conservative and nutrient tracer addition experiments in the Bull Trout Watershed, central Idaho. We found that the interaction of hydrologic turnover and concentration-dependent uptake combined to modify and subsequently stabilize in-stream concentrations, with specific concentrations dependent on the magnitude of hydrologic turnover, groundwater concentrations, and the shape of nutrient uptake kinetic curves. We additionally found that by varying these physical and biological parameters within measured ranges we were able to generate a spectrum of stream network concentration distributions representing a continuum of shifting magnitudes of physical and biological influences on in-stream concentrations. These findings elucidate the important and variable role

  7. Hydrologic and biologic influences on stream network nutrient concentrations: Interactions of hydrologic turnover and concentration-dependent nutrient uptake

    NASA Astrophysics Data System (ADS)

    Mallard, John; McGlynn, Brian; Covino, Tim

    2016-04-01

    Stream networks lie in a crucial landscape position between terrestrial ecosystems and downstream water bodies. As such, whether inferring terrestrial watershed processes from watershed outlet nutrient signals or predicting the effect of observed terrestrial processes on stream nutrient signals, it is requisite to understand how stream networks can modulate terrestrial nutrient inputs. To date integrated understanding and modeling of physical and biological influences on nutrient concentrations at the stream network scale have been limited. However, watershed scale groundwater - surface water exchange (hydrologic turnover), concentration-variable biological uptake, and the interaction between the two can strongly modify stream water nutrient concentrations. Stream water and associated nutrients are lost to and replaced from groundwater with distinct nutrient concentrations while in-stream nutrients can also be retained by biological processes at rates that vary with concentration. We developed an empirically based network scale model to simulate the interaction between hydrologic turnover and concentration-dependent nutrient uptake across stream networks. Exchange and uptake parameters were measured using conservative and nutrient tracer addition experiments in the Bull Trout Watershed, central Idaho. We found that the interaction of hydrologic turnover and concentration-dependent uptake combined to modify and subsequently stabilize in-stream concentrations, with specific concentrations dependent on the magnitude of hydrologic turnover, groundwater concentrations, and the shape of nutrient uptake kinetic curves. We additionally found that by varying these physical and biological parameters within measured ranges we were able to generate a spectrum of stream network concentration distributions representing a continuum of shifting magnitudes of physical and biological influences on in-stream concentrations. These findings elucidate the important and variable role of

  8. Toward a transport-based analysis of nutrient spiraling and uptake in streams

    USGS Publications Warehouse

    Runkel, Robert L.

    2007-01-01

    Nutrient addition experiments are designed to study the cycling of nutrients in stream ecosystems where hydrologic and nonhydrologic processes determine nutrient fate. Because of the importance of hydrologic processes in stream ecosystems, a conceptual model known as nutrient spiraling is frequently employed. A central part of the nutrient spiraling approach is the determination of uptake length (SW), the average distance traveled by dissolved nutrients in the water column before uptake. Although the nutrient spiraling concept has been an invaluable tool in stream ecology, the current practice of estimating uptake length from steady-state nutrient data using linear regression (called here the "SW approach") presents a number of limitations. These limitations are identified by comparing the exponential SW equation with analytical solutions of a stream solute transport model. This comparison indicates that (1) SW, is an aggregate measure of uptake that does not distinguish between main channel and storage zone processes, (2) SW, is an integrated measure of numerous hydrologie and nonhydrologic processes-this process integration may lead to difficulties in interpretation when comparing estimates of SW, and (3) estimates of uptake velocity and areal uptake rate (Vf and U) based on S W, are not independent of system hydrology. Given these findings, a transport-based approach to nutrient spiraling is presented for steady-state and time-series data sets. The transport-based approach for time-series data sets is suggested for future research on nutrient uptake as it provides a number of benefits, including the ability to (1) separately quantify main channel and storage zone uptake, (2) quantify specific hydrologic and nonhydrologic processes using various model parameters (process separation), (3) estimate uptake velocities and areal uptake rates that are independent of hydrologic effects, and (4) use short-term, non-plateau nutrient additions such that the effects of

  9. One-time tillage of no-till: Effects on nutrients, mycorrhizae, and phosphorus uptake

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stratification of nutrient availability, especially of P, that develops with continuous no-till (NT) can affect runoff nutrient concentration and possibly nutrient uptake. The effects of composted manure application and one-time tillage of NT on the distribution of soil chemical properties, root co...

  10. Coupled Effects of Hyporheic Flow Structure and Metabolic Pattern on Reach-scale Nutrient Uptake

    NASA Astrophysics Data System (ADS)

    Li, A.; Aubeneau, A. F.; Bolster, D.; Tank, J. L.; Packman, A. I.

    2015-12-01

    Co-injections of conservative tracers and nutrients are commonly used to assess net reach-scale nutrient transformation rates and benthic/hyporheic uptake parameters. However, little information is available on spatial metabolic patterns in the benthic and hyporheic regions. Based on observations from real systems, we used particle tracking simulations to explore the effects of localized metabolism on estimates of reach-scale nutrient uptake rates. Metabolism locally depletes nutrient concentrations relative to conservative tracers, causing their concentration profiles of injected nutrients and conservative tracers to diverge. At slow rates of hyporheic exchange relative to rates of metabolism, overall hyporheic nutrient uptake is limited by delivery from the stream, and effective reach-scale nutrient uptake parameters will be controlled by the hyporheic exchange rate. At high rates of hyporheic exchange relative to rates of metabolism, the injected tracer can propagate beyond regions of high microbial activity, which commonly occur near the streambed surface. In this case, the injected tracer may not adequately capture timescales of nutrient replenishment in the most bioactive regions. Reach-scale nutrients uptake rate increases with increasing heterogeneity in local metabolic patterns, altering the shape of breakthrough curves downstream. More observations of hyporheic rates and metabolic patterns are needed to understand how flow heterogeneity and reaction heterogeneity interact to control nutrient dynamics at reach-scale.

  11. Nutrient Uptake Changes in Ascorbate Free Radical-Stimulated Onion Roots.

    PubMed Central

    Gonzalez-Reyes, J. A.; Hidalgo, A.; Caler, J. A.; Palos, R.; Navas, P.

    1994-01-01

    Long-term treatments with ascorbate free radical-stimulated glucose, fucose, sucrose, and nitrate uptake in Allium cepa roots. Glucose and fucose showed saturation kinetics in untreated roots, but after treatment with the ascorbate free radical, uptake was linear with time. Although the rates of nitrate and sucrose uptake increased after treatment with ascorbate free radical, the kinetics were similar to those observed in the controls. Ascorbate and dehydroascorbate inhibited nutrient uptake. The uptake rates for all nutrients increased throughout the 48-h period of pretreatment with ascorbate free radical. During the treatment an increase in the vacuole volume and tonoplast surface area also occurred. These results show the relationship between an increase in vacuolar volume and stimulated nutrient uptake from ascorbate-free radical, resulting in enhanced root elongation. These results suggest that activation of a transplasma membrane redox system by ascorbate-free radical is involved in these responses. PMID:12232078

  12. Effect of Nutrient/Carbon Supplements on Biological Phosphate and Nitrate Uptake by Protozoan Isolates

    NASA Astrophysics Data System (ADS)

    Akpor, O. B.; Momba, M. N. B.; Okonkwo, J.

    This study was aimed at investigating the effect of nine different nutrient/carbon supplements in mixed liquor on nutrient uptake ability of three wastewater protozoan isolates, which have previously been screened for phosphate and nitrate uptake efficiency. The results revealed that over 50% of phosphate was removed in the presence of sodium acetate, glucose or sucrose. Similarly, nitrate uptake of over 60% was observed in the presence of sodium acetate, sodium succinate, glucose or sucrose. These trends were common in all the isolates. Chemical Oxygen Demand (COD) removal in the mixed liquor was only found to be significantly removed in mixed liquors that were supplemented with glucose, sucrose or sodium succinate. In the presence of sodium acetate, COD was observed to increase. The findings of this investigation have revealed that nutrient uptake and COD removal by the test protozoan isolates may be dependent primarily on the initial nutrient supplement in mixed liquor.

  13. Late effects of abdominal radiation on intestinal uptake of nutrients

    SciTech Connect

    Thomson, A.B.; Cheeseman, C.I.; Walker, K.

    1986-09-01

    The late effects of variable doses of abdominal irradiation on in vitro jejunal uptake were examined. The uptake of glucose, galactose, cholic acid, medium-chain length fatty acids, and decanol was studied 6 and 33 weeks following 300, 600, or 900 cGy abdominal irradiation. The intestinal morphological characteristics were similar 6 and 33 weeks after radiation. The uptake of cholic acid was unaffected by abdominal irradiation, but for glucose, galactose, and four fatty acids the direction and magnitude of the changes in uptake were influenced by the dose of irradiation and by the interval following exposure. The greater uptake of decanol at 6 weeks but lower uptake of decanol at 33 weeks reflected changes in the resistance of the intestinal unstirred water layer. These absorption changes suggest that the intestine may not be capable of correcting the transport abnormalities arising from sublethal doses of abdominal irradiation.

  14. Nutrient uptake and distribution in young Pinot noir grapevines over two seasons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The seasonal timing of biomass and nutrient uptake and distribution among different vine organs was determined over two growing seasons in 4-year-old Pinot noir grapevines carrying their first full crop and grown in field microplots. Vines were fertilized in spring and the biomass and nutrient conte...

  15. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress.

    PubMed

    Nath, Manoj; Tuteja, Narendra

    2016-05-01

    Sessile nature of higher plants consequently makes it highly adaptable for nutrient absorption and acquisition from soil. Plants require 17 essential elements for their growth and development which include 14 minerals (macronutrients: N, P, K, Mg, Ca, S; micronutrients: Cl, Fe, B, Mn, Zn, Cu, Ni, Mo) and 3 non-mineral (C, H, O) elements. The roots of higher plants must acquire these macronutrients and micronutrients from rhizosphere and further allocate to other plant parts for completing their life cycle. Plants evolved an intricate series of signaling and sensing cascades to maintain nutrient homeostasis and to cope with nutrient stress/availability. The specific receptors for nutrients in root, root system architecture, and internal signaling pathways help to develop plasticity in response to the nutrient starvation. Nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) are essential for various metabolic processes, and their deficiency negatively effects the plant growth and yield. Genes coding for transporters and receptors for nutrients as well as some small non-coding RNAs have been implicated in nutrient uptake and signaling. This review summarizes the N, P, K, and S uptake, sensing and signaling events in nutrient stress condition especially in model plant Arabidopsis thaliana and involvement of microRNAs in nutrient deficiency. This article also provides a framework of uptake, sensing, signaling and to highlight the microRNA as an emerging major players in nutrient stress condition. Nutrient-plant-miRNA cross talk may help plant to cope up nutrient stress, and understanding their precise mechanism(s) will be necessary to develop high yielding smart crop with low nutrient input.

  16. Effects of arginine on intestinal epithelial cell integrity and nutrient uptake.

    PubMed

    Xia, Mi; Ye, Lulu; Hou, Qihang; Yu, Qinghua

    2016-11-14

    Arginine is a multifaceted amino acid that is critical to the normal physiology of the gastrointestinal tract. Oral arginine administration has been shown to improve mucosal recovery following intestinal injury. The present study investigated the influence of extracellular arginine concentrations on epithelial cell barrier regulation and nutrition uptake by porcine small intestinal epithelial cell line (IPEC-J2). The results show that reducing arginine concentration from 0·7 to 0·2 mm did not affect the transepithelial electrical resistance value, tight-junction proteins (claudin-1, occludin, E-cadherin), phosphorylated extracellular signal-regulated protein kinases (p-ERK) and mucin-1 expression. Furthermore, reducing arginine concentration stimulated greater expression of cationic amino acid transporter (CAT1), excitatory amino acid transporter (EAAT3) and alanine/serine/cysteine transporter (ASCT1) mRNA by IPEC-J2 cells, which was verified by elevated efficiency of amino acid uptake. Glucose consumption by IPEC-J2 cells treated with 0·2 mm-arginine remained at the same physiological level to guarantee energy supply and to maintain the cell barrier. This experiment implied that reducing arginine concentration is feasible in IPEC-J2 cells guaranteed by nutrient uptake and cell barrier function.

  17. [Effects of rhizosphere soil permeability on water and nutrient uptake by maize].

    PubMed

    Niu, Wen-quan; Guo, Chao

    2010-11-01

    Aimed to better understand the significance of soil microenvironment in crop growth, a pot experiment was conducted to investigate the effects of rhizosphere soil permeability on the water and nutrient uptake by maize. Under three irrigation levels (600, 400, and 200 ml per pot), three treatments of soil aeration (no tube aeration as the control, tube aeration every two days, and tube aeration every four days) were installed, and the physiological indices of maize were measured. Under the same irrigation levels, soil aeration increased the plant height, leaf area, chlorophyll contents, promoted nutrient adsorption and increased root vitality markedly. At elongation stage, treatment tube aeration every four days had the highest root vitality (8.24 mg x g(-1) x h(-1)) under the irrigation level 600 ml per pot, being significantly higher (66.7%) than that (4.94 mg x g(-1) x h(-1)) of the control. Soil aeration had no significant effects on the transpiration rate of maize, indicating that rhizosphere soil aeration could raise water and nutrient use efficiency, and improve maize growth.

  18. Cation uptake and allocation by red pine seedlings under cation-nutrient stress in a column growth experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and aims: Plant nutrient uptake is affected by environmental stress, but how plants respond to cation nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient stress on cation uptake in an experimental plant-mineral system. Methods: Column experim...

  19. Microbial Enzyme Activity, Nutrient Uptake, and Nutrient Limitation in Forested Streams

    EPA Science Inventory

    We measured NH4 + and PO4 -3 uptake length (Sw), uptake velocity (Vf), uptake rate (U), biofilm enzyme activity (BEA), and channel geomorphology in streams draining forested catchments in the Northwestern (Northern California Coast Range and Cascade Mountains) and Southeastern (A...

  20. Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil.

    PubMed

    Dhawi, Faten; Datta, Rupali; Ramakrishna, Wusirika

    2015-12-01

    Abiotic stress factors including poor nutrient content and heavy metal contamination in soil, can limit plant growth and productivity. The main goal of our study was to evaluate element uptake, biomass and metabolic responses in maize roots growing in mining-impacted soil with the combination of arbuscular mycorrhiza (My) and plant growth promoting bacteria (PGPB/B). Maize plants subjected to PGPB, My and combined treatments showed a significant increase in biomass and uptake of some elements in shoot and root. Metabolite analysis identified 110 compounds that were affected ≥2-fold compared to control, with 69 metabolites upregulated in the My group, 53 metabolites in the My+B group and 47 metabolites in B group. Pathway analysis showed that impact on glyoxylate and dicarboxylate metabolism was common between My and My+B groups, whereas PGPB group showed a unique effect on fatty acid biosynthesis with significant increase in palmitic acid and stearic acid. Differential regulation of some metabolites by mycorrhizal treatment correlated with root biomass while PGPB regulated metabolites correlated with biomass increase in shoot. Overall, the combination of rhizospheric microorganisms used in our study significantly increased maize nutrient uptake and growth relative to control. The changes in metabolic pathways identified during the symbiotic interaction will improve our understanding of mechanisms involved in rhizospheric interactions that are responsible for increased growth and nutrient uptake in crop plants.

  1. Fractionated low doses of abdominal irradiation alters jejunal uptake of nutrients

    SciTech Connect

    Thomson, A.B.; Keelan, M.; Cheeseman, C.I.; Walker, K.

    1986-06-01

    Abdominal radiation is associated with changes in intestinal uptake of nutrients that begins within three days and persist for over 33 weeks. Clinically, fractionated doses of radiation (FDR) are used in an attempt to minimize the complications of this therapy, but the effects of fractionated doses of radiation on intestinal transport have not been defined. An in vitro technique was used to assess the jejunal and ileal uptake of varying concentrations of glucose and leucine, as well as the uptake of single concentrations of fatty acids and decanol in rats exposed 3, 7, and 14 days previously to a course of 200 cGy given on each of five consecutive days. FDR was associated with an increase in the uptake of decanol, and therefore a decrease in the effective resistance of the unstirred water layer. FDR had a variable effect on the uptake of glucose and leucine, with a decline in the value of the Michaelis constant (Km) and the passive permeability coefficient for glucose (Pd), whereas the Km for leucine was unchanged and the Pd for leucine was variably affected by FDR. The maximal transport rate (Jdm) for leucine progressively rose following FDR, whereas the Jdm for glucose initially rose, then fell. The uptake of galactose and medium chain-length fatty acids was unchanged by FDR, whereas the jejunal uptake of myristic acid rose, and the uptake of cholic acid declined, then returned to normal. FDR was associated with greater body weight gain and jejunal and ileal weight. The changes in nutrient uptake following FDR differed from the absorption changes occurring after a single dose of radiation. Thus, fractionated doses of abdominal radiation produce complex changes in the intestinal uptake of actively and passively transported nutrients, and these variable changes are influenced by the time following radiation exposure and by the solute studied.

  2. Discontinuities in stream nutrient uptake below lakes in mountain drainage networks

    USGS Publications Warehouse

    Arp, C.D.; Baker, M.A.

    2007-01-01

    In many watersheds, lakes and streams are hydrologically linked in spatial patterns that influence material transport and retention. We hypothesized that lakes affect stream nutrient cycling via modifications to stream hydrogeomorphology, source-waters, and biological communities. We tested this hypothesis in a lake district of the Sawtooth Mountains, Idaho. Uptake of NO3- and PO4-3 was compared among 25 reaches representing the following landscape positions: lake inlets and outlets, reaches >1-km downstream from lakes, and reference reaches with no nearby lakes. We quantified landscape-scale hydrographic and reach-scale hydrogeomorphic, source-water, and biological variables to characterize these landscape positions and analyze relationships to nutrient uptake. Nitrate uptake was undetectable at most lake outlets, whereas PO4-3 uptake was higher at outlets as compared to reference and lake inlet reaches. Patterns in nutrient demand farther downstream were similar to lake outlets with a gradual shift toward reference-reach functionality. Nitrate uptake was most correlated to sediment mobility and channel morphology, whereas PO 4-3 uptake was most correlated to source-water characteristics. The best integrated predictor of these patterns in nutrient demand was % contributing area (the proportion of watershed area not routing through a lake). We estimate that NO3- and PO 4-3 demand returned to 50% of pre-lake conditions within 1-4-km downstream of a small headwater lake and resetting of nutrient demand was slower downstream of a larger lake set lower in a watershed. Full resetting of these nutrient cycling processes was not reached within 20-km downstream, indicating that lakes can alter stream ecosystem functioning at large spatial scales throughout mountain watersheds. ?? 2007, by the American Society of Limnology and Oceanography, Inc.

  3. Nitrate uptake varies with tide height and nutrient availability in the intertidal seaweed Fucus vesiculosus.

    PubMed

    Benes, Kylla M; Bracken, Matthew E S

    2016-10-01

    Intertidal seaweeds must cope with a suite of stressors imposed by aerial exposure at low tide, including nutrient limitation due to emersion. Seaweeds can access nutrients only when submerged, so individuals living higher compared to lower on the shore may have adaptations allowing them to acquire sufficient amounts of nutrients to survive and maintain growth. Using a combination of observations and experiments, we aimed to identify intraspecific variation in nitrate uptake rates across the intertidal distribution of F. vesiculosus, as well as test for acclimation in response to a change in tide height. We replicated our study at sites spanning nearly the entire Gulf of Maine coastline, to examine how local environmental variability may alter intraspecific variation in nitrate uptake. We found that average nitrate uptake rates were ~18% higher in upper compared to lower intertidal Fucus vesiculosus. Furthermore, we found evidence for both acclimation and adaptation to tide height during a transplant experiment. F. vesiculosus transplanted from the lower to the upper intertidal zone was characterized by increased nitrate uptake, but individuals transplanted from the upper to the lower intertidal zone retained high uptake rates. Our observations differed among Gulf of Maine regions and among time points of our study. Importantly, these differences may reflect associations between nitrate uptake rates and abiotic environmental conditions and seaweed nutrient status. Our study highlights the importance of long-term variation in ambient nutrient supply in driving intraspecific variation of seaweeds across the intertidal gradient and local and seasonal variation in ambient nutrient levels in mediating intraspecific differences.

  4. Dissolved inorganic carbon enhanced growth, nutrient uptake, and lipid accumulation in wastewater grown microalgal biofilms.

    PubMed

    Kesaano, Maureen; Gardner, Robert D; Moll, Karen; Lauchnor, Ellen; Gerlach, Robin; Peyton, Brent M; Sims, Ronald C

    2015-03-01

    Microalgal biofilms grown to evaluate potential nutrient removal options for wastewaters and feedstock for biofuels production were studied to determine the influence of bicarbonate amendment on their growth, nutrient uptake capacity, and lipid accumulation after nitrogen starvation. No significant differences in growth rates, nutrient removal, or lipid accumulation were observed in the algal biofilms with or without bicarbonate amendment. The biofilms possibly did not experience carbon-limited conditions because of the large reservoir of dissolved inorganic carbon in the medium. However, an increase in photosynthetic rates was observed in algal biofilms amended with bicarbonate. The influence of bicarbonate on photosynthetic and respiration rates was especially noticeable in biofilms that experienced nitrogen stress. Medium nitrogen depletion was not a suitable stimulant for lipid production in the algal biofilms and as such, focus should be directed toward optimizing growth and biomass productivities to compensate for the low lipid yields and increase nutrient uptake.

  5. Sudden increase in atmospheric CO2 concentration reveals strong coupling between shoot carbon uptake and root nutrient uptake in young walnut trees.

    PubMed

    Delaire, Mickaël; Frak, Ela; Sigogne, Monique; Adam, Boris; Beaujard, François; Le Roux, Xavier

    2005-02-01

    We studied the short-term (i.e., a few days) effect of a sudden increase in CO2 uptake by shoots on nutrient (NO3-, P ion, K+, Ca2+ and Mg2+) uptake by roots during vegetative growth of young walnut (Juglans nigra x J. major L.) trees. The increase in CO2 uptake was induced by a sudden increase in atmospheric CO2 concentration ([CO2]). Twelve 2-year-old trees were transplanted and grown in perlite-filled pots in a greenhouse. Rates of CO2 uptake and water loss by individual trees were determined by a branch bag method from 3 days before until 6 days after [CO2] was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system that provided non-limiting supplies of water and nutrients. Six control trees were kept in ambient [CO2] (360 ppm), and [CO2] was increased to 550 ppm for one set of three trees and to 800 ppm for another set of three trees. Before imposing the elevated [CO2] treatments, all trees exhibited similar daily water loss, CO2 uptake and nutrient uptake rates when expressed per unit leaf area to account for the tree size effect. Daily water loss rates were only slightly affected by elevated [CO2]. Carbon dioxide uptake rates greatly increased with increasing atmospheric [CO2], and nutrient uptake rates were proportional to CO2 uptake rates during the study period, except for P ion. Our results show that, despite the important carbon and nitrogen storage capacities previously observed in young walnut trees, nutrient uptake by roots is strongly coupled to carbon uptake by shoots over periods of a few days.

  6. Effects of light intensity and temperature on Cryptomonas ovata (Cryptophyceae) growth and nutrient uptake rates

    USGS Publications Warehouse

    Cloern, James E.

    1977-01-01

    Specific growth rate of Cryptomonas ovata var. palustris Pringsheim was measured in batch culture at 14 light-temperature combinations. Both the maximum growth rate (μm) and optimum light intensity (Iopt) fit an empirical function that increases exponentially with temperature up to an optimum (Topt), then declines rapidly as temperature exceeds Topt. Incorporation of these functions into Steele's growth equation gives a good estimate of specific growth rate over a wide range of temperature and light intensity. Rates of phosphate, ammonium and nitrate uptake were measured separately at 16 combinations of irradiance and temperature and following a spike addition of all starved cells initially took up nutrient at a rapid rate. This transitory surge was followed by a period of steady, substrate-saturated uptake that persisted until external nutrient concentration fell. Substrate-saturated NO3−-uptake proceeded at very slow rates in the dark and was stimulated by both increased temperature and irradiance; NH4+-uptake apparently proceeded at a basal rate at 8 and l4 C and was also stimulated by increased temperature and irradiance. Rates of NH4−-uptake were much higher than NO3−-uptake at all light-temperature combinations. Below 20 C, PO4−3-uptake was more rapid in dark than in light, but was light enhanced at 26 C.

  7. Seasonal Growth and Uptake of Nutrients by Orchardgrass Irrigated with Wastewater,

    DTIC Science & Technology

    1981-05-01

    501Herron, G.M., D.W. Grimes and I.T. Musick (1963) Effects of to 35 to 40 days during the second harvest soil moisture and nitrogen fertilization of...facsimile catalog card in Library of Congress MARC format is reproduced below. Palazzo, A.J. Seasonal growth and uptake of nutrients by orchardgrass irrigated

  8. Nutrient uptake and loss by container-grown deciduous and evergreen Rhododendron nursery plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of N fertilizer application on plant uptake and demand for other nutrients was evaluated from May 2005 to February 2006 in container-grown evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhododendron ‘Gibraltar’ (AZ). Increased N-availability incre...

  9. Nutrient uptake, biomass yield and quantitative analysis of aliphatic aldehydes in cilantro plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate the nutrient uptake, biomass production and yield of the major compounds in the essential oil of five genotypes of Coriandrum sativum L. The treatments were four accessions donated by the National Genetic Resources Advisory Council (NGRAC), U.S. Department...

  10. Low transient storage and uptake efficiencies in seven agricultural streams: implications for nutrient demand

    USGS Publications Warehouse

    Sheibley, Rich W.; Duff, John H.; Tesoriero, Anthony J.

    2014-01-01

    We used mass load budgets, transient storage modeling, and nutrient spiraling metrics to characterize nitrate (NO3−), ammonium (NH4+), and inorganic phosphorus (SRP) demand in seven agricultural streams across the United States and to identify in-stream services that may control these conditions. Retention of one or all nutrients was observed in all but one stream, but demand for all nutrients was low relative to the mass in transport. Transient storage metrics (As/A, Fmed200, Tstr, and qs) correlated with NO3− retention but not NH4+ or SRP retention, suggesting in-stream services associated with transient storage and stream water residence time could influence reach-scale NO3− demand. However, because the fraction of median reach-scale travel time due to transient storage (Fmed200) was ≤1.2% across the sites, only a relatively small demand for NO3− could be generated by transient storage. In contrast, net uptake of nutrients from the water column calculated from nutrient spiraling metrics were not significant at any site because uptake lengths calculated from background nutrient concentrations were statistically insignificant and therefore much longer than the study reaches. These results suggest that low transient storage coupled with high surface water NO3− inputs have resulted in uptake efficiencies that are not sufficient to offset groundwater inputs of N. Nutrient retention has been linked to physical and hydrogeologic elements that drive flow through transient storage areas where residence time and biotic contact are maximized; however, our findings indicate that similar mechanisms are unable to generate a significant nutrient demand in these streams relative to the loads.

  11. Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability.

    PubMed

    García-Cáceres, Cristina; Quarta, Carmelo; Varela, Luis; Gao, Yuanqing; Gruber, Tim; Legutko, Beata; Jastroch, Martin; Johansson, Pia; Ninkovic, Jovica; Yi, Chun-Xia; Le Thuc, Ophelia; Szigeti-Buck, Klara; Cai, Weikang; Meyer, Carola W; Pfluger, Paul T; Fernandez, Ana M; Luquet, Serge; Woods, Stephen C; Torres-Alemán, Ignacio; Kahn, C Ronald; Götz, Magdalena; Horvath, Tamas L; Tschöp, Matthias H

    2016-08-11

    We report that astrocytic insulin signaling co-regulates hypothalamic glucose sensing and systemic glucose metabolism. Postnatal ablation of insulin receptors (IRs) in glial fibrillary acidic protein (GFAP)-expressing cells affects hypothalamic astrocyte morphology, mitochondrial function, and circuit connectivity. Accordingly, astrocytic IR ablation reduces glucose-induced activation of hypothalamic pro-opio-melanocortin (POMC) neurons and impairs physiological responses to changes in glucose availability. Hypothalamus-specific knockout of astrocytic IRs, as well as postnatal ablation by targeting glutamate aspartate transporter (GLAST)-expressing cells, replicates such alterations. A normal response to altering directly CNS glucose levels in mice lacking astrocytic IRs indicates a role in glucose transport across the blood-brain barrier (BBB). This was confirmed in vivo in GFAP-IR KO mice by using positron emission tomography and glucose monitoring in cerebral spinal fluid. We conclude that insulin signaling in hypothalamic astrocytes co-controls CNS glucose sensing and systemic glucose metabolism via regulation of glucose uptake across the BBB.

  12. Heat Stress Decreases Levels of Nutrient-Uptake and -Assimilation Proteins in Tomato Roots

    PubMed Central

    Giri, Anju; Heckathorn, Scott; Mishra, Sasmita; Krause, Charles

    2017-01-01

    Global warming will increase root heat stress, which is already common under certain conditions. Effects of heat stress on root nutrient uptake have rarely been examined in intact plants, but the limited results indicate that heat stress will decrease it; no studies have examined heat-stress effects on the concentration of nutrient-uptake proteins. We grew Solanum lycopersicum (tomato) at 25 °C/20 °C (day/night) and then transferred some plants for six days to 35 °C /30 °C (moderate heat) or 42 °C/37 °C (severe heat) (maximum root temperature = 32 °C or 39 °C, respectively); plants were then moved back to control conditions for seven days to monitor recovery. In a second experiment, plants were grown for 15 days at 28 °C/23 °C, 32 °C/27 °C, 36 °C/31 °C, and 40 °C/35 °C (day/night). Concentrations of nutrient-uptake and -assimilation proteins in roots were determined using protein-specific antibodies and ELISA (enzyme-linked immunosorbent assay). In general, (1) roots were affected by heat more than shoots, as indicated by decreased root:shoot mass ratio, shoot vs. root %N and C, and the level of nutrient metabolism proteins vs. less sensitive photosynthesis and stomatal conductance; and (2) negative effects on roots were large and slow-to-recover only with severe heat stress (40 °C–42 °C). Thus, short-term heat stress, if severe, can decrease total protein concentration and levels of nutrient-uptake and -assimilation proteins in roots. Hence, increases in heat stress with global warming may decrease crop production, as well as nutritional quality, partly via effects on root nutrient relations. PMID:28106834

  13. Staining with 0.05% neutral red reduces nutrient uptake by wheat roots.

    PubMed

    Trolove, Stephen; Tan, Yong; Reid, Jeff

    2015-11-01

    A number of studies have used a 0.05% solution of neutral red to stain live roots so that short term root growth could be measured. These studies, which used a 5 or 10 min staining time, report no effects of the stain on plant properties such as growth, respiration, or nitrate uptake. This paper reports on two experiments conducted to determine whether this staining technique, with a 15 min stain time, affected macronutrient uptake of 6- and 7-week-old wheat (Triticum aestivum L.) plants grown in solution culture. The results showed that, compared with unstained controls, staining plants with 0.05% neutral red halted or halved nitrate uptake measured over a 4 h period the following day. Potassium uptake was also significantly reduced by staining. In the experiment with smaller plants nutrient uptake rate recovered 5 days after staining, but not in the second experiment with larger plants. Stained roots were 19% narrower than unstained roots, suggesting that the stain affected the root structure. We do not recommend the use of 0.05% neutral red staining, for wheat at least, in experiments where accurate measurement of nutrient uptake rate is important.

  14. 2-D clinorotation alters the uptake of some nutrients in Arabidopsis thaliana.

    PubMed

    Polinski, Ellen; Schueler, Oliver; Krause, Lars; Wimmer, Monika A; Hemmersbach, Ruth; Goldbach, Heiner E

    2017-02-16

    Future long-term spaceflight missions rely on bioregenerative life support systems (BLSS) in order to provide the required resources for crew survival. Higher plants provide an essential part since they supply food and oxygen and recycle carbon dioxide. There are indications that under space conditions plants might be inefficient regarding the uptake, transport and distribution of nutrients, which in turn affects growth and metabolism. Therefore, Arabidopsis thaliana (Col-0) seeds were germinated and grown for five days under fast clinorotation (2-D clinostat, 60rpm) in order to simulate microgravity. Concentrations of ten different nutrients (potassium, sulfur, phosphorus, calcium, sodium, magnesium, manganese, iron, zinc, and boron) in shoots of plants grown under reduced and normal (1g) gravity conditions were compared. A protocol was developed for the determination of different nutrients by means of inductively coupled plasma optical emission spectrometry (ICPOES), flame emission spectrometry and spectrophotometry. The concentrations of boron and sulfur were significantly decreased in clinorotated shoots, while the concentration of sodium was elevated, suggesting that altered gravity conditions differentially affected nutrient uptake. Possible mechanisms for such effects include reduced transpiration, altered expression of channels or transporters and direct effects on nutrient assimilation. The observed nutrient imbalances might have a negative impact on plant growth and nutritional quality during prolonged space missions.

  15. Scaling plant nitrogen use and uptake efficiencies in response to nutrient addition in peatlands

    SciTech Connect

    Iversen, Colleen M; Bridgham, Scott; Kellogg, Laurie E.

    2010-01-01

    Nitrogen (N) is the primary growth-limiting nutrient in many terrestrial ecosystems, and therefore plant production per unit N taken up (i.e., N use efficiency, NUE) is a fundamentally important component of ecosystem function. Nitrogen use efficiency comprises two components: N productivity (AN, plant production per peak biomass N content) and the mean residence time of N in plant biomass (MRTN). We utilized a five-year fertilization experiment to examine the manner in which increases in N and phosphorus (P) availability affected plant NUE at multiple biological scales (i.e., from leaf to community level). We fertilized a natural gradient of nutrient-limited peatland ecosystems in the Upper Peninsula of Michigan, USA, with 6 g Nm2yr1, 2 g Pm2yr1, or a combination of N and P. Our objectives were to determine how changes in carbon and N allocation within a plant to leaf and woody tissue and changes in species composition within a community, both above- and belowground, would affect (1) NUE; (2) the adaptive trade-off between the components of NUE; (3) the efficiency with which plants acquired N from the soil (N uptake efficiency); and (4) plant community production per unit soil N availability (N response efficiency, NRE). As expected, N and P addition generally increased aboveground production and N uptake. In particular, P availability strongly affected the way in which plants took up and used N. Nitrogen use efficiency response to nutrient addition was not straightforward. Nitrogen use efficiency differed between leaf and woody tissue, among species, and across the ombrotrophic minerotrophic gradient because plants and communities were adapted to maximize either AN or MRTN, but not both concurrently. Increased N availability strongly decreased plant and community N uptake efficiency, while increased P availability increased N uptake efficiency, particularly in a nitrogen-fixing shrub. Nitrogen uptake efficiency was more important in controlling overall plant

  16. Scaling plant nitrogen use and uptake efficiencies in response to nutrient addition in peatlands.

    PubMed

    Iversen, Colleen M; Bridgham, Scott D; Kellogg, Laurie E

    2010-03-01

    Nitrogen (N) is the primary growth-limiting nutrient in many terrestrial ecosystems, and therefore plant production per unit N taken up (i.e., N use efficiency, NUE) is a fundamentally important component of ecosystem function. Nitrogen use efficiency comprises two components: N productivity (A(N), plant production per peak biomass N content) and the mean residence time of N in plant biomass (MRT(N)). We utilized a five-year fertilization experiment to examine the manner in which increases in N and phosphorus (P) availability affected plant NUE at multiple biological scales (i.e., from leaf to community level). We fertilized a natural gradient of nutrient-limited peatland ecosystems in the Upper Peninsula of Michigan, USA, with 6 g N x m(-2) x yr(-1), 2 g P x m(-2) x yr(-1), or a combination of N and P. Our objectives were to determine how changes in carbon and N allocation within a plant to leaf and woody tissue and changes in species composition within a community, both above- and belowground, would affect (1) NUE; (2) the adaptive trade-off between the components of NUE; (3) the efficiency with which plants acquired N from the soil (N uptake efficiency); and (4) plant community production per unit soil N availability (N response efficiency, NRE). As expected, N and P addition generally increased aboveground production and N uptake. In particular, P availability strongly affected the way in which plants took up and used N. Nitrogen use efficiency response to nutrient addition was not straightforward. Nitrogen use efficiency differed between leaf and woody tissue, among species, and across the ombrotrophic-minerotrophic gradient because plants and communities were adapted to maximize either A(N) or MRT(N), but not both concurrently. Increased N availability strongly decreased plant and community N uptake efficiency, while increased P availability increased N uptake efficiency, particularly in a nitrogen-fixing shrub. Nitrogen uptake efficiency was more important

  17. Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution.

    PubMed

    Tschan, Martin; Robinson, Brett; Schulin, Rainer

    2008-04-01

    We investigated the extent of Sb uptake by maize (Zea mays) and sunflower (Helianthus annuus) from nutrient solutions containing concentrations from 3 to 24 mg/L of potassium antimonate, with the aim of determining the potential of Sb to enter the food chain. The maximum shoot Sb concentrations in Z. mays and H. annuus were 41 mg/kg and 77 mg/kg dry weight, respectively. There was no significant difference in Sb uptake between species. The average bioaccumulation coefficients (the plant/solution concentration quotients) were 1.02 and 1.93 for Z. mays and H. annuus, respectively. Phosphate addition did not affect plant growth or Sb uptake. Antimony uptake by both Z. mays and H. annuus is unlikely to pose a health risk to animals and humans.

  18. Plant growth-promoting rhizobacteria affect the growth and nutrient uptake of Fraxinus americana container seedlings.

    PubMed

    Liu, Fangchun; Xing, Shangjun; Ma, Hailin; Du, Zhenyu; Ma, Bingyao

    2013-05-01

    Plant growth-promoting rhizobacteria (PGPR) are important catalysts that regulate the functional properties of agricultural systems. However, there is little information on the effect of PGPR inoculation on the growth and nutrient accumulation of forest container seedlings. This study determined the effects of a growth medium inoculated with PGPR on the nutrient uptake, nutrient accumulation, and growth of Fraxinus americana container seedlings. PGPR inoculation with fertilizer increased the dry matter accumulation of the F. americana aerial parts with delayed seedling emergence time. Under fertilized conditions, the accumulation time of phosphorous (P) and potassium (K) in the F. americana aerial parts was 13 days longer due to PGPR inoculation. PGPR increased the maximum daily P and K accumulations in fertilized seedlings by 9.31 and 10.44 %, respectively, but had little impact on unfertilized ones. Regardless of fertilizer application, the root exudates, namely sugars, amino acids, and organic acids significantly increased because of PGPR inoculation. PGPR inoculation with fertilizer increased the root, shoot, and leaf yields by 19.65, 22.94, and 19.44 %, respectively, as well as the P and K contents by 8.33 and 10.60 %, respectively. Consequently, the N, P, and K uptakes increased by 19.85, 31.97, and 33.95 %, respectively. Hence, PGPR inoculation with fertilizer can be used as a bioenhancer for plant growth and nutrient uptake in forest container seedling nurseries.

  19. The relationship between light intensity and nutrient uptake kinetics in six freshwater diatoms.

    PubMed

    Shi, Pengling; Shen, Hong; Wang, Wenjing; Chen, Wenjie; Xie, Ping

    2015-08-01

    In order to find effective measures to control diatom blooms, a better understanding of the physiological characteristics of nutrient uptake in diatoms is needed. A study of P and Si-uptake kinetics for diatom species from two light regimes was conducted at low (LL), moderate (ML) and high light intensities (HL) (2, 25 and 80 μmol photons/(m(2)·sec)), respectively. The results showed that P uptake of diatoms was heavily influenced by historic light regimes. P affinity changed with growth and photosynthetic activity. The lowest half saturation constant for P uptake (Km(P)) was under HL for high-light adapted diatoms while the lowest half-saturation constant for low-light adapted diatoms was observed under LL. The Si half-saturation constant (Km(Si)) increased with increasing light intensities for pennate diatoms but decreased for centric diatoms. Diatom volumes were correlated with the maximum Si uptake rates (Vm(Si)) at HL and Km(Si) at ML and HL for six diatom species. Our results imply that when we assess the development of diatom blooms we should consider light intensity and cell volume in addition to ambient Si or P concentration. The relationship between light intensity and P-uptake suggests that we can find suitable methods to control diatom blooms on the basis of reducing phytoplankton activity of P-uptake and photosynthesis simultaneously.

  20. Modeled diversity effects on microbial ecosystem functions of primary production, nutrient uptake, and remineralization.

    PubMed

    Goebel, Nicole L; Edwards, Christopher A; Follows, Michael J; Zehr, Jonathan P

    2014-01-01

    Ecosystem-wide primary productivity generally increases with primary producer diversity, emphasizing the importance of diversity for ecosystem function. However, most studies that demonstrate this positive relationship have focused on terrestrial and aquatic benthic systems, with little attention to the diverse marine pelagic primary producers that play an important role in regulating global climate. Here we show how phytoplankton biodiversity enhances overall marine ecosystem primary productivity and other ecosystem functions using a self-organizing ecosystem model. Diversity manipulation numerical experiments reveal positive, asymptotically saturating relationships between ecosystem-wide phytoplankton diversity and functions of productivity, nutrient uptake, remineralization, and diversity metrics used to identify mechanisms shaping these relationships. Increase in productivity with increasing diversity improves modeled ecosystem stability and model robustness and leads to productivity rates that exceed expected yields primarily through niche complementarity and facilitative interactions between coexisting phytoplankton types; the composition of traits in assemblages determines the magnitude of complementarity and selection effects. While findings based on these aggregate measures of diversity effects parallel those from the majority of experimental outcomes of terrestrial and benthic biodiversity-ecosystem function studies, we combine analyses of community diversity effects and investigations of the underlying interactions among phytoplankton types to demonstrate how an increase in recycled production of non-diatoms through an increase in new production of diatoms drives this diversity-cosystem function response. We demonstrate the important role that facilitation plays in the modeled marine plankton and how this facilitative interaction could amplify future climate-driven changes in ocean ecosystem productivity.

  1. Long-term effects of sustained beef feedlot manure application on soil nutrients, corn silage yield, and nutrient uptake.

    PubMed

    Ferguson, Richard B; Nienaber, John A; Eigenberg, Roger A; Woodbury, Brian L

    2005-01-01

    A field study was initiated in 1992 to investigate the long-term impacts of beef feedlot manure application (composted and uncomposted) on nutrient accumulation and movement in soil, corn silage yield, and nutrient uptake. Two application strategies were compared: providing the annual crop nitrogen (N) requirement (N-based rate) or crop phosphorus (P) removal (P-based rate), as well as a comparison to inorganic fertilizer. Additionally, effects of a winter cover crop were evaluated. Irrigated corn (Zea mays L.) was produced annually from 1993 through 2002. Average silage yield and crop nutrient removal were highest with N-based manure treatments, intermediate with P-based manure treatments, and least with inorganic N fertilizer. Use of a winter cover crop resulted in silage yield reductions in four of ten years, most likely due to soil moisture depletion in the spring by the cover crop. However, the cover crop did significantly reduce NO3-N accumulation in the shallow vadose zone, particularly in latter years of the study. The composted manure N-based treatment resulted in significantly greater soil profile NO3-N concentration and higher soil P concentration near the soil surface. The accounting procedure used to calculate N-based treatment application rates resulted in acceptable soil profile NO3-N concentrations over the short term. While repeated annual manure application to supply the total crop N requirement may be acceptable for this soil for several years, sustained application over many years carries the risk of unacceptable soil P concentrations.

  2. Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation.

    PubMed

    Israr, Dania; Mustafa, Ghulam; Khan, Khalid Saifullah; Shahzad, Muhammad; Ahmad, Niaz; Masood, Sajid

    2016-11-01

    Phosphorus (P) availability in alkaline soils of arid and semi-arid regions is a major constraint for decreased crop productivity. Use of plant growth promoting rhizobacteria (PGPR) may enhance plant growth through the increased plant antioxidation activity. Additionally, PGPR may increase nutrient uptake by plants as a result of induced root exudation and rhizosphere acidification. The current study was aimed to investigate combined effects of P and Pesudomonas putida (PGPR) on chickpea growth with reference to antioxidative enzymatic activity and root exudation mediated plant nutrient uptake, particularly P. Half of the seeds were soaked in PGPR solution, whereas others in sterile water and latter sown in soils. Plants were harvested 8 weeks after onset of experiment and analyzed for leaf nutrient contents, antioxidant enzymes activities and organic acids concentrations. Without PGPR, P application (+P) increased various plant growth attributes, plant uptake of P and Ca, soil pH, citric acid and oxalic acid concentrations, whereas decreased the leaf POD enzymatic activity as compared to the P-deficiency. PGPR supply both under -P and +P improved the plant growth, plant uptake of N, P, and K, antioxidative activity of SOD and POD enzymes and concentrations of organic acids, whereas reduced the rhizosphere soil pH. Growth enhancement by PGPR supply was related to higher plant antioxidation activity as well as nutrient uptake of chickpea including P as a result of root exudation mediated rhizosphere acidification.

  3. Complementary nutrient effects of separately collected human faeces and urine on the yield and nutrient uptake of spinach (Spinacia oleracea).

    PubMed

    Kutu, Funso R; Muchaonyerwa, Pardon; Mnkeni, Pearson N S

    2011-05-01

    A glasshouse experiment was conducted to evaluate the combined use of separately collected human faeces and urine as fertilizer for spinach (Spinacia oleracea) production. Seven human faeces N : urine N combinations (1 : 7 to 7 : 1) each supplying 200 kg N ha(-1) were evaluated along with sole human faeces, sole urine, inorganic fertilizer and an unamended control. Complementary application of the two resources, human faeces and urine, increased fresh and dry matter yields only in treatments having high proportions of urine. Nitrogen uptake followed the same trend but the opposite trend occurred for P uptake indicating that urine was a better source of N whereas human faeces were the better source of P. Potassium uptake was not influenced by the two resources. The minimal improvement observed in the fertilizer value of human faeces when co-applied with urine suggested that co-application of the two resources may not give an added yield advantage when compared with sole human faeces.

  4. Uptake and utilization of nutrients by developing kernels of Zea mays L

    SciTech Connect

    Lyznik, L.A.

    1987-01-01

    The mechanisms involved in amino acid and sugar uptake by developing maize kernels were investigated. In the pedicel region of maize kernel, the site of nutrient unloading from phloem terminals, amino acids are accumulated in considerable amounts and undergo significant interconversion. A wide spectrum of enzymatic activities involved in the metabolism of amino acids is observed in these tissues. Subsequently, amino acids are taken up by the endosperm tissue in processes which require energy and the presence of carrier proteins. Conversely, no evidence was found that energy and carriers are involved in sugar uptake. This process of sugar uptake is not inhibited by metabolic inhibitors and shows nonsaturable kinetics, but the uptake is pH-dependent. L-glucose is taken up at a significantly reduced rate in comparison to D-glucose uptake. Based on analysis of radioactivity distribution among sugar fractions after incubations of kernels with radiolabeled D-glucose, it seems that sucrose is not efficiently resynthesized from D-glucose in the endosperm tissue. Thus, the proposed mechanism of sucrose transport involving sucrose hydrolysis in the pedicel region and subsequent resynthesis in endosperm cells may not be the main pathway. The evidence that transfer cells play an active role in D-glucose transport is presented.

  5. Nonrecirculating Hydroponic System Suitable for Uptake Studies at Very Low Nutrient Concentrations 1

    PubMed Central

    Gutschick, Vincent P.; Kay, Lou Ellen

    1991-01-01

    We describe the mechanical, electronic, hydraulic, and structural design of a nonrecirculating hydroponic system. The system is particularly suited to studies at very low nutrient concentrations, for which on-line concentration monitoring methods either do not exist or are costly and limited to monitoring relatively few individual plants. Solutions are mixed automatically to chosen concentrations, which can be set differently for every pump fed from a master supply of deionized water and nutrient concentrates. Pumping rates can be varied over a 50-fold range, up to 400 liters per day, which suffices to maintain a number of large, post-seedling plants in rapid growth at (sub)micromolar levels of N and P. The outflow of each pump is divided among as many as 12 separate root chambers. In each chamber one may monitor uptake by individual plant roots or segments thereof, by measuring nutrient depletion in batch samples of solution. The system is constructed from nontoxic materials that do not adsorb nutrient ions; no transient shifts of nitrate and phosphate concentrations are observable at the submicromolar level. Nonrecirculation of solutions limits problems of pH shifts, microbial contamination, and cumulative imbalances in unmonitored nutrients. We note several disadvantages, principally related to high consumption of deionized water and solutes. The reciprocating pumps can be constructed inexpensively, particularly by the researcher. We also report previously unattainable control of passive temperature rise of chambers exposed to full sunlight, by use of white epoxy paint. PMID:16668100

  6. The Thermodynamic Flow-Force Interpretation of Root Nutrient Uptake Kinetics: A Powerful Formalism for Agronomic and Phytoplanktonic Models.

    PubMed

    Le Deunff, Erwan; Tournier, Pierre-Henri; Malagoli, Philippe

    2016-01-01

    The ion influx isotherms obtained by measuring unidirectional influx across root membranes with radioactive or stable tracers are mostly interpreted by enzyme-substrate-like modeling. However, recent analyses from ion transporter mutants clearly demonstrate the inadequacy of the conventional interpretation of ion isotherms. Many genetically distinct carriers are involved in the root catalytic function. Parameters Vmax and Km deduced from this interpretation cannot therefore be regarded as microscopic parameters of a single transporter, but are instead macroscopic parameters (V[Formula: see text] and K[Formula: see text], apparent maximum velocity and affinity constant) that depend on weighted activities of multiple transporters along the root. The flow-force interpretation based on the thermodynamic principle of irreversible processes is an alternative macroscopic modeling approach for ion influx isotherms in which macroscopic parameters Lj (overall conductance of the root system for the substrate j) and πj (thermodynamic parameter when Jj = 0) have a straightforward meaning with respect to the biological sample studied. They characterize the efficiency of the entire root catalytic structure without deducing molecular characteristics. Here we present the basic principles of this theory and how its use can be tested and improved by changing root pre- and post-wash procedures before influx measurements in order to come as close as possible to equilibrium conditions. In addition, the constant values of Vm and Km in the Michaelis-Menten (MM) formalism of enzyme-substrate interpretation do not reflect variations in response to temperature, nutrient status or nutrient regimes. The linear formalism of the flow-force approach, which integrates temperature effect on nutrient uptake, could usefully replace MM formalism in the 1-3-dimension models of plants and phytoplankton. This formalism offers a simplification of parametrization to help find more realistic analytical

  7. The Thermodynamic Flow-Force Interpretation of Root Nutrient Uptake Kinetics: A Powerful Formalism for Agronomic and Phytoplanktonic Models

    PubMed Central

    Le Deunff, Erwan; Tournier, Pierre-Henri; Malagoli, Philippe

    2016-01-01

    The ion influx isotherms obtained by measuring unidirectional influx across root membranes with radioactive or stable tracers are mostly interpreted by enzyme-substrate-like modeling. However, recent analyses from ion transporter mutants clearly demonstrate the inadequacy of the conventional interpretation of ion isotherms. Many genetically distinct carriers are involved in the root catalytic function. Parameters Vmax and Km deduced from this interpretation cannot therefore be regarded as microscopic parameters of a single transporter, but are instead macroscopic parameters (Vmapp and Kmapp, apparent maximum velocity and affinity constant) that depend on weighted activities of multiple transporters along the root. The flow-force interpretation based on the thermodynamic principle of irreversible processes is an alternative macroscopic modeling approach for ion influx isotherms in which macroscopic parameters Lj (overall conductance of the root system for the substrate j) and πj (thermodynamic parameter when Jj = 0) have a straightforward meaning with respect to the biological sample studied. They characterize the efficiency of the entire root catalytic structure without deducing molecular characteristics. Here we present the basic principles of this theory and how its use can be tested and improved by changing root pre- and post-wash procedures before influx measurements in order to come as close as possible to equilibrium conditions. In addition, the constant values of Vm and Km in the Michaelis-Menten (MM) formalism of enzyme-substrate interpretation do not reflect variations in response to temperature, nutrient status or nutrient regimes. The linear formalism of the flow-force approach, which integrates temperature effect on nutrient uptake, could usefully replace MM formalism in the 1-3-dimension models of plants and phytoplankton. This formalism offers a simplification of parametrization to help find more realistic analytical expressions and numerical

  8. A novel nanoparticle approach for imaging nutrient uptake by soil bacteria

    NASA Astrophysics Data System (ADS)

    O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Antonopoulos, D. A.; Boyanov, M.; Durall, D. M.; Jones, M. D.; Lai, B.; O'Loughlin, E. J.; Kemner, K. M.

    2014-12-01

    The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout their habitat. Here we use a novel imaging technique with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to measure bacterial uptake of substrates of varying complexity. Cultures of two organisms differing in cell wall structure — Bacillus subtilis and Pseudomonas fluorescens — were grown in one of four ecologically relevant experimental conditions: nitrogen (N) limitation, phosphorus (P) limitation, N and P limitation, or no nutrient limitation. The cultures were then exposed to QDs with and without organic nutrients attached. X-ray fluorescence imaging was performed at 2ID-D at the Advanced Photon Source (APS) to determine the elemental distributions within both planktonic and surface-adhered (i.e, biofilms) cells. Uptake of unconjugated QDs was neglibible, and QDs conjugated to organic substrates varied depending on growth conditions and substrate, suggesting that they are a useful indicator of bacterial ecology. Cellular uptake was similar for the two bacterial species (2212 ± 273 nanoparticles per cm3 of cell volume for B. subtilis and 1682 ± 264 for P. fluorescens). On average, QD assimilation was six times greater when N or P was limiting, and cells took up about twice as much phosphoserine compared to other substrates, likely because it was the only compound providing both N and P. These results showed that regardless of their cell wall structure, bacteria can selectively take up quantifiable levels of QDs based on substrate and environmental conditions. APS

  9. Improving PMTCT Uptake in Rural South Africa

    PubMed Central

    Weiss, S. M.; Peltzer, K.; Villar-Loubet, O.; Shikwane, M. E.; Cook, R.; Jones, D. L.

    2016-01-01

    Introduction Despite the widespread availability of prevention of mother-to-child transmission (PMTCT) programs, many women in sub-Saharan Africa do not participate in PMTCT. This pilot study aimed to utilize partner participation in an intervention to support PMTCT uptake. Methods Couples (n = 239) were randomized to receive either a comprehensive couples-based PMTCT intervention or the standard of care. Results Compared to the standard of care, participants receiving the intervention increased HIV- and PMTCT-related knowledge (F1,474 = 13.94, p = .004) and uptake of PMTCT, as defined by infant medication dosing (74% vs. 46%, χ2 = 4.69, p = .03). Discussion Results indicate that increasing male attendance at antenatal clinic visits may be “necessary but not sufficient” to increase PMTCT uptake. Increasing HIV knowledge of both partners and encouraging active male participation in the PMTCT process through psychoeducational interventions may be a strategy to increase the uptake of PMTCT in South Africa. PMID:23778240

  10. Intestinal nutrient uptake measurements and tissue damage: validating the everted sleeves method.

    PubMed

    Starck, J M; Karasov, W H; Afik, D

    2000-01-01

    The reliability of methods for nutrient uptake measurements across the intestinal epithelium relies on the integrity of the mucosal epithelium and the enterocytes. We tested effects of tissue handling during the "everted sleeves method" on the length of intestinal villi, the surface magnification, the circumference of the gut, and the thickness of the muscle layer in sunbirds (Nectarinia osea), chicken (Gallus gallus), and mice (Mus domesticus). The sunbird has thin and delicate intestinal villi that are greatly affected by the everted sleeves method. After eversion and incubation, villi lost 30% of their original length. The severe tissue damage coincides with uptake measurements for glucose that were an order of magnitude lower than in other nectar-feeding (nectarivorous) birds of similar body size. Tissue handling during the everted sleeves method had significant effects on morphometric parameters of chicken and mouse intestines, but on a light-microscopical level, the tissue integrity and the cytology of the enterocytes were not altered. Therefore, we think that the everted sleeves method renders reliable and reproducible measurements of nutrient uptake in those species. We conclude that a histological evaluation is necessary to assess the reliability of the method before it is applied to adults or to the developmental stage of any species.

  11. Influence of sodium selenite on growth, nutrient utilization and selenium uptake in Cavia porcellus.

    PubMed

    Mahima; Garg, A K; Mudgal, Vishal

    2012-05-01

    A 70 day experiment on forty guinea pigs (Cavia porcellus) was conducted to find the influence of different level of sodium selenite (inorganic selenium supplementation) on growth, nutrient utilization and selenium uptake. The sodium selenite was supplemented into a basal diet at 0, 0.1, 0.2 and 0.3 ppm, respectively and the basal diet comprised of 25% ground cowpea (Vigna unguiculata) hay, 30% ground maize (Zea mays) grain, 22% ground gram (Cicer arietinum) grain, 9.5% deoiled rice (Oryza sativa) bran, 6% soybean (Glycine max) meal, 6% fish meal, 1.5% mineral mixture (without Se), ascorbic acid (200 mg kg) and 0.1 ppm Se to meet their nutrient requirements. Daily feed intake and weekly body weights were recorded. Intake and digestibility of dry matter, organic matter, ether extract, crude fiber and nitrogen-free extract as well as uptake of calcium and phosphorus, total body weight and average daily gain were similar (p>0.05) among the four groups. However, there was a trend of increase in Se absorption of the guinea pigs with the increasing levels of Se, in the groups given 0.2 and 0.3 ppm of Se. It can be concluded that requirement of Se in guinea pigs is 0.1 ppm, as supplementation of > or =0.1 ppm sodium selenite in the diet (having 0.1 ppm Se) did not enhanced their growth rate and nutrient utilization.

  12. Factors influencing the uptake of nutrients in streams within the New York City water-supply source areas.

    NASA Astrophysics Data System (ADS)

    Newbold, D.; Kaplan, L.; Bott, T.; Jackson, J.; Aufdenkampe, A.; Dow, C.

    2005-05-01

    The uptake of nutrients was measured in each of ten streams within the water supply source areas for New York City, once each year between 2000 and 2002. Uptake lengths were estimated from the conservative-tracer-corrected downstream attenuation of short-term (1-2 h) nutrient releases. Uptake lengths correlated with stream size and were converted to uptake velocities (Vf) for further analysis. Vf of phosphate, with a mean of 0.018 mm/s, fit Michaelis-Menten uptake kinetics with a half-saturation of 7 μg/L background phosphate. Vf of ammonium, with a mean of 0.58 mm/s, did not correlate with background ammonium concentration, but fit an uptake curve that used total dissolved nitrogen as the substrate, with a half-saturation of 1 mg/L. Vf of glucose and arabinose were not related to background concentrations. Vf for all four nutrients correlated with community respiration (CR) from diel oxygen variation. For phosphorus uptake, however, CR was collinear with background phosphorus. Vf for ammonium correlated with the macroinvertebrate-based Water Quality Score and Vf for both ammonium and phosphate correlated with some molecular tracers of anthropogenic sources. These results point to nutrient uptake as a sensitive integrator of water quality, ecosystem metabolism, and community structure.

  13. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake.

    PubMed

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Regvar, Marjana

    2006-01-01

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment.

  14. Cation Uptake and Allocation by Red Pine Seedlings under Cation-Nutrient Stress in a Column Growth Experiment

    SciTech Connect

    Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.; Harsh, James B.; Gill, Richard; Thomashow, Linda; Dohnalkova, Alice; Stacks, Daryl; Letourneau, Melissa; Keller, Chester K.

    2014-01-10

    Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months of plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.

  15. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  16. Approaches in the Determination of Plant Nutrient Uptake and Distribution in Space Flight Conditions

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, Mark

    1998-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which may impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the nuclides Ca45 and Fe59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  17. Optimal allocation of building blocks between nutrient uptake systems in a microbe.

    PubMed

    van den Berg, Hugo A; Kiselev, Yuri N; Orlov, Michael V

    2002-03-01

    A bacterial cell must distribute its molecular building blocks among various types of nutrient uptake systems. If the microbe is to maximize its average growth rate, this allocation of building blocks must be adjusted to the environmental availabilities of the various nutrients. The adjustments can be found from growth balancing considerations. We give a full proof of optimality and uniqueness of the optimal allocation regime for a simple model of microbial growth and internal stores kinetics. This proof suggests likely candidates for optimal control regimes in the case of a more realistic model. These candidate regimes differ with respect to the information that the cell's control system must have access to. We pay particular attention to one of the three candidates, a feedback regime based on a cellular control system that monitors only internal reserve densities. We show that allocation converges rapidly to balanced growth under this control regime.

  18. Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases.

    PubMed

    Carter, Laura J; Williams, Mike; Böttcher, Christine; Kookana, Rai S

    2015-10-20

    The detection of a range of active pharmaceutical ingredients (APIs) in the soil environment has led to a number of publications demonstrating uptake by crops, however very few studies have explored the potential for impacts on plant development as a result of API uptake. This study investigated the effect of carbamazepine and verapamil (0.005-10 mg/kg) on a range of plant responses in zucchini (Cucurbita pepo). Uptake increased in a dose-dependent manner, with maximum leaf concentrations of 821.9 and 2.2 mg/kg for carbamazepine and verapamil, respectively. Increased carbamazepine uptake by zucchini resulted in a decrease in above (<60%) and below (<30%) ground biomass compared to the controls (p < 0.05). At soil concentrations >4 mg/kg the mature leaves suffered from burnt edges and white spots as well as a reduction in photosynthetic pigments but no such effects were seen for verapamil. For both APIs, further investigations revealed significant differences in the concentrations of selected plant hormones (auxins, cytokinins, abscisic acid and jasmonates), and in the nutrient composition of the leaves in comparison to the controls (p < 0.05). This is some of the first research to demonstrate that the exposure of plants to APIs is likely to cause impacts on plant development with unknown implications.

  19. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions

    NASA Astrophysics Data System (ADS)

    Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; de Neve, Stefaan

    2016-09-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota.

  20. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions

    PubMed Central

    Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; De Neve, Stefaan

    2016-01-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota. PMID:27605154

  1. Plasticity in N uptake among sympatric species with contrasting nutrient acquisition strategies in a tropical forest.

    PubMed

    Andersen, Kelly M; Mayor, Jordan R; Turner, Benjamin L

    2017-03-06

    Nitrogen (N) availability influences the productivity and distribution of plants in tropical montane forests. Strategies to acquire soil N, such as direct uptake of organic compounds or associations with root symbionts to enhance N acquisition in exchange for carbon (C), may facilitate plant species coexistence and ecosystem N retention. Alternatively, rapid microbial turnover of soil N forms in tropical soils might promote flexible plant N-uptake strategies and mediate species coexistence. We tested whether sympatric plant species with divergent root symbiont associations, and therefore potentially different nutrient acquisition strategies, partition chemical forms of N or show plasticity in N uptake in a tropical pre-montane forest in Panama. We traced the movement of three (15) N forms into soil pools, microbes, and seedlings of eleven species differing in root traits. Seedlings were grown in a split-plot field transplant experiment, with plots receiving equimolar mixtures of ammonium, nitrate, and glycine, with one form isotopically labeled in each block. After 48-hours, more (15) N was recovered in microbes than in plants, while all pools (extractable organic and inorganic N, microbial biomass, and leaves) contained greater amounts of (15) N from nitrate than from ammonium or glycine. Furthermore, (13) C from dual-labeled glycine was not recovered in the leaves of any seedlings, suggesting the studied species do not directly take up organic N or transform organic N prior to translocation to leaves. Nitrogen uptake differed by root symbiont group only for nitrate, with greater (15) N recovery in plants with arbuscular mycorrhizal (AM) associations or proteoid roots compared to orchids. Some root trait groups differed in (15) N recovery among N forms, with greater nitrate uptake than ammonium or glycine by AM-associated and N2 -fixing plants. However, only five of eleven species showed differences in uptake among N forms. Our results indicate flexibility in

  2. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse

    NASA Astrophysics Data System (ADS)

    den Haan, Joost; Huisman, Jef; Brocke, Hannah J.; Goehlich, Henry; Latijnhouwers, Kelly R. W.; van Heeringen, Seth; Honcoop, Saskia A. S.; Bleyenberg, Tanja E.; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J. A.; Visser, Petra M.

    2016-06-01

    Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs.

  3. Nitrogen and phosphorus uptake rates of different species from a coral reef community after a nutrient pulse

    PubMed Central

    den Haan, Joost; Huisman, Jef; Brocke, Hannah J.; Goehlich, Henry; Latijnhouwers, Kelly R. W.; van Heeringen, Seth; Honcoop, Saskia A. S.; Bleyenberg, Tanja E.; Schouten, Stefan; Cerli, Chiara; Hoitinga, Leo; Vermeij, Mark J. A.; Visser, Petra M.

    2016-01-01

    Terrestrial runoff after heavy rainfall can increase nutrient concentrations in waters overlying coral reefs that otherwise experience low nutrient levels. Field measurements during a runoff event showed a sharp increase in nitrate (75-fold), phosphate (31-fold) and ammonium concentrations (3-fold) in waters overlying a fringing reef at the island of Curaçao (Southern Caribbean). To understand how benthic reef organisms make use of such nutrient pulses, we determined ammonium, nitrate and phosphate uptake rates for one abundant coral species, turf algae, six macroalgal and two benthic cyanobacterial species in a series of laboratory experiments. Nutrient uptake rates differed among benthic functional groups. The filamentous macroalga Cladophora spp., turf algae and the benthic cyanobacterium Lyngbya majuscula had the highest uptake rates per unit biomass, whereas the coral Madracis mirabilis had the lowest. Combining nutrient uptake rates with the standing biomass of each functional group on the reef, we estimated that the ammonium and phosphate delivered during runoff events is mostly taken up by turf algae and the two macroalgae Lobophora variegata and Dictyota pulchella. Our results support the often proposed, but rarely tested, assumption that turf algae and opportunistic macroalgae primarily benefit from episodic inputs of nutrients to coral reefs. PMID:27353576

  4. Elemental uptake and distribution of nutrients in avocado mesocarp and the impact of soil quality.

    PubMed

    Reddy, Mageshni; Moodley, Roshila; Jonnalagadda, Sreekanth B

    2014-07-01

    The distribution of 14 elements (both essential and non-essential) in the Hass and Fuerte cultivars of avocados grown at six different sites in KwaZulu-Natal, South Africa, was investigated. Soils from the different sites were concurrently analysed for elemental concentration (both total and exchangeable), pH, organic matter and cation exchange capacity. In both varieties of the fruit, concentrations of the elements Cd, Co, Cr, Pb and Se were extremely low with the other elements being in decreasing order of Mg > Ca > Fe > Al > Zn > Mn > Cu > Ni > As. Nutritionally, avocados were found to be a good dietary source of the micronutrients Cu and Mn. In soil, Pb concentrations indicated enrichment (positive geoaccumuluation indices) but this did not influence uptake of the metal by the plant. Statistical analysis was done to evaluate the impact of soil quality parameters on the nutrient composition of the fruits. This analysis indicated the prevalence of complex metal interactions at the soil-plant interface that influenced their uptake by the plant. However, the plant invariably controlled metal uptake according to metabolic needs as evidenced by their accumulation and exclusion.

  5. Uptake, release, and absorption of nutrients into the marine environment by the green mussel (Perna viridis).

    PubMed

    Srisunont, Chayarat; Babel, Sandhya

    2015-08-15

    The nutrient uptake and release by the mussels in relation with amount of food consumption are emphasised in this research. Results of the study demonstrate that about 16% of the total mass dry weight food consumed by the mussels was released as faeces. The depositions of particulate carbon, nitrogen, and phosphorus in mussel faeces were found to be 26.3, 5.7, and 0.6mg/day/indv respectively. Soluble inorganic nutrients such as NH4(+)-N (2.5mg/day/indv), and PO4(3-)-P (0.6mg/day/indv) were also released as mussel excretion. The nutrient absorption efficiency for the green mussel body was found to be 65.1% for carbon, 62.1% for nitrogen, and 79.2% for phosphorus. Subsequently, green mussels can remove particulate carbon, nitrogen and phosphorus at 108.1, 13.5, and 4.6mg/day/indv from aquatic systems. Finally, the results can help in estimating the carrying capacity of mussel cultivation without deteriorating the water quality in marine ecosystems.

  6. Effects of Harvesting Intensity and Herbivory by White-tailed Deer on Vegetation and Nutrient Uptake in a Northern Hardwood Forest

    NASA Astrophysics Data System (ADS)

    Yorks, T. E.; Leopold, D. J.; Raynal, D. J.; Murdoch, P. S.; Burns, D. A.

