Science.gov

Sample records for improves protein identification

  1. Utility of RNA-seq and GPMDB protein observation frequency for improving the sensitivity of protein identification by tandem MS.

    PubMed

    Shanmugam, Avinash K; Yocum, Anastasia K; Nesvizhskii, Alexey I

    2014-09-05

    Tandem mass spectrometry (MS/MS) followed by database search is the method of choice for protein identification in proteomic studies. Database searching methods employ spectral matching algorithms and statistical models to identify and quantify proteins in a sample. In general, these methods do not utilize any information other than spectral data for protein identification. However, considering the wealth of external data available for many biological systems, analysis methods can incorporate such information to improve the sensitivity of protein identification. In this study, we present a method to utilize Global Proteome Machine Database identification frequencies and RNA-seq transcript abundances to adjust the confidence scores of protein identifications. The method described is particularly useful for samples with low-to-moderate proteome coverage (i.e., <2000-3000 proteins), where we observe up to an 8% improvement in the number of proteins identified at a 1% false discovery rate.

  2. Mass Processing—An Improved Technique for Protein Identification with Mass Spectrometry Data

    PubMed Central

    Henkin, Josh A.; Jennings, Mark E.; Matthews, Dwight E.; Vigoreaux, Jim O.

    2004-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis following tryptic digestion of polyacrylamide gel pieces is a common technique used to identify proteins. This approach is rapid, sensitive, and user friendly, and is becoming widely available to scientists in a variety of biological fields. Here we introduce a simple and effective strategy called “mass processing” where the list of masses generated from a mass spectrometer undergoes two stages of data reduction before identification. Mass processing improves the ability to identify in-gel tryptic-digested proteins by reducing the number of nonsample masses submitted to protein identification database search engines. Our results demonstrate that mass processing improves the statistical score and rank of putative protein identifications, especially with low-quantity samples, thus increasing the ability to confidently identify proteins with mass spectrometry data. PMID:15585819

  3. Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins

    PubMed Central

    Langó, Tamás; Róna, Gergely; Hunyadi-Gulyás, Éva; Turiák, Lilla; Varga, Julia; Dobson, László; Várady, György; Drahos, László; Vértessy, Beáta G.; Medzihradszky, Katalin F.; Szakács, Gergely; Tusnády, Gábor E.

    2017-01-01

    Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins. PMID:28211907

  4. Identification of Extracellular Segments by Mass Spectrometry Improves Topology Prediction of Transmembrane Proteins.

    PubMed

    Langó, Tamás; Róna, Gergely; Hunyadi-Gulyás, Éva; Turiák, Lilla; Varga, Julia; Dobson, László; Várady, György; Drahos, László; Vértessy, Beáta G; Medzihradszky, Katalin F; Szakács, Gergely; Tusnády, Gábor E

    2017-02-13

    Transmembrane proteins play crucial role in signaling, ion transport, nutrient uptake, as well as in maintaining the dynamic equilibrium between the internal and external environment of cells. Despite their important biological functions and abundance, less than 2% of all determined structures are transmembrane proteins. Given the persisting technical difficulties associated with high resolution structure determination of transmembrane proteins, additional methods, including computational and experimental techniques remain vital in promoting our understanding of their topologies, 3D structures, functions and interactions. Here we report a method for the high-throughput determination of extracellular segments of transmembrane proteins based on the identification of surface labeled and biotin captured peptide fragments by LC/MS/MS. We show that reliable identification of extracellular protein segments increases the accuracy and reliability of existing topology prediction algorithms. Using the experimental topology data as constraints, our improved prediction tool provides accurate and reliable topology models for hundreds of human transmembrane proteins.

  5. Improved recovery and identification of membrane proteins from rat hepatic cells using a centrifugal proteomic reactor.

    PubMed

    Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel

    2011-10-01

    Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥ 2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism.

  6. Improved Recovery and Identification of Membrane Proteins from Rat Hepatic Cells using a Centrifugal Proteomic Reactor*

    PubMed Central

    Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G.; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel

    2011-01-01

    Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism. PMID:21749988

  7. Improvement of hydrophobic integral membrane protein identification by mild performic acid oxidation-assisted digestion.

    PubMed

    Cao, Rui; Liu, Yisong; Chen, Ping; Lv, Rong; Song, Qin; Sheng, Tingting; He, Quanyuan; Wang, Yin; Wang, Xianchun; Liang, Songping

    2010-12-15

    Integral membrane proteins (IMPs) are critical for the maintenance of biological systems and represent important targets for the treatment of disease. The hydrophobicity and low abundance of IMPs make them difficult to analyze. In proteomic analyses, hydrophobic peptides including transmembrane domains are often underrepresented, and this reduces the sequence coverage and reliability of the identified IMPs. Here we report a new strategy, mild performic acid oxidation treatment (mPAOT), for improvement of IMP identification. In the mPAOT strategy, the hydrophobicity of IMPs is significantly decreased by oxidizing their methionine and cysteine residues with performic acid, thereby improving the solubility and enzymolysis of these proteins. The application of the mPAOT strategy to the analysis of IMPs from human nasopharyngeal carcinoma CNE1 cell line demonstrated that many IMPs, including those with high hydrophobicity, could be reliably identified.

  8. Deglycosylation Step to Improve the Identification of Egg Proteins in Art Samples.

    PubMed

    Vinciguerra, Roberto; Galano, Eugenio; Vallone, Fabiana; Greco, Giovanna; Vergara, Alessandro; Bonaduce, Ilaria; Marino, Gennaro; Pucci, Pietro; Amoresano, Angela; Birolo, Leila

    2015-10-20

    A deglycosylation step using Peptide-N-Glycosidase F (PNGaseF) has been introduced in a standard proteomic protocol to more confidently identify egg based binders. The ingenuity of introducing a PNGaseF digestion was aimed at removing the molecular hindrance, made up by the heavily glycosylated egg proteins, before the protease(s) hydrolysis. This novelty in the protocol resulted in obtaining a significant increase of proteolytic egg peptides thus improving the quality and reliability of egg identification in artwork samples. The protocol has been set up on paint replicas and successfully tested on two historical samples of different origin.

  9. Improved Identification and Relative Quantification of Sites of Peptide and Protein Oxidation for Hydroxyl Radical Footprinting

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyan; Li, Zixuan; Xie, Boer; Sharp, Joshua S.

    2013-11-01

    Protein oxidation is typically associated with oxidative stress and aging and affects protein function in normal and pathological processes. Additionally, deliberate oxidative labeling is used to probe protein structure and protein-ligand interactions in hydroxyl radical protein footprinting (HRPF). Oxidation often occurs at multiple sites, leading to mixtures of oxidation isomers that differ only by the site of modification. We utilized sets of synthetic, isomeric "oxidized" peptides to test and compare the ability of electron-transfer dissociation (ETD) and collision-induced dissociation (CID), as well as nano-ultra high performance liquid chromatography (nanoUPLC) separation, to quantitate oxidation isomers with one oxidation at multiple adjacent sites in mixtures of peptides. Tandem mass spectrometry by ETD generates fragment ion ratios that accurately report on relative oxidative modification extent on specific sites, regardless of the charge state of the precursor ion. Conversely, CID was found to generate quantitative MS/MS product ions only at the higher precursor charge state. Oxidized isomers having multiple sites of oxidation in each of two peptide sequences in HRPF product of protein Robo-1 Ig1-2, a protein involved in nervous system axon guidance, were also identified and the oxidation extent at each residue was quantified by ETD without prior liquid chromatography (LC) separation. ETD has proven to be a reliable technique for simultaneous identification and relative quantification of a variety of functionally different oxidation isomers, and is a valuable tool for the study of oxidative stress, as well as for improving spatial resolution for HRPF studies.

  10. Improved Protein Extractionand Protein Identification from Archival Formalin-fixed Paraffin-embedded Human Aortas

    PubMed Central

    Fu, Zongming; Yan, Kun; Rosenberg, Avraham; Jin, Zhicheng; Crain, Barbara; Athas, Grace; Vander Heide, Richard S; Howard, Timothy; Everett, Allen D.; Herrington, David; Van Eyk, Jennifer E.

    2014-01-01

    Purpose Evaluate combination of heat and elevated pressure to enhance protein extraction and quality of formaldehyde-fixed (FF), and FF paraffin-embedded (FFPE) aorta for proteomics. Experiment design Proteins were extracted from fresh frozen aorta at RT. FF and FFPE aortas (3 months and 15 years) were extracted at RT, heat alone, or a combination of heat and high pressure. Protein yields were compared, and digested peptides from the extracts were analyzed with mass spectrometry. Results Combined heat and elevated pressure increased protein yield from human FF or FFPE aorta compared to matched tissues with heat alone (1.5 fold) or at RT (8.3 fold), resulting in more proteins identified and with more sequence coverage. The length of storage did adversely affect the quality of proteins from FF tissue. For long term storage, aorta was preserved better with FFPE than FF alone. Periostin and MGF-E8 were demonstrated suitable for MRM assays from FFPE aorta. Conclusions and clinical relevance Combination of heat and high pressure is an effective method to extract proteins from FFPE aorta for downstream proteomics. This method opens the possibility for use of archival and often rare FFPE aortas and possibly other tissues available to proteomics for biomarker discovery and quantification. PMID:23339088

  11. Improved protein extraction and protein identification from archival formalin-fixed paraffin-embedded human aortas.

    PubMed

    Fu, Zongming; Yan, Kun; Rosenberg, Avraham; Jin, Zhicheng; Crain, Barbara; Athas, Grace; Heide, Richard S Vander; Howard, Timothy; Everett, Allen D; Herrington, David; Van Eyk, Jennifer E

    2013-04-01

    Evaluate combination of heat and elevated pressure to enhance protein extraction and quality of formalin-fixed (FF), and FF paraffin-embedded (FFPE) aorta for proteomics. Proteins were extracted from fresh frozen aorta at room temperature (RT). FF and FFPE aortas (3 months and 15 years) were extracted at RT, heat alone, or a combination of heat and high pressure. Protein yields were compared, and digested peptides from the extracts were analyzed with MS. Combined heat and elevated pressure increased protein yield from human FF or FFPE aorta compared to matched tissues with heat alone (1.5-fold) or at RT (8.3-fold), resulting in more proteins identified and with more sequence coverage. The length of storage did adversely affect the quality of proteins from FF tissue. For long-term storage, aorta was preserved better with FFPE than FF alone. Periostin and MGF-E8 were demonstrated suitable for MRM assays from FFPE aorta. Combination of heat and high pressure is an effective method to extract proteins from FFPE aorta for downstream proteomics. This method opens the possibility for use of archival and often rare FFPE aortas and possibly other tissues available to proteomics for biomarker discovery and quantification. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Protein-energy malnutrition in the rehabilitation setting: Evidence to improve identification.

    PubMed

    Marshall, Skye

    2016-04-01

    Methods of identifying malnutrition in the rehabilitation setting require further examination so that patient outcomes may be improved. The purpose of this narrative review was to: (1) examine the defining characteristics of malnutrition, starvation, sarcopenia and cachexia; (2) review the validity of nutrition screening tools and nutrition assessment tools in the rehabilitation setting; and (3) determine the prevalence of malnutrition in the rehabilitation setting by geographical region and method of diagnosis. A narrative review was conducted drawing upon international literature. Starvation represents one form of malnutrition. Inadequate energy and protein intake are the critical factor in the aetiology of malnutrition, which is distinct from sarcopenia and cachexia. Eight nutrition screening tools and two nutrition assessment tools have been evaluated for criterion validity in the rehabilitation setting, and consideration must be given to the resources of the facility and the patient group in order to select the appropriate tool. The prevalence of malnutrition in the rehabilitation setting ranges from 14-65% worldwide with the highest prevalence reported in rural, European and Australian settings. Malnutrition is highly prevalent in the rehabilitation setting, and consideration must be given to the patient group when determining the most appropriate method of identification so that resources may be used efficaciously and the chance of misdiagnosis minimised.

  13. IDSieve: Protein Identification Using Peptide pI Filtering of MS/MS Data for Improved Confidence in Identifications

    PubMed Central

    West, K.D.; Zhang, X.; Bundy, J.L.; Stephenson, J.L.; Cargile, B.J.; Bunger, M.K.; Garge, N.R.

    2011-01-01

    The main challenge of tandem mass spectrometry based proteomic analysis is to correctly match the tandem mass spectra produced to the correct peptides. However, the large number of protein sequences in a database increases the chances of a false positive identification for any given peptide match. Here we present an automated algorithm called IDSieve that utilizes target-decoy database search strategy in combination with pI filtering to allow greater confidence for peptide identifications. IDSieve considers the SEQUEST parameters Xcorr and äCn to assign statistical confidence (false discovery rates) to the peptide matches. The distribution of predicted pI values for peptide spectrum matches (PSMs) is considered separately for each immobilized pH gradient isoelectric focusing fraction, and matches with pI values within 1.5 times inter-quartile range (within pI range) are analyzed independently of matches outside the pI ranges. We tested the performance of IDSieve and Peptide/Protein Prophet on the SEQUEST outputs from 60 immobilized pH gradient isoelectric focusing fractions derived from mouse intestinal epithelial cell protein extracts. Our results demonstrated that IDSieve produced 1355 more peptide spectrum matches (or 330 more peptides) than Peptide Prophet using comparable false positive rate cutoffs. Therefore, combining pI filtering with the appropriate statistical significance measurements allows for a higher number of protein identifications without adversely affecting the false positive rate. We further tested the performance of pI filtering using ID Sieve when samples were prefractionated using either pH range 3.5–4.5 or 3–10, and either 24cm or 7cm IPG strips.

  14. Method optimization for proteomic analysis of soybean leaf: Improvements in identification of new and low-abundance proteins

    PubMed Central

    Mesquita, Rosilene Oliveira; de Almeida Soares, Eduardo; de Barros, Everaldo Gonçalves; Loureiro, Marcelo Ehlers

    2012-01-01

    The most critical step in any proteomic study is protein extraction and sample preparation. Better solubilization increases the separation and resolution of gels, allowing identification of a higher number of proteins and more accurate quantitation of differences in gene expression. Despite the existence of published results for the optimization of proteomic analyses of soybean seeds, no comparable data are available for proteomic studies of soybean leaf tissue. In this work we have tested the effects of modification of a TCA-acetone method on the resolution of 2-DE gels of leaves and roots of soybean. Better focusing was obtained when both mercaptoethanol and dithiothreitol were used in the extraction buffer simultaneously. Increasing the number of washes of TCA precipitated protein with acetone, using a final wash with 80% ethanol and using sonication to ressuspend the pellet increased the number of detected proteins as well the resolution of the 2-DE gels. Using this approach we have constructed a soybean protein map. The major group of identified proteins corresponded to genes of unknown function. The second and third most abundant groups of proteins were composed of photosynthesis and metabolism related genes. The resulting protocol improved protein solubility and gel resolution allowing the identification of 122 soybean leaf proteins, 72 of which were not detected in other published soybean leaf 2-DE gel datasets, including a transcription factor and several signaling proteins. PMID:22802721

  15. Methylated-antibody affinity purification to improve proteomic identification of plant RNA polymerase Pol V complex and the interacting proteins

    PubMed Central

    Qin, Guochen; Ma, Jun; Chen, Xiaomei; Chu, Zhaoqing; She, Yi-Min

    2017-01-01

    Affinity purification followed by enzymatic digestion and mass spectrometry has been widely utilized for the sensitive detection of interacting proteins and protein complexes in various organisms. In plants, the method is technically challenging due to the low abundance proteins, non-specific binding and difficulties of eluting interacting proteins from antibody beads. In this report, we describe a strategy to modify antibodies by reductive methylation of lysines without affecting their binding properties, followed by on-bead digestion of bound proteins with endoproteinase Lys-C. By this method, the antibody remains intact and does not interfere with the downstream identification of interacting proteins. Non-specific binding proteins were excluded using 14N/15N-metabolic labeling of wild-type and the transgenic plant counterparts. The method was employed to identify 12 co-immunoprecipitated protein subunits in Pol V complex and to discover 17 potential interacting protein targets in Arabidopsis. Our results demonstrated that the modification of antibodies by reductive dimethylation can improve the reliability and sensitivity of identifying low-abundance proteins through on-bead digestion and mass spectrometry. We also show that coupling this technique with chemical crosslinking enables in-depth characterization of endogenous protein complexes and the protein-protein interaction networks including mapping the surface topology and post-translational modifications of interacting proteins. PMID:28224978

  16. Methylated-antibody affinity purification to improve proteomic identification of plant RNA polymerase Pol V complex and the interacting proteins.

    PubMed

    Qin, Guochen; Ma, Jun; Chen, Xiaomei; Chu, Zhaoqing; She, Yi-Min

    2017-02-22

    Affinity purification followed by enzymatic digestion and mass spectrometry has been widely utilized for the sensitive detection of interacting proteins and protein complexes in various organisms. In plants, the method is technically challenging due to the low abundance proteins, non-specific binding and difficulties of eluting interacting proteins from antibody beads. In this report, we describe a strategy to modify antibodies by reductive methylation of lysines without affecting their binding properties, followed by on-bead digestion of bound proteins with endoproteinase Lys-C. By this method, the antibody remains intact and does not interfere with the downstream identification of interacting proteins. Non-specific binding proteins were excluded using (14)N/(15)N-metabolic labeling of wild-type and the transgenic plant counterparts. The method was employed to identify 12 co-immunoprecipitated protein subunits in Pol V complex and to discover 17 potential interacting protein targets in Arabidopsis. Our results demonstrated that the modification of antibodies by reductive dimethylation can improve the reliability and sensitivity of identifying low-abundance proteins through on-bead digestion and mass spectrometry. We also show that coupling this technique with chemical crosslinking enables in-depth characterization of endogenous protein complexes and the protein-protein interaction networks including mapping the surface topology and post-translational modifications of interacting proteins.

  17. Automating proteome analysis: improvements in throughput, quality and accuracy of protein identification by peptide mass fingerprinting.

    PubMed

    Canelle, Ludovic; Pionneau, Cédric; Marie, Arul; Bousquet, Jordane; Bigeard, Jean; Lutomski, Didier; Kadri, Tewfik; Caron, Michel; Joubert-Caron, Raymonde

    2004-01-01

    The use of robots has major effects on maximizing the proteomic workflow required in an increasing number of high-throughput projects and on increasing the quality of the data. In peptide mass finger printing (PMF), automation of steps downstream of two-dimensional gel electrophoresis is essential. To achieve this goal, the workflow must be fluid. We have developed tools using macros written in Microsoft Excel and Word to complete the automation of our platform. Additionally, because sample preparation is crucial for identification of proteins by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, we optimized a sandwich method usable by any robot for spotting digests on a MALDI target. This procedure enables further efficient automated washing steps directly on the MALDI target. The success rate of PMF identification was evaluated for the automated sandwich method, and for the dried-droplet method implemented on the robot as recommended by the manufacturer. Of the two methods, the sandwich method achieved the highest identification success rate and sequence coverage of proteins. 2004 John Wiley & Sons, Ltd.

  18. The information encrypted in accurate peptide masses-improved protein identification and assistance in glycopeptide identification and characterization.

    PubMed

    Lehmann, W D; Bohne, A; von Der Lieth, C W

    2000-11-01

    Analytically useful information from accurate mass data for peptides with an error of protein database. Compared with the random peptide data, the natural data show a higher average deltamass value and a smaller width of the mass distribution. This deviation can be ascribed to the non-random abundances of the standard amino acids. In particular, accurate mass data for peptides located near the edges of the natural mass distribution contain analytical information. Mass data near the edges generate very few hits in a protein database search and are therefore highly specific for protein identification. Mass signals near the low-mass edge indicate either a high probability that the peptide contains one or several cysteine sites, or that the peptide is highly acidic due to the presence of several D and/or E residues or that it is a glycopeptide. Mass data near the high-mass edge indicate a non-polar peptide with a high abundance of the non-polar amino acids leucine, isoleucine and valine. An Internet page is introduced that analyzes the deviation of a peptide mass from the average deltamass value and that supports the characterization of glycopeptides found near the low-mass edge of the mass distribution. Copyright 2000 John Wiley & Sons, Ltd.

  19. Improved identification of wheat gluten proteins through alkylation of cysteine residues and peptide-based mass spectrometry

    PubMed Central

    Rombouts, Ine; Lagrain, Bert; Brunnbauer, Markus; Delcour, Jan A.; Koehler, Peter

    2013-01-01

    The concentration and composition of wheat gluten proteins and the presence, concentration and location of cysteine residues therein are important for wheat flour quality. However, it is difficult to identify gluten proteins, as they are an extremely polymorphic mixture of prolamins. We here present methods for cysteine labeling of wheat prolamins with 4-vinylpyridine (4-VP) and iodoacetamide (IDAM) which, as compared to label-free analysis, substantially improve identification of cysteine-containing peptides in enzymic prolamin digests by electrospray ionization - tandem mass spectrometry. Both chymotrypsin and thermolysin yielded cysteine-containing peptides from different gluten proteins, but more proteins could be identified after chymotryptic digestion. In addition, to the best of our knowledge, we were the first to label prolamins with isotope coded affinity tags (ICAT), which are commonly used for quantitative proteomics. However, more peptides were detected after labeling gluten proteins with 4-VP and IDAM than with ICAT. PMID:23880742

  20. An improved hypergeometric probability method for identification of functionally linked proteins using phylogenetic profiles

    PubMed Central

    Kotaru, Appala Raju; Shameer, Khader; Sundaramurthy, Pandurangan; Joshi, Ramesh Chandra

    2013-01-01

    Predicting functions of proteins and alternatively spliced isoforms encoded in a genome is one of the important applications of bioinformatics in the post-genome era. Due to the practical limitation of experimental characterization of all proteins encoded in a genome using biochemical studies, bioinformatics methods provide powerful tools for function annotation and prediction. These methods also help minimize the growing sequence-to-function gap. Phylogenetic profiling is a bioinformatics approach to identify the influence of a trait across species and can be employed to infer the evolutionary history of proteins encoded in genomes. Here we propose an improved phylogenetic profile-based method which considers the co-evolution of the reference genome to derive the basic similarity measure, the background phylogeny of target genomes for profile generation and assigning weights to target genomes. The ordering of genomes and the runs of consecutive matches between the proteins were used to define phylogenetic relationships in the approach. We used Escherichia coli K12 genome as the reference genome and its 4195 proteins were used in the current analysis. We compared our approach with two existing methods and our initial results show that the predictions have outperformed two of the existing approaches. In addition, we have validated our method using a targeted protein-protein interaction network derived from protein-protein interaction database STRING. Our preliminary results indicates that improvement in function prediction can be attained by using coevolution-based similarity measures and the runs on to the same scale instead of computing them in different scales. Our method can be applied at the whole-genome level for annotating hypothetical proteins from prokaryotic genomes. PMID:23750082

  1. An improved hypergeometric probability method for identification of functionally linked proteins using phylogenetic profiles.

    PubMed

    Kotaru, Appala Raju; Shameer, Khader; Sundaramurthy, Pandurangan; Joshi, Ramesh Chandra

    2013-01-01

    Predicting functions of proteins and alternatively spliced isoforms encoded in a genome is one of the important applications of bioinformatics in the post-genome era. Due to the practical limitation of experimental characterization of all proteins encoded in a genome using biochemical studies, bioinformatics methods provide powerful tools for function annotation and prediction. These methods also help minimize the growing sequence-to-function gap. Phylogenetic profiling is a bioinformatics approach to identify the influence of a trait across species and can be employed to infer the evolutionary history of proteins encoded in genomes. Here we propose an improved phylogenetic profile-based method which considers the co-evolution of the reference genome to derive the basic similarity measure, the background phylogeny of target genomes for profile generation and assigning weights to target genomes. The ordering of genomes and the runs of consecutive matches between the proteins were used to define phylogenetic relationships in the approach. We used Escherichia coli K12 genome as the reference genome and its 4195 proteins were used in the current analysis. We compared our approach with two existing methods and our initial results show that the predictions have outperformed two of the existing approaches. In addition, we have validated our method using a targeted protein-protein interaction network derived from protein-protein interaction database STRING. Our preliminary results indicates that improvement in function prediction can be attained by using coevolution-based similarity measures and the runs on to the same scale instead of computing them in different scales. Our method can be applied at the whole-genome level for annotating hypothetical proteins from prokaryotic genomes.

  2. A legume specific protein database (LegProt) improves the number of identified peptides, confidence scores and overall protein identification success rates for legume proteomics.

    PubMed

    Lei, Zhentian; Dai, Xinbin; Watson, Bonnie S; Zhao, Patrick X; Sumner, Lloyd W

    2011-07-01

    A legume specific protein database (LegProt) has been created containing sequences from seven legume species, i.e., Glycine max, Lotus japonicus, Medicago sativa, Medicago truncatula, Lupinusalbus, Phaseolus vulgaris, and Pisum sativum. The database consists of amino acid sequences translated from predicted gene models and 6-frame translations of tentative consensus (TC) sequences assembled from expressed sequence tags (ESTs) and singleton ESTs. This database was queried using mass spectral data for protein identification and identification success rates were compared to the NCBI nr database. Specifically, Mascot MS/MS ion searches of tandem nano-LC Q-TOFMS/MS mass spectral data showed that relative to the NCBI nr protein database, the LegProt database yielded a 54% increase in the average protein score (i.e., from NCBI nr 480 to LegProt 739) and a 50% increase in the average number of matched peptides (i.e., from NCBI nr 8 to LegProt 12). The overall identification success rate also increased from 88% (NCBI nr) to 93% (LegProt). Mascot peptide mass fingerprinting (PMF) searches of the LegProt database using MALDI-TOFMS data yielded a significant increase in the identification success rate from 19% (NCBI nr) to 34% (LegProt) while the average scores and average number of matched peptides showed insignificant changes. The results demonstrate that the LegProt database significantly increases legume protein identification success rates and the confidence levels compared to the commonly used NCBI nr. These improvements are primarily due to the presence of a large number of legume specific TC sequences in the LegProt database that were not found in NCBI nr. The LegProt database is freely available for download (http://bioinfo.noble.org/manuscript-support/legumedb) and will serve as a valuable resource for legume proteomics. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Elevated Pressure Improves the Extraction and Identification of Proteins Recovered from Formalin-Fixed, Paraffin-Embedded Tissue Surrogates

    PubMed Central

    Fowler, Carol B.; Chesnick, Ingrid E.; Moore, Cedric D.; O'Leary, Timothy J.; Mason, Jeffrey T.

    2010-01-01

    Background Proteomic studies of formalin-fixed paraffin-embedded (FFPE) tissues are frustrated by the inability to extract proteins from archival tissue in a form suitable for analysis by 2-D gel electrophoresis or mass spectrometry. This inability arises from the difficulty of reversing formaldehyde-induced protein adducts and cross-links within FFPE tissues. We previously reported the use of elevated hydrostatic pressure as a method for efficient protein recovery from a hen egg-white lysozyme tissue surrogate, a model system developed to study formalin fixation and histochemical processing. Principal Findings In this study, we demonstrate the utility of elevated hydrostatic pressure as a method for efficient protein recovery from FFPE mouse liver tissue and a complex multi-protein FFPE tissue surrogate comprised of hen egg-white lysozyme, bovine carbonic anhydrase, bovine ribonuclease A, bovine serum albumin, and equine myoglobin (55∶15∶15∶10∶5 wt%). Mass spectrometry of the FFPE tissue surrogates retrieved under elevated pressure showed that both the low and high-abundance proteins were identified with sequence coverage comparable to that of the surrogate mixture prior to formaldehyde treatment. In contrast, non-pressure-extracted tissue surrogate samples yielded few positive and many false peptide identifications. Studies with soluble formalin-treated bovine ribonuclease A demonstrated that pressure modestly inhibited the rate of reversal (hydrolysis) of formaldehyde-induced protein cross-links. Dynamic light scattering studies suggest that elevated hydrostatic pressure and heat facilitate the recovery of proteins free of formaldehyde adducts and cross-links by promoting protein unfolding and hydration with a concomitant reduction in the average size of the protein aggregates. Conclusions These studies demonstrate that elevated hydrostatic pressure treatment is a promising approach for improving the recovery of proteins from FFPE tissues in a form

  4. Preprocessing Significantly Improves the Peptide/Protein Identification Sensitivity of High-resolution Isobarically Labeled Tandem Mass Spectrometry Data*

    PubMed Central

    Sheng, Quanhu; Li, Rongxia; Dai, Jie; Li, Qingrun; Su, Zhiduan; Guo, Yan; Li, Chen; Shyr, Yu; Zeng, Rong

    2015-01-01

    Isobaric labeling techniques coupled with high-resolution mass spectrometry have been widely employed in proteomic workflows requiring relative quantification. For each high-resolution tandem mass spectrum (MS/MS), isobaric labeling techniques can be used not only to quantify the peptide from different samples by reporter ions, but also to identify the peptide it is derived from. Because the ions related to isobaric labeling may act as noise in database searching, the MS/MS spectrum should be preprocessed before peptide or protein identification. In this article, we demonstrate that there are a lot of high-frequency, high-abundance isobaric related ions in the MS/MS spectrum, and removing isobaric related ions combined with deisotoping and deconvolution in MS/MS preprocessing procedures significantly improves the peptide/protein identification sensitivity. The user-friendly software package TurboRaw2MGF (v2.0) has been implemented for converting raw TIC data files to mascot generic format files and can be downloaded for free from https://github.com/shengqh/RCPA.Tools/releases as part of the software suite ProteomicsTools. The data have been deposited to the ProteomeXchange with identifier PXD000994. PMID:25435543

  5. Stepwise Evolution Improves Identification of Diverse Peptides Binding to a Protein Target.

    PubMed

    Lyamichev, Victor I; Goodrich, Lauren E; Sullivan, Eric H; Bannen, Ryan M; Benz, Joerg; Albert, Thomas J; Patel, Jigar J

    2017-09-21

    Considerable efforts have been made to develop technologies for selection of peptidic molecules that act as substrates or binders to a protein of interest. Here we demonstrate the combination of rational peptide array library design, parallel screening and stepwise evolution, to discover novel peptide hotspots. These hotspots can be systematically evolved to create high-affinity, high-specificity binding peptides to a protein target in a reproducible and digitally controlled process. The method can be applied to synthesize both linear and cyclic peptides, as well as peptides composed of natural and non-natural amino acid analogs, thereby enabling screens in a much diverse chemical space. We apply this method to stepwise evolve peptide binders to streptavidin, a protein studied for over two decades and report novel peptides that mimic key interactions of biotin to streptavidin.

  6. IDENTIFICATION AND REMOVAL OF PROTEINS THAT CO-PURIFY WITH INFECTIOUS PRION PROTEIN IMPROVES THE ANALYSIS OF ITS SECONDARY STRUCTURE

    PubMed Central

    Moore, Roger A.; Timmes, Andrew; Wilmarth, Phillip A.; Safronetz, David; Priola, Suzette A.

    2013-01-01

    Prion diseases are neurodegenerative disorders associated with the accumulation of an abnormal isoform of the mammalian prion protein (PrP). Fourier transform infrared spectroscopy (FTIR) has previously been used to show that the conformation of aggregated, infectious PrP (PrPSc) varies between prion strains and these unique conformations may determine strain-specific disease phenotypes. However, the relative amounts of α-helix, β-sheet and other secondary structures have not always been consistent between studies suggesting that other proteins might be confounding the analysis of PrPSc secondary structure. We have used FTIR and tandem mass spectrometry to analyze enriched PrPSc from mouse and hamster prion strains both before and after the removal of protein contaminants that commonly co-purify with PrPSc. Our data show that non-PrP proteins do contribute to absorbances that have been associated with α-helical, loop, turn, and β-sheet structures attributed to PrPSc. The major contaminant, the α-helical protein ferritin, absorbs strongly at 1652cm−1 in the FTIR spectrum associated with PrPSc. However, even the removal of greater than 99% of the ferritin from PrPSc did not completely abolish absorbance at 1652cm−1. Our results show that contaminating proteins alter the FTIR spectrum attributed to PrPSc and suggest that the α-helical, loop/turn, and β-sheet secondary structure that remains following their removal are derived from PrPSc itself. PMID:21805638

  7. Exploiting likely-positive and unlabeled data to improve the identification of protein-protein interaction articles.

    PubMed

    Tsai, Richard Tzong-Han; Hung, Hsi-Chuan; Dai, Hong-Jie; Lin, Yi-Wen; Hsu, Wen-Lian

    2008-01-01

    Experimentally verified protein-protein interactions (PPI) cannot be easily retrieved by researchers unless they are stored in PPI databases. The curation of such databases can be made faster by ranking newly-published articles' relevance to PPI, a task which we approach here by designing a machine-learning-based PPI classifier. All classifiers require labeled data, and the more labeled data available, the more reliable they become. Although many PPI databases with large numbers of labeled articles are available, incorporating these databases into the base training data may actually reduce classification performance since the supplementary databases may not annotate exactly the same PPI types as the base training data. Our first goal in this paper is to find a method of selecting likely positive data from such supplementary databases. Only extracting likely positive data, however, will bias the classification model unless sufficient negative data is also added. Unfortunately, negative data is very hard to obtain because there are no resources that compile such information. Therefore, our second aim is to select such negative data from unlabeled PubMed data. Thirdly, we explore how to exploit these likely positive and negative data. And lastly, we look at the somewhat unrelated question of which term-weighting scheme is most effective for identifying PPI-related articles. To evaluate the performance of our PPI text classifier, we conducted experiments based on the BioCreAtIvE-II IAS dataset. Our results show that adding likely-labeled data generally increases AUC by 3~6%, indicating better ranking ability. Our experiments also show that our newly-proposed term-weighting scheme has the highest AUC among all common weighting schemes. Our final model achieves an F-measure and AUC 2.9% and 5.0% higher than those of the top-ranking system in the IAS challenge. Our experiments demonstrate the effectiveness of integrating unlabeled and likely labeled data to augment a PPI

  8. Improvement of inhibitor identification for heat shock protein 90α by utilizing a red-shifted fluorescence polarization probe.

    PubMed

    Qian, Jie; Holskin, Beverly P; Theroff, Jay; Underiner, Ted; Meyer, Sheryl L; Angeles, Thelma S

    2012-08-01

    Heat shock protein-90 (HSP90) is an ATP-dependent molecular chaperone with intrinsic ATPase activity. HSP90 is required for the stability and function of client proteins, many of which are involved in oncogenesis. Thus, identification of HSP90 inhibitors would potentially lead to the discovery of cancer therapeutics. Here, we present a high-throughput screening campaign utilizing two geldanamycin (GM)-labeled probes in a fluorescence polarization (FP) assay. For the primary screen, a previously reported green BODIPY-labeled GM (GM-BODIPY) was used to evaluate a library collection of about 400,000 compounds. From this screen, 3058 compounds showed >30% inhibition. To distinguish true positives from compound interference, a confirmatory screen was deemed necessary. Accordingly, a red-shifted FP binding assay was developed using GM labeled with red BODIPY. This tool enabled reliable identification of promising HSP90α inhibitors.

  9. Improving the quality of protein identification in non-model species. Characterization of Quercus ilex seed and Pinus radiata needle proteomes by using SEQUEST and custom databases.

    PubMed

    Romero-Rodríguez, M Cristina; Pascual, Jesús; Valledor, Luis; Jorrín-Novo, Jesús

    2014-06-13

    Nowadays the most used pipeline for protein identification consists in the comparison of the MS/MS spectra to reference databases. Search algorithms compare obtained spectra to an in silico digestion of a sequence database to find exact matches. In this context, the database has a paramount importance and will determine in a great deal the number of identifications and its quality, being this especially relevant for non-model plant species. Using a single Viridiplantae database (NCBI, UniProt) and TAIR is not the best choice for non-model species since they are underrepresented in databases resulting in poor identification rates. We demonstrate how it is possible to improve the rate and quality of identifications in two orphan species, Quercus ilex and Pinus radiata, by using SEQUEST and a combination of public (Viridiplantae NCBI, UniProt) and a custom-built specific database which contained 593,294 and 455,096 peptide sequences (Quercus and Pinus, respectively). These databases were built after gathering and processing (trimming, contiging, 6-frame translation) publicly available RNA sequences, mostly ESTs and NGS reads. A total of 149 and 1533 proteins were identified from Quercus seeds and Pinus needles, representing a 3.1- or 1.5-fold increase in the number of protein identifications and scores compared to the use of a single database. Since this approach greatly improves the identification rate, and is not significantly more complicated or time consuming than other approaches, we recommend its routine use when working with non-model species. In this work we demonstrate how the construction of a custom database (DB) gathering all available RNA sequences and its use in combination with Viridiplantae public DBs (NCBI, UniProt) significantly improve protein identification when working with non-model species. Protein identification rate and quality is higher to those obtained in routine procedures based on using only one database (commonly Viridiplantae from NCBI

  10. Reducing the haystack to find the needle: improved protein identification after fast elimination of non-interpretable peptide MS/MS spectra and noise reduction.

    PubMed

    Mujezinovic, Nedim; Schneider, Georg; Wildpaner, Michael; Mechtler, Karl; Eisenhaber, Frank

    2010-02-10

    Tandem mass spectrometry (MS/MS) has become a standard method for identification of proteins extracted from biological samples but the huge number and the noise contamination of MS/MS spectra obstruct swift and reliable computer-aided interpretation. Typically, a minor fraction of the spectra per sample (most often, only a few %) and about 10% of the peaks per spectrum contribute to the final result if protein identification is not prevented by the noise at all. Two fast preprocessing screens can substantially reduce the haystack of MS/MS data. (1) Simple sequence ladder rules remove spectra non-interpretable in peptide sequences. (2) Modified Fourier-transform-based criteria clear background in the remaining data. In average, only a remainder of 35% of the MS/MS spectra (each reduced in size by about one quarter) has to be handed over to the interpretation software for reliable protein identification essentially without loss of information, with a trend to improved sequence coverage and with proportional decrease of computer resource consumption. The search for sequence ladders in tandem MS/MS spectra with subsequent noise suppression is a promising strategy to reduce the number of MS/MS spectra from electro-spray instruments and to enhance the reliability of protein matches. Supplementary material and the software are available from an accompanying WWW-site with the URL http://mendel.bii.a-star.edu.sg/mass-spectrometry/MSCleaner-2.0/.

  11. Protein Complex Identification by Integrating Protein-Protein Interaction Evidence from Multiple Sources

    PubMed Central

    Xu, Bo; Lin, Hongfei; Chen, Yang; Yang, Zhihao; Liu, Hongfang

    2013-01-01

    Background Understanding protein complexes is important for understanding the science of cellular organization and function. Many computational methods have been developed to identify protein complexes from experimentally obtained protein-protein interaction (PPI) networks. However, interaction information obtained experimentally can be unreliable and incomplete. Reconstructing these PPI networks with PPI evidences from other sources can improve protein complex identification. Results We combined PPI information from 6 different sources and obtained a reconstructed PPI network for yeast through machine learning. Some popular protein complex identification methods were then applied to detect yeast protein complexes using the new PPI networks. Our evaluation indicates that protein complex identification algorithms using the reconstructed PPI network significantly outperform ones on experimentally verified PPI networks. Conclusions We conclude that incorporating PPI information from other sources can improve the effectiveness of protein complex identification. PMID:24386289

  12. Improvement in Protein Domain Identification Is Reached by Breaking Consensus, with the Agreement of Many Profiles and Domain Co-occurrence

    PubMed Central

    Bernardes, Juliana; Zaverucha, Gerson; Vaquero, Catherine; Carbone, Alessandra

    2016-01-01

    Traditional protein annotation methods describe known domains with probabilistic models representing consensus among homologous domain sequences. However, when relevant signals become too weak to be identified by a global consensus, attempts for annotation fail. Here we address the fundamental question of domain identification for highly divergent proteins. By using high performance computing, we demonstrate that the limits of state-of-the-art annotation methods can be bypassed. We design a new strategy based on the observation that many structural and functional protein constraints are not globally conserved through all species but might be locally conserved in separate clades. We propose a novel exploitation of the large amount of data available: 1. for each known protein domain, several probabilistic clade-centered models are constructed from a large and differentiated panel of homologous sequences, 2. a decision-making protocol combines outcomes obtained from multiple models, 3. a multi-criteria optimization algorithm finds the most likely protein architecture. The method is evaluated for domain and architecture prediction over several datasets and statistical testing hypotheses. Its performance is compared against HMMScan and HHblits, two widely used search methods based on sequence-profile and profile-profile comparison. Due to their closeness to actual protein sequences, clade-centered models are shown to be more specific and functionally predictive than the broadly used consensus models. Based on them, we improved annotation of Plasmodium falciparum protein sequences on a scale not previously possible. We successfully predict at least one domain for 72% of P. falciparum proteins against 63% achieved previously, corresponding to 30% of improvement over the total number of Pfam domain predictions on the whole genome. The method is applicable to any genome and opens new avenues to tackle evolutionary questions such as the reconstruction of ancient domain

  13. Improvement in Protein Domain Identification Is Reached by Breaking Consensus, with the Agreement of Many Profiles and Domain Co-occurrence.