    2003-12-01

    We quantified the response of vegetation and nutrient uptake in a northern hardwood forest in southeastern New York for three to four years after three intensities of harvesting: clearcutting, heavy timber stand improvement (TSI), light TSI (97, 29, and 10% basal area reductions, respectively). We also quantified effects of white-tailed deer (Odocoileus virginianus) herbivory on nutrient retention by vegetation. Total biomass and nutrient accumulation in vegetation was higher after TSI than clearcutting in the first two years but was highest in the fenced clearcut in subsequent years, indicating that TSI or partial harvesting is a viable management tool for harvesting timber while consistently maintaining high rates of nutrient retention. After clearcutting, biomass and nutrient retention were initially dominated by woody stems <1.4 m tall and herbaceous vegetation, but saplings 0.1-5.0 cm DBH became the most important contributors to biomass and nutrient accumulation within four years. However, after both intensities of TSI, trees >5.0 cm DBH continued to account for most biomass and nutrient accumulation whereas understory vegetation accumulated little biomass or nutrients. Heavy TSI resulted in increased regeneration of only two tree species (Acer pensylvanicum, Fagus grandifolia), but clearcutting allowed these two species, mature forest species (A. saccharum, Betula alleghaniensis), and the early successional Prunus pensylvanica to regenerate. Several early successional shrub and herbaceous species were also important to nutrient retention after clearcutting, including Polygonum cilinode, Rubus spp., and Sambucus racemosa. Herbivory by white-tailed deer dramatically reduced biomass and nutrient accumulation by woody stems <5 cm DBH after clearcutting (5.5 vs. 0.7 Mg biomass/ha and 30.4 vs. 6.3 kg N/ha on fenced and unfenced clearcut sites, respectively, after four years), indicating the important influence this herbivore can have on nutrient retention in

  7. Water uptake and nutrient concentrations under a floodplain oak savanna during a non-flood period, lower Cedar River, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Jacobson, P.

    2009-01-01

    Floodplains during non-flood periods are less well documented than when flooding occurs, but non-flood periods offer opportunities to investigate vegetation controls on water and nutrient cycling. In this study, we characterized water uptake and nutrient concentration patterns from 2005 to 2007 under an oak savanna located on the floodplain of the Cedar River in Muscatine County, Iowa. The water table ranged from 0.5 to 2.5 m below ground surface and fluctuated in response to stream stage, plant water demand and rainfall inputs. Applying the White method to diurnal water table fluctuations, daily ET from groundwater averaged more than 3.5 mm/day in June and July and approximately 2 mm/day in May and August. Total annual ET averaged 404 mm for a growing season from mid-May to mid-October. Savanna groundwater concentrations of nitrate-N, ammonium-N, and phosphate-P were very low (mean <0.18, <0.14, <0.08 mg/l, respectively), whereas DOC concentrations were high (7.1 mg/l). Low concentrations of N and P were in contrast to high nutrient concentrations in the nearby Cedar River, where N and P averaged 7.5 mg/ l and 0.13, respectively. In regions dominated by intensive agriculture, study results document valuable ecosystem services for native floodplain ecosystems in reducing watershed-scale nutrient losses and providing an oasis for biological complexity. Improved understanding of the environmental conditions of regionally significant habitats, including major controls on water table elevations and water quality, offers promise for better management aimed at preserving the ecology of these important habitats. Copyright ?? 2009 John Wiley & Sons, Ltd.

  8. Effect of organic selenium supplementation on growth, Se uptake, and nutrient utilization in guinea pigs.

    PubMed

    Chaudhary, Mahima; Garg, Anil Kumar; Mittal, Ganesh Kumar; Mudgal, Vishal

    2010-02-01

    Forty weaned male guinea pigs (Cavia porcellus) of 152.6 +/- 7.96 g mean body weight were divided into four equal groups and fed a common basal diet comprised of 25% ground cowpea (Vigna unguiculata) hay, 30% ground maize (Zea mays) grain, 22% ground gram (Cicer arietinum) grain, 9.5% deoiled rice (Oryza sativa) bran, 6% soybean (Glycine max) meal, 6% fish meal, 1.5% mineral mixture (without Se), and ascorbic acid at 200 mg/kg to meet their nutrient requirements along with 0, 0.1, 0.2, and 0.3 ppm of organic selenium (Se) in groups I, II, III, and IV, respectively. Experimental feeding lasted for a period of 10 weeks, during which, daily feed intake and weekly body weights were recorded. Intake and digestibility of dry matter, organic matter, ether extract, crude fiber, and nitrogen-free extract as well as uptake of calcium and phosphorus were similar (P > 0.05) among the four groups. Feed:gain ratio was also similar (P > 0.05) in the four groups. However, digestibility of crude protein was significantly (P < 0.001) higher in group II supplemented with 0.1 ppm organic Se as compared to other three group. Intake and absorption of Se was significantly (P < 0.001) higher in all the Se supplemented groups as compared to control group. Average daily gain (ADG) was significantly (P < 0.05) higher in group II (3.16 g/day) and III (3.38 g/day) as compared to group I (2.88 g/day). However, ADG in group IV (supplemented 0.3 ppm organic Se) was significantly (P < 0.05) lower (2.83 g/day) than group II and III, but comparable (P > 0.05) to group I. Findings of the present experiment suggests that Se requirements of guinea pigs are > or =0.2 ppm, as supplementation of 0.1 ppm organic Se in the diet (having 0.1 ppm Se) not only enhanced their growth rate but also improved the protein utilization.

  9. Toward a universal mass-momentum transfer relationship for predicting nutrient uptake and metabolite exchange in benthic reef communities

    NASA Astrophysics Data System (ADS)

    Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin

    2016-09-01

    Here we synthesize data from previous field and laboratory studies describing how rates of nutrient uptake and metabolite exchange (mass transfer) are related to form drag and bottom stresses (momentum transfer). Reanalysis of this data shows that rates of mass transfer are highly correlated (r2 ≥ 0.9) with the root of the bottom stress (τbot0.4) under both waves and currents and only slightly higher under waves (~10%). The amount of mass transfer that can occur per unit bottom stress (or form drag) is influenced by morphological features ranging anywhere from millimeters to meters in scale; however, surface-scale roughness (millimeters) appears to have little effect on actual nutrient uptake by living reef communities. Although field measurements of nutrient uptake by natural reef communities agree reasonably well with predictions based on existing mass-momentum transfer relationships, more work is needed to better constrain these relationships for more rugose and morphologically complex communities.

  10. Improving representation of nitrogen uptake, allocation, and carbon assimilation in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ghimire, B.; Riley, W. J.; Koven, C.

    2013-12-01

    Nitrogen is the most important nutrient limiting plant carbon assimilation and growth, and is required for production of photosynthetic enzymes, growth and maintenance respiration, and maintaining cell structure. The forecasted rise in plant available nitrogen through atmospheric nitrogen deposition and the release of locked soil nitrogen by permafrost thaw in high latitude ecosystems is likely to result in an increase in plant productivity. However a mechanistic representation of plant nitrogen dynamics is lacking in earth system models. Most earth system models ignore the dynamic nature of plant nutrient uptake and allocation, and further lack tight coupling of below- and above-ground processes. In these models, the increase in nitrogen uptake does not translate to a corresponding increase in photosynthesis parameters, such as maximum Rubisco capacity and electron transfer rate. We present an improved modeling framework implemented in the Community Land Model version 4.5 (CLM4.5) for dynamic plant nutrient uptake, and allocation to different plant parts, including leaf enzymes. This modeling framework relies on imposing a more realistic flexible carbon to nitrogen stoichiometric ratio for different plant parts. The model mechanistically responds to plant nitrogen uptake and leaf allocation though changes in photosynthesis parameters. We produce global simulations, and examine the impacts of the improved nitrogen cycling. The improved model is evaluated against multiple observations including TRY database of global plant traits, nitrogen fertilization observations and 15N tracer studies. Global simulations with this new version of CLM4.5 showed better agreement with the observations than the default CLM4.5-CN model, and captured the underlying mechanisms associated with plant nitrogen cycle.

  11. Effects of elevated CO/sub 2/ and nutrient stress on nitrogen and phosphorus uptake and use efficiencies

    SciTech Connect

    Cure, J.D.; Israel, D.W.; Rufty, T.W.

    1987-04-01

    Earlier they reported that non-nodulating Lee soybeans growing in complete nutrient solution showed decreased nutrient uptake efficiency (mg N or P/g root) at early pod fill when exposed to elevated CO/sub 2/. In order to look at CO/sub 2//nutrient interactions over time, plants were grown in growth chambers with nutrient solutions containing 10 mM N/1 mM P (controls) or 10 mM N/0.1 mM P (low P) or 0.5 mM N/1 mMP (low N) and exposed to either 350 or 700 ..mu..L/L CO/sub 2/. Uptake efficiencies for N and P of the control plants showed a pronounced positive response to high CO/sub 2/ in early growth stages, which diminished with time and then became negative. This trend was also present for the low N and low P plants. Nutrient use efficiency, however, was increased by day 7 (first harvest) by high CO/sub 2/ and the effect was sustained through the vegetative period. The N and P stresses produced contrasting responses: low P availability caused an increase in P use efficiency, whereas low N caused a decrease in N use efficiency. These effects resulted from P uptake beyond the requirement for growth, a pattern not observed for N uptake.

  12. Inhibition of nitrification in municipal wastewater-treating photobioreactors: Effect on algal growth and nutrient uptake.

    PubMed

    Krustok, I; Odlare, M; Truu, J; Nehrenheim, E

    2016-02-01

    The effect of inhibiting nitrification on algal growth and nutrient uptake was studied in photobioreactors treating municipal wastewater. As previous studies have indicated that algae prefer certain nitrogen species to others, and because nitrifying bacteria are inhibited by microalgae, it is important to shed more light on these interactions. In this study allylthiourea (ATU) was used to inhibit nitrification in wastewater-treating photobioreactors. The nitrification-inhibited reactors were compared to control reactors with no ATU added. Microalgae had higher growth in the inhibited reactors, resulting in a higher chlorophyll a concentration. The species mix also differed, with Chlorella and Scenedesmus being the dominant genera in the control reactors and Cryptomonas and Chlorella dominating in the inhibited reactors. The nitrogen speciation in the reactors after 8 days incubation was also different in the two setups, with N existing mostly as NH4-N in the inhibited reactors and as NO3-N in the control reactors.

  13. Liquid Organic Fertilizers for Sustainable Agriculture: Nutrient Uptake of Organic versus Mineral Fertilizers in Citrus Trees.

    PubMed

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Bermejo, Almudena; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    The main objective of this study was to compare the performance of two liquid organic fertilizers, an animal and a plant-based fertilizer, with mineral fertilization on citrus trees. The source of the fertilizer (mineral or organic) had significant effect in the nutritional status of the organic and conventionally managed mandarins. Nutrient uptake, vegetative growth, carbohydrate synthesis and soil characteristics were analyzed. Results showed that plants fertilized with animal based liquid fertilizers exhibited higher total biomass with a more profuse development of new developing organs (leaves and fibrous roots). Liquid organic fertilization resulted in an increased uptake of macro and micronutrients compared to mineral fertilized trees. Moreover, organic fertilization positively affected the carbohydrate content (fructose, glucose and sucrose) mainly in summer flush leaves. Liquid organic fertilization also resulted in an increase of soil organic matter content. Animal-based fertilizer, due to intrinsic composition, increased total tree biomass and carbohydrate leaves content, and led to lower soil nitrate concentration and higher P and Mg exchangeable in soil extract compared to vegetal-based fertilizer. Therefore, liquid organic fertilizers could be used as an alternative to traditional mineral fertilization in drip irrigated citrus trees.

  14. Liquid Organic Fertilizers for Sustainable Agriculture: Nutrient Uptake of Organic versus Mineral Fertilizers in Citrus Trees

    PubMed Central

    Martínez-Alcántara, Belén; Martínez-Cuenca, Mary-Rus; Bermejo, Almudena; Legaz, Francisco; Quiñones, Ana

    2016-01-01

    The main objective of this study was to compare the performance of two liquid organic fertilizers, an animal and a plant-based fertilizer, with mineral fertilization on citrus trees. The source of the fertilizer (mineral or organic) had significant effect in the nutritional status of the organic and conventionally managed mandarins. Nutrient uptake, vegetative growth, carbohydrate synthesis and soil characteristics were analyzed. Results showed that plants fertilized with animal based liquid fertilizers exhibited higher total biomass with a more profuse development of new developing organs (leaves and fibrous roots). Liquid organic fertilization resulted in an increased uptake of macro and micronutrients compared to mineral fertilized trees. Moreover, organic fertilization positively affected the carbohydrate content (fructose, glucose and sucrose) mainly in summer flush leaves. Liquid organic fertilization also resulted in an increase of soil organic matter content. Animal-based fertilizer, due to intrinsic composition, increased total tree biomass and carbohydrate leaves content, and led to lower soil nitrate concentration and higher P and Mg exchangeable in soil extract compared to vegetal-based fertilizer. Therefore, liquid organic fertilizers could be used as an alternative to traditional mineral fertilization in drip irrigated citrus trees. PMID:27764099

  15. Oxygen, sulphide and nutrient uptake of the mangrove mud clam Anodontia edentula (Family: Lucinidae).

    PubMed

    Lebata, M J

    2001-11-01

    Oxygen, sulphide and nutrient (ammonia, nitrite and phosphate) uptake of Anodontia edentula was measured. Oxygen and sulphide were measured from sealed containers provided with 1 l fresh mangrove mud (sulphide source) and seawater (oxygen source) with two treatments (with and without clam) at 16 replicates each. Oxygen, sulphide and other parameters were measured at days 1 (initial), 3 and 5 (final). Nutrients were measured from containers filled with 1.5 l wastewater from a milkfish broodstock tank with two treatments (with and without clam) at eight replicates each. Ammonia, NO2 and P04 were measured at days 0 (initial) 3, 6, 9 and 12 (final). Results showed significantly decreasing oxygen and sulphide concentrations in treatment with clams (ANOVA, p < 0.001). A significantly higher ammonia concentration (ANOVA, p < 0.05) was observed in treatment with clams while no significant difference was observed in nitrite and phosphate between the two treatments. A decreasing ammonia and an increasing nitrite trend was also observed in both treatments starting at day 3.

  16. High intraspecific ability to adjust both carbon uptake and allocation under light and nutrient reduction in Halimium halimifolium L.

    PubMed

    Wegener, Frederik; Beyschlag, Wolfram; Werner, Christiane

    2015-01-01

    The allocation of recently assimilated carbon (C) by plants depends on developmental stage and on environmental factors, but the underlying mechanisms are still a matter of debate. In the present study, we investigated the regulation of C uptake and allocation and their adjustments during plant growth. We induced different allocation strategies in the Mediterranean shrub Halimium halimifolium L. by a reduction of light (Low L treatment) and nutrient availability (Low N treatment) and analyzed allocation parameters as well as morphological and physiological traits for 15 months. Further, we conducted a (13)CO2 pulse-labeling and followed the way of recently assimilated carbon to eight different tissue classes and respiration for 13 days. The plant responses were remarkably distinct in our study, with mainly morphological/physiological adaptions in case of light reduction and adjustment of C allocation in case of nutrient reduction. The transport of recently assimilated C to the root system was enhanced in amount (c. 200%) and velocity under nutrient limited conditions compared to control plants. Despite the 57% light reduction the total biomass production was not affected in the Low L treatment. The plants probably compensated light reduction by an improvement of their ability to fix C. Thus, our results support the concept that photosynthesis is, at least in a medium term perspective, influenced by the C demand of the plant and not exclusively by environmental factors. Finally, our results indicate that growing heterotrophic tissues strongly reduce the C reflux from storage and structural C pools and therefore enhance the fraction of recent assimilates allocated to respiration. We propose that this interruption of the C reflux from storage and structural C pools could be a regulation mechanism for C translocation in plants.

  17. High intraspecific ability to adjust both carbon uptake and allocation under light and nutrient reduction in Halimium halimifolium L.

    PubMed Central

    Wegener, Frederik; Beyschlag, Wolfram; Werner, Christiane

    2015-01-01

    The allocation of recently assimilated carbon (C) by plants depends on developmental stage and on environmental factors, but the underlying mechanisms are still a matter of debate. In the present study, we investigated the regulation of C uptake and allocation and their adjustments during plant growth. We induced different allocation strategies in the Mediterranean shrub Halimium halimifolium L. by a reduction of light (Low L treatment) and nutrient availability (Low N treatment) and analyzed allocation parameters as well as morphological and physiological traits for 15 months. Further, we conducted a 13CO2 pulse-labeling and followed the way of recently assimilated carbon to eight different tissue classes and respiration for 13 days. The plant responses were remarkably distinct in our study, with mainly morphological/physiological adaptions in case of light reduction and adjustment of C allocation in case of nutrient reduction. The transport of recently assimilated C to the root system was enhanced in amount (c. 200%) and velocity under nutrient limited conditions compared to control plants. Despite the 57% light reduction the total biomass production was not affected in the Low L treatment. The plants probably compensated light reduction by an improvement of their ability to fix C. Thus, our results support the concept that photosynthesis is, at least in a medium term perspective, influenced by the C demand of the plant and not exclusively by environmental factors. Finally, our results indicate that growing heterotrophic tissues strongly reduce the C reflux from storage and structural C pools and therefore enhance the fraction of recent assimilates allocated to respiration. We propose that this interruption of the C reflux from storage and structural C pools could be a regulation mechanism for C translocation in plants. PMID:26300906

  18. Irrigation frequency during container production alters Rhodendron growth, nutrient uptake, and flowering after transplanting into a landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of irrigation frequency (same amount of water per day given at different times) and nitrogen (N) fertilizer application rate during container on nutrient uptake, growth (biomass) and flowering of evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhod...

  19. Irrigation frequency alters nutrient uptake in container-grown Rhododendron plants grown with different rates of nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of irrigation frequency (same amount of water per day given at different times) on nutrient uptake of container-grown evergreen Rhododendron ‘P.J.M. Compact’ (PJM) and ‘English Roseum’ (ER) and deciduous Rhododendron ‘Gibraltar’ (AZ) grown with different rates of nitrogen (N) fertilize...

  20. Effects of acidic deposition on nutrient uptake, nutrient cycling and growth processes of vegetation in the spruce-fir ecosystem

    SciTech Connect

    McLaughlin, S.B.; Garten, C.T.; Wullschleger, S.D.

    1996-10-16

    This report summarizes progress in three years of field research designed to evaluate biological and chemical indicators of the current and future health of the Southern Appalachian spruce-fir ecosystem. The emphasis of this research has been on the identification and understanding of mechanisms through which current levels of acidic deposition are impacting ecosystem processes. The identification of these principal mechanisms and key biological indicators of change was designed to improve our capabilities to detect, monitor, and assess the effects of air quality regulations and attendant future air quality changes on ecosystem response. Individual research tasks focused on the following research areas: (1) the significance of foliar uptake of atmospheric sources of nitrogen in relationship to plant utilization of N from available soil reserves; (2) linkages between atmospheric inputs to the soil surface, solution chemistry, and decomposition in the upper organic soil horizons; (3) effects of soil solution chemistry on uptake of cations and aluminum by fine roots; and (4) the effects of varying rates of calcium supply on carbon metabolism of Fraser fir and red spruce, and the relationship between calcium levels in wood cells and integrity of wood formed in bole and branches. Each of the individual tasks was designed to focus upon a mechanism or process that we consider critical to understanding chemical and biological linkages. These linkages will be important determinants in understanding the basis of past and potential future responses of the high elevation Southern Appalachian Forest to acidic deposition and other co-occurring environmental stresses. This report contains (1) background and rationale for the research undertaken in 1992-94; (2) a summary of principal research findings; (3) publications from this research; and (4) characterization of data sets produced by this research which will be the basis of future research, analyses and/or publications.

  1. A H+-ATPase That Energizes Nutrient Uptake during Mycorrhizal Symbioses in Rice and Medicago truncatula[C][W][OPEN

    PubMed Central

    Wang, Ertao; Yu, Nan; Bano, S. Asma; Liu, Chengwu; Miller, Anthony J.; Cousins, Donna; Zhang, Xiaowei; Ratet, Pascal; Tadege, Million; Mysore, Kirankumar S.; Downie, J. Allan; Murray, Jeremy D.; Oldroyd, Giles E.D.; Schultze, Michael

    2014-01-01

    Most plant species form symbioses with arbuscular mycorrhizal (AM) fungi, which facilitate the uptake of mineral nutrients such as phosphate from the soil. Several transporters, particularly proton-coupled phosphate transporters, have been identified on both the plant and fungal membranes and contribute to delivering phosphate from fungi to plants. The mechanism of nutrient exchange has been studied in plants during mycorrhizal colonization, but the source of the electrochemical proton gradient that drives nutrient exchange is not known. Here, we show that plasma membrane H+-ATPases that are specifically induced in arbuscule-containing cells are required for enhanced proton pumping activity in membrane vesicles from AM-colonized roots of rice (Oryza sativa) and Medicago truncatula. Mutation of the H+-ATPases reduced arbuscule size and impaired nutrient uptake by the host plant through the mycorrhizal symbiosis. Overexpression of the H+-ATPase Os-HA1 increased both phosphate uptake and the plasma membrane potential, suggesting that this H+-ATPase plays a key role in energizing the periarbuscular membrane, thereby facilitating nutrient exchange in arbusculated plant cells. PMID:24781115

  2. The effects of weed-crop competition on nutrient uptake as affected by crop rotation and fertilizers.

    PubMed

    Mohammaddoust-E-Chamanabad, Hamid Reza; Asghari, Ali; Tulikov, Aleksander Mikhailovic

    2007-11-15

    A field study at the Agricultural University of Timiriazev, Moscow, was conducted to determine the effect of crop rotation and Long-term fertilizer application on differences in the competitive ability of spring barley and weeds to nutrient uptake in 2004 and 2005. Spring barley was cultivated in continuous and in crop rotation with winter rye, potato, clover, flax and fallow, with and without NPK application since 1912. Spring barley, especially in no fertilizer plots grown in crop rotation has greater dry mass than spring barley grown in continuous. While dry weed mass markedly decreased in crop rotation. Decrease dry weeds mass was greater when NPK had applied. The statistical analyses show that when spring barley grew in competition with weeds in the no fertilizer plots, crop rotation significantly increased nutrient content in spring barley, but when fertilizer applied the content of N, P2O5 and K2O in barley did not change. Lowest weeds nutrient content observed where soil fertility was increased by crop rotation and NPK application. Crop rotation significantly increased total nutrient uptake of soils by spring barley, but decreased total nutrient uptake by weeds.

  3. The effect of titanium amendment in N-withholding nutrient solution on physiological and photosynthesis attributes and micronutrient uptake of tomato.

    PubMed

    Haghighi, Maryam; Heidarian, Salman; Teixeira da Silva, Jaime A

    2012-12-01

    Titanium (Ti) is a beneficial element that promotes growth and biomass production although the mechanism by which this improvement takes place is still unclear, as are other effects on plants, although it is believed that Ti can compensate for N deficiency. To prove this hypothesis, a hydroponic experiment was designed to investigate the effect of adding Ti to a nutrient solution on the nutrient uptake of tomato (Lycopersicon esculentum L.) by withholding N within the nutrient solution (NS) by 25 % (NS2) and by 50 % (NS1). Ti was added at 1 and 2 mg L⁻¹. When Ti was added to nutrient solution, the elemental concentration in tomato changed significantly: K, Ca, Fe, and Zn decreased while Ti increased. As the concentration of N in nutrient solution decreased, the Ca and Ti concentration of tomato leaves decreased and the K, Mn, Fe, Cu, and Zn concentration increased. As the N concentration in nutrient solution increased, the Ca concentration decreased although the application of Ti compensated for Ca concentration in NS1. All the photosynthetic attributes and physiological characteristics, including flower induction, decreased when the N concentration of NS decreased by 50 %, although this decrease could be compensated by applying 1 mg L⁻¹ Ti. This has valuable and practical applications and implications for tomato hydroponic culture.

  4. Plant uptake of cations under nutrient limitation: An environmental tracer study using Ca/Sr and K/Rb ratios

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Keller, C. K.; Stacks, D.; Grant, M.; Harsh, J. B.; Letourneau, M.; Gill, R. A.; Balogh-Brunstad, Z.; Thomashow, L.; Dohnalkova, A.

    2012-12-01

    Vascular plant growth builds soils and ecosystem nutrient capital by sequestering and partitioning atmospheric CO2 into organic matter and continental runoff and driving terrestrial water and energy balances. Plant root-system functions, e.g. nutrient mobilization and uptake, are altered by environmental stress. However, the stress-response relationships are poorly understood. Chemical tracers have potential for assessing contributions of nutrients from various nutrient pools. Our objective is to quantitatively study how varying degrees of nutrient limitation (and corresponding needs to extract base cations from mineral sources) influence Ca and K uptake functions in a plant-root-mineral system. We are studying plant-driven mineral weathering in column experiments with red pine (Pinus resinosa) seedlings. The columns contain quartz sand amended with anorthite and biotite that constitute the sole mineral sources of Ca and K. These minerals also contain known amounts of Sr and Rb, which exhibit chemical behavior similar to Ca and K, respectively. The solution source of Ca and K was varied by adding 0% (no dissolved Ca and K), 10%, 30%, or 100% of a full strength Ca and K nutrient solution through irrigation water in which both Sr and Rb concentrations were negligible. Selected columns were destructively sampled at 3, 6 and 9 months to harvest biomass and measure plant uptake of cations. We used Ca/Sr and K/Rb ratio results to estimate the contributions of Ca and K from mineral and solution sources. For the 0% nutrient treatment, the Ca/Sr and K/Rb ratios in total biomass at 3 months, compared with those in the mineral phases, suggested preferential uptake of Ca and K over Sr and Rb, respectively, and allowed us to determine uptake discrimination factors for both cations. The K/Rb ratios in total biomass increased with greater K availability in the solution source, as expected, but Ca/Sr ratios did not show any dependence on Ca availability in the solution source

  5. The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis.

    PubMed

    Fellbaum, Carl R; Mensah, Jerry A; Pfeffer, Philip E; Kiers, E Toby; Bücking, Heike

    2012-11-01

    The arbuscular mycorrhizal (AM) symbiosis, which forms between plant hosts and ubiquitous soil fungi of the phylum Glomeromycota, plays a key role for the nutrient uptake of the majority of land plants, including many economically important crop species. AM fungi take up nutrients from the soil and exchange them for photosynthetically fixed carbon from the host. While our understanding of the exact mechanisms controlling carbon and nutrient exchange is still limited, we recently demonstrated that (i) carbon acts as an important trigger for fungal N uptake and transport, (ii) the fungus changes its strategy in response to an exogenous supply of carbon, and that (iii) both plants and fungi reciprocally reward resources to those partners providing more benefit. Here, we summarize recent research findings and discuss the implications of these results for fungal and plant control of resource exchange in the AM symbiosis.

  6. Nutrient uptake by agricultural crops from biochar-amended soils: results from two field experiments in Austria

    NASA Astrophysics Data System (ADS)

    Karer, Jasmin; Zehetner, Franz; Kloss, Stefanie; Wimmer, Bernhard; Soja, Gerhard

    2013-04-01

    The use of biochar as soil amendment is considered as a promising agricultural soil management technique, combining carbon sequestration and soil fertility improvements. These expectations are largely founded on positive experiences with biochar applications to impoverished or degraded tropical soils. The validity of these results for soils in temperate climates needs confirmation from field experiments with typical soils representative for intensive agricultural production areas. Frequently biochar is mixed with other organic additives like compost. As these two materials interact with each other and each one may vary considerably in its basic characteristics, it is difficult to attribute the effects of the combined additive to one of its components and to a specific physico-chemical parameter. Therefore investigations of the amendment efficacy require the study of the pure components to characterize their specific behavior in soil. This is especially important for adsorption behavior of biochar for macro- and micronutrients because in soil there are multiple nutrient sinks that compete with plant roots for vital elements. Therefore this contribution presents results from a field amendment study with pure biochar that had the objective to characterize the macro- and microelement uptake of crops from different soils in two typical Austrian areas of agricultural production. At two locations in North and South-East Austria, two identical field experiments on different soils (Chernozem and Cambisol) were installed in 2011 with varying biochar additions (0, 30 and 90 t/ha) and two nitrogen levels. The biochar was a product from slow pyrolysis of wood (SC Romchar SRL). During the installation of the experiments, the biochar fraction of <2 mm was mixed with surface soil to a depth of 15 cm in plots of 33 m2 each (n=4). Barley (at the Chernozem soil) and maize (at the Cambisol) were cultivated according to standard agricultural practices. The highest crop yields at both

  7. Studies on nutrient uptake of rice and characteristics of soil microorganisms in a long-term fertilization experiments for irrigated rice.

    PubMed

    Zhang, Qi-chun; Wang, Guang-huo

    2005-02-01

    The ecosystem characteristics of soil microorganism and the nutrient uptake of irrigated rice were investigated in a split-block experiment with different fertilization treatments, including control (no fertilizer application), PK, NK, NP, NPK fertilization, in the main block, and conventional rice and hybrid rice comparison, in the sub block. Average data of five treatments in five years indicated that the indigenous N supply (INS) capacity ranged from 32.72 to 93.21 kg/ha; that indigenous P supply (IPS) capacity ranged from 7.42 to 32.25 kg/ha; and that indigenous K supply (IKS) capacity ranged from 16.24 to 140.51 kg/ha, which showed that soil available nutrient pool depletion might occur very fast and that P, K deficiency has become a constraint to increasing yields of consecutive crops grown without fertilizer application. It was found that soil nutrient deficiency and unbalanced fertilization to rice crop had negative effect on the diversity of the microbial community and total microbial biomass in the soil. The long-term fertilizer experiment (LTFE) also showed that balanced application of N, P and K promoted microbial biomass growth and improvement of community composition. Unbalanced fertilization reduced microbial N and increased C/N ratio of the microbial biomass. Compared with inbred rice, hybrid rice behavior is characterized by physiological advantage in nutrient uptake and lower internal K use efficiency.

  8. Modulation of the uptake of critical nutrients by breast cancer cells by lactate: Impact on cell survival, proliferation and migration.

    PubMed

    Guedes, Marta; Araújo, João R; Correia-Branco, Ana; Gregório, Inês; Martel, Fátima; Keating, Elisa

    2016-02-15

    This work aimed to characterize the uptake of folate and glucose by breast cancer cells and to study the effect of lactate upon the transport of these nutrients and upon cell viability, proliferation and migration capacity. Data obtained showed that: a) MCF7 cells uptake (3)H-folic acid ((3)H-FA) at physiological but not at acidic pH; b) T47D cells accumulate (3)H-FA and (14)C-5-methyltetrahydrofolate ((14)C-5-MTHF) more efficiently at acidic than at physiological pH; c) (3)H-deoxyglucose ((3)H-DG) uptake by T47D cells is sodium-independent, inhibited by cytochalasin B (CYT B) and stimulated by insulin. Regarding the effect of lactate, in T47D cells, acute (26 min) and chronic (24 h) exposure to lactic acid (LA) stimulated (3)H-FA uptake. Acute exposure to LA also stimulated (3)H-DG uptake and chronic exposure to LA significantly stimulated T47D cell migratory capacity. In conclusion, the transport of folates is strikingly different in two phenotypically similar breast cancer cell lines: MCF7 and T47D cells. Additionally, lactate seems to act as a signaling molecule which increases the uptake of nutrients and promotes the migration capacity of T47D cells.

  9. Similarity of nutrient uptake and root dimensions of Engelmann spruce and subalpine fir at two contrasting sites in Colorado

    SciTech Connect

    Yanai, R; McFarlane, K; Lucash, M; Kulpa, S; Wood, D

    2009-10-09

    Nutrient uptake capacity is an important parameter in modeling nutrient uptake by plants. Researchers commonly assume that uptake capacity measured for a species can be used across sites. We tested this assumption by measuring the nutrient uptake capacity of intact roots of Engelmann spruce (Picea engelmanni Parry) and subalpine fir (Abies lasiocarpa (Hook.) Nutt.) at Loch Vale Watershed and Fraser Experimental Forest in the Rocky Mountains of central Colorado. Roots still attached to the tree were exposed to one of three concentrations of nutrient solutions for time periods ranging from 1 to 96 hours, and solutions were analyzed for ammonium, nitrate, calcium, magnesium, and potassium. Surprisingly, the two species were indistinguishable in nutrient uptake within site for all nutrients (P > 0.25), but uptake rates differed by site. In general, nutrient uptake was higher at Fraser (P = 0.01, 0.15, 0.03, 0.18 for NH{sub 4}{sup +}, NO{sub 3}{sup -}, Ca{sup 2+}, and K{sup +}, respectively), which is west of the Continental Divide and has lower atmospheric deposition of N than Loch Vale. Mean uptake rates by site for ambient solution concentrations were 0.12 {micro}mol NH{sub 4}{sup +} g{sub fwt}{sup -1} h{sup -1}, 0.02 {micro}mol NO{sub 3}{sup -} g{sub fwt}{sup -1}, 0.21 {micro}mol Ca{sup 2+} g{sub fwt}{sup -1} h{sup -1}, and 0.01 {micro}mol Mg{sup 2+} g{sub fwt}{sup -1} h{sup -1} at Loch Vale, and 0.21 {micro}mol NH{sub 4}{sup +} f{sub fwt}{sup -1}h{sup -1}, 0.04 {micro}mol NO{sub 3}{sup -} g{sub fwt}{sup -1} h{sup -1}, 0.51 {micro}mol Ca{sup 2+}g{sub fwt}{sup -1}h{sup -1}, and 0.07 {micro}mol Mg{sup 2+} f{sub fwt}{sup -1}h{sup -1} at Fraser. The importance of site conditions in determining uptake capacity should not be overlooked when parameterizing nutrient uptake models. We also characterized the root morphology of these two species and compared them to other tree species we have measured at various sites in the northeastern USA. Engelman spruce and subalpine fir

  10. [Pb, Zn accumulation and nutrient uptake of 15 plant species grown in abandoned mine tailings].

    PubMed

    Shi, Xiang; Chen, Yi-Tai; Wang, Shu-Feng; Li, Jiang-Chuan

    2012-06-01

    Vegetation restoration field test was carried out in the abandoned lead-zinc tailings for 3 years. The study showed that accumulation of lead (Pb), zinc (Zn) and nutrient uptake differed with plant species and organs, heavy metals, and planting time. Pb was mainly accumulated in tree roots, and its content distribution in tree organs was generally in the order of roots > leaves > stems. But Zn concentrations in leaves of several tree species were higher than those in roots and stems. Within the tested 15 species, Cercis Canadensis had the highest concentrations of Pb and Zn in roots (1 803 and 2120 mg x kg(-1), respectively). Rhus chinensis had the highest Pb concentration in stems and leaves (280 and 546 mg x kg(-1), respectively) and Zn concentration (1 507 mg x kg(-1)) in leaves. Zn concentration in stems and leaves of Salix matsudana (729 and 1 153 mg x kg(-1), respectively) were the highest. Among the tested 15 species, TF values for Pb of Liquidambar formosana, Medicago sativa, and for Zn of Salix matsudana, Rhus chinensis, Medicago sativa were higher than 1. BCF values for Pb were all lower than 0.17, while that for Zn were all lower than 0.44. The N contents in nitrogen-fixing plants, P contents in Rhus typhina and Ailanthus altissima, and K content in Nerium indicum were significantly higher than those in other plants. With the increase of planting time, concentrations of heavy metal in plant body increased significantly; however the inverse trend were observed in nutritional element content. The species have higher metal accumulation capacity, such as Rhus chinensis, Salix matsudana and those nitrogen-fixing plants have higher tolerance to metal contamination and nutrient deficiency, such as Amorpha fruticosa, Medicago sativa, Lespedeza cuneata, and Alnus cremastogyne, they were suitable as the phytostabilizers in abandoned mine tailings.

  11. Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater treatment.

    PubMed

    Zhang, Chunmin; Zhang, Yalei; Zhuang, Baolu; Zhou, Xuefei

    2014-11-01

    Supplementing proper nutrients could be a strategy for enhancing algal biomass, nutrients uptake and lipid accumulation in the coupling system of biodiesel production and municipal wastewater treatment. However, there is scant information reporting systematic studies on screening and optimization of key supplemented components in the coupling system. The main factors were scientifically screened and optimized using statistical methods. Plackett-Burman design (PBD) was used to explore the roles of added nutrient factors, whereas response surface methodology (RSM) was employed for optimization. Based on the statistic analysis, the optimum added TP and FeCl3·6H2O concentrations for Scenedesmus obliquus-like microalgae growth, nutrients uptake and lipid accumulation were 4.41 mg L(-1) and 6.48 mg L(-1), respectively. The corresponding biomass, lipid content and TN/TP removal efficiency were 1.46 g L(-1), 36.26% and >99%. The predicted value agreed well with the experimental value, as determined by validation experiments, which confirmed the availability and accuracy of the model.

  12. Land application of domestic effluent onto four soil types: plant uptake and nutrient leaching.

    PubMed

    Barton, L; Schipper, L A; Barkle, G F; McLeod, M; Speir, T W; Taylor, M D; McGill, A C; van Schaik, A P; Fitzgerald, N B; Pandey, S P

    2005-01-01

    Land application has become a widely applied method for treating wastewater. However, it is not always clear which soil-plant systems should be used, or why. The objectives of our study were to determine if four contrasting soils, from which the pasture is regularly cut and removed, varied in their ability to assimilate nutrients from secondary-treated domestic effluent under high hydraulic loadings, in comparison with unirrigated, fertilized pasture. Grassed intact soil cores (500 mm in diameter by 700 mm in depth) were irrigated (50 mm wk(-1)) with secondary-treated domestic effluent for two years. Soils included a well-drained Allophanic Soil (Typic Hapludand), a poorly drained Gley Soil (Typic Endoaquept), a well-drained Pumice Soil formed from rhyolitic tephra (Typic Udivitrand), and a well-drained Recent Soil formed in a sand dune (Typic Udipsamment). Effluent-irrigated soils received between 746 and 815 kg N ha(-1) and 283 and 331 kg P ha(-1) over two years of irrigation, and unirrigated treatments received 200 kg N ha(-1) and 100 kg P ha(-1) of dissolved inorganic fertilizer over the same period. Applying effluent significantly increased plant uptake of N and P from all soil types. For the effluent-irrigated soils plant N uptake ranged from 186 to 437 kg N ha(-1) yr(-1), while plant P uptake ranged from 40 to 88 kg P ha(-1) yr(-1) for the effluent-irrigated soils. Applying effluent significantly increased N leaching losses from Gley and Recent Soils, and after two years ranged from 17 to 184 kg N ha(-1) depending on soil type. Effluent irrigation only increased P leaching from the Gley Soil. All P leaching losses were less than 49 kg P ha(-1) after two years. The N and P leached from effluent treatments were mainly in organic form (69-87% organic N and 35-65% unreactive P). Greater N and P leaching losses from the irrigated Gley Soil were attributed to preferential flow that reduced contact between the effluent and the soil matrix. Increased N leaching from

  13. Effects of ammonium and nitrate on nutrient uptake and activity of nitrogen assimilating enzymes in western hemlock

    SciTech Connect

    Knoepp, J.D.; Turner, D.P.; Tingey, D.T.

    1993-01-01

    Western hemlock seedlings were grown in nutrient solutions with ammonium, nitrate or ammonium plus nitrate as nitrogen sources. The objectives were to examine (1) possible selectivity for ammonium or nitrate as an N source, (2) the maintenance of charge balance during ammonium and nitrate uptake, and (3) the activity of the nitrogen assimilating enzymes, nitrate reductase, glutamine synthetase, and glutamine dehydrogenase, in relation to the uptake of different nitrogen sources. The uptake studies revealed that western hemlock takes up ammonium faster than nitrate and that ammonium partially inhibits nitrate uptake. Nitrate reductase activity varied with nitrate availability in root tissue, but showed no response in needles, indicating that most nitrate is reduced in the roots. Results indicate that western hemlock may be adapted to sites where NH(4+) is the predominate N source.

  14. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake.

    PubMed

    Lentz, R D; Ippolito, J A

    2012-01-01

    Carbon-rich biochar derived from the pyrolysis of biomass can sequester atmospheric CO, mitigate climate change, and potentially increase crop productivity. However, research is needed to confirm the suitability and sustainability of biochar application to different soils. To an irrigated calcareous soil, we applied stockpiled dairy manure (42 Mg ha dry wt) and hardwood-derived biochar (22.4 Mg ha), singly and in combination with manure, along with a control, yielding four treatments. Nitrogen fertilizer was applied when needed (based on preseason soil test N and crop requirements) in all plots and years, with N mineralized from added manure included in this determination. Available soil nutrients (NH-N; NO-N; Olsen P; and diethylenetriaminepentaacetic acid-extractable K, Mg, Na, Cu, Mn, Zn, and Fe), total C (TC), total N (TN), total organic C (TOC), and pH were evaluated annually, and silage corn nutrient concentration, yield, and uptake were measured over two growing seasons. Biochar treatment resulted in a 1.5-fold increase in available soil Mn and a 1.4-fold increase in TC and TOC, whereas manure produced a 1.2- to 1.7-fold increase in available nutrients (except Fe), compared with controls. In 2009 biochar increased corn silage B concentration but produced no yield increase; in 2010 biochar decreased corn silage TN (33%), S (7%) concentrations, and yield (36%) relative to controls. Manure produced a 1.3-fold increase in corn silage Cu, Mn, S, Mg, K, and TN concentrations and yield compared with the control in 2010. The combined biochar-manure effects were not synergistic except in the case of available soil Mn. In these calcareous soils, biochar did not alter pH or availability of P and cations, as is typically observed for acidic soils. If the second year results are representative, they suggest that biochar applications to calcareous soils may lead to reduced N availability, requiring additional soil N inputs to maintain yield targets.

  15. Impacts of industrial waste resources on maize (Zea mays L.) growth, yield, nutrients uptake and soil properties.

    PubMed

    Singh, Satnam; Young, Li-Sen; Shen, Fo-Ting; Young, Chiu-Chung

    2014-10-01

    Discharging untreated highly acidic (pH<4.0), organic and nutrients rich monosodium glutamate wastewater (MW), and highly alkaline (pH>10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5±0.1) with PW and lime (treatments represented as MW+PW and MW+Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha(-1). Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear(-1) and 100-kernel weight were higher in MW+Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW+Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW+PW. The MW+PW and MW+Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances.

  16. Structure of the trypanosome haptoglobin–hemoglobin receptor and implications for nutrient uptake and innate immunity

    PubMed Central

    Higgins, Matthew K.; Tkachenko, Olga; Brown, Alan; Reed, Jenny; Raper, Jayne; Carrington, Mark

    2013-01-01

    African trypanosomes are protected by a densely packed surface monolayer of variant surface glycoprotein (VSG). A haptoglobin–hemoglobin receptor (HpHbR) within this VSG coat mediates heme acquisition. HpHbR is also exploited by the human host to mediate endocytosis of trypanolytic factor (TLF)1 from serum, contributing to innate immunity. Here, the crystal structure of HpHbR from Trypanosoma congolense has been solved, revealing an elongated three α-helical bundle with a small membrane distal head. To understand the receptor in the context of the VSG layer, the dimensions of Trypanosoma brucei HpHbR and VSG have been determined by small-angle X-ray scattering, revealing the receptor to be more elongated than VSG. It is, therefore, likely that the receptor protrudes above the VSG layer and unlikely that the VSG coat can prevent immunoglobulin binding to the receptor. The HpHb-binding site has been mapped by single-residue mutagenesis and surface plasmon resonance. This site is located where it is readily accessible above the VSG layer. A single HbHpR polymorphism unique to human infective T. brucei gambiense has been shown to be sufficient to reduce binding of both HpHb and TLF1, modulating ligand affinity in a delicate balancing act that allows nutrient acquisition but avoids TLF1 uptake. PMID:23319650

  17. Structure of the trypanosome haptoglobin-hemoglobin receptor and implications for nutrient uptake and innate immunity.

    PubMed

    Higgins, Matthew K; Tkachenko, Olga; Brown, Alan; Reed, Jenny; Raper, Jayne; Carrington, Mark

    2013-01-29

    African trypanosomes are protected by a densely packed surface monolayer of variant surface glycoprotein (VSG). A haptoglobin-hemoglobin receptor (HpHbR) within this VSG coat mediates heme acquisition. HpHbR is also exploited by the human host to mediate endocytosis of trypanolytic factor (TLF)1 from serum, contributing to innate immunity. Here, the crystal structure of HpHbR from Trypanosoma congolense has been solved, revealing an elongated three α-helical bundle with a small membrane distal head. To understand the receptor in the context of the VSG layer, the dimensions of Trypanosoma brucei HpHbR and VSG have been determined by small-angle X-ray scattering, revealing the receptor to be more elongated than VSG. It is, therefore, likely that the receptor protrudes above the VSG layer and unlikely that the VSG coat can prevent immunoglobulin binding to the receptor. The HpHb-binding site has been mapped by single-residue mutagenesis and surface plasmon resonance. This site is located where it is readily accessible above the VSG layer. A single HbHpR polymorphism unique to human infective T. brucei gambiense has been shown to be sufficient to reduce binding of both HpHb and TLF1, modulating ligand affinity in a delicate balancing act that allows nutrient acquisition but avoids TLF1 uptake.

  18. Ingestion of crude oil: effects on digesta retention times and nutrient uptake in captive river otters.

    PubMed

    Ormseth, O A; Ben-David, M

    2000-09-01

    Studies following the Exxon Valdez oil spill in Prince William Sound, Alaska indicated that river otters (Lontra canadensis) from oiled regions displayed symptoms of degraded health, including reduced body weight. We examined the fate of ingested oil in the digestive tract and its effects on gut function in captive river otters. Fifteen wild-caught males were assigned to three groups, two of which were given weathered crude oil in food (i.e., control, 5 ppm day(-1), and 50 ppm day(-1)) under controlled conditions at the Alaska Sealife Center. Using glass beads as non-specific digesta markers and stable isotope analysis, we determined the effects of ingested oil on retention time and nutrient uptake. Our data indicated that oil ingestion reduced marker retention time when we controlled for activity and meal size. Fecal isotope ratios suggested that absorption of lipids in the oiled otters might have been affected by reduced retention time of food. In addition, a dilution model indicated that as much as 80% of ingested oil was not absorbed in high-dose animals. Thus, while the ingestion of large quantities of weathered crude oil appears to reduce absorption of oil hydrocarbons and may alleviate systemic effects, it may concurrently affect body condition by impacting digestive function.

  19. Effects of soil temperature on shoot and root growth and nutrient uptake of 5-year-old Norway spruce seedlings.

    PubMed

    Lahti, M; Aphalo, P J; Finér, L; Ryyppö, A; Lehto, T; Mannerkoski, H

    2005-01-01

    Soil temperature is a main factor limiting root growth in the boreal forest. To simulate the possible soil-warming effect of future climate change, 5-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were subjected to three simulated growing seasons in controlled environment rooms. The seedlings were acclimated to a soil temperature of 16 degrees C during the first (GS I) and third growing seasons (GS III), but were assigned to random soil-temperature treatments of 9, 13, 18 and 21 degrees C during the second growing season (GS II). In GS II, shoot diameter growth was lowest in the 21 degrees C treatment and root growth was lowest in the 9 degrees C treatment. In GS III, shoot height and root length growth improved in seedlings that had been kept at 9 degrees C during GS II, indicating compensatory growth in response to increased soil temperature. The temporary decrease in soil temperature had no long-lasting significant effect on seedling biomass or total nutrient uptake. At the end of GS III, fine roots of seedlings exposed to a soil temperature of 21 degrees C in GS II were distributed more evenly between the organic and mineral soil layers than roots of seedlings in the other treatments. During GS II and GS III, root growth started earlier than shoot growth, decreased during the rapid shoot elongation phase and increased again as shoot growth decreased.

  20. Ammonium and nitrate uptake lengths in a small forested stream determined by {sup 15}N tracer and short-term nutrient enrichment experiments

    SciTech Connect

    Mulholland, P.J.; Tank, J.L.; Sanzone, D.M.; Webster, J.R.; Wollheim, W.; Peterson, B.J.; Meyer, J.L.

    1998-11-01

    Nutrient cycling is an important characteristic of all ecosystems, including streams. Nutrients often limit the growth rates of stream algae and heterotrophic microbes and the decomposition rate of allochthonous organic matter. Nutrient uptake (S{sub W}), defined as the mean distance traveled by a nutrient atom dissolved in stream water before uptake by biota is often used as an index of nutrient cycling in streams. It is often overlooked, however, that S{sub W} is not a measure of nutrient uptake rate per se, but rather a measure of the efficiency with which a stream utilizes the available nutrient supply. The ideal method for measuring S{sub W} involves short-term addition of a nutrient tracer. Regulatory constraints often preclude use of nutrient radiotracers in field studies and methodological difficulties and high analytical costs have previously hindered the use of stable isotope nutrient tracers (e.g., {sup 15}N). Short-term nutrient enrichments are an alternative to nutrient tracer additions for measuring S{sub W}.

  1. Impact of variable bed morphology on transient storage, hyporhic exchange and nutrient uptake in a field-scale flume

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Clark, J. J.; Wilcock, P. R.; Finlay, J. C.; Doyle, M. W.

    2006-12-01

    As part of an ongoing, multidisciplinary experimental effort coordinated by the National Center for Earth-surface Dynamics we investigated reach-scale interactions between, bed morphology, transient storage, nutrient cycling in a field-scale flume supplied with water from the Mississippi River. A combination of conservative salt tracer and soluble reactive phosphorous and nitrate additions was used to study the effects on these parameters of two bed morphologies (plane bed and alternate bar) and two sediment mixtures (clean gravel and sandy gravel) to determine how differences in sediment size and between plane-bed and laterally variable morphologies influence spatial heterogeneity in transport and uptake of nutrients. The goal was to partitioning reach-scale transient storage values between surface storage and hyporheic flow, determine how these values and their relative importance changed as we varied bed texture (or permeability) and added or removed surface features, and to then measure uptake of biologically available nitrogen and phosphorus individually and together along these surface and subsurface flow paths. In a final phase of the experiment, lights were added to the flume to determine how benthic algal abundance may change bed permeability and solute exchange with the bed as well as nutrient uptake rates. Initial results show that while mean water residence time varied by a factor of 2 across treatments (14 - 30 min) phosphorus uptake rates varied widely (5.5-2500 μg * m-2 * min-1 and the addition of light had a stronger impact on uptake rates than changes in geomorphic form.

  2. Nutrient Uptake by Microorganisms according to Kinetic Parameters from Theory as Related to Cytoarchitecture

    PubMed Central

    Button, D. K.

    1998-01-01

    The abilities of organisms to sequester substrate are described by the two kinetic constants specific affinity, a°, and maximal velocity Vmax. Specific affinity is derived from the frequency of substrate-molecule collisions with permease sites on the cell surface at subsaturating concentrations of substrates. Vmax is derived from the number of permeases and the effective residence time, τ, of the transported molecule on the permease. The results may be analyzed with affinity plots (v/S versus v, where v is the rate of substrate uptake), which extrapolate to the specific affinity and are usually concave up. A third derived parameter, the affinity constant KA, is similar to KM but is compared to the specific affinity rather than Vmax  and is defined as the concentration of substrate necessary to reduce the specific affinity by half. It can be determined in the absence of a maximal velocity measurement and is equal to the Michaelis constant for a system with hyperbolic kinetics. Both are taken as a measure of τ, with departure of KM from KA being affected by permease/enzyme ratios. Compilation of kinetic data indicates a 108-fold range in specific affinities and a smaller (103-fold) range in Vmax values. Data suggest that both specific affinities and maximal velocities can be underestimated by protocols which interrupt nutrient flow prior to kinetic analysis. A previously reported inverse relationship between specific affinity and saturation constants was confirmed. Comparisons of affinities with ambient concentrations of substrates indicated that only the largest a°S values are compatible with growth in natural systems. PMID:9729603

  3. Uptake and partitioning of nutrients in blackberry and raspberry and evaluating plant nutrient status for accurate assessment of fertilizer requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raspberry and blackberry plantings have relatively low nutrient requirements compared to many other perennial fruit crops. Annual total N accumulation in the aboveground plant ranged from 69-122 kg/ha and 37-44 kg/ha in field-grown red raspberry and blackberry. Primocanes rely primarily on fertilize...

  4. Uptake and partitioning of nutrients in blackberry and raspberry and evaluating plant nutrient status for accurate assessment of fertilizer requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raspberry and blackberry plantings have a relatively low nutrient requirement compared to many other perennial fruit crops. Annual total N accumulation ranged from 62-110 lb/a in red raspberry and 33-39 lb/a in blackberry. Primocanes rely primarily on fertilizer N for growth, whereas floricane growt...

  5. Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil.

    PubMed

    Dhawi, Faten; Datta, Rupali; Ramakrishna, Wusirika

    2016-08-01

    The main challenge for plants growing in nutrient poor, contaminated soil is biomass reduction, nutrient deficiency and presence of heavy metals. Our aim is to overcome these challenges using different microbial combinations in mining-impacted soil and focus on their physiological and biochemical impacts on a model plant system, which has multiple applications. In the current study, sorghum BTx623 seedlings grown in mining-impacted soil in greenhouse were subjected to plant growth promoting bacteria (PGPB or B) alone, PGPB with arbuscular mycorrhizal fungi (My), My alone and control group with no treatment. Root biomass and uptake of most of the elements showed significant increase in all treatment groups in comparison with control. Mycorrhiza group showed the best effect followed by My + B and B groups for uptake of majority of the elements by roots. On the contrary, biomass of both shoot and root was more influenced by B treatment than My + B and My treatments. Metabolomics identified compounds whose levels changed in roots of treatment groups significantly in comparison to control. Upregulation of stearic acid, sorbitol, sebacic acid and ferulic acid correlated positively with biomass and uptake of almost all elements. Two biochemical pathways, fatty acid biosynthesis and galactose metabolism, were regulated in all treatment groups. Three common pathways were upregulated only in My and My + B groups. Our results suggest that PGPB enhanced metabolic activities which resulted in increase in element uptake and sorghum root biomass whether accompanied with mycorrhiza or used solely.

  6. Improving the uptake of pulmonary rehabilitation in patients with COPD:

    PubMed Central

    Harris, David; Hayter, Mark; Allender, Steven

    2008-01-01

    Background Pulmonary rehabilitation can improve the quality of life and ability to function of patients with chronic obstructive pulmonary disease (COPD). It may also reduce hospital admission and inpatient stay with exacerbations of COPD. Some patients who are eligible for pulmonary rehabilitation may not accept an offer of it, thereby missing an opportunity to improve their health status. Aim To identify a strategy for improving the uptake of pulmonary rehabilitation. Design of study Qualitative interviews with patients. Setting Patients with COPD were recruited from a suburban general practice in north-east Derbyshire, UK. Method In-depth interviews were conducted on a purposive sample of 16 patients with COPD to assess their concerns about accepting an offer of pulmonary rehabilitation. Interviews were analysed using grounded theory. Results Fear of breathlessness and exercise, and the effect of pulmonary rehabilitation on coexisting medical problems were the most common concerns patients had about taking part in the rehabilitation. The possibility of reducing the sensation of breathlessness and regaining the ability to do things, such as play with their grandchildren, were motivators to participating. Conclusion A model is proposed where patients who feel a loss of control as their disease advances may find that pulmonary rehabilitation offers them the opportunity to regain control. Acknowledging patients' fears and framing pulmonary rehabilitation as a way of ‘regaining control’ may improve patient uptake. PMID:18826782

  7. Improved Tumor Uptake by Optimizing Liposome Based RES Blockade Strategy

    PubMed Central

    Sun, Xiaolian; Yan, Xuefeng; Jacobson, Orit; Sun, Wenjing; Wang, Zhantong; Tong, Xiao; Xia, Yuqiong; Ling, Daishun; Chen, Xiaoyuan

    2017-01-01

    Minimizing the sequestration of nanomaterials (NMs) by the reticuloendothelial system (RES) can enhance the circulation time of NMs, and thus increase their tumor-specific accumulation. Liposomes are generally regarded as safe (GRAS) agents that can block the RES reversibly and temporarily. With the help of positron emission tomography (PET), we monitored the in vivo tissue distribution of 64Cu-labeled 40 × 10 nm gold nanorods (Au NRs) after pretreatment with liposomes. We systematically studied the effectiveness of liposome administration by comparing (1) differently charged liposomes; (2) different liposome doses; and (3) varying time intervals between liposome dose and NR dose. By pre-injecting 400 μmol/kg positively charged liposomes into mice 5 h before the Au NRs, the liver and spleen uptakes of Au NRs decreased by 30% and 53%, respectively. Significantly, U87MG tumor uptake of Au NRs increased from 11.5 ± 1.1 %ID/g to 16.1 ± 1.3 %ID/g at 27 h post-injection. Quantitative PET imaging is a valuable tool to understand the fate of NMs in vivo and cationic liposomal pretreatment is a viable approach to reduce RES clearance, prolong circulation, and improve tumor uptake. PMID:28042337

  8. Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures

    PubMed Central

    Postma, Johannes A.; Lynch, Jonathan P.

    2012-01-01

    Background and Aims During their domestication, maize, bean and squash evolved in polycultures grown by small-scale farmers in the Americas. Polycultures often overyield on low-fertility soils, which are a primary production constraint in low-input agriculture. We hypothesized that root architectural differences among these crops causes niche complementarity and thereby greater nutrient acquisition than corresponding monocultures. Methods A functional–structural plant model, SimRoot, was used to simulate the first 40 d of growth of these crops in monoculture and polyculture and to determine the effects of root competition on nutrient uptake and biomass production of each plant on low-nitrogen, -phosphorus and -potassium soils. Key Results Squash, the earliest domesticated crop, was most sensitive to low soil fertility, while bean, the most recently domesticated crop, was least sensitive to low soil fertility. Nitrate uptake and biomass production were up to 7 % greater in the polycultures than in the monocultures, but only when root architecture was taken into account. Enhanced nitrogen capture in polycultures was independent of nitrogen fixation by bean. Root competition had negligible effects on phosphorus or potassium uptake or biomass production. Conclusions We conclude that spatial niche differentiation caused by differences in root architecture allows polycultures to overyield when plants are competing for mobile soil resources. However, direct competition for immobile resources might be negligible in agricultural systems. Interspecies root spacing may also be too large to allow maize to benefit from root exudates of bean or squash. Above-ground competition for light, however, may have strong feedbacks on root foraging for immobile nutrients, which may increase cereal growth more than it will decrease the growth of the other crops. We note that the order of domestication of crops correlates with increasing nutrient efficiency, rather than production

  9. Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation

    NASA Astrophysics Data System (ADS)

    Brzostek, Edward R.; Fisher, Joshua B.; Phillips, Richard P.

    2014-08-01

    Accurate projections of the future land carbon (C) sink by terrestrial biosphere models depend on how nutrient constraints on net primary production are represented. While nutrient limitation is nearly universal, current models do not have a C cost for plant nutrient acquisition. Also missing are symbiotic mycorrhizal fungi, which can consume up to 20% of net primary production and supply up to 50% of a plant's nitrogen (N) uptake. Here we integrate simultaneous uptake and mycorrhizae into a cutting-edge plant N model—Fixation and Uptake of Nitrogen (FUN)—that can be coupled into terrestrial biosphere models. The C cost of N acquisition varies as a function of mycorrhizal type, with plants that support arbuscular mycorrhizae benefiting when N is relatively abundant and plants that support ectomycorrhizae benefiting when N is strongly limiting. Across six temperate forested sites (representing arbuscular mycorrhizal- and ectomycorrhizal-dominated stands and 176 site years), including multipath resistance improved the partitioning of N uptake between aboveground and belowground sources. Integrating mycorrhizae led to further improvements in predictions of N uptake from soil (R2 = 0.69 increased to R2 = 0.96) and from senescing leaves (R2 = 0.29 increased to R2 = 0.73) relative to the original model. On average, 5% and 9% of net primary production in arbuscular mycorrhizal- and ectomycorrhizal-dominated forests, respectively, was needed to support mycorrhizal-mediated acquisition of N. To the extent that resource constraints to net primary production are governed by similar trade-offs across all terrestrial ecosystems, integrating these improvements to FUN into terrestrial biosphere models should enhance predictions of the future land C sink.

  10. An essential dual-function complex mediates erythrocyte invasion and channel-mediated nutrient uptake in malaria parasites

    PubMed Central

    Ito, Daisuke; Schureck, Marc A; Desai, Sanjay A

    2017-01-01

    Malaria parasites evade immune detection by growth and replication within erythrocytes. After erythrocyte invasion, the intracellular pathogen must increase host cell uptake of nutrients from plasma. Here, we report that the parasite-encoded RhopH complex contributes to both invasion and channel-mediated nutrient uptake. As rhoph2 and rhoph3 gene knockouts were not viable in the human P. falciparum pathogen, we used conditional knockdowns to determine that the encoded proteins are essential and to identify their stage-specific functions. We exclude presumed roles for RhopH2 and CLAG3 in erythrocyte invasion but implicate a RhopH3 contribution either through ligand-receptor interactions or subsequent parasite internalization. These proteins then traffic via an export translocon to the host membrane, where they form a nutrient channel. Knockdown of either RhopH2 or RhopH3 disrupts the entire complex, interfering with organellar targeting and subsequent trafficking. Therapies targeting this complex should attack the pathogen at two critical points in its cycle. DOI: http://dx.doi.org/10.7554/eLife.23485.001 PMID:28221136

  11. Silicon uptake by sponges: a twist to understanding nutrient cycling on continental margins.

    PubMed

    Maldonado, Manuel; Navarro, Laura; Grasa, Ana; Gonzalez, Alicia; Vaquerizo, Isabel

    2011-01-01

    About 75% of extant sponge species use dissolved silicon (DSi) to build a siliceous skeleton. We show that silicon (Si) uptake by sublittoral Axinella demosponges follows an enzymatic kinetics. Interestingly, maximum uptake efficiency occurs at experimental DSi concentrations two orders of magnitude higher than those in the sponge habitats, being unachievable in coastal waters of modern oceans. Such uptake performance appears to be rooted in a former condition suitable to operate at the seemingly high DSi values characterizing the pre-Tertiary (>65 mya) habitats where this sponge lineage diversified. Persistence of ancestral uptake systems causes sponges to be outcompeted by the more efficient uptake of diatoms at the low ambient DSi levels characterizing Recent oceans. Yet, we show that sublittoral sponges consume substantial coastal DSi (0.01-0.90 mmol Si m(-2) day(-1)) at the expenses of the primary-production circuit. Neglect of that consumption hampers accurate understanding of Si cycling on continental margins.

  12. Harmful algal blooms and eutrophication: "strategies" for nutrient uptake and growth outside the Redfield comfort zone

    NASA Astrophysics Data System (ADS)

    Glibert, Patricia M.; Burkholder, Joann M.

    2011-07-01

    While many harmful algal blooms have been associated with increasing eutrophication, not all species respond similarly and the increasing challenge, especially for resource managers, is to determine which blooms are related to eutrophication and to understand why particular species proliferate under specific nutrient conditions. The overall goal of this brief review is to describe why nutrient loads are not changing in stoichiometric proportion to the "Redfield ratio", and why this has important consequences for algal growth. Many types of harmful algae appear to be able to thrive, and/or increase their production of toxins, when nutrient loads are not in proportion classically identified as Redfield ratios. Here we also describe some of the physiological mechanisms of different species to take up nutrients and to thrive under conditions of nutrient imbalance.

  13. Compost and crude humic substances produced from selected wastes and their effects on Zea mays L. nutrient uptake and growth.

    PubMed

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation.

  14. Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on Zea mays L. Nutrient Uptake and Growth

    PubMed Central

    Palanivell, Perumal; Susilawati, Kasim; Ahmed, Osumanu Haruna; Majid, Nik Muhamad

    2013-01-01

    Production of agriculture and timber commodities leads generation of enormous quantity of wastes. Improper disposal of these agroindustrial wastes pollutes the environment. This problem could be reduced by adding value to them. Therefore, a study was carried out to analyse and compare the nutrients content of RS, RH, SD, and EFB of composts and crude humic substances; furthermore, their effect on growth, dry matter production, and nutrient uptake for Zea mays L., and selected soil chemical properties were evaluated. Standard procedures were used to analyze humic acids (HA), crude fulvic acids (CFA), crude humin (CH), soil, dry matter production and nutrient uptake. Sawdust and RS compost matured at 42 and 47 days, respectively, while RH and EFB composts were less matured at 49th day of composting. Rice straw compost had higher ash, N, P, CEC, HA, K, and Fe contents with lower organic matter, total organic carbon, and C/N and C/P ratios. The HA of sawdust compost showed higher carbon, carboxylic, K, and Ca contents compared to those of RS, RH, and EFB. Crude FA of RS compost showed highest pH, total K, Ca, Mg, and Na contents. Crude humin from RS compost had higher contents of ash, N, P, and CEC. Rice straw was superior in compost, CFA, and CH, while sawdust compost was superior in HA. Application of sawdust compost significantly increased maize plants' diameter, height, dry matter production, N, P, and cations uptake. It also reduced N, P, and K based chemical fertilizer use by 90%. Application of CH and the composts evaluated in this study could be used as an alternative for chemical fertilizers in maize cultivation. PMID:24319353

  15. Comparable light stimulation of organic nutrient uptake by SAR11 and Prochlorococcus in the North Atlantic subtropical gyre.

    PubMed

    Gómez-Pereira, Paola R; Hartmann, Manuela; Grob, Carolina; Tarran, Glen A; Martin, Adrian P; Fuchs, Bernhard M; Scanlan, David J; Zubkov, Mikhail V

    2013-03-01

    Subtropical oceanic gyres are the most extensive biomes on Earth where SAR11 and Prochlorococcus bacterioplankton numerically dominate the surface waters depleted in inorganic macronutrients as well as in dissolved organic matter. In such nutrient poor conditions bacterioplankton could become photoheterotrophic, that is, potentially enhance uptake of scarce organic molecules using the available solar radiation to energise appropriate transport systems. Here, we assessed the photoheterotrophy of the key microbial taxa in the North Atlantic oligotrophic gyre and adjacent regions using (33)P-ATP, (3)H-ATP and (35)S-methionine tracers. Light-stimulated uptake of these substrates was assessed in two dominant bacterioplankton groups discriminated by flow cytometric sorting of tracer-labelled cells and identified using catalysed reporter deposition fluorescence in situ hybridisation. One group of cells, encompassing 48% of all bacterioplankton, were identified as members of the SAR11 clade, whereas the other group (24% of all bacterioplankton) was Prochlorococcus. When exposed to light, SAR11 cells took 31% more ATP and 32% more methionine, whereas the Prochlorococcus cells took 33% more ATP and 34% more methionine. Other bacterioplankton did not demonstrate light stimulation. Thus, the SAR11 and Prochlorococcus groups, with distinctly different light-harvesting mechanisms, used light equally to enhance, by approximately one-third, the uptake of different types of organic molecules. Our findings indicate the significance of light-driven uptake of essential organic nutrients by the dominant bacterioplankton groups in the surface waters of one of the less productive, vast regions of the world's oceans-the oligotrophic North Atlantic subtropical gyre.