    PubMed

    Bernardes, Juliana; Zaverucha, Gerson; Vaquero, Catherine; Carbone, Alessandra

    2016-07-01

    Traditional protein annotation methods describe known domains with probabilistic models representing consensus among homologous domain sequences. However, when relevant signals become too weak to be identified by a global consensus, attempts for annotation fail. Here we address the fundamental question of domain identification for highly divergent proteins. By using high performance computing, we demonstrate that the limits of state-of-the-art annotation methods can be bypassed. We design a new strategy based on the observation that many structural and functional protein constraints are not globally conserved through all species but might be locally conserved in separate clades. We propose a novel exploitation of the large amount of data available: 1. for each known protein domain, several probabilistic clade-centered models are constructed from a large and differentiated panel of homologous sequences, 2. a decision-making protocol combines outcomes obtained from multiple models, 3. a multi-criteria optimization algorithm finds the most likely protein architecture. The method is evaluated for domain and architecture prediction over several datasets and statistical testing hypotheses. Its performance is compared against HMMScan and HHblits, two widely used search methods based on sequence-profile and profile-profile comparison. Due to their closeness to actual protein sequences, clade-centered models are shown to be more specific and functionally predictive than the broadly used consensus models. Based on them, we improved annotation of Plasmodium falciparum protein sequences on a scale not previously possible. We successfully predict at least one domain for 72% of P. falciparum proteins against 63% achieved previously, corresponding to 30% of improvement over the total number of Pfam domain predictions on the whole genome. The method is applicable to any genome and opens new avenues to tackle evolutionary questions such as the reconstruction of ancient domain

  14. BuildSummary: using a group-based approach to improve the sensitivity of peptide/protein identification in shotgun proteomics.

    PubMed

    Sheng, Quanhu; Dai, Jie; Wu, Yibo; Tang, Haixu; Zeng, Rong

    2012-03-02

    The target-decoy database search strategy is widely accepted as a standard method for estimating the false discovery rate (FDR) of peptide identification, based on which peptide-spectrum matches (PSMs) from the target database are filtered. To improve the sensitivity of protein identification given a fixed accuracy (frequently defined by a protein FDR threshold), a postprocessing procedure is often used that integrates results from different peptide search engines that had assayed the same data set. In this work, we show that PSMs that are grouped by the precursor charge, the number of missed internal cleavage sites, the modification state, and the numbers of protease termini and that the proteins grouped by their unique peptide count should be filtered separately according to the given FDR. We also develop an iterative procedure to filter the PSMs and proteins simultaneously, according to the given FDR. Finally, we present a general framework to integrate the results from different peptide search engines using the same FDR threshold. Our method was tested with several shotgun proteomics data sets that were acquired by multiple LC/MS instruments from two different biological samples. The results showed a satisfactory performance. We implemented the method in a user-friendly software package called BuildSummary, which can be downloaded for free from http://www.proteomics.ac.cn/software/proteomicstools/index.htm as part of the software suite ProteomicsTools.

  15. Improved autonomous star identification algorithm

    NASA Astrophysics Data System (ADS)

    Luo, Li-Yan; Xu, Lu-Ping; Zhang, Hua; Sun, Jing-Rong

    2015-06-01

    The log-polar transform (LPT) is introduced into the star identification because of its rotation invariance. An improved autonomous star identification algorithm is proposed in this paper to avoid the circular shift of the feature vector and to reduce the time consumed in the star identification algorithm using LPT. In the proposed algorithm, the star pattern of the same navigation star remains unchanged when the stellar image is rotated, which makes it able to reduce the star identification time. The logarithmic values of the plane distances between the navigation and its neighbor stars are adopted to structure the feature vector of the navigation star, which enhances the robustness of star identification. In addition, some efforts are made to make it able to find the identification result with fewer comparisons, instead of searching the whole feature database. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition rate and robustness by the proposed algorithm are better than those by the LPT algorithm and the modified grid algorithm. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172138 and 61401340), the Open Research Fund of the Academy of Satellite Application, China (Grant No. 2014_CXJJ-DH_12), the Fundamental Research Funds for the Central Universities, China (Grant Nos. JB141303 and 201413B), the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2013JQ8040), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130203120004), and the Xi’an Science and Technology Plan, China (Grant. No CXY1350(4)).

  16. Identification of the functional regions of the viral haemorrhagic septicaemia virus (VHSV) NV protein: Variants that improve function.

    PubMed

    Chinchilla, Blanca; Gomez-Casado, Eduardo

    2017-09-05

    Non-virion (NV) protein is essential for an efficient replication increasing the pathogenicity of the Salmonid novirhabdovirus (formerly IHNV), Piscine novirhabdovirus (formerly VHSV), and Hirame novirhabdovirus (HIRV). The interferon system, apoptosis, and other immune-related genes are modulated by NV to finally induce a deficient antiviral state in the cell. However, little is known about the VHSV NV regions involved in function and location. Here, eight different NV 07.71 fragments and eleven NV 07.71 mutants derived from the region between the two first α-helices have been studied in order to establish the mx and il8 transcript levels in ZF4 cells and the subcellular location. As a result, we determined that the N-terminal part of NV preserves the same ability as the wild-type (wt) NV in mx/il8 modulation and it also shares the subcellular location. Among NV mutants, some induced mx upregulation (N34A, C35A, D38A, and S40A) but maintained the il8 levels stable when compared to wt-NV in ZF4. Four NV mutants (D28A, N31A, L33A, and F37A) were not affected by the mutation and showed mx and il8 transcript levels similar to wt-NV. Surprisingly, mutants D36A, R39A, and D41A induced a stronger downregulation of both mx and il8 transcript levels than wt-NV, suggesting that a more stable structure and an improved interaction with ligands could be achieved through these mutations. Amino acids at positions 36 and 39 are conserved among known VHSV NV proteins whereas at position 41 two different amino acids have been described. To date, no natural NV proteins with alanine at positions 36, 39, and 41 have been found. In addition, wt-NV, all NV mutants, and one N-terminal NV fragment were located at cytoplasm with a characteristic pattern, which might support that cytoplasm is the site for interaction with candidate ligands such as PPM1Bb. Taken together, the data presented in this work indicated that NV function relies on the first part of the molecule and is dependent on

  17. Millimeter radar improves target identification

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2011-06-01

    Recently developed millimeter wave radar has advantages for target identification over conventional microwave radar which typically use lower frequencies. We describe the pertinent features involved in the construction of the new millimeter wave radar, the pseudo-optical cavity source and the quasi-optical duplexer. The long wavelength relative to light allows the radar beam to penetrate through most weather because the wavelength is larger than the particle size for dust, drizzle rain, fog. Further the mm wave beam passes through an atmospheric transmission window that provides a dip in attenuation. The higher frequency than conventional radar provides higher Doppler frequencies, for example, than X-band radar. We show by simulation that small characteristic vibrations and slow turns of an aircraft become visible so that the Doppler signature improves identification. The higher frequency also reduces beam width, which increases transmit and receive antenna gains. For the same power the transmit beam extends to farther range and the increase in receive antenna gain increases signal to noise ratio for improved detection and identification. The narrower beam can also reduce clutter and reject other noise more readily. We show by simulation that the radar can be used at lower elevations over the sea than conventional radar.

  18. Phage display library screening for identification of interacting protein partners.

    PubMed

    Addepalli, Balasubrahmanyam; Rao, Suryadevara; Hunt, Arthur G

    2015-01-01

    Phage display is a versatile high-throughput screening method employed to understand and improve the chemical biology, be it production of human monoclonal antibodies or identification of interacting protein partners. A majority of cell proteins operate in a concerted fashion either by stable or transient interactions. Such interactions can be mediated by recognition of small amino acid sequence motifs on the protein surface. Phage display can play a crucial role in identification of such motifs. This report describes the use of phage display for the identification of high affinity sequence motifs that could be responsible for interactions with a target (bait) protein.

  19. Improved method for identification of low abundance proteins using 2D-gel electrophoresis, MALDI-TOF and TOF/TOF

    EPA Science Inventory

    Introduction: Differential protein expression studies have been routinely performed in our laboratory to determine the health effects of environmentally-important chemicals. In this abstract, improvements in the in-gel protein digestion, MALDI plate spotting and data acquisition...

  20. Improved method for identification of low abundance proteins using 2D-gel electrophoresis, MALDI-TOF and TOF/TOF

    EPA Science Inventory

    Introduction: Differential protein expression studies have been routinely performed in our laboratory to determine the health effects of environmentally-important chemicals. In this abstract, improvements in the in-gel protein digestion, MALDI plate spotting and data acquisition...

  1. Higher sequence coverage and improved confidence in the identification of cysteine-rich proteins from the wool cuticle using combined chemical and enzymatic digestion.

    PubMed

    Koehn, Henning; Clerens, Stefan; Deb-Choudhury, Santanu; Morton, James D; Dyer, Jolon M; Plowman, Jeffrey E

    2009-12-01

    Keratin-associated proteins (KAPs) are important constituents of the wool cuticle, comprised of the endo-, exocuticle and a-layers, which contribute significantly to the fibre's molecular and mechanical characteristics. Relatively little is known about the distribution of specific KAPs across these layers, and correct protein identification of individual KAPs is difficult due to extensive homology and identity among individual KAPs. We here present evidence that, by specifically exploiting the high-cysteine content of KAPs in the wool cuticle, using 2-nitro-5-thiocyanobenzoic acid (NTCB) cleavage in combination with tryptic digestion, a larger number of KAPs can be identified than with standard trypsin-only digests. A total of 27 KAPs were identified, six of which could only be identified using NTCB. Furthermore, NTCB-mediated cleavage of cuticle proteins generated unique peptides critical for unambiguous identification of two KAPs, as well as significantly increasing the overall sequence coverage of most identified KAPs. Interestingly, some of the peptides found to be unique to particular KAPs could only be found in either the exo- or endocuticle. We conclude that for the analysis of high sulphur proteomes, specific targeting of cysteine residues using chemical agents such as NTCB can provide critical information for unambiguous protein identification.

  2. Automated Protein Subfamily Identification and Classification

    PubMed Central

    Brown, Duncan P; Krishnamurthy, Nandini; Sjölander, Kimmen

    2007-01-01

    Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to provide their own

  3. Data Analysis Strategies for Protein Modification Identification.

    PubMed

    Fu, Yan

    2016-01-01

    Mass spectrometry-based proteomics provides a powerful tool for large-scale analysis of protein modifications. Statistical and computational analysis of mass spectrometry data is a key step in protein modification identification. This chapter presents common and advanced data analysis strategies for modification identification, including variable modification search, unrestrictive approaches for modification discovery, false discovery rate estimation and control methods, and tools for modification site localization.

  4. Protein Identification Using Top-Down

    SciTech Connect

    Liu, Xiaowen; Sirotkin, Yakov; Shen, Yufeng; Anderson, Gordon A.; Tsai, Yi-Hsuan S.; Ting, Ying S.; Goodlett, David R.; Smith, Richard D.; Bafna, Vineet; Pevzner, Pavel A.

    2012-06-01

    In the last two years, due to advances in protein separation and mass spectrometry, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples and identifying hundreds and even thousands of proteins. However, computational tools for database search of top-down spectra against protein databases are still in infancy. We describe MS-Align+, a fast algorithm for top-down protein identification based on spectral alignment that enables searches for unexpected post-translational modifications (PTMs). We also propose a method for evaluating statistical significance of top-down protein identifications and further benchmark MS-Align+ along with PIITA, ProSightPTM and SEQUEST, which were previously used for top-down MS/MS database searches. We demonstrate that MS-Align+ and PIITA significantly increase the number of identified proteins as compared to ProSightPTM and SEQUEST.

  5. Rapid enrichment of bioactive milk proteins and iterative, consolidated protein identification by multidimensional protein identification technology.

    PubMed

    Panchaud, Alexandre; Kussmann, Martin; Affolter, Michael

    2005-10-01

    Direct injection of complex protein mixtures, e.g. those derived from crude biological fluids, is often incompatible with conventional LC supports, because of column clogging and rapid deterioration of chromatographic performance. In this paper, we report the use of restricted access media to rapidly enrich and fractionate human breast milk. This resin, combining size exclusion and anion exchange functionalities, yielded a fraction enriched in soluble CD14 and showing specific sCD14-dependant activity. This fraction was split into five aliquots, which were individually characterized using multidimensional protein identification technology. Reproducibility of the results was addressed by analysing and comparing five datasets using different protein identification tools available within the Sequest software. Furthermore, a comparison of three major releases of the Ensembl human protein database was performed to examine the effect of database updates on our results. We report here the benefit of repeated analysis of aliquots of the same fraction: first to increase the confidence in peptide identification by repeated confirmation in several aliquots; and second to assess experimental reproducibility. We demonstrate furthermore the effect of database modifications on the results and the importance of constantly re-analysing data with new releases to keep them consistent and up to date with the latest protein identities and predictions available.

  6. iProphet: Multi-level Integrative Analysis of Shotgun Proteomic Data Improves Peptide and Protein Identification Rates and Error Estimates*

    PubMed Central

    Shteynberg, David; Deutsch, Eric W.; Lam, Henry; Eng, Jimmy K.; Sun, Zhi; Tasman, Natalie; Mendoza, Luis; Moritz, Robert L.; Aebersold, Ruedi; Nesvizhskii, Alexey I.

    2011-01-01

    The combination of tandem mass spectrometry and sequence database searching is the method of choice for the identification of peptides and the mapping of proteomes. Over the last several years, the volume of data generated in proteomic studies has increased dramatically, which challenges the computational approaches previously developed for these data. Furthermore, a multitude of search engines have been developed that identify different, overlapping subsets of the sample peptides from a particular set of tandem mass spectrometry spectra. We present iProphet, the new addition to the widely used open-source suite of proteomic data analysis tools Trans-Proteomics Pipeline. Applied in tandem with PeptideProphet, it provides more accurate representation of the multilevel nature of shotgun proteomic data. iProphet combines the evidence from multiple identifications of the same peptide sequences across different spectra, experiments, precursor ion charge states, and modified states. It also allows accurate and effective integration of the results from multiple database search engines applied to the same data. The use of iProphet in the Trans-Proteomics Pipeline increases the number of correctly identified peptides at a constant false discovery rate as compared with both PeptideProphet and another state-of-the-art tool Percolator. As the main outcome, iProphet permits the calculation of accurate posterior probabilities and false discovery rate estimates at the level of sequence identical peptide identifications, which in turn leads to more accurate probability estimates at the protein level. Fully integrated with the Trans-Proteomics Pipeline, it supports all commonly used MS instruments, search engines, and computer platforms. The performance of iProphet is demonstrated on two publicly available data sets: data from a human whole cell lysate proteome profiling experiment representative of typical proteomic data sets, and from a set of Streptococcus pyogenes experiments

  7. Direct Maximization of Protein Identifications from Tandem Mass Spectra*

    PubMed Central

    Spivak, Marina; Weston, Jason; Tomazela, Daniela; MacCoss, Michael J.; Noble, William Stafford

    2012-01-01

    The goal of many shotgun proteomics experiments is to determine the protein complement of a complex biological mixture. For many mixtures, most methodological approaches fall significantly short of this goal. Existing solutions to this problem typically subdivide the task into two stages: first identifying a collection of peptides with a low false discovery rate and then inferring from the peptides a corresponding set of proteins. In contrast, we formulate the protein identification problem as a single optimization problem, which we solve using machine learning methods. This approach is motivated by the observation that the peptide and protein level tasks are cooperative, and the solution to each can be improved by using information about the solution to the other. The resulting algorithm directly controls the relevant error rate, can incorporate a wide variety of evidence and, for complex samples, provides 18–34% more protein identifications than the current state of the art approaches. PMID:22052992

  8. Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome.

    PubMed

    Chen, Meili; Hu, Yibo; Liu, Jingxing; Wu, Qi; Zhang, Chenglin; Yu, Jun; Xiao, Jingfa; Wei, Fuwen; Wu, Jiayan

    2015-12-11

    High-quality and complete gene models are the basis of whole genome analyses. The giant panda (Ailuropoda melanoleuca) genome was the first genome sequenced on the basis of solely short reads, but the genome annotation had lacked the support of transcriptomic evidence. In this study, we applied RNA-seq to globally improve the genome assembly completeness and to detect novel expressed transcripts in 12 tissues from giant pandas, by using a transcriptome reconstruction strategy that combined reference-based and de novo methods. Several aspects of genome assembly completeness in the transcribed regions were effectively improved by the de novo assembled transcripts, including genome scaffolding, the detection of small-size assembly errors, the extension of scaffold/contig boundaries, and gap closure. Through expression and homology validation, we detected three groups of novel full-length protein-coding genes. A total of 12.62% of the novel protein-coding genes were validated by proteomic data. GO annotation analysis showed that some of the novel protein-coding genes were involved in pigmentation, anatomical structure formation and reproduction, which might be related to the development and evolution of the black-white pelage, pseudo-thumb and delayed embryonic implantation of giant pandas. The updated genome annotation will help further giant panda studies from both structural and functional perspectives.

  9. Improvement of genome assembly completeness and identification of novel full-length protein-coding genes by RNA-seq in the giant panda genome

    PubMed Central

    Chen, Meili; Hu, Yibo; Liu, Jingxing; Wu, Qi; Zhang, Chenglin; Yu, Jun; Xiao, Jingfa; Wei, Fuwen; Wu, Jiayan

    2015-01-01

    High-quality and complete gene models are the basis of whole genome analyses. The giant panda (Ailuropoda melanoleuca) genome was the first genome sequenced on the basis of solely short reads, but the genome annotation had lacked the support of transcriptomic evidence. In this study, we applied RNA-seq to globally improve the genome assembly completeness and to detect novel expressed transcripts in 12 tissues from giant pandas, by using a transcriptome reconstruction strategy that combined reference-based and de novo methods. Several aspects of genome assembly completeness in the transcribed regions were effectively improved by the de novo assembled transcripts, including genome scaffolding, the detection of small-size assembly errors, the extension of scaffold/contig boundaries, and gap closure. Through expression and homology validation, we detected three groups of novel full-length protein-coding genes. A total of 12.62% of the novel protein-coding genes were validated by proteomic data. GO annotation analysis showed that some of the novel protein-coding genes were involved in pigmentation, anatomical structure formation and reproduction, which might be related to the development and evolution of the black-white pelage, pseudo-thumb and delayed embryonic implantation of giant pandas. The updated genome annotation will help further giant panda studies from both structural and functional perspectives. PMID:26658305

  10. An improved PCR method for gender identification of eagles.

    PubMed

    Chang, Hsueh-Wei; Chou, Ta-Ching; Gu, De-Leung; Cheng, Chun-An; Chang, Chia-Che; Yao, Cheng-Te; Chuang, Li-Yeh; Wen, Cheng-Hao; Chou, Yii-Cheng; Tan, Kock-Yee; Cheng, Chien-Chung

    2008-06-01

    Eagles are sexually monomorphic and therefore it is difficult to determine their gender, which is a crucial need for management purposes. In this study, we have developed an improved gender identification method by exploiting length differences between the Chromo-Helicase-DNA binding protein (CHD)-Z and CHD-W genes of Spilornis cheela hoya. By comparing DNA sequences for CHD-W and CHD-Z from 10 species of Falconiformes eagles we designed universal gender identification PCR primers that exploit differences in product size. Standard agarose gels were shown to easily distinguish between the 148-bp CHD-ZW and the 258-bp CHD-W PCR products. When used with 28 samples of S. cheela hoya, our improved universal primers provided a fast and precise gender identification assay.

  11. Cleaning of raw peptide MS/MS spectra: improved protein identification following deconvolution of multiply charged peaks, isotope clusters, and removal of background noise.

    PubMed

    Mujezinovic, Nedim; Raidl, Günther; Hutchins, James R A; Peters, Jan-Michael; Mechtler, Karl; Eisenhaber, Frank

    2006-10-01

    The dominant ions in MS/MS spectra of peptides, which have been fragmented by low-energy CID, are often b-, y-ions and their derivatives resulting from the cleavage of the peptide bonds. However, MS/MS spectra typically contain many more peaks. These can result not only from isotope variants and multiply charged replicates of the peptide fragmentation products but also from unknown fragmentation pathways, sample-specific or systematic chemical contaminations or from noise generated by the electronic detection system. The presence of this background complicates spectrum interpretation. Besides dramatically prolonged computation time, it can lead to incorrect protein identification, especially in the case of de novo sequencing algorithms. Here, we present an algorithm for detection and transformation of multiply charged peaks into singly charged monoisotopic peaks, removal of heavy isotope replicates, and random noise. A quantitative criterion for the recognition of some noninterpretable spectra has been derived as a byproduct. The approach is based on numerical spectral analysis and signal detection methods. The algorithm has been implemented in a stand-alone computer program called MS Cleaner that can be obtained from the authors upon request.

  12. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes

    PubMed Central

    Luo, Jiawei; Qi, Yi

    2015-01-01

    Background Computational approaches aided by computer science have been used to predict essential proteins and are faster than expensive, time-consuming, laborious experimental approaches. However, the performance of such approaches is still poor, making practical applications of computational approaches difficult in some fields. Hence, the development of more suitable and efficient computing methods is necessary for identification of essential proteins. Method In this paper, we propose a new method for predicting essential proteins in a protein interaction network, local interaction density combined with protein complexes (LIDC), based on statistical analyses of essential proteins and protein complexes. First, we introduce a new local topological centrality, local interaction density (LID), of the yeast PPI network; second, we discuss a new integration strategy for multiple bioinformatics. The LIDC method was then developed through a combination of LID and protein complex information based on our new integration strategy. The purpose of LIDC is discovery of important features of essential proteins with their neighbors in real protein complexes, thereby improving the efficiency of identification. Results Experimental results based on three different PPI(protein-protein interaction) networks of Saccharomyces cerevisiae and Escherichia coli showed that LIDC outperformed classical topological centrality measures and some recent combinational methods. Moreover, when predicting MIPS datasets, the better improvement of performance obtained by LIDC is over all nine reference methods (i.e., DC, BC, NC, LID, PeC, CoEWC, WDC, ION, and UC). Conclusions LIDC is more effective for the prediction of essential proteins than other recently developed methods. PMID:26125187

  13. Improved corn protein based articles

    USDA-ARS?s Scientific Manuscript database

    Developing higher value uses for zein (corn protein), a potential major co-product of the bio-ethanol industry, will improve the economics of this business. Historically, zein was predominantly used in the textile fiber industry. Unfortunately the techniques used at that time to modify the zein cann...

  14. Improved system identification with Renormalization Group.

    PubMed

    Wang, Qing-Guo; Yu, Chao; Zhang, Yong

    2014-09-01

    This paper proposes an improved system identification method with Renormalization Group. Renormalization Group is applied to a fine data set to obtain a coarse data set. The least squares algorithm is performed on the coarse data set. The theoretical analysis under certain conditions shows that the parameter estimation error could be reduced. The proposed method is illustrated with examples. © 2013 Published by ISA. All rights reserved.

  15. Insect Seminal Fluid Proteins: Identification and Function

    PubMed Central

    Avila, Frank W.; Sirot, Laura K.; LaFlamme, Brooke A.; Rubinstein, C. Dustin; Wolfner, Mariana F.

    2014-01-01

    Seminal fluid proteins (SFPs) produced in reproductive tract tissues of male insects and transferred to females during mating induce numerous physiological and behavioral post-mating changes in females. These changes include decreasing receptivity to re-mating, affecting sperm storage parameters, increasing egg production, modulating sperm competition, feeding behaviors, and mating plug formation. In addition, SFPs also have anti-microbial functions and induce expression of anti-microbial peptides in at least some insects. Here, we review recent identification of insect SFPs and discuss the multiple roles these proteins play in the post-mating processes of female insects. PMID:20868282

  16. Repeats identification using improved suffix trees.

    PubMed

    Huo, Hongwei; Wang, Xiaowu; Stojkovic, Vojislav

    2009-01-01

    The suffix tree data structure plays an important role in the efficient implementations of some querying algorithms. This paper presents the fast Rep(eats)Seeker algorithm for repeats identification based on the improvements of suffix tree construction. The leaf nodes and the branch nodes are numbered in different ways during the construction of a suffix tree and extra information is added to the branch nodes. The experimental results show that improvements reduce the running time of the RepSeeker algorithm without losing the accuracy. The experimental results coincide with the theoretical expectations.

  17. Identification of proteins with increased levels in ameloblastic carcinoma.

    PubMed

    García-Muñoz, Alejandro; Bologna-Molina, Ronell; Aldape-Barrios, Beatriz; Licéaga-Escalera, Carlos; Montoya-Pérez, Luis A; Rodríguez, Mario A

    2014-06-01

    The comparative proteomic approach by a combination of 2-dimensional electrophoresis and matrix-assisted laser desorption-ionization-time of flight mass spectrometry (MS) analysis is an attractive strategy for the discovery of cancer biomarkers and therapeutic targets. The identification of protein biomarkers associated with ameloblastic carcinoma (AC), a malignant epithelial odontogenic tumor, will potentially improve the diagnostic and prognostic accuracy for this malignant neoplasm. The aim of the present study was to identify highly expressed proteins in AC that could be considered as potential biomarkers. The protein profile of an AC was compared with the protein profiles of 3 cases of benign ameloblastoma. Proteins that showed increased levels in AC were identified using MS, and the augmented amount of some of these proteins in the malignant lesion was confirmed by Western blot or immunohistochemistry. We detected a total of 782 spots in the protein profile of AC, and 19 of them, showing elevated levels compared with benign ameloblastoma, were identified using MS. These proteins have been implicated in several cellular functions, such as cell structure, metabolism, stress response, and signal transduction. The increased expression of the identified proteins and the minor expression of some proteins that might inhibit tumor progression could be involved in the evolution from a benign lesion to carcinoma. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. 34 CFR 200.32 - Identification for school improvement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Identification for school improvement. 200.32 Section... Improving Basic Programs Operated by Local Educational Agencies Lea and School Improvement § 200.32 Identification for school improvement. (a)(1)(i) An LEA must identify for school improvement any elementary or...

  19. Proteomic identification of rainbow trout sperm proteins.

    PubMed

    Nynca, Joanna; Arnold, Georg J; Fröhlich, Thomas; Otte, Kathrin; Ciereszko, Andrzej

    2014-06-01

    Proteomics represents a powerful tool for the analysis of fish spermatozoa, since these cells are transcriptionally inactive. The aim of the present study was to generate an inventory of the most prominent rainbow trout sperm proteins by SDS-PAGE prefractionation combined with nano-LC-MS/MS based identification. This study provides the first in-depth analysis of the rainbow trout sperm proteome, with a total of 206 identified proteins. We found that rainbow trout spermatozoa are equipped with functionally diverse proteins related to energetic metabolism, signal transduction, protein turnover, transport, cytoskeleton, oxidative injuries, and stress and reproduction. The availability of a catalog of rainbow trout sperm proteins provides a crucial tool for the understanding of fundamental molecular processes in fish spermatozoa, for the ongoing development of novel markers of sperm quality and for the optimization of short- and long-term sperm preservation procedures. The MS data are available at ProteomeXchange with the dataset identifier PXD000355 and DOI 10.6019/PXD000355. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Phosphate binding sites identification in protein structures

    PubMed Central

    Parca, Luca; Gherardini, Pier Federico; Helmer-Citterich, Manuela; Ausiello, Gabriele

    2011-01-01

    Nearly half of known protein structures interact with phosphate-containing ligands, such as nucleotides and other cofactors. Many methods have been developed for the identification of metal ions-binding sites and some for bigger ligands such as carbohydrates, but none is yet available for the prediction of phosphate-binding sites. Here we describe Pfinder, a method that predicts binding sites for phosphate groups, both in the form of ions or as parts of other non-peptide ligands, in proteins of known structure. Pfinder uses the Query3D local structural comparison algorithm to scan a protein structure for the presence of a number of structural motifs identified for their ability to bind the phosphate chemical group. Pfinder has been tested on a data set of 52 proteins for which both the apo and holo forms were available. We obtained at least one correct prediction in 63% of the holo structures and in 62% of the apo. The ability of Pfinder to recognize a phosphate-binding site in unbound protein structures makes it an ideal tool for functional annotation and for complementing docking and drug design methods. The Pfinder program is available at http://pdbfun.uniroma2.it/pfinder. PMID:20974634

  1. Identification of ligands for bacterial sensor proteins.

    PubMed

    Fernández, Matilde; Morel, Bertrand; Corral-Lugo, Andrés; Rico-Jiménez, Miriam; Martín-Mora, David; López-Farfán, Diana; Reyes-Darias, José Antonio; Matilla, Miguel A; Ortega, Álvaro; Krell, Tino

    2016-02-01

    Bacteria have evolved a variety of different signal transduction mechanisms. However, the cognate signal molecule for the very large amount of corresponding sensor proteins is unknown and their functional annotation represents a major bottleneck in the field of signal transduction. The knowledge of the signal molecule is an essential prerequisite to understand the signalling mechanisms. Recently, the identification of signal molecules by the high-throughput protein screening of commercially available ligand collections using differential scanning fluorimetry has shown promise to resolve this bottleneck. Based on the analysis of a significant number of different ligand binding domains (LBDs) in our laboratory, we identified two issues that need to be taken into account in the experimental design. Since a number of LBDs require the dimeric state for ligand recognition, it has to be assured that the protein analysed is indeed in the dimeric form. A number of other examples demonstrate that purified LBDs can contain bound ligand which prevents further binding. In such cases, the apo-form can be generated by denaturation and subsequent refolding. We are convinced that this approach will accelerate the functional annotation of sensor proteins which will help to understand regulatory circuits in bacteria.

  2. Digestion and depletion of abundant proteins improves proteomic coverage

    PubMed Central

    Fonslow, Bryan R.; Stein, Benjamin D.; Webb, Kristofor J.; Xu, Tao; Choi, Jeong; Park, Sung Kyu; Yates, John R.

    2012-01-01

    Two major challenges in proteomics are the large number of proteins and their broad dynamic range within the cell. We exploited the abundance-dependent Michaelis-Menten kinetics of trypsin digestion to selectively digest and deplete abundant proteins with a method we call DigDeAPr. We validated the depletion mechanism with known yeast protein abundances and observed greater than 3-fold improvement in low abundance human protein identification and quantitation metrics. This methodology should be broadly applicable to many organisms, proteases, and proteomic pipelines. PMID:23160281

  3. Applications of graph theory in protein structure identification

    PubMed Central

    2011-01-01

    There is a growing interest in the identification of proteins on the proteome wide scale. Among different kinds of protein structure identification methods, graph-theoretic methods are very sharp ones. Due to their lower costs, higher effectiveness and many other advantages, they have drawn more and more researchers’ attention nowadays. Specifically, graph-theoretic methods have been widely used in homology identification, side-chain cluster identification, peptide sequencing and so on. This paper reviews several methods in solving protein structure identification problems using graph theory. We mainly introduce classical methods and mathematical models including homology modeling based on clique finding, identification of side-chain clusters in protein structures upon graph spectrum, and de novo peptide sequencing via tandem mass spectrometry using the spectrum graph model. In addition, concluding remarks and future priorities of each method are given. PMID:22165974

  4. Applications of graph theory in protein structure identification.

    PubMed

    Yan, Yan; Zhang, Shenggui; Wu, Fang-Xiang

    2011-10-14

    There is a growing interest in the identification of proteins on the proteome wide scale. Among different kinds of protein structure identification methods, graph-theoretic methods are very sharp ones. Due to their lower costs, higher effectiveness and many other advantages, they have drawn more and more researchers' attention nowadays. Specifically, graph-theoretic methods have been widely used in homology identification, side-chain cluster identification, peptide sequencing and so on. This paper reviews several methods in solving protein structure identification problems using graph theory. We mainly introduce classical methods and mathematical models including homology modeling based on clique finding, identification of side-chain clusters in protein structures upon graph spectrum, and de novo peptide sequencing via tandem mass spectrometry using the spectrum graph model. In addition, concluding remarks and future priorities of each method are given.

  5. Identification of immunoreactive proteins of Mycobacterium avium subsp. paratuberculosis.

    PubMed

    Piras, Cristian; Soggiu, Alessio; Bonizzi, Luigi; Greco, Viviana; Ricchi, Matteo; Arrigoni, Norma; Bassols, Anna; Urbani, Andrea; Roncada, Paola

    2015-02-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the cause of a chronic enteritis of ruminants (bovine paratuberculosis (PTB)--Johne's disease) that is associated with enormous worldwide economic losses for the animal production. Diagnosis is based on observation of clinical signs, the detection of antibodies in milk or serum, or evaluation of bacterial culture from feces. The limit of these methods is that they are not able to detect the disease in the subclinical stage and are applicable only when the disease is already advanced. For this reason, the main purpose of this study is to use the MAP proteome to detect novel immunoreactive proteins that may be helpful for PTB diagnoses. 2DE and 2D immunoblotting of MAP proteins were performed using sera of control cattle and PTB-infected cattle in order to highlight the specific immunoreactive proteins. Among the assigned identifiers to immunoreactive spots it was found that most of them correspond to surface-located proteins while three of them have never been described before as antigens. The identification of these proteins improves scientific knowledge that could be useful for PTB diagnoses. The sequence of the identified protein can be used for the synthesis of immunoreactive peptides that could be screened for their immunoreaction against bovine sera infected with MAP. All MS data have been deposited in the ProteomeXchange consortium with identifier PXD001159 and DOI 10.6019/PXD001159.

  6. Identification of essential proteins based on ranking edge-weights in protein-protein interaction networks.

    PubMed

    Wang, Yan; Sun, Huiyan; Du, Wei; Blanzieri, Enrico; Viero, Gabriella; Xu, Ying; Liang, Yanchun

    2014-01-01

    Essential proteins are those that are indispensable to cellular survival and development. Existing methods for essential protein identification generally rely on knock-out experiments and/or the relative density of their interactions (edges) with other proteins in a Protein-Protein Interaction (PPI) network. Here, we present a computational method, called EW, to first rank protein-protein interactions in terms of their Edge Weights, and then identify sub-PPI-networks consisting of only the highly-ranked edges and predict their proteins as essential proteins. We have applied this method to publicly-available PPI data on Saccharomyces cerevisiae (Yeast) and Escherichia coli (E. coli) for essential protein identification, and demonstrated that EW achieves better performance than the state-of-the-art methods in terms of the precision-recall and Jackknife measures. The highly-ranked protein-protein interactions by our prediction tend to be biologically significant in both the Yeast and E. coli PPI networks. Further analyses on systematically perturbed Yeast and E. coli PPI networks through randomly deleting edges demonstrate that the proposed method is robust and the top-ranked edges tend to be more associated with known essential proteins than the lowly-ranked edges.

  7. Identification of secreted bacterial proteins by noncanonical amino acid tagging.

    PubMed

    Mahdavi, Alborz; Szychowski, Janek; Ngo, John T; Sweredoski, Michael J; Graham, Robert L J; Hess, Sonja; Schneewind, Olaf; Mazmanian, Sarkis K; Tirrell, David A

    2014-01-07

    Pathogenic microbes have evolved complex secretion systems to deliver virulence factors into host cells. Identification of these factors is critical for understanding the infection process. We report a powerful and versatile approach to the selective labeling and identification of secreted pathogen proteins. Selective labeling of microbial proteins is accomplished via translational incorporation of azidonorleucine (Anl), a methionine surrogate that requires a mutant form of the methionyl-tRNA synthetase for activation. Secreted pathogen proteins containing Anl can be tagged by azide-alkyne cycloaddition and enriched by affinity purification. Application of the method to analysis of the type III secretion system of the human pathogen Yersinia enterocolitica enabled efficient identification of secreted proteins, identification of distinct secretion profiles for intracellular and extracellular bacteria, and determination of the order of substrate injection into host cells. This approach should be widely useful for the identification of virulence factors in microbial pathogens and the development of potential new targets for antimicrobial therapy.

  8. Byonic: Advanced Peptide and Protein Identification Software

    PubMed Central

    Bern, Marshall; Kil, Yong J.; Becker, Christopher

    2013-01-01

    Byonic™ is the name of a software package for peptide and protein identification by tandem mass spectrometry. This software, which has only recently become commercially available, facilitates a much wider range of search possibilities than previous search software such as SEQUEST and Mascot. Byonic allows the user to define an essentially unlimited number of variable modification types. Byonic also allows the user to set a separate limit on the number of occurrences of each modification type, so that a search may consider only one or two chance modifications such as oxidations and deamidations per peptide, yet allow three or four biological modifications such as phosphorylations, which tend to cluster together. Hence Byonic can search for 10s or even 100s of modification types simultaneously without a prohibitively large combinatorial explosion. Byonic’s Wildcard Search™ allows the user to search for unanticipated or even unknown modifications alongside known modifications. Finally, Byonic’s Glycopeptide Search allows the user to identify glycopeptides without prior knowledge of glycan masses or glycosylation sites. PMID:23255153

  9. Byonic: advanced peptide and protein identification software.

    PubMed

    Bern, Marshall; Kil, Yong J; Becker, Christopher

    2012-12-01

    Byonic is the name of a software package for peptide and protein identification by tandem mass spectrometry. This software, which has only recently become commercially available, facilitates a much wider range of search possibilities than previous search software such as SEQUEST and Mascot. Byonic allows the user to define an essentially unlimited number of variable modification types. Byonic also allows the user to set a separate limit on the number of occurrences of each modification type, so that a search may consider only one or two chance modifications such as oxidations and deamidations per peptide, yet allow three or four biological modifications such as phosphorylations, which tend to cluster together. Hence, Byonic can search for tens or even hundreds of modification types simultaneously without a prohibitively large combinatorial explosion. Byonic's Wildcard Search allows the user to search for unanticipated or even unknown modifications alongside known modifications. Finally, Byonic's Glycopeptide Search allows the user to identify glycopeptides without prior knowledge of glycan masses or glycosylation sites. © 2012 by John Wiley & Sons, Inc.

  10. Modified Protein Improves Vitiligo Symptoms in Mice

    MedlinePlus

    ... Research 2013 August 2013 (historical) Modified Protein Improves Vitiligo Symptoms in Mice Altering a key protein involved in the development of vitiligo may protect against—or even reverse—the pigmentation ...

  11. DNA binding protein identification by combining pseudo amino acid composition and profile-based protein representation

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Shanyi; Wang, Xiaolong

    2015-10-01

    DNA-binding proteins play an important role in most cellular processes. Therefore, it is necessary to develop an efficient predictor for identifying DNA-binding proteins only based on the sequence information of proteins. The bottleneck for constructing a useful predictor is to find suitable features capturing the characteristics of DNA binding proteins. We applied PseAAC to DNA binding protein identification, and PseAAC was further improved by incorporating the evolutionary information by using profile-based protein representation. Finally, Combined with Support Vector Machines (SVMs), a predictor called iDNAPro-PseAAC was proposed. Experimental results on an updated benchmark dataset showed that iDNAPro-PseAAC outperformed some state-of-the-art approaches, and it can achieve stable performance on an independent dataset. By using an ensemble learning approach to incorporate more negative samples (non-DNA binding proteins) in the training process, the performance of iDNAPro-PseAAC was further improved. The web server of iDNAPro-PseAAC is available at http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/.

  12. Proteomic identification of turkey (Meleagris gallopavo) seminal plasma proteins.

    PubMed

    Slowinska, M; Nynca, J; Arnold, G J; Fröhlich, T; Jankowski, J; Kozlowski, K; Mostek, A; Ciereszko, A

    2017-09-01

    SDS-PAGE combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 2-dimensional electrophoresis (2DE) combined with matrix-assisted laser desorption/ionization time of flight/time of flight mass spectrometry (MALDI TOF/TOF) were applied to characterize the turkey seminal plasma proteome. LC-MS/MS led to the identification of 175 proteins, which were classified according to their function and to corresponding biochemical pathways. Using 2DE and MALDI TOF/TOF, 34 different turkey seminal plasma proteins could be identified, of which 20 were found in more than one spot, indicating different proteoforms of these proteins. For validation, antibodies against turkey albumin and ovoinhibitor as well as sperm acrosin were used in 2DE Western blots experiments. The bioinformatic analysis of the results indicates that turkey seminal plasma proteins may be involved in regulation of lipid metabolism [liver X receptor/retinoid X receptor (LXR/RXR) activation and farnesoid X receptor/retinoid X receptor (FXR/RXR) activation pathways)], endocytic entry of proteins and lipids at the plasma membrane (clathrin-mediated endocytosis pathway), and defense against pathogens (acute phase response signaling pathway) and energy production (glycolysis and gluconeogenesis). Moreover, a comparative meta-analysis of seminal plasma proteomes from other species indicated the presence of proteins specific for avian reproduction, but distinct differences between turkey and chicken seminal plasma proteomes were detected. The results of our study provide basic knowledge of the protein composition of turkey seminal plasma highlighting important physiological pathways which may play crucial roles in the sperm environment after ejaculation. This knowledge can be the basis to further develop procedures improving the reproduction of farmed turkeys. © 2017 Poultry Science Association Inc.

  13. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  14. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  15. Essential protein identification based on essential protein-protein interaction prediction by Integrated Edge Weights.

    PubMed

    Jiang, Yuexu; Wang, Yan; Pang, Wei; Chen, Liang; Sun, Huiyan; Liang, Yanchun; Blanzieri, Enrico

    2015-07-15

    Essential proteins play a crucial role in cellular survival and development process. Experimentally, essential proteins are identified by gene knockouts or RNA interference, which are expensive and often fatal to the target organisms. Regarding this, an alternative yet important approach to essential protein identification is through computational prediction. Existing computational methods predict essential proteins based on their relative densities in a protein-protein interaction (PPI) network. Degree, betweenness, and other appropriate criteria are often used to measure the relative density. However, no matter what criterion is used, a protein is actually ordered by the attributes of this protein per se. In this research, we presented a novel computational method, Integrated Edge Weights (IEW), to first rank protein-protein interactions by integrating their edge weights, and then identified sub PPI networks consisting of those highly-ranked edges, and finally regarded the nodes in these sub networks as essential proteins. We evaluated IEW on three model organisms: Saccharomyces cerevisiae (S. cerevisiae), Escherichia coli (E. coli), and Caenorhabditis elegans (C. elegans). The experimental results showed that IEW achieved better performance than the state-of-the-art methods in terms of precision-recall and Jackknife measures. We had also demonstrated that IEW is a robust and effective method, which can retrieve biologically significant modules by its highly-ranked protein-protein interactions for S. cerevisiae, E. coli, and C. elegans. We believe that, with sufficient data provided, IEW can be used to any other organisms' essential protein identification. A website about IEW can be accessed from http://digbio.missouri.edu/IEW/index.html.