  16. Golgi N-glycan branching N-acetylglucosaminyltransferases I, V and VI promote nutrient uptake and metabolism

    PubMed Central

    Abdel Rahman, Anas M; Ryczko, Michael; Nakano, Miyako; Pawling, Judy; Rodrigues, Tania; Johswich, Anita; Taniguchi, Naoyuki; Dennis, James W

    2015-01-01

    Nutrient transporters are critical gate-keepers of extracellular metabolite entry into the cell. As integral membrane proteins, most transporters are N-glycosylated, and the N-glycans are remodeled in the Golgi apparatus. The Golgi branching enzymes N-acetylglucosaminyltransferases I, II, IV, V and avian VI (encoded by Mgat1, Mgat2, Mgat4a/b/c Mgat5 and Mgat6), each catalyze the addition of N-acetylglucosamine (GlcNAc) in N-glycans. Here, we asked whether N-glycan branching promotes nutrient transport and metabolism in immortal human HeLa carcinoma and non-malignant HEK293 embryonic kidney cells. Mgat6 is absent in mammals, but ectopic expression can be expected to add an additional β1,4-linked branch to N-glycans, and may provide evidence for functional redundancy of the N-glycan branches. Tetracycline (tet)-induced overexpression of Mgat1, Mgat5 and Mgat6 resulted in increased enzyme activity and increased N-glycan branching concordant with the known specificities of these enzymes. Tet-induced Mgat1, Mgat5 and Mgat6 combined with stimulation of hexosamine biosynthesis pathway (HBP) to UDP-GlcNAc, increased cellular metabolite levels, lactate and oxidative metabolism in an additive manner. We then tested the hypothesis that N-glycan branching alone might promote nutrient uptake when glucose (Glc) and glutamine are limiting. In low glutamine and Glc medium, tet-induced Mgat5 alone increased amino acids uptake, intracellular levels of glycolytic and TCA intermediates, as well as HEK293 cell growth. More specifically, tet-induced Mgat5 and HBP elevated the import rate of glutamine, although transport of other metabolites may be regulated in parallel. Our results suggest that N-glycan branching cooperates with HBP to regulate metabolite import in a cell autonomous manner, and can enhance cell growth in low-nutrient environments. PMID:25395405

  17. Plant aquaporins: new perspectives on water and nutrient uptake in saline environment.

    PubMed

    del Martínez-Ballesta, M C; Silva, C; López-Berenguer, C; Cabañero, F J; Carvajal, M

    2006-09-01

    The mechanisms of salt stress and tolerance have been targets for genetic engineering, focusing on ion transport and compartmentation, synthesis of compatible solutes (osmolytes and osmoprotectants) and oxidative protection. In this review, we consider the integrated response to salinity with respect to water uptake, involving aquaporin functionality. Therefore, we have concentrated on how salinity can be alleviated, in part, if a perfect knowledge of water uptake and transport for each particular crop and set of conditions is available.

  18. Duodenal nutrient exclusion improves metabolic syndrome and stimulates villus hyperplasia

    PubMed Central

    Habegger, Kirk M; Al-Massadi, Omar; Heppner, Kristy M; Myronovych, Andriy; Holland, Jenna; Berger, Jose; Yi, Chun-Xia; Gao, Yuanging; Lehti, Maarit; Ottaway, Nickki; Amburgy, Sarah; Raver, Christine; Müller, Timo D; Pfluger, Paul T; Kohli, Rohit; Perez-Tilve, Diego; Seeley, Randy J; Tschöp, Matthias H

    2014-01-01

    Objective Surgical interventions that prevent nutrient exposure to the duodenum are among the most successful treatments for obesity and diabetes. However, these interventions are highly invasive, irreversible and often carry significant risk. The duodenal-endoluminal sleeve (DES) is a flexible tube that acts as a barrier to nutrient-tissue interaction along the duodenum. We implanted this device in Zucker Diabetic Fatty (ZDF) rats to gain greater understanding of duodenal nutrient exclusion on glucose homeostasis. Design ZDF rats were randomised to four groups: Naive, sham ad libitum, sham pair-fed, and DES implanted. Food intake, body weight (BW) and body composition were measured for 28 days postoperatively. Glucose, lipid and bile acid metabolism were evaluated, as well as histological assessment of the upper intestine. Results DES implantation induced a sustained decrease in BW throughout the study that was matched by pair-fed sham animals. Decreased BW resulted from loss of fat, but not lean mass. DES rats were also found to be more glucose tolerant than either ad libitum-fed or pair-fed sham controls, suggesting fat mass independent metabolic benefits. DES also reduced circulating triglyceride and glycerol levels while increasing circulating bile acids. Interestingly, DES stimulated a considerable increase in villus length throughout the upper intestine, which may contribute to metabolic improvements. Conclusions Our preclinical results validate DES as a promising therapeutic approach to diabetes and obesity, which offers reversibility, low risk, low invasiveness and triple benefits including fat mass loss, glucose and lipid metabolism improvement which mechanistically may involve increased villus growth in the upper gut. PMID:24107591

  19. Effects of nitrogen fertilization on soil nutrient concentration and phosphatase activity and forage nutrient uptake from a grazed pasture system.

    PubMed

    Dillard, Sandra Leanne; Wood, Charles Wesley; Wood, Brenda Hall; Feng, Yucheng; Owsley, Walter Frank; Muntifering, Russell Brian

    2015-05-01

    Over a 3-year period, the effect of differing N-application regimes on soil extractable-P concentration, soil phosphatase activity, and forage P uptake in a P-enriched grazed-pasture system was investigated. In the fall of each year, six 0.28-ha plots were overseeded with triticale ( × Triticosecale rimpaui Wittm.) and crimson clover (Trifolium incarnatum) into a tall fescue (Lolium arundinacea)/bermudagrass (Cynodon dactylon) sod and assigned to 1 of 3 N-fertilizer treatments (n = 2): 100% of N recommendation in a split application (100N), 50% in a single application (50N), and 0% of N recommendation (0N) for triticale. Cattle commenced grazing the following spring and grazed until May. In the summer, plots were overseeded with cowpea (Vigna unguiculata), fertilized at the same rates by reference to N recommendations for bermudagrass, and grazed by cattle until September. There were no effects of N fertilization on soil phosphatase activity, electrical conductivity, or concentrations of water-soluble P. Concentrations of extractable P decreased in plots receiving 50N, but increasing N fertilization to 100N resulted in no further reduction in extractable P. Forage biomass, foliar P concentrations, and forage P mass were not affected by N fertilization rates at the plant-community level, but responses were observed within individual forage species. Results are interpreted to mean that N fertilization at 50% of the agronomic recommendation for the grass component can increase forage P mass of specific forages and decrease soil extractable P, thus providing opportunity for decreasing P losses from grazed pasture.

  20. Growth, morphology, ammonium uptake and nutrient allocation of Myriophyllum brasiliense Cambess. under high NH₄⁺ concentrations.

    PubMed

    Saunkaew, Piyanart; Wangpakapattanawong, Prasit; Jampeetong, Arunothai

    2011-11-01

    The effects of high NH(4)(+) concentration on growth, morphology, NH(4) (+) uptake and nutrient allocation of Myriophyllum brasiliense were investigated in hydroponic culture. The plants were grown under greenhouse conditions for 4 weeks using four levels of NH(4)(+) concentration: 1, 5, 10 and 15 mM. M. brasiliense grew well with a relative growth rate of c.0.03 day(-1) at NH(4)(+) concentration up to 5 mM. At the higher NH(4)(+) concentrations the growth of the plants was stunted and the plants had short roots and few new buds, especially when grown in 15 mM NH(4)(+) where the submerged leaves were lost and there were rotten roots and submerged stems. To avoid NH(4)(+) toxicity, the plants may have a mechanism to prevent cytoplasmic NH(4)(+) accumulation in plant cells. The net uptake of NH(4)(+) significantly decreased and the total N significantly increased in the plants treated with 10 and 15 mM NH(4)(+), respectively. The plant may employ NH(4)(+) assimilation and extrusion as a mechanism to compensate for the high NH(4)(+) concentrations. However, the plants may show nutrient deficiency symptoms, especially K deficiency symptoms, after they were exposed to NH(4)(+) concentration higher than 10 mM. The present study provides a basic ecophysiology of M. brasiliense that it can grow in NH(4)(+) enriched water up to concentrations as high as 5 mM.

  1. Enhancement of growth and nutrient uptake of rapeseed (Brassica napus L.) by applying mineral nutrients and biofertilizers.

    PubMed

    Yasari, Esmaeil; Azadgoleh, M A Esmaeili; Mozafari, Saedeh; Alashti, Mahsa Rafati

    2009-01-15

    For investigating the effect of chemical fertilizer as well as biofertilizers on seed yield and quality i.e. oil, protein and nutrients concentration of rapeseed (Brassica napus L.), a split-plot fertilizers application experimental design in 4 replications was carried out during the 2005-2006 growing season, at the Gharakheil Agricultural Research Station in the Mazandaran province of Iran. Rapeseed was grown as a second crop in rotation after rice. Biofertilizers treatments were two different levels: control (no seed inoculation) and seeds inoculation with a combination of Azotobacter chroococcum and Azosprillum brasilense and Azosprillum lipoferum, as main plot and chemical fertilizers comprised N, P, K and their combinations, NPKS and NPK Zn as sub plots. The maximum value of seed yield obtained at (BF+NPK Zn) 3421.2 kg h(-1) corresponding to 244.5 pods per plant and maximum concentration of Zn in leaves as well as seeds. The highest weight of 1000 seeds (4.45 g) happened to obtain at (BF+NPK S) which coinciding with the maximum K levels in leaves. The highest number of branches was obtained at (BF+NPK Zn) with 4.43 branches per plant i.e., 46.2% increase over the control. The maximum value of rapeseed oil content 47.73% obtained at T16 (BF+NK) but maximum protein concentration of seed obtained at T12 (BF+N). Overall the results indicated that inoculation resulted in increase in seeds yield (21.17%), number of pods per plant (16.05%), number of branches (11.78%), weight of 1000 grain (2.92%), oil content of seeds (1.73%) and protein (3.91%) but decrease (-0.24%) in number of seeds per pods comparing to non-Biofertilizers treatments. Irrespective to the treatments, results showed that application of Biofertilizers coincided with 3.86, 0.82, 2.25, 0.75 and 0.91% increase in concentrations of N, P, K, S and Zn in the seeds over the non-Biofertilizers treatments.

  2. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    NASA Astrophysics Data System (ADS)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-12-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30

  3. Vigorous Root Growth Is a Better Indicator of Early Nutrient Uptake than Root Hair Traits in Spring Wheat Grown under Low Fertility

    PubMed Central

    Wang, Yaosheng; Thorup-Kristensen, Kristian; Jensen, Lars Stoumann; Magid, Jakob

    2016-01-01

    A number of root and root hair traits have been proposed as important for nutrient acquisition. However, there is still a need for knowledge on which traits are most important in determining macro- and micronutrient uptake at low soil fertility. This study investigated the variations in root growth vigor and root hair length (RHL) and density (RHD) among spring wheat genotypes and their relationship to nutrient concentrations and uptake during early growth. Six spring wheat genotypes were grown in a soil with low nutrient availability. The root and root hair traits as well as the concentration and content of macro- and micronutrients were identified. A significant genetic variability in root and root hair traits as well as nutrient uptake was found. Fast and early root proliferation and long and dense root hairs enhanced uptake of macro- and micronutrients under low soil nutrient availability. Vigorous root growth, however, was a better indicator of early nutrient acquisition than RHL and RHD. Vigorous root growth and long and dense root hairs ensured efficient acquisition of macro- and micronutrients during early growth and a high root length to shoot dry matter ratio favored high macronutrient concentrations in the shoots, which is assumed to be important for later plant development. PMID:27379145

  4. Landspreading MSW compost in Wisconsin: Effect on corn yield, nutrient and metal uptake, and soil nitrate-N

    SciTech Connect

    Wolkowski, R.P.

    1995-12-31

    Studies were conducted at several Wisconsin locations from 1991-1994 to determine the effect of municipal solid waste (MSW) compost on corn (Zea mays L.) growth, nutrient and metal uptake, and soil nitrate-N content. Composts of varying maturities were applied at rates ranging between 0 and 56 t/a (dry matter basis), depending on year and location. Commercial fertilizers were applied to separate plots to determine the extent of nutrient availability from the compost. All treatments were applied in the spring and incorporated prior to planting corn. Mature compost always increased growth and yield above the untreated control, but the highest yields were found where recommended fertilizer was applied. Immature compost suppressed growth and reduced yield. Compost generally increased the levels of plant nutrients in the whole-plant tissue and grain. While compost did increase the concentration of some metals in the whole-plant tissue, these levels were found to be within the range expected for corn. Compost did not affect metal concentration in the grain. Soil nitrate-N was higher throughout most of the growing season in treatments receiving recommended N fertilizer.

  5. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    USGS Publications Warehouse

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.

    2013-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  6. Corn grain and nutrient uptake response to different swine manure application methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farmers are looking for better management practices to enhance production and reduce negative environmental impact from nitrogen (N) fertilizer application since N is one of the most important and costly nutrient inputs for crop production. In this field experiment pre-plant swine effluent applicati...

  7. NUTRIENT UPTAKE AND COMMUNITY METABOLISM IN STREAMS DRAINING HARVESTED AND OLD GROWTH WATERSHEDS: A PRELIMINARY ASSESSMENT

    EPA Science Inventory

    The effect of timber harvesting on streams is assessed using two measures of ecosystem function: nutrient ad community metabolism. This research is being conducted in streams of the southern Appalachian Mountains of North Carolina, the Ouachita Mountains of Arkansas, the Cascad...

  8. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments

    NASA Astrophysics Data System (ADS)

    Balogh-Brunstad, Zsuzsanna; Kent Keller, C.; Thomas Dickinson, J.; Stevens, Forrest; Li, C. Y.; Bormann, Bernard T.

    2008-06-01

    Ectomycorrhiza-forming fungi (EMF) alter the nutrient-acquisition capabilities of vascular plants, and may play an important role in mineral weathering and the partitioning of products of weathering in soils under nutrient-limited conditions. In this study, we isolated the weathering function of Suillus tomentosus in liquid-cultures with biotite micas incubated at room temperature. We hypothesized that the fungus would accelerate weathering by hyphal attachment to biotite surfaces and transmission of nutrient cations via direct exchange into the fungal biomass. We combined a mass-balance approach with scanning electron microscopy (SEM) and atomic force microscopy (AFM) to estimate weathering rates and study dissolution features on biotite surfaces. Weathering of biotite flakes was about 2-3 orders of magnitude faster in shaken liquid-cultures with fungus compared to shaken controls without fungus, but with added inorganic acids. Adding fungus in nonshaken cultures caused a higher dissolution rate than in inorganic pH controls without fungus, but it was not significantly faster than organic pH controls without fungus. The K +, Mg 2+ and Fe 2+ from biotite were preferentially partitioned into fungal biomass in the shaken cultures, while in the nonshaken cultures, K + and Mg 2+ was lost from biomass and Fe 2+ bioaccumulated much less. Fungal hyphae attached to biotite surfaces, but no significant surface changes were detected by SEM. When cultures were shaken, the AFM images of basal planes appeared to be rougher and had abundant dissolution channels, but such channel development was minor in nonshaken conditions. Even under shaken conditions the channels only accounted for only 1/100 of the total dissolution rate of 2.7 × 10 -10 mol of biotite m -2 s -1. The results suggest that fungal weathering predominantly occurred not by attachment and direct transfer of nutrients via hyphae, but because of the acidification of the bulk liquid by organic acids, fungal

  9. Improved cellular uptake of functionalized single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Antonelli, A.; Serafini, S.; Menotta, M.; Sfara, C.; Pierigé, F.; Giorgi, L.; Ambrosi, G.; Rossi, L.; Magnani, M.

    2010-10-01

    Single-walled carbon nanotubes (SWNTs) due to their unique structural and physicochemical properties, have been proposed as delivery systems for a variety of diagnostic and therapeutic agents. However, SWNTs have proven difficult to solubilize in aqueous solution, limiting their use in biological applications. In an attempt to improve SWNTs' solubility, biocompatibility, and to increase cell penetration we have thoroughly investigated the construction of carbon scaffolds coated with aliphatic carbon chains and phospholipids to obtain micelle-like structures. At first, oxidized SWNTs (2370 ± 30 nmol mg - 1 of SWNTs) were covalently coupled with an alcoholic chain (stearyl alcohol, C18H37OH; 816 nmol mg - 1 of SWNTs). Subsequently, SWNTs-COOC18H37 derivatives were coated with phosphatidylethanolamine (PE) or -serine (PS) phospholipids obtaining micelle-like structures. We found that cellular uptake of these constructs by phagocytic cells occurs via an endocytotic mechanism for constructs larger than 400 nm while occurs via diffusion through the cell membrane for constructs up to 400 nm. The material that enters the cell by phagocytosis is actively internalized by macrophages and localizes inside endocytotic vesicles. In contrast the material that enters the cells by diffusion is found in the cell cytosol. In conclusion, we have realized new biomimetic constructs based on alkylated SWNTs coated with phospholipids that are efficiently internalized by different cell types only if their size is lower than 400 nm. These constructs are not toxic to the cells and could now be explored as delivery systems for non-permeant cargoes.

  10. Colorectal cancer screening: Opportunities to improve uptake, outcomes, and disparities

    PubMed Central

    Shahidi, Neal; Cheung, Winson Y

    2016-01-01

    Colorectal cancer screening has become a standard of care in industrialized nations for those 50 to 75 years of age, along with selected high-risk populations. While colorectal cancer screening has been shown to reduce both the incidence and mortality of colorectal cancer, it is a complex multi-disciplinary process with a number of important steps that require optimization before tangible improvements in outcomes are possible. For both opportunistic and programmatic colorectal cancer screening, poor participant uptake remains an ongoing concern. Furthermore, current screening modalities (such as the guaiac based fecal occult blood test, fecal immunochemical test and colonoscopy) may be used or performed suboptimally, which can lead to missed neoplastic lesions and unnecessary endoscopic evaluations. The latter poses the risk of adverse events, such as perforation and post-polypectomy bleeding, as well as financial impacts to the healthcare system. Moreover, ongoing disparities in colorectal cancer screening persist among marginalized populations, including specific ethnic minorities (African Americans, Hispanics, Asians, Indigenous groups), immigrants, and those who are economically disenfranchised. Given this context, we aimed to review the current literature on these important areas pertaining to colorectal cancer screening, particularly focusing on the guaiac based fecal occult blood test, the fecal immunochemical test and colonoscopy. PMID:28042387

  11. Dynamic sinking behaviour in marine phytoplankton: rapid changes in buoyancy may aid in nutrient uptake.

    PubMed

    Gemmell, Brad J; Oh, Genesok; Buskey, Edward J; Villareal, Tracy A

    2016-10-12

    Phytoplankton sinking is an important property that can determine community composition in the photic zone and material loss to the deep ocean. To date, studies of diatom suspension have relied on bulk measurements with assumptions that bulk rates adequately capture the essential characteristics of diatom sinking. However, recent work has illustrated that individual diatom sinking rates vary considerably from the mean bulk rate. In this study, we apply high-resolution optical techniques, individual-based observations of diatom sinking and a recently developed method of flow visualization around freely sinking cells. The results show that in both field samples and laboratory cultures, some large species of centric diatoms are capable of a novel behaviour, whereby cells undergo bursts of rapid sinking that alternate with near-zero sinking rates on the timescales of seconds. We also demonstrate that this behaviour is under direct metabolic control of the cell. We discuss these results in the context of implications for nutrient flux to the cell surface. While nutrient flux in large diatoms increases during fast sinking, current mass transport models cannot incorporate the unsteady sinking behaviour observed in this study. However, large diatoms appear capable of benefiting from the enhanced nutrient flux to their surface during rapid sinking even during brief intervening periods of near-zero sinking rates.

  12. [Effects of reduced N application rate on yield and nutrient uptake and utilization in maize-soybean relay strip intercropping system].

    PubMed

    Yong, Tai-Wen; Liu, Xiao-Ming; Wen-Yu, Liu; Su, Ben-Ying; Song, Chun; Yang, Feng; Wang, Xiao-Chun; Yang, Wen-Yu

    2014-02-01

    A field experiment with three N application rates (0, 180, 240 N kg x hm(-2), representing zero, reduced and conventional N application, respectively) and three planting patterns (maize monoculture, soybean monoculture and maize-soybean relay strip intercropping) was conducted to reveal the effects of cropping patterns and N application rates on yield, nutrient uptake and nitrogen use efficiency of maize and soybean. The results showed that the grain yield, N, P and K uptake and harvest index of the intercropped maize reduced slightly compared with the monoculture maize, however these indices of the intercropped soybean increased significantly compared with the monoculture. With the increase in nitrogen fertilizer application, the excellence of relay strip intercropping was weakened in the maize-soybean intercropping system. The grain yield, economic coefficient, N, P and K uptake, harvest index, N agronomy efficiency and N uptake efficiency of maize and soybean increased significantly at the reduced nitrogen rate (180 N kg x hm(-2)), but the rate of soil N contribution declined, compared with the conventional rate of N application by local farmers (240 N kg x hm(-2)). In the reduced nitrogen rate treatment, total soil N and P contents of the maize strip reduced, whereas the total soil N, P and K contents of soybean strip and the total K content of maize strip increased compared with the zero N application treatment. With the reduced N application, the annual total grain yield, N, P and K uptake of above-ground biomass in the maize-soybean relay strip intercropping system were higher than in the monoculture, and the land equivalent ratio (LER) was 2.28. N uptake efficiency of maize in the relay strip intercropping system was 20.2% higher than in the maize monoculture, and the index of soybean was 30.5% lower than in the monoculture. The rate of soil N contribution in the relay strip intercropping system was 20.0% and 8.8% lower than in the maize and soybean

  13. Improvement of HSPF watershed model in plant uptake and DIN export from forest

    NASA Astrophysics Data System (ADS)

    Wang, P.; Linker, L. C.

    2001-12-01

    Correct simulation of nutrient export in response to flow is important in watershed models. In HSPF, plant uptake of dissolved inorganic nitrogen (DIN) affects the export of DIN from sloped soil layers to a stream. Plant uptake depends on soil moisture. When moisture is deficient, increasing moisture may increase mass uptake; when moisture is over-sufficient, increasing moisture may dilute solution concentrations and decrease mass uptake in unit time. Detailed analysis of the effect of moisture on plant uptake and DIN export is presented. The two different relationships of soil moisture and uptake can be simulated by using the Michaelis-Menton saturation kinetics with two different mechanisms by applying different units of the maximum plant uptake rate, respectively. HSPF version 11 uses a single mechanism for all ranges of moisture conditions. This paper firstly compares two methods in plant uptakes. 1) The HSPF version 11 uses concentration (per unit time) as the unit of maximum uptake rate, which results in higher uptake in higher moisture conditions. It is good in moisture deficient condition, but is not good for moisture over-sufficient condition and results in some strange high DIN loads in some moderate low flow days. 2) The Alternative Method uses mass (per unit area per unit time) as the unit of maximum uptake rate, which is good in moisture sufficient condition and results in a better DIN load-flow relationship, because significant DIN load is usually associated with excessive moisture conditions. However, it overestimates uptake in moisture deficient condition and slightly underestimates DIN load associated with some very low flows. A sensitivity analysis is conducted with different precipitation factors to generate different flows. The HSPF version 11 yields lower yearly loads in the runs with greater precipitation factors, whereas, the Alternative Method yields higher load in the runs with greater factors. Overall, the Alternative Method provides

  14. Additive effects due to biochar and endophyte application enable soybean to enhance nutrient uptake and modulate nutritional parameters* #

    PubMed Central

    Waqas, Muhammad; Kim, Yoon-Ha; Khan, Abdul Latif; Shahzad, Raheem; Asaf, Sajjad; Hamayun, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Lee, In-Jung

    2017-01-01

    We studied the effects of hardwood-derived biochar (BC) and the phytohormone-producing endophyte Galactomyces geotrichum WLL1 in soybean (Glycine max (L.) Merr.) with respect to basic, macro-and micronutrient uptakes and assimilations, and their subsequent effects on the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging activity. The assimilation of basic nutrients such as nitrogen was up-regulated, leaving carbon, oxygen, and hydrogen unaffected in BC+G. geotrichum-treated soybean plants. In comparison, the uptakes of macro-and micronutrients fluctuated in the individual or co-application of BC and G. geotrichum in soybean plant organs and rhizospheric substrate. Moreover, the same attribute was recorded for the regulation of functional amino acids, isoflavones, fatty acid composition, total sugar contents, total phenolic contents, and DPPH-scavenging activity. Collectively, these results showed that BC+G. geotrichum-treated soybean yielded better results than did the plants treated with individual applications. It was concluded that BC is an additional nutriment source and that the G. geotrichum acts as a plant biostimulating source and the effects of both are additive towards plant growth promotion. Strategies involving the incorporation of BC and endophytic symbiosis may help achieve eco-friendly agricultural production, thus reducing the excessive use of chemical agents. PMID:28124840

  15. The Plasmodium falciparum rhoptry protein RhopH3 plays essential roles in host cell invasion and nutrient uptake

    PubMed Central

    Sherling, Emma S; Knuepfer, Ellen; Brzostowski, Joseph A; Miller, Louis H; Blackman, Michael J; van Ooij, Christiaan

    2017-01-01

    Merozoites of the protozoan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invade erythrocytes. Invasion involves discharge of rhoptries, specialized secretory organelles. Once intracellular, parasites induce increased nutrient uptake by generating new permeability pathways (NPP) including a Plasmodium surface anion channel (PSAC). RhopH1/Clag3, one member of the three-protein RhopH complex, is important for PSAC/NPP activity. However, the roles of the other members of the RhopH complex in PSAC/NPP establishment are unknown and it is unclear whether any of the RhopH proteins play a role in invasion. Here we demonstrate that RhopH3, the smallest component of the complex, is essential for parasite survival. Conditional truncation of RhopH3 substantially reduces invasive capacity. Those mutant parasites that do invade are defective in nutrient import and die. Our results identify a dual role for RhopH3 that links erythrocyte invasion to formation of the PSAC/NPP essential for parasite survival within host erythrocytes. DOI: http://dx.doi.org/10.7554/eLife.23239.001 PMID:28252384

  16. Olivine weathering in soil, and its effects on growth and nutrient uptake in Ryegrass (Lolium perenne L.): a pot experiment.

    PubMed

    ten Berge, Hein F M; van der Meer, Hugo G; Steenhuizen, Johan W; Goedhart, Paul W; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO(2) on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO(2) sequestration ('enhanced weathering'). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha(-1). Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha(-1) (14.8% of dose, OLIV1) to 2240 kg ha(-1) (1.1%, OLIV4). This corresponds to gross CO(2) sequestration of 290 to 2690 kg ha(-1) (29 10(3) to 269 10(3) kg km(-2).) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the 'enhanced weathering' concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop.

  17. Olivine Weathering in Soil, and Its Effects on Growth and Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment

    PubMed Central

    ten Berge, Hein F. M.; van der Meer, Hugo G.; Steenhuizen, Johan W.; Goedhart, Paul W.; Knops, Pol; Verhagen, Jan

    2012-01-01

    Mineral carbonation of basic silicate minerals regulates atmospheric CO2 on geological time scales by locking up carbon. Mining and spreading onto the earth's surface of fast-weathering silicates, such as olivine, has been proposed to speed up this natural CO2 sequestration (‘enhanced weathering’). While agriculture may offer an existing infrastructure, weathering rate and impacts on soil and plant are largely unknown. Our objectives were to assess weathering of olivine in soil, and its effects on plant growth and nutrient uptake. In a pot experiment with perennial ryegrass (Lolium perenne L.), weathering during 32 weeks was inferred from bioavailability of magnesium (Mg) in soil and plant. Olivine doses were equivalent to 1630 (OLIV1), 8150, 40700 and 204000 (OLIV4) kg ha−1. Alternatively, the soluble Mg salt kieserite was applied for reference. Olivine increased plant growth (+15.6%) and plant K concentration (+16.5%) in OLIV4. At all doses, olivine increased bioavailability of Mg and Ni in soil, as well as uptake of Mg, Si and Ni in plants. Olivine suppressed Ca uptake. Weathering estimated from a Mg balance was equivalent to 240 kg ha−1 (14.8% of dose, OLIV1) to 2240 kg ha−1 (1.1%, OLIV4). This corresponds to gross CO2 sequestration of 290 to 2690 kg ha−1 (29 103 to 269 103 kg km−2.) Alternatively, weathering estimated from similarity with kieserite treatments ranged from 13% to 58% for OLIV1. The Olsen model for olivine carbonation predicted 4.0% to 9.0% weathering for our case, independent of olivine dose. Our % values observed at high doses were smaller than this, suggesting negative feedbacks in soil. Yet, weathering appears fast enough to support the ‘enhanced weathering’ concept. In agriculture, olivine doses must remain within limits to avoid imbalances in plant nutrition, notably at low Ca availability; and to avoid Ni accumulation in soil and crop. PMID:22912685

  18. Effect of fouling organisms on food uptake and nutrient release of scallop ( Chlamys nobilis, Reeve) cultured in Daya Bay

    NASA Astrophysics Data System (ADS)

    Su, Zhenxia; Xiao, Hui; Yan, Yan; Huang, Liangmin

    2008-02-01

    Biofouling is an important factor that affects the bivalve farming industry. Fouling organisms may reduce growth and survival rate of the cultured species. Fouler are often filter feeders, so they are potential competitors for food resource with the cultured species. The present study was conducted to measure the impact of fouling on food uptake and nutrient release in April and June, 2006 in Daya Bay near Guangzhou, China. Results showed that fouling organisms had significant effect on food uptake and nutrient release. The chlorophyll a uptake rate of fouled scallops was 7.53Lh-1±1.416Lh-1 and 11.94Lh-1±2.497Lh-1 in April and June, respectively, significantly higher than those of cleaned scallops, i.e., 4.23Lh-1±2.744Lh-1 and 2.57Lh-1±1.832Lh-1 respectively. The consumption of total particulate matter by fouled scallops in April and June was 5.52Lh-1±0.818Lh-1 and 3.07Lh-1±0.971Lh-1, respectively; the corresponding results for cleaned scallops are 2.49Lh-1±0.614Lh-1 and 2.37±1.214Lh-1, respectively. Fouling increased ammonia release significantly. The ammonia release rate of fouled scallops was 33.81Lh-1±7.699Lh-1 and 76.39Lh-1±9.251Lh-1 in April and June, while cleaned scallops released 2.46Lh-1±0.511Lh-1 and 7.23Lh-1±1.026Lh-1 ammonia, respectively. Phosphate release of fouled scallops was 22.72Lh-1±9.978Lh-1 in June and cleaned scallops released phosphate 6.01Lh-1±0.876Lh-1 in April. Therefore, fouling contributed much to food reduction and concentration increase of ammonia and phosphate in water.

  19. Does cluster-root activity benefit nutrient uptake and growth of co-existing species?

    PubMed

    Muler, Ana L; Oliveira, Rafael S; Lambers, Hans; Veneklaas, Erik J

    2014-01-01

    Species that inhabit phosphorus- (P) and micronutrient-impoverished soils typically have adaptations to enhance the acquisition of these nutrients, for example cluster roots in Proteaceae. However, there are several species co-occurring in the same environment that do not produce similar specialised roots. This study aims to investigate whether one of these species (Scholtzia involucrata) can benefit from the mobilisation of P or micronutrients by the cluster roots of co-occurring Banksia attenuata, and also to examine the response of B. attenuata to the presence of S. involucrata. We conducted a greenhouse experiment, using a replacement series design, where B. attenuata and S. involucrata shared a pot at proportions of 2:0, 1:2 and 0:4. S. involucrata plants grew more in length, were heavier and had higher manganese (Mn) concentrations in their young leaves when grown next to one individual of B. attenuata and one individual of S. involucrata than when grown with three conspecifics. All S. involucrata individuals were colonised by arbuscular mycorrhizal fungi, and possibly Rhizoctonia. Additionally, P concentration was higher in the young leaves of B. attenuata when grown with another B. attenuata than when grown with two individuals of S. involucrata, despite the smaller size of the S. involucrata individuals. Our results demonstrate that intraspecific competition was stronger than interspecific competition for S. involucrata, but not for B. attenuata. We conclude that cluster roots of B. attenuata facilitate the acquisition of nutrients by neighbouring shrubs by making P and Mn more available for their neighbours.

  20. Prospective Zinc Solubilising Bacteria for Enhanced Nutrient Uptake and Growth Promotion in Maize (Zea mays L.)

    PubMed Central

    Goteti, Praveen Kumar; Emmanuel, Leo Daniel Amalraj; Desai, Suseelendra; Shaik, Mir Hassan Ahmed

    2013-01-01

    Zinc (Zn) is one of the essential micronutrients required for optimum plant growth. Substantial quantity of applied inorganic zinc in soil is converted into unavailable form. Zinc solubilising bacteria are potential alternates for zinc supplement. Among 10 strains screened for Zn solubilisation, P29, P33, and B40 produced 22.0 mm clear haloes on solid medium amended with ZnCO3. Similarly, P17 and B40 showed 31.0 mm zone in ZnO incorporated medium. P29 and B40 showed significant release of Zn in broth amended with ZnCO3 (17 and 16.8 ppm) and ZnO (18 and 17 ppm), respectively. The pH of the broth was almost acidic in all the cases ranging from 3.9 to 6.1 in ZnCO3 and from 4.1 to 6.4 in ZnO added medium. Short term pot culture experiment with maize revealed that seed bacterization with P29 @ 10 g·kg−1 significantly enhanced total dry mass (12.96 g) and uptake of N (2.268%), K (2.0%), Mn (60 ppm), and Zn (278.8 ppm). PMID:24489550

  1. Influence of Mount St. Helens volcanic ash on alfalfa growth and nutrient uptake

    SciTech Connect

    Mahler, R.L.

    1984-01-01

    Concern has been expressed that large amounts of volcanic ash from the May 18, 1980 eruption of Mount St. Helens may have created potential nutritional problems associated with forage production in northern Idaho and eastern Washington to the extent that adjustments need to be made in soil test correlation data. The objectives of this greenhouse study were to : (1) determine the effect of varying amounts of volcanic ash mixed into soils of northern Idaho on total alfalfa biomass production, and (2) to determine the effect of various soil/ash mixtures on the nutrient concentrations of P, K, S, Ca, Mg, Mn and Zn in alfalfa. Alfalfa was grown in eight different northern Idaho soils amended with differing levels of volcanic ash (0, 20, 35, 50 and 75%) in the greenhouse. The alfalfa seeds were inoculated and fertilizer P and S were added to all treatments. Total plant biomass and P, K, S, Ca, Mg, Mn and Zn plant concentrations were measured. The eight were pooled for analysis and it was found that increasing amounts of volcanic ash increased alfalfa biomass production. Plant P, S, Ca, Mg and Zn concentrations also increased with increasing levels of ash. Conversely, increasing levels of ash resulted in lower alfalfa tissue K and Mn concentrations. 13 references, 7 figures.

  2. Chromium phytotoxicity in radish (Raphanus sativus): effects on metabolism and nutrient uptake.

    PubMed

    Tiwari, K K; Singh, N K; Rai, U N

    2013-09-01

    In the present investigation, chromium (VI) induced toxicity on metabolic activity and translocations of nutrients in radish were evaluated under controlled glass house conditions. Chromium was found to induce toxicity and significantly affect plant growth and metabolic activity. Excess of chromium (0.4 mM) caused a decrease in the concentration of iron in leaves (from 134.3 to 71.9 μg g(-1) dw) and significant translocation of sulphur, phosphorus and zinc. Translocation of manganese, copper and boron were less affected from root to stem. After 15 days of Cr exposure, maximum accumulation of Cr was found in roots (327.6 μg g(-1) dw) followed by stems (186.8 μg g(-1) dw) and leaves (116.7 μg g(-1) dw) at 0.4 mM Cr concentration. Therefore, Cr may affect negatively not only production, but also the nutritive quality of the radish; likewise, higher Cr content may cause health hazards for humans.

  3. Is the stokeslet model sufficient for finding nutrient uptake of microscopic suspension feeders?

    NASA Astrophysics Data System (ADS)

    Lutton, Alexander T.; Pepper, Rachel E.

    2016-11-01

    Microscopic sessile suspension feeders are part of many aquatic ecosystems. They are single-celled, vary in size from a few to about 100 microns in length, live attached to substrates, and serve important ecological roles as both food for larger organisms and consumers of bacteria and other small particles. These organisms create currents in order to bring food toward them. Understanding these currents may allow us not only deeper insight into the ecology of aquatic ecosystems, but also may enable innovation in water treatment. Simulations of the feeding currents of these organisms typically use a simple model that places a stokeslet above an infinite plane boundary representing the surface of attachment. This model produces a useful approximation for the flow field of the organism, but may be of limited accuracy when the organism is near the boundary. We create a different model composed of a stokeslet and a potential dipole, which form a sphere. This sphere has a sin(θ) tangential velocity boundary condition, accounting for the cell body. Using nutrient flux to the organism as our metric, we investigate the discrepancy between the spherical and stokeslet models in order to determine the efficacy of the stokeslet model as an approximation of single-celled suspension feeders.

  4. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion.

    PubMed

    Li, Tingting; Xu, Jie; Qin, Xinghua; Hou, Zuoxu; Guo, Yongzheng; Liu, Zhenhua; Wu, Jianjiang; Zheng, Hong; Zhang, Xing; Gao, Feng

    2017-03-21

    Myocardial reperfusion decreases glucose oxidation and uncouples glucose oxidation from glycolysis. Therapies that increase glucose oxidation lessen myocardial ischemia/reperfusion injury. However, the regulation of glucose uptake during reperfusion remains poorly understood. Here we found that glucose uptake was remarkably diminished in myocardium following reperfusion in Sprague-Dawley rats as detected by 18F-labeled and fluorescent-labeled glucose analogs, even though GLUT1 was upregulated by 3 folds and GLUT4 translocation remained unchanged compared with those of sham rats. The decreased glucose uptake was accompanied by suppressed glucose oxidation. Interestingly, stimulating glucose oxidation by inhibition of pyruvate dehydrogenase kinase 4 (PDK4), a rate-limiting enzyme for glucose oxidation, increased glucose uptake and alleviated ischemia/reperfusion injury. In vitro data in neonatal myocytes showed that PDK4 overexpression decreased glucose uptake, while its knockdown increased glucose uptake, suggesting a role of PDK4 in regulating glucose uptake. Moreover, inhibition of PDK4 increased myocardial glucose uptake with concomitant enhancement of cardiac insulin sensitivity following myocardial ischemia/reperfusion. These results showed that the suppressed glucose oxidation mediated by PDK4 contributes to the reduced glucose uptake in myocardium following reperfusion, and enhancement of glucose uptake exerts cardioprotection. The findings suggest that stimulating glucose oxidation via PDK4 could be an efficient approach to improve recovery from myocardial ischemia/reperfusion injury.

  5. Elemental ratios and the uptake and release of nutrients by phytoplankton and bacteria in three lakes of the Canadian shield.

    PubMed

    Elser, J J; Chrzanowski, T H; Sterner, R W; Schampel, J H; Foster, D K

    1995-03-01

    The dynamics of carbon (C), nitrogen (N), and phosphorus (P), elemental ratios, and dark uptake/release of N and P in bacterial and phytoplankton size fractions were studied during summer 1992 in three lakes of contrasting food web structure and trophic status (L240, L110, L227). We wished to determine if phytoplankton and bacteria differed in their elemental characteristics and to evaluate whether the functional role of bacteria in nutrient cycling (i.e., as sink or source) depended on bacterial elemental characteristics. Bacterial contributions to total suspended particulate material and to fluxes of nutrients in the dark were substantial and varied for different elements. This indicated that some techniques for assaying phytoplankton physiological condition are compromised by bacterial contributions. C/N ratios were generally less variable than C/P and N/P ratios. Both elemental ratios and biomass-normalized N and P flux indicated that phytoplankton growth in each lake was predominantly P-limited, although in L227 these data reflect the dominance of N-fixing cyanobacteria, and N was likely limiting early in the sampling season. In L227, phytoplankton N/P ratio and biomass-normalized N flux were negatively correlated, indicating that flux data were likely a reasonable measure of the N status of the phytoplankton. However, for L227 phytoplankton, P-flux per unit biomass was a hyperbolic function of N/P, suggesting that the dominant L227 cyanobacteria have a limited uptake and storage capacity and that P-flux per unit biomass may not be a good gauge of the P-limitation status of phytoplankton in this situation. Examination of N-flux data in the bacterial size fraction relative to the N/P ratio of the bacteria revealed a threshold N/P ratio (∼22:1 N/P, by atoms), below which, bacteria took up and sequestered added N, and above which, N was released. Thus, the functional role of bacteria in N cycling in these ecosystems depended on their N/P stoichiometry.

  6. Contrary seasonal changes of rates of nutrient uptake, organ mass, and voluntary food intake in red deer (Cervus elaphus)

    PubMed Central

    Beiglböck, Christoph; Burmester, Marion; Guschlbauer, Maria; Lengauer, Astrid; Schröder, Bernd; Wilkens, Mirja; Breves, Gerhard

    2015-01-01

    Northern ungulates acclimatize to winter conditions with restricted food supply and unfavorable weather conditions by reducing energy expenditure and voluntary food intake. We investigated in a study on red deer whether rates of peptide and glucose transport in the small intestines are also reduced during winter as part of the thrifty phenotype of winter-acclimatized animals, or whether transport rates are increased during winter in order to exploit poor forage more efficiently. Our results support the latter hypothesis. We found in a feeding experiment that total energy intake was considerably lower during winter despite ad libitum feeding. Together with reduced food intake, mass of visceral organs was significantly lower and body fat reserves were used as metabolic fuel in addition to food. However, efficacy of nutrient absorption seemed to be increased simultaneously. Extraction of crude protein from forage was higher in winter animals, at any level of crude protein intake, as indicated by the lower concentration of crude protein in feces. In line with these in vivo results, Ussing chamber experiments revealed greater electrogenic responses to both peptides and glucose in the small intestines of winter-acclimatized animals, and peptide uptake into jejunal brush-border membrane vesicles was increased. We conclude that reduced appetite of red deer during winter avoids energy expenditure for unproductive search of scarcely available food and further renders the energetically costly maintenance of a large gut and visceral organs unnecessary. Nevertheless, extraction of nutrients from forage is more efficient in the winter to attenuate an inevitably negative energy balance. PMID:26017492

  7. Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants.

    PubMed

    Rout, Jyoti Ranjan; Behera, Sadhana; Keshari, Nitin; Ram, Shidharth Sankar; Bhar, Subhajit; Chakraborty, Anindita; Sudarshan, Mathummal; Sahoo, Santi Lata

    2015-03-01

    In the present study the response of antioxidant enzyme activities and the level of expression of their corresponding genes on bioaccumulation of iron (Fe) were investigated. In vitro germinated Withania somnifera L. were grown in Murashige and Skoog's liquid medium with increasing concentrations (0, 25, 50, 100 and 200 µM) of FeSO4 for 7 and 14 days. Root and leaf tissues analyzed for catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and guaiacol peroxidase (GPX, EC 1.11.1.7), have shown an increase in content with respect to exposure time. Isoforms of CAT, SOD and GPX were separated using non-denaturing polyacrylamide gel electrophoresis and observed that the isoenzymes were greatly affected by higher concentrations of Fe. Reverse transcriptase polymerase chain reaction analysis performed by taking three pairs of genes of CAT (RsCat, Catalase1, Cat1) and SOD (SodCp, TaSOD1.2, MnSOD) to find out the differential expression of antioxidant genes under Fe excess. RsCat from CAT and MnSOD from SOD have exhibited high levels of gene expression under Fe stress, which was consistent with the changes of the activity assayed in solution after 7 days of treatment. Analysis by proton induced X-ray emission exhibited an increasing uptake of Fe in plants by suppressing and expressing of other nutrient elements. The results of the present study suggest that higher concentration of Fe causes disturbance in nutrient balance and induces oxidative stress in plant.

  8. Effects of Selected Surfactants on Nutrient Uptake and Soil Microbial Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surfactants are adjuvants that facilitate and accentuate the emulsifying, dispersing, spreading, wetting, or other surface modifying properties of liquids. Many pesticides require the addition of a surfactant to improve pesticide performance in spray solution. Soils are one of the direct recipients ...

  9. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.)

    PubMed Central

    Agbodjato, Nadège A.; Noumavo, Pacôme A.; Adjanohoun, Adolphe; Agbessi, Léonce; Baba-Moussa, Lamine

    2016-01-01

    This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84%) and germinated seed weight (31.39%) whereas chitosan-P. putida has increased the shoot weight (65.67%). For the growth test, the maximal heights (17.66%) were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%), aerial (84.66%), and underground biomass (108.77%) production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production. PMID:26904295

  10. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.).

    PubMed

    Agbodjato, Nadège A; Noumavo, Pacôme A; Adjanohoun, Adolphe; Agbessi, Léonce; Baba-Moussa, Lamine

    2016-01-01

    This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84%) and germinated seed weight (31.39%) whereas chitosan-P. putida has increased the shoot weight (65.67%). For the growth test, the maximal heights (17.66%) were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%), aerial (84.66%), and underground biomass (108.77%) production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production.

  11. Effects of Posidonia oceanica beach-cast on germination, growth and nutrient uptake of coastal dune plants.

    PubMed

    Del Vecchio, Silvia; Marbà, Núria; Acosta, Alicia; Vignolo, Clara; Traveset, Anna

    2013-01-01

    Seagrass meadows play an important role in marine ecosystems. A part of seagrass production is also exported to adjacent coastal terrestrial systems, possibly influencing their functioning. In this work we experimentally analyzed the effect of Posidonia oceanica beach-cast on plant germination, growth, and nutrient uptake of two plant species (Cakile maritima and Elymus farctus) that grow on upper beaches and fore dunes along the Mediterranean coasts. We compared plants growing in simple sand (control) with those growing in a substrate enriched with P. oceanica wrack (treatment) in laboratory. P. oceanica wrack doubled the N substrate pool and kept the substrate humid. Plants growing in the treated substrate grew faster, were twice as large as those growing in the control substrate, while tissues were enriched in N and P (Cakile by the 1.3 fold in N and 2.5 fold in P; Elymus by 1.5 fold in N and 2 fold in P). Our results suggest a positive effect of seagrass litter for the enhancing of dune species, highlighting its role for the conservation of coastal dune ecosystems.

  12. Interactive effects of soil temperature, atmospheric carbon dioxide and soil N on root development, biomass and nutrient uptake of winter wheat during vegetative growth.

    PubMed

    Gavito, M E; Curtis, P S; Mikkelsen, T N; Jakobsen, I

    2001-09-01

    Nutrient requirements for plant growth are expected to rise in response to the predicted changes in CO(2) and temperature. In this context, little attention has been paid to the effects of soil temperature, which limits plant growth at early stages in temperate regions. A factorial growth-room experiment was conducted with winter wheat, varying soil temperature (10 degrees C and 15 degrees C), atmospheric CO(2) concentration (360 and 700 ppm), and N supply (low and high). The hypothesis was that soil temperature would modify root development, biomass allocation and nutrient uptake during vegetative growth and that its effects would interact with atmospheric CO(2) and N availability. Soil temperature effects were confirmed for most of the variables measured and 3-factor interactions were observed for root development, plant biomass components, N-use efficiency, and shoot P content. Importantly, the soil temperature effects were manifest in the absence of any change in air temperature. Changes in root development, nutrient uptake and nutrient-use efficiencies were interpreted as counterbalancing mechanisms for meeting nutrient requirements for plant growth in each situation. Most variables responded to an increase in resource availability in the order: N supply >soil temperature >CO(2).

  13. Effects of enhanced soil P on photosynthesis, root respiration and nutrient uptake of Artemisia tridentata in different photosynthetic photon flux densities and CO[sub 2] conditions

    SciTech Connect

    Cui, M.; Caldwell, M.M. )

    1994-06-01

    Responses of leaf photosynthesis, root respiration and P uptake by Artemisia tridentata seedlings to study root physiological adjustments to utilize available nutrient resources in a changing soil environment. Root respiration was measured for intact root systems in split-root chambers. Increasing P in 0.2 [times] Hoagland's solution from 0.04 mmol to 2.0 mmol increased leaf photosynthesis by 6% in 3 days, increased nighttime leaf respiration rate by 8% and root respiration by 18%. After PPFD was reduced from 800 to 200 [mu]mol m[sup [minus]2]s[sup [minus]1] leaf photosynthesis deceased by 67%, and root respiration by 26% in the following day but then decreased by 35% over the next three days. Shading may limit root growth and nutrient uptake by lowering the carbohydrate supply to root systems.

  14. Uptake of radioiodide by Paenibacillus sp., Pseudomonas sp., Burkholderia sp. and Rhodococcus sp. isolated from a boreal nutrient-poor bog.

    PubMed

    Lusa, Merja; Lehto, Jukka; Aromaa, Hanna; Knuutinen, Jenna; Bomberg, Malin

    2016-06-01

    Radionuclides, like radioiodine ((129)I), may escape deep geological nuclear waste repositories and migrate to the surface ecosystems. In surface ecosystems, microorganisms can affect their movement. Iodide uptake of six bacterial strains belonging to the genera Paenibacillus, Pseudomonas, Burkholderia and Rhodococcus isolated from an acidic boreal nutrient-poor bog was tested. The tests were run in four different growth media at three temperatures. All bacterial strains removed iodide from the solution with the highest efficiency shown by one of the Paenibacillus strains with >99% of iodide removed from the solution in one of the used growth media. Pseudomonas, Rhodococcus and one of the two Paenibacillus strains showed highest iodide uptake in 1% yeast extract with maximum values for the distribution coefficient (Kd) ranging from 90 to 270L/kg DW. The Burkholderia strain showed highest uptake in 1% Tryptone (maximum Kd 170L/kg DW). The Paenibacillus strain V0-1-LW showed exceptionally high uptake in 0.5% peptone +0.25% yeast extract broth (maximum Kd>1,000,000L/kg DW). Addition of 0.1% glucose to the 0.5% peptone +0.25% yeast extract broth reduced iodide uptake at 4°C and 20°C and enhanced iodide uptake at 37°C compared to the uptake without glucose. This indicates that the uptake of glucose and iodide may be competing processes in these bacteria. We estimated that in in situ conditions of the bog, the bacterial uptake of iodide accounts for approximately 0.1%-0.3% of the total sorption of iodide in the surface, subsurface peat, gyttja and clay layers.

  15. Basalt Weathering, Nutrient Uptake, And Carbon Release By An Exotic And A Native Arizona Grass Species Under Different Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Gallas, G.; Dontsova, K.; Chorover, J.; Hunt, E.; Ravi, S.

    2010-12-01

    basalt weathering. All of the leachate samples showed higher pH than the input water, and the pH was elevated in treatments that contained grass. This indicated that in the presence of vegetation there was more proton absorption. The trends in total nitrogen concentrations indicate a dependence on temperature; the same can be said of anion concentrations. Anion leaching is lower at higher temperatures possibly due to greater plant uptake. Both organic and inorganic carbon concentrations were found to be higher in grass treatments than in control treatments. Because both dissolved CO2 and soluble organic exudates encourage mineral dissolution, this could be causative of the weathering enhancements observed. Denudation of nutrient elements differed between plant species and between temperatures, possibly relating to plant uptake and secondary mineral formation. This study gives unique insight into plant-mineral interactions as a function of plant species and temperature that is essential for understanding Earth systems under changing climate.

  16. Is nutrient uptake by plant roots sensitive to the rate of mass flow? Reappraisal of an old chestnut for spatially distributed root systems

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Näsholm, T.

    2015-12-01

    Numerous modelling papers have considered the contribution of mass flow to nutrient uptake by a single plant root, but few have evaluated its contribution at the scale of an entire root system. We derive equations for nitrogen (N) influx per unit root surface area (J) and N uptake by a single root (U) as functions of soil nitrogen supply, root-length density (RLD) and the velocity of water at the root surface (vo). This model of N uptake by a single root can be used to evaluate N uptake by an entire root system if spatial distributions are known for soil N supply, root biomass and water-uptake velocity. In this paper we show that spatial distributions of RLD and vo can be estimated simultaneously under an optimisation hypothesis (MaxNup, McMurtrie et al. 2012), according to which total root mass and total water uptake are distributed vertically in order to maximise total N uptake. The MaxNup hypothesis leads to equations for optimal vertical profiles of RLD, vo, J and U, maximum rooting depth and the fraction of total available soil nitrogen taken up by the root system. Predicted values of vo are enhanced at depths where nitrogen influx per unit root surface area (J) is more sensitive to vo and diminished at depths where J is less sensitive to vo. Predicted vo is largest at the base of the root system where RLD is lowest, and is smallest in upper soil layers where RLD is highest. MaxNup thus predicts that water uptake will be distributed preferentially to soil depths where it will enhance nitrogen uptake U; this tendency will amplify the sensitivity of total N uptake to total water uptake, compared with strategies where vo is the same for all roots, or where vo is elevated for roots in upper soil layers. Reference McMurtrie RE, Iversen CM, Dewar RC, Medlyn BE, Näsholm T, Pepper DA, Norby RJ. 2012. Plant root distributions and nitrogen uptake predicted by a hypothesis of optimal root foraging. Ecology and Evolution 2: 1235-1250.

  17. Assessing Interventions To Improve Influenza Vaccine Uptake Among Health Care Workers.

    PubMed

    Rashid, Harunor; Yin, Jiehui Kevin; Ward, Kirsten; King, Catherine; Seale, Holly; Booy, Robert

    2016-02-01

    Despite official recommendations for health care workers to receive the influenza vaccine, uptake remains low. This systematic review of randomized controlled trials was conducted to understand the evidence about interventions to improve influenza vaccine uptake among health care workers. We identified twelve randomized controlled trials that, collectively, assessed six major categories of interventions involving 193,924 health care workers in high-income countries. The categories were educational materials and training sessions, improved access to the vaccine, rewards following vaccination, organized efforts to raise vaccine awareness, reminders to get vaccinated, and the use of lead advocates for vaccination. Only one of the four studies that evaluated the effect of a single intervention in isolation demonstrated a significantly higher vaccine uptake rate in the intervention group, compared to controls. However, five of the eight studies that evaluated a combination of strategies showed significantly higher vaccine uptake. Despite the low quality of the studies identified, the data suggest that combined interventions can moderately increase vaccine uptake among health care workers. Further methodologically appropriate trials of combined interventions tailored to individual health care settings and incorporating less-studied strategies would enhance the evidence about interventions to improve immunization uptake among health care workers.

  18. A Multi-Agency Nutrient Dataset Used to Estimate Loads, Improve Monitoring Design, and Calibrate Regional Nutrient SPARROW Models

    USGS Publications Warehouse

    Saad, D.A.; Schwarz, G.E.; Robertson, D.M.; Booth, N.L.

    2011-01-01

    Stream-loading information was compiled from federal, state, and local agencies, and selected universities as part of an effort to develop regional SPAtially Referenced Regressions On Watershed attributes (SPARROW) models to help describe the distribution, sources, and transport of nutrients in streams throughout much of the United States. After screening, 2,739 sites, sampled by 73 agencies, were identified as having suitable data for calculating long-term mean annual nutrient loads required for SPARROW model calibration. These sites had a wide range in nutrient concentrations, loads, and yields, and environmental characteristics in their basins. An analysis of the accuracy in load estimates relative to site attributes indicated that accuracy in loads improve with increases in the number of observations, the proportion of uncensored data, and the variability in flow on observation days, whereas accuracy declines with increases in the root mean square error of the water-quality model, the flow-bias ratio, the number of days between samples, the variability in daily streamflow for the prediction period, and if the load estimate has been detrended. Based on compiled data, all areas of the country had recent declines in the number of sites with sufficient water-quality data to compute accurate annual loads and support regional modeling analyses. These declines were caused by decreases in the number of sites being sampled and data not being entered in readily accessible databases. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  19. Improving General Intelligence with a Nutrient-Based Pharmacological Intervention

    ERIC Educational Resources Information Center

    Stough, Con; Camfield, David; Kure, Christina; Tarasuik, Joanne; Downey, Luke; Lloyd, Jenny; Zangara, Andrea; Scholey, Andrew; Reynolds, Josh

    2011-01-01

    Cognitive enhancing substances such as amphetamine and modafinil have become popular in recent years to improve acute cognitive performance particularly in environments in which enhanced cognition or intelligence is required. Nutraceutical nootropics, which are natural substances that have the ability to bring about acute or chronic changes in…

  20. Systematic review of interventions to improve patient uptake and completion of pulmonary rehabilitation in COPD.

    PubMed

    Jones, Arwel W; Taylor, Abigail; Gowler, Holly; O'Kelly, Noel; Ghosh, Sudip; Bridle, Christopher

    2017-01-01

    Pulmonary rehabilitation is considered a key management strategy for chronic obstructive pulmonary disease (COPD), but its effectiveness is undermined by poor patient uptake and completion. The aim of this review was to identify, select and synthesise the available evidence on interventions for improving uptake and completion of pulmonary rehabilitation in COPD. Electronic databases and trial registers were searched for randomised trials evaluating the effect of an intervention compared with a concurrent control group on patient uptake and completion. The primary outcomes were the number of participants who attended a baseline assessment and at least one session of pulmonary rehabilitation (uptake), and the number of participants who received a discharge assessment (completion). Only one quasi-randomised study (n=115) (of 2468 records identified) met the review inclusion criteria and was assessed as having a high risk of bias. The point estimate of effect did, however, indicate greater programme completion and attendance rates in participants allocated to pulmonary rehabilitation plus a tablet computer (enabled with support for exercise training) compared with controls (pulmonary rehabilitation only). There is insufficient evidence to guide clinical practice on interventions for improving patient uptake and completion of pulmonary rehabilitation in COPD. Despite increasing awareness of patient barriers to pulmonary rehabilitation, our review highlights the existing under-appreciation of interventional trials in this area. This knowledge gap should be viewed as an area of research priority due to its likely impact in undermining wider implementation of pulmonary rehabilitation and restricting patient access to a treatment considered the cornerstone of COPD.

  1. Systematic review of interventions to improve patient uptake and completion of pulmonary rehabilitation in COPD

    PubMed Central

    Jones, Arwel W.; Taylor, Abigail; Gowler, Holly; O'Kelly, Noel; Ghosh, Sudip; Bridle, Christopher

    2017-01-01

    Pulmonary rehabilitation is considered a key management strategy for chronic obstructive pulmonary disease (COPD), but its effectiveness is undermined by poor patient uptake and completion. The aim of this review was to identify, select and synthesise the available evidence on interventions for improving uptake and completion of pulmonary rehabilitation in COPD. Electronic databases and trial registers were searched for randomised trials evaluating the effect of an intervention compared with a concurrent control group on patient uptake and completion. The primary outcomes were the number of participants who attended a baseline assessment and at least one session of pulmonary rehabilitation (uptake), and the number of participants who received a discharge assessment (completion). Only one quasi-randomised study (n=115) (of 2468 records identified) met the review inclusion criteria and was assessed as having a high risk of bias. The point estimate of effect did, however, indicate greater programme completion and attendance rates in participants allocated to pulmonary rehabilitation plus a tablet computer (enabled with support for exercise training) compared with controls (pulmonary rehabilitation only). There is insufficient evidence to guide clinical practice on interventions for improving patient uptake and completion of pulmonary rehabilitation in COPD. Despite increasing awareness of patient barriers to pulmonary rehabilitation, our review highlights the existing under-appreciation of interventional trials in this area. This knowledge gap should be viewed as an area of research priority due to its likely impact in undermining wider implementation of pulmonary rehabilitation and restricting patient access to a treatment considered the cornerstone of COPD. PMID:28154821

  2. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat

    USGS Publications Warehouse

    Ruhl, H.A.; Rybicki, N.B.

    2010-01-01

    Great effort continues to focus on ecosystem restoration and reduction of nutrient inputs thought to be responsible, in part, for declines in estuary habitats worldwide. The ability of environmental policy to address restoration is limited, in part, by uncertainty in the relationships between costly restoration and benefits. Here, we present results from an 18-y field investigation (1990-2007) of submerged aquatic vegetation (SAV) community dynamics and water quality in the Potomac River, a major tributary of the Chesapeake Bay. River and anthropogenic discharges lower water clarity by introducing nutrients that stimulate phytoplankton and epiphyte growth as well as suspended sediments. Efforts to restore the Chesapeake Bay are often viewed as failing. Overall nutrient reduction and SAV restoration goals have not been met. In the Potomac River, however, reduced in situ nutrients, wastewater-treatment effluent nitrogen, and total suspended solids were significantly correlated to increased SAV abundance and diversity. Species composition and relative abundance also correlated with nutrient and water-quality conditions, indicating declining fitness of exotic species relative to native species during restoration. Our results suggest that environmental policies that reduce anthropogenic nutrient inputs do result in improved habitat quality, with increased diversity and native species abundances. The results also help elucidate why SAV cover has improved only in some areas of the Chesapeake Bay.

  3. Long-term reductions in anthropogenic nutrients link to improvements in Chesapeake Bay habitat.

    PubMed

    Ruhl, Henry A; Rybicki, Nancy B

    2010-09-21

    Great effort continues to focus on ecosystem restoration and reduction of nutrient inputs thought to be responsible, in part, for declines in estuary habitats worldwide. The ability of environmental policy to address restoration is limited, in part, by uncertainty in the relationships between costly restoration and benefits. Here, we present results from an 18-y field investigation (1990-2007) of submerged aquatic vegetation (SAV) community dynamics and water quality in the Potomac River, a major tributary of the Chesapeake Bay. River and anthropogenic discharges lower water clarity by introducing nutrients that stimulate phytoplankton and epiphyte growth as well as suspended sediments. Efforts to restore the Chesapeake Bay are often viewed as failing. Overall nutrient reduction and SAV restoration goals have not been met. In the Potomac River, however, reduced in situ nutrients, wastewater-treatment effluent nitrogen, and total suspended solids were significantly correlated to increased SAV abundance and diversity. Species composition and relative abundance also correlated with nutrient and water-quality conditions, indicating declining fitness of exotic species relative to native species during restoration. Our results suggest that environmental policies that reduce anthropogenic nutrient inputs do result in improved habitat quality, with increased diversity and native species abundances. The results also help elucidate why SAV cover has improved only in some areas of the Chesapeake Bay.

  4. Interaction of Eu(III) with mammalian cells: Cytotoxicity, uptake, and speciation as a function of Eu(III) concentration and nutrient composition.

    PubMed

    Sachs, Susanne; Heller, Anne; Weiss, Stephan; Bok, Frank; Bernhard, Gert

    2015-10-01

    In case of the release of lanthanides and actinides into the environment, knowledge about their behavior in biological systems is necessary to assess and prevent adverse health effects for humans. We investigated the interaction of europium with FaDu cells (human squamous cell carcinoma cell line) combining analytical methods, spectroscopy, and thermodynamic modeling with in-vitro cell experiments under defined conditions. Both the cytotoxicity of Eu(III) onto FaDu cells and its cellular uptake are mainly concentration-dependent. Moreover, they are governed by its chemical speciation in the nutrient medium. In complete cell culture medium, i.e., in the presence of fetal bovine serum, Eu(III) is stabilized in solution in a wide concentration range by complexation with serum proteins resulting in low cytotoxicity and cellular Eu(III) uptake. In serum-free medium, Eu(III) precipitates as hardly soluble phosphate species, exhibiting a significantly higher cytotoxicity and slightly higher cellular uptake. The presence of a tenfold excess of citrate in serum-free medium causes the formation of Eu(HCit)2(3-) complexes in addition to the dominating Eu(III) phosphate species, resulting in a decreased Eu(III) cytotoxicity and cellular uptake. The results of this study underline the crucial role of a metal ion's speciation for its toxicity and bioavailability.

  5. Challenges to Improving the Uptake of Milk in a Nursery Class: A Case Study

    ERIC Educational Resources Information Center

    Albon, Deborah

    2009-01-01

    Purpose: The purpose of this paper is to examine why the uptake of free milk in a particular nursery class was low, to explore the meanings children attribute to drinks given to them in school and those brought from home, and make suggestions as to what might be done to improve children's intake of free school milk. Design/methodology/approach:…

  6. Inter-laboratory study to improve the quality of the analysis of nutrients in rainwater chemistry

    NASA Astrophysics Data System (ADS)

    Karthikeyan, Sathrugnan; Balasubramanian, Rajasekhar; He, Jun

    This paper describes the results of an inter-laboratory study conducted for the analysis of nutrients (nitrate, ammonium, phosphate, total nitrogen (TN), and total phosphorus (TP)) in natural rainwater. For this purpose, rainwater samples were collected and aggregated in Singapore and homogenized. These samples were immediately filtered through 0.45 μm membrane filters and autoclaved for 15 min at 80 °C in order to stabilize the nutrients. The homogeneity and the stability of nutrients were rigorously tested for a period of three months initially. Upon ensuring the homogeneity and stability, the samples were distributed to 15 different laboratories from various countries around the world (Australia, Brazil, India, Mauritius, Singapore, Slovenia, Spain, Taiwan, and USA). Almost all laboratories have reported the analytical results for nitrate whereas only 8 of the 15 laboratories reported results for other nutrients such as ammonium, phosphate, TN, and TP. The discrepancy was mainly due to the presence of these nutrients in low concentration levels (particularly ammonium ion and phosphate). Not all the laboratories were equipped with analytical capabilities to conduct the analysis of nutrients in low concentration levels. Further, the uncertainty associated with the analysis of TN and TP restricted the number of laboratories that could report their analytical data on nutrients. All 14 laboratories reported nitrate-nitrogen results which were in good agreement with each other (0.68 ± 0.07 mg l -1). Similarly, the results of TN and TP were also comparable among at least 8 laboratories. This inter-laboratory study on the analysis of nutrients in natural rainwater, conducted for the first time, provided an opportunity to the participating laboratories to assess and improve their laboratory performance, thereby, improving the quality of their analytical data.

  7. Comparison of mineral weathering and biomass nutrient uptake in two small forested watersheds underlain by quartzite bedrock, Catoctin Mountain, Maryland, USA

    USGS Publications Warehouse

    Rice, Karen; Price, Jason R.

    2014-01-01

    To quantify chemical weathering and biological uptake, mass-balance calculations were performed on two small forested watersheds located in the Blue Ridge Physiographic Province in north-central Maryland, USA. Both watersheds, Bear Branch (BB) and Fishing Creek Tributary (FCT), are underlain by relatively unreactive quartzite bedrock. Such unreactive bedrock and associated low chemical-weathering rates offer the opportunity to quantify biological processes operating within the watershed. Hydrologic and stream-water chemistry data were collected from the two watersheds for the 9-year period from June 1, 1990 to May 31, 1999. Of the two watersheds, FCT exhibited both higher chemical-weathering rates and biomass nutrient uptake rates, suggesting that forest biomass aggradation was limited by the rate of chemical weathering of the bedrock. Although the chemical-weathering rate in the FCT watershed was low relative to the global average, it masked the influence of biomass base-cation uptake on stream-water chemistry. Any differences in bedrock mineralogy between the two watersheds did not exert a significant influence on the overall weathering stoichiometry. The difference in chemical-weathering rates between the two watersheds is best explained by a larger proportion of reactive phyllitic layers within the bedrock of the FCT watershed. Although the stream gradient of BB is about two-times greater than that of FCT, its influence on chemical weathering appears to be negligible. The findings of this study support the biomass nutrient uptake stoichiometry of K1.0Mg1.1Ca0.97 previously determined for the study site. Investigations of the chemical weathering of relatively unreactive quartzite bedrock may provide insight into critical zone processes.

  8. Dynamics of plant nutrients, utilization and uptake, and soil microbial community in crops under ambient and elevated carbon dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In natural settings such as under field conditions, the plant available soil nutrients in conjunction with other environmental factors such as, solar radiation, temperature, precipitation, and atmospheric carbon dioxide (CO2) concentration determine crop adaptation and productivity. Therefore, crop...

  9. Growth and nitrogen uptake by Salicornia europaea and Aster tripolium in nutrient conditions typical of aquaculture wastewater.

    PubMed

    Quintã, R; Santos, R; Thomas, D N; Le Vay, L

    2015-02-01

    The increasing need for environmentally sound aquaculture development can, in part, be addressed by using halophytic plants in integrated multitrophic aquaculture systems (IMTA) to remove waste dissolved nitrogen (N). However, knowledge of plant ability to take up nitrogen is of foremost importance to predict plants performance in such systems. Two species, Salicornia europaea and Aster tripolium, have been identified as potential candidates for IMTA due to their salt tolerance, potential N removal capabilities and their high commercial value as an additional crop. This study investigated the growth and N uptake rates of these two species under different N supply (NH4(+), NO3(-), NH4NO3). S. europaea plants produced a lower biomass when grown in NH4(+) compared to NO3(-) or NH4NO3, while A. tripolium biomass was not affected by the form in which N was supplied. N uptake in plants incubated at different concentrations of (15)N enriched solution (up to 2 mmol l(-1)) fitted the Michaelis-Menten model. While S. europaea NH4-N maximum uptake did not differ between starved and non-starved plants, A. tripolium NH4-N uptake was higher in starved plants when supplied alone. When NO3(-) was supplied alone, NO3-N maximum uptake was lower, for both species, when the plants were not starved. Comparison of starved and non-starved plants N uptake demonstrates the need for cautious interpretation of N uptake rates across different conditions. According to the observed results, both S. europaea and A. tripolium are capable of significantly high biomass production and N removal making them potential species for inclusion in efficient IMTA.

  10. Lay health educators within primary care practices to improve cancer screening uptake for South Asian patients: challenges in quality improvement

    PubMed Central

    Lofters, AK; Vahabi, M; Prakash, V; Banerjee, L; Bansal, P; Goel, S; Dunn, S

    2017-01-01

    Background Cancer screening uptake is known to be low among South Asian residents of Ontario. The objective of this pilot study was to determine if lay health educators embedded within the practices of primary care providers could improve willingness to screen and cancer screening uptake for South Asian patients taking a quality improvement approach. Materials and methods Participating physicians selected quality improvement initiatives to use within their offices that they felt could increase willingness to screen and cancer screening uptake. They implemented initiatives, adapting as necessary, for six months. Results Four primary care physicians participated in the study. All approximated that at least 60% of their patients were of South Asian ethnicity. All physicians chose to work with a preexisting lay health educator program geared toward South Asians. Health ambassadors spoke to patients in the office and telephoned patients. For all physicians, ~60% of South Asian patients who were overdue for cancer screening and who spoke directly to health ambassadors stated they were willing to be screened. One physician was able to track actual screening among contacted patients and found that screening uptake was relatively high: from 29.2% (colorectal cancer) to 44.6% (breast cancer) of patients came in for screening within six months of the first phone calls. Although physicians viewed the health ambassadors positively, they found the study to be time intensive and resource intensive, especially as this work was additional to usual clinical duties. Discussion Using South Asian lay health educators embedded within primary care practices to telephone patients in their own languages showed promise in this study to increase awareness about willingness to screen and cancer screening uptake, but it was also time intensive and resource intensive with numerous challenges. Future quality improvement efforts should further develop the phone call invitation process, as well as

  11. Effects of anaerobic growth conditions on biomass accumulation, root morphology, and efficiencies of nutrient uptake and utilization in seedlings of some southern coastal plain

    SciTech Connect

    Topa, M.A.

    1984-01-01

    Seedlings of pond, and loblolly pines were grown in a non-circulating, continuously-flowing solution culture under anaerobic (0.75 mg/1 O/sub 2/) conditions to determine the effects of anaerobiosis on overall growth, root morphology and efficiencies of nutrient uptake and utilization. Although shoot growth of the 11-week old loblolly and pond was not affected by anaerobic treatment, it did significantly reduce root biomass. Sand pine suffered the largest biomass reduction. Flooding tolerance was positively correlated with morphological changes which enhanced root internal aeration. Oxygen transport from shoot to the root was demonstrated via rhizosphere oxidation experiments using indigo-carmine dye solutions and polarography. Stem and root collar lenticels were found to be the major sites of atmospheric O/sub 2/ entry for submerged roots. Longitudinal and radial pathways for gas diffusion via intercellular spaces in the pericycle and ray parenchyma, respectively, were elucidated histologically. Lenticel and aerenchyma development, and rhizosphere oxidation in roots of anaerobically-grown sand pine seedlings were minimal. Elemental analyses showed that anaerobic conditions interfered with nutrient absorption and utilization. Short-term /sup 32/P uptake experiments with intact seedlings indicated that net absorption decreased because of the reduction in root biomass. Phosphorus absorption rates were negatively correlated with internal tissue phosphorus concentrations, and root and shoot biomass. 315 refs., 25 figs., 14 tabs.

  12. Cooking Schools Improve Nutrient Intake Patterns of People with Type 2 Diabetes

    ERIC Educational Resources Information Center

    Archuleta, Martha; VanLeeuwen, Dawn; Halderson, Karen; Jackson, K'Dawn; Bock, Margaret Ann; Eastman, Wanda; Powell, Jennifer; Titone, Michelle; Marr, Carol; Wells, Linda

    2012-01-01

    Objective: To determine whether cooking classes offered by the Cooperative Extension Service improved nutrient intake patterns in people with type 2 diabetes. Design: Quasi-experimental using pretest, posttest comparisons. Setting: Community locations including schools, churches, and senior centers. Participants: One hundred seventeen people with…

  13. Using extension phosphorus uptake research to improve Idaho's nutrient management planning program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated silage corn is the main crop used for phosphorus removal; however little is known about the actual amounts of phosphorus removed under southern Idaho growing conditions. The purpose of this study was to survey phosphorus removal by irrigated corn grown for silage in southern Idaho under va...

  14. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice ( Oryza sativa L.).

    PubMed

    Seyfferth, Angelia L; Fendorf, Scott

    2012-12-18

    Arsenic-contaminated rice grain may threaten human health globally. Since H₃AsO₃⁰ is the predominant As species found in paddy pore-waters, and H₄SiO₄⁰ and H₃AsO₃⁰ share an uptake pathway, silica amendments have been proposed to decrease As uptake and consequent As concentrations in grains. Here, we evaluated the impact of two silicate mineral additions differing in solubility (+Si(L), diatomaceous earth, 0.29 mM Si; +Si(H), Si-gel, 1.1 mM Si) to soils differing in mineralogy on arsenic concentration in rice. The +Si(L) addition either did not change or decreased As concentration in pore-water but did not change or increased grain-As levels relative to the (+As--Si) control. The +Si(H) addition increased As in pore-water, but it significantly decreased grain-As relative to the (+As--Si) control. Only the +Si(H) addition resulted in significant increases in straw- and husk-Si. Total grain- and straw-As was negatively correlated with pore-water Si, and the relationship differed between two soils exhibiting different mineralogy. These differing results are a consequence of competition between H₄SiO₄⁰ and H₃AsO₃⁰ for adsorption sites on soil solids and subsequent plant-uptake, and illustrate the importance of Si mineralogy on arsenic uptake.

  15. The Effect of Catchment Urbanization on Nutrient Uptake and Biofilm Enzyme Activity in Lake Superior (USA) Tributary Streams

    EPA Science Inventory

    We used landscape, habitat, and chemistry variables, along with nutrient spiraling metrics and biofilm extracellular enzyme activity (EEA), to assess the response of streams to the level of urbanization within their catchments. For this study nine streams of similar catchment are...

  16. Improved Hypoxia Modeling for Nutrient Control Decisions in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Habib, Shaid; Pickering, Ken; Tzortziou, Maria; Maninio, Antonio; Policelli, Fritz

    2010-01-01

    As required by the Harmful Algal Bloom and Hypoxia Research Control Act of 1998, the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force issued the 2001 Gulf Hypoxia Action Plan (updated in 2008). In response to the Gulf Hypoxia Action Plan of 2001 (updated in 2008), the EPA Gulf of Mexico Hypoxia Modeling and Monitoring Project has established a detailed model for the Mississippi-Attchafalaya River Basin which provides a capability to forecast the multi-source nutrient loading to the Gulf and the subsequent bio-geochemical processes leading to hypoxic conditions and subsequent effects on Gulf habitats and fisheries. The primary purpose of the EPA model is to characterize the impacts of nutrient management actions, or proposed actions on the spatial and temporal characteristics of the Gulf hypoxic zone. The model is expected to play a significant role in determining best practices and improved strategies for incentivizing nutrient reduction strategies, including installation of on-farm structures to reduce sediment and nutrient runoff, use of cover crops and other agricultural practices, restoration of wetlands and riparian buffers, improved waste water treatment and decreased industrial nitrogen emissions. These decisions are currently made in a fragmented way by federal, state, and local agencies, using a variety of small scale models and limited data. During the past three years, EPA has collected an enormous amount of in-situ data to be used in the model. We believe that the use of NASA satellite data products in the model and for long term validation of the model has the potential to significantly increase the accuracy and therefore the utility of the model for the decision making described above. This proposal addresses the Gulf of Mexico Alliance (GOMA) priority issue of reductions in nutrient inputs to coastal ecosystem. It further directly relates to water quality for healthy beaches and shellfish beds and wetland and coastal conservation

  17. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.)*

    PubMed Central

    Tian, Chang; Zhou, Xuan; Liu, Qiang; Peng, Jian-wei; Wang, Wen-ming; Zhang, Zhen-hua; Yang, Yong; Song, Hai-xing; Guan, Chun-yun

    2016-01-01

    Background: Nitrogen (N), phosphorous (P), and potassium (K) are critical nutrient elements necessary for crop plant growth and development. However, excessive inputs will lead to inefficient usage and cause excessive nutrient losses in the field environment, and also adversely affect the soil, water and air quality, human health, and biodiversity. Methods: Field experiments were conducted to study the effects of controlled-release fertilizer (CRF) on seed yield, plant growth, nutrient uptake, and fertilizer usage efficiency for early ripening rapeseed (Xiangzayou 1613) in the red-yellow soil of southern China during 2011–2013. It was grown using a soluble fertilizer (SF) and the same amounts of CRF, such as SF1/CRF1 (3750 kg/hm2), SF2/CRF2 (3000 kg/hm2), SF3/CRF3 (2250 kg/hm2), SF4/CRF4 (1500 kg/hm2), SF5/CRF5 (750 kg/hm2), and also using no fertilizer (CK). Results: CRF gave higher seed yields than SF in both seasons by 14.51%. CRF4 and SF3 in each group achieved maximum seed yield (2066.97 and 1844.50 kg/hm2, respectively), followed by CRF3 (1929.97 kg/hm2) and SF4 (1839.40 kg/hm2). There were no significant differences in seed yield among CK, SF1, and CRF1 (P>0.05). CRF4 had the highest profit (7126.4 CNY/hm2) and showed an increase of 12.37% in seed yield, and it decreased by 11.01% in unit fertilizer rate compared with SF4. The branch number, pod number, and dry matter weight compared with SF increased significantly under the fertilization of CRF (P<0.05). The pod number per plant was the major contributor to seed yield. On the other hand, the N, P, and K uptakes increased at first and then decreased with increasing the fertilizer rate at maturity, and the N, P, and K usage efficiency decreased with increasing the fertilizer rate. The N, P, and K uptakes and usage efficiencies of the CRF were significantly higher than those of SF (P<0.05). The N accumulation and N usage efficiency of CRF increased by an average of 13.66% and 9.74 percentage points

  18. Sensory active piperine analogues from Macropiper excelsum and their effects on intestinal nutrient uptake in Caco-2 cells.

    PubMed

    Obst, Katja; Lieder, Barbara; Reichelt, Katharina V; Backes, Michael; Paetz, Susanne; Geißler, Katrin; Krammer, Gerhard; Somoza, Veronika; Ley, Jakob P; Engel, Karl-Heinz

    2017-03-01

    The phytochemical profile of Macropiper excelsum (G.Forst.) Miq. subsp. excelsum (Piperaceae), a shrub which is widespread in New Zealand, was investigated by LC-MS-guided isolation and characterization via HR-ESI-TOF-MS and NMR spectroscopy. The isolated compounds were sensorily evaluated to identify their contribution to the overall taste of the crude extract with sweet, bitter, herbal and trigeminal impressions. Besides the known non-volatile Macropiper compounds, the lignans (+)-diayangambin and (+)-excelsin, four further excelsin isomers, (+)-diasesartemin, (+)-sesartemin, (+)-episesartemin A and B were newly characterized. Moreover, piperine and a number of piperine analogues as well as trans-pellitorine and two homologues, kalecide and (2E,4E)-tetradecadienoic acid N-isobutyl amide were identified in M. excelsum, some of them for the first time. Methyl(2E,4E)-7-(1,3-benzodioxol-5-yl)hepta-2,4-dienoate was identified and characterized for the first time in nature. Sensory analysis of the pure amides indicated that they contributed to the known chemesthetic effects of Macropiper leaves and fruits. Since the pungent piperine has been shown to affect glucose and fatty acid metabolism in vivo in previous studies, piperine itself and four of the isolated compounds, piperdardine, chingchengenamide A, dihydropiperlonguminine, and methyl(2E,4E)-7-(1,3-benzodioxol-5-yl)hepta-2,4-dienoate, were investigated regarding their effects on glucose and fatty acid uptake by enterocyte-like Caco-2 cells, in concentrations ranging from 0.1 to 100 μM. Piperdardine showed the most pronounced effect, with glucose uptake increased by 83 ± 18% at 100 μM compared to non-treated control cells. An amide group seems to be advantageous for glucose uptake stimulation, but not necessarily for fatty acid uptake-stimulating effects of piperine-related compounds.

  19. Ocean nutrients

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.; Hurd, Catriona L.

    Nutrients provide the chemical life-support system for phytoplankton in the ocean. Together with the carbon fixed during photosynthesis, nutrients provide the other elements, such as N and P, needed to synthesize macromolecules to build cellular constituents such as ribosomes. The makeup of these various biochemicals, such as proteins, pigments, and nucleic acids, together determine the elemental stoichiometry of an individual phytoplankton cell. The stoichiometry of different phytoplankton species or groups will vary depending on the proportions of distinct cellular machinery, such as for growth or resource acquisition, they require for their life strategies. The uptake of nutrients by phytoplankton helps to set the primary productivity, and drives the biological pump, of the global ocean. In the case of nitrogen, the supply of nutrients is categorized as either new or regenerated. The supply of new nitrogen, such as nitrate upwelled from the ocean' interior or biological nitrogen fixation, is equal to the vertical export of particular organic matter from the upper ocean on a timescale of years. Nutrients such as silica can also play a structural role in some phytoplankton groups, such as diatoms, where they are used to synthesize a siliceous frustule that offers some mechanical protection from grazers. In this chapter, we also explore nutrient uptake kinetics, patterns in nutrient distributions in space and time, the biogeochemical cycle of nitrogen, the atmospheric supply of nutrients, departures from the Redfield ratio, and whether nutrient distributions and cycling will be altered in the future

  20. Functional traits and structural controls on the relationship between photosynthetic CO2 uptake and sun-induced fluorescence in a Mediterranean grassland under different nutrient availability

    NASA Astrophysics Data System (ADS)

    Migliavacca, Mirco

    2016-04-01

    Recent studies have shown how human induced nitrogen (N) and phosphorous (P) imbalances affect essential ecosystem processes, and might be particularly important in water-limited ecosystems. Hyperspectral information can be used to directly infer nutrient-induced variation in structural and functional changes of vegetation under different nutrient availability. However, several uncertainties still hamper the direct link between photosynthetic CO2 uptake (gross primary productivity, GPP) and hyperspectral reflectance. Sun-induced fluorescence (SIF) provides a new non-invasive measurement approach that has the potential to quantify dynamic changes in light use efficiency and photosynthetic CO2 uptake. In this contribution we will present an experiment conducted in a Mediterranean grassland, where 16 plots of 8x8 meters were manipulated by adding nutrient (N, P, and NP). Almost simultaneous estimates of canopy scale GPP and SIF were conducted with transparent transient-state canopy chambers and high resolution spectrometers, respectively. We investigated the response of GPP and SIF to different nutrient availability and plant stoichiometry. The second objective was to identify how structural (LAI, leaf angle distribution, and biodiversity) and canopy biochemical properties (e.g. N and chlorophyll content - Chl) control the functional relationship between GPP and SIF. To test the different hypotheses the SCOPE radiative transfer model was used. We ran a factorial experiment with SCOPE to disentangle the main drivers (structure vs biochemistry) of the relationship GPP-SIF. The results showed significant differences in GPP values between N and without N addition plots. We also found that vegetation indices sensitive to pigment variations and physiology (such as photochemical reflectance index PRI) and SIF showed differences between different treatments. SCOPE showed very good agreement with the observed data (R2=0.71). The observed variability in SIF was mainly related

  1. Differences in nutrient uptake capacity of the benthic filamentous algae Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. under varying N/P conditions.

    PubMed

    Liu, Junzhuo; Vyverman, Wim

    2015-03-01

    The N/P ratio of wastewater can vary greatly and directly affect algal growth and nutrient removal process. Three benthic filamentous algae species Cladophora sp., Klebsormidium sp. and Pseudanabaena sp. were isolated from a periphyton bioreactor and cultured under laboratory conditions on varying N/P ratios to determine their ability to remove nitrate and phosphorus. The N/P ratio significantly influenced the algal growth and phosphorus uptake process. Appropriate N/P ratios for nitrogen and phosphorus removal were 5-15, 7-10 and 7-20 for Cladophora sp., Klebsormidium sp. and Pseudanabaena sp., respectively. Within these respective ranges, Cladophora sp. had the highest biomass production, while Pseudanabaena sp. had the highest nitrogen and phosphorus contents. This study indicated that Cladophora sp. had a high capacity of removing phosphorus from wastewaters of low N/P ratio, and Pseudanabaena sp. was highly suitable for removing nitrogen from wastewaters with high N/P ratio.

  2. Biocontrol of Fusarium wilt disease in cucumber with improvement of growth and mineral uptake using some antagonistic formulations.

    PubMed

    Moharam, Moustafa H A; Negim, Osama O

    2012-01-01

    Fusarium wilt disease in Cucumber (Cucumis sativus L.) is widespread, responsible for serious economic losses. Amongst totally 15 isolates of Fusarium spp., obtained from different localities of Sohag governorate, Egypt, only the identified isolates as F. oxysporum were pathogenic on cucumber Denmark Beta-Alpha cv. and caused wilt symptoms. Totally 22 isolates of Trichoderma spp., B. subtilis and Pseudomonas spp., were obtained from rhizosphere of cucumber and some available commercial formulations and then tested for antagonistic activity against F. oxysporum (FO5) in vitro. The highest inhibitory effect on growth of FO5 was observed by isolate Trichodex of T. harzianum (89.29%) followed by Th4 of T. harzianum, Serenade and MBI 600 of B. subtilis, PS3 of Pseudomonas spp., and Treico and Tv2 of T. viride. Pot experiments were performed to investigate the effects of formulated antagonists as seed treatment on Fusarium wilt incidence, growth and mineral uptake of cucumber. Results showed that all tested formulations significantly reduced percent of wilted plants and disease severity, and improved plant growth by increasing length of shoot and root, fresh and dry weight of shoot and root system, and number of leaves and flowers per plant compared with untreated control. They also significantly increased nutrient contents of plant shoot including N, P, K, Ca, Fe, Mn, Cu, and Zn. Magnesium content in shoot slightly not significantly increased. Formulation of Trichodex was the most effective ones followed by Serenade, Th4 and PS3.

  3. Enablers and Barriers to Large-Scale Uptake of Improved Solid Fuel Stoves: A Systematic Review

    PubMed Central

    Puzzolo, Elisa; Stanistreet, Debbi; Pope, Daniel; Bruce, Nigel G.

    2013-01-01

    Background: Globally, 2.8 billion people rely on household solid fuels. Reducing the resulting adverse health, environmental, and development consequences will involve transitioning through a mix of clean fuels and improved solid fuel stoves (IS) of demonstrable effectiveness. To date, achieving uptake of IS has presented significant challenges. Objectives: We performed a systematic review of factors that enable or limit large-scale uptake of IS in low- and middle-income countries. Methods: We conducted systematic searches through multidisciplinary databases, specialist websites, and consulting experts. The review drew on qualitative, quantitative, and case studies and used standardized methods for screening, data extraction, critical appraisal, and synthesis. We summarized our findings as “factors” relating to one of seven domains—fuel and technology characteristics; household and setting characteristics; knowledge and perceptions; finance, tax, and subsidy aspects; market development; regulation, legislation, and standards; programmatic and policy mechanisms—and also recorded issues that impacted equity. Results: We identified 31 factors influencing uptake from 57 studies conducted in Asia, Africa, and Latin America. All domains matter. Although factors such as offering technologies that meet household needs and save fuel, user training and support, effective financing, and facilitative government action appear to be critical, none guarantee success: All factors can be influential, depending on context. The nature of available evidence did not permit further prioritization. Conclusions: Achieving adoption and sustained use of IS at a large scale requires that all factors, spanning household/community and program/societal levels, be assessed and supported by policy. We propose a planning tool that would aid this process and suggest further research to incorporate an evaluation of effectiveness. Citation: Rehfuess EA, Puzzolo E, Stanistreet D, Pope D, Bruce

  4. Salicylic acid involved in the regulation of nutrient elements uptake and oxidative stress in Vallisneria natans (Lour.) Hara under Pb stress.

    PubMed

    Wang, Chao; Zhang, Songhe; Wang, Peifang; Hou, Jun; Qian, Jin; Ao, Yanhui; Lu, Jie; Li, Li

    2011-06-01

    In this study, the alterations in nutrient elements content, reactive oxygen species level and antioxidant response were studied in leaves of Vallisneria natans (Lour.) Hara exposed to salicylic acid (SA, 10 or 100 μM), or Pb (50 μM) or their combinations for 4d. No significant alterations in Mn and Ca content were observed but content of Cu, Zn, Fe and P decreased in plants exposed to SA alone. SA application inhibited the uptake of Pb and partially reversed Pb-induced the alterations in Mn, Ca and Fe content in leaves of V. natans exposed to 50 μM Pb. The decreased chlorophyll (a+b) and increased malondialdehyde and O(2-) and H(2)O(2) content were detected in plants exposed to 100 μM SA, 50 μM Pb, 10 μM SA+50 μM Pb or 100 μM SA+50 μM Pb. Application SA partially inhibited Pb-induced the increase of malondialdehyde, O(2-) and H(2)O(2) content. 100 μM SA decreased the activity of NADH oxidase and the content of non-protein thiols, carotenoids and ascorbic acid and increased the content of dehydroascorbate in plants treated with or without Pb. SA alone decreased the ascorbate peroxidase activity and increased the catalase and peroxidase activity, while SA application increased catalase activity but had no significant effect on ascorbate peroxidase and peroxidase activity in V. natans exposed to Pb. The results indicate that SA involves in the regulation of Pb uptake, nutrient balance and oxidative stress.

  5. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils

    PubMed Central

    Willmann, Martin; Gerlach, Nina; Buer, Benjamin; Polatajko, Aleksandra; Nagy, Réka; Koebke, Eva; Jansa, Jan; Flisch, René; Bucher, Marcel

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) form a mutually beneficial symbiosis with plant roots providing predominantly phosphorus in the form of orthophosphate (Pi) in exchange for plant carbohydrates on low P soils. The goal of this work was to generate molecular-genetic evidence in support of a major impact of the mycorrhizal Pi uptake (MPU) pathway on the productivity of the major crop plant maize under field and controlled conditions. Here we show, that a loss-of-function mutation in the mycorrhiza-specific Pi transporter gene Pht1;6 correlates with a dramatic reduction of above-ground biomass and cob production in agro-ecosystems with low P soils. In parallel mutant pht1;6 plants exhibited an altered fingerprint of chemical elements in shoots dependent on soil P availability. In controlled environments mycorrhiza development was impaired in mutant plants when grown alone. The presence of neighboring mycorrhizal nurse plants enhanced the reduced mycorrhiza formation in pht1;6 roots. Uptake of 33P-labeled orthophosphate via the MPU pathway was strongly impaired in colonized mutant plants. Moreover, repression of the MPU pathway resulted in a redirection of Pi to neighboring plants. In line with previous results, our data highlight the relevance of the MPU pathway in Pi allocation within plant communities and in particular the role of Pht1;6 for the establishment of symbiotic Pi uptake and for maize productivity and nutritional value in low-input agricultural systems. In a first attempt to identify cellular pathways which are affected by Pht1;6 activity, gene expression profiling via RNA-Seq was performed and revealed a set of maize genes involved in cellular signaling which exhibited differential regulation in mycorrhizal pht1;6 and control plants. The RNA data provided support for the hypothesis that fungal supply of Pi and/or Pi transport across Pht1;6 affects cell wall biosynthesis and hormone metabolism in colonized root cells. PMID:24409191

  6. Improvements in recall and food choices using a graphical method to deliver information of select nutrients.

    PubMed

    Pratt, Nathan S; Ellison, Brenna D; Benjamin, Aaron S; Nakamura, Manabu T

    2016-01-01

    Consumers have difficulty using nutrition information. We hypothesized that graphically delivering information of select nutrients relative to a target would allow individuals to process information in time-constrained settings more effectively than numerical information. Objectives of the study were to determine the efficacy of the graphical method in (1) improving memory of nutrient information and (2) improving consumer purchasing behavior in a restaurant. Values of fiber and protein per calorie were 2-dimensionally plotted alongside a target box. First, a randomized cued recall experiment was conducted (n=63). Recall accuracy of nutrition information improved by up to 43% when shown graphically instead of numerically. Second, the impact of graphical nutrition signposting on diner choices was tested in a cafeteria. Saturated fat and sodium information was also presented using color coding. Nutrient content of meals (n=362) was compared between 3 signposting phases: graphical, nutrition facts panels (NFP), or no nutrition label. Graphical signposting improved nutrient content of purchases in the intended direction, whereas NFP had no effect compared with the baseline. Calories ordered from total meals, entrées, and sides were significantly less during graphical signposting than no-label and NFP periods. For total meal and entrées, protein per calorie purchased was significantly higher and saturated fat significantly lower during graphical signposting than the other phases. Graphical signposting remained a predictor of calories and protein per calorie purchased in regression modeling. These findings demonstrate that graphically presenting nutrition information makes that information more available for decision making and influences behavior change in a realistic setting.

  7. The role of precision agriculture for improved nutrient management on farms.

    PubMed

    Hedley, Carolyn

    2015-01-01

    Precision agriculture uses proximal and remote sensor surveys to delineate and monitor within-field variations in soil and crop attributes, guiding variable rate control of inputs, so that in-season management can be responsive, e.g. matching strategic nitrogen fertiliser application to site-specific field conditions. It has the potential to improve production and nutrient use efficiency, ensuring that nutrients do not leach from or accumulate in excessive concentrations in parts of the field, which creates environmental problems. The discipline emerged in the 1980s with the advent of affordable geographic positioning systems (GPS), and has further developed with access to an array of affordable soil and crop sensors, improved computer power and software, and equipment with precision application control, e.g. variable rate fertiliser and irrigation systems. Precision agriculture focusses on improving nutrient use efficiency at the appropriate scale requiring (1) appropriate decision support systems (e.g. digital prescription maps), and (2) equipment capable of varying application at these different scales, e.g. the footprint of a one-irrigation sprinkler or a fertiliser top-dressing aircraft. This article reviews the rapid development of this discipline, and uses New Zealand as a case study example, as it is a country where agriculture drives economic growth. Here, the high yield potentials on often young, variable soils provide opportunities for effective financial return from investment in these new technologies.

  8. Effects of In-stream Restorations on Stream Hydrodynamics, Nutrient Uptake, and Ecosystem Metabolism at Fort Benning, GA

    NASA Astrophysics Data System (ADS)

    Roberts, B. J.; Mulholland, P. J.

    2005-05-01

    Spatial variability in military training intensity results in a wide range of upland disturbance intensity at the Fort Benning Military Reservation (near Columbus, GA). We selected stream reaches within 8 catchments with contrasting levels of upland denudation and stream ecosystem disturbance. In October 2003, 4 of these streams (spanning the disturbance gradient) received in-stream restorations in the form of coarse woody debris dams every 10 m for the 100 m study reaches. Stream hydrodynamic properties, NH4+ uptake, and whole-stream metabolism were examined both prior to and after restoration for all 8 streams. In-stream restorations resulted in increases in the relative size of transient storage zones (important for biological processes) and spatial variation in water velocity (enhances habitat variability). These hydrodynamic changes corresponded to increases in both NH4+ uptake rate and velocity as the ability of stream biota to control stream NH4+ concentration increased. By monitoring stream metabolism rates for two years prior to restoration we are able to assess the impact of the restorations on these important integrative processes using a BACI-type analysis (before-after control-treatment analysis) for the first year of post-restoration.

  9. Effect of Off-Season Flooding on Growth, Photosynthesis, Carbohydrate Partitioning, and Nutrient Uptake in Distylium chinense

    PubMed Central

    Liu, Zebin; Cheng, Ruimei; Xiao, Wenfa; Guo, Quanshui; Wang, Na

    2014-01-01

    Distylium chinense is an evergreen shrub used for the vegetation recovery of floodplain and riparian areas in Three Gorges Reservoir Region. To clarify the morphological and physiological responses and tolerance of Distylium chinense to off-season flooding, a simulation flooding experiment was conducted during autumn and winter. Results indicated that the survival rate of seedlings was 100%, and that plant height and stem diameter were not significantly affected by flooding. Adventitious roots and hypertrophic lenticels were observed in flooded seedlings after 30 days of flooding. Flooding significantly reduced the plant biomass of roots, net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), maximum photochemical efficiency (Fv/Fm), photochemical quenching (qP), and electron transport rate (ETR) in leaves, and also affected the allocation and transport of carbohydrate and nutrients. However, D. chinense was able to maintain stable levels of Pn, Fv/Fm, qP, ETR, and nutrient content (N and P) in leaves and to store a certain amount of carbohydrate in roots over prolonged durations of flooding. Based on these results, we conclude that there is a high flooding tolerance in D. chinense, and the high survival rate of D. chinense may be attributable to a combination of morphological and physiological responses to flooding. PMID:25222006

  10. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions.

    PubMed

    Porras-Soriano, Andrés; Soriano-Martín, María Luisa; Porras-Piedra, Andrés; Azcón, Rosario

    2009-09-01

    Inoculating olive plantlets with the arbuscular mycorrhizal fungi (AMF) Glomus mosseae, Glomus intraradices or Glomus claroideum increased plant growth and the ability to acquire nitrogen, phosphorus, and potassium from non-saline as well as saline media. AMF-colonized plants also increased in survival rate after transplant. Osmotic stress caused by NaCl supply reduced stem diameter, number of shoots, shoot length and nutrients in olive plants, but AMF colonization alleviated all of these negative effects on growth. G. mosseae was the most efficient fungus in reducing the detrimental effects of salinity; it increased shoot growth by 163% and root growth by 295% in the non-saline medium, and by 239% (shoot) and by 468% (root) under the saline conditions. AMF colonization enhanced salt tolerance in terms of olive growth and nutrient acquisition. Mycorrhizal olive plants showed the lowest biomass reduction under salinity (34%), while growth was reduced by 78% in control plants. This G. mosseae effect seems to be due to increased K acquisition; K content was enhanced under salt conditions by 6.4-fold with G. mosseae, 3.4-fold with G. intraradices, and 3.7-fold with G. claroideum. Potassium, as the most prominent inorganic solute, plays a key role in the osmoregulation processes and the highest salinity tolerance of G. mosseae-colonized olive trees was concomitant with an enhanced K concentration in olive plants.

  11. Influence of different acid and alkaline cleaning agents on the effects of irrigation of synthetic dairy factory effluent on soil quality, ryegrass growth and nutrient uptake.

    PubMed

    Liu, Y-Y; Haynes, R J

    2013-01-01

    The aim of this study was to examine the effects of replacement of phosphoric acid with nitric or acetic acid, and replacement of NaOH with KOH, as cleaning agents in dairy factories, on the effects that irrigation of dairy factory effluent (DFE) has on the soil-plant system. A 16-week greenhouse study was carried out in which the effects of addition of synthetic dairy factory effluent containing (a) milk residues alone or milk residues plus (b) H(3)PO(4)/NaOH, (c) H(3)PO(4)/HNO(3)/NaOH or (d) CH(3)COOH/KOH, on soil's chemical, physical and microbial properties and perennial ryegrass growth and nutrient uptake were investigated. The cumulative effect of DFE addition was to increase exchangeable Na, K, Ca, Mg, exchangeable sodium percentage, microbial biomass C and N and basal respiration in the soil. Dry matter yields of ryegrass were increased by additions of DFE other than that containing CH(3)COOH. Plant uptake of P, Ca and Mg was in the same order as their inputs in DFE but for Na; inputs were an order of magnitude greater than plant uptake. Replacement of NaOH by KOH resulted in increased accumulation of exchangeable K. The effects of added NaOH and KOH on promoting breakdown of soil aggregates during wet sieving (and formation of a < 0.25 mm size class) were similar. Replacement of H(2)PO(4) by HNO(3) is a viable but CH(3)COOH appears to have detrimental effects on plant growth. Replacement of NaOH by KOH lowers the likelihood of phytotoxic effects of Na, but K and Na have similar effects on disaggregation.

  12. Korean pine nut oil replacement decreases intestinal lipid uptake while improves hepatic lipid metabolism in mice

    PubMed Central

    Zhu, Shuang; Park, Soyoung; Lim, Yeseo; Shin, Sunhye

    2016-01-01

    BACKGROUND/OBJECTIVES Consumption of pine nut oil (PNO) was shown to reduce weight gain and attenuate hepatic steatosis in mice fed a high-fat diet (HFD). The aim of this study was to examine the effects of PNO on both intestinal and hepatic lipid metabolism in mice fed control or HFD. MATERIALS/METHODS Five-week-old C57BL/6 mice were fed control diets containing 10% energy fat from either Soybean Oil (SBO) or PNO, or HFD containing 15% energy fat from lard and 30% energy fat from SBO or PNO for 12 weeks. Expression of genes related to intestinal fatty acid (FA) uptake and channeling (Cd36, Fatp4, Acsl5, Acbp), intestinal chylomicron synthesis (Mtp, ApoB48, ApoA4), hepatic lipid uptake and channeling (Lrp1, Fatp5, Acsl1, Acbp), hepatic triacylglycerol (TAG) lipolysis and FA oxidation (Atgl, Cpt1a, Acadl, Ehhadh, Acaa1), as well as very low-density lipoprotein (VLDL) assembly (ApoB100) were determined by real-time PCR. RESULTS In intestine, significantly lower Cd36 mRNA expression (P < 0.05) and a tendency of lower ApoA4 mRNA levels (P = 0.07) was observed in PNO-fed mice, indicating that PNO consumption may decrease intestinal FA uptake and chylomicron assembly. PNO consumption tended to result in higher hepatic mRNA levels of Atgl (P = 0.08) and Cpt1a (P = 0.05). Significantly higher hepatic mRNA levels of Acadl and ApoB100 were detected in mice fed PNO diet (P < 0.05). These results suggest that PNO could increase hepatic TAG metabolism; mitochondrial fatty acid oxidation and VLDL assembly. CONCLUSIONS PNO replacement in the diet might function in prevention of excessive lipid uptake by intestine and improve hepatic lipid metabolism in both control diet and HFD fed mice. PMID:27698954

  13. Improved Hypoxia Modeling for Nutrient Control Decisions in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Pickering, Ken; Tzortziou, Maria; Maninio, Antonio; Policelli, Fritz; Stehr, Jeff

    2011-01-01

    The Gulf of Mexico Modeling Framework is a suite of coupled models linking the deposition and transport of sediment and nutrients to subsequent bio-geo chemical processes and the resulting effect on concentrations of dissolved oxygen in the coastal waters of Louisiana and Texas. Here, we examine the potential benefits of using multiple NASA remote sensing data products within this Modeling Framework for increasing the accuracy of the models and their utility for nutrient control decisions in the Gulf of Mexico. Our approach is divided into three components: evaluation and improvement of (a) the precipitation input data (b) atmospheric constituent concentrations in EPA's air quality/deposition model and (c) the calculation of algal biomass, organic carbon and suspended solids within the water quality/eutrophication models of the framework.

  14. MODEL SIMULATION STUDIES OF SCALE-DEPENDENT GAIN IN STREAM NUTRIENT ASSIMILATIVE CAPACITY RESULTING FROM IMPROVING NUTRIENT RETENTION METRICS

    EPA Science Inventory

    Considering the difficulty in measuring restoration success for nonpoint source pollutants, nutrient assimilative capacity (NAS) offers an attractive systems-based metric. Here NAS was defined using an impulse-response model of nitrate fate and transport. Eleven parameters were e...

  15. Angiotensin 1-7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo.

    PubMed

    Echeverría-Rodríguez, Omar; Del Valle-Mondragón, Leonardo; Hong, Enrique

    2014-01-01

    The renin-angiotensin system (RAS) regulates skeletal muscle insulin sensitivity through different mechanisms. The overactivation of the ACE (angiotensin-converting enzyme)/Ang (angiotensin) II/AT1R (Ang II type 1 receptor) axis has been associated with the development of insulin resistance, whereas the stimulation of the ACE2/Ang 1-7/MasR (Mas receptor) axis improves insulin sensitivity. The in vivo mechanisms by which this axis enhances skeletal muscle insulin sensitivity are scarcely known. In this work, we investigated whether rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis and determined the effect of Ang 1-7 on rat skeletal muscle glucose uptake in vivo. Western blot analysis revealed the expression of ACE2 and MasR, while Ang 1-7 levels were detected in rat soleus muscle by capillary zone electrophoresis. The euglycemic clamp exhibited that Ang 1-7 by itself did not promote glucose transport, but it increased insulin-stimulated glucose disposal in the rat. In a similar manner, captopril (an ACE inhibitor) enhanced insulin-induced glucose uptake and this effect was blocked by the MasR antagonist A-779. Our results show for the first time that rat soleus muscle expresses the ACE2/Ang 1-7/MasR axis of the RAS, and Ang 1-7 improves insulin sensitivity by enhancing insulin-stimulated glucose uptake in rat skeletal muscle in vivo. Thus, endogenous (systemic and/or local) Ang 1-7 could regulate insulin-mediated glucose transport in vivo.

  16. Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields

    ERIC Educational Resources Information Center

    Thun, Tim Von

    2013-01-01

    Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…

  17. Whole Genome Sequencing Reveals Potential New Targets for Improving Nitrogen Uptake and Utilization in Sorghum bicolor

    PubMed Central

    Massel, Karen; Campbell, Bradley C.; Mace, Emma S.; Tai, Shuaishuai; Tao, Yongfu; Worland, Belinda G.; Jordan, David R.; Botella, Jose R.; Godwin, Ian D.

    2016-01-01

    Nitrogen (N) fertilizers are a major agricultural input where more than 100 million tons are supplied annually. Cereals are particularly inefficient at soil N uptake, where the unrecovered nitrogen causes serious environmental damage. Sorghum bicolor (sorghum) is an important cereal crop, particularly in resource-poor semi-arid regions, and is known to have a high NUE in comparison to other major cereals under limited N conditions. This study provides the first assessment of genetic diversity and signatures of selection across 230 fully sequenced genes putatively involved in the uptake and utilization of N from a diverse panel of sorghum lines. This comprehensive analysis reveals an overall reduction in diversity as a result of domestication and a total of 128 genes displaying signatures of purifying selection, thereby revealing possible gene targets to improve NUE in sorghum and cereals alike. A number of key genes appear to have been involved in selective sweeps, reducing their sequence diversity. The ammonium transporter (AMT) genes generally had low allelic diversity, whereas a substantial number of nitrate/peptide transporter 1 (NRT1/PTR) genes had higher nucleotide diversity in domesticated germplasm. Interestingly, members of the distinct race Guinea margaritiferum contained a number of unique alleles, and along with the wild sorghum species, represent a rich resource of new variation for plant improvement of NUE in sorghum. PMID:27826302

  18. Effect of calcium carbonate on cadmium and nutrients uptake in tobacco (Nicotiana tabacum L.) planted on contaminated soil.

    PubMed

    Zeng, Wei-Ai; Li, Fan; Zhou, Hang; Qin, Xiao-Li; Zou, Zi-Jin; Tian, Tao; Zeng, Min; Liao, Bo-Han

    2016-01-01

    In the present study, calcium carbonate (CaCO3) was applied to Cd-contaminated soil at rates of 0, 0.5 and 1.0 g kg(-1). The effect of CaCO3 on soil pH, organic matter, available Cd, exchangeable Cd and level of major nutrients in a tobacco field and on accumulation of various elements in tobacco plants was determined. The results showed that CaCO3 application significantly increased the pH level, available P and exchangeable Ca but decreased organic matter, available Cd, exchangeable Cd, available heavy metals (Fe, Mn, Zn and Cu) and available K in soil. Additionally, CaCO3 application substantially reduced Cd accumulation in tobacco roots, stems, upper leaves, middle leaves and lower leaves, with maximum decrease of 22.3%, 32.1%, 24.5%, 22.0% and 18.2%, respectively. There were large increase in total Ca and slight increases in total N and K but decrease to varying degrees in total Fe, Cu and Zn due to CaCO3 application. CaCO3 had little effect on total P and Mn levels in tobacco leaves.

  19. Integration of hollow fiber membranes improves nutrient supply in three-dimensional tissue constructs.

    PubMed

    Bettahalli, N M S; Vicente, J; Moroni, L; Higuera, G A; van Blitterswijk, C A; Wessling, M; Stamatialis, D F

    2011-09-01

    Sufficient nutrient and oxygen transport is a potent modulator of cell proliferation in in vitro tissue-engineered constructs. The lack of oxygen and culture medium can create a potentially lethal environment and limit cellular metabolic activity and growth. Diffusion through scaffold and multi-cellular tissue typically limits transport in vitro, leading to potential hypoxic regions and reduction in the viable tissue thickness. For the in vitro generation of clinically relevant tissue-engineered grafts, current nutrient diffusion limitations should be addressed. Major approaches to overcoming these include culture with bioreactors, scaffolds with artificial microvasculature, oxygen carriers and pre-vascularization of the engineered tissues. This study focuses on the development and utilization of a new perfusion culture system to provide adequate nutrient delivery to cells within large three-dimensional (3D) scaffolds. Perfusion of oxygenated culture medium through porous hollow fiber (HF) integrated within 3D free form fabricated (FFF) scaffolds is proposed. Mouse pre-myoblast (C2C12) cells cultured on scaffolds of poly(ethylene-oxide-terephthalate)-poly(butylene-terephthalate) block copolymer (300PEOT55PBT45) integrated with porous HF membranes of modified poly(ether-sulfone) (mPES, Gambro GmbH) is used as a model system. Various parameters such as fiber transport properties, fiber spacing within a scaffold and medium flow conditions are optimized. The results show that four HF membranes integrated with the scaffold significantly improve the cell density and cell distribution. This study provides a basis for the development of a new HF perfusion culture methodology to overcome the limitations of nutrient diffusion in the culture of large 3D tissue constructs.

  20. Improving prediction of metal uptake by Chinese cabbage (Brassica pekinensis L.) based on a soil-plant stepwise analysis.

    PubMed

    Zhang, Sha; Song, Jing; Gao, Hui; Zhang, Qiang; Lv, Ming-Chao; Wang, Shuang; Liu, Gan; Pan, Yun-Yu; Christie, Peter; Sun, Wenjie

    2016-11-01

    It is crucial to develop predictive soil-plant transfer (SPT) models to derive the threshold values of toxic metals in contaminated arable soils. The present study was designed to examine the heavy metal uptake pattern and to improve the prediction of metal uptake by Chinese cabbage grown in agricultural soils with multiple contamination by Cd, Cu, Ni, Pb, and Zn. Pot experiments were performed with 25 historically contaminated soils to determine metal accumulation in different parts of Chinese cabbage. Different soil bioavailable metal fractions were determined using different extractants (0.43M HNO3, 0.01M CaCl2, 0.005M DTPA, and 0.01M LWMOAs), soil moisture samplers, and diffusive gradients in thin films (DGT), and the fractions were compared with shoot metal uptake using both direct and stepwise multiple regression analysis. The stepwise approach significantly improved the prediction of metal uptake by cabbage over the direct approach. Strongly pH dependent or nonlinear relationships were found for the adsorption of root surfaces and in root-shoot uptake processes. Metals were linearly translocated from the root surface to the root. Therefore, the nonlinearity of uptake pattern is an important explanation for the inadequacy of the direct approach in some cases. The stepwise approach offers an alternative and robust method to study the pattern of metal uptake by Chinese cabbage (Brassica pekinensis L.).

  1. Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil.

    PubMed

    Liu, Mohan; Sun, Jian; Li, Yang; Xiao, Yan

    2017-01-01

    This study aimed to explore whether nitrogen availability could influence mycorrhizal function and their associations with host plants in Cd-contaminated acidic soils or not. A greenhouse pot experiment was conducted to assess the effects of mycorrhizal inoculation (non-mycorrhizal inoculation (NM), Glomus aggregatum (Ga), G. tortuosum (Gt) and G. versiforme (Gv)) and inorganic N amendment on the growth, nutrient and Cd uptake of Medicago sativa grown in Cd-contaminated acidic soils (10 mg Cd kg(-1) soil). AMF inoculations significantly increased the shoot and total biomass and decreased the shoot Cd concentration in comparison to plants uninoculated. N addition increased markedly concentration and content of N and decreased those of P in plants at all inoculation treatments. Shoot K, Na and Mg concentration in plants inoculated with Ga and Gv were decreased by N addition, whereas shoot K, Na, Ca and Mg concentration in plants inoculated with Gt were not negatively affected. It was observed that N addition only increased mycorrhizal colonization, shoot biomass, shoot K, Ca and Mg content of plants inoculated with Gt. Irrespective of N addition, plants with Gt inoculation got the maximum shoot and root P concentration and content, as well as P/Cd concentration molar ratio among all inoculation treatment. Neither AMF nor N fertilizer contributed to the decrease of soil exchangeable Cd and increase of soil pH. These results suggested that N fertilizer only elevated plant performance of alfalfa with Gt inoculation grown in acidic soil, by diluting Cd concentration and alleviating of nutrient deficiency, especially P.

  2. Content and uptake of minerals in the yolk of broiler embryos during incubation and effect of nutrient enrichment.

    PubMed

    Yair, R; Uni, Z

    2011-07-01

    Although embryo and chicken growth and development rely on mineral nutrition, information on mineral levels in the egg compartments during incubation is limited. Accordingly, we examined P, Ca, Fe, Zn, Cu, and Mn levels in the yolk of breeder eggs during incubation and the effect of embryonic mineral (with specific nutrients) enrichment on yolk mineral levels and consumption. First, fertile eggs were examined on day of setting (DOS), embryonic day (E) 11, E13, E15, E17, E19, E20, and day of hatch (DOH) for the mineral content in the yolk (and albumen on DOS) by inductively coupled plasma atomic emission spectroscopy. Results showed that on DOS, the yolk is the major origin for Mn, P, Fe, Ca, Cu, and Zn. Interestingly, P, Fe, Zn, Cu, and Mn were mostly consumed from the yolk until E17, after which their consumption was very low. Consumption of P was constant until E17 and then decreased until E20. Consumption of Fe, Zn, Cu, and Mn was medium to mild until E11, increased between E11 and E17, and minimal between E17 and DOH. Enrichment treatment, where fertile eggs were divided into 2 groups [nonenriched (control) and enriched (with minerals, vitamins, and carbohydrates on E17 using the in ovo feeding method)] showed that the enriched group had higher Fe, Zn, Cu, and Mn levels than the nonenriched group and exhibited higher consumption of Fe, Zn, and Mn between E20 and DOH. Analysis of the shell mineral composition along incubation showed that the shell released low amounts of P, Fe, and Mn in comparison with the yolk mineral content. Therefore, we concluded that the shell is a minor source of these minerals. Studying the mineral resources and consumption of embryos can lead to a better understanding of the mineral limitations of embryos during incubation. Additionally, because minerals are important for the development of the embryo, the higher mineral levels and consumption observed in the enriched group may affect the development of critical organs, such as the

  3. Phenolic esters of O-desmethylvenlafaxine with improved oral bioavailability and brain uptake.

    PubMed

    Zhang, Yang; Yang, Yan; Zhao, Sen; Yang, Zhichao; Yang, Hong; Fawcett, J Paul; Li, Youxin; Gu, Jingkai; Sun, Tiemin

    2013-12-04

    O-Desmethylvenlafaxine (desvenlafaxine, ODV) is a recently approved antidepressant which in some clinical studies failed to meet a satisfactory end-point. The aim of this study was to prepare a series of phenolic esters of ODV and evaluate their potential as ODV prodrugs with improved brain uptake. Fifteen phenolic esters (compounds 1a-o) were synthesized and their pharmacokinetic profiles evaluated in rat. The four compounds producing the highest relative bioavailability of ODV in rat (compounds 1c, 1e, 1n, 1o) were then studied to evaluate their brain uptake. Of these four compounds, compound 1n (the piperonylic acid ester of ODV) demonstrated the highest C(max) of ODV both in the rat hypothalamus and total brain. Finally the pharmacokinetics of 1n were evaluated in beagle dog where the increase in relative bioavailability of ODV was found to be as great as in rat. This high relative bioavailability of ODV coupled with its good brain penetration make 1n the most promising candidate for development as an ODV prodrug.

  4. [Effect of microbial nutrient concentration on improvement of municipal sewage sludge dewaterability through bioleaching].

    PubMed

    Song, Yong-wei; Liu, Fen-wu; Zhou, Li-xiang

    2012-08-01

    In this study, shaking flask batch experiments and practical engineering application tests were performed to investigate the effect of microbial nutrient concentration on the dewaterability of municipal sewage sludge with 2%, 3%, 4% and 5% solid contents via bioleaching. Meanwhile, the changes of pH value and the utilization efficiency of microbial nutrients during bioleaching were analyzed in this study. The results showed that the pH value decreased gradually at the beginning and then maintained a stable state in the treatments with different solid contents, and the nutrients were completely used up by the microorganisms after 2 days of bioleaching. It was found that the SRF of 2%, 3%, 4%, 5% sludges decreased quickly and then rose gradually with the extension of bioleaching time. In addition, the higher solid content the greater the increase. It was determined that the optimum microbial nutrient dosage for sludge with solid content of 2%, 3%, 4% and 5% were 3.0 g x L(-1), 4.5 g x L(-1), 8.3 g x L(-1) and 12.8 g x L(-1) respectively. At this point, the lowest SRF of sludge with each solid content were 0.61 x 10(12) m x kg(-1), 1.22 x 10(12) m x kg(-1), 3.09 x 10(12) m x kg(-1) and 4.83 x 10(12) m x kg(-1), respectively. Through the engineering application, it was showed that diluting the solid content of sewage sludge from 5% to 3% before bioleaching was feasible. It could not only improve the dewaterability of bioleached sewage sludge (the SRF declined from 3.29 x 10(12) m x kg(-1) to 1.10 x 10(12) m x kg(-1)), but also shorten the sludge nutrient time (shortened from 4 days to 2.35 days) and reduce the operation costs. Therefore, the results of this study have important significance for the engineering application of bioleaching of municipal sewage sludge with high solid content.

  5. Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil.

    PubMed

    García, I; Mendoza, R

    2012-11-01

    The impact of different defoliation intensities on the ability of Lotus tenuis plants to regrowth, mobilise nutrients and to associate with native AM fungi and Rhizobium in a saline-sodic soil was investigated. After 70 days, plants were subjected to 0, 25, 50, 75 and 100% defoliation and shoot regrowth was assessed at the end of subsequent 35 days. Compared to non-defoliated plants, low or moderate defoliation up to 75% did not affect shoot regrowth. However, 100% treatment affected shoot regrowth and the clipped plants were not able to compensate the growth attained by non-defoliated plants. Root growth was more affected by defoliation than shoot growth. P and N concentrations in shoots and roots increased with increasing defoliation while Na(+) concentration in shoots of non-defoliated and moderately defoliated plants was similar. Non-defoliated and moderately defoliated plants prevented increases of Na(+) concentration in shoots through both reducing Na(+) uptake and Na(+) transport to shoots by accumulating Na(+) in roots. At high defoliation, the salinity tolerance mechanism is altered and Na(+) concentration in shoots was higher than in roots. Reduction in the photosynthetic capacity induced by defoliation neither changed the root length colonised by AM fungi nor arbuscular colonisation but decreased the vesicular colonisation. Spore density did not change, but hyphal density and Rhizobium nodules increased with defoliation. The strategy of the AM symbiont consists in investing most of the C resources to preferentially retain arbuscular colonisation as well as inoculum density in the soil.

  6. Inoculation with arbuscular mycorrhizae does not improve 137Cs uptake in crops grown in the Chernobyl region.

    PubMed

    Vinichuk, M; Mårtensson, A; Rosén, K

    2013-12-01

    Methods for cleaning up radioactive contaminated soils are urgently needed. In this study we investigated whether the use of arbuscular mycorrhizal (AM) fungi can improve (137)Cs uptake by crops. Barley, cucumber, perennial ryegrass, and sunflower were inoculated with AM fungi and grown in low-level radionuclide contaminated soils in a field experiment 70 km southwest of Chernobyl, Ukraine, during two successive years (2009-2010). Roots of barley, cucumber and sunflower plants were slightly or moderately infected with AM fungus and root infection frequency was negatively or non-correlated with (137)Cs uptake by plants. Roots of ryegrass were moderately infected with AM fungus and infection frequency was moderately correlated with (137)Cs uptake by ryegrass. The application of AM fungi to soil in situ did not enhance radionuclide plant uptake or biomass. The responsiveness of host plants and AM fungus combination to (137)Cs uptake varied depending on the soil, although mycorrhization of soil in the field was conditional and did not facilitate the uptake of radiocesium. The total amount of (137)Cs uptake by plants growing on inoculated soil was equal to amounts in plant cultivated on non-inoculated soil. Thus, the use of AM fungi in situ for bioremediation of soil contaminated with a low concentration of (137)Cs could not be recommended.

  7. Improving the Quality of Postabortion Care Services in Togo Increased Uptake of Contraception.

    PubMed

    Mugore, Stembile; Kassouta, Ntapi Tchiguiri K; Sebikali, Boniface; Lundstrom, Laurel; Saad, Abdulmumin

    2016-09-28

    High-quality postabortion care (PAC) services that include family planning counseling and a full range of contraceptives at point of treatment for abortion complications have great potential to break the cycle of repeat unintended pregnancies and demand for abortions. We describe the first application of a systematic approach to quality improvement of PAC services in a West African country. This approach-IntraHealth International's Optimizing Performance and Quality (OPQ) approach-was applied at 5 health care facilities in Togo starting in November 2014. A baseline assessment identified the following needs: reorganizing services to ensure that contraceptives are provided at point of treatment for abortion complications, before PAC clients are discharged; improving provider competencies in family planning services, including in providing long-acting reversible contraceptive implants and intrauterine devices; ensuring that contraceptive methods are available to all PAC clients free of charge; standardizing PAC registers and enhancing data collection and reporting systems; enhancing internal supervision systems at facilities and teamwork among PAC providers; and engaging PAC providers in community talks. Solutions devised and applied at the facilities during OPQ resulted in significant increases in contraceptive counseling and uptake among PAC clients: During the 5-month baseline period, 31% of PAC clients were counseled, while during the 13-month intervention period, 91% were counseled. Of all PAC clients counseled during the baseline period, 37% accepted a contraceptive, compared with 60% of those counseled during the intervention period. Oral contraceptive pills remained the most popular method during both periods, yet uptake of implants increased significantly during the intervention period-from 4% to 27% of those accepting contraceptives. This result demonstrates that the solutions applied maintained method choice while expanding access to underused long

  8. Effectiveness of interventions that apply new media to improve vaccine uptake and vaccine coverage

    PubMed Central

    Odone, Anna; Ferrari, Antonio; Spagnoli, Francesca; Visciarelli, Sara; Shefer, Abigail; Pasquarella, Cesira; Signorelli, Carlo

    2014-01-01

    %), software for physicians and health professionals (n.4, 21%), and email communication (n.1, 5%). There is some evidence that text messaging, accessing immunization campaign websites, using patient-held web-based portals and computerized reminders increase immunization coverage rates. Insufficient evidence is available on the use of social networks, email communication and smartphone applications. Conclusion Although there is great potential for improving vaccine uptake and vaccine coverage by implementing programs and interventions that apply new media, scant data are available and further rigorous research - including cost-effectiveness assessments - is needed. PMID:25483518

  9. Mitochondrial Hormesis links nutrient restriction to improved metabolism in fat cell.

    PubMed

    Lettieri Barbato, Daniele; Tatulli, Giuseppe; Aquilano, Katia; Ciriolo, Maria R

    2015-10-01

    Fasting promotes longevity by reprogramming metabolic and stress resistance pathways. However, although the impact on adipose tissue physiology through hormonal inputs is well established, the direct role of fasting on adipose cells is poorly understood. Herein we show that white and beige adipocytes, as well as mouse epididymal and subcutaneous adipose depots, respond to nutrient scarcity by acquiring a brown-like phenotype. Indeed, they improve oxidative metabolism through modulating the expression of mitochondrial- and nuclear-encoded oxidative phosphorylation genes as well as mitochondrial stress defensive proteins (UCP1, SOD2). Such adaptation is placed in a canonical mitohormetic response that proceeds via mitochondrial reactive oxygen species ((mt)ROS) production and redistribution of FoxO1 transcription factor into nucleus. Nuclear FoxO1 ((n)FoxO1) mediates retrograde communication by inducing the expression of mitochondrial oxidative and stress defensive genes. Collectively, our findings describe an unusual white/beige fat cell response to nutrient availability highlighting another health-promoting mechanism of fasting.

  10. A Fast-Start Pacing Strategy Speeds Pulmonary Oxygen Uptake Kinetics and Improves Supramaximal Running Performance

    PubMed Central

    Turnes, Tiago; Salvador, Amadeo Félix; Lisbôa, Felipe Domingos; de Aguiar, Rafael Alves; Cruz, Rogério Santos de Oliveira; Caputo, Fabrizio

    2014-01-01

    The focus of the present study was to investigate the effects of a fast-start pacing strategy on running performance and pulmonary oxygen uptake () kinetics at the upper boundary of the severe-intensity domain. Eleven active male participants (28±10 years, 70±5 kg, 176±6 cm, 57±4 mL/kg/min) visited the laboratory for a series of tests that were performed until exhaustion: 1) an incremental test; 2) three laboratory test sessions performed at 95, 100 and 110% of the maximal aerobic speed; 3) two to four constant speed tests for the determination of the highest constant speed (HS) that still allowed achieving maximal oxygen uptake; and 4) an exercise based on the HS using a higher initial speed followed by a subsequent decrease. To predict equalized performance values for the constant pace, the relationship between time and distance/speed through log-log modelling was used. When a fast-start was utilized, subjects were able to cover a greater distance in a performance of similar duration in comparison with a constant-pace performance (constant pace: 670 m±22%; fast-start: 683 m±22%; P = 0.029); subjects also demonstrated a higher exercise tolerance at a similar average speed when compared with constant-pace performance (constant pace: 114 s±30%; fast-start: 125 s±26%; P = 0.037). Moreover, the mean response time was reduced after a fast start (constant pace: 22.2 s±28%; fast-start: 19.3 s±29%; P = 0.025). In conclusion, middle-distance running performances with a duration of 2–3 min are improved and response time is faster when a fast-start is adopted. PMID:25360744

  11. A fast-start pacing strategy speeds pulmonary oxygen uptake kinetics and improves supramaximal running performance.

    PubMed

    Turnes, Tiago; Salvador, Amadeo Félix; Lisbôa, Felipe Domingos; de Aguiar, Rafael Alves; Cruz, Rogério Santos de Oliveira; Caputo, Fabrizio

    2014-01-01

    The focus of the present study was to investigate the effects of a fast-start pacing strategy on running performance and pulmonary oxygen uptake (VO2) kinetics at the upper boundary of the severe-intensity domain. Eleven active male participants (28±10 years, 70±5 kg, 176±6 cm, 57±4 mL/kg/min) visited the laboratory for a series of tests that were performed until exhaustion: 1) an incremental test; 2) three laboratory test sessions performed at 95, 100 and 110% of the maximal aerobic speed; 3) two to four constant speed tests for the determination of the highest constant speed (HS) that still allowed achieving maximal oxygen uptake; and 4) an exercise based on the HS using a higher initial speed followed by a subsequent decrease. To predict equalized performance values for the constant pace, the relationship between time and distance/speed through log-log modelling was used. When a fast-start was utilized, subjects were able to cover a greater distance in a performance of similar duration in comparison with a constant-pace performance (constant pace: 670 m±22%; fast-start: 683 m±22%; P = 0.029); subjects also demonstrated a higher exercise tolerance at a similar average speed when compared with constant-pace performance (constant pace: 114 s±30%; fast-start: 125 s±26%; P = 0.037). Moreover, the mean VO2 response time was reduced after a fast start (constant pace: 22.2 s±28%; fast-start: 19.3 s±29%; P = 0.025). In conclusion, middle-distance running performances with a duration of 2-3 min are improved and VO2 response time is faster when a fast-start is adopted.

  12. Nutrient Database improvement project: Separable components and proximate composition of retail cuts from the beef chuck

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to provide updated information on the separable components, cooking yields, and nutrient values of retail cuts from the beef chuck. Ultimately, these data will be used in the United States Department of Agriculture (USDA) Nutrient Data Laboratory’s (NDL) National Nutrient Da...

  13. [Effects of two controlled-release fertilizers with different proportions of N, P and K on the nutrient uptake and growth of Chrysanthemum morifolium Ramat].

    PubMed

    Zhu, Li-Xiang; Wang, Jian-Hua; Sun, Yin-Shi; Li, Yu-Peng; Sun, Li-Wen; Zhang, Chun-Ling

    2009-07-01

    A pot experiment was conducted to study the effects of two controlled-release fertilizers CRFA (4% resin-coated, N: P2O5: K2O = 14: 14: 14) and CRFB (4% resin-coated, N: P2O5: K2O = 20: 8:10) on the nutrient uptake and growth of Chrysanthemum morifolium, with common compound fertilizer CCF (N: P2O5: K2O = 15: 15: 15) as the control. Six treatments were installed, i. e., CCF1 (CCF, 6 g N x pot(-1)), CCF2 (CCF, 3 g N x pot(-1)), CRFA1 (CRFA, 6 g x pot(-1)), CRFA2 (CRFA, 3 g x pot(-1)), CRFB1 (CRFB, 6 g x pot(-1)), and CRFB (CRFB, 3 g x pot(-1)). On the 30th day of applying common compound fertilizer CCF1 and CCF2, soil available N, P and K contents were 163.29 and 145.26 mg x kg(-1), 180.39 and 163.13 mg x kg(-1), and 300.08 and 213.15 mg x kg(-1), respectively, and decreased rapidly since then. In treatments CRFA1, CRFB1, CRFA2, and CRFB, soil available N content increased slowly, and reached the peak on the 60th day after fertilizing, being 129.51, 138.65, 118.36, and 126.31 mg x kg(-1), respectively. Soil available P content had the same variation trend. Its maximum concentration was 169.54 and 133.46 mg x kg(-1) in treatments CRFA1 and CRFA2 on the 30th day after fertilizing, and 137.13 and 84.68 mg x kg(-1) in treatments CRFB1 and CRFB2 on the 60th day after fertilizing, and decreased slowly then. The agronomic traits such as leaf area, leaf area index, branch number, flowering rate, flower number, and flower diameter, etc., in treatments CRFA and CRFB were obviously better than those of the control, and CRFB was better than CRFA, suggesting that CRFB more matched the nutrient demand of C. morifolium. Under the conditions of present experiment, applying CRFB2 obtained the highest yield.

  14. Primary care strategies to improve childhood immunisation uptake in developed countries: systematic review

    PubMed Central

    Williams, Nia; Woodward, Helen; Majeed, Azeem; Saxena, Sonia

    2011-01-01

    Objectives To conduct a systematic review of strategies to optimize immunisation uptake within preschool children in developed countries. Design Systematic review. Setting Developed countries Participants Preschool children who were due, or overdue, one or more of their routine primary immunisations. Main outcome measures Increase in the proportion of the target population up to date with standard recommended universal vaccinations. Results Forty-six studies were included for analysis, published between 1980 and 2009. Twenty-six studies were randomized controlled trials, 11 were before and after trials, and nine were controlled intervention trials. Parental reminders showed a statistically significant increase in immunisation rates in 34% of included intervention arms. These effects were reported with both generic and specific reminders and with all methods of reminders and recall. Strategies aimed at immunisation providers were also shown to improve immunisation rates with a median change in immunisation rates of 7% when reminders were used, 8% when educational programmes were used and 19% when feedback programmes were used. Conclusion General practitioners are uniquely positioned to influence parental decisions on childhood immunisation. A variety of strategies studied in primary care settings have been shown to improve immunisation rates, including parental and healthcare provider reminders. PMID:22046500

  15. Nitrate uptake improvement by modified activated carbons developed from two species of pine cones.

    PubMed

    Nunell, G V; Fernandez, M E; Bonelli, P R; Cukierman, A L

    2015-02-15

    Activated carbons from two species of pine cones (Pinus canariensis and Cupressus sempervirens) were prepared by phosphoric acid activation and tested for the removal of nitrate ions from aqueous solution. To investigate the feasibility of improving their nitrate adsorption capacity, two different post-treatments—a thermal treatment and a treatment with saturated urea solution—were also applied to the prepared activated carbons. Comparison of the treated and untreated activated carbons showed that both post-treatments improved the nitrate adsorption performance more than twice. The maximum adsorption capacity, as evaluated from determination of the adsorption isotherms for the P. canariensis based carbons, and their proper representation by the Langmuir model, demonstrated that the post-treatment with the urea solution led to activated carbons with increased nitrate removal effectiveness, even superior to other reported results. Enhancements in their adsorption capacity could be mainly ascribed to higher contents of nitrogen and basic functional groups, whereas porous structure of the activated carbons did not seem to play a key role in the nitrate uptake.

  16. Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control.

    PubMed

    Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo

    2017-01-01

    Membrane bioreactor (MBR) technology is becoming increasingly popular as wastewater treatment due to the unique advantages it offers. However, membrane fouling is being given a great deal of attention so as to improve the performance of this type of technology. Recent studies have proven that the application of electrochemical processes to MBR represents a promising technological approach for membrane fouling control. In this work, two intermittent voltage gradients of 1 and 3 V/cm were applied between two cylindrical perforated electrodes, immersed around a membrane module, at laboratory scale with the aim of investigating the treatment performance and membrane fouling formation. For comparison purposes, the reactor also operated as a conventional MBR. Mechanisms of nutrient removal were studied and membrane fouling formation evaluated in terms of transmembrane pressure variation over time and sludge relative hydrophobicity. Furthermore, the impact of electrochemical processes on transparent exopolymeric particles (TEP), proposed as a new membrane fouling precursor, was investigated in addition to conventional fouling precursors such as bound extracellular polymeric substances (bEPS) and soluble microbial products (SMP). All the results indicate that the integration of electrochemical processes into a MBR has the advantage of improving the treatment performance especially in terms of nutrient removal, with an enhancement of orthophosphate (PO4-P) and ammonia nitrogen (NH4-N) removal efficiencies up to 96.06 and 69.34 %, respectively. A reduction of membrane fouling was also observed with an increase of floc hydrophobicity to 71.72 %, a decrease of membrane fouling precursor concentrations, and, thus, of membrane fouling rates up to 54.33 %. The relationship found between TEP concentration and membrane fouling rate after the application of electrochemical processes confirms the applicability of this parameter as a new membrane fouling indicator.

  17. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants.

    PubMed

    Acosta-Motos, José R; Alvarez, Sara; Barba-Espín, Gregorio; Hernández, José A; Sánchez-Blanco, María J

    2014-12-01

    The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits.

  18. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize ( Zea mays) and implications for nanoagriculture

    NASA Astrophysics Data System (ADS)

    Tiwari, D. K.; Dasgupta-Schubert, N.; Villaseñor Cendejas, L. M.; Villegas, J.; Carreto Montoya, L.; Borjas García, S. E.

    2014-06-01

    The application of nano-biotechnology to crop-science/agriculture (`nanoagriculture') is a recent development. While carbon nanotubes (CNTs) have been shown to dramatically improve germination of some comestible plants, deficiencies in consistency of behavior and reproducibility arise, partially from the variability of the CNTs used. In this work, factory-synthesized multi-walled-CNTs (MWCNTs) of quality-controlled specifications were seen to enhance the germinative growth of maize seedlings at low concentrations but depress it at higher concentrations. Growth enhancement principally arose through improved water delivery by the MWCNT. Polarized EDXRF spectrometry showed that MWCNTs affect mineral nutrient supply to the seedling through the action of the mutually opposing forces of inflow with water and retention in the medium by the ion-CNT transient-dipole interaction. The effect varied with ion type and MWCNT concentration. The differences of the Fe tissue concentrations when relatively high equimolar Fe2+ or Fe3+ was introduced, implied that the ion-CNT interaction might induce redox changes to the ion. The tissue Ca2+ concentration manifested as the antipode of the Fe2+ concentration indicating a possible cationic exchange in the cell wall matrix. SEM images showed that MWCNTs perforated the black-layer seed-coat that could explain the enhanced water delivery. The absence of perforations with the introduction of FeCl2/FeCl3 reinforces the idea of the modification of MWCNT functionality by the ion-CNT interaction. Overall, in normal media, low dose MWCNTs were seen to be beneficial, improving water absorption, plant biomass and the concentrations of the essential Ca, Fe nutrients, opening a potential for possible future commercial agricultural applications.