  16. Improving recombinant protein purification yield

    USDA-ARS?s Scientific Manuscript database

    Production of adequate amounts of recombinant proteins is essential for antibody production, biochemical activity study, and structural determination during the post-genomic era. It’s technologically challenging and a limiting factor for tung oil research because analytical reagents such as high qua...

  17. Perspective: A Program to Improve Protein Biomarker Discovery for Cancer

    SciTech Connect

    Aebersold, Ruedi; Anderson, Leigh N.; Caprioli, Richard M.; Druker, Brian; Hartwell, L D.; Smith, Richard D.

    2005-06-01

    Biomarkers for cancer risk, early detection, prognosis, and therapeutic response promise to revolutionize cancer management. Protein biomarkers offer tremendous potential in this regard due to their great diversity and intimate involvement in physiology. An effective program to discover protein biomarkers using existing technology will require team science, an integrated informatics platform, identification and quantitation of candidate biomarkers in disease tissue, mouse models of disease, standardized reagents for analyzing candidate biomarkers in bodily fluids, and implementation of automation. Technology improvements for better fractionation of the proteome, selection of specific biomarkers from complex mixtures, and multiplexed assay of biomarkers would greatly enhance progress.

  18. Engineering Cells to Improve Protein Expression

    PubMed Central

    Xiao, Su; Shiloach, Joseph; Betenbaugh, Michael J.

    2014-01-01

    Cellular engineering of bacteria, fungi, insect cells and mammalian cells is a promising methodology to improve recombinant protein production for structural, biochemical, and commercial applications. Increased understanding of the host organism biology has suggested engineering strategies targeting bottlenecks in transcription, translation, protein processing and secretory pathways, as well as cell growth and survival. A combination of metabolic engineering and synthetic biology has been used to improve the properties of cells for protein production, which has resulted in enhanced yields of multiple protein classes. PMID:24704806

  19. Engineering cells to improve protein expression.

    PubMed

    Xiao, Su; Shiloach, Joseph; Betenbaugh, Michael J

    2014-06-01

    Cellular engineering of bacteria, fungi, insect cells and mammalian cells is a promising methodology to improve recombinant protein production for structural, biochemical, and commercial applications. Increased understanding of the host organism biology has suggested engineering strategies targeting bottlenecks in transcription, translation, protein processing and secretory pathways, as well as cell growth and survival. A combination of metabolic engineering and synthetic biology has been used to improve the properties of cells for protein production, which has resulted in enhanced yields of multiple protein classes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Compositions and methods for improved protein production

    DOEpatents

    Bodie, Elizabeth A.; Kim, Steve Sungjin

    2014-06-03

    The present invention relates to the identification of novel nucleic acid sequences, designated herein as 7p, 8k, 7E, 9G, 8Q and 203, in a host cell which effect protein production. The present invention also provides host cells having a mutation or deletion of part or all of the gene encoding 7p, 8k, 7E, 9G, 8Q and 203, which are presented in FIG. 1, and are SEQ ID NOS.: 1-6, respectively. The present invention also provides host cells further comprising a nucleic acid encoding a desired heterologous protein such as an enzyme.

  1. Compositions and methods for improved protein production

    DOEpatents

    Bodie, Elizabeth A [San Carlos, CA; Kim, Steve [San Francisco, CA

    2012-07-10

    The present invention relates to the identification of novel nucleic acid sequences, designated herein as 7p, 8k, 7E, 9G, 8Q and 203, in a host cell which effect protein production. The present invention also provides host cells having a mutation or deletion of part or all of the gene encoding 7p, 8k, 7E, 9G, 8Q and 203, which are presented in FIG. 1, and are SEQ ID NOS.: 1-6, respectively. The present invention also provides host cells further comprising a nucleic acid encoding a desired heterologous protein such as an enzyme.

  2. Elimination of redundant protein identifications in high throughput proteomics.

    PubMed

    Kearney, Robert; Blondeau, Francois; McPherson, Peter; Bell, Alex; Servant, Florence; Drapeau, Mathieu; de Grandpre, Sebastien; Jm Bergeron, John

    2005-01-01

    Tandem mass spectrometry followed by data base search is the preferred method for protein identification in high throughput proteomics. However, standard analysis methods give rise to highly redundant lists of proteins with many proteins identified by the same sets of peptides. In essence, this is a list of all proteins that might be present in the sample. Here we present an algorithm that eliminates redundancy and determines the minimum number of proteins needed to explain the peptides observed. We demonstrate that application of the algorithm results in a significantly smaller set of proteins and greatly reduces the number of "shared" peptides.

  3. Dealing with the identification of protein species in ancient amphorae.

    PubMed

    Dallongeville, Sophie; Garnier, Nicolas; Casasola, Dario Bernal; Bonifay, Michel; Rolando, Christian; Tokarski, Caroline

    2011-03-01

    This manuscript deals with the identification of protein residues in amphorae, including particularly identification of protein species. The work described was performed on fishes, the anchovy (Engraulis encrasicolus) and bonito (Sarda sarda) species frequently found in the Mediterranean area. Based on proteomic techniques, the analytical strategy was adapted to analysis of protein residues from tiny ceramic fragments. The major difficulty was to extract proteins and limit their hydrolysis during the sample preparation; consequently, multiple soft extraction techniques were evaluated. The most valuable results were obtained using a solution containing high amounts of denaturing agents, urea and thiourea, reducing agent, dithiothreitol, and detergent, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The analysis using nano liquid chromatography-nano electrospray ionization double quadrupole time-of-flight mass spectrometry resulted in the identification of up to 200 proteins for the anchovy and bonito species, among which 73 peptides were found to be fish-specific. Because bonito and anchovy species are not documented and fully sequenced in genomic databases, the preliminary protein identification was realized via sequence homology to other fish sequenced species. Amino acid substitutions of peptides were assigned on the basis of the interpretation of tandem mass spectrometry spectra using de novo sequencing; these peptides, not reported up to now in databases, constitute species-specific markers. The method developed was finally applied to an archaeological sample replica impregnated with a mixture of fish tissue from both species; this experiment successfully led to the identification of 17 fish proteins, including 33 fish-specific peptides. This work shows that the analytical method developed has great potential for the identification of protein species in complex archaeological samples.

  4. Improving Pharmaceutical Protein Production in Oryza sativa

    PubMed Central

    Kuo, Yu-Chieh; Tan, Chia-Chun; Ku, Jung-Ting; Hsu, Wei-Cho; Su, Sung-Chieh; Lu, Chung-An; Huang, Li-Fen

    2013-01-01

    Application of plant expression systems in the production of recombinant proteins has several advantages, such as low maintenance cost, absence of human pathogens, and possession of complex post-translational glycosylation capabilities. Plants have been successfully used to produce recombinant cytokines, vaccines, antibodies, and other proteins, and rice (Oryza sativa) is a potential plant used as recombinant protein expression system. After successful transformation, transgenic rice cells can be either regenerated into whole plants or grown as cell cultures that can be upscaled into bioreactors. This review summarizes recent advances in the production of different recombinant protein produced in rice and describes their production methods as well as methods to improve protein yield and quality. Glycosylation and its impact in plant development and protein production are discussed, and several methods of improving yield and quality that have not been incorporated in rice expression systems are also proposed. Finally, different bioreactor options are explored and their advantages are analyzed. PMID:23615467

  5. Stable isotope, site-specific mass tagging for protein identification

    DOEpatents

    Chen, Xian

    2006-10-24

    Proteolytic peptide mass mapping as measured by mass spectrometry provides an important method for the identification of proteins, which are usually identified by matching the measured and calculated m/z values of the proteolytic peptides. A unique identification is, however, heavily dependent upon the mass accuracy and sequence coverage of the fragment ions generated by peptide ionization. The present invention describes a method for increasing the specificity, accuracy and efficiency of the assignments of particular proteolytic peptides and consequent protein identification, by the incorporation of selected amino acid residue(s) enriched with stable isotope(s) into the protein sequence without the need for ultrahigh instrumental accuracy. Selected amino acid(s) are labeled with .sup.13C/.sup.15N/.sup.2H and incorporated into proteins in a sequence-specific manner during cell culturing. Each of these labeled amino acids carries a defined mass change encoded in its monoisotopic distribution pattern. Through their characteristic patterns, the peptides with mass tag(s) can then be readily distinguished from other peptides in mass spectra. The present method of identifying unique proteins can also be extended to protein complexes and will significantly increase data search specificity, efficiency and accuracy for protein identifications.

  6. Proteomics: Protein Identification Using Online Databases

    ERIC Educational Resources Information Center

    Eurich, Chris; Fields, Peter A.; Rice, Elizabeth

    2012-01-01

    Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…

  7. Proteomics: Protein Identification Using Online Databases

    ERIC Educational Resources Information Center

    Eurich, Chris; Fields, Peter A.; Rice, Elizabeth

    2012-01-01

    Proteomics is an emerging area of systems biology that allows simultaneous study of thousands of proteins expressed in cells, tissues, or whole organisms. We have developed this activity to enable high school or college students to explore proteomic databases using mass spectrometry data files generated from yeast proteins in a college laboratory…

  8. Improvement of interfacial protein stability by CHAPS.

    PubMed

    Sah, Hongkee; Kim, Kil-Soo

    2006-04-01

    Emulsification of aqueous protein solutions in methylene chloride triggered the formation of water-insoluble aggregates at a water/methylene chloride interface. As a result, the amounts of beta-lactoglobulin and ovalbumin recovered in water were 36 and 44%, respectively. Addition of 5 mM: CHAPS in the aqueous phase raised the degree of beta-lactoglobulin recovery to 96%. Sodium taurocholate, however, failed to improve protein recovery. The stabilizing effect of CHAPS was also protein-specific and concentration-dependent: at >or=5 mM: , the surfactant caused unfolding of ovalbumin to make a water-soluble oligomer. CHAPS thus stabilizes proteins at an interface.

  9. CDvist: A webserver for identification and visualization of conserved domains in protein sequences

    SciTech Connect

    Adebali, Ogun; Ortega, Davi R.; Zhulin, Igor B.

    2014-12-18

    Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved. To address these issues, we developed CDvist (a comprehensive domain visualization tool), which combines the best available search algorithms and databases into a user-friendly framework. First, a given protein sequence is matched to domain models using high-specificity tools and only then unmatched segments are subjected to more sensitive algorithms resulting in a best possible comprehensive coverage. In conclusion, bulk querying and rich visualization and download options provide improved functionality to domain architecture analysis.

  10. CDvist: A webserver for identification and visualization of conserved domains in protein sequences

    DOE PAGES

    Adebali, Ogun; Ortega, Davi R.; Zhulin, Igor B.

    2014-12-18

    Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved. To address these issues, we developed CDvist (a comprehensive domain visualization tool), which combines the best available search algorithms and databases into a user-friendly framework. First, a given protein sequence is matched to domain models using high-specificity tools and only then unmatched segments are subjected to more sensitive algorithms resulting inmore » a best possible comprehensive coverage. In conclusion, bulk querying and rich visualization and download options provide improved functionality to domain architecture analysis.« less

  11. Prefractionation enhances loading capacity and identification of basic proteins from human breast cancer tissues.

    PubMed

    Semaan, Suzan M; Sang, Qing-Xiang Amy

    2011-04-01

    Many basic proteins (pI>7) and putative disease biomarkers are not identified using conventional proteomic methods. This study applied a new method to improve the identification of such proteins. Prefractionated basic proteins were compared with total tissue lysates from human ductal carcinoma in situ tissue loaded on basic immobilized pH gradient strips prior to two-dimensional gel electrophoresis (2-DE). Extraction of alkaline proteins was achieved in less than 20 min using a chromatofocusing resin and two buffers in a microcentrifuge tube. Prefractionation showed improved resolution and visualization of low-abundance proteins on 2-DE gels, allowing proteins to be excised, accumulated, trypsin-digested, and identified by liquid chromatography-tandem mass spectrometry. Proteins identified in the prefractionated samples had a higher number of peptides and three times the number of unique basic proteins when compared with total lysates. Low-molecular-weight (LMW, <26kDa) unique alkaline proteins comprise 75% of those identified in prefractionated samples compared with 25% identified in total lysates, representing a 9-fold increase of LMW proteins due to prefractionation. Prefractionation ultimately increases loading capacity of samples onto the 2-DE gel and leads to better resolution, visualization, and identification of proteins with pI values greater than 7. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics.

    PubMed

    Tang, Haixu; Li, Sujun; Ye, Yuzhen

    2016-12-01

    Metaproteomic studies adopt the common bottom-up proteomics approach to investigate the protein composition and the dynamics of protein expression in microbial communities. When matched metagenomic and/or metatranscriptomic data of the microbial communities are available, metaproteomic data analyses often employ a metagenome-guided approach, in which complete or fragmental protein-coding genes are first directly predicted from metagenomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting protein sequences are then used as the reference database for peptide/protein identification from MS/MS spectra. This approach is often limited because protein coding genes predicted from metagenomes are incomplete and fragmental. In this paper, we present a graph-centric approach to improving metagenome-guided peptide and protein identification in metaproteomics. Our method exploits the de Bruijn graph structure reported by metagenome assembly algorithms to generate a comprehensive database of protein sequences encoded in the community. We tested our method using several public metaproteomic datasets with matched metagenomic and metatranscriptomic sequencing data acquired from complex microbial communities in a biological wastewater treatment plant. The results showed that many more peptides and proteins can be identified when assembly graphs were utilized, improving the characterization of the proteins expressed in the microbial communities. The additional proteins we identified contribute to the characterization of important pathways such as those involved in degradation of chemical hazards. Our tools are released as open-source software on github at https://github.com/COL-IU/Graph2Pro.

  13. A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics

    PubMed Central

    Tang, Haixu; Li, Sujun; Ye, Yuzhen

    2016-01-01

    Metaproteomic studies adopt the common bottom-up proteomics approach to investigate the protein composition and the dynamics of protein expression in microbial communities. When matched metagenomic and/or metatranscriptomic data of the microbial communities are available, metaproteomic data analyses often employ a metagenome-guided approach, in which complete or fragmental protein-coding genes are first directly predicted from metagenomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting protein sequences are then used as the reference database for peptide/protein identification from MS/MS spectra. This approach is often limited because protein coding genes predicted from metagenomes are incomplete and fragmental. In this paper, we present a graph-centric approach to improving metagenome-guided peptide and protein identification in metaproteomics. Our method exploits the de Bruijn graph structure reported by metagenome assembly algorithms to generate a comprehensive database of protein sequences encoded in the community. We tested our method using several public metaproteomic datasets with matched metagenomic and metatranscriptomic sequencing data acquired from complex microbial communities in a biological wastewater treatment plant. The results showed that many more peptides and proteins can be identified when assembly graphs were utilized, improving the characterization of the proteins expressed in the microbial communities. The additional proteins we identified contribute to the characterization of important pathways such as those involved in degradation of chemical hazards. Our tools are released as open-source software on github at https://github.com/COL-IU/Graph2Pro. PMID:27918579

  14. Identification of Ina proteins from Fusarium acuminatum

    NASA Astrophysics Data System (ADS)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.

  15. Identification of kinetically hot residues in proteins.

    PubMed Central

    Demirel, M. C.; Atilgan, A. R.; Jernigan, R. L.; Erman, B.; Bahar, I.

    1998-01-01

    A number of recent studies called attention to the presence of kinetically important residues underlying the formation and stabilization of folding nuclei in proteins, and to the possible existence of a correlation between conserved residues and those participating in the folding nuclei. Here, we use the Gaussian network model (GNM), which recently proved useful in describing the dynamic characteristics of proteins for identifying the kinetically hot residues in folded structures. These are the residues involved in the highest frequency fluctuations near the native state coordinates. Their high frequency is a manifestation of the steepness of the energy landscape near their native state positions. The theory is applied to a series of proteins whose kinetically important residues have been extensively explored: chymotrypsin inhibitor 2, cytochrome c, and related C2 proteins. Most of the residues previously pointed out to underlie the folding process of these proteins, and to be critically important for the stabilization of the tertiary fold, are correctly identified, indicating a correlation between the kinetic hot spots and the early forming structural elements in proteins. Additionally, a strong correlation between kinetically hot residues and loci of conserved residues is observed. Finally, residues that may be important for the stability of the tertiary structure of CheY are proposed. PMID:9865946

  16. PROTEOMIC IDENTIFICATION OF CARBONYLATED PROTEINS AND THEIR OXIDATION SITES

    PubMed Central

    Madian, Ashraf G.; Regnier, Fred E.

    2011-01-01

    Excessive oxidative stress leaves a protein carbonylation fingerprint in biological systems. Carbonylation is an irreversible post translational modification (PTM) that often leads to the loss of protein function and can be a component of multiple diseases. Protein carbonyl groups can be generated directly (by amino acids oxidation and the a-amidation pathway) or indirectly by forming adducts with lipid peroxidation products or glycation and advanced glycation end-products. Studies of oxidative stress are complicated by the low concentration of oxidation products and wide array of routes by which proteins are carbonylated. The development of new selection and enrichment techniques coupled with advances in mass spectrometry are allowing identification of hundreds of new carbonylated protein products from a broad range of proteins located at many sites in biological systems. The focus of this review is on the use of proteomics tools and methods to identify oxidized proteins along with specific sites of oxidative damage and the consequences of protein oxidation. PMID:20521848

  17. Improving identification of traumatic brain injury after nonmilitary bomb blasts.

    PubMed

    Rutland-Brown, Wesley; Langlois, Jean A; Bazarian, Jeffrey J; Warden, Deborah

    2008-01-01

    To improve identification of traumatic brain injury (TBI) in survivors of nonmilitary bomb blasts during the acute care phase. The Centers for Disease Control and Prevention convened a meeting of experts in TBI, emergency medicine, and disaster response to review the recent literature and make recommendations. Seven key recommendations were proposed: (1) increase TBI awareness among medical professionals; (2) encourage use of standard definitions and consistent terminology; (3) improve screening methods for TBI in the acute care setting; (4) clarify the distinction between TBI and acute stress disorder; (5) encourage routine screening of hospitalized trauma patients for TBI; (6) improve identification of nonhospitalized TBI patients; and (7) integrate the appropriate level of TBI identification into all-hazards mass casualty preparedness. By adopting these recommendations, the United States could be better prepared to identify and respond to TBI following future bombing events.

  18. Systematic Errors in Peptide and Protein Identification and Quantification by Modified Peptides*

    PubMed Central

    Bogdanow, Boris; Zauber, Henrik; Selbach, Matthias

    2016-01-01

    The principle of shotgun proteomics is to use peptide mass spectra in order to identify corresponding sequences in a protein database. The quality of peptide and protein identification and quantification critically depends on the sensitivity and specificity of this assignment process. Many peptides in proteomic samples carry biochemical modifications, and a large fraction of unassigned spectra arise from modified peptides. Spectra derived from modified peptides can erroneously be assigned to wrong amino acid sequences. However, the impact of this problem on proteomic data has not yet been investigated systematically. Here we use combinations of different database searches to show that modified peptides can be responsible for 20–50% of false positive identifications in deep proteomic data sets. These false positive hits are particularly problematic as they have significantly higher scores and higher intensities than other false positive matches. Furthermore, these wrong peptide assignments lead to hundreds of false protein identifications and systematic biases in protein quantification. We devise a “cleaned search” strategy to address this problem and show that this considerably improves the sensitivity and specificity of proteomic data. In summary, we show that modified peptides cause systematic errors in peptide and protein identification and quantification and should therefore be considered to further improve the quality of proteomic data annotation. PMID:27215553

  19. Identification Method in Software Process Improvement Areas

    NASA Astrophysics Data System (ADS)

    Hayashi, Akihiro; Kataoka, Nobuhiro

    With the prevalence of CMMI (Capability Maturity Model Integration) that is developed in the United States and the international standardization model of Software Process Assessment ISO/IEC 15504, SPI (Software Process Improvement) based on Software Process Assessment is gaining ground in Japan as well. One of the objectives in SPI is to prevent the occurrence of errors in the downstream process by thorough process management in the upstream process. In order to implement the SPI from such viewpoints, this paper suggests the method to analyze Problem Reports developed in the testing process of a project, to specify software bugs existent in leading processes and to identify the SPI in the upstream process. By means of Problem Reports that is capable of externalization and is used in testing processes, knowledge that has not been externalized will be specified as Defect Cluster. Furthermore, deliverables in each process will be identified from the properties of Defect Cluster to implement the SPI, which is of the essence, by identifying processes causing trouble. In the project that was the analytical target, there were 608 Problem Reports in its testing process. As a result of the analysis, it was found that by identifying processes in the upper process to improve with the techniques recommended in this paper, about 13% of cases causing trouble could be prevented from occurring, which will contribute to productivity improvement due to a decrease in the number of rework processes.

  20. Improving Peptide identification using empirical scoring systems.

    PubMed

    Chalkley, Robert J

    2013-01-01

    Peptides and proteins are routinely identified from peptide fragmentation spectra acquired in a mass spectrometer, analyzed by database search engines. The types of fragments that can be formed are known, and it is also well appreciated that certain fragment types are more common or more informative than others. However, most search engines do not use detailed knowledge of peptide fragmentation, but rather consider a limited range of fragments, giving each an equivalent weighting in their scoring system that decides which results are likely to be correct. This chapter discusses efforts to make use of information about the frequency of observation of different fragment ion types in order to produce more sophisticated and sensitive scoring systems and demonstrates how these new scoring systems are particularly powerful for analysis of electron capture or electron transfer dissociation data.

  1. A new strategy for protein interface identification using manifold learning method.

    PubMed

    Wang, Bing; Huang, De-Shuang; Jiang, Changjun

    2014-06-01

    Protein interactions play vital roles in biological processes. The study for protein interface will allow people to elucidate the mechanism of protein interaction. However, a large portion of protein interface data is incorrectly collected in current studies. In this paper, a novel strategy of dataset reconstruction using manifold learning method has been proposed for dealing with the noises in the interaction interface data whose definition is based on the residue distances among the different chains within protein complexes. Three support vector machine-based predictors are constructed using different protein features to identify the functional sites involved in the formation of protein interface. The experimental results achieved in this work demonstrate that our strategy can remove noises, and therefore improve the ability for identification of protein interfaces with 77.8% accuracy.

  2. Reconfigurable hardware-software codesign methodology for protein identification.

    PubMed

    Gudur, Venkateshwarlu Y; Thallada, Sandeep; Deevi, Abhinay R; Gande, Venkata Krishna; Acharyya, Amit; Bhandari, Vasundhra; Sharma, Paresh; Khursheed, Saqib; Naik, Ganesh R

    2016-08-01

    In this paper we propose an on-the-fly reconfigurable hardware-software codesign based reconfigurable solution for real-time protein identification. Reconfigurable string matching is performed in the disciplines of protein identification and biomarkers discovery. With the generation of plethora of sequenced data and number of biomarkers for several diseases, it is becoming necessary to have an accelerated processing and on-the-fly reconfigurable system design methodology to bring flexibility to its usage in the medical science community without the need of changing the entire hardware every time with the advent of new biomarker or protein. The proteome database of human at UniProtKB (Proteome ID up000005640) comprising of 42132 canonical and isoform proteins with variable database-size are used for testing the proposed design and the performance of the proposed system has been found to compare favorably with the state-of-the-art approaches with the additional advantage of real-time reconfigurability.

  3. Improving bioorthogonal protein ubiquitylation by click reaction.

    PubMed

    Schneider, Daniel; Schneider, Tatjana; Rösner, Daniel; Scheffner, Martin; Marx, Andreas

    2013-06-15

    Posttranslational modification of proteins with ubiquitin (ubiquitylation) regulates numerous cellular processes. Besides functioning as a signal for proteasomal degradation, ubiquitylation has also non-proteolytic functions by altering the biochemical properties of the modified protein. To investigate the effect(s) of ubiquitylation on the properties of a protein, sufficient amounts of homogenously and well-defined ubiquitylated proteins are required. Here, we report on the elaboration of a method for the generation of high amounts of site-specifically mono-ubiquitylated proteins. Firstly, a one-step affinity purification scheme was developed for ubiquitin containing the unnatural amino acid azidohomoalanine at the C-terminal position. This ubiquitin was conjugated in a click reaction to recombinant DNA polymerase β, equipped with an alkyne function at a distinct position. Secondly, addition of defined amounts of SDS to the reaction significantly improved product formation. With these two technical improvements, we have developed a straight forward procedure for the efficient generation of site-specifically ubiquitylated proteins that can be used to study the effect(s) of ubiquitylation on the activities/properties of a protein.

  4. Methods and Approaches to Mass Spectroscopy Based Protein Identification

    USDA-ARS?s Scientific Manuscript database

    This book chapter is a review of current mass spectrometers and the role in the field of proteomics. Various instruments are discussed and their strengths and weaknesses are highlighted. In addition, the methods of protein identification using a mass spectrometer are explained as well as data vali...

  5. Identification of Trypanosome proteins in plasma from African sleeping sickness patients infected with T. b. rhodesiense.

    PubMed

    Eyford, Brett A; Ahmad, Rushdy; Enyaru, John C; Carr, Steven A; Pearson, Terry W

    2013-01-01

    Control of human African sleeping sickness, caused by subspecies of the protozoan parasite Trypanosoma brucei, is based on preventing transmission by elimination of the tsetse vector and by active diagnostic screening and treatment of infected patients. To identify trypanosome proteins that have potential as biomarkers for detection and monitoring of African sleeping sickness, we have used a 'deep-mining" proteomics approach to identify trypanosome proteins in human plasma. Abundant human plasma proteins were removed by immunodepletion. Depleted plasma samples were then digested to peptides with trypsin, fractionated by basic reversed phase and each fraction analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This sample processing and analysis method enabled identification of low levels of trypanosome proteins in pooled plasma from late stage sleeping sickness patients infected with Trypanosoma brucei rhodesiense. A total of 254 trypanosome proteins were confidently identified. Many of the parasite proteins identified were of unknown function, although metabolic enzymes, chaperones, proteases and ubiquitin-related/acting proteins were found. This approach to the identification of conserved, soluble trypanosome proteins in human plasma offers a possible route to improved disease diagnosis and monitoring, since these molecules are potential biomarkers for the development of a new generation of antigen-detection assays. The combined immuno-depletion/mass spectrometric approach can be applied to a variety of infectious diseases for unbiased biomarker identification.

  6. Identification & Characterization of Fungal Ice Nucleation Proteins

    NASA Astrophysics Data System (ADS)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Kampf, Christopher Johannes; Mauri, Sergio; Weidner, Tobias; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Freezing of water at relatively warm subfreezing temperatures is dependent on ice nucleation catalysis facilitated by ice nuclei (IN). These IN can be of various origins and although extensive research was done and progress was achieved, the nature and mechanisms leading to an effective IN are to date still poorly understood. Some of the most important processes of our geosphere like the water cycle are highly dependent on effective ice nucleation at temperatures between -2°C - -8°C, a temperature range which is almost exclusively covered by biological IN (BioIN). BioIN are usually macromolecular structures of biological polymers. Sugars as well as proteins have been reported to serve as IN and the best characterized BioIN are ice nucleation proteins (IN-P) from gram negative bacteria. Fungal strains from Fusarium spp. were described to be effective IN at subfreezing temperatures up to -2°C already 25 years ago and more and more fungal species are described to serve as efficient IN. Fungal IN are also thought to be proteins or at least contain a proteinaceous compound, but to date the fungal IN-P primary structure as well as their coding genetic elements of all IN active fungi are unknown. The aim of this study is a.) to identify the proteins and their coding genetic elements from IN active fungi (F. acuminatum, F. avenaceum, M. alpina) and b.) to characterize the mechanisms by which fungal IN serve as effective IN. We designed an interdisciplinary approach using biological, analytical and physical methods to identify fungal IN-P and describe their biological, chemical, and physical properties.

  7. Identification of Protein Components of Yeast Telomerase

    DTIC Science & Technology

    2000-09-01

    for forming telomeres at sites with stretches of telomere- like DNA. The pifl mutants also exhibit increased loss and decreased recombination of...like DNA. The pifl mutants also exhibit increased loss 6 and decreased recombination of mitochondrial DNA and thus have a high fraction of...the fission yeast Schizosaccharomyces pombe that was predicted to encode a 805 amino acid protein. The S. pombe gene was called rphl+ (RRM3/PIF1

  8. Support Vector Machine Classification of Probability Models and Peptide Features for Improved Peptide Identification from Shotgun Proteomics

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Oehmen, Chris S.; Cannon, William R.

    2007-12-01

    Proteomics is a rapidly advancing field offering a new perspective to biological systems. Mass spectrometry (MS) is a popular experimental approach because it allows global protein characterization of a sample in a high-throughput manner. The identification of a protein is based on the spectral signature of fragments of the constituent proteins, i.e., peptides. This peptide identification is typically performed with a computational database search algorithm; however, these database search algorithms return a large number of false positive identifications. We present a new scoring algorithm that uses a SVM to integrate database scoring metrics with peptide physiochemical properties, resulting in an improved ability to separate true from false peptide identification from MS. The Peptide Identification Classifier SVM (PICS) score using only five variables is significantly more accurate than the single best database metric, quantified as the area under a Receive Operating Characteristic curve of ~0.94 versus ~0.90.

  9. Identification of intracellular receptor proteins for activated protein kinase C.

    PubMed Central

    Mochly-Rosen, D; Khaner, H; Lopez, J

    1991-01-01

    Protein kinase C (PKC) translocates from the cytosol to the particulate fraction on activation. This activation-induced translocation of PKC is thought to reflect PKC binding to the membrane lipids. However, immunological and biochemical data suggest that PKC may bind to proteins in the cytoskeletal elements in the particulate fraction and in the nuclei. Here we describe evidence for the presence of intracellular receptor proteins that bind activated PKC. Several proteins from the detergent-insoluble material of the particulate fraction bound PKC in the presence of phosphatidylserine and calcium; binding was further increased with the addition of diacylglycerol. Binding of PKC to two of these proteins was concentration-dependent, saturable, and specific, suggesting that these binding proteins are receptors for activated C-kinase, termed here "RACKs." PKC binds to RACKs via a site on PKC distinct from the substrate binding site. We suggest that binding to RACKs may play a role in activation-induced translocation of PKC. Images PMID:1850844

  10. Microwave-assisted specific chemical digestion for rapid protein identification.

    PubMed

    Hua, Lin; Low, Teck Yew; Sze, Siu Kwan

    2006-01-01

    We have developed a rapid microwave-assisted protein digestion technique based on classic acid hydrolysis reaction with 2% formic acid solution. In this mild chemical environment, proteins are hydrolyzed to peptides, which can be directly analyzed by MALDI-MS or ESI-MS without prior sample purification. Dilute formic acid cleaves proteins specifically at the C-terminal of aspartyl (Asp) residues within 10 min of exposure to microwave irradiation. By adjusting the irradiation time, we found that the extent of protein fragmentation can be controlled, as shown by the single fragmentation of myoglobin at the C-terminal of any of the Asp residues. The efficacy and simplicity of this technique for protein identification are demonstrated by the peptide mass maps of in-gel digested myoglobin and BSA, as well as proteins isolated from Escherichia coli K12 cells.

  11. Improved Stochastic Subspace System Identification for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Ming; Loh, Chin-Hsiung

    2015-07-01

    Structural health monitoring acquires structural information through numerous sensor measurements. Vibrational measurement data render the dynamic characteristics of structures to be extracted, in particular of the modal properties such as natural frequencies, damping, and mode shapes. The stochastic subspace system identification has been recognized as a power tool which can present a structure in the modal coordinates. To obtain qualitative identified data, this tool needs to spend computational expense on a large set of measurements. In study, a stochastic system identification framework is proposed to improve the efficiency and quality of the conventional stochastic subspace system identification. This framework includes 1) measured signal processing, 2) efficient space projection, 3) system order selection, and 4) modal property derivation. The measured signal processing employs the singular spectrum analysis algorithm to lower the noise components as well as to present a data set in a reduced dimension. The subspace is subsequently derived from the data set presented in a delayed coordinate. With the proposed order selection criteria, the number of structural modes is determined, resulting in the modal properties. This system identification framework is applied to a real-world bridge for exploring the feasibility in real-time applications. The results show that this improved system identification method significantly decreases computational time, while qualitative modal parameters are still attained.

  12. Protein identification using nano liquid chromatography-tandem mass spectrometry.

    PubMed

    Negroni, Luc

    2007-01-01

    Tandem mass spectrometry is an efficient technique for the identification of peptides on the basis of their fragmentation pattern (MS/MS scan). It can generate individual spectra for each peptide, thereby creating a powerful tool for protein identification on the basis of peptide characterization. This important advance in automatic data acquisition has allowed an efficient association between liquid chromatography and tandem mass spectrometry, and the use of nanocolumns and nanoelectrospray ionization has dramatically increased the efficiency of this method. Now large sets of peptides can be identified at a femtomole level. At the end of the process, batch processing of the MS/MS spectra produces peptide lists that identify purified proteins or protein mixtures with high confidence.

  13. Bioinformatics pipeline for functional identification and characterization of proteins

    NASA Astrophysics Data System (ADS)

    Skarzyńska, Agnieszka; Pawełkowicz, Magdalena; Krzywkowski, Tomasz; Świerkula, Katarzyna; PlÄ der, Wojciech; Przybecki, Zbigniew

    2015-09-01

    The new sequencing methods, called Next Generation Sequencing gives an opportunity to possess a vast amount of data in short time. This data requires structural and functional annotation. Functional identification and characterization of predicted proteins could be done by in silico approches, thanks to a numerous computational tools available nowadays. However, there is a need to confirm the results of proteins function prediction using different programs and comparing the results or confirm experimentally. Here we present a bioinformatics pipeline for structural and functional annotation of proteins.

  14. Using enrichment index for quality control of secretory protein sample and identification of secretory proteins.

    PubMed

    Chen, Yong; Gu, Bei; Wu, Shuzhen; Sun, Wei; Ma, Sucan; Liu, Yuqin; Gao, Youhe

    2009-03-01

    Analysis of secretory proteins is an important area in proteomic research. We propose that a good secretory protein sample should be enriched with known secretory proteins, and a secretory protein should be enriched in the secretory protein sample compared with its corresponding soluble cell lysate. Positive identifications of proteins were subjected to quantitation of spectral counts, which reflect relative protein abundance. Enrichment index of the sample (EIS) and the enrichment index for protein (EIP) were obtained by comparing proteins identified in the secretory protein sample and those in the soluble cell lysate sample. The quality of the secretory protein sample can be represented by EIS. EIP was used to identify the secretory proteins.The secretory proteins from mouse dendritic cell sarcoma (DCS) were analyzed by MS. The EISs of two samples were 75.4 and 84.65, respectively. 72 proteins were significantly enriched in secretory protein samples, of which 42 proteins were either annotated in Swiss-Prot and/or predicted by signal peptides to be secretory. In the remaining 30 proteins, 12 and 15 proteins were positively predicted by SecretomeP and ProP, respectively, and 5 proteins were positive by both methods. Furthermore, 11 proteins were found to be present in exosome in other studies that involved mice dendritic cell lines. We suggest that this assessment method is helpful for systemic research of secretory proteins and biomarker discovery for diseases such as cancer. Copyright (c) 2009 John Wiley & Sons, Ltd.

  15. Proteomic identification of erythrocyte membrane protein deficiency in hereditary spherocytosis.

    PubMed

    Peker, Selen; Akar, Nejat; Demiralp, Duygu Ozel

    2012-03-01

    Hereditary spherocytosis (HS) is the most common congenital hemolytic anemia in Caucasians, with an estimated prevalence ranging from 1:2000 to 1:5000. The molecular defect in one of the erythrocytes (RBC) membrane proteins underlying HS like; spectrin-α, spectrin-β, ankyrin, band 3 and protein 4.2 that lead to membrane destabilization and vesiculation, may change the RBCs into denser and more rigid cells (spherocytes), which are removed by the spleen, leading to the development of hemolytic anemia. It is classified as mild, moderate and severe, according to the degree of the hemolytic anemia and the associated symptoms. Two-dimensional gel electrophoresis (2-DE) is potentially valuable method for studying heritable disorders as HS that involve membrane proteins. This separation technique of proteins based upon two biophysically unrelated parameters; molecular weight and charge, is a good option in clinical proteomics in terms of ability to separate complex mixtures, display post-translational modifications and changes after phosphorylation. In this study, we have used contemporary methods with some modifications for the solubilisation, separation and identification of erythrocyte membrane proteins in normal and in HS RBCs. Spectrin alpha and beta chain, ankyrin and band 3 proteins expression differences were found with PDQuest software 8.0.1. and peptide mass fingerprinting (PMF) analysis performed for identification of proteins in this study.

  16. Seed storage proteins as a system for teaching protein identification by mass spectrometry in biochemistry laboratory.

    PubMed

    Wilson, Karl A; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed, requiring more time and expertise than instructors of large laboratory classes can devote. We have developed an experimental module for our Biochemistry Laboratory course that engages students in MS-based protein identification following protein separation by one-dimensional SDS-PAGE, a technique that is usually taught in this type of course. The module is based on soybean seed storage proteins, a relatively simple mixture of proteins present in high levels in the seed, allowing the identification of the main protein bands by MS/MS and in some cases, even by peptide mass fingerprinting. Students can identify their protein bands using software available on the Internet, and are challenged to deduce post-translational modifications that have occurred upon germination. A collection of mass spectral data and tutorials that can be used as a stand-alone computer-based laboratory module were also assembled.

  17. IFPTarget: A Customized Virtual Target Identification Method Based on Protein-Ligand Interaction Fingerprinting Analyses.

    PubMed

    Li, Guo-Bo; Yu, Zhu-Jun; Liu, Sha; Huang, Lu-Yi; Yang, Ling-Ling; Lohans, Christopher T; Yang, Sheng-Yong

    2017-07-24

    Small-molecule target identification is an important and challenging task for chemical biology and drug discovery. Structure-based virtual target identification has been widely used, which infers and prioritizes potential protein targets for the molecule of interest (MOI) principally via a scoring function. However, current "universal" scoring functions may not always accurately identify targets to which the MOI binds from the retrieved target database, in part due to a lack of consideration of the important binding features for an individual target. Here, we present IFPTarget, a customized virtual target identification method, which uses an interaction fingerprinting (IFP) method for target-specific interaction analyses and a comprehensive index (Cvalue) for target ranking. Evaluation results indicate that the IFP method enables substantially improved binding pose prediction, and Cvalue has an excellent performance in target ranking for the test set. When applied to screen against our established target library that contains 11,863 protein structures covering 2842 unique targets, IFPTarget could retrieve known targets within the top-ranked list and identified new potential targets for chemically diverse drugs. IFPTarget prediction led to the identification of the metallo-β-lactamase VIM-2 as a target for quercetin as validated by enzymatic inhibition assays. This study provides a new in silico target identification tool and will aid future efforts to develop new target-customized methods for target identification.

  18. Using protein binding site prediction to improve protein docking.

    PubMed

    Huang, Bingding; Schroeder, Michael

    2008-10-01

    Predicting protein interaction interfaces and protein complexes are two important related problems. For interface prediction, there are a number of tools, such as PPI-Pred, PPISP, PINUP, Promate, and SPPIDER, which predict enzyme-inhibitor interfaces with success rates of 23% to 55% and other interfaces with 10% to 28% on a benchmark dataset of 62 complexes. Here, we develop, metaPPI, a meta server for interface prediction. It significantly improves prediction success rates to 70% for enzyme-inhibitor and 44% for other interfaces. As shown with Promate, predicted interfaces can be used to improve protein docking. Here, we follow this idea using the meta server instead of individual predictions. We confirm that filtering with predicted interfaces significantly improves candidate generation in rigid-body docking based on shape complementarity. Finally, we show that the initial ranking of candidate solutions in rigid-body docking can be further improved for the class of enzyme-inhibitor complexes by a geometrical scoring which rewards deep pockets. A web server of metaPPI is available at scoppi.tu-dresden.de/metappi. The source code of our docking algorithm BDOCK is also available at www.biotec.tu-dresden.de /approximately bhuang/bdock.

  19. Identification of local variations within secondary structures of proteins.

    PubMed

    Kumar, Prasun; Bansal, Manju

    2015-05-01

    Secondary-structure elements (SSEs) play an important role in the folding of proteins. Identification of SSEs in proteins is a common problem in structural biology. A new method, ASSP (Assignment of Secondary Structure in Proteins), using only the path traversed by the C(α) atoms has been developed. The algorithm is based on the premise that the protein structure can be divided into continuous or uniform stretches, which can be defined in terms of helical parameters, and depending on their values the stretches can be classified into different SSEs, namely α-helices, 310-helices, π-helices, extended β-strands and polyproline II (PPII) and other left-handed helices. The methodology was validated using an unbiased clustering of these parameters for a protein data set consisting of 1008 protein chains, which suggested that there are seven well defined clusters associated with different SSEs. Apart from α-helices and extended β-strands, 310-helices and π-helices were also found to occur in substantial numbers. ASSP was able to discriminate non-α-helical segments from flanking α-helices, which were often identified as part of α-helices by other algorithms. ASSP can also lead to the identification of novel SSEs. It is believed that ASSP could provide a better understanding of the finer nuances of protein secondary structure and could make an important contribution to the better understanding of comparatively less frequently occurring structural motifs. At the same time, it can contribute to the identification of novel SSEs. A standalone version of the program for the Linux as well as the Windows operating systems is freely downloadable and a web-server version is also available at http://nucleix.mbu.iisc.ernet.in/assp/index.php.

  20. Identification of shed proteins from Chinese hamster ovary cells: Application of statistical confidence using human and mouse protein databases

    SciTech Connect

    Ahram, Mamoun; Strittmatter, Eric F.; Monroe, Matthew E.; Adkins, Joshua N.; Hunter, Joel C.; Miller, John H.; Springer, David L.

    2005-05-01

    The shedding process releases ligands, receptors, and other proteins from the surface of the cell and is a mechanism whereby cells communicate. Even though altered regulation of this process has been implicated in several diseases, global approaches to evaluate shed proteins have not been developed. A goal of this study was to identify global changes in shed proteins in media taken from cells exposed to low-doses of radiation in an effort to develop a fundamental understanding of the bystander response. CHO cells were chosen for this study because they have been widely used for radiation studies and since they have been reported to respond to radiation by releasing factors into the media that cause genomic instability and cytotoxicity in unexposed cells, i.e., a bystander effect. Media samples taken for irradiated cells were evaluated using a combination of tandem- and FTICR-mass spectrometry analysis. Since the hamster genome has not been sequenced, mass spectrometry data was searched against the mouse and human proteins databases. Nearly 150 proteins that were identified by tandem mass spectrometry were confirmed by FTICR. When both types of mass spectrometry data were evaluated with a new confidence scoring tool, which is based on discriminant analyses, about 500 protein were identified. Approximately 20% of these identifications were either integral membrane proteins or membrane associated proteins, suggesting that they were derived from the cell surface, hence were likely shed. However, estimates of quantitative changes, based on two independent mass spectrometry approaches, did not identify any protein abundance changes attributable to the bystander effect. Results from this study demonstrate the feasibility of global evaluation of shed proteins using mass spectrometry in conjunction with cross-species protein databases and that significant improvement in peptide/protein identifications is provided by the confidence scoring tool.

  1. Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Datta, Susmita; Payne, Samuel H.; Kang, Jiyun; Bramer, Lisa M.; Nicora, Carrie D.; Shukla, Anil K.; Metz, Thomas O.; Rodland, Karin D.; Smith, Richard D.; Tardiff, Mark F.; McDermott, Jason E.; Pounds, Joel G.; Waters, Katrina M.

    2014-12-01

    As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab ® and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant.

  2. Large-scale identification of adverse drug reaction-related proteins through a random walk model

    PubMed Central

    Chen, Xiaowen; Shi, Hongbo; Yang, Feng; Yang, Lei; Lv, Yingli; Wang, Shuyuan; Dai, Enyu; Sun, Dianjun; Jiang, Wei

    2016-01-01

    Adverse drug reactions (ADRs) are responsible for drug failure in clinical trials and affect life quality of patients. The identification of ADRs during the early phases of drug development is an important task. Therefore, predicting potential protein targets eliciting ADRs is essential for understanding the pathogenesis of ADRs. In this study, we proposed a computational algorithm,Integrated Network for Protein-ADR relations (INPADR), to infer potential protein-ADR relations based on an integrated network. First, the integrated network was constructed by connecting the protein-protein interaction network and the ADR similarity network using known protein-ADR relations. Then, candidate protein-ADR relations were further prioritized by performing a random walk with restart on this integrated network. Leave-one-out cross validation was used to evaluate the ability of the INPADR. An AUC of 0.8486 was obtained, which was a significant improvement compared to previous methods. We also applied the INPADR to two ADRs to evaluate its accuracy. The results suggested that the INPADR is capable of finding novel protein-ADR relations. This study provides new insight to our understanding of ADRs. The predicted ADR-related proteins will provide a reference for preclinical safety pharmacology studies and facilitate the identification of ADRs during the early phases of drug development. PMID:27805066

  3. Proteomics method for identification of pseudopodium phosphotyrosine proteins.

    PubMed

    Wang, Yingchun; Klemke, Richard L

    2012-01-01

    Cell migration requires actin/myosin-mediated membrane protrusion of a pseudopodium (or lamellipodium) and its attachment to the substratum. This process guides the direction of cell movement through cytoskeletal remodeling and is regulated by complex signaling networks that act spatially downstream of integrin adhesion receptors. Understanding how these regulatory networks are organized in migratory cells is important for many physiological and pathological processes, including wound healing, immune function, and cancer metastasis. Here, we describe methods for the immunoaffinity purification of phosphotyrosine proteins (pY) from pseudopodia that have been isolated from migratory cells. These methods are compatible with current mass spectrometry-based protein identification technologies and can be utilized for the large-scale identification of the pseudopodium pY proteome in various migratory cell lines, including primary and cancer cells.

  4. Systematic identification of protein combinations mediating chromatin looping

    PubMed Central

    Zhang, Kai; Li, Nan; Ainsworth, Richard I.; Wang, Wei

    2016-01-01

    Chromatin looping plays a pivotal role in gene expression and other biological processes through bringing distal regulatory elements into spatial proximity. The formation of chromatin loops is mainly mediated by DNA-binding proteins (DBPs) that bind to the interacting sites and form complexes in three-dimensional (3D) space. Previously, identification of DBP cooperation has been limited to those binding to neighbouring regions in the proximal linear genome (1D cooperation). Here we present the first study that integrates protein ChIP-seq and Hi-C data to systematically identify both the 1D- and 3D-cooperation between DBPs. We develop a new network model that allows identification of cooperation between multiple DBPs and reveals cell-type-specific and -independent regulations. Using this framework, we retrieve many known and previously unknown 3D-cooperations between DBPs in chromosomal loops that may be a key factor in influencing the 3D organization of chromatin. PMID:27461729

  5. Effective leveraging of targeted search spaces for improving peptide identification in MS/MS based proteomics

    PubMed Central

    Shanmugam, Avinash K.; Nesvizhski, Alexey I.

    2016-01-01

    In shotgun proteomics, peptides are typically identified using database searching which involves scoring acquired tandem mass spectra against peptides derived from standard protein sequence databases such as Uniprot, Refseq, or Ensembl. In this strategy, the sensitivity of peptide identification is known to be affected by the size of the search space. Therefore, creating a targeted sequence database containing only peptides likely to be present in the analyzed sample can be a useful technique for improving the sensitivity of peptide identification. In this study we describe how targeted peptide databases can be created based on the frequency of identification in GPMDB – the largest publicly available repository of peptide and protein identification data. We demonstrate that targeted peptide databases can be easily integrated into existing proteome analysis workflows, and describe a computational strategy for minimizing any loss of peptide identifications arising from potential search space incompleteness in the targeted search spaces. We demonstrate the performance of our workflow using several datasets of varying size and sample complexity. PMID:26569054

  6. Identification of luminal and secreted proteins in bull epididymis.

    PubMed

    Belleannée, Clémence; Labas, Valérie; Teixeira-Gomes, Ana-Paula; Gatti, Jean Luc; Dacheux, Jean-Louis; Dacheux, Françoise

    2011-01-01

    The epididymis plays a major role in the acquisition of sperm fertility. In order to shed light on specific features of epididymal function in mammalian species, we characterized the luminal proteins (luminal proteome) and secreted proteins (secretome) in the bovine epididymis. We identified 172 different luminal proteins in 9 distinct epididymal regions. The concentration and secretory activity of luminal proteins were quantified throughout the epididymis. Among the most abundant secreted proteins, we found lipocalin 5, (LCN5), NADP(+)dependent prostaglandin dehydrogenase (PTGDS), Niemann-Pick disease type C2 protein (NPC2), glutathione peroxidase type 5 (GPX 5), clusterin (CLU), hexosaminidase B (HEXB) and galactosidase (GLB1), each of which is released in distinct epididymal regions. Gelsolin, (GSN) previously not described in mammalian epididymal fluid, appeared to be a major protein secreted exclusively in the distal region of the bovine epididymis, where fully mature spermatozoa are stored. Although the major epididymal proteins are conserved between mammalian species, this study highlights the specificity and mechanisms of protein processing of epididymal secretion in the bull. In addition, this study provides a major insight into the sequential changes occurring in the sperm environment while gaining fertilizing capacity and could provide new information for the future identification of potential fertility markers. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Identification of differential protein interactors of lamin A and progerin

    PubMed Central

    Kubben, Nard; Voncken, Jan Willem; Demmers, Jeroen; Calis, Chantal; van Almen, Geert

    2010-01-01

    The nuclear lamina is an interconnected meshwork of intermediate filament proteins underlying the nuclear envelope. The lamina is an important regulator of nuclear structural integrity as well as nuclear processes, including transcription, DNA replication and chromatin remodeling. The major components of the lamina are A- and B-type lamins. Mutations in lamins impair lamina functions and cause a set of highly tissue-specific diseases collectively referred to as laminopathies. The phenotypic diversity amongst laminopathies is hypothesized to be caused by mutations affecting specific protein interactions, possibly in a tissue-specific manner. Current technologies to identify interaction partners of lamin A and its mutants are hampered by the insoluble nature of lamina components. To overcome the limitations of current technologies, we developed and applied a novel, unbiased approach to identify lamin A-interacting proteins. This approach involves expression of the high-affinity OneSTrEP-tag, precipitation of lamin-protein complexes after reversible protein cross-linking and subsequent protein identification by mass spectrometry. We used this approach to identify in mouse embryonic fibroblasts and cardiac myocyte NklTAg cell lines proteins that interact with lamin A and its mutant isoform progerin, which causes the premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS). We identified a total of 313 lamina-interacting proteins, including several novel lamin A interactors, and we characterize a set of 35 proteins which preferentially interact with lamin A or progerin. PMID:21327095

  8. Identification Of Protein Vaccine Candidates Using Comprehensive Proteomic Analysis Strategies

    DTIC Science & Technology

    2007-12-01

    133. Jefferies, J. R., A. M. Campbell, A. J. van Rossum, et al. 2001. Proteomic analysis of Fasciola hepatica excretory-secretory products...performed on other organisms prevalent in human disease, such as the analysis of excreted proteins from the human parasitic liver fluke Fasciola ... hepatica , in the search for potential vaccine candidates. 133 More recent studies have employed MudPIT analysis for the identification of potential

  9. Identification and Characterization of β-Sitosterol Target Proteins

    PubMed Central

    Lomenick, Brett; Shi, Heping; Huang, Jing; Chen, Chuo

    2015-01-01

    β-Sitosterol is the most abundant plant sterol in the human diet. It is also the major component of several traditional medicines, including saw palmetto and devil’s claw. Although β-sitosterol is effective against enlarged prostate in human clinical trials and has anti-cancer and anti-inflammatory activities, the mechanisms of action are poorly understood. Here, we report the identification of two new binding proteins for β-sitosterol that may underlie its beneficial effects. PMID:25804720

  10. A peptide-retrieval strategy enables significant improvement of quantitative performance without compromising confidence of identification.

    PubMed

    Tu, Chengjian; Shen, Shichen; Sheng, Quanhu; Shyr, Yu; Qu, Jun

    2017-01-30

    Reliable quantification of low-abundance proteins in complex proteomes is challenging largely owing to the limited number of spectra/peptides identified. In this study we developed a straightforward method to improve the quantitative accuracy and precision of proteins by strategically retrieving the less confident peptides that were previously filtered out using the standard target-decoy search strategy. The filtered-out MS/MS spectra matched to confidently-identified proteins were recovered, and the peptide-spectrum-match FDR were re-calculated and controlled at a confident level of FDR≤1%, while protein FDR maintained at ~1%. We evaluated the performance of this strategy in both spectral count- and ion current-based methods. >60% increase of total quantified spectra/peptides was respectively achieved for analyzing a spike-in sample set and a public dataset from CPTAC. Incorporating the peptide retrieval strategy significantly improved the quantitative accuracy and precision, especially for low-abundance proteins (e.g. one-hit proteins). Moreover, the capacity of confidently discovering significantly-altered proteins was also enhanced substantially, as demonstrated with two spike-in datasets. In summary, improved quantitative performance was achieved by this peptide recovery strategy without compromising confidence of protein identification, which can be readily implemented in a broad range of quantitative proteomics techniques including label-free or labeling approaches.

  11. Establishment of a Protein Frequency Library and Its Application in the Reliable Identification of Specific Protein Interaction Partners*

    PubMed Central

    Boulon, Séverine; Ahmad, Yasmeen; Trinkle-Mulcahy, Laura; Verheggen, Céline; Cobley, Andy; Gregor, Peter; Bertrand, Edouard; Whitehorn, Mark; Lamond, Angus I.

    2010-01-01

    The reliable identification of protein interaction partners and how such interactions change in response to physiological or pathological perturbations is a key goal in most areas of cell biology. Stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry has been shown to provide a powerful strategy for characterizing protein complexes and identifying specific interactions. Here, we show how SILAC can be combined with computational methods drawn from the business intelligence field for multidimensional data analysis to improve the discrimination between specific and nonspecific protein associations and to analyze dynamic protein complexes. A strategy is shown for developing a protein frequency library (PFL) that improves on previous use of static “bead proteomes.” The PFL annotates the frequency of detection in co-immunoprecipitation and pulldown experiments for all proteins in the human proteome. It can provide a flexible and objective filter for discriminating between contaminants and specifically bound proteins and can be used to normalize data values and facilitate comparisons between data obtained in separate experiments. The PFL is a dynamic tool that can be filtered for specific experimental parameters to generate a customized library. It will be continuously updated as data from each new experiment are added to the library, thereby progressively enhancing its utility. The application of the PFL to pulldown experiments is especially helpful in identifying either lower abundance or less tightly bound specific components of protein complexes that are otherwise lost among the large, nonspecific background. PMID:20023298

  12. Biochemical component identification by plasmonic improved whispering gallery mode optical resonance based sensor

    NASA Astrophysics Data System (ADS)

    Saetchnikov, Vladimir A.; Tcherniavskaia, Elina A.; Saetchnikov, Anton V.; Schweiger, Gustav; Ostendorf, Andreas

    2014-05-01

    Experimental data on detection and identification of variety of biochemical agents, such as proteins, microelements, antibiotic of different generation etc. in both single and multi component solutions under varied in wide range concentration analyzed on the light scattering parameters of whispering gallery mode optical resonance based sensor are represented. Multiplexing on parameters and components has been realized using developed fluidic sensor cell with fixed in adhesive layer dielectric microspheres and data processing. Biochemical component identification has been performed by developed network analysis techniques. Developed approach is demonstrated to be applicable both for single agent and for multi component biochemical analysis. Novel technique based on optical resonance on microring structures, plasmon resonance and identification tools has been developed. To improve a sensitivity of microring structures microspheres fixed by adhesive had been treated previously by gold nanoparticle solution. Another technique used thin film gold layers deposited on the substrate below adhesive. Both biomolecule and nanoparticle injections caused considerable changes of optical resonance spectra. Plasmonic gold layers under optimized thickness also improve parameters of optical resonance spectra. Biochemical component identification has been also performed by developed network analysis techniques both for single and for multi component solution. So advantages of plasmon enhancing optical microcavity resonance with multiparameter identification tools is used for development of a new platform for ultra sensitive label-free biomedical sensor.

  13. Identification of new intrinsic proteins in Arabidopsis plasma membrane proteome.

    PubMed

    Marmagne, Anne; Rouet, Marie-Aude; Ferro, Myriam; Rolland, Norbert; Alcon, Carine; Joyard, Jacques; Garin, Jérome; Barbier-Brygoo, Hélène; Ephritikhine, Geneviève

    2004-07-01

    Identification and characterization of anion channel genes in plants represent a goal for a better understanding of their central role in cell signaling, osmoregulation, nutrition, and metabolism. Though channel activities have been well characterized in plasma membrane by electrophysiology, the corresponding molecular entities are little documented. Indeed, the hydrophobic protein equipment of plant plasma membrane still remains largely unknown, though several proteomic approaches have been reported. To identify new putative transport systems, we developed a new proteomic strategy based on mass spectrometry analyses of a plasma membrane fraction enriched in hydrophobic proteins. We produced from Arabidopsis cell suspensions a highly purified plasma membrane fraction and characterized it in detail by immunological and enzymatic tests. Using complementary methods for the extraction of hydrophobic proteins and mass spectrometry analyses on mono-dimensional gels, about 100 proteins have been identified, 95% of which had never been found in previous proteomic studies. The inventory of the plasma membrane proteome generated by this approach contains numerous plasma membrane integral proteins, one-third displaying at least four transmembrane segments. The plasma membrane localization was confirmed for several proteins, therefore validating such proteomic strategy. An in silico analysis shows a correlation between the putative functions of the identified proteins and the expected roles for plasma membrane in transport, signaling, cellular traffic, and metabolism. This analysis also reveals 10 proteins that display structural properties compatible with transport functions and will constitute interesting targets for further functional studies.

  14. Identification of novel CBP interacting proteins in embryonic orofacial tissue

    SciTech Connect

    Yin Xiaolong; Warner, Dennis R.; Roberts, Emily A.; Pisano, M. Michele; Greene, Robert M. . E-mail: greene@louisville.edu

    2005-04-15

    cAMP response element-binding protein (CREB)-binding protein (CBP) plays an important role as a general co-integrator of multiple signaling pathways and interacts with a large number of transcription factors and co-factors, through its numerous protein-binding domains. To identify nuclear factors associated with CBP in developing orofacial tissue, a yeast two-hybrid screen of a cDNA library derived from orofacial tissue from gestational day 11 to 13 mouse embryos was conducted. Using the carboxy terminus (amino acid residues 1676-2441) of CBP as bait, several novel proteins that bind CBP were identified, including an Msx-interacting-zinc finger protein, CDC42 interaction protein 4/thyroid hormone receptor interactor 10, SH3-domain GRB2-like 1, CCR4-NOT transcription complex subunit 3, adaptor protein complex AP-1 {beta}1 subunit, eukaryotic translation initiation factor 2B subunit 1 ({alpha}), and cyclin G-associated kinase. Results of the yeast two-hybrid screen were confirmed by glutathione S-transferase pull-down assays. The identification of these proteins as novel CBP-binding partners allows exploration of new mechanisms by which CBP regulates and integrates diverse cell signaling pathways.

  15. Top-down protein identification using isotopic envelope fingerprinting.

    PubMed

    Xiao, Kaijie; Yu, Fan; Tian, Zhixin

    2017-01-30

    For top-down protein database search and identification from tandem mass spectra, our isotopic envelope fingerprinting search algorithm and ProteinGoggle search engine have demonstrated their strength of efficiently resolving heavily overlapping data as well separating non-ideal data with non-ideal isotopic envelopes from ideal ones with ideal isotopic envelopes. Here we report our updated ProteinGoggle 2.0 for intact protein database search with full-capacity. The indispensable updates include users' optional definition of dynamic post-translational modifications and static chemical labeling during database creation, comprehensive dissociation methods and ion series, as well as a Proteoform Score for each proteoform. ProteinGoggle has previously been benchmarked with both collision-based dissociation (CID, HCD) and electron-based dissociation (ETD) data of either intact proteins or intact proteomes. Here we report our further benchmarking of the new version of ProteinGoggle with publically available photon-based dissociation (UVPD) data (http://hdl.handle.net/2022/17316) of intact E. coli ribosomal proteins.

  16. DNA-Templated Aptamer Probe for Identification of Target Proteins.

    PubMed

    Bi, Wenjing; Bai, Xue; Gao, Fan; Lu, Congcong; Wang, Ye; Zhai, Guijin; Tian, Shanshan; Fan, Enguo; Zhang, Yukui; Zhang, Kai

    2017-04-04

    Using aptamers as molecular probes for biomarker discovery has attracted a great deal of attention in recent years. However, it is still a big challenge to accurately identify those protein markers that are targeted by aptamers under physiological conditions due to weak and noncovalent aptamer-protein interactions. Herein, we developed an aptamer based dual-probe using DNA-templated chemistry and photo-cross-linking technique for the identification of target proteins that are recognized by aptamers. In this system, the aptamer was modified by a single strand DNA as binding probe (BP), and another complementary DNA with a photoactive group and reporter group was modified as capture probe (CP). BP was first added to recruit the binding protein via aptamer recognition, and subsequently CP was added to let the cross-linker close to the target via DNA self-assembly, and then a covalent bond between CP and its binding protein was achieved via photo-cross-linking reaction. The captured protein can be detected or affinity enrichment using the tag, finally identified by MS. By use of lysozyme as a model substrate, we demonstrated that this multiple functionalized probe can be utilized for a successful labeling and enrichment of target protein even under a complicated and real environment. Thus, a novel method to precisely identify the aptamer-targeted proteins has been developed and it has a potential application for discovery of aptamer-based biomarkers.

  17. Identification of the human testis protein phosphatase 1 interactome.

    PubMed

    Fardilha, Margarida; Esteves, Sara L C; Korrodi-Gregório, Luís; Vintém, Ana Paula; Domingues, Sara C; Rebelo, Sandra; Morrice, Nick; Cohen, Patricia T W; da Cruz e Silva, Odete A B; da Cruz e Silva, Edgar F

    2011-11-15

    Protein phosphorylation is a critical regulatory mechanism in cellular signalling. To this end, PP1 is a major eukaryotic serine/threonine-specific phosphatase whose cellular functions, in turn, depend on complexes it forms with PP1 interacting proteins-PIPs. The importance of the testis/sperm-enriched variant, PP1γ2, in sperm motility and spermatogenesis has previously been shown. Given the key role of PIPs, it is imperative to identify the physiologically relevant PIPs in testis and sperm. Hence, we performed Yeast Two-Hybrid screens of a human testis cDNA library using as baits the different PP1 isoforms and also a proteomic approach aimed at identifying PP1γ2 binding proteins. To the best of our knowledge this is the largest data set of the human testis PP1 interactome. We report the identification of 77 proteins in human testis and 7 proteins in human sperm that bind PP1. The data obtained increased the known PP1 interactome by reporting 72 novel interactions. Confirmation of the interaction of PP1 with 5 different proteins was also further validated by co-immunoprecipitation or protein overlays. The data here presented provides important insights towards the function of these proteins and opens new possibilities for future research. In fact, such diversity in PP1 regulators makes them excellent targets for pharmacological intervention.

  18. Identification and Characterization of Arabidopsis Seed Coat Mucilage Proteins.

    PubMed

    Tsai, Allen Yi-Lun; Kunieda, Tadashi; Rogalski, Jason; Foster, Leonard J; Ellis, Brian E; Haughn, George W

    2017-02-01

    Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Unbiased identification of protein-bait interactions using biochemical enrichment and quantitative proteomics.

    PubMed

    Ong, Shao-En

    2010-03-01

    The use of recombinant proteins, antibodies, small molecules, or nucleic acids as affinity reagents is a simple yet powerful strategy to study the protein-bait interactions that drive biological processes. However, such experiments are often analyzed by Western blotting, limiting the ability to detect novel protein interactors. Unbiased protein identification by mass spectrometry (MS) extends these experiments beyond the study of pairwise interactions, allowing analyses of whole networks of protein-bait interactions. With the latest advances in MS, it is not uncommon to identify thousands of proteins from complex mixtures. Paradoxically, the improved sensitivity of proteomic analyses can make it more difficult to distinguish bait-specific interactions from the large background of identified proteins. In quantitative proteomics, MS signals from protein populations labeled with stable isotopes such as (13)C and (15)N can be identified and quantified relative to unlabeled counterparts. Using quantitative proteomics to compare biochemical enrichments with the bait of interest against those obtained with control baits allows sensitive detection and discrimination of specific protein-bait interactions among the large number of nonspecific interactions with beads. Ad hoc optimization of enrichment conditions is minimized, and mild purification conditions preserve secondary or high-order protein-protein interactions. The combination of biochemical enrichment and quantitative proteomics allows rapid characterization of molecular baits with their interacting proteins, providing tremendous insight into their biological mechanisms of action.

  20. Prediction of structural features and application to outer membrane protein identification

    PubMed Central

    Yan, Renxiang; Wang, Xiaofeng; Huang, Lanqing; Yan, Feidi; Xue, Xiaoyu; Cai, Weiwen

    2015-01-01

    Protein three-dimensional (3D) structures provide insightful information in many fields of biology. One-dimensional properties derived from 3D structures such as secondary structure, residue solvent accessibility, residue depth and backbone torsion angles are helpful to protein function prediction, fold recognition and ab initio folding. Here, we predict various structural features with the assistance of neural network learning. Based on an independent test dataset, protein secondary structure prediction generates an overall Q3 accuracy of ~80%. Meanwhile, the prediction of relative solvent accessibility obtains the highest mean absolute error of 0.164, and prediction of residue depth achieves the lowest mean absolute error of 0.062. We further improve the outer membrane protein identification by including the predicted structural features in a scoring function using a simple profile-to-profile alignment. The results demonstrate that the accuracy of outer membrane protein identification can be improved by ~3% at a 1% false positive level when structural features are incorporated. Finally, our methods are available as two convenient and easy-to-use programs. One is PSSM-2-Features for predicting secondary structure, relative solvent accessibility, residue depth and backbone torsion angles, the other is PPA-OMP for identifying outer membrane proteins from proteomes. PMID:26104144

  1. Prediction of structural features and application to outer membrane protein identification

    NASA Astrophysics Data System (ADS)

    Yan, Renxiang; Wang, Xiaofeng; Huang, Lanqing; Yan, Feidi; Xue, Xiaoyu; Cai, Weiwen

    2015-06-01

    Protein three-dimensional (3D) structures provide insightful information in many fields of biology. One-dimensional properties derived from 3D structures such as secondary structure, residue solvent accessibility, residue depth and backbone torsion angles are helpful to protein function prediction, fold recognition and ab initio folding. Here, we predict various structural features with the assistance of neural network learning. Based on an independent test dataset, protein secondary structure prediction generates an overall Q3 accuracy of ~80%. Meanwhile, the prediction of relative solvent accessibility obtains the highest mean absolute error of 0.164, and prediction of residue depth achieves the lowest mean absolute error of 0.062. We further improve the outer membrane protein identification by including the predicted structural features in a scoring function using a simple profile-to-profile alignment. The results demonstrate that the accuracy of outer membrane protein identification can be improved by ~3% at a 1% false positive level when structural features are incorporated. Finally, our methods are available as two convenient and easy-to-use programs. One is PSSM-2-Features for predicting secondary structure, relative solvent accessibility, residue depth and backbone torsion angles, the other is PPA-OMP for identifying outer membrane proteins from proteomes.

  2. United Complex Centrality for Identification of Essential Proteins from PPI Networks.

    PubMed

    Li, Min; Lu, Yu; Niu, Zhibei; Wu, Fang-Xiang

    2017-01-01

    Essential proteins are indispensable for the survival or reproduction of an organism. Identification of essential proteins is not only necessary for the understanding of the minimal requirements for cellular life, but also important for the disease study and drug design. With the development of high-throughput techniques, a large number of protein-protein interaction data are available, which promotes the studies of essential proteins from the network level. Up to now, though a series of computational methods have been proposed, the prediction precision still needs to be improved. In this paper, we propose a new method, United complex Centrality (UC), to identify essential proteins by integrating the protein complexes with the topological features of protein-protein interaction (PPI) networks. By analyzing the relationship between the essential proteins and the known protein complexes of S. cerevisiae and human, we find that the proteins in complexes are more likely to be essential compared with the proteins not included in any complexes and the proteins appeared in multiple complexes are more inclined to be essential compared to those only appeared in a single complex. Considering that some protein complexes generated by computational methods are inaccurate, we also provide a modified version of UC with parameter alpha, named UC-P. The experimental results show that protein complex information can help identify the essential proteins more accurate both for the PPI network of S. cerevisiae and that of human. The proposed method UC performs obviously better than the eight previously proposed methods (DC, IC, EC, SC, BC, CC, NC, and LAC) for identifying essential proteins.

  3. A standardized framing for reporting protein identifications in mzIdentML 1.2

    PubMed Central

    Seymour, Sean L.; Farrah, Terry; Binz, Pierre-Alain; Chalkley, Robert J.; Cottrell, John S.; Searle, Brian C.; Tabb, David L.; Vizcaíno, Juan Antonio; Prieto, Gorka; Uszkoreit, Julian; Eisenacher, Martin; Martínez-Bartolomé, Salvador; Ghali, Fawaz; Jones, Andrew R.

    2015-01-01

    Inferring which protein species have been detected in bottom-up proteomics experiments has been a challenging problem for which solutions have been maturing over the past decade. While many inference approaches now function well in isolation, comparing and reconciling the results generated across different tools remains difficult. It presently stands as one of the greatest barriers in collaborative efforts such as the Human Proteome Project and public repositories like the PRoteomics IDEntifications (PRIDE) database. Here we present a framework for reporting protein identifications that seeks to improve capabilities for comparing results generated by different inference tools. This framework standardizes the terminology for describing protein identification results, associated with the HUPO-Proteomics Standards Initiative (PSI) mzIdentML standard, while still allowing for differing methodologies to reach that final state. It is proposed that developers of software for reporting identification results will adopt this terminology in their outputs. While the new terminology does not require any changes to the core mzIdentML model, it represents a significant change in practice, and, as such, the rules will be released via a new version of the mzIdentML specification (version 1.2) so that consumers of files are able to determine whether the new guidelines have been adopted by export software. PMID:25092112

  4. Target identification with quantitative activity based protein profiling (ABPP).

    PubMed

    Chen, Xiao; Wong, Yin Kwan; Wang, Jigang; Zhang, Jianbin; Lee, Yew-Mun; Shen, Han-Ming; Lin, Qingsong; Hua, Zi-Chun

    2017-02-01

    As many small bioactive molecules fulfill their functions through interacting with protein targets, the identification of such targets is crucial in understanding their mechanisms of action (MOA) and side effects. With technological advancements in target identification, it has become possible to accurately and comprehensively study the MOA and side effects of small molecules. While small molecules with therapeutic potential were derived solely from nature in the past, the remodeling and synthesis of such molecules have now been made possible. Presently, while some small molecules have seen successful application as drugs, the majority remain undeveloped, requiring further understanding of their MOA and side effects to fully tap into their potential. Given the typical promiscuity of many small molecules and the complexity of the cellular proteome, a high-flux and high-accuracy method is necessary. While affinity chromatography approaches combined with MS have had successes in target identification, limitations associated with nonspecific results remain. To overcome these complications, quantitative chemical proteomics approaches have been developed including metabolic labeling, chemical labeling, and label-free methods. These new approaches are adopted in conjunction with activity-based protein profiling (ABPP), allowing for a rapid process and accurate results. This review will briefly introduce the principles involved in ABPP, then summarize current advances in quantitative chemical proteomics approaches as well as illustrate with examples how ABPP coupled with quantitative chemical proteomics has been used to detect the targets of drugs and other bioactive small molecules including natural products.

  5. Identification of major proteins associated with Dictyostelium discoideum endocytic vesicles.

    PubMed

    Adessi, C; Chapel, A; Vinçon, M; Rabilloud, T; Klein, G; Satre, M; Garin, J

    1995-10-01

    Magnetic isolation of endocytic vesicles from Dictyostelium discoideum was accomplished after feeding the amoebae with iron oxide particles. Proteins associated with the endocytic vesicles were resolved by SDS-PAGE and digested 'in-gel' with endoproteinase Lys-C or Asp-N to generate peptides for amino acid sequencing. This strategy allowed the identification of the major protein constituents of the vesicles: namely, the A, B, D, E and 110 kDa subunits of a vacuolar type H(+)-ATPase, actin, a Rab 7-like GTPase, a p34 protein corresponding to a new cysteine proteinase and the 25 kDa product of a recently sequenced D. discoideum open reading frame.

  6. Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins.

    PubMed

    Butterfield, Erin R; Howe, Christopher J; Nisbet, R Ellen R

    2016-01-21

    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron-sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events.

  7. Identification of potential protein markers of noble rot infected grapes.

    PubMed

    Lorenzini, Marilinda; Millioni, Renato; Franchin, Cinzia; Zapparoli, Giacomo; Arrigoni, Giorgio; Simonato, Barbara

    2015-07-15

    The evaluation of Botrytis cinerea as noble rot on withered grapes is of great importance to predict the wine sensory/organoleptic properties and to manage the winemaking process of Amarone, a passito dry red wine. This report describes the first proteomic analysis of grapes infected by noble rot under withering conditions to identify possible markers of fungal infection. 2-D gel electrophoresis revealed that protein profiles of infected and not infected grape samples are significantly different in terms of number of spots and relative abundance. Protein identification by MS analysis allowed to identify only in infected berries proteins of B. cinerea that represent potential markers of the presence of the fungus in the withered grapes.

  8. Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins

    PubMed Central

    Butterfield, Erin R.; Howe, Christopher J.; Nisbet, R. Ellen R.

    2016-01-01

    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron–sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events. PMID:26798115

  9. Identification of hydrophobic proteins as biomarker candidates for colorectal cancer.

    PubMed

    Alvarez-Chaver, Paula; Rodríguez-Piñeiro, Ana M; Rodríguez-Berrocal, Francisco J; Martínez-Zorzano, Vicenta S; Páez de la Cadena, María

    2007-01-01

    Nowadays, colorectal cancer is one of the major causes of cancer death in Western countries. Due to the lack of biomarkers with clinical utility for this pathology, and considering that membrane and hydrophobic proteins have not been studied in depth, we performed a prefractionation of colorectal tissues prior to two-dimensional gel electrophoresis in order to identify hydrophobic proteins differentially expressed in colorectal cancer patients. Fractions enriched in hydrophobic proteins were obtained from healthy mucosa and tumor tissue by a specific extraction method based on temperature-dependent phase partitioning with Triton X-114. Proteins were separated by two-dimensional gel electrophoresis and gels were silver-stained, scanned and compared using the PDQuest software. Those spots presenting significantly different abundance were submitted to mass spectrometry for protein identification. Alterations in the expression of cytoskeletal proteins, including a decrease of vimentin and the absence of desmin, were found. We also detected alterations in antioxidant and transport proteins, chaperones, and in two isoforms of the calcium-binding protein S100A6. On the other hand, vimentin was chosen to corroborate the electrophoretic results by specific immunodetection. Most of the altered proteins have been related to cellular membranes, many of them to lipid rafts microdomains in the plasma membrane, and they have also been implicated in the control of cell proliferation, apoptosis, or metastasis. In conclusion, all the proteins found altered in colorectal tumor samples could be considered as candidates for future studies focused on their utility as markers for colorectal diagnosis and prognosis, or as targets for colorectal cancer therapy.

  10. Identification of Contractile Vacuole Proteins in Trypanosoma cruzi

    PubMed Central

    Park, Miyoung; Martins, Vicente P.; Atwood, James; Moles, Kristen; Collins, Dalis; Rohloff, Peter; Tarleton, Rick; Moreno, Silvia N. J.; Orlando, Ron; Docampo, Roberto

    2011-01-01

    Contractile vacuole complexes are critical components of cell volume regulation and have been shown to have other functional roles in several free-living protists. However, very little is known about the functions of the contractile vacuole complex of the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, other than a role in osmoregulation. Identification of the protein composition of these organelles is important for understanding their physiological roles. We applied a combined proteomic and bioinfomatic approach to identify proteins localized to the contractile vacuole. Proteomic analysis of a T. cruzi fraction enriched for contractile vacuoles and analyzed by one-dimensional gel electrophoresis and LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of expressed proteins of epimastigotes. We also identified different peptides that map to at least 39 members of the dispersed gene family 1 (DGF-1) providing evidence that many members of this family are simultaneously expressed in epimastigotes. Of the proteins present in the fraction we selected several homologues with known localizations in contractile vacuoles of other organisms and others that we expected to be present in these vacuoles on the basis of their potential roles. We determined the localization of each by expression as GFP-fusion proteins or with specific antibodies. Six of these putative proteins (Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter) predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our results demonstrate the utility of combining subcellular fractionation, proteomic analysis, and bioinformatic approaches for localization of organellar proteins that are difficult to detect with whole cell methodologies. The CV localization of the proteins investigated revealed potential novel roles of these organelles in phosphate metabolism

  11. Retinal proteins modified by 4-hydroxynonenal: identification of molecular targets.

    PubMed

    Kapphahn, Rebecca J; Giwa, Babatomiwa M; Berg, Kristin M; Roehrich, Heidi; Feng, Xiao; Olsen, Timothy W; Ferrington, Deborah A

    2006-07-01

    The reactive aldehyde, 4-hydroxynonenal (HNE), is a product of lipid peroxidation that can covalently modify and inactivate proteins. Previously, we reported increased HNE modification of select retinal proteins resolved by one-dimensional gel electrophoresis in aged Fisher 344 x Brown Norway rats (Louie, J.L., Kapphahn, R.J., Ferrington, D.A., 2002. Proteasome function and protein oxidation in the aged retina. Exp. Eye Res. 75, 271-284). In the current study, quantitative assessment of HNE molar content using slot blot immunoassays showed HNE content is increased 30% in aged rat retina. In contrast, there was no age-related difference in HNE content in individual spots resolved by 2D gel electrophoresis suggesting the increased modification is likely on membrane proteins that are missing on 2D gels. The HNE-immunoreactive proteins resolved by 2D gel electrophoresis were identified by MALDI-TOF mass spectrometry. These proteins are involved in metabolism, chaperone function, and fatty acid transport. Proteins that were frequently modified and had the highest molar content of HNE included triosephosphate isomerase, alpha enolase, heat shock cognate 70 and betaB2 crystallin. Immunochemical detection of HNE adducts on retinal sections showed greater immune reaction in ganglion cells, photoreceptor inner segment, and the inner plexiform layer. Identification of HNE modified proteins in two alternative model systems, human retinal pigment epithelial cells in culture (ARPE19) and human donor eyes, indicated that triosephosphate isomerase and alpha enolase are generally modified. These results identify a common subset of proteins that contain HNE adducts and suggest that select retinal proteins are molecular targets for HNE modification.

  12. Holistic processing improves change detection but impairs change identification.

    PubMed

    Mathis, Katherine M; Kahan, Todd A

    2014-10-01

    It has been just over a century since Gestalt psychologists described the factors that contribute to the holistic processing of visually presented stimuli. Recent research indicates that holistic processing may come at a cost; specifically, the perception of holistic forms may reduce the visibility of constituent parts. In the present experiment, we examined change detection and change identification accuracy with Kanizsa rectangle patterns that were arranged to either form a Gestalt whole or not. Results from an experiment with 62 participants support this trade-off in processing holistic forms. Holistic processing improved the detection of change but obstructed its identification. Results are discussed in terms of both their theoretical significance and their application in areas ranging from baggage screening and the detection of changes in radiological images to the systems that are used to generate composite images of perpetrators on the basis of eyewitness reports.

  13. High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays

    PubMed Central

    Yu, Xiaobo; LaBaer, Joshua

    2015-01-01

    Summary AMPylation (adenylylation) has been recognized as an important post translational modification employed by pathogens to regulate host cellular proteins and their associated signaling pathways. AMPylation has potential functions in various cellular processes and is widely conserved across both prokaryotes and eukaryotes. However, despite the identification of many AMPylators, relatively few candidate substrates of AMPylation are known. This is changing with the recent development of a robust and reliable method to identify new substrates using protein microarrays, which can significantly expand the list of potential substrates. Here, we describe procedures to detect AMPylated and auto-AMPylated proteins in a sensitive, high throughput, and non-radioactive manner. The approach employs high-density protein microarrays fabricated using NAPPA (Nucleic Acid Programmable Protein Arrays) technology, which enables the highly successful display of fresh recombinant human proteins in situ. The modification of target proteins is determined via copper-catalyzed azide–alkyne cycloaddition. The assay can be accomplished within 11 hours. PMID:25881200

  14. Identification, Analysis and Prediction of Protein Ubiquitination Sites

    PubMed Central

    Radivojac, Predrag; Vacic, Vladimir; Haynes, Chad; Cocklin, Ross R.; Mohan, Amrita; Heyen, Joshua W.; Goebl, Mark G.; Iakoucheva, Lilia M.

    2009-01-01

    Summary Ubiquitination plays an important role in many cellular processes and is implicated in many diseases. Experimental identification of ubiquitination sites is challenging due to rapid turnover of ubiquitinated proteins and the large size of the ubiquitin modifier. We identified 141 new ubiquitination sites using a combination of liquid chromatography, mass spectrometry and mutant yeast strains. Investigation of the sequence biases and structural preferences around known ubiquitination sites indicated that their properties were similar to those of intrinsically disordered protein regions. Using a combined set of new and previously known ubiquitination sites, we developed a random forest predictor of ubiquitination sites, UbPred. The class-balanced accuracy of UbPred reached 72%, with the area under the ROC curve at 80%. The application of UbPred showed that high confidence Rsp5 ubiquitin ligase substrates and proteins with very short half-lives were significantly enriched in the number of predicted ubiquitination sites. Proteome-wide prediction of ubiquitination sites in Saccharomyces cerevisiae indicated that highly ubiquitinated substrates were prevalent among transcription/enzyme regulators and proteins involved in cell cycle control. In the human proteome, cytoskeletal, cell cycle, regulatory and cancer-associated proteins display higher extent of ubiquitination than proteins from other functional categories. We show that gain and loss of predicted ubiquitination sites may likely represent a molecular mechanism behind a number of disease-associated mutations. UbPred is available at http://www.ubpred.org PMID:19722269

  15. Identification of Uropathogenic Escherichia coli Surface Proteins by Shotgun Proteomics

    PubMed Central

    Walters, Matthew S.; Mobley, Harry L.T.