  19. ApoA-IV improves insulin sensitivity and glucose uptake in mouse adipocytes via PI3K-Akt Signaling

    PubMed Central

    Li, Xiaoming; Wang, Fei; Xu, Min; Howles, Philip; Tso, Patrick

    2017-01-01

    Insulin resistance is a risk factor for type 2 diabetes mellitus. We investigated the effect of ApoA-IV on glucose uptake in the adipose and muscle tissues of mice and cultured 3T3-L1 adipocytes. We found that treatment with ApoA-IV lowered fasting blood glucose in both WT and diabetic KKAy mice by increasing glucose uptake in cardiac muscle, white adipose tissue, and brown adipose tissue through a mechanism that was partially insulin independent. Cell culture experiments showed that ApoA-IV improved glucose uptake in adipocytes in the absence of insulin by upregulating GLUT4 translocation by PI3K mediated activation of Akt signaling pathways. Considering our previous finding that ApoA-IV treatment enhanced pancreatic insulin secretion, these results suggests that ApoA-IV acts directly upon adipose tissue to improve glucose uptake and indirectly via insulin signaling. Our findings warrant future studies to identify the receptor for ApoA-IV and the downstream targets of PI3K-Akt signaling that regulate glucose uptake in adipocytes as potential therapeutic targets for treating insulin resistance. PMID:28117404

  20. Wetland water and nutrient budget for improving irrigation performance in Caspian Low Lands, Iran

    NASA Astrophysics Data System (ADS)

    Sakadevan, Karuppan; Mousavi Shalmani, Mir Ahmad; Nguyen, Minh Long

    2014-05-01

    Water scarcity and uneven distribution of rainfall are the most important limiting factors for the development of agriculture in Iran. Assessment of sources and seasonal variations of wetland water and nutrient budget are fundamental for improving water quantity, quality and its agricultural use. This study was carried out in the Southern Caspian lowlands, Iran to identify sources of wetland water and establish water and nutrient budget for thirty wetlands from 2010 to 2012. Water samples collected in autumn, winter, spring and summer from these wetlands were (i) analysed for nitrogen (N), phosphorus (P) and isotopic signatures of oxygen-18 (δ18O) and hydrogen-2 (δ2H) and (ii) constructed for water and nutrient balance. In addition, groundwater (10-20 meters) rainwater, snow and wetland water were collected in spring 2013 and analysed for δ18O and δ2H. Results showed that wetland water was enriched with δ18O and δ2H in summer (-1.15‰ and -12.11‰ for δ18O and δ2H, respectively) and depleted in winter (-7.50‰ and -47.30‰ for δ18O and δ2H). This is probably due to spring snow melt, summer rainfall and evaporation of wetland water. As more water was used for irrigation in spring and summer, the water column depth reduced and accelerated evaporation leading to isotopic enrichment. Among various water sources, wetland water was enriched (-3.57‰ and -27.72‰ for δ18O and δ2H) compared to groundwater (-6.2‰ and -38.0‰ for δ18O and δ2H), rain water (-5.4‰ and -31.7‰ for δ18O and δ2H) and snow (-15.2‰ and -109.6‰ for δ18O and δ2H). Water and nutrient balance based on rainfall, evapotranspiration and nutrient concentrations for wetlands showed that on average 7.6 million cubic meters of water along with 86 tonnes of nitrogen (N) and 17 tonnes of phosphorus (P) can be captured from an area of 10,400 ha. This water can be used to irrigate up to 1500 ha rice crops over a period of 130 days in spring and summer. The isotopic signature and

  1. An improved approach for remotely sensing water stress impacts on forest C uptake.

    PubMed

    Sims, Daniel A; Brzostek, Edward R; Rahman, Abdullah F; Dragoni, Danilo; Phillips, Richard P

    2014-09-01

    Given that forests represent the primary terrestrial sink for atmospheric CO2 , projections of future carbon (C) storage hinge on forest responses to climate variation. Models of gross primary production (GPP) responses to water stress are commonly based on remotely sensed changes in canopy 'greenness' (e.g., normalized difference vegetation index; NDVI). However, many forests have low spectral sensitivity to water stress (SSWS) - defined here as drought-induced decline in GPP without a change in greenness. Current satellite-derived estimates of GPP use a vapor pressure deficit (VPD) scalar to account for the low SWSS of forests, but fail to capture their responses to water stress. Our objectives were to characterize differences in SSWS among forested and nonforested ecosystems, and to develop an improved framework for predicting the impacts of water stress on GPP in forests with low SSWS. First, we paired two independent drought indices with NDVI data for the conterminous US from 2000 to 2011, and examined the relationship between water stress and NDVI. We found that forests had lower SSWS than nonforests regardless of drought index or duration. We then compared satellite-derived estimates of GPP with eddy-covariance observations of GPP in two deciduous broadleaf forests with low SSWS: the Missouri Ozark (MO) and Morgan Monroe State Forest (MMSF) AmeriFlux sites. Model estimates of GPP that used VPD scalars were poorly correlated with observations of GPP at MO (r(2) = 0.09) and MMSF (r(2) = 0.38). When we included the NDVI responses to water stress of adjacent ecosystems with high SSWS into a model based solely on temperature and greenness, we substantially improved predictions of GPP at MO (r(2) = 0.83) and for a severe drought year at the MMSF (r(2) = 0.82). Collectively, our results suggest that large-scale estimates of GPP that capture variation in SSWS among ecosystems could improve predictions of C uptake by forests under drought.

  2. Improvements in growth performance, bone mineral status and nutrient digestibility in pigs following the dietary inclusion of phytase are accompanied by modifications in intestinal nutrient transporter gene expression.

    PubMed

    Vigors, Stafford; Sweeney, Torres; O'Shea, Cormac J; Browne, John A; O'Doherty, John V

    2014-09-14

    Phytase (PHY) improves growth performance, nutrient digestibility and bone structure in pigs; however, little is known about its effects on intestinal nutrient transporter gene expression. In the present study, a 44 d experiment was carried out using forty-eight pigs (11·76 (sem 0·75) kg) assigned to one of three dietary treatment groups to measure growth performance, coefficient of apparent ileal digestibility (CAID), coefficient of apparent total tract nutrient digestibility (CATTD) and intestinal nutrient transporter gene expression. Dietary treatments during the experimental period were as follows: (1) a high-P (HP) diet containing 3·4 g/kg available P and 7·0 g/kg Ca; (2) a low-P (LP) diet containing 1·9 g/kg available P and 5·9 g/kg Ca; (3) a PHY diet containing LP diet ingredients+1000 phytase units (FTU)/kg of PHY. The PHY diet increased the average daily gain (P< 0·05) and final body weight (P< 0·01) and decreased the feed conversion ratio (P< 0·05) compared with the LP diet. Pigs fed the PHY diet had a higher CAID of gross energy compared with those fed the HP and LP diets (P< 0·001). Pigs fed the PHY diet had increased CAID of P (P< 0·01) and CATTD of Ca and P (P< 0·001) compared with those fed the LP diet. The PHY diet increased the gene expression of the peptide transporter 1 (PEPT1/SLC15A1) (P< 0·05) in the ileum compared with the LP diet. The LP diet decreased the gene expression of the sodium-glucose-linked transporter 1 (SGLT1/SLC5A1) and GLUT2/SLC2A2 (P< 0·05) and increased the expression of membrane Ca channel (TRPV6) and calbindin compared with the HP diet (P< 0·001). In conclusion, feeding a diet supplemented with PHY improves growth performance and nutrient digestibility as well as increases the gene expression of the peptide transporter PEPT1.

  3. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans.

    PubMed

    Crisafulli, Antonio; Tangianu, Flavio; Tocco, Filippo; Concu, Alberto; Mameli, Ombretta; Mulliri, Gabriele; Caria, Marcello A

    2011-08-01

    Brief episodes of nonlethal ischemia, commonly known as "ischemic preconditioning" (IP), are protective against cell injury induced by infarction. Moreover, muscle IP has been found capable of improving exercise performance. The aim of the study was the comparison of standard exercise performances carried out in normal conditions with those carried out following IP, achieved by brief muscle ischemia at rest (RIP) and after exercise (EIP). Seventeen physically active, healthy male subjects performed three incremental, randomly assigned maximal exercise tests on a cycle ergometer up to exhaustion. One was the reference (REF) test, whereas the others were performed after the RIP and EIP sessions. Total exercise time (TET), total work (TW), and maximal power output (W(max)), oxygen uptake (VO(2max)), and pulmonary ventilation (VE(max)) were assessed. Furthermore, impedance cardiography was used to measure maximal heart rate (HR(max)), stroke volume (SV(max)), and cardiac output (CO(max)). A subgroup of volunteers (n = 10) performed all-out tests to assess their anaerobic capacity. We found that both RIP and EIP protocols increased in a similar fashion TET, TW, W(max), VE(max), and HR(max) with respect to the REF test. In particular, W(max) increased by ∼ 4% in both preconditioning procedures. However, preconditioning sessions failed to increase traditionally measured variables such as VO(2max), SV(max,) CO(max), and anaerobic capacity(.) It was concluded that muscle IP improves performance without any difference between RIP and EIP procedures. The mechanism of this effect could be related to changes in fatigue perception.

  4. Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.).

    PubMed

    Shaharoona, Baby; Naveed, Muhammad; Arshad, Muhammad; Zahir, Zahir A

    2008-05-01

    Acquisition of nutrients by plants is primarily dependent on root growth and bioavailability of nutrients in the rooting medium. Most of the beneficial bacteria enhance root growth, but their effectiveness could be influenced by the nutrient status around the roots. In this study, two 1-aminocyclopropane-1-carboxylate (ACC)-deaminase containing plant-growth-promoting rhizobacteria (PGPR), Pseudomonas fluorescens and P. fluorescens biotype F were tested for their effect on growth, yield, and nutrient use efficiency of wheat under simultaneously varying levels of all the three major nutrients N, P, and K (at 0%, 25%, 50%, 75%, and 100% of recommended doses). Results of pot and field trials revealed that the efficacy of these strains for improving growth and yield of wheat reduced with the increasing rates of NPK added to the soil. In most of the cases, significant negative linear correlations were recorded between percentage increases in growth and yield parameters of wheat caused by inoculation and increasing levels of applied NPK fertilizers. It is highly likely that under low fertilizer application, the ACC-deaminase activity of PGPR might have caused reduction in the synthesis of stress (nutrient)-induced inhibitory levels of ethylene in the roots through ACC hydrolysis into NH(3) and alpha-ketobutyrate. The results of this study imply that these Pseudomonads could be employed in combination with appropriate doses of fertilizers for better plant growth and savings of fertilizers.

  5. Improved nutrient removal using in situ continuous on-line sensors with short response time.

    PubMed

    Ingildsen, P; Wendelboe, H

    2003-01-01

    Nutrient sensors that can be located directly in the activated sludge processes are gaining in number at wastewater treatment plants. The in situ location of the sensors means that they can be located close to the processes that they aim to control and hence are perfectly suited for automatic process control. Compared to the location of automatic analysers in the effluent from the sedimentation reactors the in situ location means a large reduction in the response time. The settlers typically work as a first-order delay on the signal with a retention time in the range of 4-12 hours depending on the size of the settlers. Automatic process control of the nitrogen and phosphorus removal processes means that considerable improvements in the performance of aeration, internal recirculation, carbon dosage and phosphate precipitation dosage can be reached by using a simple control structure as well as simple PID controllers. The performance improvements can be seen in decreased energy and chemicals consumption and less variation in effluent concentrations of ammonium, total nitrogen and phosphate. Simple control schemes are demonstrated for the pre-denitrification and the post precipitation system by means of full-scale plant experiments and model simulations.

  6. Cultivation of Chlorella vulgaris in wastewater with waste glycerol: Strategies for improving nutrients removal and enhancing lipid production.

    PubMed

    Ma, Xiaochen; Zheng, Hongli; Addy, Min; Anderson, Erik; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2016-05-01

    To improve nutrients removal from wastewater and enhance lipid production, cultivation of Chlorella vulgaris in wastewater with waste glycerol generated from biodiesel production using scum derived oil as feedstock was studied. The results showed that nutrients removal was improved and lipid production of C. vulgaris was enhanced with the addition of waste glycerol into wastewater to balance its C/N ratio. The optimal concentration of the pretreated glycerol for C. vulgaris was 10gL(-1) with biomass concentration of 2.92gL(-1), lipid productivity of 163mgL(-1)d(-1), and the removal of 100% ammonia and 95% of total nitrogen. Alkaline conditions prompted cell growth and lipid accumulation of C. vulgaris while stimulating nutrients removal. The application of the integration process can lower both wastewater treatment and biofuel feedstock costs.

  7. DHEA improves glucose uptake via activations of protein kinase C and phosphatidylinositol 3-kinase.

    PubMed

    Ishizuka, T; Kajita, K; Miura, A; Ishizawa, M; Kanoh, Y; Itaya, S; Kimura, M; Muto, N; Mune, T; Morita, H; Yasuda, K

    1999-01-01

    We have examined the effect of adrenal androgen, dehydroepiandrosterone (DHEA), on glucose uptake, phosphatidylinositol (PI) 3-kinase, and protein kinase C (PKC) activity in rat adipocytes. DHEA (1 microM) provoked a twofold increase in 2-[3H]deoxyglucose (DG) uptake for 30 min. Pretreatment with DHEA increased insulin-induced 2-[3H]DG uptake without alterations of insulin specific binding and autophosphorylation of insulin receptor. DHEA also stimulated PI 3-kinase activity. [3H]DHEA bound to purified PKC containing PKC-alpha, -beta, and -gamma. DHEA provoked the translocation of PKC-beta and -zeta from the cytosol to the membrane in rat adipocytes. These results suggest that DHEA stimulates both PI 3-kinase and PKCs and subsequently stimulates glucose uptake. Moreover, to clarify the in vivo effect of DHEA on Goto-Kakizaki (GK) and Otsuka Long-Evans fatty (OLETF) rats, animal models of non-insulin-dependent diabetes mellitus (NIDDM) were treated with 0.4% DHEA for 2 wk. Insulin- and 12-O-tetradecanoyl phorbol-13-acetate-induced 2-[3H]DG uptakes of adipocytes were significantly increased, but there was no significant increase in the soleus muscles in DHEA-treated GK/Wistar or OLETF/Long-Evans Tokushima (LETO) rats when compared with untreated GK/Wistar or OLETF/LETO rats. These results indicate that in vivo DHEA treatment can result in increased insulin-induced glucose uptake in two different NIDDM rat models.

  8. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China.

    PubMed

    Zhang, Fusuo; Cui, Zhenling; Fan, Mingsheng; Zhang, Weifeng; Chen, Xinping; Jiang, Rongfeng

    2011-01-01

    During the past 47 yr (1961-2007), Chinese cereal production has increased by 3.2-fold, successfully feeding 22% of the global human population with only 9% of the world's arable land, but at high environmental cost and resource consumption. Worse, crop production has been stagnant since 1996 while the population and demand for food continue to rise. New advances for sustainability of agriculture and ecosystem services will be needed during the coming 50 yr to reduce environmental risk while increasing crop productivity and improving nutrient use efficiency. Here, we advocate and develop integrated soil-crop system management (ISSM). In this approach, the key points are (i) to take all possible soil quality improvement measures into consideration, (ii) to integrate the utilization of various nutrient resources and match nutrient supply to crop requirements, and (iii) to integrate soil and nutrient management with high-yielding cultivation systems. Recent field experiments have shed light on how ISSM can lead to significant increases in crop yields while increasing nutrient use efficiency and reducing environmental risk.

  9. Improving fruit quality and phytochemical content through better nutrient management practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumer preference quality traits (e.g. taste, texture) of muskmelons (Cucumis melo L.) and many other fruits are strongly influenced by cultivar as well as soil properties, such as soil type and nutrient supply capacity. Among nutrients, potassium (K) has the strongest influence on quality parame...

  10. HYDRAULIC FRACTURING TO IMPROVE NUTRIENT AND OXYGEN DELIVERY FOR IN SITU BIORECLAMATION

    EPA Science Inventory

    The in situ delivery of nutrients and oxygen in soil is a serious problem in implementing in situ biodegradation. Current technology requires ideal site conditions to provide the remediating organisms with the nutrients and oxygen required for their metabolism, but...

  11. Composting of biochars improves their sorption properties, retains nutrients during composting and affects greenhouse gas emissions after soil application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar application to soils has been suggested to elevate nutrient sorption, improve soil fertility and reduce net greenhouse gas (GHG) emissions. We examined the impact of composting biochar together with a biologically active substrate (i.e., livestock manure-straw mixture). We hypothesized that ...

  12. Removal of nutrients from undiluted anaerobically treated piggery wastewater by improved microalgae.

    PubMed

    Wang, Mingzi; Yang, Yi; Chen, Zhihong; Chen, Yanzhen; Wen, Yangmin; Chen, Bilian

    2016-12-01

    This study aimed at improving the adaptability and biodegradability of tested microalgae in undiluted anaerobic fermentation slurry of piggery wastewater. For that, a two-stage method based on UV irradiation followed by gradual domestication was developed. The distinctness of this method was the elimination of a screening procedure and just needed the UV-irradiated cells with appropriate survival to be subjected to gradual domestication. The microalgae treated with the method not only grew well in undiluted slurry, but achieved outstanding removal efficiencies in total nitrogen (TN) and total phosphorus (TP). Large-scale application was conducted in an open raceway pond, and the concentrations of TN and TP after treatment were 43.80mg/L (removal rate of 89.5%) and 5.83mg/L (removal rate of 85.3%) respectively, which greatly excelled the Chinese discharge standards for livestock and poultry wastewater. The strategy is therefore a promising method for microalgae to purify piggery slurry containing high nutrient contents.

  13. Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality.

    PubMed

    Tibbett, M; Sanders, F E

    2002-06-01

    It is known that roots can respond to patches of fertility; however, root proliferation is often too slow to exploit resources fully, and organic nutrient patches may be broken down and leached, immobilized or chemically fixed before they are invaded by the root system. The ability of fungal hyphae to exploit resource patches is far greater than that of roots due to their innate physiological and morphological plasticity, which allows comprehensive exploration and rapid colonization of resource patches in soils. The fungal symbionts of ectomycorrhizal plants excrete significant quantities of enzymes such as chitinases, phosphatases and proteases. These might allow the organic residue to be tapped directly for nutrients such as N and P. Pot experiments conducted with nutrient-stressed ectomycorrhizal and control willow plants showed that when high quality organic nutrient patches were added, they were colonized rapidly by the ectomycorrhizal mycelium. These established willows (0.5 m tall) were colonized by Hebeloma syrjense P. Karst. for 1 year prior to nutrient patch addition. Within days after patch addition, colour changes in the leaves of the mycorrhizal plants (reflecting improved nutrition) were apparent, and after I month the concentration of N and P in the foliage of mycorrhizal plants was significantly greater than that in non-mycorrhizal plants subject to the same nutrient addition. It seems likely that the mycorrhizal plants were able to compete effectively with the wider soil microbiota and tap directly into the high quality organic resource patch via their extra-radical mycelium. We hypothesize that ectomycorrhizal plants may reclaim some of the N and P invested in seed production by direct recycling from failed seeds in the soil. The rapid exploitation of similar discrete, transient, high-quality nutrient patches may have led to underestimations when determining the nutritional benefits of ectomycorrhizal colonization.

  14. Biofortification of crops with nutrients: factors affecting utilization and storage.

    PubMed

    Díaz-Gómez, Joana; Twyman, Richard M; Zhu, Changfu; Farré, Gemma; Serrano, José Ce; Portero-Otin, Manuel; Muñoz, Pilar; Sandmann, Gerhard; Capell, Teresa; Christou, Paul

    2017-01-06

    Biofortification is an effective and economical method to improve the micronutrient content of crops, particularly staples that sustain human populations in developing countries. Whereas conventional fortification requires artificial additives, biofortification involves the synthesis or accumulation of nutrients by plants at source. Little is known about the relative merits of biofortification and artificial fortification in terms of nutrient bioaccessibility and bioavailability, and much depends on the biochemical nature of the nutrient, which can promote or delay uptake, and determine how efficiently different nutrients are transported through the blood, stored, and utilized. Data from the first plants biofortified with minerals and vitamins provide evidence that the way in which nutrients are presented can affect how they are processed and utilized in the human body. The latest studies on the effects of the food matrix, processing and storage on nutrient transfer from biofortified crops are reviewed, as well as current knowledge about nutrient absorption and utilization.

  15. Affordable nutrient solutions for improved food security as evidenced by crop trials.

    PubMed

    van der Velde, Marijn; See, Linda; You, Liangzhi; Balkovič, Juraj; Fritz, Steffen; Khabarov, Nikolay; Obersteiner, Michael; Wood, Stanley

    2013-01-01

    The continuing depletion of nutrients from agricultural soils in Sub-Saharan African is accompanied by a lack of substantial progress in crop yield improvement. In this paper we investigate yield gaps for corn under two scenarios: a micro-dosing scenario with marginal increases in nitrogen (N) and phosphorus (P) of 10 kg ha(-1) and a larger yet still conservative scenario with proposed N and P applications of 80 and 20 kg ha(-1) respectively. The yield gaps are calculated from a database of historical FAO crop fertilizer trials at 1358 locations for Sub-Saharan Africa and South America. Our approach allows connecting experimental field scale data with continental policy recommendations. Two critical findings emerged from the analysis. The first is the degree to which P limits increases in corn yields. For example, under a micro-dosing scenario, in Africa, the addition of small amounts of N alone resulted in mean yield increases of 8% while the addition of only P increased mean yields by 26%, with implications for designing better balanced fertilizer distribution schemes. The second finding was the relatively large amount of yield increase possible for a small, yet affordable amount of fertilizer application. Using African and South American fertilizer prices we show that the level of investment needed to achieve these results is considerably less than 1% of Agricultural GDP for both a micro-dosing scenario and for the scenario involving higher yet still conservative fertilizer application rates. In the latter scenario realistic mean yield increases ranged between 28 to 85% in South America and 71 to 190% in Africa (mean plus one standard deviation). External investment in this low technology solution has the potential to kick start development and could complement other interventions such as better crop varieties and improved economic instruments to support farmers.

  16. Affordable Nutrient Solutions for Improved Food Security as Evidenced by Crop Trials

    PubMed Central

    van der Velde, Marijn; See, Linda; You, Liangzhi; Balkovič, Juraj; Fritz, Steffen; Khabarov, Nikolay; Obersteiner, Michael; Wood, Stanley

    2013-01-01

    The continuing depletion of nutrients from agricultural soils in Sub-Saharan African is accompanied by a lack of substantial progress in crop yield improvement. In this paper we investigate yield gaps for corn under two scenarios: a micro-dosing scenario with marginal increases in nitrogen (N) and phosphorus (P) of 10 kg ha−1 and a larger yet still conservative scenario with proposed N and P applications of 80 and 20 kg ha−1 respectively. The yield gaps are calculated from a database of historical FAO crop fertilizer trials at 1358 locations for Sub-Saharan Africa and South America. Our approach allows connecting experimental field scale data with continental policy recommendations. Two critical findings emerged from the analysis. The first is the degree to which P limits increases in corn yields. For example, under a micro-dosing scenario, in Africa, the addition of small amounts of N alone resulted in mean yield increases of 8% while the addition of only P increased mean yields by 26%, with implications for designing better balanced fertilizer distribution schemes. The second finding was the relatively large amount of yield increase possible for a small, yet affordable amount of fertilizer application. Using African and South American fertilizer prices we show that the level of investment needed to achieve these results is considerably less than 1% of Agricultural GDP for both a micro-dosing scenario and for the scenario involving higher yet still conservative fertilizer application rates. In the latter scenario realistic mean yield increases ranged between 28 to 85% in South America and 71 to 190% in Africa (mean plus one standard deviation). External investment in this low technology solution has the potential to kick start development and could complement other interventions such as better crop varieties and improved economic instruments to support farmers. PMID:23565186

  17. Incorporating redox processes improves prediction of carbon and nutrient cycling and greenhouse gas emission

    NASA Astrophysics Data System (ADS)

    Tang, Guoping; Zheng, Jianqiu; Yang, Ziming; Graham, David; Gu, Baohua; Mayes, Melanie; Painter, Scott; Thornton, Peter

    2016-04-01

    Among the coupled thermal, hydrological, geochemical, and biological processes, redox processes play major roles in carbon and nutrient cycling and greenhouse gas (GHG) emission. Increasingly, mechanistic representation of redox processes is acknowledged as necessary for accurate prediction of GHG emission in the assessment of land-atmosphere interactions. Simple organic substrates, Fe reduction, microbial reactions, and the Windermere Humic Aqueous Model (WHAM) were added to a reaction network used in the land component of an Earth system model. In conjunction with this amended reaction network, various temperature response functions used in ecosystem models were assessed for their ability to describe experimental observations from incubation tests with arctic soils. Incorporation of Fe reduction reactions improves the prediction of the lag time between CO2 and CH4 accumulation. The inclusion of the WHAM model enables us to approximately simulate the initial pH drop due to organic acid accumulation and then a pH increase due to Fe reduction without parameter adjustment. The CLM4.0, CENTURY, and Ratkowsky temperature response functions better described the observations than the Q10 method, Arrhenius equation, and ROTH-C. As electron acceptors between O2 and CO2 (e.g., Fe(III), SO42-) are often involved, our results support inclusion of these redox reactions for accurate prediction of CH4 production and consumption. Ongoing work includes improving the parameterization of organic matter decomposition to produce simple organic substrates, examining the influence of redox potential on methanogenesis under thermodynamically favorable conditions, and refining temperature response representation near the freezing point by additional model-experiment iterations. We will use the model to describe observed GHG emission at arctic and tropical sites.

  18. Factors Influencing Household Uptake of Improved Solid Fuel Stoves in Low- and Middle-Income Countries: A Qualitative Systematic Review

    PubMed Central

    Debbi, Stanistreet; Elisa, Puzzolo; Nigel, Bruce; Dan, Pope; Eva, Rehfuess

    2014-01-01

    Household burning of solid fuels in traditional stoves is detrimental to health, the environment and development. A range of improved solid fuel stoves (IS) are available but little is known about successful approaches to dissemination. This qualitative systematic review aimed to identify factors that influence household uptake of IS in low- and middle-income countries. Extensive searches were carried out and studies were screened and extracted using established systematic review methods. Fourteen qualitative studies from Asia, Africa and Latin-America met the inclusion criteria. Thematic synthesis was used to synthesise data and findings are presented under seven framework domains. Findings relate to user and stakeholder perceptions and highlight the importance of cost, good stove design, fuel and time savings, health benefits, being able to cook traditional dishes and cleanliness in relation to uptake. Creating demand, appropriate approaches to business, and community involvement, are also discussed. Achieving and sustaining uptake is complex and requires consideration of a broad range of factors, which operate at household, community, regional and national levels. Initiatives aimed at IS scale up should include quantitative evaluations of effectiveness, supplemented with qualitative studies to assess factors affecting uptake, with an equity focus. PMID:25123070

  19. DNAJB3/HSP-40 cochaperone improves insulin signaling and enhances glucose uptake in vitro through JNK repression

    PubMed Central

    Abu-Farha, Mohamed; Cherian, Preethi; Al-Khairi, Irina; Tiss, Ali; Khadir, Abdelkrim; Kavalakatt, Sina; Warsame, Samia; Dehbi, Mohammed; Behbehani, Kazem; Abubaker, Jehad

    2015-01-01

    Heat shock response (HSR) is an essential host-defense mechanism that is dysregulated in obesity-induced insulin resistance and type 2 diabetes (T2D). Our recent data demonstrated that DNAJB3 was downregulated in obese human subjects and showed negative correlation with inflammatory markers. Nevertheless, DNAJB3 expression pattern in diabetic subjects and its mode of action are not yet known. In this study, we showed reduction in DNAJB3 transcript and protein levels in PBMC and subcutaneous adipose tissue of obese T2D compared to obese non-diabetic subjects. Overexpression of DNAJB3 in HEK293 and 3T3-L1 cells reduced JNK, IRS-1 Ser-307 phosphorylation and enhanced Tyr-612 phosphorylation suggesting an improvement in IRS-1 signaling. Furthermore, DNAJB3 mediated the PI3K/AKT pathway activation through increasing AKT and AS160 phosphorylation. AS160 mediates the mobilization of GLUT4 transporter to the cell membrane and thereby improves glucose uptake. Using pre-adipocytes cells we showed that DNAJB3 overexpression caused a significant increase in the glucose uptake, possibly through its phosphorylation of AS160. In summary, our results shed the light on the possible role of DNAJB3 in improving insulin sensitivity and glucose uptake through JNK repression and suggest that DNAJB3 could be a potential target for therapeutic treatment of obesity-induced insulin resistance. PMID:26400768

  20. A Holistic Framework to Improve the Uptake and Impact of eHealth Technologies

    PubMed Central

    van Limburg, Maarten; Ossebaard, Hans C; Kelders, Saskia M; Eysenbach, Gunther; Seydel, Erwin R

    2011-01-01

    Background Many eHealth technologies are not successful in realizing sustainable innovations in health care practices. One of the reasons for this is that the current development of eHealth technology often disregards the interdependencies between technology, human characteristics, and the socioeconomic environment, resulting in technology that has a low impact in health care practices. To overcome the hurdles with eHealth design and implementation, a new, holistic approach to the development of eHealth technologies is needed, one that takes into account the complexity of health care and the rituals and habits of patients and other stakeholders. Objective The aim of this viewpoint paper is to improve the uptake and impact of eHealth technologies by advocating a holistic approach toward their development and eventual integration in the health sector. Methods To identify the potential and limitations of current eHealth frameworks (1999–2009), we carried out a literature search in the following electronic databases: PubMed, ScienceDirect, Web of Knowledge, PiCarta, and Google Scholar. Of the 60 papers that were identified, 44 were selected for full review. We excluded those papers that did not describe hands-on guidelines or quality criteria for the design, implementation, and evaluation of eHealth technologies (28 papers). From the results retrieved, we identified 16 eHealth frameworks that matched the inclusion criteria. The outcomes were used to posit strategies and principles for a holistic approach toward the development of eHealth technologies; these principles underpin our holistic eHealth framework. Results A total of 16 frameworks qualified for a final analysis, based on their theoretical backgrounds and visions on eHealth, and the strategies and conditions for the research and development of eHealth technologies. Despite their potential, the relationship between the visions on eHealth, proposed strategies, and research methods is obscure, perhaps due to a

  1. Improved estimation of nitrogen uptake in grasslands using the nitrogen dilution curve

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The critical nitrogen concentration (CNC) is a simple yet robust relationship that describes the changes in crop N during growth. We applied the concept of CNC to calculate N uptake across various cutting regimes. While it is well-established that decreasing cutting frequency changes growth rates, t...

  2. Biochar can be used to capture essential nutrients from dairy wastewater and improve soil physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.; Sarkhot, D. V.; Berhe, A. A.

    2014-09-01

    Recently, the potential for biochar use to recapture excess nutrients from dairy wastewater has been a focus of a growing number of studies. It is suggested that biochar produced from locally available excess biomass can be important in reducing release of excess nutrient elements from agricultural runoff, improving soil productivity, and long-term carbon (C) sequestration. Here we present a review of a new approach that is showing promise for the use of biochar for nutrient capture. Using batch sorption experiments, it has been shown that biochar can adsorb up to 20-43% of ammonium and 19-65% of the phosphate in flushed dairy manure in 24 h. These results suggest a potential of biochar for recovering essential nutrients from dairy wastewater and improving soil fertility if the enriched biochar is returned to soil. Based on the sorption capacity of 2.86 and 0.23 mg ammonium and phosphate, respectively, per gram of biochar and 10-50% utilization of available excess biomass, in the state of California (US) alone, 11 440 to 57 200 tonnes of ammonium-N and 920-4600 tonnes of phosphate can be captured from dairy waste each year while at the same time disposing up to 8-40 million tons of excess biomass.

  3. Hydrological improvements for nutrient and pollutant emission modeling in large scale catchments

    NASA Astrophysics Data System (ADS)

    Höllering, S.; Ihringer, J.

    2012-04-01

    An estimation of emissions and loads of nutrients and pollutants into European water bodies with as much accuracy as possible depends largely on the knowledge about the spatially and temporally distributed hydrological runoff patterns. An improved hydrological water balance model for the pollutant emission model MoRE (Modeling of Regionalized Emissions) (IWG, 2011) has been introduced, that can form an adequate basis to simulate discharge in a hydrologically differentiated, land-use based way to subsequently provide the required distributed discharge components. First of all the hydrological model had to comply both with requirements of space and time in order to calculate sufficiently precise the water balance on the catchment scale spatially distributed in sub-catchments and with a higher temporal resolution. Aiming to reproduce seasonal dynamics and the characteristic hydrological regimes of river catchments a daily (instead of a yearly) time increment was applied allowing for a more process oriented simulation of discharge dynamics, volume and therefore water balance. The enhancement of the hydrological model became also necessary to potentially account for the hydrological functioning of catchments in regard to scenarios of e.g. a changing climate or alterations of land use. As a deterministic, partly physically based, conceptual hydrological watershed and water balance model the Precipitation Runoff Modeling System (PRMS) (USGS, 2009) was selected to improve the hydrological input for MoRE. In PRMS the spatial discretization is implemented with sub-catchments and so called hydrologic response units (HRUs) which are the hydrotropic, distributed, finite modeling entities each having a homogeneous runoff reaction due to hydro-meteorological events. Spatial structures and heterogeneities in sub-catchments e.g. urbanity, land use and soil types were identified to derive hydrological similarities and classify in different urban and rural HRUs. In this way the

  4. Root-targeted hormonal biotechnology to improve crop stress tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Since plant root systems capture both water and nutrients essential for the formation of crop yield, there has been renewed biotechnological focus on root system improvement. Although water and nutrient uptake can be facilitated by membrane proteins known as aquaporins and nutrient transporters resp...

  5. Simple changes within dietary subgroups can rapidly improve the nutrient adequacy of the diet of French adults.

    PubMed

    Verger, Eric O; Holmes, Bridget A; Huneau, Jean François; Mariotti, François

    2014-06-01

    Identifying the dietary changes with the greatest potential for improving diet quality is critical to designing efficient nutrition communication campaigns. Our objective was to simulate the effects of different types of dietary substitutions to improve diet quality at the individual level. Starting from the observed diets of 1330 adults participating in the national French Nutrition and Health Survey (Etude Nationale Nutrition Santé), we simulated the effects of 3 different types of food and beverage substitutions with graded implementation difficulty for the consumer in a stepwise dietary counseling model based on the improvement in the PANDiet index, which measures diet quality in terms of nutrient adequacy. In scenario 1, substitutions of a food or beverage for its "lighter" version resulted in a modest improvement in the PANDiet score (Δ = +3.3 ± 0.1) and a decrease in energy intake (Δ = -114 ± 2 kcal/d). In scenario 2, substitutions of a food or beverage within the same food subgroup resulted in a marked improvement in the PANDiet score (Δ = +26.4 ± 0.2) with no significant change in energy intake. In this second scenario, the improvement in nutrient adequacy was due to substitutions in many subgroups, with no single subgroup contributing >8% to the increase in the PANDiet score. In scenario 3, substitutions of a food or beverage within the same food group resulted in the greatest improvement in the PANDiet score (Δ = +31.8 ± 0.2) but with an increase in energy intake (Δ = +204 ± 9 kcal/d). In this third scenario, the improvement in nutrient adequacy was largely due to substitutions of fish for meat and processed meat (∼30% of the increase in the PANDiet score). This study shows that a strategy based on simple substitutions within food subgroups is effective in rapidly improving the nutritional adequacy of the diet of French adults and could be used in public health nutrition actions.

  6. Improving solubility, stability, and cellular uptake of resveratrol by nanoencapsulation with chitosan and γ-poly (glutamic acid).

    PubMed

    Jeon, Young Ok; Lee, Ji-Soo; Lee, Hyeon Gyu

    2016-11-01

    Resveratrol (RES), a polyphenolic compound found in grape skins, is a potent antioxidant with broad health benefits. However, its utilization in food has been limited by its poor water solubility, instability, and low bioavailability. The purpose of this study is to improve the solubility, stability, and cellular uptake of RES by nanoencapsulation using chitosan (CS) and γ-poly (glutamic acid) (γ-PGA). The size of nanoparticles significantly decreases with a decrease in the CS/γ-PGA ratio (p<0.05). The nanoparticle size with CS/γ-PGA ratio of 5 was 100-150nm. The entrapment efficiency and UV-light protection effect significantly increases (p<0.05), with an increase in the CS and γ-PGA concentration. The solubility of RES increases 3.2 and 4.2 times before and after lyophilization by nanoencapsulation, respectively. Compared with non-nanoencapsulated RES, the nanoencapsulated RES tends to maintain its solubility and antioxidant activity during storage. CS/γ-PGA nanoencapsulation was able to significantly enhance the transport of RES across a Caco-2 cell monolayer (p<0.05). The highest cellular uptake was found for nanoparticles prepared with 0.5mg/mL CS and 0.1mg/mL γ-PGA, which showed the highest solubility and antioxidant activity during storage. Therefore, CS/γ-PGA nanoencapsulation is found to be a potentially valuable technique for improving the solubility, stability, and cellular uptake of RES.

  7. Childhood immunisation in Bungoma County, Kenya, from 2008 to 2011: need for improved uptake.

    PubMed

    Mbuthia, G W; Harries, A D; Obala, A A; Nyamogoba, H D N; Simiyu, C; Edginton, M E; Khogali, M; Hedt-Gauthier, B L; Otsyla, B K

    2014-03-21

    Uptake of immunisations in children aged 1-2 years in Bungoma County, Kenya, was determined as part of the 6-monthly Health and Demographic Surveillance System surveys. A total of 2699 children were assessed between 2008 and 2011. During this time period, full immunisation declined significantly from 84% to 58%, and measles vaccine declined uptake from 89% to 60% (P < 0.001). Each year there was a significant fall-off for the third doses of the oral polio and pentavalent vaccines (P < 0.001). These findings are of concern, as low immunisation coverage may lead to vaccine-preventable disease outbreaks. Further investigations into the reasons for declining immunisation trends are required.

  8. Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency

    NASA Astrophysics Data System (ADS)

    Yang, Zhe; Jiang, Zhaozhong; Cao, Zhong; Zhang, Chao; Gao, Di; Luo, Xingen; Zhang, Xiaofang; Luo, Huiyan; Jiang, Qing; Liu, Jie

    2014-08-01

    We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell for nanoparticle stabilization, poly(γ-glutamic acid) (γ-PGA) and mTAT (a cell-penetrating peptide) for accelerated cellular uptake, and a nuclear localization signal peptide (NLS) for enhanced intracellular transport of DNA to the nucleus. In vitro study showed that coating of the binary PPMS/DNA polyplex with γ-PGA promotes cellular uptake of the polyplex particles, particularly by γ-glutamyl transpeptidase (GGT)-positive cells through the GGT-mediated endocytosis pathway. Conjugating PEG to the γ-PGA led to the formation of a ternary PPMS/DNA/PGA-g-PEG polyplex with decreased positive charges on the surface of the polyplex particles and substantially higher stability in serum-containing aqueous medium. The cellular uptake rate was further improved by incorporating mTAT into the ternary polyplex system. Addition of the NLS peptide was designed to facilitate intracellular delivery of the plasmid to the nucleus--a rate-limiting step in the gene transfection process. As a result, compared with the binary PPMS/LucDNA polyplex, the new mTAT-quaternary PPMS/LucDNA/NLS/PGA-g-PEG-mTAT system exhibited reduced cytotoxicity, remarkably faster cellular uptake rate, and enhanced transport of DNA to the nucleus. All these advantageous functionalities contribute to the remarkable gene transfection efficiency of the mTAT-quaternary polyplex both in vitro and in vivo, which exceeds that of the binary polyplex and commercial Lipofectamine™ 2000/DNA lipoplex. The multifunctional mTAT-quaternary polyplex system with improved efficiency and reduced cytotoxicity represents a new type of promising non-viral vectors for the delivery of therapeutic genes to treat tumors.We have developed a new multifunctional, non-viral gene delivery platform consisting of cationic poly(amine-co-ester) (PPMS) for DNA condensation, PEG shell

  9. Exploration of Metal Chloride Uptake for Improved Performance Characteristics of PbSe Quantum Dot Solar Cells.

    PubMed

    Marshall, Ashley R; Young, Matthew R; Nozik, Arthur J; Beard, Matthew C; Luther, Joseph M

    2015-08-06

    We explored the uptake of metal chloride salts with +1 to +3 metals of Na(+), K(+), Zn(2+), Cd(2+), Sn(2+), Cu(2+), and In(3+) by PbSe QD solar cells. We also compared CdCl2 to Cd acetate and Cd nitrate treatments. PbSe QD solar cells fabricated with a CdCl2 treatment are stable for more than 270 days stored in air. We studied how temperature and immersion times affect optoelectronic properties and photovoltaic cell performance. Uptake of Cd(2+) and Zn(2+) increase open circuit voltage, whereas In(3+) and K(+) increase the photocurrent without influencing the spectral response or first exciton peak position. Using the most beneficial treatments we varied the bandgap of PbSe QD solar cells from 0.78 to 1.3 eV and find the improved VOC is more prevalent for lower bandgap QD solar cells.

  10. Mitochondrial alternative oxidase acts to dampen the generation of active oxygen species during a period of rapid respiration induced to support a high rate of nutrient uptake.

    PubMed

    Yip, Justine Y. H.; Vanlerberghe, Greg C.

    2001-07-01

    When wild type (wt) tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) suspension cells were grown under phosphate (P) limitation, they contained large amounts of mitochondrial alternative oxidase (AOX). When these cells were resupplied with P, there was a large, immediate and sustained stimulation of respiration to support a period of rapid P uptake. Two lines of evidence suggest that the abundant level of AOX present in wt cells contributed to this stimulated rate of respiration. First, when P-limited transgenic antisense tobacco cells (AS8) lacking AOX were resupplied with P, the stimulation of respiration was much less dramatic even though these cells displayed similar rates of P uptake. Second, while the stimulated rate of respiration in AS8 cells was insensitive (as expected) to the AOX inhibitor n-propyl gallate (nPG), much of the stimulated rate of respiration in wt cells could be inhibited by nPG. Given the non-phosphorylating nature of AOX respiration, wt cells required higher rates of electron transport to O2 than AS8 cells to support similar rates of P uptake. The utilization of AOX by wt cells during P uptake was apparently not occurring because the cytochrome (Cyt) pathway alone could not fully support the rate of P uptake, as the respiration of cells lacking AOX (either untreated AS8 cells or wt cells treated with nPG) supported similar rates of P uptake as wt cells with abundant AOX. Rather, we provide in vivo evidence that the utilization of AOX during the period of high respiration supporting P uptake was to dampen the mitochondrial generation of active oxygen species (AOS).

  11. Intervention leads to improvements in the nutrient profile of snacks served in afterschool programs: a group randomized controlled trial.

    PubMed

    Beets, Michael W; Turner-McGrievy, Brie; Weaver, R Glenn; Huberty, Jennifer; Moore, Justin B; Ward, Dianne S; Freedman, Darcy A

    2016-09-01

    Widely adopted nutrition policies for afterschool programs (ASPs) focus on serving a fruit/vegetable daily and eliminating sugar-sweetened foods/beverages. The impact of these policies on the nutrient profile of snacks served is unclear. Evaluate changes in macro/micronutrient content of snacks served in ASPs. A 1-year group randomized controlled trial was conducted in 20 ASPs serving over 1700 elementary-age children. Intervention ASPs received a multistep adaptive framework intervention. Direct observation of snack served was collected and nutrient information determined using the USDA Nutrient Database, standardized to nutrients/100 kcal. By post-assessment, intervention ASPs reduced total kcal/snack served by 66 kcal (95CI -114 to -19 kcal) compared to control ASPs. Total fiber (+1.7 g/100 kcal), protein (+1.4 g/100 kcal), polyunsaturated fat (+1.2 g/100 kcal), phosphorous (+49.0 mg/100 kcal), potassium (+201.8 mg/100 kcal), and vitamin K (+21.5 μg/100 kcal) increased in intervention ASPs, while added sugars decreased (-5.0 g/100 kcal). Nutrition policies can lead to modest daily caloric reductions and improve select macro/micronutrients in snacks served. Long-term, these nutritional changes may contribute to healthy dietary habits.

  12. Use of lipid-based nutrient supplements (LNS) to improve the nutrient adequacy of general food distribution rations for vulnerable sub-groups in emergency settings.

    PubMed

    Chaparro, Camila M; Dewey, Kathryn G

    2010-01-01

    The term 'lipid-based nutrient supplements' (LNS) refers generically to a range of fortified, lipid-based products, including products like Ready-to-Use Therapeutic Foods (RUTF) (a large daily ration with relatively low micronutrient concentration) as well as highly concentrated supplements (1-4 teaspoons/day, providing <100 kcal/day) to be used for 'point-of-use' fortification. RUTF have been successfully used for the management of severe acute malnutrition (SAM) among children in emergency settings. Recent research on smaller doses of LNS for prevention of malnutrition has created interest in their potential use in emergency settings to ensure a more nutritionally adequate ration for the most vulnerable groups [e.g. infants and children between 6 and 24 months of age, and pregnant and lactating women (PLW)]. Currently, the main food and nutrition interventions in emergency settings include general food distribution (GFD) rations, which are provided to the affected population as a whole, and selective (or supplementary) feeding programs (SFP), which are to be provided to nutritionally vulnerable or malnourished individuals. In addition to logistical and operational challenges that may limit the intended effect of these programs, the nutritional quality of the food commodities provided may be insufficient to meet the needs of infants and young children and PLW. Because these subgroups have particularly high nutrient needs for growth and development, meeting these needs is challenging in settings where the ration is limited to a few food commodities, with little access to a diverse diet and bioavailable sources of micronutrients. In recent years, there has been increased attention to adding micronutrient interventions, on top of the other food-based interventions (such as GFDs and SFPs), to fill micronutrient gaps in diets in emergency settings. The focus of this document is the potential role of LNS in meeting the nutritional needs of these vulnerable subgroups

  13. Affordable nutrient solutions for improved food security as evidenced by crop trials

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; See, Linda; You, Liangzhi; Balkovic, Juraj; Fritz, Steffen; Khabarov, Nikolay; Obersteiner, Michael; Wood, Stanley

    2013-04-01

    Robust assessments of attainable crop yields in Africa and South America are pivotal for projections of food security and cropland expansion. In contract to South America, Africa has not achieved significant increases in crop yields. Here we utilize a database of historical FAO crop fertilizer trials at 1358 locations for Sub-Saharan Africa and South America to calculate corn yield gaps at the continental scale. To further the African crop productivity discourse we consider the importance of soil nutrient stoichiometry and the viability of micro-dosing. Importantly, besides N, our crop yield potential estimates account for P which has a notoriously low availability in weathered tropical soils. We investigated yield gaps for corn under two scenarios: a micro-dosing scenario with marginal increases in N and P of 10 kg/ha and a larger yet still conservative scenario with proposed N and P applications of 80 and 20 kg/ha respectively. Two critical findings emerged from the analysis. The first is the degree to which P limits increases in corn yields. For example, under a micro-dosing scenario, in Africa, the addition of small amounts of N alone resulted in yield increases of 8% while the addition of only P increased yields by 26%, with implications for designing better balanced fertilizer distribution schemes. Application of both N and P at 10 kg ha-1 lead to 15% and 32% yield increase. To put the benefits of these higher yields in context, this could save more than 4 and 25 million ha of cropland, or alternatively potentially feed 64 and 150 million people in South America and Africa respectively. The second finding was the relatively large amount of yield increase possible for a small, yet affordable amount of fertilizer application. Using African and South American fertilizer prices we show that the level of investment needed to achieve these results is considerably less than 1% of Agricultural GDP for both a micro-dosing scenario and for a scenario involving higher

  14. Runoff, erosion, and nutrient loss from improved or unimproved urban areas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Construction in urban areas usually results in compacted soil, which restricts plant growth and infiltration. Nutrients may be lost in storm runoff water and sediment. The purpose of this study was to determine if existing lawns benefit from aeration and surface compost additions without negative im...

  15. Minor nutrients are critical for the improved growth of Corylus avellana shoot cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many hazelnut (Corylus avellana L.) cultivars fail to thrive on standard growth media and the reasons for poor growth are not well understood. Our initial study of five C. avellana cultivars showed that changes in the mineral nutrients of Driver and Kuniyuki Walnut (DKW) medium, including doubling t...

  16. Arbuscular mycorrhizae formed by Penicillium pinophilum improve the growth, nutrient uptake and photosynthesis of strawberry with two inoculum-types.

    PubMed

    Fan, Yongqiang; Luan, Yushi; An, Lijia; Yu, Kun

    2008-08-01

    Penicillium pinophilum was isolated from the soil in a commercial strawberry field. The strain readily formed arbuscular mycorrhizae (AM) with the roots of strawberry 'Zoji' (Fragaria x ananassa Duch. CV.) when plants were inoculated with either fresh cultured hyphae or root/soil mixtures. Fresh hyphae, however, resulted in higher amounts of colonization than root/soil inoculum. Compared with uninoculated strawberries, inoculation increased plant dry weight by 31%, as well as nitrogen content (47%), phosphorus content (57%), and photosynthetic rate (71%). AM inoculation also shortened the blossom and ripening date by 3 and 4 days, respectively. This is the first report of a P. pinophilum strain resulting in mycorrhiza with strawberry roots. The significant advantages of this strain are that it is easy to culture and inoculation of plants results in significant growth benefits that may be useful in strawberry production.

  17. Ammonium and nitrate uptake, nitrogen productivity and biomass allocation in interior spruce families with contrasting growth rates and mineral nutrient preconditioning.

    PubMed

    Miller, Brad D; Hawkins, Barbara J

    2007-06-01

    Four full-sib families of interior spruce (Picea glauca (Moench) Voss) x Picea engelmanii Parry ex Engelm.) with contrasting growth rates (two fast-growing and two slow-growing families) were grown aeroponically with either a 2% relative nitrogen addition rate or free access to nitrogen. Fast-growing families showed greater plasticity in allocating biomass to shoots at high nitrogen supply and to roots at low nitrogen supply than slow-growing families. Compared with the slow-growing families, short-term net ammonium uptake rate measured with an ion selective electrode was significantly greater in fast-growing families at high ammonium supply, but not at low supply. Net nitrate uptake showed the same trend, but differences among families were not significant. Results indicate that differences in seedling growth rate are partly a result of physiological differences in net nitrogen uptake efficiency and nitrogen productivity.

  18. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins.

    PubMed

    Dyawanapelly, Sathish; Koli, Uday; Dharamdasani, Vimisha; Jain, Ratnesh; Dandekar, Prajakta

    2016-08-01

    The main aim of the present study was to compare mucoadhesion and cellular uptake efficiency of chitosan (CS) and chitosan oligosaccharide (COS) surface-modified polymer nanoparticles (NPs) for mucosal delivery of proteins. We have developed poly (D, L-lactide-co-glycolide) (PLGA) NPs, surface-modified COS-PLGA NPs and CS-PLGA NPs, by using double emulsion solvent evaporation method, for encapsulating bovine serum albumin (BSA) as a model protein. Surface modification of NPs was confirmed using physicochemical characterization methods such as particle size and zeta potential, SEM, TEM and FTIR analysis. Both surface-modified PLGA NPs displayed a slow release of protein compared to PLGA NPs. Furthermore, we have explored the mucoadhesive property of COS as a material for modifying the surface of polymeric NPs. During in vitro mucoadhesion test, positively charged COS-PLGA NPs and CS-PLGA NPs exhibited enhanced mucoadhesion, compared to negatively charged PLGA NPs. This interaction was anticipated to improve the cell interaction and uptake of NPs, which is an important requirement for mucosal delivery of proteins. All nanoformulations were found to be safe for cellular delivery when evaluated in A549 cells. Moreover, intracellular uptake behaviour of FITC-BSA loaded NPs was extensively investigated by confocal laser scanning microscopy and flow cytometry. As we hypothesized, positively charged COS-PLGA NPs and CS-PLGA NPs displayed enhanced intracellular uptake compared to negatively charged PLGA NPs. Our results demonstrated that CS- and COS-modified polymer NPs could be promising carriers for proteins, drugs and nucleic acids via nasal, oral, buccal, ocular and vaginal mucosal routes.

  19. Facilitating Mitochondrial Calcium Uptake Improves Activation-Induced Cerebral Blood Flow and Behavior after mTBI

    PubMed Central

    Murugan, Madhuvika; Santhakumar, Vijayalakshmi; Kannurpatti, Sridhar S.

    2016-01-01

    Mild to moderate traumatic brain injury (mTBI) leads to secondary neuronal loss via excitotoxic mechanisms, including mitochondrial Ca2+ overload. However, in the surviving cellular population, mitochondrial Ca2+ influx, and oxidative metabolism are diminished leading to suboptimal neuronal circuit activity and poor prognosis. Hence we tested the impact of boosting neuronal electrical activity and oxidative metabolism by facilitating mitochondrial Ca2+ uptake in a rat model of mTBI. In developing rats (P25-P26) sustaining an mTBI, we demonstrate post-traumatic changes in cerebral blood flow (CBF) in the sensorimotor cortex in response to whisker stimulation compared to sham using functional Laser Doppler Imaging (fLDI) at adulthood (P67-P73). Compared to sham, whisker stimulation-evoked positive CBF responses decreased while negative CBF responses increased in the mTBI animals. The spatiotemporal CBF changes representing underlying neuronal activity suggested profound changes to neurovascular activity after mTBI. Behavioral assessment of the same cohort of animals prior to fLDI showed that mTBI resulted in persistent contralateral sensorimotor behavioral deficit along with ipsilateral neuronal loss compared to sham. Treating mTBI rats with Kaempferol, a dietary flavonol compound that enhanced mitochondrial Ca2+ uptake, eliminated the inter-hemispheric asymmetry in the whisker stimulation-induced positive CBF responses and the ipsilateral negative CBF responses otherwise observed in the untreated and vehicle-treated mTBI animals in adulthood. Kaempferol also improved somatosensory behavioral measures compared to untreated and vehicle treated mTBI animals without augmenting post-injury neuronal loss. The results indicate that reduced mitochondrial Ca2+ uptake in the surviving populations affect post-traumatic neural activation leading to persistent behavioral deficits. Improvement in sensorimotor behavior and spatiotemporal neurovascular activity following kaempferol

  20. Quercetin-Loaded Solid Lipid Nanoparticle Dispersion with Improved Physicochemical Properties and Cellular Uptake.

    PubMed

    Vijayakumar, Ajay; Baskaran, Rengarajan; Jang, Young Soo; Oh, Seung Hyun; Yoo, Bong Kyu

    2017-04-01

    The objective of this study was to formulate and characterize properties of solid lipid nanoparticle (SLN) dispersion containing quercetin. SLN was prepared by ultrasonication method using tripalmitin and lecithin as lipid core and then the surface was coated with chitosan. Entrapment efficiency was greater than 99%, and mean particle size of SLN was 110.7 ± 1.97 nm with significant increase in the coated SLN (c-SLN). Zeta potential was proportionally increased and reached plateau at 5% of chitosan coating with respect to tripalmitin. Differential scanning calorimetry showed disappearance of endothermic peak of quercetin in SLNs, indicating conversion of crystalline state to amorphous state. FTIR study of SLNs showed no change in the spectrum of quercetin, which indicates that the lipid and chitosan were not incompatible with quercetin. When coating amount was greater than 2.5% of tripalmitin, particle size and zeta potential were very stable even at 40°C up to 90 days. All SLN dispersions showed significantly faster release profile compared to pure quercetin powder. At pH 7.0, the release rate was increased in proportion to the coating amount. Interestingly, at pH 3.0, chitosan coating of 5.0% or greater decreased the rate. Cellular uptake of quercetin was performed using Caco-2 cells and showed that all SLN dispersions were significantly better than quercetin dispersed in distilled water. However, cellular uptake of quercetin from c-SLN was significantly lower than that from uncoated SLN.

  1. Enhancing soil infiltration reduces gaseous emissions and improves N uptake from applied dairy slurry.

    PubMed

    Bhandral, R; Bittman, S; Kowalenko, G; Buckley, K; Chantigny, M H; Hunt, D E; Bounaix, F; Friesen, A

    2009-01-01

    Rapid infiltration of liquid manure into the soil reduces emissions of ammonia (NH(3)) into the atmosphere. This study was undertaken to assess the effects of two low-cost methods of assisting infiltration of applied dairy slurry on emissions of NH(3), nitrous oxide (N(2)O), and on crop N uptake. The two methods were removing of solids by settling-decantation to make the manure less viscous and mechanically aerating the soil. Ammonia emissions were measured with wind tunnels as percentage of applied total ammoniacal nitrogen (TAN) while emissions of N(2)O were measured with vented chambers. Mechanically aerating the soil before manure application significantly reduced emissions of NH(3) relative to the nonaerated soil in spring (38.6 to 20.3% of applied TAN), summer (41.1 to 26.4% of applied TAN) and fall (27.7 to 13.6% of applied TAN) trials. Decantation of manure had no effect on NH(3) emissions in spring, tended to increase emissions in summer and significantly decreased emissions in fall (30.3 to 11.1% of applied TAN). Combining the two abatement techniques reduced NH(3) emission by 82% in fall, under cool weather conditions typical of manure spreading. The two abatement techniques generally did not significantly affect N(2)O emissions. Uptake of applied N by Italian ryegrass (Lolium multiflorum Lam.) was generally significantly greater with decanted than from whole manure but the effect of aeration was generally small and not significant. The study shows that low cost methods that assist manure infiltration into the soil may be used to greatly reduce ammonia loss without increasing N(2)O emissions, but efficacy of abatement methods is affected by weather conditions.

  2. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L).

    PubMed

    Moyin-Jesu, Emmanuel Ibukunoluwa

    2007-08-01

    The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (P<0.05) the soil N, P, K, Ca, Mg, pH, and SOM; pod N, P, K, Ca, Mg and ash; root length; and pod yield of okra in all four experiments relative to the control treatment. For instance, spent grain treatment increased the okra pod yield by 99%, 33%, 50%, 49%, 65% and 67% compared to control, NPK, wood ash, cocoa husk, rice bran and sawdust treatments respectively. In the stepwise regression, out of the total R(2) value of 0.83 for the soil nutrients to the pod yield of okra; soil N accounted for 50% of the soil fertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost

  3. Does journal club membership improve research evidence uptake in different allied health disciplines: a pre-post study

    PubMed Central

    2012-01-01

    Background Although allied health is considered to be one 'unit' of healthcare providers, it comprises a range of disciplines which have different training and ways of thinking, and different tasks and methods of patient care. Very few empirical studies on evidence-based practice (EBP) have directly compared allied health professionals. The objective of this study was to examine the impact of a structured model of journal club (JC), known as iCAHE (International Centre for Allied Health Evidence) JC, on the EBP knowledge, skills and behaviour of the different allied health disciplines. Methods A pilot, pre-post study design using maximum variation sampling was undertaken. Recruitment was conducted in groups and practitioners such as physiotherapists, occupational therapists, speech pathologists, social workers, psychologists, nutritionists/dieticians and podiatrists were invited to participate. All participating groups received the iCAHE JC for six months. Quantitative data using the Adapted Fresno Test (McCluskey & Bishop) and Evidence-based Practice Questionnaire (Upton & Upton) were collected prior to the implementation of the JC, with follow-up measurements six months later. Mean percentage change and confidence intervals were calculated to compare baseline and post JC scores for all outcome measures. Results The results of this study demonstrate variability in EBP outcomes across disciplines after receiving the iCAHE JC. Only physiotherapists showed statistically significant improvements in all outcomes; speech pathologists and occupational therapists demonstrated a statistically significant increase in knowledge but not for attitude and evidence uptake; social workers and dieticians/nutritionists showed statistically significant positive changes in their knowledge, and evidence uptake but not for attitude. Conclusions There is evidence to suggest that a JC such as the iCAHE model is an effective method for improving the EBP knowledge and skills of allied

  4. Improving macroscopic modeling of the effect of water and osmotic stresses on root water uptake.

    NASA Astrophysics Data System (ADS)

    Jorda Guerra, Helena; Vanderborght, Jan

    2015-04-01

    Accurate modeling of water and salt stresses on root water uptake is critical for predicting impacts of global change and climate variability on crop production and soil water balances. Soil-hydrological models use reduction functions to represent the effect of osmotic stress in transpiration. However, these functions, which were developed empirically, present limitations in relation to the time and spatial scale at which they need to be used, fail to include compensation processes and do not agree on how water and salt stresses interact. This research intends to develop a macroscopic reduction function for water and osmotic stresses based on biophysical knowledge. Simulation experiments are conducted for a range of atmospheric conditions, soil and plant properties, irrigation water quality and scheduling using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system (Schröder et al., 2013). The effect of salt concentrations on water flow in the soil-root system is accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. In a first step, simulation experiments are carried out in a soil volume around a single root segment. We discuss how the simulation setup can be defined so as to represent: (i) certain characteristics of the root system such as rooting depth and root length density, (ii) plant transpiration rate, (iii) leaching fraction of the irrigation, and (iii) salinity of the irrigation water. The output of these simulation experiments gives a first insight in the effect of salinity on transpiration and on the relation between the bulk salinity in the soil voxel, which is used in macroscopic salt stress functions of models that do not resolve processes at the root segment scale, and the salinity at the soil-root interface, which determines the actual

  5. Spatial Differentiation of Arable Land and Permanent Grasslands to Improve a Regional Land Management Model for Nutrient Balancing

    NASA Astrophysics Data System (ADS)

    Gómez Giménez, M.; Della Peruta, R.; de Jong, R.; Keller, A.; Schaepman, M. E.

    2015-12-01

    Agroecosystems play an important role providing economic and ecosystem services, which directly impact society. Inappropriate land use and unsustainable agricultural management with associated nutrient cycles can jeopardize important soil functions such as food production, livestock feeding and conservation of biodiversity. The objective of this study was to integrate remotely sensed land cover information into a regional Land Management Model (LMM) to improve the assessment of spatial explicit nutrient balances for agroecosystems. Remotely sensed data as well as an optimized parameter set contributed to feed the LMM providing a better spatial allocation of agricultural data aggregated at farm level. The integration of land use information in the land allocation process relied predominantly on three factors: i) spatial resolution, ii) classification accuracy and iii) parcels definition. The best-input parameter combination resulted in two different land cover classifications with overall accuracies of 98%, improving the LMM performance by 16% as compared to using non-spatially explicit input. Firstly, the use of spatial explicit information improved the spatial allocation output resulting in a pattern that better followed parcel boundaries (Figure 1). Second, the high classification accuracies ensured consistency between the datasets used. Third, the use of a suitable spatial unit to define the parcels boundaries influenced the model in terms of computational time and the amount of farmland allocated. We conclude that the combined use of remote sensing (RS) data with the LMM has the potential to provide highly accurate information of spatial explicit nutrient balances that are crucial for policy options concerning sustainable management of agricultural soils. Figure 1. Details of the spatial pattern obtained: a) Using only the farm census data, b) using also land use information. Framed in black in the left image (a), examples of artifacts that disappeared when

  6. Cardiac resynchronization therapy improves the uptake of MIBI-99mTc and cardiac function.

    PubMed

    Brandão, Simone Cristina Soares; Giorgi, Maria Clementina; Nishioka, Silvana D'Orio; Martinelli Filho, Martino; Soares, José; Meneghetti, José Cláudio

    2008-09-01

    This case shows the improvement promoted by cardiac resynchronization therapy (CRT) on myocardial perfusion and left ventricular (LV) performance assessed by gated myocardial perfusion scintigraphy. The patient had idiopathic dilated cardiomyopathy, left bundle branch block and severe heart failure despite optimized medical treatment. After CRT, clinical improvement, QRS reduction and improvement of previously hypoperfused anterior and septal walls were observed. There was also decrease in LV end-diastolic and systolic volumes and increase in LV ejection fraction.

  7. Carbon Monoxide Fumigation Improved the Quality, Nutrients, and Antioxidant Activities of Postharvest Peach

    PubMed Central

    Li, Ying; Pei, Fei

    2014-01-01

    Peaches (Prunus persica cv. Yanhong) were fumigated with carbon monoxide (CO) at 0, 0.5, 5, 10, and 20 μmol/L for 2 hours. The result showed that low concentration CO (0.5–10 μmol/L) might delay the decrease of firmness and titrable acid content, restrain the increase of decay incidence, and postpone the variation of soluble solids content, but treating peaches with high concentration CO (20 μmol/L) demonstrated adverse effects. Further research exhibited that exogenous CO could induce the phenylalnine ammonialyase activity, maintain nutrient contents such as Vitamin C, total flavonoid, and polyphenol, and enhance antioxidant activity according to reducing power and 2,2-diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl radical scavenging activity. Treating peaches with appropriate concentration CO was beneficial to the quality, nutrients, and antioxidant activity of postharvest peaches during storage time. Therefore, CO fumigation might probably become a novel method to preserve postharvest peach and other fruits in the future. PMID:26904651

  8. Polyacetylenes from carrots (Daucus carota) improve glucose uptake in vitro in adipocytes and myotubes.

    PubMed

    El-Houri, Rime B; Kotowska, Dorota; Christensen, Kathrine B; Bhattacharya, Sumangala; Oksbjerg, Niels; Wolber, Gerhard; Kristiansen, Karsten; Christensen, Lars P

    2015-07-01

    A dichloromethane (DCM) extract of carrot roots was found to stimulate insulin-dependent glucose uptake (GU) in adipocytes in a dose dependent manner. Bioassay-guided fractionation of the DCM extract resulted in the isolation of the polyacetylenes falcarinol and falcarindiol. Both polyacetylenes were able to significantly stimulate basal and/or insulin-dependent GU in 3T3-L1 adipocytes and porcine myotube cell cultures in a dose-dependent manner. Falcarindiol increased peroxisome proliferator-activated receptor (PPAR)γ-mediated transactivation significantly at concentrations of 3, 10 and 30 μM, while PPARγ-mediated transactivation by falcarinol was only observed at 10 μM. Docking studies accordingly indicated that falcarindiol binds to the ligand binding domain of PPARγ with higher affinity than falcarinol and that both polyacetylenes exhibit characteristics of PPARγ partial agonists. Falcarinol was shown to inhibit adipocyte differentiation as evident by gene expression studies and Oil Red O staining, whereas falcarindiol did not inhibit adipocyte differentiation, which indicates that these polyacetylenes have distinct modes of action. The results of the present study suggest that falcarinol and falcarindiol may represent scaffolds for novel partial PPARγ agonists with possible antidiabetic properties.

  9. Combined Application of Biofertilizers and Inorganic Nutrients Improves Sweet Potato Yields

    PubMed Central

    Mukhongo, Ruth W.; Tumuhairwe, John B.; Ebanyat, Peter; AbdelGadir, AbdelAziz H.; Thuita, Moses; Masso, Cargele

    2017-01-01

    Sweet potato [Ipomoea batatas (L) Lam] yields currently stand at 4.5 t ha−1 on smallholder farms in Uganda, despite the attainable yield (45–48 t ha−1) of NASPOT 11 cultivar comparable to the potential yield (45 t ha−1) in sub-Saharan Africa (SSA). On-farm field experiments were conducted for two seasons in the Mt Elgon High Farmlands and Lake Victoria Crescent agro-ecological zones in Uganda to determine the potential of biofertilizers, specifically arbuscular mycorrhizal fungi (AMF), to increase sweet potato yields (NASPOT 11 cultivar). Two kinds of biofertilizers were compared to different rates of phosphorus (P) fertilizer when applied with or without nitrogen (N) and potassium (K). The sweet potato response to treatments was variable across sites (soil types) and seasons, and significant tuber yield increase (p < 0.05) was promoted by biofertilizer and NPK treatments during the short-rain season in the Ferralsol. Tuber yields ranged from 12.8 to 20.1 t ha−1 in the Rhodic Nitisol (sandy-clay) compared to 7.6 to 14.9 t ha−1 in the Ferralsol (sandy-loam) during the same season. Root colonization was greater in the short-rain season compared to the long-rain season. Biofertilizers combined with N and K realized higher biomass and tuber yield than biofertilizers alone during the short-rain season indicating the need for starter nutrients for hyphal growth and root colonization of AMF. In this study, N0.25PK (34.6 t ha−1) and N0.5PK (32.9 t ha−1) resulted in the highest yield during the long and the short-rain season, respectively, but there was still a yield gap of 11.9 and 13.6 t ha−1 for the cultivar. Therefore, a combination of 90 kg N ha−1 and 100 kg K ha−1 with either 15 or 30 kg P ha−1 can increase sweet potato yield from 4.5 to >30 t ha−1. The results also show that to realize significance of AMF in nutrient depleted soils, starter nutrients should be included. PMID:28348569

  10. Multi-nutrient supplement improves hormone ratio associated with cancer risk

    PubMed Central

    2013-01-01

    Background Gynecological cancers are among the most common in women and are directly related to a variety of hormonal factors. One potential risk factor associated with developing a gynecological malignancy is the ratio of two hormone metabolites, 2-Hydroxyestrone (2-HE) and 16alpha-Hydroxyestrone (16alpha-HE). A number of botanical constituents such as indoles, flavonoids, and resveratrol have been shown to have a favorable effect on the metabolic pathways that affect this ratio. The present study was designed to evaluate if a multi-nutrient supplement containing targeted botanical constituents would affect the 2-HE/16 alpha-HE ratio in middle-aged women. Methods A retrospective analysis was performed on 76 female patients (mean age 54 years) who received 2-HE/16 alpha-HE ratio assessments at two separate time points. The ratio assessment was part of standard care for women who presented with risk indicators associated with a high proliferative state. All patients who completed pre and post assessments were included. Sixty-five of the patients received a multi-nutrient supplement, Lucentia Peak®, during the study period. Eleven patients chose not to take the supplement, but did receive ratio assessments at similar time points as the treatment group, allowing for between group comparisons. Paired t-tests were used to compare the changes in the 2-HE and 16alpha-HE measures as well as their ratio, both within groups and between groups. Results The results demonstrated a significant increase in the 2-HE/16alpha-HE ratio in the treated group (pre 0.38 to post 0.57, p<0.0001), and was significantly different (p=0.02) compared to the change in the control group (pre 0.65 to post 0.64). This change appears to be mediated primarily by an increase in the 2-HE level. Individually, 54 patients given Lucentia Peak® had increased ratios while 11 patients had a decrease. In the control group, 3 patients had an increase in their ratio and 8 patients had a decrease. Conclusions

  11. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake.