    2009-01-01

    Uropathogenic Escherichia coli (UPEC) cause the majority of uncomplicated urinary tract infections in humans. In the process of identifying candidate antigens for a vaccine, two methods for the identification of the UPEC surface proteome during growth in human urine were investigated. The first approach utilized a protease to ‘shave’ surface-exposed peptides from the bacterial cell surface and identify them by mass spectrometry. Although this approach has been successfully applied to a Gram-positive pathogen, the adaptation to Gram-negative UPEC resulted in cytoplasmic protein contamination. In a more direct approach, whole-cell bacteria were labeled with a biotin tag to indicate surface-exposed peptides and two-dimensional liquid chromatography-tandem mass spectrometry (2-DLC-MS/MS) was used to identify proteins isolated from the outer membrane. This method discovered 25 predicted outer membrane proteins expressed by UPEC while growing in human urine. Nine of the 25 predicted outer membrane proteins were part of iron transport systems or putative iron-regulated virulence proteins, indicating the importance of iron acquisition during growth in urine. One of the iron transport proteins identified, Hma, appears to be a promising vaccine candidate is being further investigated. The method described here presents a system to rapidly identify the outer membrane proteome of bacteria, which may prove valuable in vaccine development. PMID:19426766

  16. Identification of Major Outer Surface Proteins of Streptococcus agalactiae

    PubMed Central

    Hughes, Martin J. G.; Moore, Joanne C.; Lane, Jonathan D.; Wilson, Rebecca; Pribul, Philippa K.; Younes, Zabin N.; Dobson, Richard J.; Everest, Paul; Reason, Andrew J.; Redfern, Joanne M.; Greer, Fiona M.; Paxton, Thanai; Panico, Maria; Morris, Howard R.; Feldman, Robert G.; Santangelo, Joseph D.

    2002-01-01

    To identify the major outer surface proteins of Streptococcus agalactiae (group B streptococcus), a proteomic analysis was undertaken. An extract of the outer surface proteins was separated by two-dimensional electrophoresis. The visualized spots were identified through a combination of peptide sequencing and reverse genetic methodologies. Of the 30 major spots identified as S. agalactiae specific, 27 have been identified. Six of these proteins, previously unidentified in S. agalactiae, were sequenced and cloned. These were ornithine carbamoyltransferase, phosphoglycerate kinase, nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase, purine nucleoside phosphorylase, enolase, and glucose-6-phosphate isomerase. Using a gram-positive expression system, we have overexpressed two of these proteins in an in vitro system. These recombinant, purified proteins were used to raise antisera. The identification of these proteins as residing on the outer surface was confirmed by the ability of the antisera to react against whole, live bacteria. Further, in a neonatal-animal model system, we demonstrate that some of these sera are protective against lethal doses of bacteria. These studies demonstrate the successful application of proteomics as a technique for identifying vaccine candidates. PMID:11854208

  17. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins.

    PubMed

    Lewis, Lauren A; Radulović, Željko M; Kim, Tae K; Porter, Lindsay M; Mulenga, Albert

    2015-04-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted.

  18. Identification of 24 h Ixodes scapularis immunogenic tick saliva proteins

    PubMed Central

    Lewis, Lauren A.; Radulović, Željko M.; Kim, Tae K.; Porter, Lindsay M.; Mulenga, Albert

    2015-01-01

    Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24 h post attachment to be transmitted. This study describes identification of 24 h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24 h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24 h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ~19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ~81% (147/182) of contigs were provisionally identified based on matches in GenBank including ~18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (~3%, 5/147), transporters and/or ligand binding proteins (~6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (~31%, 46/147), and those classified as miscellaneous (~24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24 h, before the majority of TBD agents can be transmitted. PMID:25825233

  19. Identification of lipid synthesis and secretion proteins in bovine milk.

    PubMed

    Lu, Jing; van Hooijdonk, Toon; Boeren, Sjef; Vervoort, Jacques; Hettinga, Kasper

    2014-02-01

    Lactation physiology is a process that is only partly understood. Proteomics techniques have shown to be useful to help advance the knowledge on lactation physiology in human and rodent species but have not been used as major tools for dairy cows, except for mastitis. In this paper, advanced non-targeted proteomics techniques (Filter aided sample preparation and NanoLC-Orbitrap-MS/MS) were applied to study the milk fat globule membrane and milk serum fraction, resulting in the identification of 246 proteins. Of these, 23 transporters and enzymes were related to lipid synthesis and secretion in mammary gland and their functions are discussed in detail. The identification of these intracellular transporters and enzymes in milk provides a possibility of using milk itself to study lipid synthesis and secretion pathways. This full-scale scan of milk proteins by using non-targeted proteomic analysis helps to reveal the important proteins involved in lipid synthesis and secretion for further examination in targeted studies.

  20. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening

    NASA Astrophysics Data System (ADS)

    Zavodszky, Maria I.; Sanschagrin, Paul C.; Kuhn, Leslie A.; Korde, Rajesh S.

    2002-12-01

    For the successful identification and docking of new ligands to a protein target by virtual screening, the essential features of the protein and ligand surfaces must be captured and distilled in an efficient representation. Since the running time for docking increases exponentially with the number of points representing the protein and each ligand candidate, it is important to place these points where the best interactions can be made between the protein and the ligand. This definition of favorable points of interaction can also guide protein structure-based ligand design, which typically focuses on which chemical groups provide the most energetically favorable contacts. In this paper, we present an alternative method of protein template and ligand interaction point design that identifies the most favorable points for making hydrophobic and hydrogen-bond interactions by using a knowledge base. The knowledge-based protein and ligand representations have been incorporated in version 2.0 of SLIDE and resulted in dockings closer to the crystal structure orientations when screening a set of 57 known thrombin and glutathione S-transferase (GST) ligands against the apo structures of these proteins. There was also improved scoring enrichment of the dockings, meaning better differentiation between the chemically diverse known ligands and a ˜15,000-molecule dataset of randomly-chosen small organic molecules. This approach for identifying the most important points of interaction between proteins and their ligands can equally well be used in other docking and design techniques. While much recent effort has focused on improving scoring functions for protein-ligand docking, our results indicate that improving the representation of the chemistry of proteins and their ligands is another avenue that can lead to significant improvements in the identification, docking, and scoring of ligands.

  1. Identification of proteins that modify cataract of mouse eye lens.

    PubMed

    Hoehenwarter, Wolfgang; Tang, Yajun; Ackermann, Renate; Pleissner, Klaus-Peter; Schmid, Monika; Stein, Robert; Zimny-Arndt, Ursula; Kumar, Nalin M; Jungblut, Peter R

    2008-12-01

    The occurrence of a nuclear cataract in the eye lens due to disruption of the alpha3Cx46 connexin gene, Gja3, is dependent on strain background in a mouse model, implicating factors that modify the pathology. The differences upon cataractogenesis in the urea soluble proteins of the lens of two mouse strains, C57BL/6J and 129/SvJ, were analyzed by a comparative proteomics approach. Determination of the complete proteome of an organ offers the opportunity to characterize at a molecular level, differences in gene expression and PTMs occurring during pathology and between individuals. The abundance of 63 protein species was altered between the strains. A unique aspect of this study is the identification of chaperonin subunit 6A, mortalin, ERp29, and syntaxin-binding protein 6 in the eye lens. DNA polymorphisms resulting in nonconservative amino acid changes that led to altered physicochemical properties of the proteins were detected for mortalin, chaperonin subunit 6A, annexin A1, and possibly gamma-N crystallin. The results show HSP27/25 and/or ERp29 are the likely major modifying factors for cataractogenesis. Extension of the results suggests that small heat-shock proteins have a major role for influencing cataract formation in humans.

  2. Identification of a fibronectin-binding protein from Staphylococcus epidermidis.

    PubMed

    Williams, Rachel J; Henderson, Brian; Sharp, Lindsay J; Nair, Sean P

    2002-12-01

    Staphylococcus epidermidis has been reported to bind to a number of host cell extracellular matrix proteins, including fibronectin. Here we report the identification of a fibronectin-binding protein from S. epidermidis. A phage display library of S. epidermidis genomic DNA was constructed and panned against immobilized fibronectin. A number of phagemid clones containing overlapping inserts were identified, and one of these clones, pSE109FN, contained a 1.4-kb insert. Phage pSE109FN was found to bind to fibronectin but not to collagen, fibrinogen, laminin, or vitronectin. However, pSE109FN also bound to heparin, hyaluronate, and plasminogen, although to a lesser extent than it bound to fibronectin. Analysis of The Institute for Genomic Research S. epidermidis genome sequence database revealed a 1.85-kb region within a putative 30.5-kb open reading frame, to which the overlapping DNA inserts contained within the fibronectin-binding phagemids mapped. We have designated the gene encoding the fibronectin-binding domain embp. A recombinant protein, Embp32, which encompassed the fibronectin-binding domain of Embp, blocked the binding of S. epidermidis, but not the binding of Staphylococcus aureus, to fibronectin. In contrast, a recombinant protein, FnBPB[D1-D4], spanning the fibronectin-binding domain of the S. aureus fibronectin-binding protein FnBPB, blocked binding of S. aureus to fibronectin but had a negligible effect on the binding of S. epidermidis.

  3. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins.

    PubMed

    Kadota, Yasuhiro; Macho, Alberto P; Zipfel, Cyril

    2016-01-01

    Membrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications. However, recent advances in immunoprecipitation technology allow to isolate membrane proteins efficiently, facilitating the study of protein-protein interactions, the identification of novel associated proteins, and to identify post-translational modifications, such as phosphorylation. Here, we describe an optimized immunoprecipitation protocol for plant plasma membrane receptor-like kinases.

  4. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    SciTech Connect

    Agarwal, Pratul K.

    2015-11-24

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  5. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    SciTech Connect

    Agarwal, Pratul K.

    2013-04-09

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  6. Identification and validation of protein targets of bioactive small molecules

    PubMed Central

    Titov, Denis V.; Liu, Jun O.

    2013-01-01

    Identification and validation of protein targets of bioactive small molecules is an important problem in chemical biology and drug discovery. Currently, no single method is satisfactory for this task. Here, we provide an overview of common methods for target identification and validation that historically were most successful. We have classified for the first time the existing methods into two distinct and complementary types, the “top-down” and “bottom-up” approaches. In a typical top-down approach, the cellular phenotype is used as a starting point and the molecular target is approached through systematic narrowing down of possibilities by taking advantage of the detailed existing knowledge of cellular pathways and processes. In contrast, the bottom-up approach entails the direct detection and identification of the molecular targets using affinity-based or genetic methods. A special emphasis is placed on target validation, including correlation analysis and genetic methods, as this area is often ignored despite its importance. PMID:22226983

  7. Identification and validation of protein targets of bioactive small molecules.

    PubMed

    Titov, Denis V; Liu, Jun O

    2012-03-15

    Identification and validation of protein targets of bioactive small molecules is an important problem in chemical biology and drug discovery. Currently, no single method is satisfactory for this task. Here, we provide an overview of common methods for target identification and validation that historically were most successful. We have classified for the first time the existing methods into two distinct and complementary types, the 'top-down' and 'bottom-up' approaches. In a typical top-down approach, the cellular phenotype is used as a starting point and the molecular target is approached through systematic narrowing down of possibilities by taking advantage of the detailed existing knowledge of cellular pathways and processes. In contrast, the bottom-up approach entails the direct detection and identification of the molecular targets using affinity-based or genetic methods. A special emphasis is placed on target validation, including correlation analysis and genetic methods, as this area is often ignored despite its importance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Identification of three novel mutations in hereditary protein S deficiency.

    PubMed

    Bustorff, T C; Freire, I; Gago, T; Crespo, F; David, D

    1997-01-01

    We report the application of single-stranded conformation polymorphism (SSCP) analysis to the screening of 15 functionally important Protein S (PS) gene (PS alpha) regions (4.243 Kb) in 6 unrelated families with PS deficiencies. Direct sequencing of the fragments with altered migration patterns led to the identification of the corresponding molecular alterations. A missense mutation, G to T transversion at codon Cys598, and two different alterations, leading either to allelic exclusion, or premature termination of the protein translation: a G to A transition at codon Trp465 and a 1 nt (T) insertion at codon 265, were identified. The 1 nt insertion was observed in three apparently unrelated families but with a common geographical origin and the mutated allele was undetectable in platelet mRNAs of affected individuals. Family analysis confirmed, in each case, a perfect cosegregation of the mutation with the PS deficiency. We conclude that these alterations represent the causative mutations.

  9. In Silico identification of M. TB proteins with diagnostic potential

    PubMed Central

    2013-01-01

    TB, caused by Mycobacterium tuberculosis (MTB), is one of the major global infectious diseases. For the pandemic control, early diagnosis with sensitive and specific methods is fundamental. With the advent of bioinformatics’ tools, the identification of several proteins involved in the pathogenesis of TB (TB) has been possible. In the present work, the MTB genome was explored to look for molecules with possible antigenic properties for their evaluation as part of new generation diagnostic kits based on the release of cytokines. Seven proteins from the MTB proteome and some of their combinations suited the computational test and the results suggested their potential use for the diagnosis of infection in the following population groups: Cuba, Mexico, Malaysia and sub-Saharan Africa. Our predictions were performed using public bioinformatics tools plus three computer programs, developed by our group, to facilitate information retrieval and processing. PMID:23458073

  10. Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds.

    PubMed

    Charmont, Stéphane; Jamet, Elisabeth; Pont-Lezica, Rafael; Canut, Hervé

    2005-02-01

    Arabidopsis thaliana seedlings grown in liquid culture were used to recover proteins secreted from the whole plant. The aim was to identify apoplastic proteins that may be lost during classical extraction procedures such as preparation of cell walls. The inclusion of polyvinyl-polypyrrolidone (PVPP) in the protocol of purification of secreted proteins allowed a more efficient identification of proteins after their separation by two-dimensional gel electrophoresis (2-DE) and mass spectrometry analyses. Improvement of identification was 4-fold. It is related to an increased number of detectable peaks on mass spectra increasing the percentage of sequence coverage, and the identification confidence. The role of PVPP was to trap phenolic compounds and to prevent their unspecific interactions with proteins. These experiments resulted in the identification of 44 secreted proteins, of which 70% were not identified in previous cell wall proteomic studies. This may be due to specific gene regulation in seedlings and/or to a better access to apoplastic proteins not bound to cell walls.

  11. Mapping and identification of protein-protein interactions by two-dimensional far-Western immunoblotting.

    PubMed

    Pasquali, C; Vilbois, F; Curchod, M L; Hooft van Huijsduijnen, R; Arigoni, F

    2000-10-01

    Studies of protein-protein interactions have proved to be a useful approach to link proteins of unknown function to known cellular processes. In this study we have combined several existing methods to attempt the comprehensive identification of substrates for poorly characterized human protein tyrosine phosphatases (PTPs). We took advantage of so-called "substrate trapping" mutants, a procedure originally described by Flint et al. (Proc. Natl. Acad. Sci. USA 1997, 94, 1680-1685) to identify binding partners of cloned PTPs. This procedure was adapted to a proteome-wide approach to probe for candidate substrates in cellular extracts that were separated by two-dimensional (2-D) gel electrophoresis and blotted onto membranes. Protein-protein interactions were revealed by far-Western immunoblotting and positive binding proteins were subsequently identified from silver-stained gels using tandem mass spectrometry. With this method we were able to identify possible substrates for PTPs without using any radio-labeled cDNA or protein probes and showed that they corresponded to tyrosine phosphorylated proteins. We believe that this method could be generally applied to identify possible protein-protein interactions.

  12. Identification of potent antioxidant bioactive peptides from goat milk proteins.

    PubMed

    Ahmed, Ahmed S; El-Bassiony, Tawfik; Elmalt, Laila M; Ibrahim, Hisham R

    2015-08-01

    Goat milk proteins have gained increasing attention especially the bioactive peptides released from the parent proteins by digestive enzymes. Specifically, the interest in bioactives of goat milk is intensifying due to its reduced allergenicity compared to bovine milk. In this study, proteins of goat milk were fractionated into caseins (GCP) and whey proteins (GWP), hydrolyzed by pepsin and the generated peptides were examined for radical scavenging activities. The hydrolysates of whey (P-GWP) and casein (P-GCP) proteins exhibited potent superoxide anion (O2(・-)) scavenging activity in a dose-dependent manner, as investigated using the natural xanthine/xanthine oxidase (X/XOD) system. The P-GWP and P-GCP dramatically quenched the O2(・-) flux but had negligible effect on the catalytic function of the enzyme, indicating specificity to scavenge O2(・-) but not oxidase inhibition. Further, both P-GWP and P-GCP were able to remarkably quench the chemical DPPH radical. Fractionation of hydrolysates by size-exclusion chromatography produced four fractions (F1-F4) from both hydrolysates, with variable O2(・-) scavenging activities. However, the slow eluting fractions (F4) of both hydrolysates and fast eluting fraction (F2) of P-GCP contained peptides with the highest scavenging activities. Peptides in the active fractions of P-GWP and P-GCP, isolated by reversed phase-HPLC, exhibited significantly strong O2(・-) scavenging activities. MALDI-TOF-MS allowed the identification of several antioxidant peptides derived from both caseins and whey proteins, with β-casein and β-lactoglobulin being the major contributors, respectively. The results demonstrate that digestion with pepsin generates multiple soluble peptides from goat milk protein fractions with remarkable ability to scavenge superoxide radicals and thus providing a fascinating opportunity for their potential candidacy as antioxidant bioactive peptides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Improved solution for system identification equations by Epsilon-Decomposition

    NASA Technical Reports Server (NTRS)

    Ojalvo, Irving U.

    1990-01-01

    Matrix eigenvalue theory is used to examine the source of ill-conditioning in linear algebraic equations. This approach highlights the crucial role played by the zero and near-zero eigenvalues and corresponding eigenvectors of poorly conditioned systems. Insight gained from this approach is used to significantly improve a recently developed solution procedure called Epsilon-Decomposition (E-D). E-D is an efficient alternative to Singular Value Decomposition (SVD) for ill-conditioned systems arising in parameter estimation and system identification studies. The efficiency of the improved E-D over SVD resides in the need to only obtain the zero and near-zero eigenvalues of the coefficient matrix as opposed to all of its eigenvalues and vectors (as required by SVD). Thus, the efficiency of E-D is significant for large matrices with small rank deficiency.

  14. Improvements to the LC Muon tracking and identification software

    SciTech Connect

    Milstene, C.; Fisk, G.; Para, A.

    2005-03-01

    This note summarizes the evolution of the Muon-ID package originally written by R. Markeloff at NIU. The original method used a helical swimmer to extrapolate the tracks from the interaction point and to collect hits in all sub-detectors: the electromagnetic and hadronic calorimeters and muon detector. The package was modified to replace the swimmer by a stepper which does account for both the effects of the magnetic field and for the losses by ionization in the material encountered by the particle. The modified package shows a substantial improvement in the efficiency of muon identification. Further improvement should be reached by accounting for stochastic processes via the utilization of a Kalman filter.

  15. Improving the prediction of yeast protein function using weighted protein-protein interactions

    PubMed Central

    2011-01-01

    Background Bioinformatics can be used to predict protein function, leading to an understanding of cellular activities, and equally-weighted protein-protein interactions (PPI) are normally used to predict such protein functions. The present study provides a weighting strategy for PPI to improve the prediction of protein functions. The weights are dependent on the local and global network topologies and the number of experimental verification methods. The proposed methods were applied to the yeast proteome and integrated with the neighbour counting method to predict the functions of unknown proteins. Results A new technique to weight interactions in the yeast proteome is presented. The weights are related to the network topology (local and global) and the number of identified methods, and the results revealed improvement in the sensitivity and specificity of prediction in terms of cellular role and cellular locations. This method (new weights) was compared with a method that utilises interactions with the same weight and it was shown to be superior. Conclusions A new method for weighting the interactions in protein-protein interaction networks is presented. Experimental results concerning yeast proteins demonstrated that weighting interactions integrated with the neighbor counting method improved the sensitivity and specificity of prediction in terms of two functional categories: cellular role and cell locations. PMID:21524280

  16. Identification of a Chitinase-modifying Protein from Fusarium verticillioides

    PubMed Central

    Naumann, Todd A.; Wicklow, Donald T.; Price, Neil P. J.

    2011-01-01

    Chitinase-modifying proteins (cmps) are proteases secreted by fungal pathogens that truncate the plant class IV chitinases ChitA and ChitB during maize ear rot. cmp activity has been characterized for Bipolaris zeicola and Stenocarpella maydis, but the identities of the proteases are not known. Here, we report that cmps are secreted by multiple species from the genus Fusarium, that cmp from Fusarium verticillioides (Fv-cmp) is a fungalysin metalloprotease, and that it cleaves within a sequence that is conserved in class IV chitinases. Protein extracts from Fusarium cultures were found to truncate ChitA and ChitB in vitro. Based on this activity, Fv-cmp was purified from F. verticillioides. N-terminal sequencing of truncated ChitA and MALDI-TOF-MS analysis of reaction products showed that Fv-cmp is an endoprotease that cleaves a peptide bond on the C-terminal side of the lectin domain. The N-terminal sequence of purified Fv-cmp was determined and compared with a set of predicted proteins, resulting in its identification as a zinc metalloprotease of the fungalysin family. Recombinant Fv-cmp also truncated ChitA, confirming its identity, but had reduced activity, suggesting that the recombinant protease did not mature efficiently from its propeptide-containing precursor. This is the first report of a fungalysin that targets a nonstructural host protein and the first to implicate this class of virulence-related proteases in plant disease. PMID:21878653

  17. PRIGSA: protein repeat identification by graph spectral analysis.

    PubMed

    Chakrabarty, Broto; Parekh, Nita

    2014-12-01

    Repetition of a structural motif within protein is associated with a wide range of structural and functional roles. In most cases the repeating units are well conserved at the structural level while at the sequence level, they are mostly undetectable suggesting the need for structure-based methods. Since most known methods require a training dataset, de novo approach is desirable. Here, we propose an efficient graph-based approach for detecting structural repeats in proteins. In a protein structure represented as a graph, interactions between inter- and intra-repeat units are well captured by the eigen spectra of adjacency matrix of the graph. These conserved interactions give rise to similar connections and a unique profile of the principal eigen spectra for each repeating unit. The efficacy of the approach is shown on eight repeat families annotated in UniProt, comprising of both solenoid and nonsolenoid repeats with varied secondary structure architecture and repeat lengths. The performance of the approach is also tested on other known benchmark datasets and the performance compared with two repeat identification methods. For a known repeat type, the algorithm also identifies the type of repeat present in the protein. A web tool implementing the algorithm is available at the URL http://bioinf.iiit.ac.in/PRIGSA/.

  18. Identification of proteins binding coding and non-coding human RNAs using protein microarrays

    PubMed Central

    2012-01-01

    Background The regulation and function of mammalian RNAs has been increasingly appreciated to operate via RNA-protein interactions. With the recent discovery of thousands of novel human RNA molecules by high-throughput RNA sequencing, efficient methods to uncover RNA-protein interactions are urgently required. Existing methods to study proteins associated with a given RNA are laborious and require substantial amounts of cell-derived starting material. To overcome these limitations, we have developed a rapid and large-scale approach to characterize binding of in vitro transcribed labeled RNA to ~9,400 human recombinant proteins spotted on protein microarrays. Results We have optimized methodology to probe human protein microarrays with full-length RNA molecules and have identified 137 RNA-protein interactions specific for 10 coding and non-coding RNAs. Those proteins showed strong enrichment for common human RNA binding domains such as RRM, RBD, as well as K homology and CCCH type zinc finger motifs. Previously unknown RNA-protein interactions were discovered using this technique, and these interactions were biochemically verified between TP53 mRNA and Staufen1 protein as well as between HRAS mRNA and CNBP protein. Functional characterization of the interaction between Staufen 1 protein and TP53 mRNA revealed a novel role for Staufen 1 in preserving TP53 RNA stability. Conclusions Our approach demonstrates a scalable methodology, allowing rapid and efficient identification of novel human RNA-protein interactions using RNA hybridization to human protein microarrays. Biochemical validation of newly identified interactions between TP53-Stau1 and HRAS-CNBP using reciprocal pull-down experiments, both in vitro and in vivo, demonstrates the utility of this approach to study uncharacterized RNA-protein interactions. PMID:23157412

  19. Identification of proteins in renaissance paintings by proteomics.

    PubMed

    Tokarski, Caroline; Martin, Elisabeth; Rolando, Christian; Cren-Olivé, Cécile

    2006-03-01

    The presented work proposes a new methodology based on proteomics techniques to identify proteins in old art paintings. The main challenging tasks of this work were (i) to find appropriate conditions for extracting proteins from the binding media without protein hydrolysis in amino acids and (ii) to develop analytical methods adapted to the small sample quantity available. Starting from microsamples of painting models (ovalbumin-based, which is the major egg white protein, and egg-based paintings), multiple extraction solutions (HCl, HCOOH, NH3, NaOH) and conditions (ultrasonic bath, mortar and pestle, grinding resin) were evaluated. The best results were obtained using a commercial kit including a synthetic resin, mortar and pestle to grind the sample in an aqueous solution acidified with trifluoroacetic acid at 1% with additional multiple steps of ultrasonic baths. The resulting supernatant was analyzed by MALDI-TOF in linear mode to verify the efficiency of the extraction solution. An enzymatic hydrolysis step was also performed for protein identification; the peptide mixture was analyzed by nanoLC/nanoESI/Q-q-TOF MS/MS with an adapted chromatographic run for the low sample quantity. Finally, the developed methodology was successfully applied to Renaissance art painting microsamples of approximately 10 microg from Benedetto Bonfigli's triptych, The Virgin and Child, St. John the Baptist, St. Sebastian (XVth century), and Niccolo di Pietro Gerini's painting, The Virgin and Child (XIVth century), identifying, for the first time and without ambiguity, the presence of whole egg proteins (egg yolk and egg white) in a painting binder.

  20. Proteomic identification of protein associated to mature spermatozoa in the Pacific oyster Crassostrea gigas.

    PubMed

    Kingtong, Sutin; Kellner, Kristell; Bernay, Benoît; Goux, Didier; Sourdaine, Pascal; Berthelin, Clothilde Heude

    2013-04-26

    Knowledge of sperm maturation process is limited in the Pacific oyster Crassostrea gigas and major factors of fertilization success of this free spawning animal are unknown. We investigated proteins associated to spermatozoa by analyzing two cellular fractions obtained from a 40-80% Percoll gradient fractioning of germ cell of mature male gonads. Mature spermatozoa were enriched in the lower Percoll fraction while the upper fraction contained less mature or earlier germ cells. A 2-DE proteomic approach was used to identify differentially expressed proteins in both fractions. We screened out 31 differential proteins (P<0.05) which included 14 up-regulated and 17 down-regulated proteins. Using MALDI-TOF/TOF MS and bioinformatics search against a C. gigas database, 13 and 8 proteins were identified for the up-regulated and down-regulated groups, respectively. In the spermatozoa enriched fraction, proteins regarding flagellum formation and control, energy production and Proteosome subunit beta were increased. In less mature germ cell fraction, proteins regarding developmental processes and chaperon molecules were mainly increased. Our results improve current knowledge of proteins associated with spermatozoa maturation related to zootechnical practices used in mollusk hatcheries. This is the revised version of the manuscript "Proteomic identification of protein associated to mature spermatozoa in the Pacific oyster Crassostrea gigas" by Kingtong et al. to the Journal of Proteomics. The corrections have been done by the team carefully. This work highlight the enrichment method of spermatozoa of Pacific oyster from stripped complex sample using Percoll gradient. The results reflexed developmental stages of germ cells in gonadal tubules of this species. We have used proteomic approach to identify differentially expressed proteins in mature spermatozoa fraction compared to less mature spermatozoa fraction which provided candidates of protein associated to mature spermatozoa

  1. Affinity purification of protein complexes for analysis by multidimensional protein identification technology.

    PubMed

    Banks, Charles A S; Kong, Stephanie E; Washburn, Michael P

    2012-12-01

    Characterizing protein complexes and identifying their subunits promote our understanding of the machinery involved in many in vivo processes. Proteomic studies can identify a protein's binding partners, and this can provide insight into how protein complexes function and how they are regulated. In addition, the composition of a protein complex within an organism can be investigated as a function of time, as a function of location, or during the response of an organism to a change in environment. There are many ways to isolate a complex and identify its constituents. This review will focus on complex isolation using affinity purification and will address issues that biochemists should bear in mind as they isolate protein complexes for mass spectrometric analysis by multidimensional protein identification technology (MudPIT)(1). Protein complex analysis by mass spectrometry frequently involves the collaborative efforts of biochemists or biologists who purify protein complexes and proteomic specialists who analyze the samples - for fruitful collaborations it can be helpful for these specialized groups to be acquainted with basic principles of their collaborator's discipline. With this in mind, we first review the variety of affinity purification methods which might be considered for preparing complexes for analysis, and then provide brief primers on the principles of MudPIT mass spectrometry and data analysis. From this foundation, we then discuss how these techniques are integrated and optimized and suggest salient points to consider when preparing purified samples for protein identification, performing mass spectrometry runs, and analyzing the resulting data. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Selecting fillers on emotional appearance improves lineup identification accuracy.

    PubMed

    Flowe, Heather D; Klatt, Thimna; Colloff, Melissa F

    2014-12-01

    Mock witnesses sometimes report using criminal stereotypes to identify a face from a lineup, a tendency known as criminal face bias. Faces are perceived as criminal-looking if they appear angry. We tested whether matching the emotional appearance of the fillers to an angry suspect can reduce criminal face bias. In Study 1, mock witnesses (n = 226) viewed lineups in which the suspect had an angry, happy, or neutral expression, and we varied whether the fillers matched the expression. An additional group of participants (n = 59) rated the faces on criminal and emotional appearance. As predicted, mock witnesses tended to identify suspects who appeared angrier and more criminal-looking than the fillers. This tendency was reduced when the lineup fillers matched the emotional appearance of the suspect. Study 2 extended the results, testing whether the emotional appearance of the suspect and fillers affects recognition memory. Participants (n = 1,983) studied faces and took a lineup test in which the emotional appearance of the target and fillers was varied between subjects. Discrimination accuracy was enhanced when the fillers matched an angry target's emotional appearance. We conclude that lineup member emotional appearance plays a critical role in the psychology of lineup identification. The fillers should match an angry suspect's emotional appearance to improve lineup identification accuracy.

  3. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    SciTech Connect

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.

  4. Retroactive Streaming Fails to Improve Concurrent Vowel Identification.

    PubMed

    Brandewie, Eugene J; Oxenham, Andrew J

    2015-01-01

    The sequential organization of sound over time can interact with the concurrent organization of sounds across frequency. Previous studies using simple acoustic stimuli have suggested that sequential streaming cues can retroactively affect the perceptual organization of sounds that have already occurred. It is unknown whether such effects generalize to the perception of speech sounds. Listeners' ability to identify two simultaneously presented vowels was measured in the following conditions: no context, a preceding context stream (precursors), and a following context stream (postcursors). The context stream was comprised of brief repetitions of one of the two vowels, and the primary measure of performance was listeners' ability to identify the other vowel. Results in the precursor condition showed a significant advantage for the identification of the second vowel compared to the no-context condition, suggesting that sequential grouping mechanisms aided the segregation of the concurrent vowels, in agreement with previous work. However, performance in the postcursor condition was significantly worse compared to the no-context condition, providing no evidence for an effect of stream segregation, and suggesting a possible interference effect. Two additional experiments involving inharmonic (jittered) vowels were performed to provide additional cues to aid retroactive stream segregation; however, neither manipulation enabled listeners to improve their identification of the target vowel. Taken together with earlier studies, the results suggest that retroactive streaming may require large spectral differences between concurrent sources and thus may not provide a robust segregation cue for natural broadband sounds such as speech.

  5. Retroactive Streaming Fails to Improve Concurrent Vowel Identification

    PubMed Central

    2015-01-01

    The sequential organization of sound over time can interact with the concurrent organization of sounds across frequency. Previous studies using simple acoustic stimuli have suggested that sequential streaming cues can retroactively affect the perceptual organization of sounds that have already occurred. It is unknown whether such effects generalize to the perception of speech sounds. Listeners’ ability to identify two simultaneously presented vowels was measured in the following conditions: no context, a preceding context stream (precursors), and a following context stream (postcursors). The context stream was comprised of brief repetitions of one of the two vowels, and the primary measure of performance was listeners’ ability to identify the other vowel. Results in the precursor condition showed a significant advantage for the identification of the second vowel compared to the no-context condition, suggesting that sequential grouping mechanisms aided the segregation of the concurrent vowels, in agreement with previous work. However, performance in the postcursor condition was significantly worse compared to the no-context condition, providing no evidence for an effect of stream segregation, and suggesting a possible interference effect. Two additional experiments involving inharmonic (jittered) vowels were performed to provide additional cues to aid retroactive stream segregation; however, neither manipulation enabled listeners to improve their identification of the target vowel. Taken together with earlier studies, the results suggest that retroactive streaming may require large spectral differences between concurrent sources and thus may not provide a robust segregation cue for natural broadband sounds such as speech. PMID:26451598

  6. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    DOE PAGES

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; ...

    2013-03-07

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of chargedmore » peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification.« less

  7. Basophile: Accurate Fragment Charge State Prediction Improves Peptide Identification Rates

    PubMed Central

    Wang, Dong; Dasari, Surendra; Chambers, Matthew C.; Holman, Jerry D.; Chen, Kan; Liebler, Daniel C.; Orton, Daniel J.; Purvine, Samuel O.; Monroe, Matthew E.; Chung, Chang Y.; Rose, Kristie L.; Tabb, David L.

    2013-01-01

    In shotgun proteomics, database search algorithms rely on fragmentation models to predict fragment ions that should be observed for a given peptide sequence. The most widely used strategy (Naive model) is oversimplified, cleaving all peptide bonds with equal probability to produce fragments of all charges below that of the precursor ion. More accurate models, based on fragmentation simulation, are too computationally intensive for on-the-fly use in database search algorithms. We have created an ordinal-regression-based model called Basophile that takes fragment size and basic residue distribution into account when determining the charge retention during CID/higher-energy collision induced dissociation (HCD) of charged peptides. This model improves the accuracy of predictions by reducing the number of unnecessary fragments that are routinely predicted for highly-charged precursors. Basophile increased the identification rates by 26% (on average) over the Naive model, when analyzing triply-charged precursors from ion trap data. Basophile achieves simplicity and speed by solving the prediction problem with an ordinal regression equation, which can be incorporated into any database search software for shotgun proteomic identification. PMID:23499924

  8. Identification and localization of the FMR-1 protein product

    SciTech Connect

    Verheij, C.; Hoogeveen, A.T.; Verkerk, A.J.M.H.; DeGraaf, E.; Bakker, C.; Reuser, A.J.J.

    1994-07-15

    The fragile X syndrome results from amplification of the CGG repeat found in the FMR-1 gene. As a first step in the identification and localization of the FMR-1 gene product, antibodies were raised against different regions of the FMR-1 protein (FMRP). These antibodies were used to analyze FMRP in lymphoblastoid cell lines from patients (n=5) and controls (n=3). FMRP was immunoprecipated and subsequently analyzed by immunoblotting. Four molecular species (67-74 kDa) were found which were absent in 4 of the 5 patients. The lack is in agreement with the absence of FMR-1 mRNA. The patient expressing FMRP`s shows a mosaic DNA pattern with part of the cells carrying a premutation and others carrying a full mutation. The premutation allele is preceded by an unmethylated CpG island and is expressed into FMR-1 mRNA which is subsequently translated into protein. The four different FMRPs most likely result from alternative splicing of the FMR-1 mRNA. Two splice products were mimicked in cDNA constructs transiently expressed in COS-1 cells. Both splice products appeared to encode for stable protein products and were recognized by the antibodies. The molecular weight of the protein products was in agreement with two of the protein products found in the lymphoblastoid cell lines, indicating that the FMRPs detected in lymphoblasts are the result of alternative splicing. The intracellular localization of FMRP in COS-1 cells was cytoplasmatic. The finding of four FMRPs of the same molecular weight in controls and the mosaic patient indicate that the CGG repeat is not translated.

  9. Identification of trichoplein, a novel keratin filament-binding protein.

    PubMed

    Nishizawa, Miwako; Izawa, Ichiro; Inoko, Akihito; Hayashi, Yuko; Nagata, Koh-ichi; Yokoyama, Tomoya; Usukura, Jiro; Inagaki, Masaki

    2005-03-01

    Keratins 8 and 18 (K8/18) are major components of the intermediate filaments (IFs) of simple epithelia. We report here the identification of a novel protein termed trichoplein. This protein shows a low degree of sequence similarity to trichohyalin, plectin and myosin heavy chain, and is a K8/18-binding protein. Among interactions between trichoplein and various IF proteins that we tested using two-hybrid methods, trichoplein interacted significantly with K16 and K18, and to some extent with K5, K6a, K8 and K14. In in vitro co-sedimentation assays, trichoplein directly binds to K8/18, but not with vimentin, desmin, actin filaments or microtubules. An antibody raised against trichoplein specifically recognized a polypeptide with a relative molecular mass of 61 kDa in cell lysates. Trichoplein was immunoprecipitated using this antibody in a complex with K8/18 and immunostaining revealed that trichoplein colocalized with K8/18 filaments in HeLa cells. In polarized Caco-2 cells, trichoplein colocalized not only with K8/18 filaments in the apical region but also with desmoplakin, a constituent of desmosomes. In the absorptive cells of the small intestine, trichoplein colocalized with K8/18 filaments at the apical cortical region, and was also concentrated at desmosomes. Taken together, these results suggest that trichoplein is a keratin-binding protein that may be involved in the organization of the apical network of keratin filaments and desmosomes in simple epithelial cells.

  10. Identification of lipopolysaccharide-binding proteins in porcine milk

    PubMed Central

    Shahriar, Farshid; Gordon, John R.; Simko, Elemir

    2006-01-01

    Septicemia and endotoxemia initiated by bacterial lipopolysaccharide (LPS) are relatively common in suckling and weaned piglets. Maternal milk is a source of both nutrition and immune protection for piglets. Passive transfer of colostral antibodies is necessary for protection of neonatal piglets against diseases, but the concentration of immunoglobulins in milk rapidly declines during the 1st wk of lactation in all mammals. We hypothesized, therefore, that nonimmunoglobulin substances in milk contribute to the innate protection of neonates against septicemia during the suckling period. Using LPS-affinity chromatography for isolation of LPS-binding proteins and liquid chromatography–mass spectrometry for their identification, we identified in porcine milk the following proteins with LPS-binding capacity: lactoferrin, soluble CD14, serum amyloid A, α-S1 casein, β-casein, and κ-casein. For lactoferrin, α-S1 casein, and κ-casein, in vitro pepsin digestion did not inhibit LPS-binding activity, whereas combined digestion with pepsin and pancreatin abolished it. The biologic functions of these LPS-binding proteins and peptides were not determined. PMID:17042375

  11. Identification of protein secretion systems in bacterial genomes.

    PubMed

    Abby, Sophie S; Cury, Jean; Guglielmini, Julien; Néron, Bertrand; Touchon, Marie; Rocha, Eduardo P C

    2016-03-16

    Bacteria with two cell membranes (diderms) have evolved complex systems for protein secretion. These systems were extensively studied in some model bacteria, but the characterisation of their diversity has lagged behind due to lack of standard annotation tools. We built online and standalone computational tools to accurately predict protein secretion systems and related appendages in bacteria with LPS-containing outer membranes. They consist of models describing the systems' components and genetic organization to be used with MacSyFinder to search for T1SS-T6SS, T9SS, flagella, Type IV pili and Tad pili. We identified ~10,000 candidate systems in bacterial genomes, where T1SS and T5SS were by far the most abundant and widespread. All these data are made available in a public database. The recently described T6SS(iii) and T9SS were restricted to Bacteroidetes, and T6SS(ii) to Francisella. The T2SS, T3SS, and T4SS were frequently encoded in single-copy in one locus, whereas most T1SS were encoded in two loci. The secretion systems of diderm Firmicutes were similar to those found in other diderms. Novel systems may remain to be discovered, since some clades of environmental bacteria lacked all known protein secretion systems. Our models can be fully customized, which should facilitate the identification of novel systems.

  12. Protein-protein interface analysis and hot spots identification for chemical ligand design.

    PubMed

    Chen, Jing; Ma, Xiaomin; Yuan, Yaxia; Pei, Jianfeng; Lai, Luhua

    2014-01-01

    Rational design for chemical compounds targeting protein-protein interactions has grown from a dream to reality after a decade of efforts. There are an increasing number of successful examples, though major challenges remain in the field. In this paper, we will first give a brief review of the available methods that can be used to analyze protein-protein interface and predict hot spots for chemical ligand design. New developments of binding sites detection, ligandability and hot spots prediction from the author's group will also be described. Pocket V.3 is an improved program for identifying hot spots in protein-protein interface using only an apo protein structure. It has been developed based on Pocket V.2 that can derive receptor-based pharmacophore model for ligand binding cavity. Given similarities and differences between the essence of pharmacophore and hot spots for guiding design of chemical compounds, not only energetic but also spatial properties of protein-protein interface are used in Pocket V.3 for dealing with protein-protein interface. In order to illustrate the capability of Pocket V.3, two datasets have been used. One is taken from ASEdb and BID having experimental alanine scanning results for testing hot spots prediction. The other is taken from the 2P2I database containing complex structures of protein-ligand binding at the original protein-protein interface for testing hot spots application in ligand design.