    PubMed

    Luo, Yangchao; Teng, Zi; Li, Ying; Wang, Qin

    2015-05-20

    The poor stability of solid lipid nanoparticles (SLN) under acidic condition resulted in large aggregation in gastric environment, limiting their application as oral delivery systems. In this study, a series of SLN was prepared to investigate the effects of surfactant/cosurfactant and chitosan coating on their physicochemical properties as well as cellular uptake. SLN was prepared from Compritol 888 ATO using a low-energy method combining the solvent-diffusion and hot homogenization technique. Poloxamer 188 and polyethylene glycol (PEG) were effective emulsifiers to produce SLN with better physicochemical properties than SLN control. Chitosan-coated SLN exhibited the best stability under acidic condition by forming a thick layer around the lipid core, as clearly observed by transmission electron microscope. The intermolecular interactions in different formulations were monitored by Fourier transform infrared spectroscopy. Chitosan coating also significantly improved the mucoadhesive property of SLN as determined by Quartz Crystal Microbalance. In vitro drug delivery assays, cytotoxicity, and cellular uptake of SLN were studied by incorporating coumarin 6 as a fluorescence probe. Overall, chitosan-coated SLN was superior to other formulations and held promising features for its application as a potential oral drug delivery system for hydrophobic drugs.

  12. Preexposure prophylaxis-related stigma: strategies to improve uptake and adherence - a narrative review.

    PubMed

    Haire, Bridget G

    2015-01-01

    Despite high levels of efficacy, the implementation of preexposure prophylaxis (PrEP) as a strategy to prevent new HIV infection has been slow. Studies show that PrEP works so long as it is taken, making adherence one of the great challenges of effective PrEP implementation alongside issues of access and uptake. Given that effective PrEP use requires ongoing self-administration of pills by people at high risk of HIV acquisition, it is a strategy best understood not as simply biomedical, but as biobehavioral or biopsychosocial, meaning that that social, psychological, cultural, and structural factors all contribute to the success or failure of the intervention. The willingness of people at risk of HIV to take up and adhere to PrEP depends greatly upon social understandings - whether it is seen as effective, as a healthy option, and a socially acceptable strategy for preventing HIV. Stigma - unfavorable associations - can negatively influence the implementation of PrEP. Because it is associated with high-risk sexual activity, PrEP risks multiple stigmas that can differ according to specific cultural conditions. This includes the stigma of being related to HIV (which may also relate to other stigmas, such as homosexuality, sex work, and/or drug use) and the stigma of PrEP being an alternative to condoms (as condom use is associated with responsible sexual activity). PrEP-related stigma has emerged as a significant social harm that can arise from PrEP research participation, reported by trial participants from a range of different trial sites, different trial populations, and spanning different continents. Social marketing needs to redress PrEP-related stigmas through health promotion campaigns aimed at clinicians, HIV-affected communities, and people at high risk of HIV who might benefit from PrEP access. PrEP access needs to be reframed as a positive and responsible option to help people remain HIV-negative.

  13. Statistical innovations improve prevalence estimates of nutrient risk populations: applications in São Paulo, Brazil.

    PubMed

    Morimoto, Juliana Masami; Marchioni, Dirce Maria Lobo; Cesar, Chester Luiz Galvão; Fisberg, Regina Mara

    2012-10-01

    The objective of this study was to estimate the prevalence of inadequate micronutrient intake and excess sodium intake among adults age 19 years and older in the city of São Paulo, Brazil. Twenty-four-hour dietary recall and sociodemographic data were collected from each participant (n=1,663) in a cross-sectional study, Inquiry of Health of São Paulo, of a representative sample of the adult population of the city of São Paulo in 2003 (ISA-2003). The variability in intake was measured through two replications of the 24-hour recall in a subsample of this population in 2007 (ISA-2007). Usual intake was estimated by the PC-SIDE program (version 1.0, 2003, Department of Statistics, Iowa State University), which uses an approach developed by Iowa State University. The prevalence of nutrient inadequacy was calculated using the Estimated Average Requirement cut-point method for vitamins A and C, thiamin, riboflavin, niacin, copper, phosphorus, and selenium. For vitamin D, pantothenic acid, manganese, and sodium, the proportion of individuals with usual intake equal to or more than the Adequate Intake value was calculated. The percentage of individuals with intake equal to more than the Tolerable Upper Intake Level was calculated for sodium. The highest prevalence of inadequacy for males and females, respectively, occurred for vitamin A (67% and 58%), vitamin C (52% and 62%), thiamin (41% and 50%), and riboflavin (29% and 19%). The adjustment for the within-person variation presented lower prevalence of inadequacy due to removal of within-person variability. All adult residents of São Paulo had excess sodium intake, and the rates of nutrient inadequacy were high for certain key micronutrients.

  14. Barriers to preventive therapy for breast and other major cancers and strategies to improve uptake

    PubMed Central

    DeCensi, Andrea; Thorat, Mangesh A; Bonanni, Bernardo; Smith, Samuel G; Cuzick, Jack

    2015-01-01

    The global cancer burden continues to rise and the war on cancer can only be won if improvements in treatment go hand in hand with therapeutic cancer prevention. Despite the availability of several efficacious agents, utilisation of preventive therapy has been poor due to various barriers, such as the lack of physician and patient awareness, fear of side effects, and licensing and indemnity issues. In this review, we discuss these barriers in detail and propose strategies to overcome them. These strategies include improving physician awareness and countering prejudices by highlighting the important differences between preventive therapy and cancer treatment. The importance of the agent–biomarker–cohort (ABC) paradigm to improve effectiveness of preventive therapy cannot be overemphasised. Future research to improve therapeutic cancer prevention needs to include improvements in the prediction of benefits and harms, and improvements in the safety profile of existing agents by experimentation with dose. We also highlight the role of drug repurposing for providing new agents as well as to address the current imbalance between therapeutic and preventive research. In order to move the field of therapeutic cancer prevention forwards, engagement with policymakers to correct research imbalance as well as to remove practical obstacles to implementation is also urgently needed. PMID:26635899

  15. Irrigation of three wetland species and a hyperaccumlating fern with arsenic-laden solutions: observations of growth, arsenic uptake, nutrient status, and chlorophyll content.

    PubMed

    Rofkar, Jordan R; Dwyer, Daryl F

    2013-01-01

    Engineered wetlands can be an integral part of a treatment strategy for remediating arsenic-contaminated wastewater, wherein, As is removed by adsorption to soil particles, chemical transformation, precipitation, or accumulation by plants. The remediation process could be optimized by choosing plant species that take up As throughout the seasonal growing period. This report details experiments that utilize wetland plant species native to Ohio (Carex stricta, Pycnanthemum virginianum, and Spartina pectinata) that exhibit seasonally related maximal growth rates, plus one hyperaccumulating fern (Pteris vittata) that was used to compare arsenic tolerance. All plants were irrigated with control or As-laden nutrient solutions (either 0, 1.5, or 25 mg As L(-1)) for 52 d. Biomass, nutrient content, and chlorophyll content were compared between plants treated and control plants (n = 5). At the higher concentration of arsenic (25 mg L(-1)), plant biomass, leaf area, and total chlorophyll were all lower than values in control plants. A tolerance index, based on total plant biomass at the end of the experiment, indicated C. stricta (0.99) and S. pectinata (0.84) were more tolerant than the other plant species when irrigated with 1.5 mg As L(-1). These plant species can be considered as candidates for engineered wetlands.

  16. Preexposure prophylaxis-related stigma: strategies to improve uptake and adherence – a narrative review

    PubMed Central

    Haire, Bridget G

    2015-01-01

    Despite high levels of efficacy, the implementation of preexposure prophylaxis (PrEP) as a strategy to prevent new HIV infection has been slow. Studies show that PrEP works so long as it is taken, making adherence one of the great challenges of effective PrEP implementation alongside issues of access and uptake. Given that effective PrEP use requires ongoing self-administration of pills by people at high risk of HIV acquisition, it is a strategy best understood not as simply biomedical, but as biobehavioral or biopsychosocial, meaning that that social, psychological, cultural, and structural factors all contribute to the success or failure of the intervention. The willingness of people at risk of HIV to take up and adhere to PrEP depends greatly upon social understandings – whether it is seen as effective, as a healthy option, and a socially acceptable strategy for preventing HIV. Stigma – unfavorable associations – can negatively influence the implementation of PrEP. Because it is associated with high-risk sexual activity, PrEP risks multiple stigmas that can differ according to specific cultural conditions. This includes the stigma of being related to HIV (which may also relate to other stigmas, such as homosexuality, sex work, and/or drug use) and the stigma of PrEP being an alternative to condoms (as condom use is associated with responsible sexual activity). PrEP-related stigma has emerged as a significant social harm that can arise from PrEP research participation, reported by trial participants from a range of different trial sites, different trial populations, and spanning different continents. Social marketing needs to redress PrEP-related stigmas through health promotion campaigns aimed at clinicians, HIV-affected communities, and people at high risk of HIV who might benefit from PrEP access. PrEP access needs to be reframed as a positive and responsible option to help people remain HIV-negative. PMID:26508889

  17. Replacement of the Lys linker with an Arg linker resulting in improved melanoma uptake and reduced renal uptake of Tc-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptide.

    PubMed

    Yang, Jianquan; Guo, Haixun; Padilla, R Steve; Berwick, Marianne; Miao, Yubin

    2010-09-15

    The purpose of this study was to reduce the non-specific renal uptake of Arg-Gly-Asp (RGD)-conjugated alpha-melanocyte stimulating hormone (alpha-MSH) hybrid peptide through structural modification or L-lysine co-injection. The RGD motif {cyclic(Arg-Gly-Asp-DTyr-Asp)} was coupled to [Cys(3,4,10), D-Phe7, Arg11] alpha-MSH3-13 {(Arg11)CCMSH} through the Arg linker (substituting the Lys linker) to generate a novel RGD-Arg-(Arg11)CCMSH hybrid peptide. The melanoma targeting and pharmacokinetic properties of 99mTc-RGD-Arg-(Arg11)CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The effect of L-lysine co-injection on the renal uptake was determined through the co-injection of L-lysine with 99mTc-RGD-Arg-(Arg11)CCMSH or 99mTc-RGD-Lys-(Arg11)CCMSH. Replacement of the Lys linker with an Arg linker exhibited a profound effect in reducing the non-specific renal uptake of 99mTc-RGD-Arg-(Arg11)CCMSH, as well as increasing the tumor uptake of 99mTc-RGD-Arg-(Arg11)CCMSH compared to 99mTc-RGD-Lys-(Arg11)CCMSH. 99mTc-RGD-Arg-(Arg11)CCMSH exhibited high tumor uptake (21.41+/-3.74% ID/g at 2 h post-injection) and prolonged tumor retention (6.81+/-3.71% ID/g at 24 h post-injection) in B16/F1 melanoma-bearing mice. The renal uptake values of 99mTc-RGD-Arg-(Arg11)CCMSH were 40.14-64.08% of those of 99mTc-RGD-Lys-(Arg11)CCMSH (p<0.05) at 0.5, 2, 4 and 24 h post-injection. Co-injection of L-lysine was effective in decreasing the renal uptakes of 99mTc-RGD-Arg-(Arg11)CCMSH by 27.7% and 99mTc-RGD-Lys-(Arg11)CCMSH by 52.1% at 2 h post-injection. Substitution of the Lys linker with an Arg linker dramatically improved the melanoma uptake and reduced the renal uptake of 99mTc-RGD-Arg-(Arg11)CCMSH, warranting the further evaluation of 188Re-labeled RGD-Arg-(Arg11)CCMSH as a novel MC1 receptor-targeting therapeutic peptide for melanoma treatment in the future.

  18. H2O2 pretreated rice seedlings specifically reduces arsenate not arsenite: difference in nutrient uptake and antioxidant defense response in a contrasting pair of rice cultivars.

    PubMed

    Mallick, Shekhar; Kumar, Navin; Sinha, Sarita; Dubey, Arvind Kumar; Tripathi, Rudra Deo; Srivastav, Vivek

    2014-10-01

    The study investigated the reduction in metalloid uptake at equimolar concentrations (~53.3 μM) of As(III) and As(V) in contrasting pair of rice seedlings by pretreating with H2O2 (1.0 μM) and SA (1.0 mM). Results obtained from the contrasting pair (arsenic tolerant vs. sensitive) of rice seedlings (cv. Pant Dhan 11 and MTU 7029, respectively) shows that pretreatment of H2O2 and H2O2 + SA reduces As(V) uptake significantly in both the cultivars, while no reduction in the As(III) uptake. The higher growth inhibition, higher H2O2 and TBARS content in sensitive cultivar against As(III) and As(V) treatments along with higher As accumulation (~1.2 mg g(-1) dw) than in cv. P11, unravels the fundamental difference in the response between the sensitive and tolerant cultivar. In the H2O2 pretreated plants, the translocation of As increased in tolerant cultivar against AsIII, whereas, it decreased in sensitive cultivar both against AsIII and AsV. In both the cultivars translocation of Mn increased in the H2O2 pretreated plants against As(III), whereas, the translocation of Cu increased against As(V). In tolerant cultivar the translocation of Fe increased against As(V) with H2O2 pretreatment whereas, it decreased in the sensitive cultivar. In both the cultivars, Zn translocation increased against As(III) and decreased against As(V). The higher level of H2O2 and SOD (EC 1.15.1.1) activity in sensitive cultivar whereas, higher, APX (EC 1.11.1.11), GR (EC 1.6.4.2) and GST (EC 1.6.4.2) activity in tolerant cultivar, also demonstrated the differential anti-oxidative defence responses between the contrasting rice cultivars.

  19. Nutrient sources in a Mediterranean catchment and their improvement for water quality management

    NASA Astrophysics Data System (ADS)

    Candela, Angela; Viviani, Gaspare

    2010-05-01

    Changes in land-use or management strategies may affect water outflow, sediment and nutrients loads. Thus, there is an increasing demand for quantitative information at the catchment scale that would help decision makers or planners to take appropriate decisions. The characterisation of water status, the description of pollution sources impact, the establishment of monitoring programs and the implementation of river basin management plans require an analysis of the current basin status and estimates of the relative significance of the different sources of pollution. Particularly, in this study the Soil and Water Assessment Tool (SWAT2000) model was considered since it is an integrated hydrological model that simulates both the qualitative as well as quantitative terms of hydrological balances. It is a spatially distributed hydrological model that operates on a daily time step at catchment scale developed by the Agricultural Research Service at the U.S. Department of Agriculture. Its purpose is to simulate water sediment and chemical yields on large river basins and possible impacts of land use, climate changes and watershed management. Integrated hydrological models are, nowadays, needed to support the implementation of integrated water management plans and to comply with the current requirements of the European Water Directive. Actually, they can help in evaluating current water resources, identify pollution sources, evaluate alternative management policies. More specifically, the analysis has been applied to the Oreto catchment (77 Km2), an agricultural and urbanised catchment located in Sicily (Italy). Residential, commercial, farm and industrial settlements cover almost the entire area. The climate is Mediterranean with hot dry summer and rainy winter season. The hydrological response of this basin is dominated by long dry seasons and following wetting-up periods, during which even large inputs of rainfall may produce little or no response at the basin outlet

  20. Mechanisms of deterioration of nutrients. [improved quality of freeze-dried foods

    NASA Technical Reports Server (NTRS)

    Karel, M.; Flink, J. M.

    1978-01-01

    Methods for improving the quality of freeze-dried foods were investigated. Areas discussed include: (1) microstructure of freeze-dried systems, (2) structural changes in freeze-dried systems, (3) artificial food matrices, and (4) osmotic preconcentration to yield improved freeze-dried products.

  1. Remarkable Improvement in the Mechanical Properties and CO2 Uptake of MOFs Brought About by Covalent Linking to Graphene.

    PubMed

    Kumar, Ram; Raut, Devaraj; Ramamurty, Upadrasta; Rao, C N R

    2016-06-27

    Metal-organic frameworks (MOFs) are exceptional as gas adsorbents but their mechanical properties are poor. We present a successful strategy to improve the mechanical properties along with gas adsorption characteristics, wherein graphene (Gr) is covalently bonded with M/DOBDC (M=Mg(2+) , Ni(2+) , or Co(2+) , DOBDC=2,5-dioxido-1,4-benzene dicarboxylate) MOFs. The surface area of the graphene-MOF composites increases up to 200-300 m(2)  g(-1) whereas the CO2 uptake increases by ca. 3-5 wt % at 0.15 atm and by 6-10 wt % at 1 atm. What is significant is that the composites exhibit improved mechanical properties. In the case of Mg/DOBDC, a three-fold increase in both the elastic modulus and hardness with 5 wt % graphene reinforcement is observed. Improvement in both the mechanical properties and gas adsorption characteristics of porous MOFs on linking them to graphene is a novel observation and suggests a new avenue for the design and synthesis of porous materials.

  2. Connecting the Learners: Improving Uptake of a Nursing Home Educational Program by Focusing on Staff Interactions

    PubMed Central

    Colón-Emeric, Cathleen S.

    2014-01-01

    Purpose of the Study: The CONNECT intervention is designed to improve staff connections, communication, and use of multiple perspectives for problem solving. This analysis compared staff descriptions of the learning climate, use of social constructivist learning processes, and outcomes in nursing facilities receiving CONNECT with facilities receiving a falls education program alone. Design and Methods: Qualitative evaluation of a randomized controlled trial was done using a focus group design. Facilities (n = 8) were randomized to a falls education program alone (control) or CONNECT followed by FALLS (intervention). A total of 77 staff participated in 16 focus groups using a structured interview protocol. Transcripts were analyzed using framework analysis, and summaries for each domain were compared between intervention and control facilities. Results: Notable differences in descriptions of the learning climate included greater learner empowerment, appreciation of the role of all disciplines, and seeking diverse viewpoints in the intervention group. Greater use of social constructivist learning processes was evidenced by the intervention group as they described greater identification of communication weaknesses, improvement in communication frequency and quality, and use of sense-making by seeking out multiple perspectives to better understand and act on information. Intervention group participants reported outcomes including more creative fall prevention plans, a more respectful work environment, and improved relationships with coworkers. No substantial difference between groups was identified in safety culture, shared responsibility, and self-reported knowledge about falls. Implications: CONNECT appears to enhance the use of social constructivist learning processes among nursing home staff. The impact of CONNECT on clinical outcomes requires further study. PMID:23704219

  3. Nutrient database improvement project: Separable components and proximate composition of retail cuts from the beef loin and round

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef nutrition research has become increasingly important domestically and internationally for the beef industry and its consumers. The objective of this study was to analyze the nutrient composition of ten beef loin and round cuts to update the nutrient data in the USDA National Nutrient Database f...

  4. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review.

    PubMed

    Khan, Anwarzeb; Khan, Sardar; Khan, Muhammad Amjad; Qamar, Zahir; Waqas, Muhammad

    2015-09-01

    Heavy metal contamination is a globally recognized environmental issue, threatening human life very seriously. Increasing population and high demand for food resulted in release of various contaminants into environment that finally contaminate the food chain. Edible plants are the major source of diet, and their contamination with toxic metals may result in catastrophic health hazards. Heavy metals affect the human health directly and/or indirectly; one of the indirect effects is the change in plant nutritional values. Previously, a number of review papers have been published on different aspects of heavy metal contamination. However, no related information is available about the effects of heavy metals on the nutritional status of food plants. This review paper is focused upon heavy metal sources, accumulation, transfer, health risk, and effects on protein, amino acids, carbohydrates, fats, and vitamins in plants. The literature about heavy metals in food plants shows that both leafy and nonleafy vegetables are good accumulators of heavy metals. In nonleafy vegetables, the bioaccumulation pattern was leaf > root ≈ stem > tuber. Heavy metals have strong influence on nutritional values; therefore, plants grown on metal-contaminated soil were nutrient deficient and consumption of such vegetables may lead to nutritional deficiency in the population particularly living in developing countries which are already facing the malnutrition problems.

  5. Improving Cotton Embryo Culture by Simulating In Ovulo Nutrient and Hormone Levels

    SciTech Connect

    Rodney Fuller; Vincent Liddiard; J. Hess; John Carman

    2011-06-01

    Plant ovules provide zygotes with a physicochemical environment that supports embryo differentiation, growth, and maturation. The exact nature of this embryogenesis-enabling environment is not well characterized, as evidenced by failed attempts to induce normal embryony from zygotes or proembryos (precotyledonary) on defined media. To identify factors required for cotton (Gossypium hirsutum L.) zygotic embryony in vitro, we previously performed chemical and dissolved oxygen tension analyses of cotton ovule fluids and tissues at multiple stages of embryony in situ. Based on these analyses, we report herein the development of procedures that normalize embryo differentiation, growth, maturation, and germination in vitro, starting with proembryos. Our medium differed from Murashige and Skoog (MS) medium as follows (percentage of MS): N (30%, mostly from ten amino acids), P (815%), K (237%), Mg (85%), Ca (267%), S (506%), Fe (88%), and myoinositol (883%). Levels of other MS nutrients and vitamins, except sucrose, were kept at MS levels. Additionally, we included 100 mg L-1 casein hydrolysate plus the following (mmol L-1): d-glucose (1.8), fructose (4.7), sucrose (62.0), arabinose (7.1), melibiose (3.5), malic acid (11.6), and citric acid (3.8). Mannitol was added to achieve a medium osmotic potential of -1.10 MPa, and an atmospheric O2 tension of 3.3 mol m-3 at the surface of embryos was maintained during culture. When cultured on medium containing 8.0 µmol L-1 indole-3-acetic acid, 80-90% of proembryos (as small as 100 cells) of cultivars HS-26 and B-27 increased four- to eightfold in surface area during the first 18 d in culture and germinated thereafter to produce viable plants. Increases in surface area of proembryos cultured on a modified MS medium previously used for somatic embryogenesis were from 0.2- to 0.6-fold. The described embryo culture medium should be useful for studying nutritional and molecular aspects of early embryony and possibly for plant zygote

  6. Low-phytic acid corn improves nutrient utilization for growing pigs.

    PubMed

    Veum, T L; Ledoux, D R; Raboy, V; Ertl, D S

    2001-11-01

    Thirty-five crossbred barrows averaging 14.5 kg initial BW were used in a 5-wk experiment to compare the P availability and nutritional value of a low-phytate hybrid corn (LPC, 0.26% total P, 0.08% phytic acid P) homozygous for the lpa 1-1 allele with a nearly isogenic normal hybrid corn (NC, 0.25% total P, 0.20% phytic acid P). The pigs were fed individually twice daily in metabolism pens. Three semipurified diets were created in which corn was the only source of phytate. Diet 1 contained 72% NC, 0.15% estimated available P (aP) and 0.55% Ca. Diet 2 contained 72% LPC, 0.24% aP, and 0.55% Ca. The only differences between Diets 1 and 2 were the source of corn and the levels of aP. No inorganic P (iP) was added to these diets in order to measure the animal response to the different levels of aP in the corn hybrids. Diet 3 was NC Diet 1 supplemented with iP to equal the level of aP in LPC Diet 2. Diets 4 and 5 were practical corn-soybean meal diets formulated with each corn to meet all minimum nutrient requirements and contained 0.30% aP and 0.65% Ca. For the semipurified diets, pigs fed LPC Diet 2 had higher (P < 0.01) growth performance, bone breaking strength, P absorption and retention, Ca absorption and retention, and N retention than pigs fed NC Diet 1. However, when the NC diet was supplemented with iP to equal the aP in the LPC diet, most criteria were similar (P > or = 0.2), indicating an equal nutritional value for both corn hybrids after adjusting for phytate level. The only treatment difference, other than P excretion, between the practical corn diets supplemented with soybean meal was a higher (P < 0.05) bone breaking strength for pigs fed LPC Diet 5 compared with NC Diet 4. The use of LPC in pig diets reduced P excretion in swine waste by 50 and 18.4% in the semipurified and practical diets, respectively, compared with NC. Using our in vitro procedure designed to simulate the digestive system of the pig, the availability of P for pigs was estimated at 56

  7. The Role of Potassium in Improving Growth Indices and Increasing Amount of Grain Nutrient Elements of Wheat Cultivars

    NASA Astrophysics Data System (ADS)

    Bahmanyar, M. A.; Ranjbar, G. A.

    In order to consider potassium role in improvement of growth indices and increasing the amount of nutrient elements in wheat grain, a pot experiment has been undertaken in 2005. In this experiment cultivars Tajan and Nye 60 have been used in four levels of potassium (0, 100, 200 and 300 kg K2O ha-1 from source of K2SO4) in form of factorial experiment based on a completely randomized design. Results showed that application of potassium increased dry matter, 1000 grain weight, tiller number, seed and leaf potassium content, seed Zn content, plant height, seed Iron and protein content. Also, grain yield, 1000 grain weight, seed potassium and Zn content in cultivar Nye 60 were higher than in cultivar Tajan and tiller number and seed protein content in cultivar Tajan were higher than in cultivar Nye 60.

  8. Increased energy and nutrient intake during training and competition improves elite triathletes' endurance performance.

    PubMed

    Frentsos, J A; Baer, J T

    1997-03-01

    Dietary habits were evaluated in 6 elite triathletes (4 male, 2 female). Analysis of 7-day diet records showed mean daily energy and carbohydrate intake to be insufficient to support estimated requirements. Mean intakes of vitamins and most minerals exceeded the Recommended Dietary Allowances (RDAs) except zinc chromium, which did not meet 66% of recommended amounts. Individualized nutrition intervention using the Diabetic Food Exchange System to support performance during training and competition was provided. To improve dietary intake, subjects consumed fortified nutrition supplements (Reliv, Inc.) before and after daily training. Follow-up 7-day diet records showed that average energy intake and percentage of energy from carbohydrate increased, as did intakes of zinc and chromium. Triathletes' performance in a short course triathlon was improved compared to a similar competition completed prior to the nutrition intervention. Following the intervention, triathletes were able to meet recommended daily energy, macronutrient, and micronutrient intakes and improve endurance performance.

  9. Exploring the Potential of Anticipated Regret as an Emotional Cue to Improve Bowel Cancer Screening Uptake

    PubMed Central

    Duncan, Amy; Freegard, Suzana; Wilson, Carlene; Flight, Ingrid; Turnbull, Deborah

    2017-01-01

    Objective. Bowel cancer is currently the second leading cause of cancer-related death in Australia and screening participation is suboptimal. This study examined the role of emotion in the form of anticipated regret (AR) and its relationship to screening intentions. Methods. N = 173 persons aged 45 to 80 years completed a survey measuring demographic variables, readiness to screen, relative importance of health by comparison to other life priorities, satisfaction with current health, and AR if not participating in future bowel cancer screening. Results. AR was a significant predictor of future screening intentions. Those with higher levels of AR were seven times more likely (OR = 7.18) to intend to screen in the future compared to those with lower AR. This relationship was not compromised when controlling for other variables including gender and satisfaction with one's health. AR levels were significantly lower in people who had been screened previously and in those with full health insurance. Conclusions. These results demonstrate that AR is uniquely related to future bowel cancer screening intentions. Future studies should continue to consider this as a useful target for behavioural interventions and identify new ways of delivering these interventions to improve their reach. PMID:28261608

  10. Diagnosis of nutrient imbalances with vector analysis in agroforestry systems.

    PubMed

    Isaac, Marney E; Kimaro, Anthony A

    2011-01-01

    Agricultural intensification has had unintended environmental consequences, including increased nutrient leaching and surface runoff and other agrarian-derived pollutants. Improved diagnosis of on-farm nutrient dynamics will have the advantage of increasing yields and will diminish financial and environmental costs. To achieve this, a management support system that allows for site-specific rapid evaluation of nutrient production imbalances and subsequent management prescriptions is needed for agroecological design. Vector diagnosis, a bivariate model to depict changes in yield and nutritional response simultaneously in a single graph, facilitates identification of nutritional status such as growth dilution, deficiency, sufficiency, luxury uptake, and toxicity. Quantitative data from cocoa agroforestry systems and pigeonpea intercropping trials in Ghana and Tanzania, respectively, were re-evaluated with vector analysis. Relative to monoculture, biomass increase in cocoa ( L.) under shade (35-80%) was accompanied by a 17 to 25% decline in P concentration, the most limiting nutrient on this site. Similarly, increasing biomass with declining P concentrations was noted for pigeonpea [ (L). Millsp.] in response to soil moisture availability under intercropping. Although vector analysis depicted nutrient responses, the current vector model does not consider non-nutrient resource effects on growth, such as ameliorated light and soil moisture, which were particularly active in these systems. We revisit and develop vector analysis into a framework for diagnosing nutrient and non-nutrient interactions in agroforestry systems. Such a diagnostic technique advances management decision-making by increasing nutrient precision and reducing environmental issues associated with agrarian-derived soil contamination.

  11. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions.

    PubMed

    Bowles, Timothy M; Barrios-Masias, Felipe H; Carlisle, Eli A; Cavagnaro, Timothy R; Jackson, Louise E

    2016-10-01

    Plant strategies to cope with future droughts may be enhanced by associations between roots and soil microorganisms, including arbuscular mycorrhizal (AM) fungi. But how AM fungi affect crop growth and yield, together with plant physiology and soil carbon (C) dynamics, under water stress in actual field conditions is not well understood. The well-characterized mycorrhizal tomato (Solanum lycopersicum L.) genotype 76R (referred to as MYC+) and the mutant nonmycorrhizal tomato genotype rmc were grown in an organic farm with a deficit irrigation regime and control regime that replaced evapotranspiration. AM increased marketable tomato yields by ~25% in both irrigation regimes but did not affect shoot biomass. In both irrigation regimes, MYC+ plants had higher plant nitrogen (N) and phosphorus (P) concentrations (e.g. 5 and 24% higher N and P concentrations in leaves at fruit set, respectively), 8% higher stomatal conductance (gs), 7% higher photosynthetic rates (Pn), and greater fruit set. Stem water potential and leaf relative water content were similar in both genotypes within each irrigation regime. Three-fold higher rates of root sap exudation in detopped MYC+ plants suggest greater capacity for water uptake through osmotic driven flow, especially in the deficit irrigation regime in which root sap exudation in rmc was nearly absent. Soil with MYC+ plants also had slightly higher soil extractable organic C and microbial biomass C at anthesis but no changes in soil CO2 emissions, although the latter were 23% lower under deficit irrigation. This study provides novel, field-based evidence for how indigenous AM fungi increase crop yield and crop water use efficiency during a season-long deficit irrigation and thus play an important role in coping with increasingly limited water availability in the future.

  12. Microalgal and cyanobacterial cultivation: the supply of nutrients.

    PubMed

    Markou, Giorgos; Vandamme, Dries; Muylaert, Koenraad

    2014-11-15

    Microalgae and cyanobacteria are a promising new source of biomass that may complement agricultural crops to meet the increasing global demand for food, feed, biofuels and chemical production. Microalgae and cyanobacteria cultivation does not interfere directly with food production, but care should be taken to avoid indirect competition for nutrient (fertilizer) supply. Microalgae and cyanobacteria production requires high concentrations of essential nutrients (C,N,P,S,K,Fe, etc.). In the present paper the application of nutrients and their uptake by microalgae and cyanobacteria is reviewed. The main focus is on the three most significant nutrients, i.e. carbon, nitrogen and phosphorus; however other nutrients are also reviewed. Nutrients are generally taken up in the inorganic form, but several organic forms of them are also assimilable. Some nutrients do not display any inhibition effect on microalgal or cyanobacterial growth, while others, such as NO2 or NH3 have detrimental effects when present in high concentrations. Nutrients in the gaseous form, such as CO2 and NO face a major limitation which is related mainly to their mass transfer from the gaseous to the liquid state. Since the cultivation of microalgae and cyanobacteria consumes considerable quantities of nutrients, strategies to improve the nutrient application efficiency are needed. Additionally, a promising strategy to improve microalgal and cyanobacterial production sustainability is the utilization of waste streams by recycling of waste nutrients. However, major constraints of using waste streams are the reduction of the range of the biomass applications due to production of contaminated biomass and the possible low bio-availability of some nutrients.

  13. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration.

    PubMed

    Yamaji, Keiko; Watanabe, Yumiko; Masuya, Hayato; Shigeto, Arisa; Yui, Hiroshi; Haruma, Toshikatsu

    2016-01-01

    Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s) underlying this species' ability to tolerate the sites' severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations.

  14. Root Fungal Endophytes Enhance Heavy-Metal Stress Tolerance of Clethra barbinervis Growing Naturally at Mining Sites via Growth Enhancement, Promotion of Nutrient Uptake and Decrease of Heavy-Metal Concentration

    PubMed Central

    Shigeto, Arisa; Yui, Hiroshi; Haruma, Toshikatsu

    2016-01-01

    Clethra barbinervis Sieb. et Zucc. is a tree species that grows naturally at several mine sites and seems to be tolerant of high concentrations of heavy metals, such as Cu, Zn, and Pb. The purpose of this study is to clarify the mechanism(s) underlying this species’ ability to tolerate the sites’ severe heavy-metal pollution by considering C. barbinervis interaction with root fungal endophytes. We measured the heavy metal concentrations of root-zone soil, leaves, branches, and fine roots collected from mature C. barbinervis at Hitachi mine. We isolated fungal endophytes from surface-sterilized root segments, and we examined the growth, and heavy metal and nutrient absorption of C. barbinervis seedlings growing in sterilized mine soil with or without root fungal endophytes. Field analyses showed that C. barbinervis contained considerably high amounts of Cu, Zn, and Pb in fine roots and Zn in leaves. The fungi, Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. were frequently isolated as dominant fungal endophyte species. Inoculation of these root fungal endophytes to C. barbinervis seedlings growing in sterilized mine soil indicated that these fungi significantly enhanced the growth of C. barbinervis seedlings, increased K uptake in shoots and reduced the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. Without root fungal endophytes, C. barbinervis could hardly grow under the heavy-metal contaminated condition, showing chlorosis, a symptom of heavy-metal toxicity. Our results indicate that the tree C. barbinervis can tolerate high heavy-metal concentrations due to the support of root fungal endophytes including P. fortinii, R. veluwensis, and Rhizoscyphus sp. via growth enhancement, K uptake promotion and decrease of heavy metal concentrations. PMID:28030648

  15. Expanding the menu for carnivorous plants: uptake of potassium, iron and manganese by carnivorous pitcher plants.

    PubMed

    Adlassnig, Wolfram; Steinhauser, Georg; Peroutka, Marianne; Musilek, Andreas; Sterba, Johannes H; Lichtscheidl, Irene K; Bichler, Max

    2009-12-01

    Carnivorous plants use animals as fertiliser substitutes which allow them to survive on nutrient deficient soils. Most research concentrated on the uptake of the prey's nitrogen and phosphorus; only little is known on the utilisation of other elements. We studied the uptake of three essential nutrients, potassium, iron and manganese, in three species of carnivorous pitcher plants (Cephalotus follicularis LaBilladiere, Sarracenia purpureaL., Heliamphora nutans Bentham). Using relatively short-lived and gamma-emitting radiotracers, we significantly improved the sensitivity compared to conventional protocols and gained the following results. We demonstrated the uptake of trace elements like iron and manganese. In addition, we found direct evidence for the uptake of potassium into the pitcher tissue. Potassium and manganese were absorbed to virtually 100% if offered in physiological concentrations or below in Cephalotus. Analysis of pitcher fluid collected in the natural habitat showed that uptake was performed here as efficiently as in the laboratory. The absorption of nutrients is an active process depending on living glandular cells in the pitcher epidermis and can be inhibited by azide. Unphysiologically high amounts of nutrients were taken up for a short time, but after a few hours the absorbing cells were damaged, and uptake stopped. Absorption rates of pitcher leaves from plants under controlled conditions varied highly, indicating that each trap is functionally independent. The comparison of minerals in typical prey with the plants' tissues showed that a complete coverage of the plants' needs by prey capture is improbable.

  16. Behavioral Interventions Improve Condom Use and HIV Testing Uptake Among Female Sex Workers in China: A Systematic Review and Meta-Analysis.

    PubMed

    Chow, Eric P F; Tung, Keith; Tucker, Joseph D; Muessig, Kathryn E; Su, Shu; Zhang, Xiaohu; Jing, Jun; Zhang, Lei

    2015-08-01

    Condomless commercial sex work is a common mode of HIV transmission in China. This study systematically reviews the impacts of behavioral interventions on condom use and HIV testing uptake among female sex workers (FSW) in China. Chinese and English language peer-reviewed articles published between January 2000 and December 2013 were searched in five electronic databases. Odds ratios (OR) were calculated by comparing the levels of improvements in condom use and HIV testing uptake by various intervention strategies. Study quality was assessed for included studies. This review followed the PRISMA guidelines and was registered in PROSPERO. One hundred and twenty-eight studies met inclusion criteria. Meta-analyses indicated that FSW in the post-intervention period were 2.3-5.0 times more likely to use condoms with male clients in their last sexual act and 2.3-3.4 times more likely to use condoms consistently in the last month than in the pre-intervention period. In particular, multiple session intervention were more effective in improving condom use among FSW with male clients (OR=5.6, [4.0-7.8]) than a single session intervention (OR=3.3, [2.8-3.8]). Behavioral interventions also improved past-12-month HIV testing uptake 4.6-fold (95% CI, 2.9-7.4). Comprehensive intervention programs were more effective (OR=8.1, [4.0-16.7]) in improving HIV testing uptake compared with health education only programs (OR=2.7, [1.6-4.5]). Longer intervention duration (>12 months) did not increase effectiveness in improving condom use or HIV testing rate among Chinese FSWs. Behavioral interventions are effective in improving condom use and HIV testing uptake among Chinese FSW. This review highlights both the potentials and limitations of condom promotion interventions targeting female sex workers.

  17. Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams

    USGS Publications Warehouse

    Roberts, B.J.; Mulholland, P.J.; Houser, J.N.

    2007-01-01

    Delivery of water, sediments, nutrients, and organic matter to stream ecosystems is strongly influenced by the catchment of the stream and can be altered greatly by upland soil and vegetation disturbance. At the Fort Benning Military Installation (near Columbus, Georgia), spatial variability in intensity of military training results in a wide range of intensities of upland disturbance in stream catchments. A set of 8 streams in catchments spanning this upland disturbance gradient was selected for investigation of the impact of disturbance intensity on hydrodynamics and nutrient uptake. The size of transient storage zones and rates of NH4+ uptake in all study streams were among the lowest reported in the literature. Upland disturbance did not appear to influence stream hydrodynamics strongly, but it caused significant decreases in instream nutrient uptake. In October 2003, coarse woody debris (CWD) was added to 1/2 of the study streams (spanning the disturbance gradient) in an attempt to increase hydrodynamic and structural complexity, with the goals of enhancing biotic habitat and increasing nutrient uptake rates. CWD additions had positive short-term (within 1 mo) effects on hydrodynamic complexity (water velocity decreased and transient storage zone cross-sectional area, relative size of the transient storage zone, fraction of the median travel time attributable to transient storage over a standardized length of 200 m, and the hydraulic retention factor increased) and nutrient uptake (NH4+ uptake rates increased). Our results suggest that water quality in streams with intense upland disturbances can be improved by enhancing instream biotic nutrient uptake capacity through measures such as restoring stream CWD. ?? 2007 by The North American Benthological Society.

  18. Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams

    SciTech Connect

    Roberts, Brian J; Mulholland, Patrick J; Houser, Jeffrey N

    2007-01-01

    Delivery of water, sediments, nutrients, and organic matter to stream ecosystems is strongly influenced by the catchment of the stream and can be altered greatly by upland soil and vegetation disturbance. At the Fort Benning Military Installation (near Columbus, Georgia), spatial variability in intensity of military training results in a wide range of intensities of upland disturbance in stream catchments. A set of 8 streams in catchments spanning this upland disturbance gradient was selected for investigation of the impact of disturbance intensity on hydrodynamics and nutrient uptake. The size of transient storage zones and rates of NH4+ uptake in all study streams were among the lowest reported in the literature. Upland disturbance did not appear to influence stream hydrodynamics strongly, but it caused significant decreases in instream nutrient uptake. In October 2003, coarse woody debris (CWD) was added to of the study streams (spanning the disturbance gradient) in an attempt to increase hydrodynamic and structural complexity with the goals of enhancing biotic habitat and increasing nutrient uptake rates. CWD additions had positive short-term (within 1 mo) effects on hydrodynamic complexity (water velocity decreased and transient storage zone cross-sectional area, relative size of the transient storage zone, fraction of the median travel time attributable to transient storage over a standardized length of 200 m, and the hydraulic retention factor increased) and nutrient uptake (NH4+ uptake rates increased). Our results suggest that water quality in streams with intense upland disturbances can be improved by enhancing instream biotic nutrient uptake capacity through measures such as restoring stream CWD.

  19. Hydrogen improves glycemic control in type1 diabetic animal model by promoting glucose uptake into skeletal muscle.

    PubMed

    Amitani, Haruka; Asakawa, Akihiro; Cheng, Kaichun; Amitani, Marie; Kaimoto, Kaori; Nakano, Masako; Ushikai, Miharu; Li, Yingxiao; Tsai, Minglun; Li, Jiang-Bo; Terashi, Mutsumi; Chaolu, Huhe; Kamimura, Ryozo; Inui, Akio

    2013-01-01

    Hydrogen (H(2)) acts as a therapeutic antioxidant. However, there are few reports on H(2) function in other capacities in diabetes mellitus (DM). Therefore, in this study, we investigated the role of H(2) in glucose transport by studying cultured mouse C2C12 cells and human hepatoma Hep-G2 cells in vitro, in addition to three types of diabetic mice [Streptozotocin (STZ)-induced type 1 diabetic mice, high-fat diet-induced type 2 diabetic mice, and genetically diabetic db/db mice] in vivo. The results show that H(2) promoted 2-[(14)C]-deoxy-d-glucose (2-DG) uptake into C2C12 cells via the translocation of glucose transporter Glut4 through activation of phosphatidylinositol-3-OH kinase (PI3K), protein kinase C (PKC), and AMP-activated protein kinase (AMPK), although it did not stimulate the translocation of Glut2 in Hep G2 cells. H(2) significantly increased skeletal muscle membrane Glut4 expression and markedly improved glycemic control in STZ-induced type 1 diabetic mice after chronic intraperitoneal (i.p.) and oral (p.o.) administration. However, long-term p.o. administration of H(2) had least effect on the obese and non-insulin-dependent type 2 diabetes mouse models. Our study demonstrates that H(2) exerts metabolic effects similar to those of insulin and may be a novel therapeutic alternative to insulin in type 1 diabetes mellitus that can be administered orally.

  20. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity.

    PubMed

    Fang, Xian-Kang; Gao, Jie; Zhu, Dan-Ni

    2008-03-12

    Euonymus alatus as a folk medicine in China has been clinically used to treat type 2 diabetes for many years, and also exerts beneficial effects on hyperglycemia of diabetic animals. Our previous studies have isolated kaempferol and quercetin from the extract of E. alatus. In the present study, we investigated the possible mechanism of antidiabetic activity of these compounds. Kaempferol and quercetin could significantly improve insulin-stimulated glucose uptake in mature 3T3-L1 adipocytes. In addition, further experiments showed that kaempferol and quercetin served as weak partial agonists in the peroxisome proliferator-agonist receptor gamma (PPARgamma) reporter gene assay. Kaempferol and quercetin could not induce differentiation of 3T3-L1 preadipocytes as traditional PPARgamma agonist. When added together with the PPARgamma agonist rosiglitazone to 3T3-L1 preadipocytes, they could inhibit 3T3-L1 differentiation in a dose-dependent manner. Competitive ligand-binding assay confirmed that kaempferol and quercetin could compete with rosiglitazone at the same binding pocket site as PPARgamma. Kaempferol and quercetin showed significant inhibitory effects on NO production in response to lipopolysaccharide treatment in macrophage cells in which the PPARgamma was overexpressed; rosiglitazone was less potent than kaempferol and quercetin. These observations suggest that kaempferol and quercetin potentially act at multiple targets to ameliorate hyperglycemia, including by acting as partial agonists of PPARgamma.

  1. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    PubMed Central

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  2. Change of crystallinity and mineral composition of fly ash with mechanical and chemical activation for the improvement of phosphate uptake.

    PubMed

    Liang, Zhu; He, XiaoJia; Ni, JinRen

    2010-10-01

    A detailed investigation of the development of the mineral composition and crystallinity of fly ash (FA) activated by an integrated process, as well as the relation between that development and phosphate uptake (PU) in solution, was conducted. This process, consisting of pretreatment (mechanical milling), alkali fusion (sodium hydroxide) at 550 °C and acid attack (3 mol L⁻¹ sulfuric acid), exhibited a remarkable activation effect. One-hour grinding could enhance PU from 0.67 to 1.66 mg PO₄³⁻-P g⁻¹ FA, and then under the optimum chemical conditions with the ratio of NaOH to FA of 0.5 g g⁻¹ and that of H₂SO₄ to FA of 3 mL g⁻¹, the PU was further improved to 7.14 mg g⁻¹. Results also indicated that the PU performance was closely linked with the crystallinity and mineral composition of FA, that is, the treated material with the lowest crystallinity and least crystal phase could achieve the highest PU. For the purpose of destroying original minerals in raw FA farthest and avoiding the production of new crystals, therefore, control on the ratio of NaOH to FA and that of acid to FA was very important during the chemical treatment.

  3. A short period of high-intensity interval training improves skeletal muscle mitochondrial function and pulmonary oxygen uptake kinetics.

    PubMed

    Christensen, Peter M; Jacobs, Robert A; Bonne, Thomas; Flück, Daniela; Bangsbo, Jens; Lundby, Carsten

    2016-06-01

    The aim of the present study was to examine whether improvements in pulmonary oxygen uptake (V̇o2) kinetics following a short period of high-intensity training (HIT) would be associated with improved skeletal muscle mitochondrial function. Ten untrained male volunteers (age 26 ± 2 yr; mean ± SD) performed six HIT sessions (8-12 × 60 s at incremental test peak power; 271 ± 52 W) over a 2-wk period. Before and after the HIT period, V̇o2 kinetics was modeled during moderate-intensity cycling (110 ± 19 W). Mitochondrial function was assessed with high-resolution respirometry (HRR), and maximal activities of oxidative enzymes citrate synthase (CS) and cytochrome c oxidase (COX) were accordingly determined. In response to HIT, V̇o2 kinetics became faster (τ: 20.4 ± 4.4 vs. 28.9 ± 6.1 s; P < 0.01) and fatty acid oxidation (ETFP) and leak respiration (LN) both became elevated (P < 0.05). Activity of CS and COX did not increase in response to training. Both before and after the HIT period, fast V̇o2 kinetics (low τ values) was associated with large values for ETFP, electron transport system capacity (ETS), and electron flow specific to complex II (CIIP) (P < 0.05). Collectively, these findings support that selected measures of mitochondrial function obtained with HRR are important for fast V̇o2 kinetics and better markers than maximal oxidative enzyme activity in describing the speed of the V̇o2 response during moderate-intensity exercise.

  4. Improved in vitro anti-tumoral activity, intracellular uptake and apoptotic induction of gemcitabine-loaded pegylated unilamellar liposomes.

    PubMed

    Celia, Christian; Calvagno, Maria Grazia; Paolino, Donatella; Bulotta, Stefania; Ventura, Cinzia Anna; Russo, Diego; Fresta, Massimo

    2008-04-01

    Anaplastic thyroid carcinoma is one of the most aggressive and lethal solid carcinomas affecting humans. A major limit of the chemotherapeutic agents is represented by their low therapeutic index. In this work, we investigated the possibility of improving the anti-tumoral activity of gemcitabine by using pegylated unilamellar liposomes. Liposomes were made up of 1,2-dipalmitoyl-sn-glycero-3-phospocholine monohydrate/cholesterol/N-(carbonyl-methoxypolyethylene glycol-2000)-1, 2-distearoyl-sn-glycero-3-phosphoethanolamine (6:3:1 molar ratio) and they were prepared with a pH gradient to improve the gemcitabine loading capacity. The anti-tumoral efficacy of the liposomal formulation was tested in vitro on human anaplastic thyroid carcinoma cells (ARO) in culture, comparing the effects with those of the free drug. Gemcitabine-loaded unilamellar liposomes had a mean size approximately 200 nm with a zeta potential approximately -2 mV. The liposomal carrier noticeably improved the anti-tumoral activity of gemcitabine against ARO cells in terms of both dose-dependent cytotoxic effect and of drug exposition effect. Namely, gemcitabine-loaded liposomes showed a cytotoxic effect (58.2% increase of cell mortality at 1 microM with respect to free drug) after 12 h incubation, while the free drug showed a significant activity only after 72 h incubation. Moreover, a significant effect on the cell mortality appeared at 0.1 microM and 100% mortality was detected at a concentration of 1 microM of gemcitabine-loaded liposomes, while the free drug elicited the same effect at a concentration of 100 microM. The improved anti-tumoral activity of gemcitabine determined by the liposomal carrier was due to a greater intracellular uptake. The intracellular gemcitabine levels as a function of time showed a sinusoidal profile with peaks after 2 h, 6 h and 11 h, related to the cellular cycle of ARO. PARP cleavage and DNA fragmentation analysis provided clear evidence of the apoptosis induction in

  5. Modeling potato root growth and water uptake under water stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato (Solanum tuberosum L.) growth and yield are sensitive to drought starting at mild stress levels. Accurate simulation of root growth is critical for estimating water and nutrient uptake dynamics of major crops and improving agricultural decision support tools for natural resource management. ...

  6. Improved nutrient intake and diet quality with 100% fruit juice consumption in children: NHANES 2003-2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit juice (FJ) consumption has recently been viewed as a sweetened beverage with little regard to its nutrient contribution to the diet. NHANES, 2003–2006, data were used to examine the association of 100% FJ consumption, with nutrient intake and diet quality in children ages 2–5 y (n equals 1,665...

  7. Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO(2) concentrations.

    PubMed

    McGrath, Justin M; Lobell, David B

    2013-03-01

    Plants grown in elevated [CO(2) ] have lower protein and mineral concentrations compared with plants grown in ambient [CO(2) ]. Dilution by enhanced production of carbohydrates is a likely cause, but it cannot explain all of the reductions. Two proposed, but untested, hypotheses are that (1) reduced canopy transpiration reduces mass flow of nutrients to the roots thus reducing nutrient uptake and (2) changes in metabolite or enzyme concentrations caused by physiological changes alter requirements for minerals as protein cofactors or in other organic complexes, shifting allocation between tissues and possibly altering uptake. Here, we use the meta-analysis of previous studies in crops to test these hypotheses. Nutrients acquired mostly by mass flow were decreased significantly more by elevated [CO(2) ] than nutrients acquired by diffusion to the roots through the soil, supporting the first hypothesis. Similarly, Mg showed large concentration declines in leaves and wheat stems, but smaller decreases in other tissues. Because chlorophyll requires a large fraction of total plant Mg, and chlorophyll concentration is reduced by growth in elevated [CO(2) ], this supports the second hypothesis. Understanding these mechanisms may guide efforts to improve nutrient content, and allow modeling of nutrient changes and health impacts under future climate change scenarios.

  8. Improvement of biological total phosphorus release and uptake by low electrical current application in lab-scale bio-electrochemical reactors.

    PubMed

    Zhang, Lehua; Ma, Jingxing; Liu, Yongdi; Li, Dongmei; Shi, Haifeng; Cai, Lankun

    2012-12-01

    The overall process enhancement by different electrical current application on the biological phosphorus release and uptake have been investigated. Five reactors were constructed for three experiments and activated sludge was used as inoculums. In Exp.1 by comparing the control and the bio-electrochemical reactors, it was found that the overall phosphorus removal efficiency could be enhanced at lower electrical current applications of 5mA and 10mA, but were restrained at higher than 20mA, although 20mA could be a sensitive turning point. Moreover, the electrochemical effects of the cathodic and the anodic reactions on the phosphorus release and uptake, respectively, have been further evaluated separately under an electrical current application of 10mA in Exp.2 and Exp.3, respectively. As observed, both of the biological release and uptake were improved by the cathodic reactions in the cathode reactor, but not by the anodic reactions in the anode reactor, and thus indicated that the cathodic reactions play an important role in the improvement of the biological phosphorus release and uptake.

  9. Full-scale demonstration of step feed concept for improving an anaerobic/anoxic/aerobic nutrient removal process.

    PubMed

    Ge, Shijian; Zhu, Yunpeng; Lu, Congcong; Wang, Shuying; Peng, Yongzhen

    2012-09-01

    A small wastewater treatment plant (WWTP) failed to meet effluent requirements of the first-A discharge standard in China, with the anaerobic/anoxic/oxic (A/A/O) process treating municipal and partial industrial wastewater. Thus an A/O step feed process (Anoxic/oxic/anoxic/oxic/anoxic/oxic) with floating plastic carriers in aerobic units was proposed to improve nutrient removal within the existing WWTP. Four main reform strategies were applied: (1) the original influent was divided into three streams which led into corresponding anoxic units; (2) floating plastic carriers were placed in the second and third oxic units; (3) nitrified liquid recycling was omitted; (4) channel shapes and sizes were adjusted between adjacent units to prevent backflow. After these modifications were implemented, the total nitrogen and phosphorus concentrations in the effluent were reduced from 20.8 to 14.2mg/L, and from 1.89 to 0.57 mg/L, respectively. Moreover, annual electricity consumption in the WWTP was reduced by 245 MWh as a result of these modifications.

  10. Combating Human Micronutrient Deficiencies through Soil Management Practices that Enhance Bioavailability of Nutrients to Plants

    ERIC Educational Resources Information Center

    O'Meara, Mary

    2009-01-01

    Micronutrient malnutrition affects the health and well being of 3 billion people globally. Identifying means to improve the micronutrient density in the edible portions of crops is an important way to combat nutrient deficiencies. By studying how plants obtain micronutrients from the soil, we can develop methods to enhance uptake. Although more…

  11. Improved cadmium uptake and accumulation in the hyperaccumulator Sedum alfredii: the impact of citric acid and tartaric acid* #

    PubMed Central

    Lu, Ling-li; Tian, Sheng-ke; Yang, Xiao-e; Peng, Hong-yun; Li, Ting-qiang

    2013-01-01

    The elucidation of a natural strategy for metal hyperaccumulation enables the rational design of technologies for the clean-up of metal-contaminated soils. Organic acid has been suggested to be involved in toxic metallic element tolerance, translocation, and accumulation in plants. The impact of exogenous organic acids on cadmium (Cd) uptake and translocation in the zinc (Zn)/Cd co-hyperaccumulator Sedum alfredii was investigated in the present study. By the addition of organic acids, short-term (2 h) root uptake of 109Cd increased significantly, and higher 109Cd contents in roots and shoots were noted 24 h after uptake, when compared to controls. About 85% of the 109Cd taken up was distributed to the shoots in plants with citric acid (CA) treatments, as compared with 75% within controls. No such effect was observed for tartaric acid (TA). Reduced growth under Cd stress was significantly alleviated by low CA. Long-term application of the two organic acids both resulted in elevated Cd in plants, but the effects varied with exposure time and levels. The results imply that CA may be involved in the processes of Cd uptake, translocation and tolerance in S. alfredii, whereas the impact of TA is mainly on the root uptake of Cd. PMID:23365009

  12. Regional assessments of the Nation's water quality—Improved understanding of stream nutrient sources through enhanced modeling capabilities

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Woodside, Michael D.

    2011-01-01

    The U.S. Geological Survey (USGS) recently completed assessments of stream nutrients in six major regions extending over much of the conterminous United States. SPARROW (SPAtially Referenced Regressions On Watershed attributes) models were developed for each region to explain spatial patterns in monitored stream nutrient loads in relation to human activities and natural resources and processes. The model information, reported by stream reach and catchment, provides contrasting views of the spatial patterns of nutrient source contributions, including those from urban (wastewater effluent and diffuse runoff from developed land), agricultural (farm fertilizers and animal manure), and specific background sources (atmospheric nitrogen deposition, soil phosphorus, forest nitrogen fixation, and channel erosion).

  13. Science to Improve Nutrient Management Practices, Metrics of Benefits, Accountability, and Communication (Project SSWR 4.03)

    EPA Science Inventory

    This project will demonstrate transferable modeling techniques and monitoring approaches to enable water resource professionals to make comparisons among nutrient reduction management scenarios across urban and agricultural areas. It will produce the applied science to allow bett...

  14. α-Mangostin Improves Glucose Uptake and Inhibits Adipocytes Differentiation in 3T3-L1 Cells via PPARγ, GLUT4, and Leptin Expressions

    PubMed Central

    Taher, Muhammad; Mohamed Amiroudine, Mohamed Zaffar Ali; Tengku Zakaria, Tengku Muhamad Faris Syafiq; Ichwan, Solachuddin J. A.; Kaderi, Mohd Arifin; Ahmed, Qamar Uddin; Zakaria, Zainul Amiruddin

    2015-01-01

    Obesity has been often associated with the occurrence of cardiovascular diseases, type 2 diabetes, and cancer. The development of obesity is also accompanied by significant differentiation of preadipocytes into adipocytes. In this study, we investigated the activity of α-mangostin, a major xanthone component isolated from the stem bark of G. malaccensis, on glucose uptake and adipocyte differentiation of 3T3-L1 cells focusing on PPARγ, GLUT4, and leptin expressions. α-Mangostin was found to inhibit cytoplasmic lipid accumulation and adipogenic differentiation. Cells treated with 50 μM of α-mangostin reduced intracellular fat accumulation dose-dependently up to 44.4% relative to MDI-treated cells. Analyses of 2-deoxy-D-[3H] glucose uptake activity showed that α-mangostin significantly improved the glucose uptake (P < 0.05) with highest activity found at 25 μM. In addition, α-mangostin increased the amount of free fatty acids (FFA) released. The highest glycerol release level was observed at 50 μM of α-mangostin. qRT-PCR analysis showed reduced lipid accumulation via inhibition of PPARγ gene expression. Induction of glucose uptake and free fatty acid release by α-mangostin were accompanied by increasing mRNA expression of GLUT4 and leptin. These evidences propose that α-mangostin might be possible candidate for the effective management of obesity in future. PMID:25873982

  15. Chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells.

    PubMed

    Qiao, Wei; Peng, Zhongli; Wang, Zhisheng; Wei, Jing; Zhou, Anguo

    2009-11-01

    The aim of this study was to evaluate the impact of three different chromium forms as chromic chloride (CrCl), chromium picolinate (CrPic), and a newly synthesized complex of chromium chelated with small peptides (CrSP) on glucose uptake and metabolism in vitro. In cultured skeletal muscle cells, chromium augmented insulin-stimulated glucose uptake and metabolism as assessed by a reduced glucose concentration of culture medium. At the molecular level, insulin significantly increased the mRNA levels of insulin receptor (IR), glucose transporter 4 (GLUT4), glycogen synthase (GS), and uncoupling protein-3 (UCP3), and these impacts can be enhanced by the addition of chromium, especially in the form of CrSP. Collectively, results of this study demonstrate that chromium improves glucose uptake and metabolism through upregulating the mRNA levels of IR, GLUT4, GS, and UCP3 in skeletal muscle cells, and CrSP has higher efficacy on glucose uptake and metabolism compared to the forms of CrCl and CrPic.

  16. Analysis of Phosphorus Flows through Minnesota's Twin Cities Urban Food-Shed: Three Scenarios for Improving Nutrient Efficiency

    NASA Astrophysics Data System (ADS)

    Peterson, H. M.; Baker, L. A.

    2012-12-01

    cropping system within the food-shed. P use efficiencies for these systems include: corn (1.14), hog (0.47), dairy (0.36), and beef (0.20). We will present three scenarios to illustrate how upstream and downstream changes alter the urban food-shed P balance. The first scenario examines upstream (food processing) waste management to identify nutrient recycling inefficiencies between agricultural and urban systems. The second scenario focuses on quantifying how altering consumer choices, such as converting to a more vegetable-based diet, shifts the P balance within the food-shed. The final scenario seeks to improve P use efficiency within the urban ecosystem to reduce downstream transfer. This research will contribute to the understanding of how human diets within a concentrated urban ecosystem impact an entire systems P balance. The potential for increasing P use efficiency and identifying barriers and opportunities to improve P use efficiency will be discussed.

  17. Understanding and improving mitigation strategies for reducing catchment scale nutrient loads using high resolution observations and uncertainty analysis approaches

    NASA Astrophysics Data System (ADS)

    Collins, A.; Lloyd, C.; Freer, J. E.; Johnes, P.; Stirling, M.

    2012-12-01

    One of the biggest challenges in catchment water quality management is tackling the problem of reducing water pollution from agriculture whilst ensuring food security nationally. Improvements to catchment management plans are needed if we are to enhance biodiversity and maintain good ecological status in freshwater ecosystems, while producing enough food to support a growing global population. In order to plan for a more sustainable and secure future, research needs to quantify the uncertainties and understand the complexities in the source-mobilisation-delivery-impact continuum of pollution and nutrients at all scales. In the UK the Demonstration Test Catchment (DTC) project has been set up to improve water quality specifically from diffuse pollution from agriculture by enhanced high resolution monitoring and targeted mitigation experiments. The DTC project aims to detect shifts in the baseline trend of the most ecologically-significant pollutants resulting from targeted on-farm measures at field to farm scales and assessing their effects on ecosystem function. The DTC programme involves three catchments across the UK that are indicative of three different typologies and land uses. This paper will focus on the Hampshire Avon DTC, where a total of 12 parameters are monitored by bank-side stations at two sampling sites, including flow, turbidity, phosphate and nitrate concentrations at 30 min resolution. This monitoring is supported by daily resolution sampling at 5 other sites and storm sampling at all locations. Part of the DTC project aims to understand how observations of water quality within river systems at different temporal resolutions and types of monitoring strategies enable us to understand and detect changes over and above the natural variability. Baseline monitoring is currently underway and early results show that high-resolution data is essential at this sub-catchment scale to understand important process dynamics. This is critical if we are to design

  18. Environmental impacts of innovative dairy farming systems aiming at improved internal nutrient cycling: A multi-scale assessment.

    PubMed

    de Vries, W; Kros, J; Dolman, M A; Vellinga, Th V; de Boer, H C; Gerritsen, A L; Sonneveld, M P W; Bouma, J

    2015-12-01

    Several dairy farms in the Netherlands aim at reducing environmental impacts by improving the internal nutrient cycle (INC) on their farm by optimizing the use of available on-farm resources. This study evaluates the environmental performance of selected INC farms in the Northern Friesian Woodlands in comparison to regular benchmark farms using a Life Cycle Assessment. Regular farms were selected on the basis of comparability in terms of milk production per farm and per hectare, soil type and drainage conditions. In addition, the environmental impacts of INC farming at landscape level were evaluated with the integrated modelling system INITIATOR, using spatially explicit input data on animal numbers, land use, agricultural management, meteorology and soil, assuming that all farms practised the principle of INC farming. Impact categories used at both farm and landscape levels were global warming potential, acidification potential and eutrophication potential. Additional farm level indicators were land occupation and non-renewable energy use, and furthermore all farm level indicators were also expressed per kg fat and protein corrected milk. Results showed that both on-farm and off-farm non-renewable energy use was significantly lower at INC farms as compared with regular farms. Although nearly all other environmental impacts were numerically lower, both on-farm and off-farm, differences were not statistically significant. Nitrogen losses to air and water decreased by on average 5 to 10% when INC farming would be implemented for the whole region. The impact of INC farming on the global warming potential and eutrophication potential was, however, almost negligible (<2%) at regional level. This was due to a negligible impact on the methane emissions and on the surplus and thereby on the soil accumulation and losses of phosphorus to water at INC farms, illustrating the focus of these farms on closing the nitrogen cycle.

  19. Enhanced Plant Nutrient use Efficiency with PGPR and AMF in an Integrated Nutrient Management System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A three-year field study was conducted with field corn from 2005 to 2007 to test the hypothesis that microbial inoculants that increase plant growth and yield will enhance nutrient uptake, and thereby remove more nutrients, especially N, P, and K from the field as part of an integrated nutrient mana...

  20. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants.

    PubMed

    De Vrieze, Jo; Smet, Davey; Klok, Jacob; Colsen, Joop; Angenent, Largus T; Vlaeminck, Siegfried E

    2016-10-01

    The conventional treatment of municipal wastewater by means of activated sludge is typically energy demanding. Here, the potential benefits of: (1) the optimization of mesophilic digestion; and (2) transitioning to thermophilic sludge digestion in three wastewater treatment plants (Tilburg-Noord, Land van Cuijk and Bath) in the Netherlands is evaluated, including a full-scale trial validation in Bath. In Tilburg-Noord, thermophilic sludge digestion covered the energy requirements of the plant (102%), whereas 111% of sludge operational treatment costs could be covered in Bath. Thermophilic sludge digestion also resulted in a strong increase in nutrient release. The potential for nutrient recovery was evaluated via: (1) stripping/absorption of ammonium; (2) autotrophic removal of ammonium via partial nitritation/anammox; and (3) struvite precipitation. This research shows that optimization of sludge digestion may lead to a strong increase in energy recovery, sludge treatment costs reduction, and the potential for advanced nutrient management in full-scale sewage treatment plants.

  1. Coapplication of Chicken Litter Biochar and Urea Only to Improve Nutrients Use Efficiency and Yield of Oryza sativa L. Cultivation on a Tropical Acid Soil.

    PubMed

    Maru, Ali; Haruna, Osumanu Ahmed; Primus, Walter Charles

    2015-01-01

    The excessive use of nitrogen (N) fertilizers in sustaining high rice yields due to N dynamics in tropical acid soils not only is economically unsustainable but also causes environmental pollution. The objective of this study was to coapply biochar and urea to improve soil chemical properties and productivity of rice. Biochar (5 t ha(-1)) and different rates of urea (100%, 75%, 50%, 25%, and 0% of recommended N application) were evaluated in both pot and field trials. Selected soil chemical properties, rice plants growth variables, nutrient use efficiency, and yield were determined using standard procedures. Coapplication of biochar with 100% and 75% urea recommendation rates significantly increased nutrients availability (especially P and K) and their use efficiency in both pot and field trials. These treatments also significantly increased rice growth variables and grain yield. Coapplication of biochar and urea application at 75% of the recommended rate can be used to improve soil chemical properties and productivity and reduce urea use by 25%.

  2. Coating barium titanate nanoparticles with polyethylenimine improves cellular uptake and allows for coupled imaging and gene delivery

    PubMed Central

    Dempsey, Christopher; Lee, Isac; Cowan, Katie; Suh, Junghae

    2015-01-01

    Barium titanate nanoparticles (BT NP) belong to a class of second harmonic generating (SHG) nanoprobes that have recently demonstrated promise in biological imaging. Unfortunately, BT NPs display low cellular uptake efficiencies, which may be a problem if cellular internalization is desired or required for a particular application. To overcome this issue, while concomitantly developing a particle platform that can also deliver nucleic acids into cells, we coated the BT NPs with the cationic polymer polyethylenimine (PEI) – one of the most effective nonviral gene delivery agents. Coating of BT with PEI yielded complexes with positive zeta potentials and resulted in an 8-fold increase in cellular uptake of the BT NPs. Importantly, we were able to achieve high levels of gene delivery with the BT-PEI/DNA complexes, supporting further efforts to generate BT platforms for coupled imaging and gene therapy. PMID:23973999

  3. Role of Rhizophagus irregularis in alleviating cadmium toxicity via improving the growth, micro- and macroelements uptake in Phragmites australis.

    PubMed

    Wang, Li; Huang, Xiaochen; Ma, Fang; Ho, Shih-Hsin; Wu, Jieting; Zhu, Shishu

    2017-02-01

    Arbuscular mycorrhizal (AM) fungi have been used to alleviate heavy metal stress on plant growth and uptake of micro- and macroelements. A greenhouse pot experiment was conducted to verify the effects of AM fungus Rhizophagus irregularis on the growth, physiological characteristics, total Cd, and element uptake of Phragmites australis under different Cd stress (in the range of 0-20 mg L(-1)). The results showed that the symbiosis could effectively alleviate Cd toxicity with greater root biomass, higher photosynthesis rate, and lower levels of malonaldehyde (MDA) and proline than non-mycorrhizal plants could. However, reduced transpiration rate (Tr) and stomatal conductance (g s) indicated R. irregularis protected host plants from Cd stress (≥5 mg L(-1)) via the stomatal closure. Although micro- and macroelements displayed differently in the presence of Cd, higher concentrations were still detected in mycorrhizal plants in contrast to non-mycorrhizal plants. Moreover, step multiple regression significantly demonstrated Pnmax, stem diameter (Sd), and g s were the important factors with regard to total Cd uptake in the symbiosis, but Mn affected to non-mycorrhizal plants. These results suggested R. irregularis could alleviate the competition between Mn and Cd by altering plant physiology. This work clearly demonstrated that R. irregularis can be able to support P. australis growth better even though under high Cd stress (>1 mg L(-1)), suggesting its good potential for practical use in high Cd-contaminated areas.

  4. Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils.

    PubMed

    Rautaray, S K; Ghosh, B C; Mittra, B N

    2003-12-01

    A field experiment was conducted for two years in sandy loam acid lateritic soil to study the direct effect of fly ash, organic wastes and chemical fertilizers on rice (Oryza sativa) and their residual effect on mustard (Brassica napus var glauca) grown in sequence. Rice yields were higher when fly ash, organic wastes and chemical fertilizers were used in an integrated manner as compared to sole application of chemical fertilizers. Yields of mustard were also higher under the residual effect of the former rather than the latter. However, this beneficial residual effect under integrated nutrient sources was inadequate for the mustard crop in the low fertility test soil. Hence, direct application of fertilizers was needed, in addition to residual fertility. The effect of fly ash on mean rice equivalent yield of the rice-mustard cropping sequence was highest (up to 14%) when it was used in combination with organic wastes and chemical fertilizers. While the yield increase was 10% when it was used in combination with only chemical fertilizers. The minimum yield advantage, 3%, occurred when fly ash was applied alone. The equivalent yield of the rice-mustard cropping sequence was equally influenced by either of the organic wastes. Cadmium and Ni content in rice grain and straw were less under the direct effect of fly ash. The residual effect on mustard was similar for Ni content in seed and stover; however, Cd content was increased. Beneficial residual soil chemical properties in terms of pH, organic carbon and available N, P and K were noted for integrated nutrient treatments involved fly ash, organic wastes and chemical fertilizers as compared to continuous use of only chemical fertilizers. Application of fly ash alone was effective in raising soil available P. Thus, integrated use of fly ash, organic wastes and chemical fertilizers was beneficial in improving crop yield, soil pH, organic carbon and available N, P and K in sandy loam acid lateritic soil.

  5. Determining storm sampling requirements for improving precision of annual load estimates of nutrients from a small forested watershed.

    PubMed

    Ide, Jun'ichiro; Chiwa, Masaaki; Higashi, Naoko; Maruno, Ryoko; Mori, Yasushi; Otsuki, Kyoichi

    2012-08-01

    This study sought to determine the lowest number of storm events required for adequate estimation of annual nutrient loads from a forested watershed using the regression equation between cumulative load (∑L) and cumulative stream discharge (∑Q). Hydrological surveys were conducted for 4 years, and stream water was sampled sequentially at 15-60-min intervals during 24 h in 20 events, as well as weekly in a small forested watershed. The bootstrap sampling technique was used to determine the regression (∑L-∑Q) equations of dissolved nitrogen (DN) and phosphorus (DP), particulate nitrogen (PN) and phosphorus (PP), dissolved inorganic nitrogen (DIN), and suspended solid (SS) for each dataset of ∑L and ∑Q. For dissolved nutrients (DN, DP, DIN), the coefficient of variance (CV) in 100 replicates of 4-year average annual load estimates was below 20% with datasets composed of five storm events. For particulate nutrients (PN, PP, SS), the CV exceeded 20%, even with datasets composed of more than ten storm events. The differences in the number of storm events required for precise load estimates between dissolved and particulate nutrients were attributed to the goodness of fit of the ∑L-∑Q equations. Bootstrap simulation based on flow-stratified sampling resulted in fewer storm events than the simulation based on random sampling and showed that only three storm events were required to give a CV below 20% for dissolved nutrients. These results indicate that a sampling design considering discharge levels reduces the frequency of laborious chemical analyses of water samples required throughout the year.

  6. Insulin secretion in health and disease: nutrients dictate the pace.

    PubMed

    Regazzi, Romano; Rodriguez-Trejo, Adriana; Jacovetti, Cécile

    2016-02-01

    Insulin is a key hormone controlling metabolic homeostasis. Loss or dysfunction of pancreatic β-cells lead to the release of insufficient insulin to cover the organism needs, promoting diabetes development. Since dietary nutrients influence the activity of β-cells, their inadequate intake, absorption and/or utilisation can be detrimental. This review will highlight the physiological and pathological effects of nutrients on insulin secretion and discuss the underlying mechanisms. Glucose uptake and metabolism in β-cells trigger insulin secretion. This effect of glucose is potentiated by amino acids and fatty acids, as well as by entero-endocrine hormones and neuropeptides released by the digestive tract in response to nutrients. Glucose controls also basal and compensatory β-cell proliferation and, along with fatty acids, regulates insulin biosynthesis. If in the short-term nutrients promote β-cell activities, chronic exposure to nutrients can be detrimental to β-cells and causes reduced insulin transcription, increased basal secretion and impaired insulin release in response to stimulatory glucose concentrations, with a consequent increase in diabetes risk. Likewise, suboptimal early-life nutrition (e.g. parental high-fat or low-protein diet) causes altered β-cell mass and function in adulthood. The mechanisms mediating nutrient-induced β-cell dysfunction include transcriptional, post-transcriptional and translational modifications of genes involved in insulin biosynthesis and secretion, carbohydrate and lipid metabolism, cell differentiation, proliferation and survival. Altered expression of these genes is partly caused by changes in non-coding RNA transcripts induced by unbalanced nutrient uptake. A better understanding of the mechanisms leading to β-cell dysfunction will be critical to improve treatment and find a cure for diabetes.

  7. Predictive value of indium-111 antimyosin uptake for improvement of left ventricular wall motion after thrombolysis in acute myocardial infarction

    SciTech Connect

    van Vlies, B.; Baas, J.; Visser, C.A.; van Royen, E.; Delemarre, B.J.; Bot, H.; Dunning, A.J.

    1989-07-15

    In 21 patients treated with thrombolysis for acute myocardial infarction (AMI), the degree of myocardial uptake of indium-111 monoclonal antimyosin antibodies injected within 24 hours after onset of AMI was compared with the degree and extent of regional asynergy on admission and discharge, as assessed by 2-dimensional echocardiography. On the first day of AMI, 80 MBq of indium-111 antimyosin was injected and planar images were made 24 hours later. Indium-111 antimyosin uptake was evaluated for count density index (count density of infarct zone/left lung count density) in the left anterior oblique projection, in which the infarction zone was well displayed in all patients. Using 2-dimensional echocardiography, the left ventricle was divided into 13 segments and evaluated for regional asynergy, which was considered severe (akinesia or dyskinesia) or mild (hypokinesia). The extent of regional asynergy was measured by the number of asynergic segments. All 21 patients had severe regional asynergy on admission. Nine of 21 showed only mild regional asynergy on discharge and 12 of 21 had persistent severe regional asynergy in at least 1 segment. The count density index was significantly lower in patients with mild regional asynergy on discharge compared with patients with severe regional asynergy (1.63 +/- 0.27 vs 2.50 +/- 0.42, p less than 0.01).

  8. Hydraulic characteristics and nutrient transport and transformation beneath a rapid infiltration basin, Reedy Creek Improvement District, Orange County, Florida

    USGS Publications Warehouse

    Sumner, D.M.; Bradner, L.A.

    1996-01-01

    The Reedy Creek Improvement District disposes of about 7.5 million gallons per day (1992) of reclaimed water through 85 1-acre rapid infiltration basins within a 1,000-acre area of sandy soils in Orange County, Florida. The U.S. Geological Survey conducted field experiments in 1992 at an individual basin to examine and better understand the hydraulic characteristics and nutrient transport and transformation of reclaimed water beneath a rapid infiltration basin. At the time, concentrations of total nitrogen and total phosphorus in reclaimed water were about 3 and 0.25 milligrams per liter, respectively. A two-dimensional, radial, unsaturated/saturated numerical flow model was applied to describe the flow system beneath a rapid infiltration basin under current and hypothetical basin loading scenarios and to estimate the hydraulic properties of the soil and sediment beneath a basin. The thicknesses of the unsaturated and saturated parts of the surficial aquifer system at the basin investigated were about 37 and 52 feet, respectively. The model successfully replicated the field-monitored infiltration rate (about 5.5 feet per day during the daily flooding periods of about 17 hours) and ground-water mounding response during basin operation. Horizontal and vertical hydraulic conductivity of the saturated part of the surficial aquifer system were estimated to be 150 and 45 feet per day, respectively. The field-saturated vertical hydraulic conductivity of the shallow soil, estimated to be about 5.1 feet per day, was considered to have been less than the full- saturation value because of the effects of air entrapment. Specific yield of the surficial aquifer was estimated to be 0.41. The upper 20 feet of the basin subsurface profile probably served as a system control on infiltration because of the relatively low field-saturated, vertical hydraulic conductivity of the sediments within this layer. The flow model indicates that, in the vicinity of the basin, flow in the deeper

  9. 100% Orange juice consumption is associated with better diet quality, improved nutrient adequacy, decreased risk for obesity, and improved biomarkers of health in adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of 100% orange juice (OJ) has been positively associated with nutrient adequacy and diet quality, with no increased risk of overweight/obesity in children; however, no one has examined these factors in adults. The purpose of this study was to examine the association of 100% orange juice ...

  10. From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients

    PubMed Central

    Fernández, Victoria; Brown, Patrick H.

    2013-01-01

    The application of agrochemical sprays to the aerial parts of crop plants is an important agricultural practice world-wide. While variable effectiveness is often seen in response to foliar treatments, there is abundant evidence showing the beneficial effect of foliar fertilizers in terms of improving the metabolism, quality, and yields of crops. This mini-review is focused on the major bottlenecks associated with the uptake and translocation of foliar-applied nutrient solutions. A better understanding of the complex scenario surrounding the ultimate delivery of foliar-applied nutrients to sink cells and organs is essential for improving the effectiveness and performance of foliar fertilizers. PMID:23914198

  11. From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients.

    PubMed

    Fernández, Victoria; Brown, Patrick H

    2013-01-01

    The application of agrochemical sprays to the aerial parts of crop plants is an important agricultural practice world-wide. While variable effectiveness is often seen in response to foliar treatments, there is abundant evidence showing the beneficial effect of foliar fertilizers in terms of improving the metabolism, quality, and yields of crops. This mini-review is focused on the major bottlenecks associated with the uptake and translocation of foliar-applied nutrient solutions. A better understanding of the complex scenario surrounding the ultimate delivery of foliar-applied nutrients to sink cells and organs is essential for improving the effectiveness and performance of foliar fertilizers.

  12. Nutrient influences on leaf photosynthesis

    SciTech Connect

    Longstreth, D.J.; Nobel, P.S.

    1980-01-01

    The net rate of CO/sub 2/ uptake for leaves of Gossypium hirsutum L. was reduced when the plants were grown at low concentrations of NO/sub 3//sup -/, PO/sub 4//sup 2 -/, or K/sup +/. The water vapor conductance was relatively constant for all nutrient levels, indicating little effect on stomatal response. Although leaves under nutrient stress tended to be lower in chlorophyll and thinner, the ratio of mesophyll surface area to leaf area did not change appreciably. Thus, the reduction in CO/sub 2/ uptake rate at low nutrient levels was due to a decrease in the CO/sub 2/ conductance expressed per unit mesophyll cell wall area (g/sub CO/sup cell//sub 2/). The use of g/sub CO//sup cell//sub 2/ and nutrient levels expressed per unit of mesophyll cell wall provides a new means of assessing nutrient effects on CO/sub 2/ uptake of leaves. 14 figures, 1 table.

  13. Morphine modulates doxorubicin uptake and improves efficacy of chemotherapy in an intracranial xenograft model of human glioblastoma

    PubMed Central

    da Ros, Martina; Iorio, Anna Lisa; Consolante, Dario; Cardile, Francesco; Muratori, Monica; Fantappiè, Ornella; Lucchesi, Maurizio; Guidi, Milena; Pisano, Claudio; Sardi, Iacopo

    2016-01-01

    Morphine may alter the permeability of Blood-Brain Barrier (BBB), enhancing the access of molecules normally unable to cross it, as Doxorubicin (Dox). In addition, morphine seems to mediate the uptake of Dox into the brain by its reduced efflux mediated by P-glycoprotein (P-gp). We evaluated the antitumor efficacy of Dox plus morphine treatment by an orthotopic glioblastoma xenograft model. Foxn1 mice were injected with U87MG-luc cells in the left lobe of the brain and treated with Dox (5 mg/kg and 2.5 mg/kg, weekly) with or without morphine pretreatment (10 mg/kg, weekly). Bioluminescence imaging (BLI) was used to monitoring tumor growth and response to therapy. Additionally, we investigated the role of morphine on the uptake of Dox by MDCKII cells transfected with human MDR1 gene encoding for P-gp. The data demonstrate that only Dox 5 mg/kg determined a significant tumor regression while the lower dose (2.5 mg/kg) was not effective. However, if combined with morphine, the group treated with Dox 2.5 mg/kg showed a decreasing tumor growth. The average BLI for Dox 2.5 mg/kg plus morphine was 5 fold lower than Dox 2.5 mg/kg alone (P=0.0053) and 8 fold lower than vehicle (P=0.0004). Additionally, Dox increased in MDCKII-P-gp transfected cells only in the presence of morphine with a significantly higher level comparing control group (3.84) vs Dox plus morphine group (12.29, P<0.05). Our results indicate that Dox alone and in combination with morphine appear to be effective in controlling the growth of glioblastoma in a xenograft mouse model. PMID:27152241

  14. Nutrient Partitioning and Stoichiometry in Unburnt Sugarcane Ratoon at Varying Yield Levels

    PubMed Central

    Leite, José M.; Ciampitti, Ignacio A.; Mariano, Eduardo; Vieira-Megda, Michele X.; Trivelin, Paulo C. O.

    2016-01-01

    Unraveling nutrient imbalances in contemporary agriculture is a research priority to improve whenever possible yield and nutrient use efficiency in sugarcane (Saccharum spp.) systems while minimizing the costs of cultivation (e.g., use of fertilizers) and environmental concerns. The main goal of this study was therefore to investigate biomass and nutrient [nitrogen (N), phosphorus (P), and potassium (K)] content, partitioning, stoichiometry and internal efficiencies in sugarcane ratoon at varying yield levels. Three sites were established on highly weathered tropical soils located in the Southeast region of Brazil. At all sites, seasonal biomass and nutrient uptake patterns were synthesized from four sampling times taken throughout the sugarcane ratoon season. In-season nutrient partitioning (in diverse plant components), internal efficiencies (yield to nutrient content ratio) and nutrient ratios (N:P and N:K) were determined at harvesting. Sugarcane exhibited three distinct phases of plant growth, as follows: lag, exponential–linear, and stationary. Across sites, nutrient requirement per unit of yield was 1.4 kg N, 0.24 kg P, and 2.7 kg K per Mg of stalk produced, but nutrient removal varied with soil nutrient status (based on soil plus fertilizer nutrient supply) and crop demand (potential yield). Dry leaves had lower nutrient content (N, P, and K) and broader N:P and N:K ratios when compared with tops and stalks plant fractions. Greater sugarcane yield and narrowed N:P ratio (6:1) were verified for tops of sugarcane when increasing both N and P content. High-yielding sugarcane systems were related to higher nutrient content and more balanced N:P (6:1) and N:K (0.5:1) ratios. PMID:27148297

  15. Divalent folate modification on PEG: an effective strategy for improving the cellular uptake and targetability of PEGylated polyamidoamine-polyethylenimine copolymer.

    PubMed

    Cao, Duanwen; Tian, Shouqin; Huang, Huan; Chen, Jianhai; Pan, Shirong

    2015-01-05

    The stability and targeting ability of nanocarrier gene delivery systems are necessary conditions to ensure the good therapeutic effect and low nonspecific toxicity of cancer treatment. Poly(ethylene glycol) (PEG) has been widely applied for improving stability and as a spacer for linking ligands and nanocarriers to improve targetability. However, the cellular uptake and endosomal escape capacity of nanocarriers has been seriously harmed due to the introduction of PEG. In the present study, we synthesized a new gene delivery vector by coupling divalent folate-PEG (PEG3.4k-FA2) onto polyamidoamine-polyethylenimine (PME) copolymer (PME-(PEG3.4k-FA2)1.72). Both PEG and monovalent folate-PEG (PEG3.4k-FA1) modified PME were prepared as control polymers, which were named as PME-(PEG3.5k)1.69 and PME-(PEG3.4k-FA1)1.66, respectively. PME-(PEG3.4k-FA2)1.72 exhibited strong DNA condensation capacity like parent polymer PME which was not significantly influenced by PEG. PME-(PEG3.4k-FA2)1.72/DNA complexes at N/P = 10 had a diameter ∼143 nm and zeta potential ∼13 mV and showed the lowest cytotoxicity and hemolysis and the highest transfection efficiency among all tested polymers. In folate receptor positive (FR-positive) cells, the cellular uptake and transfection efficiency were increased with the increase in the number of folates coupled on PEG; the order was PME-(PEG3.4k-FA2)1.72 > PME-(PEG3.4k-FA1)1.66 > PME-(PEG3.5k)1.69. Folate competition assays showed that PME-(PEG3.4k-FA2)1.72 complexes had stronger targeting ability than PME-(PEG3.5k)1.69 and PME-(PEG3.4k-FA1)1.66 complexes due to their higher folate density per PEG molecule. Cellular uptake mechanism study showed that the folate density on PEG could change the endocytosis pathway of PME-(PEG3.5k)1.69 from clathrin-mediated endocytosis to caveolae-mediated endocytosis, leading to less lysosomal degradation. Distribution and uptake in 3D multicellular spheroid assays showed that divalent folate could offer PME

  16. Nutrient management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management has been defined as “the science and art directed to link soil, crop, weather and hydrologic factors with cultural, irrigation and soil and water conservation practices to achieve the goals of optimizing nutrient use efficiency, yields, crop quality, and economic returns, while r...

  17. Available nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar technology may contribute to the recovery and recycling of plant nutrients and thus add a fertilizer value to the biochar. Total nutrient content in biochars varies greatly and is mainly dependent on feedstock elemental composition and to a lesser extent on pyrolysis conditions. Availability...

  18. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin.

    PubMed

    Arabi, Leila; Badiee, Ali; Mosaffa, Fatemeh; Jaafari, Mahmoud Reza

    2015-12-28

    Although liposomes improve the safety and pharmacokinetic properties of free drugs, they have not sufficiently enhanced the therapeutic efficacy compared to them. To address this problem, targeted therapy of tumor cells holds great promise to further enhance therapeutic index and decreases off-target effects compared with non-targeted liposomes. In the context of antibody-mediated targeted cancer therapy, we evaluated the anti-tumor activity and therapeutic efficacy of Doxil, and that of Doxil modified with a monoclonal antibody (mAb) against CD44, which is one of the most well-known surface markers associated with Cancer Stem Cells (CSCs). Flow cytometry analyses and confocal laser scanning microscopy results showed significant enhanced cellular uptake of CD44-targeted Doxil (CD44-Doxil) in CD44-positive C-26 cells compared to Doxil. However, CD44-negative NIH-3T3 cells showed a similar uptake and in vitro cytotoxicity with both CD44-Doxil and non-targeted Doxil. In BALB/c mice bearing C-26 murine carcinoma, CD44-Doxil groups exhibited significantly higher doxorubicin concentration (than Doxil) inside the tumor cells, while their circulation time and distribution profile remained comparable. CD44-Doxil at doses of either 10 or 15 mg/kg resulted in superior tumor growth inhibition and higher inclination to tumor, indicating the potential of anti-CD44 mAb targeting in therapeutic efficacy improvement. This study provides proof-of-principle for actively tumor-targeting concept and merits further investigations.

  19. Nutrient infusion bypassing duodenum-jejunum improves insulin sensitivity in glucose-tolerant and diabetic obese subjects.

    PubMed

    Salinari, Serenella; Carr, Richard D; Guidone, Caterina; Bertuzzi, Alessandro; Cercone, Stefania; Riccioni, Maria E; Manto, Andrea; Ghirlanda, Giovanni; Mingrone, Geltrude

    2013-07-01

    The mechanisms of type 2 diabetes remission after bariatric surgery is still not fully elucidated. In the present study, we tried to simulate the Roux-en-Y gastric bypass with a canonical or longer biliary limb by infusing a liquid formula diet into different intestinal sections. Nutrients (Nutrison Energy) were infused into mid- or proximal jejunum and duodenum during three successive days in 10 diabetic and 10 normal glucose-tolerant subjects. Plasma glucose, insulin, C-peptide, glucagon, incretins, and nonesterified fatty acids (NEFA) were measured before and up to 360 min following. Glucose rate of appearance (Ra) and insulin sensitivity (SI), secretion rate (ISR), and clearance were assessed by mathematical models. SI increased when nutrients were delivered in mid-jejunum vs. duodenum (SI × 10⁴ min⁻¹·pM⁻¹: 1.11 ± 0.44 vs. 0.62 ± 0.22, P < 0.015, in controls and 0.79 ± 0.34 vs. 0.40 ± 0.20, P < 0.05, in diabetic subjects), whereas glucose Ra was not affected. In controls, Sensitivity of NEFA production was doubled in mid-jejunum vs. duodenum (2.80 ± 1.36 vs. 1.13 ± 0.78 × 10⁶, P < 0.005) and insulin clearance increased in mid-jejunum vs. duodenum (2.05 ± 1.05 vs. 1.09 ± 0.38 l/min, P < 0.03). Bypass of duodenum and proximal jejunum by nutrients enhances insulin sensitivity, inhibits lipolysis, and increases insulin clearance. These results may further our knowledge of the effects of bariatric surgery on both insulin resistance and diabetes.

  20. Harmonization of nutrient intake values.

    PubMed

    King, Janet C; Garza, Cutberto

    2007-03-01

    The conceptual framework for the various NIVs is depicted in figure 1 along with the methodological approaches and applications. The NIVs consist of two values derived from a statistical evaluation of data on nutrient requirements, the average nutrient requirement (ANR), or nutrient toxicities, the upper nutrient level (UNL). The individual nutrient levelx (INLx) is derived from the distribution of average nutrient requirements. The percentile chosen is often 98%, which is equivalent to 2 SD above the mean requirement. Concepts underlying the NIVs include criteria for establishing a nutrient requirement, e.g., ferritin stores, nitrogen balance, or serum vitamin C. Once the requirement for the absorbed nutrient is determined, it may be necessary to adjust the value for food sources, i.e., bioavailability, or host factors, such as the effect of infection on nutrient utilization. Other concepts that committees may want to consider when establishing NIVs include the effects of genetic variation on nutrient requirements and the role of the nutrient in preventing long-term disease. Two fundamental uses of NIVs are for assessing the adequacy of nutrient intakes and for planning diets for individuals and populations. Establishing the NIV using the statistical framework proposed in this report improves the efficacy of the values for identifying risks of nutrient deficiency or excess among individuals and populations. NIVs also are applied to a number of aspects of food and nutrition policy. Some examples include regulatory issues and trade, labeling, planning programs for alleviating public health nutrition problems, food fortification, and dietary guidance.

  1. Tree nut consumption improves nutrient intake and diet quality in US adults: an analysis of National Health and Nutrition Examination Survey (NHANES) 1999-2004.

    PubMed

    O'Neil, Carol E; Keast, Debra R; Fulgoni, Victor L; Nicklas, Theresa A

    2010-01-01

    Recent epidemiologic studies assessing tree nut (almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, pecans, pine nuts, pistachios, and walnuts) consumption and the association with nutrient intake and diet quality are lacking. This study determined the association of tree nut consumption and nutrient intake and diet quality using a nationally representative sample of adults. Adults 19+ years (y) (n=13,292) participating in the 1999-2004 National Health and Nutrition Examination Survey were used. Intake was determined from 24-hour diet recalls; tree nut consumers were defined as those consuming > or =(1/4) ounce/day (7.09 g). Means, standard errors, and ANOVA (adjusted for covariates) were determined using appropriate sample weights. Diet quality was measured using the Healthy Eating Index-2005. Among consumers, mean intake of tree nuts/tree nut butters was 1.19 +/- 0.04 oz/d versus 0.01 +/- 0.00 oz/d for non-consumers. In this study, 5.5 +/- 0.3 % of individuals 19-50 y (n=7,049) and 8.4 +/- 0.6 % of individuals 51+ y (n=6,243) consumed tree nuts/tree nut butters. Mean differences (p<0.01) between tree nut consumers and non-consumers of adult shortfall nutrients were: fiber (+5.0 g/d), vitamin E (+3.7 mg AT/d), calcium (+73 mg/d), magnesium (+95 mg/d), and potassium (+260 mg/d). Tree nut consumers had lower sodium intake (-157 mg/d, p<0.01). Diet quality was significantly higher in tree nut consumers (58.0+/-0.4 vs. 48.5+/-0.3, p<0.01). Tree nut consumption was associated with a higher overall diet quality score and improved nutrient intakes. Specific dietary recommendations for nut consumption should be provided for consumers.

  2. Combination of legume-based herbage and total mixed ration (TMR) maintains intake and nutrient utilization of TMR and improves nitrogen utilization of herbage in heifers.

    PubMed

    Santana, A; Cajarville, C; Mendoza, A; Repetto, J L

    2017-04-01

    Diets combining herbage and total mixed rations (TMR) are increasingly used in temperate regions for feeding ruminants, but little information is available regarding the effects on nutrient intake and digestion of this feeding management in beef cattle. The aim of this study was to determine the effects of combining TMR (10% CP and 13% ADF), and legume-based herbage (14% CP and 27% ADF) on intake, nutrient digestion, ruminal fermentation, microbial N flow and glucose and nitrogen metabolism in heifers. The experiment was a 3×3 Latin square design replicated three times; each period lasted 18 days (10 adaptation days and 8 measurement days). Nine cross-bred (Aberdeen Angus×Hereford) heifers (214±18 kg) fitted with permanent rumen catheters and housed in individual metabolic cages were assigned to one of three treatments: 24 h access to TMR ( T ), 24 h access to herbage ( H ) or combined diets with 18 h access to TMR and 6 h access to herbage ( T+H ). Data were evaluated using a mixed model. Animals fed T+H (TMR 71% and herbage 29%) diets tended to have a higher dry matter intake as a proportion of their BW than animals fed T. The T+H diet did not change ruminal fermentation (pH, N-NH3 and volatile fatty acids) or the N metabolism relative to the T diet, but increased the glucagon concentration and altered glucose metabolism. Conversely, animals fed T+H had increased purine derivatives excretion, increased N use efficiency for microbial protein synthesis and decreased plasma urea and urinary N excretion relative to animals fed H diet. The use of combined diets led to consumption of nutrients similar to a TMR diet, without reducing nutrient use and could improve N utilization compared with the herbage-only diet.

  3. Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes.

    PubMed

    Żebrowska, Aleksandra; Mizia-Stec, Katarzyna; Mizia, Magda; Gąsior, Zbigniew; Poprzęcki, Stanisław

    2015-01-01

    The study aimed to evaluate the effects of a 3-week n-3 polyunsaturated fatty acids (n-3 PUFA) supplementation on serum nitric oxide (NO), asymmetric dimethyloarginine (ADMA), ultrasound indices of endothelial function and maximal oxygen uptake (VO2 max) of elite cyclists. The effects of dietary supplementation (n-3 PUFA at a dose of 1.3 g twice daily for 3 weeks) and placebo administration on flow-mediated dilatation (FMD), pulse wave velocity, serum markers (NO, ADMA), lipid profile, and ΔVO2max were analysed in 13 cyclists both before and after dietary protocols. Significant differences between pre- and post-intervention baseline NO levels were observed after n-3 PUFA dietary protocol (13.9 ± 4.2 vs. 23.5 ± 3.6 µmol·l(-1); P < 0.001). Higher post-intervention baseline NO level was observed after n-3 PUFA diet compared with placebo (23.5 ± 3.6 vs. 15.3 ± 3.0 µmol·l(-1); P < 0.01, respectively). The n-3 PUFA increased baseline NO concentration (ΔNO) by 6.7 ± 3.8 µmol·l(-1) and placebo by 1.6 ± 4.4 µmol·l(-1). The positive correlation was observed between baseline post-intervention NO concentration and maximal oxygen uptake (r = 0.72; P < 0.01) and also between ΔNO and ΔVO2max (r = 0.54; P < 0.05) in response to omega-3 fatty acids supplementation. There was an association between a 5.25% higher FMD (P < 0.05) and higherΔVO2max (P < 0.001) after n-3 PUFA diet compared with lower values of placebo (r = 0.68; P < 0.05). These findings suggest that an increase in NO release in response to n-3 PUFA supplementation may play a central role in cardiovascular adaptive mechanisms and enhanced exercise performance in cyclists.

  4. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.

    PubMed

    Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining

    2011-07-01

    Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.

  5. Uptake of health monitoring and disease self-management in Australian adults with neurofibromatosis type 1: strategies to improve care.

    PubMed

    Crawford, H A; Barton, B; Wilson, M J; Berman, Y; McKelvey-Martin, V J; Morrison, P J; North, K N

    2016-03-01

    Lifelong health monitoring is recommended in neurofibromatosis type 1 (NF1) because of the progressive and unpredictable range of disabling and potentially life-threatening symptoms that arise. In Australia, strategies for NF1 health surveillance are less well developed for adults than they are for children, resulting in inequalities between pediatric and adult care. The aims of this study were to determine the uptake of health monitoring and capacity of adults with NF1 to self-manage their health. Australian adults with NF1 (n = 94, 18-40 years) participated in a semi-structured interview. Almost half reported no regular health monitoring. Thematic analysis of interviews identified four main themes as to why: (i) did not know where to seek care, (ii) unaware of the need for regular monitoring, (iii) futility of health monitoring as nothing can be done for NF1, and (iv) feeling healthy, therefore monitoring unnecessary. Overall, there were low levels of patient activation, indicating that adults with NF1 lacked knowledge and confidence to manage their health and health care. Findings are discussed in the context of service provision for adults with NF1 in New South Wales, Australia.

  6. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake.

    PubMed

    Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.

  7. Soil-applied zinc and copper suppress cadmium uptake and improve the performance of cereals and legumes.

    PubMed

    Murtaza, Ghulam; Javed, Wasim; Hussain, Amir; Qadir, Manzoor; Aslam, Muhammad

    2017-02-01

    The present study aimed to evaluate the effect of soil-applied Zn and Cu on absorption and accumulation of Cd applied through irrigation water in legume (chickpea and mung bean) and cereal (wheat and maize) crops. The results revealed that Cd in irrigation water at higher levels (2 and 5 mg L(-1)) significantly (p < 0.05) reduced the plant biomass while the soil application of Zn and Cu, singly or combined, favored the biomass production. Plant tissue Cd concentration increased linearly with the increasing application of Cd via irrigation water. While Cd application caused a redistribution of metals in grains, straw, and roots with the highest concentration of Cd, Zn, and Cu occurred in roots followed by straw and grains. Zinc addition to soil alleviated Cd toxicity by decreasing Cd concentration in plant tissues due to a possible antagonistic effect. The addition of Cu to the soil had no consistent effects on Zn and Cd contents across all crops. Inhibitory effects of Cd on the uptake and accumulation of Zn and Cu have also been observed at higher Cd load. Thus, soil-applied Zn and Cu antagonized Cd helping the plant to cope with its toxicity and suppressed the toxic effects of Cd in plant tissues, thus favoring plant growth.

  8. PEG-b-AGE Polymer Coated Magnetic Nanoparticle Probes with Facile Functionalization and Anti-fouling Properties for Reducing Non-specific Uptake and Improving Biomarker Targeting

    PubMed Central

    Wang, Liya; Huang, Jing; Wu, Hui; Cheng, Guojun; Zhou, Zhengyang; MacDonald, Tobey; Yang, Lily; Mao, Hui

    2015-01-01

    Non-specific surface adsorption of bio-macromolecules (e.g. proteins) on nanoparticles, known as biofouling, and the uptake of nanoparticles by the mononuclear phagocyte system (MPS) and reticuloendothelial system (RES) lead to substantial reduction in the efficiency of target-directed imaging and delivery in biomedical applications of engineered nanomaterials in vitro and in vivo. In this work, a novel copolymer consisting of blocks of poly ethylene glycol and allyl glycidyl ether (PEG-b-AGE) was developed for coating magnetic iron oxide nanoparticles (IONPs) to reduce non-specific protein adhesion that leads to formation of “protein corona” and uptake by macrophages. The facile surface functionalization was demonstrated by using targeting ligands of a small peptide of RGD or a whole protein of transferrin (Tf). The PEG-b-AGE coated IONPs exhibited anti-biofouling properties with significantly reduced protein corona formation and non-specific uptake by macrophages before and after the surface functionalization, thus improving targeting of RGD-conjugated PEG-b-AGE coated IONPs to integrins in U87MG glioblastoma and MDA-MB-231 breast cancer cells that overexpress αvβ3 integrins, and Tf-conjugated PEG-b-AGE coated IONPs to transferrin receptor (TfR) in D556 and Daoy medulloblastoma cancer cells with high overexpression of transferrin receptor, compared to respective control cell lines. Magnetic resonance imaging (MRI) of cancer cells treated with targeted IONPs with or without anti-biofouling PEG-b-AGE coating polymers demonstrated the target specific MRI contrast change using anti-biofouling PEG-b-AGE coated IONP with minimal off-targeted background compared to the IONPs without anti-biofouling coating, promising the highly efficient active targeting of nanoparticle imaging probes and drug delivery systems and potential applications of imaging quantification of targeted biomarkers. PMID:26594360

  9. Knock out of the PHOSPHATE 2 Gene TaPHO2-A1 Improves Phosphorus Uptake and Grain Yield under Low Phosphorus Conditions in Common Wheat

    PubMed Central

    Ouyang, Xiang; Hong, Xia; Zhao, Xueqiang; Zhang, Wei; He, Xue; Ma, Wenying; Teng, Wan; Tong, Yiping

    2016-01-01

    MiR399 and its target PHOSPHATE2 (PHO2) play pivotal roles in phosphate signaling in plants. Loss of function mutation in PHO2 leads to excessive Pi accumulation in shoots and growth retardation in diploid plants like Arabidopsis thaliana and rice (Oryza sativa). Here we isolated three PHO2 homologous genes TaPHO2-A1, -B1 and -D1 from hexaploid wheat (Triticum aestivum). These TaPHO2 genes all contained miR399-binding sites and were able to be degraded by tae-miR399. TaPHO2-D1 was expressed much more abundantly than TaPHO2-A1 and -B1. The ion beam-induced deletion mutants were used to analyze the effects of TaPHO2s on phosphorus uptake and plant growth. The tapho2-a1, tapho2-b1 and tapho2-d1 mutants all had significant higher leaf Pi concentrations than did the wild type, with tapho2-d1 having the strongest effect, and tapho2-b1 the weakest. Two consecutive field experiments showed that knocking out TaPHO2-D1 reduced plant height and grain yield under both low and high phosphorus conditions. However, knocking out TaPHO2-A1 significantly increased phosphorus uptake and grain yield under low phosphorus conditions, with no adverse effect on grain yield under high phosphorus conditions. Our results indicated that TaPHO2s involved in phosphorus uptake and translocation, and molecular engineering TaPHO2 shows potential in improving wheat yield with less phosphorus fertilizer. PMID:27416927

  10. PEG-b-AGE Polymer Coated Magnetic Nanoparticle Probes with Facile Functionalization and Anti-fouling Properties for Reducing Non-specific Uptake and Improving Biomarker Targeting.

    PubMed

    Li, Yuancheng; Lin, Run; Wang, Liya; Huang, Jing; Wu, Hui; Cheng, Guojun; Zhou, Zhengyang; MacDonald, Tobey; Yang, Lily; Mao, Hui

    2015-05-07

    Non-specific surface adsorption of bio-macromolecules (e.g. proteins) on nanoparticles, known as biofouling, and the uptake of nanoparticles by the mononuclear phagocyte system (MPS) and reticuloendothelial system (RES) lead to substantial reduction in the efficiency of target-directed imaging and delivery in biomedical applications of engineered nanomaterials in vitro and in vivo. In this work, a novel copolymer consisting of blocks of poly ethylene glycol and allyl glycidyl ether (PEG-b-AGE) was developed for coating magnetic iron oxide nanoparticles (IONPs) to reduce non-specific protein adhesion that leads to formation of "protein corona" and uptake by macrophages. The facile surface functionalization was demonstrated by using targeting ligands of a small peptide of RGD or a whole protein of transferrin (Tf). The PEG-b-AGE coated IONPs exhibited anti-biofouling properties with significantly reduced protein corona formation and non-specific uptake by macrophages before and after the surface functionalization, thus improving targeting of RGD-conjugated PEG-b-AGE coated IONPs to integrins in U87MG glioblastoma and MDA-MB-231 breast cancer cells that overexpress αvβ3 integrins, and Tf-conjugated PEG-b-AGE coated IONPs to transferrin receptor (TfR) in D556 and Daoy medulloblastoma cancer cells with high overexpression of transferrin receptor, compared to respective control cell lines. Magnetic resonance imaging (MRI) of cancer cells treated with targeted IONPs with or without anti-biofouling PEG-b-AGE coating polymers demonstrated the target specific MRI contrast change using anti-biofouling PEG-b-AGE coated IONP with minimal off-targeted background compared to the IONPs without anti-biofouling coating, promising the highly efficient active targeting of nanoparticle imaging probes and drug delivery systems and potential applications of imaging quantification of targeted biomarkers.

  11. Maximal oxygen uptake and exercise tolerance are improved in rats with heart failure subjected to low-level laser therapy associated with resistance training.

    PubMed

    Hentschke, Vítor Scotta; Capalonga, Lucas; Rossato, Douglas Dalcin; Perini, Júlia Luíza; Alves, Jadson Pereira; Stefani, Giuseppe Potrick; Karsten, Marlus; Pontes, Mauro; Lago, Pedro Dal

    2017-01-01

    Exercise tolerance and maximal oxygen uptake (VO2max) are reduced in heart failure (HF). The influence of combined resistance training (RT) and low-level laser therapy (LLLT) on exercise tolerance and VO2max in HF has not yet been explored. The aim of this study was to evaluate the influence of combined RT and LLLT on VO2max and exercise tolerance in rats with HF induced by myocardial infarction (MI). Rats were allocated to sedentary sham (Sed-Sham, n = 12), sedentary heart failure (Sed-HF, n = 9), RT heart failure (RT-HF, n = 7) and RT associated with LLLT heart failure (RT + LLLT-HF, n = 7) groups. After MI or sham surgery, rats underwent a RT and LLLT protocol (applied immediately after RT) for 8 weeks. VO2max and exercise tolerance were evaluated at the end of protocol. HF rats subjected to LLLT combined with RT showed higher VO2basal (41 %), VO2max (40 %), VO2reserve (39 %), run distance (46 %), time to exhaustion (30 %) and maximal velocity (22 %) compared with HF rats that underwent RT alone. LLLT associated with RT improved oxygen uptake and exercise tolerance compared with RT alone in HF rats.

  12. Local food-based complementary feeding recommendations developed by the linear programming approach to improve the intake of problem nutrients among 12-23-month-old Myanmar children.

    PubMed

    Hlaing, Lwin Mar; Fahmida, Umi; Htet, Min Kyaw; Utomo, Budi; Firmansyah, Agus; Ferguson, Elaine L

    2016-07-01

    Poor feeding practices result in inadequate nutrient intakes in young children in developing countries. To improve practices, local food-based complementary feeding recommendations (CFR) are needed. This cross-sectional survey aimed to describe current food consumption patterns of 12-23-month-old Myanmar children (n 106) from Ayeyarwady region in order to identify nutrient requirements that are difficult to achieve using local foods and to formulate affordable and realistic CFR to improve dietary adequacy. Weekly food consumption patterns were assessed using a 12-h weighed dietary record, single 24-h recall and a 5-d food record. Food costs were estimated by market surveys. CFR were formulated by linear programming analysis using WHO Optifood software and evaluated among mothers (n 20) using trial of improved practices (TIP). Findings showed that Ca, Zn, niacin, folate and Fe were 'problem nutrients': nutrients that did not achieve 100 % recommended nutrient intake even when the diet was optimised. Chicken liver, anchovy and roselle leaves were locally available nutrient-dense foods that would fill these nutrient gaps. The final set of six CFR would ensure dietary adequacy for five of twelve nutrients at a minimal cost of 271 kyats/d (based on the exchange rate of 900 kyats/USD at the time of data collection: 3rd quarter of 2012), but inadequacies remained for niacin, folate, thiamin, Fe, Zn, Ca and vitamin B6. TIP showed that mothers believed liver and vegetables would cause worms and diarrhoea, but these beliefs could be overcome to successfully promote liver consumption. Therefore, an acceptable set of CFR were developed to improve the dietary practices of 12-23-month-old Myanmar children using locally available foods. Alternative interventions such as fortification, however, are still needed to ensure dietary adequacy of all nutrients.

  13. [Effects of Rice Cultivar and Typical Soil Improvement Measures on the Uptake of Cd in Rice Grains].

    PubMed

    Wang, Mei-e; Peng, Chi; Chen, Wei-ping

    2015-11-01

    Cadmium pollution of rice is a big problem in agricultural food safety. The accident "Cd rice" occurred last year in Youxian County, Hunan Province caused serious social panic. In this study, trials on "Cd rice" controlling techniques specific to the Cd pollution in paddy soil in Youxian were investigated. It was suggested that the average Cd contents in rice grains of the rice variety "Zhu Liang You 06" in Datongqiao and Wangling were 0.167 and 0.127 mg x kg(-1), respectively, which were only equal to 20% of the contents of other varieties. The trials for stabilizing agents revealed that treatments of lime and mineral fertilizer decreased Cd contents in rice grains to 20-30% of the control. Plastic film-mulched treatment decreased the rice grain Cd to 50%. And combined treatment of plastic film-mulched and biochar and silicon foliar-fertilizer decreased 80% of rice Cd content. Single treatments of silicon foliar-fertilizer and combined treatment of silicon foliar-fertilizer and topdressing fertilizer decreased more than 90% of Cd content. Results of BCR revealed that the percentage of cationic exchangeable and/or carbonate associated Cd fraction was more than 55% for most of the soil samples. Lime treatment significantly decreased the percentage of cationic exchangeable and/or carbonate and oxides of Fe and Mn associated Cd and increased the crystalline structure of clay minerals associated Cd. The change rate reached about 20%. Our results suggested concentration of soil Cd and pH were the two significant factors impacting the uptake of Cd by rice grains.

  14. Statin reverses reduction of adiponectin receptor expression in infarcted heart and in TNF-alpha-treated cardiomyocytes in association with improved glucose uptake.

    PubMed

    Saito, Yukio; Fujioka, Daisuke; Kawabata, Ken-ichi; Kobayashi, Tsuyoshi; Yano, Toshiaki; Nakamura, Takamitsu; Kodama, Yasushi; Takano, Hajime; Kitta, Yoshinobu; Obata, Jyun-ei; Kugiyama, Kiyotaka

    2007-12-01

    Statin treatment improves insulin resistance in skeletal muscle. Thus this study assessed whether statin may affect the myocardial expression levels of AdipoR1 and AdipoR2, receptors of adiponectin that enhance insulin sensitivity, and whether statin may improve insulin resistance in cardiomyocytes. Myocardial infarction (MI) was created by the ligation of the left coronary artery in male mice. Expression levels of mRNA and protein levels of AdipoR1 but not of AdipoR2 were significantly decreased in the remote area as well as in the healed infarcted area in the left ventricles 4 wk after MI. Oral administration of pravastatin (50 mg.kg(-1).day(-1) for 4 wk after MI) reversed the decrease in myocardial expression levels of AdipoR1 independently of changes in serum lipid profiles and insulin levels. With the use of cultured cardiomyocytes, incubation with tumor necrosis factor (TNF)-alpha, a mediator of postinfarction myocardial dysfunction, inhibited AdipoR1 mRNA and protein expression levels. Coincubation of the cells with pravastatin reversed the inhibitory effects of TNF-alpha on AdipoR1 expression. In parallel, pravastatin reversed the TNF-alpha-induced decrease in globular adiponectin-induced 2-deoxy-d-[(3)H]glucose uptake in insulin-treated cultured cells. Moreover, this effect of pravastatin was inhibited by the suppression of AdipoR1 expression by small-interfering RNA specific for AdipoR1. Incubation with H(2)O(2) reduced AdipoR1 expression in cultured cardiomyocytes that were attenuated by N-acetyl-l-cysteine or pravastatin. Pravastatin suppressed TNF-alpha-induced intracellular oxidants in cultured cardiomyocytes. In conclusion, pravastatin reversed the reduction of AdipoR1 expression in postinfarction mouse myocardium and in TNF-alpha-treated cardiomyocytes partly through an antioxidative mechanism in association with improved glucose uptake.

  15. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence.

    PubMed

    Tian, Shengke; Lu, Lingli; Xie, Ruohan; Zhang, Minzhe; Jernstedt, Judith A; Hou, Dandi; Ramsier, Cliff; Brown, Patrick H

    2014-01-01

    Enhancing nutrient uptake and the subsequent elemental transport from the sites of application to sites of utilization is of great importance to the science and practical field application of foliar fertilizers. The aim of this study was to investigate the mobility of various foliar applied zinc (Zn) formulations in sunflower (Helianthus annuus L.) and to evaluate the effects of the addition of an organic biostimulant on phloem loading and elemental mobility. This was achieved by application of foliar formulations to the blade of sunflower (H. annuus L.) and high-resolution elemental imaging with micro X-ray fluorescence (μ-XRF) to visualize Zn within the vascular system of the leaf petiole. Although no significant increase of total Zn in petioles was determined by inductively-coupled plasma mass-spectrometer, μ-XRF elemental imaging showed a clear enrichment of Zn in the vascular tissues within the sunflower petioles treated with foliar fertilizers containing Zn. The concentration of Zn in the vascular of sunflower petioles was increased when Zn was applied with other microelements with EDTA (commercial product Kick-Off) as compared with an equimolar concentration of ZnSO4 alone. The addition of macronutrients N, P, K (commercial product CleanStart) to the Kick-Off Zn fertilizer, further increased vascular system Zn concentrations while the addition of the microbially derived organic biostimulant "GroZyme" resulted in a remarkable enhancement of Zn concentrations in the petiole vascular system. The study provides direct visualized evidence for phloem transport of foliar applied Zn out of sites of application in plants by using μ-XRF technique, and suggests that the formulation of the foliar applied Zn and the addition of the organic biostimulant GroZyme increases the mobility of Zn following its absorption by the leaf of sunflower.

  16. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence

    DOE PAGES

    Tian, Shengke; Lu, Lingli; Xie, Ruohan; ...

    2015-01-21

    Enhancing nutrient uptake and the subsequent elemental transport from the sites of application to sites of utilization is of great importance to the science and practical field application of foliar fertilizers. The aim of this study was to investigate the mobility of various foliar applied zinc (Zn) formulations in sunflower (Helianthus annuus L.) and to evaluate the effects of the addition of an organic biostimulant on phloem loading and elemental mobility. This was achieved by application of foliar formulations to the blade of sunflower (H. annuus L.) and high-resolution elemental imaging with micro X-ray fluorescence (μ-XRF) to visualize Zn withinmore » the vascular system of the leaf petiole. Although no significant increase of total Zn in petioles was determined by inductively-coupled plasma mass-spectrometer, μ-XRF elemental imaging showed a clear enrichment of Zn in the vascular tissues within the sunflower petioles treated with foliar fertilizers containing Zn. The concentration of Zn in the vascular of sunflower petioles was increased when Zn was applied with other microelements with EDTA (commercial product Kick-Off) as compared with an equimolar concentration of ZnSO₄ alone. The addition of macronutrients N, P, K (commercial product CleanStart) to the Kick-Off Zn fertilizer, further increased vascular system Zn concentrations while the addition of the microbially derived organic biostimulant “GroZyme” resulted in a remarkable enhancement of Zn concentrations in the petiole vascular system. The study provides direct visualized evidence for phloem transport of foliar applied Zn out of sites of application in plants by using μ-XRF technique, and suggests that the formulation of the foliar applied Zn and the addition of the organic biostimulant GroZyme increases the mobility of Zn following its absorption by the leaf of sunflower.« less

  17. Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence

    PubMed Central

    Tian, Shengke; Lu, Lingli; Xie, Ruohan; Zhang, Minzhe; Jernstedt, Judith A.; Hou, Dandi; Ramsier, Cliff; Brown, Patrick H.

    2014-01-01

    Enhancing nutrient uptake and the subsequent elemental transport from the sites of application to sites of utilization is of great importance to the science and practical field application of foliar fertilizers. The aim of this study was to investigate the mobility of various foliar applied zinc (Zn) formulations in sunflower (Helianthus annuus L.) and to evaluate the effects of the addition of an organic biostimulant on phloem loading and elemental mobility. This was achieved by application of foliar formulations to the blade of sunflower (H. annuus L.) and high-resolution elemental imaging with micro X-ray fluorescence (μ-XRF) to visualize Zn within the vascular system of the leaf petiole. Although no significant increase of total Zn in petioles was determined by inductively-coupled plasma mass-spectrometer, μ-XRF elemental imaging showed a clear enrichment of Zn in the vascular tissues within the sunflower petioles treated with foliar fertilizers containing Zn. The concentration of Zn in the vascular of sunflower petioles was increased when Zn was applied with other microelements with EDTA (commercial product Kick-Off) as compared with an equimolar concentration of ZnSO4 alone. The addition of macronutrients N, P, K (commercial product CleanStart) to the Kick-Off Zn fertilizer, further increased vascular system Zn concentrations while the addition of the microbially derived organic biostimulant “GroZyme” resulted in a remarkable enhancement of Zn concentrations in the petiole vascular system. The study provides direct visualized evidence for phloem transport of foliar applied Zn out of sites of application in plants by using μ-XRF technique, and suggests that the formulation of the foliar applied Zn and the addition of the organic biostimulant GroZyme increases the mobility of Zn following its absorption by the leaf of sunflower. PMID:25653663

  18. Coapplication of Chicken Litter Biochar and Urea Only to Improve Nutrients Use Efficiency and Yield of Oryza sativa L. Cultivation on a Tropical Acid Soil

    PubMed Central

    Maru, Ali; Haruna, Osumanu Ahmed; Charles Primus, Walter

    2015-01-01

    The excessive use of nitrogen (N) fertilizers in sustaining high rice yields due to N dynamics in tropical acid soils not only is economically unsustainable but also causes environmental pollution. The objective of this study was to coapply biochar and urea to improve soil chemical properties and productivity of rice. Biochar (5 t ha−1) and different rates of urea (100%, 75%, 50%, 25%, and 0% of recommended N application) were evaluated in both pot and field trials. Selected soil chemical properties, rice plants growth variables, nutrient use efficiency, and yield were determined using standard procedures. Coapplication of biochar with 100% and 75% urea recommendation rates significantly increased nutrients availability (especially P and K) and their use efficiency in both pot and field trials. These treatments also significantly increased rice growth variables and grain yield. Coapplication of biochar and urea application at 75% of the recommended rate can be used to improve soil chemical properties and productivity and reduce urea use by 25%. PMID:26273698

  19. Nutrients related to GLP1 secretory responses.

    PubMed

    Mansour, Asieh; Hosseini, Saeed; Larijani, Bagher; Pajouhi, Mohamad; Mohajeri-Tehrani, Mohammad Reza

    2013-06-01

    The hormone glucagon-like peptide (GLP-1) is secreted from gut endocrine L cells in response to ingested nutrients. The activities of GLP-1 include stimulating insulin gene expression and biosynthesis, improving β-cell proliferation, exogenesis, and survival. Additionally, it prevents β-cell apoptosis induced by a variety of cytotoxic agents. In extrapancreatic tissues, GLP-1 suppresses hunger, delays gastric emptying, acts as an ileal brake, and increases glucose uptake. The pleiotropic actions of GLP-1, especially its glucose-lowering effect, gave rise to the suggestion that it is a novel approach to insulin resistance treatment. Hormones secreted from the gut including GLP-1, which are involved in the regulation of insulin sensitivity and secretions, have been found to be affected by nutrient intake. In recent years, there has been a growing interest in the effect nutrients may have on GLP-1 secretion; some frequently studied dietary constituents include monounsaturated fatty acids, fructooligosaccharides, and glutamine. This review focuses on the influence that the carbohydrate, fat, and protein components of a meal may have on the GLP-1 postprandial responses.

  20. Impact of climate change on crop nutrient and water use efficiencies.

    PubMed

    Brouder, Sylvie M; Volenec, Jeffrey J

    2008-08-01

    Implicit in discussions of plant nutrition and climate change is the assumption that we know what to do relative to nutrient management here and now but that these strategies might not apply in a changed climate. We review existing knowledge on interactive influences of atmospheric carbon dioxide concentration, temperature and soil moisture on plant growth, development and yield as well as on plant water use efficiency (WUE) and physiological and uptake efficiencies of soil-immobile nutrients. Elevated atmospheric CO(2) will increase leaf and canopy photosynthesis, especially in C3 plants, with minor changes in dark respiration. Additional CO(2) will increase biomass without marked alteration in dry matter partitioning, reduce transpiration of most plants and improve WUE. However, spatiotemporal variation in these attributes will impact agronomic performance and crop water use in a site-specific manner. Nutrient acquisition is closely associated with overall biomass and strongly influenced by root surface area. When climate change alters soil factors to restrict root growth, nutrient stress will occur. Plant size may also change but nutrient concentration will remain relatively unchanged; therefore, nutrient removal will scale with growth. Changes in regional nutrient requirements will be most remarkable where we alter cropping systems to accommodate shifts in ecozones or alter farming systems to capture new uses from existing systems. For regions and systems where we currently do an adequate job managing nutrients, we stand a good chance of continued optimization under a changed climate. If we can and should do better, climate change will not help us.

  1. Aquaporin-mediated increase in root hydraulic conductance is involved in silicon-induced improved root water uptake under osmotic stress in Sorghum bicolor L.

    PubMed

    Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi

    2014-09-01

    The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier.

  2. Assessing Odor Level when Using PrePex for HIV Prevention: A Prospective, Randomized, Open Label, Blinded Assessor Trial to Improve Uptake of Male Circumcision.

    PubMed

    Mutabazi, Vincent; Bitega, Jean Paul; Ngeruka, Leon Muyenzi; Karema, Corine; Binagwaho, Agnes

    2015-01-01

    The PrePex is a WHO--prequalified medical device for adult male circumcision for HIV prevention. The Government of Rwanda was the first country to implement the PrePex device and acts as the leading center of excellence providing training and formal guidelines. As part of the Government's efforts to improve PrePex implementation, it made efforts to improve the psychological acceptability of device by men, thus increasing uptake with VMMC in sub-Saharan Africa. Some men who underwent the PrePex procedure complained of foreskin odor while wearing the PrePex 3-7 days after it was placed. This complaint was identified as potential risk for uptake of the device. Researchers from Rwanda assumed there is a possible relation between the level of foreskin odor and patient foreskin hygiene technique. The Government of Rwanda decided to investigate those assumptions in a scientific way and conduct a trial to test different hygiene-cleaning methods in order to increase the acceptability of PrePex and mitigate the odor concern. The main objective of the trial was to compare odor levels between three arms, having identical personal hygiene but different foreskin hygiene techniques using either clear water with soap during a daily shower, soapy water using a syringe, or chlorhexidine using a syringe. One hundred and one subjects were enrolled to the trial and randomly allocated into three trial arms. Using chlorhexidine solution daily almost completely eliminated odor, and was statistically significant more effective that the other two arms. The trial results suggest that odor from the foreskin, while wearing the PrePex device, could be related to the growth of anaerobic bacteria, which can be prevented by a chlorhexidine cleaning method. This finding can be used to increase acceptability by men when considering PrePex as one of the leading methods for HIV prevention in VMMC programs.

  3. Water-Based Concurrent Training Improves Peak Oxygen Uptake, Rate of Force Development, Jump Height, and Neuromuscular Economy in Young Women.

    PubMed

    Pinto, Stephanie S; Alberton, Cristine L; Cadore, Eduardo L; Zaffari, Paula; Baroni, Bruno M; Lanferdini, Fábio J; Radaelli, Régis; Pantoja, Patrícia D; Peyré-Tartaruga, Leonardo A; Wolf Schoenell, Maira C; Vaz, Marco A; Kruel, Luiz F M

    2015-07-01

    The study investigated the effects of different intrasession exercise sequences on the cardiorespiratory and neuromuscular adaptations induced by water-based concurrent training in young subjects. Twenty-six healthy young women (25.1 ± 2.9 years) were placed into 2 water-based concurrent training groups: resistance before (RA, n = 13) or after (AR, n = 13) aerobic training. Subjects trained resistance and aerobic training during 12 weeks, 2 times per week performing both exercise types in the same training session. Peak oxygen uptake (V[Combining Dot Above]O2peak), rate of force development (RFD) obtained during an isometric peak torque knee extension protocol, jump height, and neuromuscular economy (normalized electromyography at 80% of pretraining knee extension isometric peak torque) in young women were determined. After training, there was a significant increase (p < 0.001) in both RA and AR in the V[Combining Dot Above]O2peak, with no differences between groups (7 vs. 5%). The maximal isometric knee extension RFD showed significant increases (p = 0.003) after training (RA: 19 vs. AR: 30%), and both groups presented similar gains. In addition, the countermovement jump height also increased (p = 0.034) after training (RA: 5% vs. AR: 6%), with no difference between groups. After training, there were significant improvements on vastus lateralis (p < 0.001) (RA: -13% vs. AR: -20%) and rectus femoris (p = 0.025) (RA: -17% vs. AR: -7%) neuromuscular economy, with no difference between groups. In conclusion, 12 weeks of water-based concurrent training improved the peak oxygen uptake, RFD, jump height, and neuromuscular economy in young women independent from the intrasession exercise sequence.

  4. Jejunal microvilli atrophy and reduced nutrient transport in rats with advanced liver cirrhosis: improvement by Insulin-like Growth Factor I

    PubMed Central

    Castilla-Cortázar, Inma; Pascual, María; Urdaneta, Elena; Pardo, Javier; Puche, Juan Enrique; Vivas, Bárbara; Díaz-Casares, Amelia; García, María; Díaz-Sánchez, Matías; Varela-Nieto, Isabel; Castilla, Alberto; González-Barón, Salvador

    2004-01-01

    Background Previous results have shown that in rats with non-ascitic cirrhosis there is an altered transport of sugars and amino acids associated with elongated microvilli. These alterations returned to normal with the administration of Insulin-Like Growth Factor-I (IGF-I). The aims of this study were to explore the evolution of these alterations and analyse the effect of IGF-I in rats with advanced cirrhosis and ascites. Thus, jejunal structure and nutrient transport (D-galactose, L-leucine, L-proline, L-glutamic acid and L-cystine) were studied in rats with ascitic cirrhosis. Methods Advanced cirrhosis was induced by CCl4 inhalation and Phenobarbital administration for 30 weeks. Cirrhotic animals were divided into two groups which received IGF-I or saline during two weeks. Control group was studied in parallel. Jejunal microvilli were studied by electron microscopy. Nutrient transport was assessed in brush border membrane vesicles using 14C or 35S-labelled subtracts in the three experimental groups. Results Intestinal active Na+-dependent transport was significantly reduced in untreated cirrhotic rats. Kinetic studies showed a decreased Vmax and a reduced affinity for sugar and four amino acids transporters (expressed as an increased Kt) in the brush border membrane vesicles from untreated cirrhotic rats as compared with controls. Both parameters were normalised in the IGF-I-treated cirrhotic group. Electron microscopy showed elongation and fusion of microvilli with degenerative membrane lesions and/or notable atrophy. Conclusions The initial microvilli elongation reported in non ascitic cirrhosis develops into atrophy in rats with advanced cirrhosis and nutrient transports (monosaccharides and amino acids) are progressively reduced. Both morphological and functional alterations improved significantly with low doses of IGF-I. PMID:15196310

  5. ‘And then there were three’: highly efficient uptake of potassium by foliar trichomes of epiphytic bromeliads

    PubMed Central

    Winkler, Uwe; Zotz, Gerhard

    2010-01-01

    Background and Aims Vascular epiphytes have to acquire nutrients from atmospheric wash out, stem-flow, canopy soils and trapped litter. Physiological studies on the adaptations to nutrient acquisition and plant utilization of nutrients have focused on phosphorus and nitrogen; potassium, as a third highly abundant nutrient element, has received minor attention. In the present study, potassium uptake kinetics by leaves, within-plant distribution and nutrient accumulation were analysed to gain an improved understanding of physiological adaptations to non-terrestrial nutrient supply of plants. Methods Radioactively labelled 86RbCl was used as an analogue to study uptake kinetics of potassium absorbed from tanks of epiphytes, its plant distribution and the correlation between uptake efficiency and abundance of trichomes, functioning as uptake organs of leaves. Potassium in leaves was additionally analysed by atomic absorption spectroscopy to assess plant responses to potassium deficiency. Key Results Labelled rubidium was taken up from tanks over a wide range of concentrations, 0·01–90 mm, which was achieved by two uptake systems. In four tank epiphytes, the high-affinity transporters had average Km values of 41·2 µm, and the low-affinity transporters average Km values of 44·8 mm. Further analysis in Vriesea splenriet showed that high-affinity uptake of rubidium was an ATP-dependent process, while low-affinity uptake was mediated by a K+-channel. The kinetic properties of both types of transporters are comparable with those of potassium transporters in roots of terrestrial plants. Specific differences in uptake velocities of epiphytes are correlated with the abundance of trichomes on their leaf surfaces. The main sinks for potassium were fully grown leaves. These leaves thus function as internal potassium sources, which allow growth to be maintained during periods of low external potassium availability. Conclusions Vascular epiphytes possess effective mechanisms

  6. Improving uptake and engagement with child body image interventions delivered to mothers: Understanding mother and daughter preferences for intervention content.

    PubMed

    Garbett, Kirsty M; Diedrichs, Phillippa C

    2016-12-01

    Mothers are a key influence on adolescent girls' body image. This study aimed to improve understanding of mothers' and daughters' preferences for content in body image interventions designed to assist mothers to promote positive body image among their daughters. British mother-daughter dyads (N=190) viewed descriptions of five evidence-based influences on body image (family, friends, and relationships; appearance-based teasing; media and celebrities; appearance conversations; body acceptance and care). Mothers and daughters each selected the two most important influences to learn about in these interventions. Overall, both mothers and daughters most frequently opted for family, friends, and relationships and body acceptance and care, whereas media and celebrities was their least preferred topic. While the overall sample of mothers and daughters agreed on preferences, Fisher's exact tests showed that within-dyad agreement was low. Recommendations for improving parent and child engagement with, and effectiveness of, child body image interventions delivered to parents are discussed.

  7. Taking a low glycemic index multi-nutrient supplement as breakfast improves glycemic control in patients with type 2 diabetes mellitus: a randomized controlled trial.

    PubMed

    Li, Di; Zhang, Peiwen; Guo, Honghui; Ling, Wenhua

    2014-12-10

    Dietary therapy is the mainstay of treatment for diabetes. This study examined the effect of a low glycemic index (GI) multi-nutrient supplement, consumed in place of breakfast, on glycemic control in patients with type 2 diabetes mellitus (T2DM). A total of 71 participants were randomized at a 2:1 ratio into either a breakfast replacement group or a normal breakfast group for a 12-week interventional study. The primary outcome measure was change in hemoglobin A1c (HbA1c). Nutrition status and somatometry were studied as secondary outcomes. The breakfast replacement group displayed a -0.2% absolute reduction in HbA1c (95% CI (confidence interval), -0.38% to -0.07%, p = 0.004), while the HbA1c of the control group increased 0.3% (95% CI, 0.1% to 0.5%, p = 0.005). The baseline Mini Nutritional Assessment score for both groups was 26.0 and no significant changes occurred following intervention. However, there was a statistically significant difference in body mass index between the treatment and control groups (p = 0.032) due to the weight gain in the control group (increased 0.5 kg, 95% CI was 0.2 to 0.9, p = 0.007). These data suggest that breakfast replacement with a low GI multi-nutrient supplement can improve glycemic and weight control in T2DM.

  8. Improving nutrient fixation and dry matter content of an ammonium-rich anaerobic digestion effluent by struvite formation and clay adsorption.

    PubMed

    Estevez, Maria M; Linjordet, Roar; Horn, Svein J; Morken, John

    2014-01-01

    The anaerobic digestion (AD) of organic wastes that contain nitrogen leads to its mineralization, yielding a digestate rich in ammonium (NH(4)(+)), an important fertilizing nutrient. The applicability of AD digestate as fertilizer can be improved by fixating the nutrients and increasing its dry matter content. Methods for the fixation and recovery of the digestate's NH(4)(+) and possible also PO(4)(3-) include struvite precipitation and adsorption in clay materials such as bentonite. These techniques were tested in batch experiments employing the liquid fraction of a digestate originating from the AD of a substrate mix containing lignocellulose, cattle manure and fish industrial waste. The concentration of NH(4)(+)-N in this digestate was 2,300 mg L⁻¹. Struvite precipitation conditions at a molar ratio of 1.2:1:1 (Mg²⁺:NH(4)(+):PO(4)(3-)) and pH 9.5 were best in terms of simultaneous removal of NH(4)(+)-N (88%), PO(4)(3-) (60%) and soluble chemical oxygen demand (44%). Bentonite adsorption gave comparably high removal levels for NH(4)(+)-N (82%) and PO(4)(3-) (52%). Analysis of the precipitates' morphology and elemental composition confirmed their struvite and bentonite nature. Dry matter content was increased from 5.8% in the AD digestate to 27% and 22% in the struvite and bentonite sludges, respectively.

  9. Taking a Low Glycemic Index Multi-Nutrient Supplement as Breakfast Improves Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Randomized Controlled Trial

    PubMed Central

    Li, Di; Zhang, Peiwen; Guo, Honghui; Ling, Wenhua

    2014-01-01

    Dietary therapy is the mainstay of treatment for diabetes. This study examined the effect of a low glycemic index (GI) multi-nutrient supplement, consumed in place of breakfast, on glycemic control in patients with type 2 diabetes mellitus (T2DM). A total of 71 participants were randomized at a 2:1 ratio into either a breakfast replacement group or a normal breakfast group for a 12-week interventional study. The primary outcome measure was change in hemoglobin A1c (HbA1c). Nutrition status and somatometry were studied as secondary outcomes. The breakfast replacement group displayed a −0.2% absolute reduction in HbA1c (95% CI (confidence interval), −0.38% to −0.07%, p = 0.004), while the HbA1c of the control group increased 0.3% (95% CI, 0.1% to 0.5%, p = 0.005). The baseline Mini Nutritional Assessment score for both groups was 26.0 and no significant changes occurred following intervention. However, there was a statistically significant difference in body mass index between the treatment and control groups (p = 0.032) due to the weight gain in the control group (increased 0.5 kg, 95% CI was 0.2 to 0.9, p = 0.007). These data suggest that breakfast replacement with a low GI multi-nutrient supplement can improve glycemic and weight control in T2DM. PMID:25514391

  10. Nutrient database improvement project: Separable components and proximate composition of raw and cooked retail cuts from the beef rib and plate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef nutrition is very important to the worldwide beef industry and its consumers. The objective of this study was to analyze nutrient composition of eight beef rib and plate cuts to update the nutrient data in the USDA National Nutrient Database for Standard Reference (SR). Seventy-two carcasses ...