  13. 34 CFR 200.32 - Identification for school improvement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... identification on whether a school did not make AYP because it did not meet the annual measurable objectives for... limit identification to those schools that did not make AYP only because they did not meet the annual...

  14. Charge State Coalescence During Electrospray Ionization Improves Peptide Identification by Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Meyer, Jesse G.; A. Komives, Elizabeth

    2012-08-01

    We report the effects of supercharging reagents dimethyl sulphoxide (DMSO) and m-nitrobenzyl alcohol ( m-NBA) applied to untargeted peptide identification, with special emphasis on non-tryptic peptides. Peptides generated from a mixture of five standard proteins digested with trypsin, elastase, or pepsin were separated with nanoflow liquid chromatography using mobile phases modified with either 5 % DMSO or 0.1 % m-NBA. Eluting peptides were ionized by online electrospray and sequenced by both CID and ETD using data-dependent MS/MS. Statistically significant improvements in peptide identifications were observed with DMSO co-solvent. In order to understand this observation, we assessed the effects of supercharging reagents on the chromatographic separation and the electrospray quality. The increase in identifications was not due to supercharging, which was greater for the 0.1 % m-NBA co-solvent and not observed for the 5.0 % DMSO co-solvent. The improved MS/MS efficiency using the DMSO modified mobile phase appeared to result from charge state coalescence.

  15. Identification of Protein-Protein Interactions and Topologies in Living Cells with Chemical Cross-linking and Mass Spectrometry

    SciTech Connect

    Zhang, Haizhen; Tang, Xiaoting; Munske, Gerhard R.; Tolic, Nikola; Anderson, Gordon A.; Bruce, James E.

    2009-03-01

    We present results from a novel strategy that enables concurrent identification of protein-protein interactions and topologies in living cells without specific antibodies or genetic manipulations for immuno/affinity purifications. The strategy consists of: (i) chemical cross-linking reaction: intact cell labeling with a novel class of chemical cross-linkers, protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by 2D-LC/MS/MS; and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. The primary advantage of the PIR approach and distinction from current technology is that protein interactions together with topologies are detected in native biological systems by stabilizing protein complexes with new covalent bonds while the proteins are present in the original cellular environment. Thus, weak or transient interactions or interactions that require properly folded, localized, or membrane-bound proteins can be labeled and identified through the PIR approach. This strategy was applied to S. oneidensis bacterial cells and initial studies resulted in identification of a set of protein-protein interactions and their contact/binding regions. Furthermore, most identified interactions involved membrane proteins, suggesting the PIR approach is particularly suited for studies of membrane protein-protein interactions, an area under-represented with current widely-used approaches.

  16. Leptospiral Outer Membrane Protein Microarray, a Novel Approach to Identification of Host Ligand-Binding Proteins

    PubMed Central

    Matsunaga, James; Haake, David A.

    2012-01-01

    Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via freshwater and colonization of the renal tubules of their reservoir hosts. Infection requires adherence to cell surfaces and extracellular matrix components of host tissues. These host-pathogen interactions involve outer membrane proteins (OMPs) expressed on the bacterial surface. In this study, we developed an Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 OMP microarray containing all predicted lipoproteins and transmembrane OMPs. A total of 401 leptospiral genes or their fragments were transcribed and translated in vitro and printed on nitrocellulose-coated glass slides. We investigated the potential of this protein microarray to screen for interactions between leptospiral OMPs and fibronectin (Fn). This approach resulted in the identification of the recently described fibronectin-binding protein, LIC10258 (MFn8, Lsa66), and 14 novel Fn-binding proteins, denoted Microarray Fn-binding proteins (MFns). We confirmed Fn binding of purified recombinant LIC11612 (MFn1), LIC10714 (MFn2), LIC11051 (MFn6), LIC11436 (MFn7), LIC10258 (MFn8, Lsa66), and LIC10537 (MFn9) by far-Western blot assays. Moreover, we obtained specific antibodies to MFn1, MFn7, MFn8 (Lsa66), and MFn9 and demonstrated that MFn1, MFn7, and MFn9 are expressed and surface exposed under in vitro growth conditions. Further, we demonstrated that MFn1, MFn4 (LIC12631, Sph2), and MFn7 enable leptospires to bind fibronectin when expressed in the saprophyte, Leptospira biflexa. Protein microarrays are valuable tools for high-throughput identification of novel host ligand-binding proteins that have the potential to play key roles in the virulence mechanisms of pathogens. PMID:22961849

  17. 34 CFR 200.37 - Notice of identification for improvement, corrective action, or restructuring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Lea and School Improvement § 200.37 Notice of identification for improvement, corrective action, or restructuring. (a) If an LEA identifies a school for improvement or subjects the school to corrective action or... of each child enrolled in the school of this identification. (b) The notice referred to in...

  18. 34 CFR 200.37 - Notice of identification for improvement, corrective action, or restructuring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Lea and School Improvement § 200.37 Notice of identification for improvement, corrective action, or restructuring. (a) If an LEA identifies a school for improvement or subjects the school to corrective action or... of each child enrolled in the school of this identification. (b) The notice referred to in...

  19. Web-based software for rapid "top-down" proteomic identification of protein biomarkers with implications for bacterial identification

    USDA-ARS?s Scientific Manuscript database

    We have developed web-based software for the rapid identification of protein biomarkers of bacterial microorganisms. Proteins from bacterial cell lysates were ionized by matrix-assisted laser desorption/ionization (MALDI), mass-isolated and fragmented using a time-of-flight/time-of-flight (TOF-TOF)...

  20. Template-based identification of protein-protein interfaces using eFindSitePPI.

    PubMed

    Maheshwari, Surabhi; Brylinski, Michal

    2016-01-15

    Protein-protein interactions orchestrate virtually all cellular processes, therefore, their exhaustive exploration is essential for the comprehensive understanding of cellular networks. A reliable identification of interfacial residues is vital not only to infer the function of individual proteins and their assembly into biological complexes, but also to elucidate the molecular and physicochemical basis of interactions between proteins. With the exponential growth of protein sequence data, computational approaches for detecting protein interface sites have drawn an increased interest. In this communication, we discuss the major features of eFindSite(PPI), a recently developed template-based method for interface residue prediction available at http://brylinski.cct.lsu.edu/efindsiteppi. We describe the requirements and installation procedures for the stand-alone version, and explain the content and format of output data. Furthermore, the functionality of the eFindSite(PPI) web application that is designed to provide a simple and convenient access for the scientific community is presented with illustrative examples. Finally, we discuss common problems encountered in predicting protein interfaces and set forth directions for the future development of eFindSite(PPI).

  1. High-throughput identification of proteins with AMPylation using self-assembled human protein (NAPPA) microarrays.

    PubMed

    Yu, Xiaobo; LaBaer, Joshua

    2015-05-01

    AMPylation (adenylylation) has been recognized as an important post-translational modification that is used by pathogens to regulate host cellular proteins and their associated signaling pathways. AMPylation has potential functions in various cellular processes, and it is widely conserved across both prokaryotes and eukaryotes. However, despite the identification of many AMPylators, relatively few candidate substrates of AMPylation are known. This is changing with the recent development of a robust and reliable method for identifying new substrates using protein microarrays, which can markedly expand the list of potential substrates. Here we describe procedures for detecting AMPylated and auto-AMPylated proteins in a sensitive, high-throughput and nonradioactive manner. The approach uses high-density protein microarrays fabricated using nucleic acid programmable protein array (NAPPA) technology, which enables the highly successful display of fresh recombinant human proteins in situ. The modification of target proteins is determined via copper-catalyzed azide-alkyne cycloaddition (CuAAC). The assay can be accomplished within 11 h.

  2. Identification of major rye secalins as coeliac immunoreactive proteins.

    PubMed

    Rocher, A; Calero, M; Soriano, F; Méndez, E

    1996-06-07

    Six distinct gamma- and omega-type secalins, together with two new low molecular mass glycoproteins, have been identified as the major coeliac immunoreactive proteins from a chloroform/methanol soluble extract from rye endosperm. These components were characterized by a combination of reverse-phase high-performance liquid chromatography, immunoblotting using a coeliac serum and microsequencing analysis. This allowed the identification of a group of secalins with different molecular masses according to their N-terminal amino-acid sequence: one omega-type secalin of 40 kDa (omega 1-40); three gamma-type secalins, one of 70 kDa (gamma-70) and two of 35 kDa (gamma-35); as well as two low molecular mass glycoproteins of 15 and 18 kDa, all exhibiting coeliac serum antigenicity. Moreover, four additional rye components, including two low molecular mass proteins, which did not react with coeliac sera, have also been identified. Analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) of the three main purified coeliac immunogenic secalins, gamma-70, gamma-35 and omega 1-40, indicated molecular masses of 71457, 32240 and 39117 Da, respectively. The omega 1-40 secalin displays a significant absorption in the visible region which could be related to its peculiar low capacity to bind both coeliac sera antibodies and Coomassie brilliant blue dye.

  3. Novel procedure for the identification of proteins by mass fingerprinting combining two-dimensional electrophoresis with fluorescent SYPRO red staining.

    PubMed

    Valdes, I; Pitarch, A; Gil, C; Bermúdez, A; Llorente, M; Nombela, C; Méndez, E

    2000-06-01

    The fluorescent sensitive SYPRO Red dye was successfully employed to stain proteins in two-dimensional gels for protein identification by peptide mass fingerprinting. Proteins which are not chemically modified during the SYPRO Red staining process are well digested enzymatically in the gel and hence the resulting peptides can be efficiently eluted and analysed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A SYPRO Red two-dimensional gel of a complex protein extract from Candida albicans was analysed by MALDI-TOF MS. The validity of SYPRO Red staining was demonstrated by identifying, via peptide mass fingerprinting, 10 different C. albicans proteins from a total of 31 selected protein spots. The peptide mass signal intensity, the number of matched peptides and the percentage of coverage of protein sequences from SYPRO Red-stained proteins were similar to or greater than those obtained in parallel with the modified silver protein gel staining. This work demonstrates that fluorescent SYPRO Red staining is compatible with the identification of proteins separated on polyacrylamide gel and that it can be used as an alternative to silver staining. As far as we know, this is the first report in which C. albicans proteins separated using 2-D gels have been identified by peptide mass fingerprinting. The improved technique described here should be very useful for carrying out proteomic studies. Copyright 2000 John Wiley & Sons, Ltd.

  4. A simple and practical dictionary-based approach for identification of proteins in Medline abstracts.

    PubMed

    Egorov, Sergei; Yuryev, Anton; Daraselia, Nikolai

    2004-01-01

    The aim of this study was to develop a practical and efficient protein identification system for biomedical corpora. The developed system, called ProtScan, utilizes a carefully constructed dictionary of mammalian proteins in conjunction with a specialized tokenization algorithm to identify and tag protein name occurrences in biomedical texts and also takes advantage of Medline "Name-of-Substance" (NOS) annotation. The dictionaries for ProtScan were constructed in a semi-automatic way from various public-domain sequence databases followed by an intensive expert curation step. The recall and precision of the system have been determined using 1000 randomly selected and hand-tagged Medline abstracts. The developed system is capable of identifying protein occurrences in Medline abstracts with a 98% precision and 88% recall. It was also found to be capable of processing approximately 300 abstracts per second. Without utilization of NOS annotation, precision and recall were found to be 98.5% and 84%, respectively. The developed system appears to be well suited for protein-based Medline indexing and can help to improve biomedical information retrieval. Further approaches to ProtScan's recall improvement also are discussed.

  5. Protein S-nitrosylation: specificity and identification strategies in plants

    NASA Astrophysics Data System (ADS)

    Lamotte, Olivier; Bertoldo, Jean; Besson-Bard, Angélique; Rosnoblet, Claire; Aimé, Sébastien; Hichami, Siham; Terenzi, Hernan; Wendehenne, David

    2014-12-01

    The role of nitric oxide (NO) as a major regulator of plant physiological functions has become increasingly evident. To further improve our understanding of its role, within the last few years plant biologists have begun to embrace the exciting opportunity of investigating protein S-nitrosylation, a major reversible NO-dependent post-translational modification (PTM) targeting specific Cys residues and widely studied in animals. Thanks to the development of dedicated proteomic approaches, in particular the use of the Biotin Switch Technique (BST) combined with mass spectrometry, hundreds of plant protein candidates for S-nitrosylation have been identified. Functional studies focused on specific proteins provided preliminary comprehensive views of how this PTM impacts the structure and function of proteins and, more generally, of how NO might regulate biological plant processes. The aim of this review is to detail the basic principle of protein S-nitrosylation, to provide information on the biochemical and structural features of the S-nitrosylation sites and to describe the proteomic strategies adopted to investigate this PTM in plants. Limits of the current approaches and tomorrow's challenges are also discussed.

  6. Algorithm Improvement Program Nuclide Identification Algorithm Scoring Criteria And Scoring Application - DNDO.

    SciTech Connect

    Enghauser, Michael

    2015-02-01

    The goal of the Domestic Nuclear Detection Office (DNDO) Algorithm Improvement Program (AIP) is to facilitate gamma-radiation detector nuclide identification algorithm development, improvement, and validation. Accordingly, scoring criteria have been developed to objectively assess the performance of nuclide identification algorithms. In addition, a Microsoft Excel spreadsheet application for automated nuclide identification scoring has been developed. This report provides an overview of the equations, nuclide weighting factors, nuclide equivalencies, and configuration weighting factors used by the application for scoring nuclide identification algorithm performance. Furthermore, this report presents a general overview of the nuclide identification algorithm scoring application including illustrative examples.

  7. Algorithm improvement program nuclide identification algorithm scoring criteria and scoring application.

    SciTech Connect

    Enghauser, Michael

    2016-02-01

    The goal of the Domestic Nuclear Detection Office (DNDO) Algorithm Improvement Program (AIP) is to facilitate gamma-radiation detector nuclide identification algorithm development, improvement, and validation. Accordingly, scoring criteria have been developed to objectively assess the performance of nuclide identification algorithms. In addition, a Microsoft Excel spreadsheet application for automated nuclide identification scoring has been developed. This report provides an overview of the equations, nuclide weighting factors, nuclide equivalencies, and configuration weighting factors used by the application for scoring nuclide identification algorithm performance. Furthermore, this report presents a general overview of the nuclide identification algorithm scoring application including illustrative examples.

  8. Improving protein fold recognition by random forest

    PubMed Central

    2014-01-01

    Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. PMID:25350499

  9. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    SciTech Connect

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.; Warner, Marvin G.; Wahl, Karen L.; Hutchison, Janine R.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extraction improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.

  10. A novel system identification technique for improved wearable hemodynamics assessment.

    PubMed

    Wiens, Andrew D; Inan, Omer T

    2015-05-01

    Recent advances have led to renewed interest in ballistocardiography (BCG), a noninvasive measure of the small movements of the body due to cardiovascular events. A broad range of platforms have been developed and verified for BCG measurement including beds, chairs, and weighing scales: while the body is coupled to such a platform, the cardiogenic movements are measured. Wearable BCG, measured with an accelerometer affixed to the body, may enable continuous, or more regular, monitoring during the day; however, the signals from such wearable BCGs represent local or distal accelerations of skin and tissue rather than the whole body. In this paper, we propose a novel method to reconstruct the BCG measured with a weighing scale (WS BCG) from a wearable sensor via a training step to remove these local effects. Preliminary validation of this method was performed with 15 subjects: the wearable sensor was placed at three locations on the surface of the body while WS BCG measurements were recorded simultaneously. A regularized system identification approach was used to reconstruct the WS BCG from the wearable BCG. Preliminary results suggest that the relationship between local and central disturbances is highly dependent on both the individual and the location where the accelerometer is placed on the body and that these differences can be resolved via calibration to accurately measure changes in cardiac output and contractility from a wearable sensor. Such measurements could be highly effective, for example, for improved monitoring of heart failure patients at home.

  11. Critical components required to improve deployable laboratory biological hazards identification

    NASA Astrophysics Data System (ADS)

    Niemeyer, Debra M.

    2004-08-01

    An ever-expanding global military mission necessitates quick and accurate identification of biological hazards, whether naturally occurring or man-made. Coupled with an ever-present threat of biological attack, an expanded U.S. presence in worn-torn locations like Southwest Asia presents unique public health challenges. We must heed modern day "lessons learned" from Operation Desert Shield and the Soviet Afghanistan Campaign and guard against rapid incapacitation of troop strength from endemic disease and biological attack. To minimize readiness impacts, field hygiene is enforced, and research on better medical countermeasures such as antibiotics and vaccines continues. However, there are no preventions or remedies for all military-relevant infectious diseases or biological agents. A deployable, streamlined, self-contained diagnostic and public health surveillance laboratory capability with a reach-back communication is critical to meeting global readiness challenges. Current deployable laboratory packages comprise primarily diagnostic or environmental sample testing capabilities. Discussion will focus on critical components needed to improve existing laboratory assets, and to facilitate deployment of small, specialized packages far forward. The ideal laboratory model described will become an essential tool for the Combatant or Incident Commander to maintain force projection in the expeditionary environment.

  12. Identification, Purification and Characterization of Major Antigenic Proteins of Campylobacter jejuni

    DTIC Science & Technology

    1991-01-01

    ELISA -We next examined the potential application of antibodies to C. jejuni proteins for identification and diagnosis of Campylobacter and/or Helico...EXTRACT ANTI-PEBI Fio;. 5. Recognition of Campylobacter and Helicobacter t)ISCtTSSION cells by antisera to C. jejuni proteins by ELISA . Whoile...AD-A271 905 5 April 1991 Reprint Identification, Purification, and Characterization Army Project Order of Major Antigenic Proteins of Campylobacter

  13. Protein identification: the origins of peptide mass fingerprinting.

    PubMed

    Henzel, William J; Watanabe, Colin; Stults, John T

    2003-09-01

    Peptide mass fingerprinting (PMF) grew from a need for a faster, more efficient method to identify frequently observed proteins in electrophoresis gels. We describe the genesis of the idea in 1989, and show the first demonstration with fast atom bombardment mass spectrometry. Despite its promise, the method was seldom used until 1992, with the coming of significantly more sensitive commercial instrumentation based on MALDI-TOF-MS. We recount the evolution of the method and its dependence on a number of technical breakthroughs, both in mass spectrometry and in other areas. We show how it laid the foundation for high-throughput, high-sensitivity methods of protein analysis, now known as proteomics. We conclude with recommendations for further improvements, and speculation of the role of PMF in the future.

  14. Learning score function parameters for improved spectrum identification in tandem mass spectrometry experiments

    PubMed Central

    Spivak, Marina; Bereman, Michael S.; MacCoss, Michael J.; Noble, William Stafford

    2012-01-01

    The identification of proteins from spectra derived from a tandem mass spectrometry experiment involves several challenges: matching each observed spectrum to a peptide sequence, ranking the resulting collection of peptide-spectrum matches, assigning statistical confidence estimates to the matches, and identifying the proteins. The present work addresses algorithms to rank peptide-spectrum matches. Many of these algorithms, such as PeptideProphet, IDPicker, or Q-ranker, follow similar methodology that includes representing peptide-spectrum matches as feature vectors and using optimization techniques to rank them. We propose a richer and more flexible feature set representation that is based on the parametrization of the SEQUEST XCorr score and that can be used by all of these algorithms. This extended feature set allows a more effective ranking of the peptide-spectrum matches based on the target-decoy strategy, in comparison to a baseline feature set devoid of these XCorr-based features. Ranking using the extended feature set gives 10–40% improvement in the number of distinct peptide identifications relative to a range of q-value thresholds. While this work is inspired by the model of the theoretical spectrum and the similarity measure between spectra used specifically by SEQUEST, the method itself can be applied to the output of any database search. Further, our approach can be trivially extended beyond XCorr to any linear operator that can serve as similarity score between experimental spectra and peptide sequences. PMID:22866926

  15. A shotgun approach for the identification of platinum-protein complexes.

    PubMed

    Moraleja, Irene; Moreno-Gordaliza, Estefanía; Esteban-Fernández, Diego; Mena, M Luz; Linscheid, Michael W; Gómez-Gómez, M Milagros

    2015-03-01

    A shotgun approach including peptide-based OFFGEL-isoelectric focusing (IEF) fractionation has been developed with the aim of improving the identification of platinum-binding proteins in biological samples. The method is based on a filter-aided sample preparation (FASP) tryptic digestion under denaturing and reducing conditions of cisplatin-, oxaliplatin-, and carboplatin-protein complexes, followed by OFFGEL-IEF separation of the peptides. Any risk of platinum loss is minimized throughout the procedure due to the removal of the reagents used after each stage of the FASP method and the absence of thiol-based reagents in the focusing buffer employed in the IEF separation. The platinum-peptide complexes stability after the FASP digestion and the IEF separation was confirmed by size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS). The suitability of peptide-based OFFGEL-IEF fractionation for reducing the sample complexity for further nano-liquid chromatography-electrospray ionization-tandem mass spectrometry (nLC-ESI-MS/MS) analysis has been demonstrated, allowing the detection of platinum-containing peptides, with significantly lower abundance and ionization efficiency than unmodified peptides. nLC-MS/MS analysis of selected OFFGEL-IEF fractions from tryptic digests with different complexity degrees: standard human serum albumin (HSA), a mixture of five proteins (albumin, transferrin, carbonic anhydrase, myoglobin, and cytochrome-c) and human blood serum allowed the identification of several platinum-peptides from cisplatin-HSA. Cisplatin-binding sites in HSA were elucidated from the MS/MS spectra and assessed considering the protein three-dimensional structure. Most of the potential superficial binding sites available on HSA were identified for all the samples, including a biologically relevant cisplatin-cross-link of two protein domains, demonstrating the capabilities of the methodology.

  16. Hydrolysis of soybean protein improves iron bioavailability

    USDA-ARS?s Scientific Manuscript database

    Iron is an important trace metal element in human body. Iron deficiency affects human health, especially pregnant women and children. Soybean protein is a popular food in Asia and can contain a high amount of iron (145.70±0.74 ug/g); however, it is usually reported as an inhibitor of iron absorption...

  17. Spatially-directed protein identification from tissue sections by top-down LC-MS/MS with electron transfer dissociation.

    PubMed

    Schey, Kevin L; Anderson, David M; Rose, Kristie L

    2013-07-16

    MALDI imaging mass spectrometry (MALDI-IMS) has become a powerful tool for localizing both small molecules and intact proteins in a wide variety of tissue samples in both normal and diseased states. Identification of imaged signals in MALDI-IMS remains a bottleneck in the analysis and limits the interpretation of underlying biology of tissue specimens. In this work, spatially directed tissue microextraction of intact proteins followed by LC-MS/MS with electron transfer dissociation (ETD) was used to identify proteins from specific locations in three tissue types; ocular lens, brain, and kidney. Detection limits were such that a 1 μL extraction volume was sufficient to deliver proteins to the LC-MS/MS instrumentation with sufficient sensitivity to detect 50-100 proteins in a single experiment. Additionally, multiple modified proteins were identified; including truncated lens proteins that would be difficult to assign to an imaged mass using a bottom-up approach. Protein separation and identification are expected to improve with advances in intact protein fractionation/chromatography and advances in interpretation algorithms leading to increased depth of proteome coverage from distinct tissue locations.

  18. Spatially-Directed Protein Identification from Tissue Sections by Top-Down LC-MS/MS with Electron Transfer Dissociation

    PubMed Central

    Schey, Kevin L.; Anderson, David M.; Rose, Kristie L.

    2013-01-01

    MALDI imaging mass spectrometry (MALDI-IMS) has become a powerful tool for localizing both small molecules and intact proteins in a wide variety of tissue samples in both normal and diseased states. Identification of imaged signals in MALDI-IMS remains a bottleneck in the analysis and limits the interpretation of underlying biology of tissue specimens. In this work, spatially-directed tissue microextraction of intact proteins followed by LC-MS/MS with electron transfer dissociation (ETD) was used to identify proteins from specific locations in three tissue types; ocular lens, brain, and kidney. Detection limits were such that a 1 microliter extraction volume was sufficient to deliver proteins to the LC-MS/MS instrumentation with sufficient sensitivity to detect 50–100 proteins in a single experiment. Additionally, multiple modified proteins were identified; including truncated lens proteins that would be difficult to assign to an imaged mass using a bottom-up approach. Protein separation and identification are expected to improve with advances in intact protein fractionation/chromatography and advances in interpretation algorithms leading to increased depth of proteome coverage from distinct tissue locations. PMID:23718750

  19. Identification of Central Nervous System Proteins in Human Blood Serum and Plasma.

    PubMed

    Miroshnichenko, Yu V; Petushkova, N A; Teryaeva, N B; Lisitsa, A V; Zgoda, V G; Belyaev, A Yu; Potapov, A A

    2015-11-01

    Mass-spectrometric identification of proteins in human blood plasma and serum was performed by comparing mass-spectra of fragmented peptides using Swiss-Prot and UniProtKB databases of amino acid sequences. After choosing the appropriate identification conditions we found that combination of spectrum search parameters are optimal for identification of CNS proteins. In the studied plasma and serum samples, 9 proteins involved into pathological processes in the nervous tissue were identified; 7 of them were identified in both plasma and serum.

  20. A Novel System Identification Technique for Improved Wearable Hemodynamics Assessment

    PubMed Central

    Wiens, Andrew D.; Inan, Omer T.

    2015-01-01

    Recent advances have led to renewed interest in ballistocardiography (BCG), a non-invasive measure of the small reaction forces on the body from cardiovascular events. A broad range of platforms have been developed and verified for BCG measurement including beds, chairs, and weighing scales: while the body is coupled to such a platform, the cardiogenic movements of the center-of-mass (COM) are measured. Wearable BCG, measured with an accelerometer affixed to the body, may enable continuous, or more regular, monitoring during the day; however, the signals from such wearable BCGs represent local or distal accelerations of skin and tissue rather than the displacement of the body's COM. In this paper we propose a novel method to reconstruct the COM BCG from a wearable sensor via a training step to remove these local effects. Preliminary validation of this method was performed with fifteen subjects: the wearable sensor was placed at three locations on the surface of the body while COM BCG measurements were recorded simultaneously with a modified weighing scale. A regularized system identification approach was used to reconstruct the COM BCG from the wearable signal. Preliminary results suggest that the relationship between local and central forces is highly dependent on both the individual and the location where the wearable sensor is placed on the body and that these differences can be resolved via calibration to accurately measure changes in cardiac output and contractility from a wearable sensor. Such measurements could be highly effective, for example, for improved monitoring of heart failure patients at home. PMID:25561589

  1. Effect of cleavage enzyme, search algorithm and decoy database on mass spectrometric identification of wheat gluten proteins.

    PubMed

    Vensel, William H; Dupont, Frances M; Sloane, Stacia; Altenbach, Susan B

    2011-07-01

    While tandem mass spectrometry (MS/MS) is routinely used to identify proteins from complex mixtures, certain types of proteins present unique challenges for MS/MS analyses. The major wheat gluten proteins, gliadins and glutenins, are particularly difficult to distinguish by MS/MS. Each of these groups contains many individual proteins with similar sequences that include repetitive motifs rich in proline and glutamine. These proteins have few cleavable tryptic sites, often resulting in only one or two tryptic peptides that may not provide sufficient information for identification. Additionally, there are less than 14,000 complete protein sequences from wheat in the current NCBInr release. In this paper, MS/MS methods were optimized for the identification of the wheat gluten proteins. Chymotrypsin and thermolysin as well as trypsin were used to digest the proteins and the collision energy was adjusted to improve fragmentation of chymotryptic and thermolytic peptides. Specialized databases were constructed that included protein sequences derived from contigs from several assemblies of wheat expressed sequence tags (ESTs), including contigs assembled from ESTs of the cultivar under study. Two different search algorithms were used to interrogate the database and the results were analyzed and displayed using a commercially available software package (Scaffold). We examined the effect of protein database content and size on the false discovery rate. We found that as database size increased above 30,000 sequences there was a decrease in the number of proteins identified. Also, the type of decoy database influenced the number of proteins identified. Using three enzymes, two search algorithms and a specialized database allowed us to greatly increase the number of detected peptides and distinguish proteins within each gluten protein group.

  2. In silico re-identification of properties of drug target proteins.

    PubMed

    Kim, Baeksoo; Jo, Jihoon; Han, Jonghyun; Park, Chungoo; Lee, Hyunju

    2017-05-31

    Computational approaches in the identification of drug targets are expected to reduce time and effort in drug development. Advances in genomics and proteomics provide the opportunity to uncover properties of druggable genomes. Although several studies have been conducted for distinguishing drug targets from non-drug targets, they mainly focus on the sequences and functional roles of proteins. Many other properties of proteins have not been fully investigated. Using the DrugBank (version 3.0) database containing nearly 6,816 drug entries including 760 FDA-approved drugs and 1822 of their targets and human UniProt/Swiss-Prot databases, we defined 1578 non-redundant drug target and 17,575 non-drug target proteins. To select these non-redundant protein datasets, we built four datasets (A, B, C, and D) by considering clustering of paralogous proteins. We first reassessed the widely used properties of drug target proteins. We confirmed and extended that drug target proteins (1) are likely to have more hydrophobic, less polar, less PEST sequences, and more signal peptide sequences higher and (2) are more involved in enzyme catalysis, oxidation and reduction in cellular respiration, and operational genes. In this study, we proposed new properties (essentiality, expression pattern, PTMs, and solvent accessibility) for effectively identifying drug target proteins. We found that (1) drug targetability and protein essentiality are decoupled, (2) druggability of proteins has high expression level and tissue specificity, and (3) functional post-translational modification residues are enriched in drug target proteins. In addition, to predict the drug targetability of proteins, we exploited two machine learning methods (Support Vector Machine and Random Forest). When we predicted drug targets by combining previously known protein properties and proposed new properties, an F-score of 0.8307 was obtained. When the newly proposed properties are integrated, the prediction performance

  3. Parameter identification methods for improving structural dynamic models. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles

    1988-01-01

    There is an increasing need to develop Parameter Identification methods for improving structural dynamic models, based on the inability of engineers to produce mathematical models which correlate with experimental data. This research explores the efficiency of combining Component Mode Synthesis (substructuring) methods with Parameter Identification procedures in order to improve analytical modeling of structural components and their connections. Improvements are computed in terms of physical stiffness and damping parameters in order that the physical characteristics of the model can be better understood. Connections involving both viscous and friction damping are investigated. Substructuring methods are utilized to reduce the complexity of the identification problem. Component and inter-component structural connection properties are evaluated and identified independently, thus simplifying the identification problem. It is shown that modal test data is effective for identifying modeling problems associated with structural components, and for determining the stiffness and damping properties of intercomponent connections. In general, Parameter Identification is improved when greater quantities of experimental data are available.

  4. RecRWR: a recursive random walk method for improved identification of diseases.

    PubMed

    Arrais, Joel Perdiz; Oliveira, José Luís

    2015-01-01

    High-throughput methods such as next-generation sequencing or DNA microarrays lack precision, as they return hundreds of genes for a single disease profile. Several computational methods applied to physical interaction of protein networks have been successfully used in identification of the best disease candidates for each expression profile. An open problem for these methods is the ability to combine and take advantage of the wealth of biomedical data publicly available. We propose an enhanced method to improve selection of the best disease targets for a multilayer biomedical network that integrates PPI data annotated with stable knowledge from OMIM diseases and GO biological processes. We present a comprehensive validation that demonstrates the advantage of the proposed approach, Recursive Random Walk with Restarts (RecRWR). The obtained results outline the superiority of the proposed approach, RecRWR, in identifying disease candidates, especially with high levels of biological noise and benefiting from all data available.

  5. Choosing an Optimal Database for Protein Identification from Tandem Mass Spectrometry Data.

    PubMed

    Kumar, Dhirendra; Yadav, Amit Kumar; Dash, Debasis

    2017-01-01

    Database searching is the preferred method for protein identification from digital spectra of mass to charge ratios (m/z) detected for protein samples through mass spectrometers. The search database is one of the major influencing factors in discovering proteins present in the sample and thus in deriving biological conclusions. In most cases the choice of search database is arbitrary. Here we describe common search databases used in proteomic studies and their impact on final list of identified proteins. We also elaborate upon factors like composition and size of the search database that can influence the protein identification process. In conclusion, we suggest that choice of the database depends on the type of inferences to be derived from proteomics data. However, making additional efforts to build a compact and concise database for a targeted question should generally be rewarding in achieving confident protein identifications.

  6. Identification of compound-protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds.

    PubMed

    Chen, Lei; Zhang, Yu-Hang; Zheng, Mingyue; Huang, Tao; Cai, Yu-Dong

    2016-12-01

    Compound-protein interactions play important roles in every cell via the recognition and regulation of specific functional proteins. The correct identification of compound-protein interactions can lead to a good comprehension of this complicated system and provide useful input for the investigation of various attributes of compounds and proteins. In this study, we attempted to understand this system by extracting properties from both proteins and compounds, in which proteins were represented by gene ontology and KEGG pathway enrichment scores and compounds were represented by molecular fragments. Advanced feature selection methods, including minimum redundancy maximum relevance, incremental feature selection, and the basic machine learning algorithm random forest, were used to analyze these properties and extract core factors for the determination of actual compound-protein interactions. Compound-protein interactions reported in The Binding Databases were used as positive samples. To improve the reliability of the results, the analytic procedure was executed five times using different negative samples. Simultaneously, five optimal prediction methods based on a random forest and yielding maximum MCCs of approximately 77.55 % were constructed and may be useful tools for the prediction of compound-protein interactions. This work provides new clues to understanding the system of compound-protein interactions by analyzing extracted core features. Our results indicate that compound-protein interactions are related to biological processes involving immune, developmental and hormone-associated pathways.

  7. Comprehensive identification of proteins in Hodgkin lymphoma-derived Reed-Sternberg cells by LC-MS/MS.

    PubMed

    Wallentine, Jeremy C; Kim, Ki Kwon; Seiler, Charles E; Vaughn, Cecily P; Crockett, David K; Tripp, Sheryl R; Elenitoba-Johnson, Kojo S J; Lim, Megan S

    2007-11-01

    Mass spectrometry-based proteomics in conjunction with liquid chromatography and bioinformatics analysis provides a highly sensitive and high-throughput approach for the identification of proteins. Hodgkin lymphoma is a form of malignant lymphoma characterized by the proliferation of Reed-Sternberg cells and background reactive lymphocytes. Comprehensive analysis of proteins expressed and released by Reed-Sternberg cells would assist in the discovery of potential biomarkers and improve our understanding of its pathogenesis. The subcellular proteome of the three cellular compartments from L428 and KMH2 Hodgkin lymphoma-derived cell lines were fractionated, and analyzed by reverse-phase liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Additionally, proteins released by Hodgkin lymphoma-derived L428 cells were extracted from serum-free culture media and analyzed. Peptide spectra were analyzed using TurboSEQUEST against the UniProt protein database (5.26.05; 188 712 entries). A subset of the identified proteins was validated by Western blot analysis, immunofluorescence microscopy and immunohistochemistry. A total of 1945 proteins were identified with 785 from the cytosolic fraction, 305 from the membrane fraction, 441 from the nuclear fraction and 414 released proteins using a minimum of two peptide identifications per protein and an error rate of <5.0%. Identification of proteins from diverse functional groups reflected the functional complexity of the Reed-Sternberg proteome. Proteins with previously reported oncogenic function in other cancers and from signaling pathways implicated in Hodgkin lymphoma were identified. Selected proteins without previously demonstrated expression in Hodgkin lymphoma were validated by Western blot analysis (B-RAF, Erb-B3), immunofluorescence microscopy (Axin1, Tenascin-X, Mucin-2) and immunohistochemistry using a tissue microarray (BRAF, PIM1). This study represents the first comprehensive inventory

  8. Data Self-Recalibration and Mixture Mass Fingerprint Searching (DASER-MMF) to enhance protein identification within complex mixtures.

    PubMed

    Danell, Ryan M; Ouvry-Patat, Severine A; Scarlett, Cameron O; Speir, J Paul; Borchers, Christoph H

    2008-12-01

    A novel algorithm based on Data Self-Recalibration and a subsequent Mixture Mass Fingerprint search (DASER-MMF) has been developed to improve the performance of protein identification from online 1D and 2D-LC-MS/MS experiments conducted on high-resolution mass spectrometers. Recalibration of 40% to 75% of the MS spectra in a human serum dataset is demonstrated with average errors of 0.3 +/- 0.3 ppm, regardless of the original calibration quality. With simple protein mixtures, the MMF search identifies new proteins not found in the MS/MS based search and increases the sequence coverage for identified proteins by six times. The high mass accuracy allows proteins to be identified with as little as three peptide mass hits. When applied to very complex samples, the MMF search shows less dramatic performance improvements. However, refinements such as additional discriminating factors utilized within the search space provide significant gains in protein identification ability and indicate that further enhancements are possible in this realm.

  9. Identification of genes and proteins associated with anagen wool growth.

    PubMed

    Zhao, J; Liu, N; Liu, K; He, J; Yu, J; Bu, R; Cheng, M; De, W; Liu, J; Li, H

    2017-02-01

    Identifying genes of major effect for wool growth would offer strategies for improving the quality and increasing the yield of fine wool. In this study, we employed the Agilent Sheep Gene Expression Microarray and proteomic technology to investigate the gene expression patterns of body side skin (more wool growing) in Aohan fine wool sheep (a Chinese indigenous breed) in comparison with groin skin (no wool growing) at the anagen stage of the wool follicle. A microarray study revealed that 4772 probes were differentially expressed, including 2071 upregulated and 2701 downregulated probes, in the comparisons of body side skin vs. groin skin (S/G). The microarray results were verified by means of quantitative PCR. A total of 1099 probes were assigned to unique genes/transcripts. The number of distinct genes/transcripts (annotated) was 926, of which 352 were upregulated and 574 were downregulated. In S/G, 13 genes were upregulated by more than 10 fold, whereas 60 genes were downregulated by more than 10 fold. Further analysis revealed that the majority of the genes possibly related to the wool growth could be assigned to categories including regulation of cell division, intermediate filament, cytoskeletal part and growth factor activity. Several potential gene families may participate in hair growth regulation, including fibroblast growth factors, transforming growth factor-β, WNTs, insulin-like growth factor, vascular endothelial growth factors and so on. Proteomic analysis also revealed 196 differentially expressed protein points, of which 121 were identified as single protein points.

  10. Small acid soluble proteins for rapid spore identification.

    SciTech Connect

    Branda, Steven S.; Lane, Todd W.; VanderNoot, Victoria A.; Jokerst, Amanda S.

    2006-12-01

    This one year LDRD addressed the problem of rapid characterization of bacterial spores such as those from the genus Bacillus, the group that contains pathogenic spores such as B. anthracis. In this effort we addressed the feasibility of using a proteomics based approach to spore characterization using a subset of conserved spore proteins known as the small acid soluble proteins or SASPs. We proposed developing techniques that built on our previous expertise in microseparations to rapidly characterize or identify spores. An alternative SASP extraction method was developed that was amenable to both the subsequent fluorescent labeling required for laser-induced fluorescence detection and the low ionic strength requirements for isoelectric focusing. For the microseparations, both capillary isoelectric focusing and chip gel electrophoresis were employed. A variety of methods were evaluated to improve the molecular weight resolution for the SASPs, which are in a molecular weight range that is not well resolved by the current methods. Isoelectric focusing was optimized and employed to resolve the SASPs using UV absorbance detection. Proteomic signatures of native wild type Bacillus spores and clones genetically engineered to produce altered SASP patterns were assessed by slab gel electrophoresis, capillary isoelectric focusing with absorbance detection as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection.

  11. EVEREST: automatic identification and classification of protein domains in all protein sequences

    PubMed Central

    Portugaly, Elon; Harel, Amir; Linial, Nathan; Linial, Michal

    2006-01-01

    Background Proteins are comprised of one or several building blocks, known as domains. Such domains can be classified into families according to their evolutionary origin. Whereas sequencing technologies have advanced immensely in recent years, there are no matching computational methodologies for large-scale determination of protein domains and their boundaries. We provide and rigorously evaluate a novel set of domain families that is automatically generated from sequence data. Our domain family identification process, called EVEREST (EVolutionary Ensembles of REcurrent SegmenTs), begins by constructing a library of protein segments that emerge in an all vs. all pairwise sequence comparison. It then proceeds to cluster these segments into putative domain families. The selection of the best putative families is done using machine learning techniques. A statistical model is then created for each of the chosen families. This procedure is then iterated: the aforementioned statistical models are used to scan all protein sequences, to recreate a library of segments and to cluster them again. Results Processing the Swiss-Prot section of the UniProt Knoledgebase, release 7.2, EVEREST defines 20,230 domains, covering 85% of the amino acids of the Swiss-Prot database. EVEREST annotates 11,852 proteins (6% of the database) that are not annotated by Pfam A. In addition, in 43,086 proteins (20% of the database), EVEREST annotates a part of the protein that is not annotated by Pfam A. Performance tests show that EVEREST recovers 56% of Pfam A families and 63% of SCOP families with high accuracy, and suggests previously unknown domain families with at least 51% fidelity. EVEREST domains are often a combination of domains as defined by Pfam or SCOP and are frequently sub-domains of such domains. Conclusion The EVEREST process and its output domain families provide an exhaustive and validated view of the protein domain world that is automatically generated from sequence data. The

  12. EVEREST: automatic identification and classification of protein domains in all protein sequences.

    PubMed

    Portugaly, Elon; Harel, Amir; Linial, Nathan; Linial, Michal

    2006-06-02

    Proteins are comprised of one or several building blocks, known as domains. Such domains can be classified into families according to their evolutionary origin. Whereas sequencing technologies have advanced immensely in recent years, there are no matching computational methodologies for large-scale determination of protein domains and their boundaries. We provide and rigorously evaluate a novel set of domain families that is automatically generated from sequence data. Our domain family identification process, called EVEREST (EVolutionary Ensembles of REcurrent SegmenTs), begins by constructing a library of protein segments that emerge in an all vs. all pairwise sequence comparison. It then proceeds to cluster these segments into putative domain families. The selection of the best putative families is done using machine learning techniques. A statistical model is then created for each of the chosen families. This procedure is then iterated: the aforementioned statistical models are used to scan all protein sequences, to recreate a library of segments and to cluster them again. Processing the Swiss-Prot section of the UniProt Knoledgebase, release 7.2, EVEREST defines 20,230 domains, covering 85% of the amino acids of the Swiss-Prot database. EVEREST annotates 11,852 proteins (6% of the database) that are not annotated by Pfam A. In addition, in 43,086 proteins (20% of the database), EVEREST annotates a part of the protein that is not annotated by Pfam A. Performance tests show that EVEREST recovers 56% of Pfam A families and 63% of SCOP families with high accuracy, and suggests previously unknown domain families with at least 51% fidelity. EVEREST domains are often a combination of domains as defined by Pfam or SCOP and are frequently sub-domains of such domains. The EVEREST process and its output domain families provide an exhaustive and validated view of the protein domain world that is automatically generated from sequence data. The EVEREST library of domain

  13. 34 CFR 200.39 - Responsibilities resulting from identification for school improvement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... school improvement. 200.39 Section 200.39 Education Regulations of the Offices of the Department of... Lea and School Improvement § 200.39 Responsibilities resulting from identification for school improvement. (a) If an LEA identifies a school for school improvement under § 200.32— (1) The LEA must—...

  14. Proteogenomic Analysis Greatly Expands the Identification of Proteins Related to Reproduction in the Apogamous Fern Dryopteris affinis ssp. affinis

    PubMed Central

    Grossmann, Jonas; Fernández, Helena; Chaubey, Pururawa M.; Valdés, Ana E.; Gagliardini, Valeria; Cañal, María J.; Russo, Giancarlo; Grossniklaus, Ueli

    2017-01-01

    Performing proteomic studies on non-model organisms with little or no genomic information is still difficult. However, many specific processes and biochemical pathways occur only in species that are poorly characterized at the genomic level. For example, many plants can reproduce both sexually and asexually, the first one allowing the generation of new genotypes and the latter their fixation. Thus, both modes of reproduction are of great agronomic value. However, the molecular basis of asexual reproduction is not well understood in any plant. In ferns, it combines the production of unreduced spores (diplospory) and the formation of sporophytes from somatic cells (apogamy). To set the basis to study these processes, we performed transcriptomics by next-generation sequencing (NGS) and shotgun proteomics by tandem mass spectrometry in the apogamous fern D. affinis ssp. affinis. For protein identification we used the public viridiplantae database (VPDB) to identify orthologous proteins from other plant species and new transcriptomics data to generate a “species-specific transcriptome database” (SSTDB). In total 1,397 protein clusters with 5,865 unique peptide sequences were identified (13 decoy proteins out of 1,410, protFDR 0.93% on protein cluster level). We show that using the SSTDB for protein identification increases the number of identified peptides almost four times compared to using only the publically available VPDB. We identified homologs of proteins involved in reproduction of higher plants, including proteins with a potential role in apogamy. With the increasing availability of genomic data from non-model species, similar proteogenomics approaches will improve the sensitivity in protein identification for species only distantly related to models. PMID:28382042

  15. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model.

    PubMed

    An, Ji-Yong; Meng, Fan-Rong; You, Zhu-Hong; Chen, Xing; Yan, Gui-Ying; Hu, Ji-Pu

    2016-10-01

    Predicting protein-protein interactions (PPIs) is a challenging task and essential to construct the protein interaction networks, which is important for facilitating our understanding of the mechanisms of biological systems. Although a number of high-throughput technologies have been proposed to predict PPIs, there are unavoidable shortcomings, including high cost, time intensity, and inherently high false positive rates. For these reasons, many computational methods have been proposed for predicting PPIs. However, the problem is still far from being solved. In this article, we propose a novel computational method called RVM-BiGP that combines the relevance vector machine (RVM) model and Bi-gram Probabilities (BiGP) for PPIs detection from protein sequences. The major improvement includes (1) Protein sequences are represented using the Bi-gram probabilities (BiGP) feature representation on a Position Specific Scoring Matrix (PSSM), in which the protein evolutionary information is contained; (2) For reducing the influence of noise, the Principal Component Analysis (PCA) method is used to reduce the dimension of BiGP vector; (3) The powerful and robust Relevance Vector Machine (RVM) algorithm is used for classification. Five-fold cross-validation experiments executed on yeast and Helicobacter pylori datasets, which achieved very high accuracies of 94.57 and 90.57%, respectively. Experimental results are significantly better than previous methods. To further evaluate the proposed method, we compare it with the state-of-the-art support vector machine (SVM) classifier on the yeast dataset. The experimental results demonstrate that our RVM-BiGP method is significantly better than the SVM-based method. In addition, we achieved 97.15% accuracy on imbalance yeast dataset, which is higher than that of balance yeast dataset. The promising experimental results show the efficiency and robust of the proposed method, which can be an automatic decision support tool for future

  16. Identification of novel DNA repair proteins via primary sequence, secondary structure, and homology.

    PubMed

    Brown, J B; Akutsu, Tatsuya

    2009-01-20

    DNA repair is the general term for the collection of critical mechanisms which repair many forms of DNA damage such as methylation or ionizing radiation. DNA repair has mainly been studied in experimental and clinical situations, and relatively few information-based approaches to new extracting DNA repair knowledge exist. As a first step, automatic detection of DNA repair proteins in genomes via informatics techniques is desirable; however, there are many forms of DNA repair and it is not a straightforward process to identify and classify repair proteins with a single optimal method. We perform a study of the ability of homology and machine learning-based methods to identify and classify DNA repair proteins, as well as scan vertebrate genomes for the presence of novel repair proteins. Combinations of primary sequence polypeptide frequency, secondary structure, and homology information are used as feature information for input to a Support Vector Machine (SVM). We identify that SVM techniques are capable of identifying portions of DNA repair protein datasets without admitting false positives; at low levels of false positive tolerance, homology can also identify and classify proteins with good performance. Secondary structure information provides improved performance compared to using primary structure alone. Furthermore, we observe that machine learning methods incorporating homology information perform best when data is filtered by some clustering technique. Analysis by applying these methodologies to the scanning of multiple vertebrate genomes confirms a positive correlation between the size of a genome and the number of DNA repair protein transcripts it is likely to contain, and simultaneously suggests that all organisms have a non-zero minimum number of repair genes. In addition, the scan result clusters several organisms' repair abilities in an evolutionarily consistent fashion. Analysis also identifies several functionally unconfirmed proteins that are highly

  17. Identification of novel DNA repair proteins via primary sequence, secondary structure, and homology

    PubMed Central

    Brown, JB; Akutsu, Tatsuya

    2009-01-01

    Background DNA repair is the general term for the collection of critical mechanisms which repair many forms of DNA damage such as methylation or ionizing radiation. DNA repair has mainly been studied in experimental and clinical situations, and relatively few information-based approaches to new extracting DNA repair knowledge exist. As a first step, automatic detection of DNA repair proteins in genomes via informatics techniques is desirable; however, there are many forms of DNA repair and it is not a straightforward process to identify and classify repair proteins with a single optimal method. We perform a study of the ability of homology and machine learning-based methods to identify and classify DNA repair proteins, as well as scan vertebrate genomes for the presence of novel repair proteins. Combinations of primary sequence polypeptide frequency, secondary structure, and homology information are used as feature information for input to a Support Vector Machine (SVM). Results We identify that SVM techniques are capable of identifying portions of DNA repair protein datasets without admitting false positives; at low levels of false positive tolerance, homology can also identify and classify proteins with good performance. Secondary structure information provides improved performance compared to using primary structure alone. Furthermore, we observe that machine learning methods incorporating homology information perform best when data is filtered by some clustering technique. Analysis by applying these methodologies to the scanning of multiple vertebrate genomes confirms a positive correlation between the size of a genome and the number of DNA repair protein transcripts it is likely to contain, and simultaneously suggests that all organisms have a non-zero minimum number of repair genes. In addition, the scan result clusters several organisms' repair abilities in an evolutionarily consistent fashion. Analysis also identifies several functionally unconfirmed

  18. Improving ITS sequence data for identification of plant pathogenic fungi

    Treesearch

    R. Henrik Nilsson; Kevin D. Hyde; Julia Pawłowska; Martin Ryberg; Leho Tedersoo; Anders Bjørnsgard Aas; Siti A. Alias; Artur Alves; Cajsa Lisa Anderson; Alexandre Antonelli; A. Elizabeth Arnold; Barbara Bahnmann; Mohammad Bahram; Johan Bengtsson-Palme; Anna Berlin; Sara Branco; Putarak Chomnunti; Asha Dissanayake; Rein Drenkhan; Hanna Friberg; Tobias Guldberg Frøslev; Bettina Halwachs; Martin Hartmann; Beatrice Henricot; Ruvishika Jayawardena; Ari Jumpponen; Håvard Kauserud; Sonja Koskela; Tomasz Kulik; Kare Liimatainen; Björn D. Lindahl; Daniel Lindner; Jian-Kui Liu; Sajeewa Maharachchikumbura; Dimuthu Manamgoda; Svante Martinsson; Maria Alice Neves; Tuula Niskanen; Stephan Nylinder; Olinto Liparini Pereira; Danilo Batista Pinho; Teresita M. Porter; Valentin Queloz; Taavi Riit; Marisol Sánchez-García; Filipe de Sousa; Emil Stefańczyk; Mariusz Tadych; Susumu Takamatsu; Qing Tian; Dhanushka Udayanga; Martin Unterseher; Zheng Wang; Saowanee Wikee; Jiye Yan; Ellen Larsson; Karl-Henrik Larsson; Urmas Kõljalg; Kessy Abarenkov

    2014-01-01

    Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult...

  19. Using a Taped Intervention to Improve Kindergarten Students' Number Identification

    ERIC Educational Resources Information Center

    Krohn, Katherine R.; Skinner, Christopher H.; Fuller, Emily J.; Greear, Corrine

    2012-01-01

    A multiple baseline design across students was used to evaluate the effects of a taped numbers (TN) intervention on the number-identification accuracy of 4 kindergarten students. During TN, students attempted to name the numbers 0 through 9 on randomized lists before each number was provided via a tape player 2 s later. All 4 students showed…

  20. Improving the Use of Self-Generated Identification Codes

    ERIC Educational Resources Information Center

    Schnell, Rainer; Bachteler, Tobias; Reiher, Jorg

    2010-01-01

    In panel studies on sensitive topics, respondent-generated identification codes are often used to link records across surveys. However, usually a substantial number of cases are lost due to the codes. These losses may cause biased estimates. Using more components and linking the codes by the Levenshtein string distance function will reduce the…

  1. Use of geochemistry to improve identification of completion intervals

    SciTech Connect

    Curtis, J.B.; McBane, R.A.

    1989-06-01

    Geochemical analyses of cuttings samples have been performed at the wellsite during the drilling of 15 Devonian shale gas wells. The data were interpreted to provide information on the concentration of free gas and oil, the identification of potential hydrocarbon reservoirs, and the location of relative changes in shale matrix permeability over the entire drilled section.

  2. Identification and characterization of secreted proteins in Eimeria tenella

    NASA Astrophysics Data System (ADS)

    Ramlee, Intan Azlinda; Firdaus-Raih, Mohd; Wan, Kiew-Lian

    2015-09-01

    Eimeria tenella is a protozoan parasite that causes coccidiosis, an economically important disease in the poultry industry. The characterization of proteins that are secreted by parasites have been shown to play important roles in parasite invasion and are considered to be potential control agents. In this study, 775 proteins potentially secreted by E. tenella were identified. These proteins were further filtered to remove mitochondrial proteins. Out of 763 putative secreted proteins, 259 proteins possess transmembrane domains while another 150 proteins have GPI (Glycosylphosphatidylinositol) anchors. Homology search revealed that 315 and 448 proteins have matches with known and hypothetical proteins in the database, respectively. Within this data set, previously characterized secretory proteins such as micronemes, rhoptry kinases and dense granules were detected.

  3. Protein identification with N and C-terminal sequence tags in proteome projects.

    PubMed

    Wilkins, M R; Gasteiger, E; Tonella, L; Ou, K; Tyler, M; Sanchez, J C; Gooley, A A; Walsh, B J; Bairoch, A; Appel, R D; Williams, K L; Hochstrasser, D F

    1998-05-08

    Genome sequences are available for increasing numbers of organisms. The proteomes (protein complement expressed by the genome) of many such organisms are being studied with two-dimensional (2D) gel electrophoresis. Here we have investigated the application of short N-terminal and C-terminal sequence tags to the identification of proteins separated on 2D gels. The theoretical N and C termini of 15, 519 proteins, representing all SWISS-PROT entries for the organisms Mycoplasma genitalium, Bacillus subtilis, Escherichia coli, Saccharomyces cerevisiae and human, were analysed. Sequence tags were found to be surprisingly specific, with N-terminal tags of four amino acid residues found to be unique for between 43% and 83% of proteins, and C-terminal tags of four amino acid residues unique for between 74% and 97% of proteins, depending on the species studied. Sequence tags of five amino acid residues were found to be even more specific. To utilise this specificity of sequence tags for protein identification, we created a world-wide web-accessible protein identification program, TagIdent (http://www.expasy.ch/www/tools.html), which matches sequence tags of up to six amino acid residues as well as estimated protein pI and mass against proteins in the SWISS-PROT database. We demonstrate the utility of this identification approach with sequence tags generated from 91 different E. coli proteins purified by 2D gel electrophoresis. Fifty-one proteins were unambiguously identified by virtue of their sequence tags and estimated pI and mass, and a further 11 proteins identified when sequence tags were combined with protein amino acid composition data. We conlcude that the TagIdent identification approach is best suited to the identification of proteins from prokaryotes whose complete genome sequences are available. The approach is less well suited to proteins from eukaryotes, as many eukaryotic proteins are not amenable to sequencing via Edman degradation, and tag protein

  4. Single-step protease cleavage elution for identification of protein-protein interactions from GST pull-down and mass spectrometry.

    PubMed

    Luo, Lin; King, Nathan P; Yeo, Jeremy C; Jones, Alun; Stow, Jennifer L

    2014-01-01

    The study of protein-protein interactions is a major theme in biological disciplines. Pull-down or affinity-precipitation assays using GST fusion proteins have become one of the most common and valuable approaches to identify novel binding partners for proteins of interest (bait). Non-specific binding of prey proteins to the beads or to GST itself, however, inevitably complicates and impedes subsequent analysis of pull-down results. A variety of measures, each with inherent advantages and limitations, can minimise the extent of the background. This technical brief details and tests a modification of established GST pull-down protocols. By specifically eluting only the bait (minus the GST tag) and the associated non-specific binding proteins with a simple, single-step protease cleavage, a cleaner platform for downstream protein identification with MS is established. We present a proof of concept for this method, as evidenced by a GST pull-down/MS case study of the small guanosine triphosphatase (GTPase) Rab31 in which: (i) sensitivity was enhanced, (ii) a reduced level of background was observed, (iii) distinguishability of non-specific contaminant proteins from genuine binders was improved and (iv) a putative new protein-protein interaction was discovered. Our protease cleavage step is readily applicable to all further affinity tag pull-downs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Improved protocol for rapid identification of certain spa types using high resolution melting curve analysis.

    PubMed

    Mayerhofer, Benjamin; Stöger, Anna; Pietzka, Ariane T; Fernandez, Haizpea Lasa; Prewein, Bernhard; Sorschag, Sieglinde; Kunert, Renate; Allerberger, Franz; Ruppitsch, Werner

    2015-01-01

    Methicillin-resistant Staphylococcus aureus is one of the most significant pathogens associated with health care. For efficient surveillance, control and outbreak investigation, S. aureus typing is essential. A high resolution melting curve analysis was developed and evaluated for rapid identification of the most frequent spa types found in an Austrian hospital consortium covering 2,435 beds. Among 557 methicillin-resistant Staphylococcus aureus isolates 38 different spa types were identified by sequence analysis of the hypervariable region X of the protein A gene (spa). Identification of spa types through their characteristic high resolution melting curve profiles was considerably improved by double spiking with genomic DNA from spa type t030 and spa type t003 and allowed unambiguous and fast identification of the ten most frequent spa types t001 (58%), t003 (12%), t190 (9%), t041 (5%), t022 (2%), t032 (2%), t008 (2%), t002 (1%), t5712 (1%) and t2203 (1%), representing 93% of all isolates within this hospital consortium. The performance of the assay was evaluated by testing samples with unknown spa types from the daily routine and by testing three different high resolution melting curve analysis real-time PCR instruments. The ten most frequent spa types were identified from all samples and on all instruments with 100% specificity and 100% sensitivity. Compared to classical spa typing by sequence analysis, this gene scanning assay is faster, cheaper and can be performed in a single closed tube assay format. Therefore it is an optimal screening tool to detect the most frequent endemic spa types and to exclude non-endemic spa types within a hospital.

  6. Improved Protocol for Rapid Identification of Certain Spa Types Using High Resolution Melting Curve Analysis

    PubMed Central

    Mayerhofer, Benjamin; Stöger, Anna; Pietzka, Ariane T.; Fernandez, Haizpea Lasa; Prewein, Bernhard; Sorschag, Sieglinde; Kunert, Renate; Allerberger, Franz; Ruppitsch, Werner

    2015-01-01

    Methicillin-resistant Staphylococcus aureus is one of the most significant pathogens associated with health care. For efficient surveillance, control and outbreak investigation, S. aureus typing is essential. A high resolution melting curve analysis was developed and evaluated for rapid identification of the most frequent spa types found in an Austrian hospital consortium covering 2,435 beds. Among 557 methicillin-resistant Staphylococcus aureus isolates 38 different spa types were identified by sequence analysis of the hypervariable region X of the protein A gene (spa). Identification of spa types through their characteristic high resolution melting curve profiles was considerably improved by double spiking with genomic DNA from spa type t030 and spa type t003 and allowed unambiguous and fast identification of the ten most frequent spa types t001 (58%), t003 (12%), t190 (9%), t041 (5%), t022 (2%), t032 (2%), t008 (2%), t002 (1%), t5712 (1%) and t2203 (1%), representing 93% of all isolates within this hospital consortium. The performance of the assay was evaluated by testing samples with unknown spa types from the daily routine and by testing three different high resolution melting curve analysis real-time PCR instruments. The ten most frequent spa types were identified from all samples and on all instruments with 100% specificity and 100% sensitivity. Compared to classical spa typing by sequence analysis, this gene scanning assay is faster, cheaper and can be performed in a single closed tube assay format. Therefore it is an optimal screening tool to detect the most frequent endemic spa types and to exclude non-endemic spa types within a hospital. PMID:25768007

  7. Improved understanding of pathogenesis from protein interactions in Mycobacterium tuberculosis.

    PubMed

    Cui, Tao; He, Zheng-Guo

    2014-12-01

    Comprehensive mapping and analysis of protein-protein interactions provide not only systematic approaches for dissecting the infection and survival mechanisms of pathogens but also clues for discovering new antibacterial drug targets. Protein interaction data on Mycobacterium tuberculosis have rapidly accumulated over the past several years. This review summarizes the current progress of protein interaction studies on M. tuberculosis, the causative agent of tuberculosis. These efforts improve our knowledge on the stress response, signaling regulation, protein secretion and drug resistance of the bacteria. M. tuberculosis-host protein interaction studies, although still limited, have recently opened a new door for investigating the pathogenesis of the bacteria. Finally, this review discusses the importance of protein interaction data on identifying and screening new anti-tuberculosis targets and drugs, respectively.

  8. Fast Photochemical Oxidation of Proteins Coupled to Multidimensional Protein Identification Technology (MudPIT): Expanding Footprinting Strategies to Complex Systems

    NASA Astrophysics Data System (ADS)

    Rinas, Aimee; Jones, Lisa M.

    2015-04-01

    Peptides containing the oxidation products of hydroxyl radical-mediated protein footprinting experiments are typically much less abundant than their unoxidized counterparts. This is inherent to the design of the experiment as excessive oxidation may lead to undesired conformational changes or unfolding of the protein, skewing the results. Thus, as the complexity of the systems studied using this method expands, the detection and identification of these oxidized species can be increasingly difficult with the limitations of data-dependent acquisition (DDA) and one-dimensional chromatography. Here we report the application of multidimensional protein identification technology (MudPIT) in combination with hydroxyl radical footprinting as a method to increase the identification of quantifiable peptides in these experiments. Using this method led to a 37% increase in unique peptide identifications as well as a 70% increase in protein group identifications over one-dimensional data-dependent acquisition on the same samples. Furthermore, we demonstrate the combination of these methods as a means to investigate megadalton complexes.

  9. Polymorphism identification and improved genome annotation of Brassica rapa through Deep RNA sequencing.

    PubMed

    Devisetty, Upendra Kumar; Covington, Michael F; Tat, An V; Lekkala, Saradadevi; Maloof, Julin N

    2014-08-12

    The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. This is useful for accurate mRNA abundance and detection of expression QTL (eQTLs) in mapping populations. Deep RNA-Seq of two Brassica rapa genotypes-R500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)-using eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. A total of 330,995 SNPs were identified in transcribed regions between the two genotypes with an average frequency of one SNP in every 200 bases. The deep RNA-Seq reassembled Brassica rapa transcriptome identified 44,239 protein-coding genes. Compared with current gene models of B. rapa, we detected 3537 novel transcripts, 23,754 gene models had structural modifications, and 3655 annotated proteins changed. Gaps in the current genome assembly of B. rapa are highlighted by our identification of 780 unmapped transcripts. All the SNPs, annotations, and predicted transcripts can be viewed at http://phytonetworks.ucdavis.edu/.

  10. Polymorphism Identification and Improved Genome Annotation of Brassica rapa Through Deep RNA Sequencing

    PubMed Central

    Devisetty, Upendra Kumar; Covington, Michael F.; Tat, An V.; Lekkala, Saradadevi; Maloof, Julin N.

    2014-01-01

    The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. This is useful for accurate mRNA abundance and detection of expression QTL (eQTLs) in mapping populations. Deep RNA-Seq of two Brassica rapa genotypes—R500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)—using eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. A total of 330,995 SNPs were identified in transcribed regions between the two genotypes with an average frequency of one SNP in every 200 bases. The deep RNA-Seq reassembled Brassica rapa transcriptome identified 44,239 protein-coding genes. Compared with current gene models of B. rapa, we detected 3537 novel transcripts, 23,754 gene models had structural modifications, and 3655 annotated proteins changed. Gaps in the current genome assembly of B. rapa are highlighted by our identification of 780 unmapped transcripts. All the SNPs, annotations, and predicted transcripts can be viewed at http://phytonetworks.ucdavis.edu/. PMID:25122667

  11. Discovery of Chromatin-Associated Proteins via Sequence-Specific Capture and Mass Spectrometric Protein Identification in Saccharomyces cerevisiae.

    PubMed

    Kennedy-Darling, Julia; Guillen-Ahlers, Hector; Shortreed, Michael R; Scalf, Mark; Frey, Brian L; Kendziorski, Christina; Olivier, Michael; Gasch, Audrey P; Smith, Lloyd M

    2014-08-01

    DNA-protein interactions play critical roles in the control of genome expression and other fundamental processes. An essential element in understanding how these systems function is to identify their molecular components. We present here a novel strategy, Hybridization Capture of Chromatin Associated Proteins for Proteomics (HyCCAPP), to identify proteins that are interacting with any given region of the genome. This technology identifies and quantifies the proteins that are specifically interacting with a genomic region of interest by sequence-specific hybridization capture of the target region from in vivo cross-linked chromatin, followed by mass spectrometric identification and quantification of associated proteins. We demonstrate the utility of HyCCAPP by identifying proteins associated with three multicopy and one single-copy loci in yeast. In each case, a locus-specific pattern of target-associated proteins was revealed. The binding of previously unknown proteins was confirmed by ChIP in 11 of 17 cases. The identification of many previously known proteins at each locus provides strong support for the ability of HyCCAPP to correctly identify DNA-associated proteins in a sequence-specific manner, while the discovery of previously unknown proteins provides new biological insights into transcriptional and regulatory processes at the target locus.

  12. Discovery of Chromatin-Associated Proteins via Sequence-Specific Capture and Mass Spectrometric Protein Identification in Saccharomyces cerevisiae

    PubMed Central

    2015-01-01

    DNA–protein interactions play critical roles in the control of genome expression and other fundamental processes. An essential element in understanding how these systems function is to identify their molecular components. We present here a novel strategy, Hybridization Capture of Chromatin Associated Proteins for Proteomics (HyCCAPP), to identify proteins that are interacting with any given region of the genome. This technology identifies and quantifies the proteins that are specifically interacting with a genomic region of interest by sequence-specific hybridization capture of the target region from in vivo cross-linked chromatin, followed by mass spectrometric identification and quantification of associated proteins. We demonstrate the utility of HyCCAPP by identifying proteins associated with three multicopy and one single-copy loci in yeast. In each case, a locus-specific pattern of target-associated proteins was revealed. The binding of previously unknown proteins was confirmed by ChIP in 11 of 17 cases. The identification of many previously known proteins at each locus provides strong support for the ability of HyCCAPP to correctly identify DNA-associated proteins in a sequence-specific manner, while the discovery of previously unknown proteins provides new biological insights into transcriptional and regulatory processes at the target locus. PMID:24999558

  13. Identification of potential genetic markers for improved growth rate in channel catfish

    USDA-ARS?s Scientific Manuscript database

    Identification of genetic polymorphism associated with muscle growth would improve selection efficiency of channel catfish broodstock. Because faster growth is typically associated with increased food intake, factors involved in food intake regulation may serve as potential gene markers for selecti...

  14. Identification and characterization of a Dictyostelium discoideum ribosomal protein gene.

    PubMed Central

    Szymkowski, D E; Deering, R A

    1990-01-01

    We have identified a developmentally repressed large-subunit ribosomal protein gene of Dictyostelium discoideum based on sequence similarity to other ribosomal proteins. Protein rpl7 is homologous to large subunit ribosomal proteins from the rat and possibly to Mycoplasma capricolum and Escherichia coli, but is not similar to three sequenced ribosomal proteins in Dictyostelium. The rpl7 gene is present at one copy per genome, as are six other cloned Dictyostelium ribosomal proteins. Restriction fragment length polymorphisms exist for ribosomal protein genes rpl7, rp1024, and rp110 in strain HU182; most Dictyostelium ribosomal protein genes examined are linked no closer than 30-100 kb to each other in the genome. Dictyostelium ribosomal proteins are known to be developmentally regulated, and levels of rpl7 transcript gradually decrease during the 24-hour development cycle. This drop correlates with that of rp1024, indicating these and other ribosomal protein genes may be coordinately regulated. To determine the cellular location of the protein, we raised antibodies to an rpl7-derived branched synthetic peptide. These antibodies cross-reacted with one protein of the expected size in a ribosomal protein fraction of Dictyostelium, indicating that the product of gene rpl7 is localized in the ribosome. Images PMID:1975664

  15. Identification of immunogenic proteins and generation of antibodies against Salmonella Typhimurium using phage display.

    PubMed

    Meyer, Torsten; Schirrmann, Thomas; Frenzel, André; Miethe, Sebastian; Stratmann-Selke, Janin; Gerlach, Gerald F; Strutzberg-Minder, Katrin; Dübel, Stefan; Hust, Michael

    2012-06-15

    Solely in Europoe, Salmonella Typhimurium causes more than 100,000 infections per year. Improved detection of livestock colonised with S. Typhimurium is necessary to prevent foodborne diseases. Currently, commercially available ELISA assays are based on a mixture of O-antigens (LPS) or total cell lysate of Salmonella and are hampered by cross-reaction. The identification of novel immunogenic proteins would be useful to develop ELISA based diagnostic assays with a higher specificity. A phage display library of the entire Salmonella Typhimurium genome was constructed and 47 immunogenic oligopeptides were identified using a pool of convalescent sera from pigs infected with Salmonella Typhimurium. The corresponding complete genes of seven of the identified oligopeptids were cloned. Five of them were produced in E. coli. The immunogenic character of these antigens was validated with sera from pigs infeced with S. Tyhimurium and control sera from non-infected animals. Finally, human antibody fragments (scFv) against these five antigens were selected using antibody phage display and characterised. In this work, we identified novel immunogenic proteins of Salmonella Typhimurium and generated antibody fragments against these antigens completely based on phage display. Five immunogenic proteins were validated using a panel of positive and negative sera for prospective applications in diagnostics of Salmonela Typhimurium.

  16. Polyacrylamide gel miniaturization improves protein visualization and autoradiographic detection

    SciTech Connect

    Mohamed, M.A.; Lerro, K.A.; Prestwich, G.D.

    1989-03-01

    Polyacrylamide gels shrink to one-quarter of their original area when soaked in a 50% (w/v) solution of polyethylene glycol. Gel miniaturization improves the contrast of protein bands, with four valuable consequences. (i) A 5- to 10-fold increase in sensitivity for Coomassie blue is observed. (ii) Gels are more durable; i.e., they resist tearing when wet and they do not crack during drying under vacuum. (iii) Shrunken gels give sharper photographic images and provide better interlane protein band comparisons. (iv) Condensed protein bands lead to an increased sensitivity for detecting low-abundance, radioactively-labeled proteins by fluorography.

  17. Improving membrane protein expression by optimizing integration efficiency.

    PubMed

    Niesen, Michiel J M; Marshall, Stephen S; Miller, Thomas F; Clemons, William M

    2017-09-16

    The heterologous overexpression of integral membrane proteins in Escherichia coli often yields insufficient quantities of purifiable protein for applications of interest. The current study leverages a recently demonstrated link between co-translational membrane integration efficiency and protein expression levels to predict protein sequence modifications that improve expression. Membrane integration efficiencies, obtained using a coarse-grained simulation approach, robustly predicted effects on expression of the integral membrane protein TatC for a set of 140 sequence modifications, including loop-swap chimeras and single-residue mutations distributed throughout the protein sequence. Mutations that improve simulated integration efficiency were four-fold enriched with respect to improved experimentally observed expression levels. Furthermore, the effect of double mutations, on both simulated integration efficiency and experimentally observed expression levels were cumulative and largely independent, suggesting that multiple mutations can be introduced to yield higher levels of purifiable protein. This work provides a foundation for a general method for the rational overexpression of integral membrane proteins based on computationally simulated membrane integration efficiencies. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  18. MALDI imaging mass spectrometry of Pacific White Shrimp L. vannamei and identification of abdominal muscle proteins.

    PubMed

    Schey, Kevin L; Hachey, Amanda J; Rose, Kristie L; Grey, Angus C

    2016-06-01

    MALDI imaging mass spectrometry (IMS) has been applied to whole animal tissue sections of Pacific White Shrimp, Litopenaeus vannamei, in an effort to identify and spatially localize proteins in specific organ systems. Frozen shrimp were sectioned along the ventral-dorsal axis and methods were optimized for matrix application. In addition, tissue microextraction and homogenization was conducted followed by top-down LC-MS/MS analysis of intact proteins and searches of shrimp EST databases to identify imaged proteins. IMS images revealed organ system specific protein signals that highlighted the hepatopancreas, heart, nervous system, musculature, and cuticle. Top-down proteomics identification of abdominal muscle proteins revealed the sequence of the most abundant muscle protein that has no sequence homology to known proteins. Additional identifications of abdominal muscle proteins included titin, troponin-I, ubiquitin, as well as intact and multiple truncated forms of flightin; a protein known to function in high frequency contraction of insect wing muscles. The combined use of imaging mass spectrometry and top-down proteomics allowed for identification of novel proteins from the sparsely populated shrimp protein databases.

  19. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity

    PubMed Central

    Barkla, Bronwyn J.

    2016-01-01

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised. PMID:28248236

  20. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity.

    PubMed

    Barkla, Bronwyn J

    2016-09-08

    Modern day agriculture practice is narrowing the genetic diversity in our food supply. This may compromise the ability to obtain high yield under extreme climactic conditions, threatening food security for a rapidly growing world population. To identify genetic diversity, tolerance mechanisms of cultivars, landraces and wild relatives of major crops can be identified and ultimately exploited for yield improvement. Quantitative proteomics allows for the identification of proteins that may contribute to tolerance mechanisms by directly comparing protein abundance under stress conditions between genotypes differing in their stress responses. In this review, a summary is provided of the data accumulated from quantitative proteomic comparisons of crop genotypes/cultivars which present different stress tolerance responses when exposed to various abiotic stress conditions, including drought, salinity, high/low temperature, nutrient deficiency and UV-B irradiation. This field of research aims to identify molecular features that can be developed as biomarkers for crop improvement, however without accurate phenotyping, careful experimental design, statistical robustness and appropriate biomarker validation and verification it will be challenging to deliver what is promised.

  1. Data identification for improving gene network inference using computational algebra.

    PubMed

    Dimitrova, Elena; Stigler, Brandilyn

    2014-11-01

    Identification of models of gene regulatory networks is sensitive to the amount of data used as input. Considering the substantial costs in conducting experiments, it is of value to have an estimate of the amount of data required to infer the network structure. To minimize wasted resources, it is also beneficial to know which data are necessary to identify the network. Knowledge of the data and knowledge of the terms in polynomial models are often required a priori in model identification. In applications, it is unlikely that the structure of a polynomial model will be known, which may force data sets to be unnecessarily large in order to identify a model. Furthermore, none of the known results provides any strategy for constructing data sets to uniquely identify a model. We provide a specialization of an existing criterion for deciding when a set of data points identifies a minimal polynomial model when its monomial terms have been specified. Then, we relax the requirement of the knowledge of the monomials and present results for model identification given only the data. Finally, we present a method for constructing data sets that identify minimal polynomial models.

  2. RPI-Bind: a structure-based method for accurate identification of RNA-protein binding sites.

    PubMed

    Luo, Jiesi; Liu, Liang; Venkateswaran, Suresh; Song, Qianqian; Zhou, Xiaobo

    2017-04-04

    RNA and protein interactions play crucial roles in multiple biological processes, while these interactions are significantly influenced by the structures and sequences of protein and RNA molecules. In this study, we first performed an analysis of RNA-protein interacting complexes, and identified interface properties of sequences and structures, which reveal the diverse nature of the binding sites. With the observations, we built a three-step prediction model, namely RPI-Bind, for the identification of RNA-protein binding regions using the sequences and structures of both proteins and RNAs. The three steps include 1) the prediction of RNA binding regions on protein, 2) the prediction of protein binding regions on RNA, and 3) the prediction of interacting regions on both RNA and protein simultaneously, with the results from steps 1) and 2). Compared with existing methods, most of which employ only sequences, our model significantly improves the prediction accuracy at each of the three steps. Especially, our model outperforms the catRAPID by >20% at the 3(rd) step. All of these results indicate the importance of structures in RNA-protein interactions, and suggest that the RPI-Bind model is a powerful theoretical framework for studying RNA-protein interactions.

  3. A novel spectral library workflow to enhance protein identifications.

    PubMed

    Li, Haomin; Zong, Nobel C; Liang, Xiangbo; Kim, Allen K; Choi, Jeong Ho; Deng, Ning; Zelaya, Ivette; Lam, Maggie; Duan, Huilong; Ping, Peipei

    2013-04-09

    The innovations in mass spectrometry-based investigations in proteome biology enable systematic characterization of molecular details in pathophysiological phenotypes. However, the process of delineating large-scale raw proteomic datasets into a biological context requires high-throughput data acquisition and processing. A spectral library search engine makes use of previously annotated experimental spectra as references for subsequent spectral analyses. This workflow delivers many advantages, including elevated analytical efficiency and specificity as well as reduced demands in computational capacity. In this study, we created a spectral matching engine to address challenges commonly associated with a library search workflow. Particularly, an improved sliding dot product algorithm, that is robust to systematic drifts of mass measurement in spectra, is introduced. Furthermore, a noise management protocol distinguishes spectra correlation attributed from noise and peptide fragments. It enables elevated separation between target spectral matches and false matches, thereby suppressing the possibility of propagating inaccurate peptide annotations from library spectra to query spectra. Moreover, preservation of original spectra also accommodates user contributions to further enhance the quality of the library. Collectively, this search engine supports reproducible data analyses using curated references, thereby broadening the accessibility of proteomics resources to biomedical investigators. This article is part of a Special Issue entitled: From protein structures to clinical applications.

  4. Reliable Identification of Cross-Linked Products in Protein Interaction Studies by 13C-Labeled p-Benzoylphenylalanine

    NASA Astrophysics Data System (ADS)

    Pettelkau, Jens; Ihling, Christian H.; Frohberg, Petra; van Werven, Lars; Jahn, Olaf; Sinz, Andrea

    2014-09-01

    We describe the use of the 13C-labeled artificial amino acid p-benzoyl-L-phenylalanine (Bpa) to improve the reliability of cross-linked product identification. Our strategy is exemplified for two protein-peptide complexes. These studies indicate that in many cases the identification of a cross-link without additional stable isotope labeling would result in an ambiguous assignment of cross-linked products. The use of a 13C-labeled photoreactive amino acid is considered to be preferred over the use of deuterated cross-linkers as retention time shifts in reversed phase chromatography can be ruled out. The observation of characteristic fragment ions additionally increases the reliability of cross-linked product assignment. Bpa possesses a broad reactivity towards different amino acids and the derived distance information allows mapping of spatially close amino acids and thus provides more solid structural information of proteins and protein complexes compared to the longer deuterated amine-reactive cross-linkers, which are commonly used for protein 3D-structure analysis and protein-protein interaction studies.

  5. Identification of proteins associated with amyloidosis by polarity index method.

    PubMed

    Polanco, Carlos; Samaniego, José Lino; Uversky, Vladimir N; Castañón-González, Jorge Alberto; Buhse, Thomas; Leopold-Sordo, Marili; Madero-Arteaga, Alejandro; Morales-Reyes, Alicia; Tavera-Sierra, Lourdes; González-Bernal, Jesus A; Arias-Estrada, Miguel

    2015-01-01

    There is a natural protein form, insoluble and resistant to proteolysis, adopted by many proteins independently of their amino acid sequences via specific misfolding-aggregation process. This dynamic process occurs in parallel with or as an alternative to physiologic folding, generating toxic protein aggregates that are deposited and accumulated in various organs and tissues. These proteinaceous deposits typically represent bundles of β-sheet-enriched fibrillar species known as the amyloid fibrils that are responsible for serious pathological conditions, including but not limited to neurodegenerative diseases, grouped under the term amyloidoses. The proteins that might adopt this fibrillar conformation are some globular proteins and natively unfolded (or intrinsically disordered) proteins. Our work shows that intrinsically disordered and intrinsically ordered proteins can be reliably identified, discriminated, and differentiated by analyzing their polarity profiles generated using a computational tool known as the polarity index method (Polanco & Samaniego, 2009; Polanco et al., 2012; 2013; 2013a; 2014; 2014a; 2014b; 2014c; 2014d). We also show that proteins expressed in neurons can be differentiated from proteins in these two groups based on their polarity profiles, and also that this computational tool can be used to identify proteins associated with amyloidoses. The efficiency of the proposed method is high (i.e. 70%) as evidenced by the analysis of peptides and proteins in the APD2 database (2012), AVPpred database (2013), and CPPsite database (2013), the set of selective antibacterial peptides from del Rio et al. (2001), the sets of natively unfolded and natively folded proteins from Oldfield et al. (2005), the set of human revised proteins expressed in neurons, and non-human revised proteins expressed in neurons, from the Uniprot database (2014), and also the set of amyloidogenic proteins from the AmyPDB database (2014).

  6. Computational Identification of MoRFs in Protein Sequences Using Hierarchical Application of Bayes Rule.

    PubMed

    Malhis, Nawar; Wong, Eric T C; Nassar, Roy; Gsponer, Jörg

    2015-01-01

    Intrinsically disordered regions of proteins play an essential role in the regulation of various biological processes. Key to their regulatory function is often the binding to globular protein domains via sequence elements known as molecular recognition features (MoRFs). Development of computational tools for the identification of candidate MoRF locations in amino acid sequences is an important task and an area of growing interest. Given the relative sparseness of MoRFs in protein sequences, the accuracy of the available MoRF predictors is often inadequate for practical usage, which leaves a significant need and room for improvement. In this work, we introduce MoRFCHiBi_Web, which predicts MoRF locations in protein sequences with higher accuracy compared to current MoRF predictors. Three distinct and largely independent property scores are computed with component predictors and then combined to generate the final MoRF propensity scores. The first score reflects the likelihood of sequence windows to harbour MoRFs and is based on amino acid composition and sequence similarity information. It is generated by MoRFCHiBi using small windows of up to 40 residues in size. The second score identifies long stretches of protein disorder and is generated by ESpritz with the DisProt option. Lastly, the third score reflects residue conservation and is assembled from PSSM files generated by PSI-BLAST. These propensity scores are processed and then hierarchically combined using Bayes rule to generate the final MoRFCHiBi_Web predictions. MoRFCHiBi_Web was tested on three datasets. Results show that MoRFCHiBi_Web outperforms previously developed predictors by generating less than half the false positive rate for the same true positive rate at practical threshold values. This level of accuracy paired with its relatively high processing speed makes MoRFCHiBi_Web a practical tool for MoRF prediction. http://morf.chibi.ubc.ca:8080/morf/.