  11. Whakawhanaungatanga: the importance of culturally meaningful connections to improve uptake of pulmonary rehabilitation by Māori with COPD – a qualitative study

    PubMed Central

    Levack, William MM; Jones, Bernadette; Grainger, Rebecca; Boland, Pauline; Brown, Melanie; Ingham, Tristram R

    2016-01-01

    Background Pulmonary rehabilitation is known to improve function and quality of life for people with chronic obstructive pulmonary disease (COPD). However, little research has been conducted on the influence of culture on experiences of pulmonary rehabilitation. This study examined factors influencing uptake of pulmonary rehabilitation by Māori with COPD in New Zealand. Method Grounded theory nested within kaupapa Māori methodology. Transcripts were analyzed from interviews and focus groups with 15 Māori and ten New Zealand non-Māori invited to attend pulmonary rehabilitation for COPD. Māori participants had either attended a mainstream hospital-based program, a community-based program designed “by Māori, for Māori”, or had experienced both. Results Several factors influencing uptake of pulmonary rehabilitation were common to all participants regardless of ethnicity: 1) participants’ past experiences (eg, of exercise; of health care systems), 2) attitudes and expectations, 3) access issues (eg, time, transport, and conflicting responsibilities), and 4) initial program experiences. These factors were moderated by the involvement of family and peers, interactions with health professionals, the way information on programs was presented, and by new illness events. For Māori, however, several additional factors were also identified relating to cultural experiences of pulmonary rehabilitation. In particular, Māori participants placed high value on whakawhanaungatanga: the making of culturally meaningful connections with others. Culturally appropriate communication and relationship building was deemed so important by some Māori participants that when it was absent, they felt strongly discouraged to attend pulmonary rehabilitation. Only the more holistic services offered a program in which they felt culturally safe and to which they were willing to return for ongoing rehabilitation. Conclusion Lack of attention to cultural factors in the delivery of

  12. Carrier-Mediated Prodrug Uptake to Improve the Oral Bioavailability of Polar Drugs: An Application to an Oseltamivir Analogue

    PubMed Central

    Incecayir, Tuba; Sun, Jing; Tsume, Yasuhiro; Xu, Hao; Gose, Tomoka; Nakanishi, Takeo; Tamai, Ikumi; Hilfinger, John; Lipka, Elke; Amidon, Gordon L.

    2016-01-01

    The goal of this study was to improve the intestinal mucosal cell membrane permeability of the poorly absorbed guanidino analogue of a neuraminidase inhibitor, oseltamivir carboxylate (GOC) using a carrier mediated strategy. Valyl amino acid prodrug of GOC with isopropyl-methylenedioxy linker (GOC-ISP-Val) was evaluated as the potential substrate for intestinal oligopeptide transporter, hPEPT1 in Xenopus laevis oocytes heterologously expressing hPEPT1 and an intestinal mouse perfusion system. The diastereomers of GOC-ISP-Val were assessed for chemical and metabolic stability. Permeability of GOC-ISP-Val was determined in Caco-2 cells and mice. Diastereomer 2 was about two times more stable than diastereomer 1 in simulated intestinal fluid and rapidly hydrolyzed to the parent drug in cell homogenates. The prodrug had a nine times enhanced apparent permeability (Papp) in Caco-2 cells compared to the parent drug. Both diastereomer exhibited high effective permeability (Peff ) in mice, 6.32±3.12 and 5.20±2.81 x10−5 cm/s for diastereomer 1 and 2, respectively. GOC-ISP-Val was found to be a substrate of hPEPT1. Overall, this study indicates that the prodrug, GOC-ISP-Val seems to be a promising oral anti-influenza agent that has sufficient stability at physiologically relevant pHs prior to absorption, significantly improved permeability via hPEPT1 and potentially rapid activation in the intestinal cells. PMID:26869437

  13. Using CFCs and Sulfur Hexafluoride to Improve Estimates of Ventilation Rate Changes and Anthropogenic CO2 Uptake Along CLIVAR Repeat Hydrography Sections

    NASA Astrophysics Data System (ADS)

    Bullister, J. L.; Sonnerup, R. E.; Warner, M. J.

    2008-12-01

    A number of key hydrographic sections sampled in the 1990s as part of the World Ocean Circulation Experiment (WOCE) are being re-occupied at approximately decadal intervals as part of the CLIVAR Repeat Hydrography Program. Measurements of a number of physical and chemical properties are made at full depth, closely spaced (nominally 30 nautical mile) CTD/rosette stations, with water samples collected at between 24 and 36 depths per station. Among the central goals of the program are the detection of changes in ventilation, carbon uptake and storage, dissolved oxygen and water properties on decadal time scales. Repeat measurements of dissolved chlorofluorocarbon (CFC) CFC-11 and CFC-12 concentrations show significant decadal increases. Water mass ages derived from CFCs (pCFC ages) also show substantial changes (typically increases) with time along the repeat sections. Simple models indicate that much of the observed pCFC age increases are due to the impacts of mixing in the ocean interior. Measurements of sulfur hexafluoride (SF6), a transient tracer that has been rapidly increasing in the atmosphere during the past several decades, have been included along with CFCs on some recent CLIVAR repeat sections. Because the atmospheric history of SF6 differs substantially from that of the CFCs, concurrent SF6 and CFC measurements can be used to help diagnose the impacts of mixing on pCFC ages and on decadal changes in pCFC ages. We are exploiting this twin-tracer strategy in an attempt to improve estimates of ventilation rate changes and anthropogenic CO2 uptake rates along the CLIVAR repeat sections.

  14. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    PubMed

    Eykelbosh, Angela Joy; Johnson, Mark S; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions.

  15. Biochar from Sugarcane Filtercake Reduces Soil CO2 Emissions Relative to Raw Residue and Improves Water Retention and Nutrient Availability in a Highly-Weathered Tropical Soil

    PubMed Central

    Eykelbosh, Angela Joy; Johnson, Mark S.; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522

  16. Key Nutrients.

    ERIC Educational Resources Information Center

    Federal Extension Service (USDA), Washington, DC.

    Lessons written to help trainer agents prepare aides for work with families in the Food and Nutrition Program are presented in this booklet. The key nutrients discussed in the 10 lessons are protein, carbohydrates, fat, calcium, iron, iodine, and Vitamins A, B, C, and D. the format of each lesson is as follows: Purpose, Presentation, Application…

  17. Responses of Ulva prolifera to short-term nutrient enrichment under light and dark conditions

    NASA Astrophysics Data System (ADS)

    Sun, Kai-Ming; Li, Ruixiang; Li, Yan; Xin, Ming; Xiao, Jie; Wang, Zongling; Tang, Xuexi; Pang, Min

    2015-09-01

    To define responses of short-term nutrient uptake in Ulva prolifera, we measured uptake rates, enzyme activity, and tissue nutrient content in lab experiments where we manipulated nutrient supply and irradiation. Nitrate uptake of U. prolifera was significantly impacted by the external nitrate concentrations, and ammonium uptake was mainly determined by the light availability. The measured nitrogen contents in tissues were higher than the calculated values from the uptake of dissolve inorganic nitrogen, indicating that U. prolifera might use multiple nitrogen sources. High external phosphate concentrations and sufficient light can accelerate the phosphate uptake of U. prolifera, while the measured phosphorus contents in tissues were lower than the calculated values from the uptake of phosphate, suggesting a possibility of internal phosphorus release. The enzymatic activities of nitrate reductase (NR), acid phosphatase (AcP) and alkaline phosphatase (AP) showed little changes, indicating that enzymatic activity might not a direct factor determining the short-term nutrient uptake of U. prolifera.

  18. Improved growth and nutrient status of an oat cover crop in sod-based versus conventional peanut-cotton rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) leaching from agricultural soils is a major concern in the southeastern USA. A winter cover crop following the summer crop rotation is essential for controlling N leaching and soil run-off, thereby improving sustainable development. Rotation of peanut (Arachis hypogea L.) and cotton (Go...

  19. Arbuscular mycorrhiza-induced shifts in foliar metabolism and photosynthesis mirror the developmental stage of the symbiosis and are only partly driven by improved phosphate uptake.

    PubMed

    Schweiger, Rabea; Baier, Markus C; Müller, Caroline

    2014-12-01

    In arbuscular mycorrhizal (AM) plants, the plant delivers photoassimilates to the arbuscular mycorrhizal fungus (AMF), whereas the mycosymbiont contributes, in addition to other beneficial effects, to phosphate (PO4(3-)) uptake from the soil. Thereby, the additional fungal carbon (C) sink strength in roots and improved plant PO4(3-) nutrition may influence aboveground traits. We investigated how the foliar metabolome of Plantago major is affected along with the development of root symbiosis, whether the photosynthetic performance is affected by AM, and whether these effects are mediated by improved PO4(3-) nutrition. Therefore, we studied PO4(3-)-limited and PO4(3-)-supplemented controls in comparison with mycorrhizal plants at 20, 30, and 62 days postinoculation with the AMF Rhizophagus irregularis. Foliar metabolome modifications were determined by the developmental stage of symbiosis, with changes becoming more pronounced over time. In a well-established stage of mature mutualism, about 60% of the metabolic changes and an increase in foliar CO2 assimilation were unrelated to the significantly increased foliar phosphorus (P) content. We propose a framework relating the time-dependent metabolic changes to the shifts in C costs and P benefits for the plant. Besides P-mediated effects, the strong fungal C sink activity may drive the changes in the leaf traits.

  20. Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability.

    PubMed

    Migliavacca, Mirco; Perez-Priego, Oscar; Rossini, Micol; El-Madany, Tarek S; Moreno, Gerardo; van der Tol, Christiaan; Rascher, Uwe; Berninger, Anna; Bessenbacher, Verena; Burkart, Andreas; Carrara, Arnaud; Fava, Francesco; Guan, Jin-Hong; Hammer, Tiana W; Henkel, Kathrin; Juarez-Alcalde, Enrique; Julitta, Tommaso; Kolle, Olaf; Martín, M Pilar; Musavi, Talie; Pacheco-Labrador, Javier; Pérez-Burgueño, Andrea; Wutzler, Thomas; Zaehle, Sönke; Reichstein, Markus

    2017-05-01

    Sun-induced fluorescence (SIF) in the far-red region provides a new noninvasive measurement approach that has the potential to quantify dynamic changes in light-use efficiency and gross primary production (GPP). However, the mechanistic link between GPP and SIF is not completely understood. We analyzed the structural and functional factors controlling the emission of SIF at 760 nm (F760 ) in a Mediterranean grassland manipulated with nutrient addition of nitrogen (N), phosphorous (P) or nitrogen-phosphorous (NP). Using the soil-canopy observation of photosynthesis and energy (SCOPE) model, we investigated how nutrient-induced changes in canopy structure (i.e. changes in plant forms abundance that influence leaf inclination distribution function, LIDF) and functional traits (e.g. N content in dry mass of leaves, N%, Chlorophyll a+b concentration (Cab) and maximum carboxylation capacity (Vcmax )) affected the observed linear relationship between F760 and GPP. We conclude that the addition of nutrients imposed a change in the abundance of different plant forms and biochemistry of the canopy that controls F760 . Changes in canopy structure mainly control the GPP-F760 relationship, with a secondary effect of Cab and Vcmax . In order to exploit F760 data to model GPP at the global/regional scale, canopy structural variability, biodiversity and functional traits are important factors that have to be considered.

  1. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach.

    PubMed

    Jin, Yong-Su; Alper, Hal; Yang, Yea-Tyng; Stephanopoulos, Gregory

    2005-12-01

    We used an inverse metabolic engineering approach to identify gene targets for improved xylose assimilation in recombinant Saccharomyces cerevisiae. Specifically, we created a genomic fragment library from Pichia stipitis and introduced it into recombinant S. cerevisiae expressing XYL1 and XYL2. Through serial subculturing enrichment of the transformant library, 16 transformants were identified and confirmed to have a higher growth rate on xylose. Sequencing of the 16 plasmids isolated from these transformants revealed that the majority of the inserts (10 of 16) contained the XYL3 gene, thus confirming the previous finding that XYL3 is the consensus target for increasing xylose assimilation. Following a sequential search for gene targets, we repeated the complementation enrichment process in a XYL1 XYL2 XYL3 background and identified 15 fast-growing transformants, all of which harbored the same plasmid. This plasmid contained an open reading frame (ORF) designated PsTAL1 based on a high level of homology with S. cerevisiae TAL1. To further investigate whether the newly identified PsTAL1 ORF is responsible for the enhanced-growth phenotype, we constructed an expression cassette containing the PsTAL1 ORF under the control of a constitutive promoter and transformed it into an S. cerevisiae recombinant expressing XYL1, XYL2, and XYL3. The resulting recombinant strain exhibited a 100% increase in the growth rate and a 70% increase in ethanol production (0.033 versus 0.019 g ethanol/g cells . h) on xylose compared to the parental strain. Interestingly, overexpression of PsTAL1 did not cause growth inhibition when cells were grown on glucose, unlike overexpression of the ScTAL1 gene. These results suggest that PsTAL1 is a better gene target for engineering of the pentose phosphate pathway in recombinant S. cerevisiae.

  2. Super High Dosing with a Novel Buttiauxella Phytase Continuously Improves Growth Performance, Nutrient Digestibility, and Mineral Status of Weaned Pigs.

    PubMed

    Zeng, Zhikai; Li, Qingyun; Tian, Qiyu; Zhao, Panfeng; Xu, Xiao; Yu, Shukun; Piao, Xiangshu

    2015-11-01

    This study was conducted to evaluate the efficacy of a novel Buttiauxella phytase to pigs fed P-deficient, corn-soybean meal diets. One hundred and twenty crossbred piglets (9.53 ± 0.84 kg) were allocated to one of five treatments which consisted of four low P diets (0.61 % Ca and 0.46 % total P) supplemented with 0, 500, 1,000, or 20,000 FTU/kg phytase as well as a positive control diet (0.77 % Ca and 0.62 % total P). Each treatment had six replicated pens with four pigs per pen. Pigs were fed the experimental diets for 28 days. Phytase supplementation linearly improved (P < 0.05) average daily gain (ADG), feed conversion ratio (FCR), and apparent total tract digestibility (ATTD) of dry matter, gross energy, crude protein, Ca, and P in weaned pigs. Super high dosing with phytase (20,000 FTU/kg) further increased (P < 0.05) ADG compared with 500 FTU/kg phytase inclusion group, as well as ATTD of Ca and P. Metacarpal bone characteristics and several trace mineral concentration in bone, plasma, or organ tissues were linearly (P < 0.05) improved at increasing dose of phytase. Super high dosing with phytase (20,000 FTU/kg) supplementation improved (P < 0.05) Mn and Zn concentration in bone compared to normal dose of phytase supplementation (500 or 1,000 FTU/kg). In conclusion, supplementation of 500 FTU of Buttiauxella phytase/kg and above effectively hydrolyzed phytate in a low-P corn-soybean diet for pigs. In addition, a super high dosing with phytase (20,000 FTU/kg) improved macro- or micro mineral availability and growth performance.

  3. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.

    PubMed

    Wasson, A P; Richards, R A; Chatrath, R; Misra, S C; Prasad, S V Sai; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Watt, M

    2012-05-01

    resistances. Such a programme with field and laboratory evaluation at the outset will speed up delivery of varieties with improved root systems for higher yield.

  4. Impact of ocean phytoplankton diversity on phosphate uptake.

    PubMed

    Lomas, Michael W; Bonachela, Juan A; Levin, Simon A; Martiny, Adam C

    2014-12-09

    We have a limited understanding of the consequences of variations in microbial biodiversity on ocean ecosystem functioning and global biogeochemical cycles. A core process is macronutrient uptake by microorganisms, as the uptake of nutrients controls ocean CO2 fixation rates in many regions. Here, we ask whether variations in ocean phytoplankton biodiversity lead to novel functional relationships between environmental variability and phosphate (Pi) uptake. We analyzed Pi uptake capabilities and cellular allocations among phytoplankton groups and the whole community throughout the extremely Pi-depleted western North Atlantic Ocean. Pi uptake capabilities of individual populations were well described by a classic uptake function but displayed adaptive differences in uptake capabilities that depend on cell size and nutrient availability. Using an eco-evolutionary model as well as observations of in situ uptake across the region, we confirmed that differences among populations lead to previously uncharacterized relationships between ambient Pi concentrations and uptake. Supported by novel theory, this work provides a robust empirical basis for describing and understanding assimilation of limiting nutrients in the oceans. Thus, it demonstrates that microbial biodiversity, beyond cell size, is important for understanding the global cycling of nutrients.

  5. Impact of ocean phytoplankton diversity on phosphate uptake

    PubMed Central

    Lomas, Michael W.; Bonachela, Juan A.; Levin, Simon A.; Martiny, Adam C.

    2014-01-01

    We have a limited understanding of the consequences of variations in microbial biodiversity on ocean ecosystem functioning and global biogeochemical cycles. A core process is macronutrient uptake by microorganisms, as the uptake of nutrients controls ocean CO2 fixation rates in many regions. Here, we ask whether variations in ocean phytoplankton biodiversity lead to novel functional relationships between environmental variability and phosphate (Pi) uptake. We analyzed Pi uptake capabilities and cellular allocations among phytoplankton groups and the whole community throughout the extremely Pi-depleted western North Atlantic Ocean. Pi uptake capabilities of individual populations were well described by a classic uptake function but displayed adaptive differences in uptake capabilities that depend on cell size and nutrient availability. Using an eco-evolutionary model as well as observations of in situ uptake across the region, we confirmed that differences among populations lead to previously uncharacterized relationships between ambient Pi concentrations and uptake. Supported by novel theory, this work provides a robust empirical basis for describing and understanding assimilation of limiting nutrients in the oceans. Thus, it demonstrates that microbial biodiversity, beyond cell size, is important for understanding the global cycling of nutrients. PMID:25422472

  6. Improvement of Arbuscular Mycorrhiza Development by Inoculation of Soil with Phosphate-Solubilizing Rhizobacteria To Improve Rock Phosphate Bioavailability ((sup32)P) and Nutrient Cycling

    PubMed Central

    Toro, M.; Azcon, R.; Barea, J.

    1997-01-01

    The interactive effect of phosphate-solubilizing bacteria and arbuscular mycorrhizal (AM) fungi on plant use of soil P sources of low bioavailability (endogenous or added as rock phosphate [RP] material) was evaluated by using soil microcosms which integrated (sup32)P isotopic dilution techniques. The microbial inocula consisted of the AM fungus Glomus intraradices and two phosphate-solubilizing rhizobacterial isolates: Enterobacter sp. and Bacillus subtilis. These rhizobacteria behaved as "mycorrhiza helper bacteria" promoting establishment of both the indigenous and the introduced AM endophytes despite a gradual decrease in bacterial population size, which dropped from 10(sup7) at planting to 10(sup3) CFU g(sup-1) of dry rhizosphere soil at harvest. Dual inoculation with G. intraradices and B. subtilis significantly increased biomass and N and P accumulation in plant tissues. Regardless of the rhizobacterium strain and of the addition of RP, AM plants displayed lower specific activity ((sup32)P/(sup31)P) than their comparable controls, suggesting that the plants used P sources not available in their absence. The inoculated rhizobacteria may have released phosphate ions ((sup31)P), either from the added RP or from the less-available indigenous P sources, which were effectively taken up by the external AM mycelium. Soluble Ca deficiency in the test soil may have benefited P solubilization. At least 75% of the P in dually inoculated plants derived from the added RP. It appears that these mycorrhizosphere interactions between bacterial and fungal plant associates contributed to the biogeochemical P cycling, thus promoting a sustainable nutrient supply to plants. PMID:16535730

  7. Lichen substances prevent lichens from nutrient deficiency.

    PubMed

    Hauck, Markus; Willenbruch, Karen; Leuschner, Christoph

    2009-01-01

    The dibenzofuran usnic acid, a widespread cortical secondary metabolite produced by lichen-forming fungi, was shown to promote the intracellular uptake of Cu(2+) in two epiphytic lichens, Evernia mesomorpha and Ramalina menziesii, from acidic, nutrient-poor bark. Higher Cu(2+) uptake in the former, which produces the depside divaricatic acid in addition to usnic acid, suggests that this depside promotes Cu(2+) uptake. Since Cu(2+) is one of the rarest micronutrients, promotion of Cu(2+) uptake by lichen substances may be crucial for the studied lichens to survive in their nutrient-poor habitats. In contrast, study of the uptake of other metals in E. mesomorpha revealed that the intracellular uptake of Mn(2+), which regularly exceeds potentially toxic concentrations in leachates of acidic tree bark, was partially inhibited by the lichen substances produced by this species. Inhibition of Mn(2+) uptake by lichen substances previously has been demonstrated in lichens. The uptake of Fe(2+), Fe(3+), Mg(2+), and Zn(2+), which fail to reach toxic concentrations in acidic bark at unpolluted sites, although they are more common than Cu(2+), was not affected by lichen substances of E. mesomorpha.

  8. Does a mandibular overdenture improve nutrient intake and markers of nutritional status better than conventional complete denture? A systematic review and meta-analysis

    PubMed Central

    Yamazaki, Toru; Martiniuk, Alexandra LC; Irie, Koichiro; Sokejima, Shigeru; Lee, Crystal Man Ying

    2016-01-01

    Objectives The need for denture treatment in public health will increase as the population ages. However, the impact of dentures on nutrition, particularly overdenture treatment, remains unclear although the physical and psychological effects are known. We investigated whether treatment with a mandibular implant supported overdenture improves nutrient intake and markers of nutritional status better than a conventional complete denture in edentulous patients. Design Systematic review and meta-analysis. Methods Medline, EMBASE and the Cochrane Central Register of Controlled Trials were searched for eligible studies published up to April 2016. We included studies which compared the treatment effect of an overdenture to conventional denture on nutrition, in which primary outcomes included changes in intake of macronutrients and/or micronutrients and/or indicators of nutritional status. Two reviewers independently evaluated eligible studies and assessed the risk of bias. We used a fixed effects model to estimate the weighted mean difference (WMD) and 95% CI for change in body mass index (BMI), albumin and serum vitamin B12 between overdenture and conventional denture 6 months after treatment. Results Of 108 eligible studies, 8 studies involving 901 participants were included in the narrative appraisal. Four studies reported changes in markers of nutritional status and nutrient intake after treatment with a prosthetic, regardless of type. In a meta-analysis of 322 participants aged 65 years or older from three studies, pooled analysis suggested no significant difference in change in BMI between an overdenture and conventional denture 6 months after treatment (WMD=−0.18 kg/m2 (95% CI −0.52 to 0.16)), and no significant difference in change in albumin or vitamin B12 between the two treatments. Conclusions The modifying effect of overdenture treatment on nutritional status might be limited. Further studies are needed to evaluate the effectiveness and efficacy of

  9. Consumption of various forms of apples is associated with a better nutrient intake and improved nutrient adequacy in diets of children: National Health and Nutrition Examination Survey 2003–2010

    PubMed Central

    Nicklas, Theresa A.; O'Neil, Carol E.; Fulgoni, Victor L.

    2015-01-01

    Background Consumption of fruit has been associated with a variety of health benefits, yet, 75% of children have usual intakes of total fruit below minimum recommended amounts. Apples are the second most commonly consumed fruit in the United States; however, no studies have examined the impact of apple consumption on nutrient intake and adequacy in children's diets. Objective The purpose of this study is to examine the association between apple (various forms) consumption with nutrient intake and nutrient adequacy in a nationally representative sample of children. Design Participants were children aged 2–18 years (n=13,339), from the National Health and Nutrition Examination Survey 2003–2010. Least square means of total energy and nutrient intake, and the percentage of the population below the estimated average requirement (EAR) or above the adequate intake (AI) among apple consumers and non-consumers were examined. Results Consumers of total apple products had higher (p<0.01) total intakes of fiber, magnesium, and potassium and lower intakes of total fat, saturated fatty acids, monounsaturated fatty acid, and sodium than non-consumers. Apple consumers had higher (p<0.01) total sugar intake, but lower intake of added sugars compared to non-consumers. A lower (p<0.01) percentage of apple consumers were below the EAR for 13 of the 16 nutrients studied. Apple consumers had approximately a 10 percentage unit difference below the EAR for calcium and magnesium, and vitamins A, C, D, and E, than non-consumers. The percentage above the AI for fiber was significantly (p<0.0001) higher among total apple consumers (6.24±0.45 g) compared to non-consumers (0.57±0.07 g). The results were similar for individual apple products (i.e. apple juice, applesauce, and whole apples). Conclusion Consumption of any forms of apples provided valuable nutrients in the diets of children. PMID:26445211

  10. Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO₂, Fe₃O₄, SnO₂, TiO₂) or metallic (Ag, Co, Ni) engineered nanoparticles.

    PubMed

    Vittori Antisari, Livia; Carbone, Serena; Gatti, Antonietta; Vianello, Gilmo; Nannipieri, Paolo

    2015-02-01

    The influence of exposure to engineered nanoparticles (NPs) was studied in tomato plants, grown in a soil and peat mixture and irrigated with metal oxides (CeO2, Fe3O4, SnO2, TiO2) and metallic (Ag, Co, Ni) NPs. The morphological parameters of the tomato organs, the amount of component metals taken up by the tomato plants from NPs added to the soil and the nutrient content in different tomato organs were also investigated. The fate, transport and possible toxicity of different NPs and nutrients in tomato tissues from soils were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The tomato yield depended on the NPs: Fe3O4-NPs promoted the root growth, while SnO2-NP exposure reduced it (i.e. +152.6 and -63.1 % of dry matter, respectively). The NP component metal mainly accumulated in the tomato roots; however, plants treated with Ag-, Co- and Ni-NPs showed higher concentration of these elements in both above-ground and below-ground organs with respect to the untreated plants, in addition Ag-NPs also contaminated the fruits. Moreover, an imbalance of K translocation was detected in some plants exposed to Ag-, Co- and Fe3O4-NPs. The component metal concentration of soil rhizosphere polluted with NPs significantly increased compared to controls, and NPs were detected in the tissues of the tomato roots using electron microscopy (ESEM-EDS).

  11. Site-specific conjugation of monodispersed DOTA-PEGn to a thiolated diabody reveals the effect of increasing peg size on kidney clearance and tumor uptake with improved 64-copper PET imaging.

    PubMed

    Li, Lin; Crow, Desiree; Turatti, Fabio; Bading, James R; Anderson, Anne-Line; Poku, Erasmus; Yazaki, Paul J; Carmichael, Jenny; Leong, David; Wheatcroft, David; Wheatcroft, Michael P; Raubitschek, Andrew A; Hudson, Peter J; Colcher, David; Shively, John E

    2011-04-20

    (64)Cu in PET imaging in an animal model. Tumor uptake was significantly improved from the 50% ID/g at 24 h observed with diabodies that were pegylated on surface lysine residues. Importantly, there was no loss of immunoreactivity of the site-specific Cys-conjugated diabody to its antigen (TAG-72) compared to the parent, unconjugated diabody. We propose that thiolated diabodies conjugated to DOTAylated monodisperse PEGs have the potential for superior SPECT and PET imaging in a clinical setting.

  12. Improving prescribing practices with rapid diagnostic tests (RDTs): synthesis of 10 studies to explore reasons for variation in malaria RDT uptake and adherence

    PubMed Central

    Leurent, Baptiste; Baiden, Frank; Baltzell, Kimberly; Björkman, Anders; Bruxvoort, Katia; Clarke, Siân; DiLiberto, Deborah; Elfving, Kristina; Goodman, Catherine; Hopkins, Heidi; Lal, Sham; Liverani, Marco; Magnussen, Pascal; Mårtensson, Andreas; Mbacham, Wilfred; Mbonye, Anthony; Onwujekwe, Obinna; Roth Allen, Denise; Shakely, Delér; Staedke, Sarah; Vestergaard, Lasse S; Whitty, Christopher J M; Wiseman, Virginia; Chandler, Clare I R

    2017-01-01

    Objectives The overuse of antimalarial drugs is widespread. Effective methods to improve prescribing practice remain unclear. We evaluated the impact of 10 interventions that introduced rapid diagnostic tests for malaria (mRDTs) on the use of tests and adherence to results in different contexts. Design A comparative case study approach, analysing variation in outcomes across different settings. Setting Studies from the ACT Consortium evaluating mRDTs with a range of supporting interventions in 6 malaria endemic countries. Providers were governmental or non-governmental healthcare workers, private retail sector workers or community volunteers. Each study arm in a distinct setting was considered a case. Participants 28 cases from 10 studies were included, representing 148 461 patients seeking care for suspected malaria. Interventions The interventions included different mRDT training packages, supervision, supplies and community sensitisation. Outcome measures Analysis explored variation in: (1) uptake of mRDTs (% febrile patients tested); (2) provider adherence to positive mRDTs (% Plasmodium falciparum positive prescribed/given Artemisinin Combination Treatment); (3) provider adherence to negative mRDTs (% P. falciparum negative not prescribed/given antimalarial). Results Outcomes varied widely across cases: 12–100% mRDT uptake; 44–98% adherence to positive mRDTs; 27–100% adherence to negative mRDTs. Providers appeared more motivated to perform well when mRDTs and intervention characteristics fitted with their own priorities. Goodness of fit of mRDTs with existing consultation and diagnostic practices appeared crucial to maximising the impact of mRDTs on care, as did prior familiarity with malaria testing; adequate human resources and supplies; possible alternative treatments for mRDT-negative patients; a more directive intervention approach and local preferences for ACTs. Conclusions Basic training and resources are essential but insufficient to maximise

  13. miRNA regulation of nutrient homeostasis in plants

    PubMed Central

    Paul, Soumitra; Datta, Swapan K.; Datta, Karabi

    2015-01-01

    Small RNAs including micro RNAs (miRNA) play an indispensable role in cell signaling mechanisms. Generally, miRNAs that are 20–24 nucleotides long bind to specific complementary transcripts, attenuating gene expression at the post-transcriptional level or via translational inhibition. In plants, miRNAs have emerged as the principal regulator of various stress responses, including low nutrient availability. It has been reported that miRNAs are vital for maintaining nutrient homeostasis in plants by regulating the expression of transporters that are involved in nutrient uptake and mobilization. The present review highlights the role of various miRNAs in several macro- or micronutrient deficiencies in plants. Understanding the regulation of different transporters by miRNAs will aid in elucidating the underlying molecular signal transduction mechanisms during nutritional stress. Recent findings regarding nutrient related-miRNAs and their gene regulation machinery may delineate a novel platform for improving the nutritional status of cereal grains or crop biofortification programs in the future. PMID:25914709

  14. The addition of a Buttiauxella sp. phytase to lactating sow diets deficient in phosphorus and calcium reduces weight loss and improves nutrient digestibility.

    PubMed

    Wealleans, A L; Bold, R M; Dersjant-Li, Y; Awati, A

    2015-11-01

    Improving the efficiency of P use by pigs is especially important for lactating sows, whose metabolic requirements for P and Ca are high. The effect of a sp. phytase on lactating sow performance and nutrient digestibility was investigated using the combined data set for 6 studies. Treatments included a nutritionally adequate positive control diet (PC), a negative control diet (NC; with an average reduction of 0.16% available phosphorous and 0.15% Ca vs. PC), and NC supplemented with a sp. phytase at 250, 500, 1,000 or 2,000 phytase unit (FTU)/kg, respectively. Phosphorus and Ca deficiency in the NC resulted in significantly higher BW loss compared with the PC. All phytase treatments maintained BW loss at the same level as the PC. Increasing doses of phytase significantly ( < 0.05) reduced sow BW loss and increased energy intake, with improvements most apparent in sows older than parity 5. The positive effects on BW and energy intake were not observed in first-parity sows. This may be a consequence of fewer first parity sows in the data set. The apparent total tract digestibility of DM, OM, and CP were not affected by phytase supplementation. Digestible P and Ca were significantly improved (linear, < 0.0001; quadratic, < 0.0001) by increasing the dose of phytase supplementation. Significantly lower apparent total tract digestibility of energy, Ca, and P was found in the NC treatment vs. the PC treatment, whereas no significant differences were found between phytase treatment and the PC treatment. In conclusion, phytase supplementation at a level of 250 FTU/kg can replace 0.16% available phosphorous and 0.15% Ca; however, increasing the phytase dose can further reduce BW loss in sows fed P- and Ca- deficient diets.

  15. Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake.

    PubMed

    Martinez-Ballesta, Maria del Carmen; Bastías, Elizabeth; Zhu, Chuanfeng; Schäffner, Anton R; González-Moro, Begoña; González-Murua, Carmen; Carvajal, Micaela

    2008-04-01

    Under saline conditions, an optimal cell water balance, possibly mediated by aquaporins, is important to maintain the whole-plant water status. Furthermore, excessive accumulation of boric acid in the soil solution can be observed in saline soils. In this work, the interaction between salinity and excess boron with respect to the root hydraulic conductance (L(0)), abundance of aquaporins (ZmPIP1 and ZmPIP2), ATPase activity and root sap nutrient content, in the highly boron- and salt-tolerant Zea mays L. cv. amylacea, was evaluated. A downregulation of root ZmPIP1 and ZmPIP2 aquaporin contents were observed in NaCl-treated plants in agreement with the L(0) measurements. However, in the H3BO3-treated plants differences in the ZmPIP1 and ZmPIP2 abundance were observed. The ATPase activity was related directly to the amount of ATPase protein and Na+ concentration in the roots, for which an increase in NaCl- and H3BO3+ NaCl-treated plants was observed with respect to untreated and H3BO3-treated plants. Although nutrient imbalance may result from the effect of salinity or H3BO3 alone, an ameliorative effect was observed when both treatments were applied together. In conclusion, our results suggest that under salt stress, the activity of specific membrane components can be influenced directly by boric acid, regulating the functions of certain aquaporin isoforms and ATPase as possible components of the salinity tolerance mechanism.

  16. Long-term soil nutrient dynamics comparison under smallholding land and farmland policy in northeast of China.

    PubMed

    Ouyang, Wei; Wei, Xinfeng; Hao, Fanghua

    2013-04-15

    There are two kinds of land policies, the smallholding land policy (SLP) and the farmland policy (FLP) in China. The farmland nutrient dynamics under the two land policies were analysed with the soil system budget method. The averaged nitrogen (N) input of the SLP and the FLP over sixteen years increased about 23.9% and 33.3%, respectively and the phosphorus (P) input climbed about 39.1% and 42.3%, respectively. The statistical analysis showed that the land policies had significant impacts on N and P input from fertilizer and manure, but did not obviously affect the N input from seeds and biological N fixation. The efficiency percentage of N of the SLP and the FLP climbed about 54.5% and 59.4%, respectively, and the P efficiency improved by 52.7% and 82.6%, respectively. About the nutrient output, the F-test analysis indicated that the land polices had remarkable impacts on N output by crop uptake, ammonia volatilisation, denitrification, leaching and runoff, and P output by uptake, runoff, and leach. The balance showed that the absolute loss of N from land deceased about 43.6% and 46.0%, respectively, in the SLP and the FLP, and P discharge reduced about 34.2% and 75.2%, respectively. The F-test analysis of N and P efficiency and balance of between two polices both indicated that the FLP had significant impact on nutrient dynamic. With the Mitscherlich model, the correlations between nutrient input and crop uptake, usage efficiency and loss were analysed and showed that was a threshold value for the optimal nutrient input with the highest efficiency rate. For the optimal nutrient efficiency, the space for extra P addition was bigger than the N input. The FLP have more advantage than the SLP on the crop yield, nutrient efficiency and environmental discharge.

  17. Impact of flow conditions on ammonium uptake and microbial community structure in benthic biofilms

    NASA Astrophysics Data System (ADS)

    Arnon, Shai; Yanuka, Keren; Nejidat, Ali

    2010-05-01

    Excess nitrogen in surface waters is widely recognized to be a major global problem that adversely affects ecosystems, human health, and the economy. Today, most efforts to understand and model nutrient dynamics at large scales relies on macro-scale parameterization, such as mean channel geometry and velocity with uniform flow assumptions, as well as gross averages of in-situ nutrient transformation rates. However, there is increasing evidence that nutrient transformations in hyporheic zone are regulated by coupling between physical, chemical, and microbiological processes. Ignoring this greatly hinders the estimation of average biochemical transformation rates under the variable flow conditions found in aquatic systems. We used a combination of macro- and micro-scale observations in laboratory flumes to show that interplay between hydrodynamic transport, redox gradients, and microbial metabolism controls ammonium utilization by hyporheic microbial communities. Biofilm structural characteristics were quantified using denaturing gradient gel electrophoresis (DGGE) and real time PCR, while redox and pH gradients were measured using microelectrodes. We found that overlying velocities had profound effect on ammonium uptake due to mass transfer of ammonium from the bulk water to the benthic biofilms, but also due to the delivery of oxygen into the sediment bed. Under laminar flow conditions we didn't observe any change of ammonium uptake as a response to increase in overlying velocity. However, under non-laminar conditions we observe monotonic increase in ammonium uptake, with the greatest uptake under the fastest flow condition. We will discuss ammonium uptake rates results in the context of the different microbial communities and the micro-scale observations that were obtained using the microelectrodes. We anticipate that combined knowledge of the response of the microbial community and bulk nitrogen utilization rates to flow conditions will support the development of

  18. Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production.

    PubMed

    Mu, Dongyan; Ruan, Roger; Addy, Min; Mack, Sarah; Chen, Paul; Zhou, Yong

    2017-04-01

    This study focuses on analyzing nutrient distributions and environmental impacts of nutrient recycling, reusing, and discharging in algal biofuels production. The three biomass conversion pathways compared in this study were: hydrothermal liquefaction technology (HTL), hydrothermal hydrolysis pretreatment +HTL (HTP), and wet lipid extraction (WLE). Carbon, nitrogen, and phosphorous (C, N, P) flows were described in each pathway. A primary cost analysis was conducted to evaluate the economic performance. The LCA results show that the HTP reduced life cycle NOx emissions by 10% from HTL, but increased fossil fuel use, greenhouse gas emissions, and eutrophication potential by 14%, 5%, and 28% respectively. The cost of per gallon biodiesel produced in HTP was less than in HTL. To further reduce emissions, efforts should be focused on improving nutrient uptake rates in algae cultivation, increasing biomass carbon detention in hydrothermal hydrolysis, and/or enhancing biomass conversion rates in the biooil upgrading processes.

  19. Enhanced Mineral Uptake by Zea mays and Sorghum bicolor Roots Inoculated with Azospirillum brasilense†

    PubMed Central

    Lin, Willy; Okon, Yaacov; Hardy, Ralph W. F.

    1983-01-01

    Inoculation of corn (Zea mays) seeds with Azospirillum brasilense strain Cd or Sp 7 significantly enhanced (30 to 50% over controls) the uptake of NO3−, K+, and H2PO4− into 3- to 4-day- and 2-week-old root segments. No gross changes in root morphology were observed; altered cell arrangement in the outer four or five layers of the cortex was seen in photomicrographs of cross sections of inoculated corn roots. The surface activity involved in ion uptake probably increased, as shown by the darker staining by methylene blue of the affected area. Shoot dry weight increased 20 to 30% in inoculated plants after 3 weeks, presumably by enhancement of mineral uptake. Corn and sorghum plants grown to maturity on limiting nutrients in the greenhouse showed improved growth from inoculation approaching that of plants grown on normal nutrient concentrations. Enhanced ion uptake may be a significant factor in the crop yield enhancement reported for Azospirillum inoculation. PMID:16346311

  20. Co-administration With the Pharmacological Chaperone AT1001 Increases Recombinant Human α-Galactosidase A Tissue Uptake and Improves Substrate Reduction in Fabry Mice

    PubMed Central

    Benjamin, Elfrida R; Khanna, Richie; Schilling, Adriane; Flanagan, John J; Pellegrino, Lee J; Brignol, Nastry; Lun, Yi; Guillen, Darlene; Ranes, Brian E; Frascella, Michelle; Soska, Rebecca; Feng, Jessie; Dungan, Leo; Young, Brandy; Lockhart, David J; Valenzano, Kenneth J

    2012-01-01

    Fabry disease is an X-linked lysosomal storage disorder (LSD) caused by mutations in the gene (GLA) that encodes the lysosomal hydrolase α-galactosidase A (α-Gal A), and is characterized by pathological accumulation of the substrate, globotriaosylceramide (GL-3). Regular infusion of recombinant human α-Gal A (rhα-Gal A), termed enzyme replacement therapy (ERT), is the primary treatment for Fabry disease. However, rhα-Gal A has low physical stability, a short circulating half-life, and variable uptake into different disease-relevant tissues. We hypothesized that coadministration of the orally available, small molecule pharmacological chaperone AT1001 (GR181413A, 1-deoxygalactonojirimycin, migalastat hydrochloride) may improve the pharmacological properties of rhα-Gal A via binding and stabilization. AT1001 prevented rhα-Gal A denaturation and activity loss in vitro at neutral pH and 37 °C. Coincubation of Fabry fibroblasts with rhα-Gal A and AT1001 resulted in up to fourfold higher cellular α-Gal A and ~30% greater GL-3 reduction compared to rhα-Gal A alone. Furthermore, coadministration of AT1001 to rats increased the circulating half-life of rhα-Gal A by >2.5-fold, and in GLA knockout mice resulted in up to fivefold higher α-Gal A levels and fourfold greater GL-3 reduction than rhα-Gal A alone. Collectively, these data highlight the potentially beneficial effects of AT1001 on rhα-Gal A, thus warranting clinical investigation. PMID:22215019

  1. Feeding protein supplements in alfalfa hay-based lactation diets improves nutrient utilization, lactational performance, and feed efficiency of dairy cows.

    PubMed

    Neal, K; Eun, J-S; Young, A J; Mjoun, K; Hall, J O

    2014-12-01

    mixture of soybean meal and canola meal with SRU and YMP in alfalfa hay-based dairy diets can be a good approach to improve nutrient utilization efficiencies in lactating dairy cows.

  2. Nutrients in the nexus

    USGS Publications Warehouse

    Davidson, Eric A.; Niphong, Rachel; Ferguson, Richard B.; Palm, Cheryl; Osmond, Deanna L.; Baron, Jill S.

    2016-01-01

    Synthetic nitrogen (N) fertilizer has enabled modern agriculture to greatly improve human nutrition during the twentieth century, but it has also created unintended human health and environmental pollution challenges for the twenty-first century. Averaged globally, about half of the fertilizer-N applied to farms is removed with the crops, while the other half remains in the soil or is lost from farmers’ fields, resulting in water and air pollution. As human population continues to grow and food security improves in the developing world, the dual development goals of producing more nutritious food with low pollution will require both technological and socio-economic innovations in agriculture. Two case studies presented here, one in sub-Saharan Africa and the other in Midwestern United States, demonstrate how management of nutrients, water, and energy is inextricably linked in both small-scale and large-scale food production, and that science-based solutions to improve the efficiency of nutrient use can optimize food production while minimizing pollution. To achieve the needed large increases in nutrient use efficiency, however, technological developments must be accompanied by policies that recognize the complex economic and social factors affecting farmer decision-making and national policy priorities. Farmers need access to affordable nutrient supplies and support information, and the costs of improving efficiencies and avoiding pollution may need to be shared by society through innovative policies. Success will require interdisciplinary partnerships across public and private sectors, including farmers, private sector crop advisors, commodity supply chains, government agencies, university research and extension, and consumers.

  3. Partnership to Improve Nutrient Efficiency

    EPA Science Inventory

    PINE began in 2013 by working with OSU Extension and producers to locate and test existing 1990s lysimeters in Benton, Linn and Lane counties. The team identified additional producers to install Prenart lysimeters at a total of 15 sites. Producers allow for soil and water samplin...

  4. Selenite modulates the level of phenolics and nutrient element to alleviate the toxicity of arsenite in rice (Oryza sativa L.).

    PubMed

    Chauhan, Reshu; Awasthi, Surabhi; Tripathi, Preeti; Mishra, Seema; Dwivedi, Sanjay; Niranjan, Abhishek; Mallick, Shekhar; Tripathi, Pratibha; Pande, Veena; Tripathi, Rudra Deo

    2017-04-01

    Arsenic (As) contamination of paddy rice is a serious threat all over the world particularly in South East Asia. Selenium (Se) plays important role in protection of plants against various abiotic stresses including heavy metals. Moreover, arsenite (AsIII) and selenite (SeIV) can be biologically antagonistic due to similar electronic configuration and sharing the common transporter for their uptake in plant. In the present study, the response of oxidative stress, phenolic compounds and nutrient elements was analyzed to investigate Se mediated As tolerance in rice seedlings during AsIII and SeIV exposure in hydroponics. Selenite (25µM) significantly decreased As accumulation in plant than As (25µM) alone treated plants. Level of oxidative stress related parameters viz., reactive oxygen species (ROS), lipid peroxidation, electrical conductivity, nitric oxide and pro-oxidant enzyme (NADPH oxidase), were in the order of As>As+Se>control>Se. Selenium ameliorated As phytotoxicity by increased level of phenolic compounds particularly gallic acid, protocatechuic acid, ferulic acid and rutin and thiol metabolism related enzymes viz., serine acetyl transferase (SAT) and cysteine synthase (CS). Selenium supplementation enhanced the uptake of nutrient elements viz., Fe, Mn, Co, Cu, Zn, Mo, and improved plant growth. The results concluded that Se addition in As contaminated environment might be an important strategy to reduce As uptake and associated phytotoxicity in rice plant by modulation of phenolic compounds and increased uptake of nutrient elements.

  5. Nutrient database improvement project: the influence of USDA quality and yield grade on the separable components and proximate composition of raw and cooked retail cuts from the beef chuck.

    PubMed

    West, S E; Harris, K B; Haneklaus, A N; Savell, J W; Thompson, L D; Brooks, J C; Pool, J K; Luna, A M; Engle, T E; Schutz, J S; Woerner, D R; Arcibeque, S L; Belk, K E; Douglass, L; Leheska, J M; McNeill, S; Howe, J C; Holden, J M; Duvall, M; Patterson, K

    2014-08-01

    This study was designed to provide updated information on the separable components, cooking yields, and proximate composition of retail cuts from the beef chuck. Additionally, the impact the United States Department of Agriculture (USDA) Quality and Yield Grade may have on such factors was investigated. Ultimately, these data will be used in the USDA - Nutrient Data Laboratory's (NDL) National Nutrient Database for Standard Reference (SR). To represent the current United States beef supply, seventy-two carcasses were selected from six regions of the country based on USDA Yield Grade, USDA Quality Grade, gender, and genetic type. Whole beef chuck primals from selected carcasses were shipped to three university laboratories for subsequent retail cut fabrication, raw and cooked cut dissection, and proximate analyses. The incorporation of these data into the SR will improve dietary education, product labeling, and other applications both domestically and abroad, thus emphasizing the importance of accurate and relevant beef nutrient data.

  6. Nutrient availability moderates transpiration in Ehrharta calycina.

    PubMed

    Cramer, Michael D; Hoffmann, Vera; Verboom, G Anthony

    2008-01-01

    Transpiration-driven 'mass-flow' of soil-water can increase nutrient flow to the root surface. Here it was investigated whether transpiration could be partially regulated by nutrient status. Seeds of Ehrharta calycina from nine sites across a rainfall gradient were supplied with slow-release fertilizer dibbled into the sand surrounding the roots and directly available through interception, mass-flow and diffusion (dubbed 'interception'), or sequestered behind a 40-microm mesh and not directly accessible by the roots, but from which nutrients could move by diffusion or mass-flow (dubbed 'mass-flow'). Although mass-flow plants were significantly smaller than interception plants as a consequence of nutrient limitation, they transpired 60% faster, had 90% higher photosynthesis relative to transpiration (A/E), and 40% higher tissue P, Ca and Na concentrations than plants allowed to intercept nutrients directly. Tissue N and K concentrations were similar for interception and mass-flow plants. Transpiration was thus higher in the nutrient-constrained 'mass-flow' plants, increasing the transport of nutrients to the roots by mass-flow. Transpiration may have been regulated by N availability, resulting in similar tissue concentration between treatments. It is concluded that, although transpiration is a necessary consequence of photosynthetic CO(2) uptake in C(3) plants, plants can respond to nutrient limitation by varying transpiration-driven mass-flow of nutrients.

  7. Recognizing critical mine spoil health characteristics to design biochars for site improvement to promote stabilizing plant growth

    EPA Science Inventory

    Biochar can be used as an amendment to remediate metal-contaminated mine spoils for improved site phytostabilization. For successful phytostabilization to occur, biochar amendments must improve mine spoil health with respect to plant rooting plus uptake of water and nutrients. ...

  8. Nutrient biofortification of food crops.

    PubMed

    Hirschi, Kendal D

    2009-01-01

    Plant-based foods offer an array of nutrients that are essential for human nutrition and promote good health. However, the major staple crops of the world are often deficient in some of these nutrients. Traditional agricultural approaches can marginally enhance the nutritional value of some foods, but the advances in molecular biology are rapidly being exploited to engineer crops with enhanced key nutrients. Nutritional targets include elevated mineral content, improved fatty acid composition, increased amino acid levels, and heightened antioxidant levels. Unfortunately, in many cases the benefits of these "biofortified" crops to human nutrition have not been demonstrated.

  9. Nitrogen uptake and utilization by intact plants

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Tolley-Henry, L. C.

    1986-01-01

    The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.

  10. Breeding crops for improved mineral nutrition under climate change conditions.

    PubMed

    Pilbeam, David J

    2015-06-01

    Improvements in understanding how climate change may influence chemical and physical processes in soils, how this may affect nutrient availability, and how plants may respond to changed availability of nutrients will influence crop breeding programmes. The effects of increased atmospheric CO2 and warmer temperatures, both individually and combined, on soil microbial activity, including mycorrhizas and N-fixing organisms, are evaluated, together with their implications for nutrient availability. Potential changes to plant growth, and the combined effects of soil and plant changes on nutrient uptake, are discussed. The organization of research on the efficient use of macro- and micronutrients by crops under climate change conditions is outlined, including analysis of QTLs for nutrient efficiency. Suggestions for how the information gained can be used in plant breeding programmes are given.

  11. Homogenization, lyophilization or acid-extraction of meat products improves iron uptake from cereal-meat product combinations in an in vitro digestion/Caco-2 cell model.

    PubMed

    Pachón, Helena; Stoltzfus, Rebecca J; Glahn, Raymond P

    2009-03-01

    The effect of processing (homogenization, lyophilization, acid-extraction) meat products on iron uptake from meat combined with uncooked iron-fortified cereal was evaluated using an in vitro digestion/Caco-2 cell model. Beef was cooked, blended to create smaller meat particles, and combined with electrolytic iron-fortified infant rice cereal. Chicken liver was cooked and blended, lyophilized, or acid-extracted, and combined with FeSO4-fortified wheat flour. In the beef-cereal combination, Caco-2 cell iron uptake, assessed by measuring the ferritin formed by cells, was greater when the beef was blended for the greatest amount of time (360 s) compared with 30 s (P < 0.05). Smaller liver particles (blended for 360 s or lyophilized) significantly enhanced iron uptake compared to liver blended for 60 s (P < 0.001) in the liver-flour combination. Compared to liver blended for 60 s, acid-extraction of liver significantly enhanced iron uptake (P = 0.03) in the liver-flour combination. Homogenization of beef and homogenization, lyophilization, or acid-extraction of chicken liver increases the enhancing effect of meat products on iron absorption in iron-fortified cereals.

  12. Nutrient absorption.

    PubMed

    Rubin, Deborah C

    2004-03-01

    Our understanding of nutrient absorption continues to grow, from the development of unique animal models and from studies in which cutting-edge molecular and cellular biologic approaches have been used to analyze the structure and function of relevant molecules. Studies of the molecular genetics of inherited disorders have also provided many new insights into these processes. A major advance in lipid absorption has been the cloning and characterization of several intestinal acyl CoA:monoacylglycerol acyltransferases; these may provide new targets for antiobesity drug therapy. Studies of intestinal cholesterol absorption and reverse cholesterol transport have encouraged the development of novel potential treatments for hyperlipidemia. Observations in genetically modified mice and in humans with mutations in glucose transporter 2 suggest the importance of a separate microsomal membrane transport pathway for glucose transport. The study of iron metabolism has advanced greatly with the identification of the hemochromatosis gene and the continued examination of the genetic regulation of iron absorptive pathways. Several human thiamine transporters have been identified, and their specific roles in different tissues are being explored.

  13. MONODISPERSED PEG-DOTA CONJUGATED ANTI-TAG-72 DIABODY HAS LOW KIDNEY UPTAKE AND HIGH TUMOR TO BLOOD RATIOS RESULTING IN IMPROVED 64Cu PET IMAGING

    PubMed Central

    Li, Lin; Turatti, Fabio; Crow, Desiree; Bading, James R.; Anderson, Anne-Line; Poku, Erasmus; Yazaki, Paul J.; Williams, Lawrence E.; Tamvakis, Debra; Sanders, Paul; Leong, David; Raubitschek, Andrew; Hudson, Peter J.; Colcher, David; Shively, John E.

    2011-01-01

    Diabodies are non-covalent dimers of single chain antibody fragments (scFvs) that retain the avidity of intact IgG but have more favorable blood clearance than intact IgGs. Radiometals offer a wide range of half lives and emissions for matching imaging and therapy requirements and provide facile labeling of chelate-antibody conjugates. However, due to their high retention and metabolism in the kidney, use of radiometal labeled diabodies can be problematic for both imaging and therapy. Methods Having previously shown that 111In-DOTA-PEG3400-anti-CEA-diabody has similarly high tumor uptake and retention and less than 50% as much kidney uptake and retention as non-PEGylated diabody, we synthesized a similar derivative for an anti-TAG-72-diabody. We also reduced the molecular size of the polydispersed PEG3400 to monodispersed PEG27 and PEG12 (nominal masses of 1188 and 528, respectively). We performed biodistributions of their DOTA conjugates radiolabeled with 125I, 111In, or 64Cu in tumor bearing athymic mice. Results Addition of PEG3400 to the diabody reduced kidney uptake to a level (≈10 %ID/g) comparable to that obtained with radiometal labeled intact IgG. The PEG27 and PEG12 diabody conjugates also demonstrated low kidney uptake without reduction of tumor uptake or tumor to blood ratios. When radiolabeled with 64Cu, the DOTA-PEG12- and PEG27-diabody conjugates gave high contrast PET images of colon cancer xenografts in athymic mice. Conclusion PEGylated diabodies may be a valuable platform for delivery of radionuclides and other agents to tumors. PMID:20554731

  14. Manipulation of PBF/PTTG1IP Phosphorylation Status; a Potential New Therapeutic Strategy for Improving Radioiodine Uptake in Thyroid and Other Tumors

    PubMed Central

    Smith, V. E.; Sharma, N.; Watkins, R. J.; Read, M. L.; Ryan, G. A.; Kwan, P. P.; Martin, A.; Watkinson, J. C.; Boelaert, K.; Franklyn, J. A.

    2013-01-01

    Context: The clinical effectiveness of ablative radioiodine treatment of thyroid tumors is limited by the availability of the sodium iodide symporter (NIS) at the plasma membrane (PM) for uptake of 131I. A significant proportion of well-differentiated thyroid tumors are unable to concentrate sufficient radioiodine for effective therapy, and in other tumor models such as breast tumors, where radioiodine uptake would be an attractive therapeutic option, uptake is insufficient. Objective: Pituitary tumor–transforming gene-binding factor (PBF; PTTG1IP) is overexpressed in multiple cancers and significantly decreases NIS expression at the PM. The goal of this study was to identify a method by which PBF repression of NIS may be overcome in human tumors. Results: Here, we identify PBF as a tyrosine phosphoprotein that specifically binds the proto-oncogene tyrosine protein kinase Src in mass spectrometry, glutathione S-transferase pulldown and coimmunoprecipitation assays. Src induction leads to phosphorylation at PBF residue Y174. Abrogation of this residue results in PM retention and a markedly reduced ability to bind NIS. The Src inhibitor PP1 inhibits PBF phosphorylation in multiple cell lines in vitro, including human primary thyroid cells. Of direct clinical importance to the treatment of thyroid cancer, PP1 stimulates iodide uptake by transfected NIS in TPC1 thyroid carcinoma cells and entirely overcomes PBF repression of iodide uptake in human primary thyroid cells. Conclusions: We propose that targeting PBF phosphorylation at residue Y174 via tyrosine kinase inhibitors may be a novel therapeutic strategy to enhance the efficacy of ablative radioiodine treatment in thyroid and other endocrine and endocrine-related tumors. PMID:23678037

  15. Growth of mature boreal Norway spruce was not affected by elevated [CO(2)] and/or air temperature unless nutrient availability was improved.

    PubMed

    Sigurdsson, Bjarni D; Medhurst, Jane L; Wallin, Göran; Eggertsson, Olafur; Linder, Sune

    2013-11-01

    The growth responses of mature Norway spruce (Picea abies (L.) Karst.) trees exposed to elevated [CO(2)] (CE; 670-700 ppm) and long-term optimized nutrient availability or elevated air temperature (TE; ±3.9 °C) were studied in situ in northern Sweden in two 3 year field experiments using 12 whole-tree chambers in ca. 40-year-old forest. The first experiment (Exp. I) studied the interactions between CE and nutrient availability and the second (Exp. II) between CE and TE. It should be noted that only air temperature was elevated in Exp. II, while soil temperature was maintained close to ambient. In Exp. I, CE significantly increased the mean annual height increment, stem volume and biomass increment during the treatment period (25, 28, and 22%, respectively) when nutrients were supplied. There was, however, no significant positive CE effect found at the low natural nutrient availability. In Exp. II, which was conducted at the natural site fertility, neither CE nor TE significantly affected height or stem increment. It is concluded that the low nutrient availability (mainly nitrogen) in the boreal forests is likely to restrict their response to the continuous rise in [CO(2)] and/or TE.

  16. A centrally generated primary care physician audit report does not improve colonoscopy uptake after a positive result on a fecal occult blood test in Ontario’s ColonCancerCheck program

    PubMed Central

    Stock, D.; Rabeneck, L.; Baxter, N.N.; Paszat, L.F.; Sutradhar, R.; Yun, L.; Tinmouth, J.

    2017-01-01

    Background Timely follow-up of fecal occult blood screening with colonoscopy is essential for achieving colorectal cancer mortality reduction. In the present study, we evaluated the effectiveness of centrally generated, physician-targeted audit and feedback to improve colonoscopy uptake after a positive fecal occult blood test (fobt) result within Ontario’s population-wide ColonCancerCheck Program. Methods This prospective cohort study used data sets from Ontario’s ColonCancerCheck Program (2008–2011) that were linked to provincial administrative health databases. Cox proportional hazards regression was used to estimate the effect of centralized, physician-targeted audit and feedback on colonoscopy uptake in an Ontario-wide fobt-positive cohort. Results A mailed physician audit and feedback report identifying individuals outstanding for colonoscopy for 3 or more months after a positive fobt result did not increase the likelihood of colonoscopy uptake (hazard ratio: 0.95; 95% confidence interval: 0.79 to 1.13). Duration of positive fobt status was strongly inversely associated with the hazard of follow-up colonoscopy (p for linear trend: <0.001). Conclusions In a large population-wide setting, centralized tracking in the form of physician-targeted mailed audit and feedback reports does not improve colonoscopy uptake for screening participants with a positive fobt result outstanding for 3 or more months. Mailed physician-targeted screening audit and feedback reports alone are unlikely to improve compliance with follow-up colonoscopy in Ontario. Other interventions such as physician audits or automatic referrals, demonstrated to be effective in other jurisdictions, might be warranted. PMID:28270725

  17. Response of uptake and translocation of phenanthrene to nitrogen form in lettuce and wheat seedlings.

    PubMed

    Zhan, Xinhua; Yuan, Jiahan; Yue, Le; Xu, Guohua; Hu, Bing; Xu, Renkou

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread chemicals that are potentially carcinogenic and toxic to human due to dietary intake of food crops contaminated by PAHs. To date, the mechanisms underlying root uptake and acropetal translocation of PAHs in crops are poorly understood. Here we describe uptake and translocation of phenanthrene (a model PAH) in relation to nitrogen form and concentration in wheat and lettuce seedlings. At concentrations of 0-15 mM, phenanthrene uptake by roots is enhanced with an increase in ammonium and inhibited with an increment of nitrate. Phenanthrene concentration in shoots is much lower than in roots, suggesting that the direction of phenanthrene transport is acropetal. Ammonium reduces both phenanthrene accumulation and bioconcentration factor in shoots, as well as translocation factor, but nitrate elevates them. Phenanthrene uptake increases nutrient solution pH in the treatments with either nitrate or ammonium. Thus, it is concluded that the root uptake and acropetal translocation of phenanthrene in crops are associated with nitrogen form. Our results provide both a novel insight into the mechanism on PAH transport in higher plants and a promising agronomic strategy to minimize PAH contamination in crops or to improve phytoremediation of PAH-contaminated soils or water via nitrogen management.

  18. The edible red alga, Gracilaria verrucosa, inhibits lipid accumulation and ROS production, but improves glucose uptake in 3T3-L1 cells.

    PubMed

    Woo, Mi-Seon; Choi, Hyeon-Son; Lee, Ok-Hwan; Lee, Boo-Yong

    2013-07-01

    Gracilaria verrucosa is a red alga that is widely distributed in seaside areas of many countries. We examined the effect of G. verrucosa extract on adipogenesis, reactive oxygen species (ROS) production, and glucose uptake in 3T3-L1 cells. Oil red O staining and a nitroblue tetrazolium assay showed that G. verrucosa extract inhibited lipid accumulation and ROS production, respectively. mRNA levels of adipogenic transcription factors, peroxisome proliferator-activated receptor gamma and CCAAT/enhancer-binding protein alpha, as well as of their target gene, adipocyte protein 2, were reduced upon treatment with G. verrucosa extract. However, G. verrucosa extract increased glucose uptake, glucose transporter-4 expression, and AMP-activated protein kinaseα (AMPKα) phosphorylation compared to the control. Our results suggest that the anti-adipogenic and insulin-sensitive effects of G. verrucosa extract can be recapitulated to activation of AMPKα.

  19. Isomeric C12-alkamides from the roots of Echinacea purpurea improve basal and insulin-dependent glucose uptake in 3T3-L1 adipocytes.

    PubMed

    Kotowska, Dorota; El-Houri, Rime B; Borkowski, Kamil; Petersen, Rasmus K; Fretté, Xavier C; Wolber, Gerhard; Grevsen, Kai; Christensen, Kathrine B; Christensen, Lars P; Kristiansen, Karsten

    2014-12-01

    Echinacea purpurea has been used in traditional medicine as a remedy for the treatment and prevention of upper respiratory tract infections and the common cold. Recent investigations have indicated that E. purpurea also has an effect on insulin resistance. A dichloromethane extract of E. purpurea roots was found to enhance glucose uptake in adipocytes and to activate peroxisome proliferator-activated receptor γ. The purpose of the present study was to identify the bioactive compounds responsible for the potential antidiabetic effect of the dichloromethane extract using a bioassay-guided fractionation approach. Basal and insulin-dependent glucose uptake in 3T3-L1 adipocytes were used to assess the bioactivity of extract, fractions and isolated metabolites. A peroxisome proliferator-activated receptor γ transactivation assay was used to determine the peroxisome proliferator-activated receptor γ activating properties of the extract, active fractions and isolated metabolites. Two novel isomeric dodeca-2E,4E,8Z,10E/Z-tetraenoic acid 2-methylbutylamides together with two known C12-alkamides and α-linolenic acid were isolated from the active fractions. The isomeric C12-alkamides were found to activate peroxisome proliferator-activated receptor γ, to increase basal and insulin-dependent glucose uptake in adipocytes in a dose-dependent manner, and to exhibit characteristics of a peroxisome proliferator-activated receptor γ partial agonist.

  20. Lipid-based nutrient supplementation in the first 1000 d improves child growth in Bangladesh: a cluster-randomized effectiveness trial.

    PubMed

    Dewey, Kathryn G; Mridha, Malay K; Matias, Susana L; Arnold, Charles D; Cummins, Joseph R; Khan, Md Showkat Ali; Maalouf-Manasseh, Zeina; Siddiqui, Zakia; Ullah, Md Barkat; Vosti, Stephen A

    2017-04-01

    Background: Stunting in linear growth occurs mainly during the first 1000 d, from conception through 24 mo of age. Despite the recognition of this critical period, there have been few evaluations of the growth impact of interventions that cover most of this window.Objective: We evaluated home fortification approaches for preventing maternal and child undernutrition within a community-based health program. We hypothesized that small-quantity lipid-based nutrient supplements (LNSs) provided to women during pregnancy and the first 6 mo postpartum, LNSs provided to their offspring from 6 to 24 mo of age, or both would result in greater child length-for-age z score (LAZ) at 24 mo than iron and folic acid (IFA) provided to women during pregnancy and postpartum plus micronutrient powder (MNP) or no supplementation for their offspring from 6 to 24 mo.Design: We conducted a cluster-randomized effectiveness trial with 4 arms: 1) women and children both received LNSs (LNS-LNS group), 2) women received IFA and children received LNSs (IFA-LNS group), 3) women received IFA and children received MNP (IFA-MNP group), and 4) women received IFA and children received no supplements (IFA-Control group). We enrolled 4011 women at ≤20 wk of gestation within 64 clusters, each comprising the supervision area of a community health worker. Analyses were primarily performed by using ANCOVA F tests and Tukey-Kramer-corrected pairwise comparisons.Results: At 24 mo, the LNS-LNS group had significantly higher LAZ (+0.13 compared with the IFA-MNP group) and head circumference (+0.15 z score compared with the IFA-Control group); these outcomes did not differ between the other groups. Stunting prevalence (LAZ <-2) was lower in the LNS-LNS group at 18 mo than in the IFA-MNP group (OR: 0.70; 95% CI: 0.53, 0.92), but the difference diminished by 24 mo (OR: 0.81; 95% CI: 0.63, 1.04).Conclusion: Home fortification with small-quantity LNSs, but not MNP, during the first 1000 d improved child linear

  1. Tree nut consumption improves nutrient intake and diet quality in US adults: an analysis of National Health and Nutrition Examination Survey (NHANES) 1999-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent epidemiologic studies assessing tree nut (almonds, Brazil nuts, cashews, hazelnuts, macadamia nuts, pecans, pine nuts, pistachios, and walnuts) consumption and the association with nutrient intake and diet quality are lacking. This study determined the association of tree nut consumption and ...

  2. Improved diet quality, nutrient intake, and health associated with out-of-hand tree nut consumption in U.S. adults: NHANES 1999–2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    HANES (1999–2004), data were used to examine the association of out-of-hand tree nut consumption (almonds, Brazil nuts, cashews, filberts, macadamias, pecans, pine nuts, pistachios, and walnuts) with diet quality, nutrient intakes, and health risks in adults 19+ yrs (n equals 13,292). Using 24 hour ...

  3. Fruit juice consumption is associated with improved nutrient adequacy in children and adolescents: The National Health and Nutrition Examination Survey (NHANES) 2003-2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of the study was to examine the contribution of 100% fruit juice consumption to dietary adequacy of shortfall nutrients by children and adolescents. This was a cross-sectional study and used data from the 2003–2006 National Health and Nutrition Examination Survey (NHANES). Participants were...

  4. Consumption of whole grains is associated with improved diet quality and nutrient intake in children and adolescents: the National Health and Nutrition Examination Survey 1999–2004

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to examine the association of consumption of whole grains (WG) with diet quality and nutrient intake in children and adolescents by a secondary analysis of cross-sectional data. The 1999-2004 National Health and Nutrition Examination Survey was used to study children ...

  5. The Thames Science Plan: Suggested Hydrologic Investigations to Support Nutrient-Related Water-Quality Improvements in the Thames River Basin, Connecticut

    DTIC Science & Technology

    2005-01-01

    phytoplankton produced in rivers upstream; upstream litterfall and soil-derived organic matter; actual phytoplankton production in the harbor; downstream...the larger estuary. Questions to be addressed regarding the physical pro- cesses in Norwich Harbor include circulation patterns in the harbor...quantities of organic matter contributed by different sources? The inputs of organic matter include the nutrient loads, and the circulation patterns

  6. Out-of-hand nut consumption is associated with improved nutrient intake and health risk markers in US children and adults: NHANES 1999-2004

    Technology Transfer Automated Retrieval System (TEKTRAN)