  7. Discovery of active proteins directly from combinatorial randomized protein libraries without display, purification or sequencing: identification of novel zinc finger proteins

    PubMed Central

    Hughes, Marcus D.; Zhang, Zhan-Ren; Sutherland, Andrew J.; Santos, Albert F.; Hine, Anna V.

    2005-01-01

    We have successfully linked protein library screening directly with the identification of active proteins, without the need for individual purification, display technologies or physical linkage between the protein and its encoding sequence. By using ‘MAX’ randomization we have rapidly constructed 60 overlapping gene libraries that encode zinc finger proteins, randomized variously at the three principal DNA-contacting residues. Expression and screening of the libraries against five possible target DNA sequences generated data points covering a potential 40 000 individual interactions. Comparative analysis of the resulting data enabled direct identification of active proteins. Accuracy of this library analysis methodology was confirmed by both in vitro and in vivo analyses of identified proteins to yield novel zinc finger proteins that bind to their target sequences with high affinity, as indicated by low nanomolar apparent dissociation constants. PMID:15722478

  8. Identification of Topological Network Modules in Perturbed Protein Interaction Networks.

    PubMed

    Sardiu, Mihaela E; Gilmore, Joshua M; Groppe, Brad; Florens, Laurence; Washburn, Michael P

    2017-03-08

    Biological networks consist of functional modules, however detecting and characterizing such modules in networks remains challenging. Perturbing networks is one strategy for identifying modules. Here we used an advanced mathematical approach named topological data analysis (TDA) to interrogate two perturbed networks. In one, we disrupted the S. cerevisiae INO80 protein interaction network by isolating complexes after protein complex components were deleted from the genome. In the second, we reanalyzed previously published data demonstrating the disruption of the human Sin3 network with a histone deacetylase inhibitor. Here we show that disrupted networks contained topological network modules (TNMs) with shared properties that mapped onto distinct locations in networks. We define TMNs as proteins that occupy close network positions depending on their coordinates in a topological space. TNMs provide new insight into networks by capturing proteins from different categories including proteins within a complex, proteins with shared biological functions, and proteins disrupted across networks.

  9. Identification of Topological Network Modules in Perturbed Protein Interaction Networks

    PubMed Central

    Sardiu, Mihaela E.; Gilmore, Joshua M.; Groppe, Brad; Florens, Laurence; Washburn, Michael P.

    2017-01-01

    Biological networks consist of functional modules, however detecting and characterizing such modules in networks remains challenging. Perturbing networks is one strategy for identifying modules. Here we used an advanced mathematical approach named topological data analysis (TDA) to interrogate two perturbed networks. In one, we disrupted the S. cerevisiae INO80 protein interaction network by isolating complexes after protein complex components were deleted from the genome. In the second, we reanalyzed previously published data demonstrating the disruption of the human Sin3 network with a histone deacetylase inhibitor. Here we show that disrupted networks contained topological network modules (TNMs) with shared properties that mapped onto distinct locations in networks. We define TMNs as proteins that occupy close network positions depending on their coordinates in a topological space. TNMs provide new insight into networks by capturing proteins from different categories including proteins within a complex, proteins with shared biological functions, and proteins disrupted across networks. PMID:28272416

  10. Proteins of human milk. I. Identification of major components

    SciTech Connect

    Anderson, N.G.; Powers, M.T.; Tollaksen, S.L.

    1982-04-01

    Traditionally, human milk proteins are identified largely by reference to bovine milk. Hence, to identify the major proteins in human milk, we subjected human and bovine milk, in parallel, to high-resolution two-dimensional electrophoresis. Isoelectric precipitation at pH 4.6 was our criterion for distinguishing whey proteins from those of the casein complex. The ..cap alpha..- and..beta..-caseins were identified on the basis of relative abundance, relative molecular mass, and relative isoelectric points. No protein disappeared from ISO-DALT patterns of human milk after rennin treatment, and no new protein comparable to bovine para K-casein appeared in the BASO-DALT patterns; this suggests that K-casein is absent from human milk. The proteins identified in human milk patterns include the ..cap alpha.. and ..beta.. casein families, lactalbumin, albumin, transferrin, IgA, and lactoferrin. Numerous additional proteins seen in patterns for human milk remain to be identified.

  11. Identification of immunodominant proteins from Mannheimia haemolytica and Histophilus somni by an immunoproteomic approach

    PubMed Central

    Alvarez, Angel H.; Gutiérrez-Ortega, Abel; Hernández-Gutiérrez, Rodolfo

    2015-01-01

    Mannheimia haemolytica and Histophilus somni are frequently isolated from diseased cattle with bovine respiratory disease (BRD). They compromise animal lung function and the immune responses generated are not sufficient to limit infection. Identification of specific immunogenic antigens for vaccine development represents a great challenge. Immunogenic proteins were identified by immunoproteomic approach with sera from cattle immunized with a commercial cellular vaccine of M. haemolytica and H. somni. Proteins of M. haemolytica were identified as solute ABC transporter, iron-binding protein, and hypothetical protein of capsular biosynthesis. Histophilus somni proteins correspond to porin, amino acid ABC transporter, hypothetical outer membrane protein, cysteine synthase, and outer membrane protein P6. Although these antigens share strong similarities with other proteins from animal pathogens, the ABC system proteins have been associated with virulence and these proteins could be considered as potential vaccine candidates for BRD. PMID:26424916

  12. IDENTIFICATION OF PROTEIN FRACTIONS OF MILK COWS CASEIN COMPLEX.

    PubMed

    Iukalo, A V

    2015-01-01

    To date, dozens of biologically active peptides formed during proteolysis of casein fractions have been discovered. The use of these peptides is closely related to the necessity of their rapid identification. The aim of this work was the development of an electrophoresis system for rapid identification of individual fractions in serial studies and the separation of the milk casein complex. Considering the abnormal nature of the interaction of caseins with the sodium dodecyl sulfate and similar values of their molecular masses, the anode electrophoresis system in a homogeneous polyacrylamide gel was taken as a basis. Caseins, in this system, are separated according to their charge and located on the electrophoregram in accordance with the modern classification. Urea was used as a disaggregating agent in gel. It was shown that the use of Studier type apparatus for electrophoresis with changeable dimensions of electrophoretic chamber significantly reduces (to 45 min) the time for identification of casein fractions. This method may be useful for rapid identification of casein fractions, as well as for rapid analysis of natural milk and milk products.

  13. Identification of Posttranslational Modification-Dependent Protein Interactions Using Yeast Surface Displayed Human Proteome Libraries.

    PubMed

    Bidlingmaier, Scott; Liu, Bin

    2015-01-01

    The identification of proteins that interact specifically with posttranslational modifications such as phosphorylation is often necessary to understand cellular signaling pathways. Numerous methods for identifying proteins that interact with posttranslational modifications have been utilized, including affinity-based purification and analysis, protein microarrays, phage display, and tethered catalysis. Although these techniques have been used successfully, each has limitations. Recently, yeast surface-displayed human proteome libraries have been utilized to identify protein fragments with affinity for various target molecules, including phosphorylated peptides. When coupled with fluorescently activated cell sorting and high throughput methods for the analysis of selection outputs, yeast surface-displayed human proteome libraries can rapidly and efficiently identify protein fragments with affinity for any soluble ligand that can be fluorescently detected, including posttranslational modifications. In this review we compare the use of yeast surface display libraries to other methods for the identification of interactions between proteins and posttranslational modifications and discuss future applications of the technology.

  14. Improved Quick Disconnect (QD) Interface Through Fail Safe Parts Identification

    NASA Technical Reports Server (NTRS)

    Blanch-Payne, Evelyn

    2001-01-01

    An extensive review of existing Quick Disconnects (QDs) mating and demating operations was performed to determine which shuttle part interface identifications and procedures contribute to human factor errors. The research methods used consisted of interviews with engineers and technicians, examination of incident reports, critiques of video and audio tapes of QD operations, and attendance of a Hyper QD operational course. The data strongly suggests that there are inherit human factor errors involved in QD operations. To promote fail-safe operations, QD interface problem areas and recommendations were outlined and reviewed. It is suggested that dialogue, investigations and recommendations continue.

  15. Identification of IgE-binding proteins in soy lecithin.

    PubMed

    Gu, X; Beardslee, T; Zeece, M; Sarath, G; Markwell, J

    2001-11-01

    Soy lecithin is widely used as an emulsifier in processed foods, pharmaceuticals and cosmetics. Soy lecithin is composed principally of phospholipids; however, it has also been shown to contain IgE-binding proteins, albeit at a low level. A few clinical cases involving allergic reactions to soy lecithin have been reported. The purpose of this investigation is to better characterize the IgE-binding proteins typically found in lecithin. Soy lecithin proteins were isolated following solvent extraction of lipid components and then separated on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The separated lecithin proteins were immunoblotted with sera from soy-sensitive individuals to determine the pattern of IgE-binding proteins. The identity of IgE-reactive bands was determined from their N-terminal sequence. The level of protein in six lecithin samples obtained from commercial suppliers ranged from 100 to 1,400 ppm. Lecithin samples showed similar protein patterns when examined by SDS-PAGE. Immunoblotting with sera from soy-sensitive individuals showed IgE binding to bands corresponding to 7, 12, 20, 39 and 57 kD. N-terminal analysis of these IgE-binding bands resulted in sequences for 3 components. The 12-kD band was identified as a methionine-rich protein (MRP) and a member of the 2S albumin class of soy proteins. The 20-kD band was found to be soybean Kunitz trypsin inhibitor. The 39-kD band was matched to a soy protein with unknown function. Soy lecithin contains a number of IgE-binding proteins; thus, it might represent a source of hidden allergens. These allergens are a more significant concern for soy-allergic individuals consuming lecithin products as a health supplement. In addition, the MRP and the 39-kD protein identified in this study represent newly identified IgE-binding proteins. Copyright 2001 S. Karger AG, Basel

  16. How enhanced molecular ions in Cold EI improve compound identification by the NIST library.

    PubMed

    Alon, Tal; Amirav, Aviv

    2015-12-15

    Library-based compound identification with electron ionization (EI) mass spectrometry (MS) is a well-established identification method which provides the names and structures of sample compounds up to the isomer level. The library (such as NIST) search algorithm compares different EI mass spectra in the library's database with the measured EI mass spectrum, assigning each of them a similarity score called 'Match' and an overall identification probability. Cold EI, electron ionization of vibrationally cold molecules in supersonic molecular beams, provides mass spectra with all the standard EI fragment ions combined with enhanced Molecular Ions and high-mass fragments. As a result, Cold EI mass spectra differ from those provided by standard EI and tend to yield lower matching scores. However, in most cases, library identification actually improves with Cold EI, as library identification probabilities for the correct library mass spectra increase, despite the lower matching factors. This research examined the way that enhanced molecular ion abundances affect library identification probability and the way that Cold EI mass spectra, which include enhanced molecular ions and high-mass fragment ions, typically improve library identification results. It involved several computer simulations, which incrementally modified the relative abundances of the various ions and analyzed the resulting mass spectra. The simulation results support previous measurements, showing that while enhanced molecular ion and high-mass fragment ions lower the matching factor of the correct library compound, the matching factors of the incorrect library candidates are lowered even more, resulting in a rise in the identification probability for the correct compound. This behavior which was previously observed by analyzing Cold EI mass spectra can be explained by the fact that high-mass ions, and especially the molecular ion, characterize a compound more than low-mass ions and therefore carries more

  17. Development of a strategy for the identification of surface proteins in the pathogenic microsporidian Nosema bombycis.

    PubMed

    Zhao, Weixi; Hao, Youjin; Wang, Linglin; Zhou, Zeyang; Li, Zhi

    2015-06-01

    Parasite-host interactions mediated by cell surface proteins have been implicated as a critical step in infections caused by the microsporidian Nosema bombycis. Such cell surface proteins are considered as promising diagnostic markers and targets for drug development. However, little research has specifically addressed surface proteome identification in microsporidia due to technical barriers. Here, a combined strategy was developed to separate and identify the surface proteins of N. bombycis. Briefly, following (1) biotinylation of the spore surface, (2) extraction of total proteins with an optimized method and (3) streptavidin affinity purification of biotinylated proteins, 22 proteins were identified based on LC-MS/MS analysis. Among them, 5 proteins were confirmed to be localized on the surface of N. bombycis. A total of 8 proteins were identified as hypothetical extracellular proteins, whereas 7 other hypothetical proteins had no available function annotation. Furthermore, a protein with a molecular weight of 18·5 kDa was localized on the spore surface by western blotting and immunofluorescence analysis, even though it was predicted to be a nuclear protein by bioinformatics. Collectively, our work provides an effective strategy for isolating microsporidian surface protein components for both drug target identification and further diagnostic research on microsporidian disease control.

  18. Identification of protein-protein interaction and topologies in living cells by chemical cross-linking and mass spectrometry

    SciTech Connect

    Zhang, Haizhen; Tang, Xiaoting; Munske, Gerhard R.; Tolic, Nikola; Anderson, Gordon A.; Bruce, James E.

    2008-10-20

    Current chemical cross-linking methods are commonly employed for mapping sites of interaction and three-dimensional structure in purified, known protein complexes. When applied in vivo in combination of co-immunoprecipitation methods, information on the sites of interaction between proteins are unattainable due to overwhelming sample complexity. We present results from a novel cross-linking strategy that allow simultaneous protein-protein interaction and surface topology measurement in vivo without any prior knowledge of the system. The strategy consists of: (i) cross-linking reaction: intact cell labeling with protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by 2D-LC/MS/MS; and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. This strategy was applied to Shewanella oneidensis MR-1 bacterial cells and successfully identified a protein-protein interaction between SecA and a small outer membrane lipoprotein as well as their sites of interaction in vivo.

  19. Identification and characterization of Euphorbia nivulia latex proteins.

    PubMed

    Badgujar, Shamkant B; Mahajan, Raghunath T

    2014-03-01

    The protein profile of latex of Euphorbia nivulia Buch.-Ham. is established. Three new proteins viz., Nivulian-I, II and III have been purified to homogeneity from the latex. The relative molecular masses of Nivulian-I, II and III are 31,486.985, 43,670.846 and 52,803.470 Da respectively. Nivulian-I is a simple type of protein while Nivulian-II and III are glycoproteins. Peptide mass fingerprint analysis revealed peptides of these proteins match with Tubulin alpha-1 chain of Eleusine indica, Maturase K of Banksia quercifolia and hypothetical protein of Zea mays respectively. Tryptic digestion profile of Nivulian-I, II and III, infer the exclusive nature of latex origin proteins and may be new and are additive molecules in the dictionaries of phytoproteins or botany. This is the first of its kind, regarding characterization and validation of Nivulian-I, II and III with respect to peptide sequencing.

  20. Identification of nuclear structural protein alterations associated with seminomas.

    PubMed

    Leman, Eddy S; Magheli, Ahmed; Yong, Koh Meng Aw; Netto, George; Hinz, Stefan; Getzenberg, Robert H

    2009-12-15

    Currently, there are no specific markers available for the early detection and for monitoring testicular cancer. Based upon an approach that targets nuclear structure, we have identified a set of proteins that are specific for seminomas, which may then have clinical utility for the disease. Utilizing samples obtained from men with no evidence of testicular cancer (n = 5) as well as those with seminomas (n = 6), nuclear matrix proteins were extracted and separated using a high-resolution two-dimensional electrophoresis gel system. The proteins were identified by mass spectrometry analysis. These analyses revealed seven nuclear matrix proteins associated with the normal testes, which did not appear in the seminomas. In the seminomas, four nuclear matrix proteins were identified to be associated with the disease that were absent in the normal testes. Mass spectrometric and immunoblot analyses of these proteins revealed that one of the proteins identified in the normal testes appears to be StAR-related lipid transfer protein 7 (StARD7). In the non-seminoma tissues, one of the identified proteins appears to be cell division protein kinase 10 (CDK10). Both StarD7 and CDK10 could potentially be involved in cell differentiation and growth, and thus may serve as potential targets for therapy of prognostication of seminomas. This is the first study to examine the role of nuclear structural proteins as potential biomarkers in testicular cancer. We are currently examining the roles of some of the identified proteins as potential biomarkers for the disease. (c) 2009 Wiley-Liss, Inc.

  1. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  2. Functional module search in protein networks based on semantic similarity improves the analysis of proteomics data.

    PubMed

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-07-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system.

  3. Identification of a Protein for Prostate-Specific Infection

    DTIC Science & Technology

    2006-12-01

    P2) modified gp41 envelope protein was used to infect LNCaP cells in 24-well plates. The control vector that does not have gp41 -P2 envelope protein...on viral surface was also used to infect LNCaP cells as the control. Our results demonstrated that with the gp41 -P2 envelope protein on the surface...Insert sequences into lentiviral envelope protein gp41 As described in the annual report of last year, we have identified two peptides that can

  4. Novel identification of matrix proteins involved in calcitic biomineralization.

    PubMed

    Rose-Martel, Megan; Smiley, Sandy; Hincke, Maxwell T

    2015-02-26

    Calcitic biomineralization is essential for otoconia formation in vertebrates. This process is characterized by protein-crystal interactions that modulate crystal growth on an extracellular matrix. An excellent model for the study of calcitic biomineralization is the avian eggshell, the fastest known biomineralization process. The objective of this study is to identify and characterize matrix proteins associated with the eggshell mammillary cones, which are hypothesized to regulate the earliest stage of eggshell calcification. Mammillary cones were isolated from 2 models, fertilized and unfertilized, and the released proteins were identified by RP-nanoLC and ES-MS/MS proteomics. Proteomics analysis identified 49 proteins associated with the eggshell membrane fibers and, importantly, 18 mammillary cone-specific proteins with an additional 18 proteins identified as enriched in the mammillary cones. Among the most promising candidates for modulating protein-crystal interactions were extracellular matrix proteins, including ABI family member 3 (NESH) binding protein (ABI3BP), tiarin-like, hyaluronan and proteoglycan link protein 3 (HAPLN3), collagen alpha-1(X), collagen alpha-1(II) and fibronectin, in addition to the calcium binding proteins calumenin, EGF-like repeats and discoidin 1-like domains 3 (EDIL3), nucleobindin-2 and SPARC. In conclusion, we identified several cone-resident proteins that are candidates to regulate initiation of eggshell calcification. Further study of these proteins will determine their roles in modulating calcitic biomineralization and lead to insight into the process of otoconia formation/regeneration. Biomineralization is essential for the development of hard tissues in vertebrates, which includes both calcium phosphate and calcium carbonate structures. Calcitic mineralization by calcium carbonate is an important process in the formation of otoconia, which are gravity receptor organs located in the inner ear and are responsible for balance

  5. Identification of host proteins, Spata3 and Dkk2, interacting with Toxoplasma gondii micronemal protein MIC3.

    PubMed

    Wang, Yifan; Fang, Rui; Yuan, Yuan; Pan, Ming; Hu, Min; Zhou, Yanqin; Shen, Bang; Zhao, Junlong

    2016-07-01

    As an obligate intracellular protozoan, Toxoplasma gondii is a successful pathogen infecting a variety of animals, including humans. As an adhesin involving in host invasion, the micronemal protein MIC3 plays important roles in host cell attachment, as well as modulation of host EGFR signaling cascade. However, the specific host proteins that interact with MIC3 are unknown and the identification of such proteins will increase our understanding of how MIC3 exerts its functions. This study was designed to identify host proteins interacting with MIC3 by yeast two-hybrid screens. Using MIC3 as bait, a library expressing mouse proteins was screened, uncovering eight mouse proteins that showed positive interactions with MIC3. Two of which, spermatogenesis-associated protein 3 (Spata3) and dickkopf-related protein 2 (Dkk2), were further confirmed to interact with MIC3 by additional protein-protein interaction tests. The results also revealed that the tandem repeat EGF domains of MIC3 were critical in mediating the interactions with the identified host proteins. This is the first study to show that MIC3 interacts with host proteins that are involved in reproduction, growth, and development. The results will provide a clearer understanding of the functions of adhesion-associated micronemal proteins in T. gondii.

  6. MSACompro: improving multiple protein sequence alignment by predicted structural features.

    PubMed

    Deng, Xin; Cheng, Jianlin

    2014-01-01

    Multiple Sequence Alignment (MSA) is an essential tool in protein structure modeling, gene and protein function prediction, DNA motif recognition, phylogenetic analysis, and many other bioinformatics tasks. Therefore, improving the accuracy of multiple sequence alignment is an important long-term objective in bioinformatics. We designed and developed a new method MSACompro to incorporate predicted secondary structure, relative solvent accessibility, and residue-residue contact information into the currently most accurate posterior probability-based MSA methods to improve the accuracy of multiple sequence alignments. Different from the multiple sequence alignment methods that use the tertiary structure information of some sequences, our method uses the structural information purely predicted from sequences. In this chapter, we first introduce some background and related techniques in the field of multiple sequence alignment. Then, we describe the detailed algorithm of MSACompro. Finally, we show that integrating predicted protein structural information improved the multiple sequence alignment accuracy.

  7. Identification of urinary proteins potentially associated with diabetic kidney disease

    PubMed Central

    Marikanty, R. K.; Gupta, M. K.; Cherukuvada, S. V. B.; Kompella, S. S. S; Prayaga, A. K.; Konda, S.; Polisetty, R. V.; Idris, M. M.; Rao, P. V.; Chandak, G. R.; Dakshinamurty, K. V.

    2016-01-01

    Diabetic nephropathy (DN) is the most common cause of chronic kidney disease. Although several parameters are used to evaluate renal damage, in many instances, there is no pathological change until damage is already advanced. Mass spectrometry-based proteomics is a novel tool to identify newer diagnostic markers. To identify urinary proteins associated with renal complications in diabetes, we collected urine samples from 10 type 2 diabetes patients each with normoalbuminuria, micro- and macro-albuminuria and compared their urinary proteome with that of 10 healthy individuals. Urinary proteins were concentrated, depleted of albumin and five other abundant plasma proteins and in-gel trypsin digested after prefractionation on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The peptides were analyzed using a nanoflow reverse phase liquid chromatography system coupled to linear trap quadrupole-Orbitrap mass spectrometer. We identified large number of proteins in each group, of which many were exclusively present in individual patient groups. A total of 53 proteins were common in all patients but were absent in the controls. The majority of the proteins were functionally binding, biologically involved in metabolic processes, and showed enrichment of alternative complement and blood coagulation pathways. In addition to identifying reported proteins such as α2-HS-glycoprotein and Vitamin D binding protein, we detected novel proteins such as CD59, extracellular matrix protein 1 (ECM1), factor H, and myoglobin in the urine of macroalbuminuria patients. ECM1 and factor H are known to influence mesangial cell proliferation, and CD59 causes microvascular damage by influencing membrane attack complex deposition, suggestive their biological relevance to DN. Thus, we have developed a proteome database where various proteins exclusively present in the patients may be further investigated for their role as stage-specific markers and possible therapeutic targets. PMID

  8. Identification of urinary proteins potentially associated with diabetic kidney disease.

    PubMed

    Marikanty, R K; Gupta, M K; Cherukuvada, S V B; Kompella, S S S; Prayaga, A K; Konda, S; Polisetty, R V; Idris, M M; Rao, P V; Chandak, G R; Dakshinamurty, K V

    2016-01-01

    Diabetic nephropathy (DN) is the most common cause of chronic kidney disease. Although several parameters are used to evaluate renal damage, in many instances, there is no pathological change until damage is already advanced. Mass spectrometry-based proteomics is a novel tool to identify newer diagnostic markers. To identify urinary proteins associated with renal complications in diabetes, we collected urine samples from 10 type 2 diabetes patients each with normoalbuminuria, micro- and macro-albuminuria and compared their urinary proteome with that of 10 healthy individuals. Urinary proteins were concentrated, depleted of albumin and five other abundant plasma proteins and in-gel trypsin digested after prefractionation on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The peptides were analyzed using a nanoflow reverse phase liquid chromatography system coupled to linear trap quadrupole-Orbitrap mass spectrometer. We identified large number of proteins in each group, of which many were exclusively present in individual patient groups. A total of 53 proteins were common in all patients but were absent in the controls. The majority of the proteins were functionally binding, biologically involved in metabolic processes, and showed enrichment of alternative complement and blood coagulation pathways. In addition to identifying reported proteins such as α2-HS-glycoprotein and Vitamin D binding protein, we detected novel proteins such as CD59, extracellular matrix protein 1 (ECM1), factor H, and myoglobin in the urine of macroalbuminuria patients. ECM1 and factor H are known to influence mesangial cell proliferation, and CD59 causes microvascular damage by influencing membrane attack complex deposition, suggestive their biological relevance to DN. Thus, we have developed a proteome database where various proteins exclusively present in the patients may be further investigated for their role as stage-specific markers and possible therapeutic targets.

  9. Robust enzyme design: bioinformatic tools for improved protein stability.

    PubMed

    Suplatov, Dmitry; Voevodin, Vladimir; Švedas, Vytas

    2015-03-01

    The ability of proteins and enzymes to maintain a functionally active conformation under adverse environmental conditions is an important feature of biocatalysts, vaccines, and biopharmaceutical proteins. From an evolutionary perspective, robust stability of proteins improves their biological fitness and allows for further optimization. Viewed from an industrial perspective, enzyme stability is crucial for the practical application of enzymes under the required reaction conditions. In this review, we analyze bioinformatic-driven strategies that are used to predict structural changes that can be applied to wild type proteins in order to produce more stable variants. The most commonly employed techniques can be classified into stochastic approaches, empirical or systematic rational design strategies, and design of chimeric proteins. We conclude that bioinformatic analysis can be efficiently used to study large protein superfamilies systematically as well as to predict particular structural changes which increase enzyme stability. Evolution has created a diversity of protein properties that are encoded in genomic sequences and structural data. Bioinformatics has the power to uncover this evolutionary code and provide a reproducible selection of hotspots - key residues to be mutated in order to produce more stable and functionally diverse proteins and enzymes. Further development of systematic bioinformatic procedures is needed to organize and analyze sequences and structures of proteins within large superfamilies and to link them to function, as well as to provide knowledge-based predictions for experimental evaluation.

  10. Large-Scale Identification of Putative Exported Proteins in Candida albicans by Genetic Selection

    PubMed Central

    Monteoliva, L.; López Matas, M.; Gil, C.; Nombela, C.; Pla, J.

    2002-01-01

    In all living organisms, secreted proteins play essential roles in different processes. Of special interest is the construction of the fungal cell wall, since this structure is absent from mammalian cells. The identification of the proteins involved in its biogenesis is therefore a primary goal in antifungal research. To perform a systematic identification of such proteins in Candida albicans, we carried out a genetic screening in which in-frame fusions with an intracellular allele of invertase gene SUC2 of Saccharomyces cerevisiae can be used to select and identify putatively exported proteins in the heterologous host S. cerevisiae. Eighty-three clones were selected, including 11 previously identified genes from C. albicans as well as 41 C. albicans genes that encode proteins homologous to already described proteins from related organisms. They include enzymes involved in cell wall synthesis and protein secretion. We also found membrane receptors and transporters presumably related to the interaction of C. albicans with the environment as well as extracellular enzymes and proteins involved in different morphological transitions. In addition, 11 C. albicans open reading frames (ORFs) identified in this screening encode proteins homologous to unknown or putative proteins, while 5 ORFs encode novel secreted proteins without known homologues in other organisms. This screening procedure therefore not only identifies a set of targets of interest in antifungal research but also provides new clues for understanding the topological locations of many proteins involved in processes relevant to the pathogenicity of this microorganism. PMID:12456000

  11. Large-scale identification of putative exported proteins in Candida albicans by genetic selection.

    PubMed

    Monteoliva, L; Matas, M López; Gil, C; Nombela, C; Pla, J

    2002-08-01

    In all living organisms, secreted proteins play essential roles in different processes. Of special interest is the construction of the fungal cell wall, since this structure is absent from mammalian cells. The identification of the proteins involved in its biogenesis is therefore a primary goal in antifungal research. To perform a systematic identification of such proteins in Candida albicans, we carried out a genetic screening in which in-frame fusions with an intracellular allele of invertase gene SUC2 of Saccharomyces cerevisiae can be used to select and identify putatively exported proteins in the heterologous host S. cerevisiae. Eighty-three clones were selected, including 11 previously identified genes from C. albicans as well as 41 C. albicans genes that encode proteins homologous to already described proteins from related organisms. They include enzymes involved in cell wall synthesis and protein secretion. We also found membrane receptors and transporters presumably related to the interaction of C. albicans with the environment as well as extracellular enzymes and proteins involved in different morphological transitions. In addition, 11 C. albicans open reading frames (ORFs) identified in this screening encode proteins homologous to unknown or putative proteins, while 5 ORFs encode novel secreted proteins without known homologues in other organisms. This screening procedure therefore not only identifies a set of targets of interest in antifungal research but also provides new clues for understanding the topological locations of many proteins involved in processes relevant to the pathogenicity of this microorganism.

  12. Immunological identification and isolation of phosphotyrosyl proteins in cultured cells

    SciTech Connect

    Martensen, T.M.; Madoff, D.H.; Lane, M.D.

    1987-05-01

    Affinity-purified sheep anti-phosphotyrosine antibodies were utilized to probe for phosphotyrosyl proteins from cultured cells. Western blots of cell extract proteins separated by SDS PAGE were incubated with anti-Tyr-P antibodies followed by peroxidase labeled anti-sheep antibodies or ( SVI)protein G to decorate the immune complexes. Normal, retrovirus transformed, and preadipocyte fibroblasts showed a variety of phosphotyrosyl proteins. Specific binding was indicated by the ability of Tyr-P but not Ser-P or Thr-P to inhibit the immunolocalization. Anti-phosphotyrosine antibodies covalently coupled to Sepharose were used to isolate phosphotyrosyl proteins from cultured cells. The binding capacity of the gel was determined by the quantity of unlabeled phosphotyrosyl protein needed to displace (TSP)labeled phosphotyrosyl protein binding. (TSP)labeled insulin receptor from 3T3-11 adipocytes could be immuno-adsorbed in high yield. Desorption was achieved in good yields under native conditions by incubation with Tyr-P. Treatment of (TSP)insulin receptor with SDS prior to incubation with immobilized antibody did not inhibit immuno-adsorption or -elution. This feature enabled antiphosphotyrosine antibodies to distinguish phosphotyrosyl proteins whose modified residues appear to be inaccessible for antibody binding in the native state.

  13. Identification of new Palmitoylated Proteins in Toxoplasma gondii

    PubMed Central

    Caballero, Marina C.; Alonso, Andrés M.; Deng, Bin; Attias, Marcia; de Souza, Wanderley; Corvi, María M.

    2016-01-01

    Protein palmitoylation has been shown to be an important post-translational modification in eukaryotic cells. This modification alters the localization and/or the function of the targeted protein. In the recent years protein palmitoylation has risen in importance in apicomplexan parasites as well. In Toxoplasma gondii, some proteins have been reported to be modified by palmitate. With the development of new techniques that allow the isolation of palmitoylated proteins, this significant post-translational modification has begun to be studied in more detail in T. gondii. Here we describe the palmitoylome of the tachyzoite stage of T. gondii using a combination of the acyl-biotin exchange chemistry method and mass spectrometry analysis. We identified 401 proteins found in multiple cellular compartments, with a wide range of functions that vary from metabolic processes, gliding and host-cell invasion to even regulation of transcription and translation. Besides, we found that more rhoptry proteins than the ones already described for Toxoplasma are palmitoylated, suggesting an important role for this modification in the invasion mechanism of the host-cell. This study documents that protein palmitoylation is a common modification in T. gondii that could have an impact on different cellular processes. PMID:26825284

  14. Identification of highly active flocculant proteins in bovine blood.

    PubMed

    Piazza, George J; Nuñez, Alberto; Garcia, Rafael A

    2012-03-01

    Synthetic polymeric flocculants are used extensively for wastewater remediation, soil stabilization, and reduction in water leakage from unlined canals. Sources of highly active, inexpensive, renewable flocculants are needed to replace synthetic flocculants. High kaolin flocculant activity was documented for bovine blood (BB) and blood plasma with several anticoagulant treatments. BB serum also had high flocculant activity. To address the hypothesis that some blood proteins have strong flocculating activity, the BB proteins were separated by SEC. Then, the major proteins of the flocculant-active fractions were separated by SDS-PAGE. Identity of the major protein components was determined by tryptic digestion and peptide analysis by MALDI TOF MS. The sequence of selected peptides was confirmed using TOF/TOF-MS/MS fragmentation. Hemoglobin dimer (subunits α and β) was identified as the major protein component of the active fraction in BB; its high flocculation activity was confirmed by testing a commercial sample of hemoglobin. In the same manner, three proteins from blood plasma (fibrinogen, γ-globulin, α-2-macroglobulin) were found to be highly active flocculants, but bovine serum albumin, α-globulin, and β-globulin were not flocculants. On a mass basis, hemoglobin, γ-globulin, α-2-macroglobulin were as effective as anionic polyacrylamide (PAM), a widely used synthetic flocculant. The blood proteins acted faster than PAM, and unlike PAM, the blood proteins flocculants did not require calcium salts for their activity.

  15. Identification of vitreous proteins in retinopathy of prematurity.

    PubMed

    Sugioka, Koji; Saito, Akio; Kusaka, Shunji; Kuniyoshi, Kazuki; Shimomura, Yoshikazu

    2017-07-01

    Retinopathy of prematurity (ROP) is a disorder of blood vessels in the retina developed in premature infants and the leading cause of the blindness in children. Proteomic analysis was performed to identify vitreous proteins specific to patients with ROP. Vitreous humor samples were obtained from three patients with ROP and two patients with congenital cataract, the latter included as a control group. The vitreous samples were separated by 2D-PAGE and the proteins running as definitive spots were identified by MALDI-TOF MS spectrometry. We identified 13 and 6 proteins in the vitreous from ROP and cataract patients, respectively. Albumin, transferrin, pigment epithelium-derived factor (PEDF) and transthyretin were found in both patient groups. In the samples from ROP patients, PEDF and transthyretin levels were lower than in those from cataract patients, and retinol binding protein 3 and prostaglandin D synthase were not detected. Of the 13 proteins, 9 proteins including α-2-macroglobulin, ceruloplasmin, α-fetoprotein, vitamin D-binding protein, α-1-antitrypsin, α-1-β-glycoprotein, hemopexin, apolipoprotein A-1 and A-lV were found in vitreous samples of only the ROP patients. PEDF has anti-angiogenic and neurotrophic functions. Whether PEDF is increased or decreased in diabetic retinopathy has been controversial but we observed lower PEDF in the ROP samples than in the controls. The proteins specific to or decreased in ROP, if confirmed in future studies, may provide clue to understanding its pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Improved Cell-Free RNA and Protein Synthesis System

    PubMed Central

    Li, Jun; Gu, Liangcai; Aach, John; Church, George M.

    2014-01-01

    Cell-free RNA and protein synthesis (CFPS) is becoming increasingly used for protein production as yields increase and costs decrease. Advances in reconstituted CFPS systems such as the Protein synthesis Using Recombinant Elements (PURE) system offer new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, protein microarrays, isotopic labeling, and incorporating unnatural amino acids. In this study, using firefly luciferase synthesis as a reporter system, we improved PURE system productivity up to 5 fold by adding or adjusting a variety of factors that affect transcription and translation, including Elongation factors (EF-Ts, EF-Tu, EF-G, and EF4), ribosome recycling factor (RRF), release factors (RF1, RF2, RF3), chaperones (GroEL/ES), BSA and tRNAs. The work provides a more efficient defined in vitro transcription and translation system and a deeper understanding of the factors that limit the whole system efficiency. PMID:25180701

  17. Improved method for predicting protein fold patterns with ensemble classifiers.

    PubMed

    Chen, W; Liu, X; Huang, Y; Jiang, Y; Zou, Q; Lin, C

    2012-01-27

    Protein folding is recognized as a critical problem in the field of biophysics in the 21st century. Predicting protein-folding patterns is challenging due to the complex structure of proteins. In an attempt to solve this problem, we employed ensemble classifiers to improve prediction accuracy. In our experiments, 188-dimensional features were extracted based on the composition and physical-chemical property of proteins and 20-dimensional features were selected using a coupled position-specific scoring matrix. Compared with traditional prediction methods, these methods were superior in terms of prediction accuracy. The 188-dimensional feature-based method achieved 71.2% accuracy in five cross-validations. The accuracy rose to 77% when we used a 20-dimensional feature vector. These methods were used on recent data, with 54.2% accuracy. Source codes and dataset, together with web server and software tools for prediction, are available at: http://datamining.xmu.edu.cn/main/~cwc/ProteinPredict.html.

  18. Cross-Species Genome-Wide Identification of Evolutionary Conserved MicroProteins

    PubMed Central

    Straub, Daniel

    2017-01-01

    MicroProteins are small single-domain proteins that act by engaging their targets into different, sometimes nonproductive protein complexes. In order to identify novel microProteins in any sequenced genome of interest, we have developed miPFinder, a program that identifies and classifies potential microProteins. In the past years, several microProteins have been discovered in plants where they are mainly involved in the regulation of development by fine-tuning transcription factor activities. The miPFinder algorithm identifies all up to date known plant microProteins and extends the microProtein concept beyond transcription factors to other protein families. Here, we reveal potential microProtein candidates in several plant and animal reference genomes. A large number of these microProteins are species-specific while others evolved early and are evolutionary highly conserved. Most known microProtein genes originated from large ancestral genes by gene duplication, mutation and subsequent degradation. Gene ontology analysis shows that putative microProtein ancestors are often located in the nucleus, and involved in DNA binding and formation of protein complexes. Additionally, microProtein candidates act in plant transcriptional regulation, signal transduction and anatomical structure development. MiPFinder is freely available to find microProteins in any genome and will aid in the identification of novel microProteins in plants and animals. PMID:28338802

  19. Improved hybrid optimization algorithm for 3D protein structure prediction.

    PubMed

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  20. Bar code technology improves positive patient identification and transfusion safety.

    PubMed

    Sandler, S G; Langeberg, A; Dohnalek, L

    2005-01-01

    As a result of human error, an estimated 1 in 12,000 blood transfusions is given to the wrong patient. The cause of nearly all of these errors is failure of hospital personnel to identify positively intended transfusion recipients, their blood samples for cross-matching, or their correct blood components. We describe our experience using a point-of-care bar code transfusion safety system that links patients' bar-coded wristbands, with bar-coded labels on blood sample tubes, blood component bags, and nurses' identification badges. The result was 100 % accuracy of matching patients, their blood samples, and components for transfusions. For verifying information before starting blood transfusions, nurses preferred bar code "double checks" to conventional visual "double checks" by a second nurse. Methods are needed to reinforce nurses' proficiency with technological approaches to transfusion safety, such as software-driven bar code scanning, in situations where transfusions are administered infrequently.

  1. Protein ingestion before sleep improves postexercise overnight recovery.

    PubMed

    Res, Peter T; Groen, Bart; Pennings, Bart; Beelen, Milou; Wallis, Gareth A; Gijsen, Annemie P; Senden, Joan M G; VAN Loon, Luc J C

    2012-08-01

    The role of nutrition in modulating postexercise overnight recovery remains to be elucidated. We assessed the effect of protein ingestion immediately before sleep on digestion and absorption kinetics and protein metabolism during overnight recovery from a single bout of resistance-type exercise. Sixteen healthy young males performed a single bout of resistance-type exercise in the evening (2000 h) after a full day of dietary standardization. All subjects were provided with appropriate recovery nutrition (20 g of protein, 60 g of CHO) immediately after exercise (2100 h). Thereafter, 30 min before sleep (2330 h), subjects ingested a beverage with (PRO) or without (PLA) 40 g of specifically produced intrinsically [1-C]phenylalanine-labeled casein protein. Continuous intravenous infusions with [ring-H5]phenylalanine and [ring-H2]tyrosine were applied with blood and muscle samples collected to assess protein digestion and absorption kinetics, whole-body protein balance and mixed muscle protein synthesis rates throughout the night (7.5 h). During sleep, casein protein was effectively digested and absorbed resulting in a rapid rise in circulating amino acid levels, which were sustained throughout the remainder of the night. Protein ingestion before sleep increased whole-body protein synthesis rates (311 ± 8 vs 246 ± 9 μmol·kg per 7.5 h) and improved net protein balance (61 ± 5 vs -11 ± 6 μmol·kg per 7.5 h) in the PRO vs the PLA experiment (P < 0.01). Mixed muscle protein synthesis rates were ∼22% higher in the PRO vs the PLA experiment, which reached borderline significance (0.059%·h ± 0.005%·h vs 0.048%·h ± 0.004%·h, P = 0.05). This is the first study to show that protein ingested immediately before sleep is effectively digested and absorbed, thereby stimulating muscle protein synthesis and improving whole-body protein balance during postexercise overnight recovery.

  2. INCREASING PROTEIN STABILITY BY IMPROVING BETA-TURNS

    PubMed Central

    Fu, Hailong; Grimsley, Gerald R.; Razvi, Abbas; Scholtz, J. Martin; Pace, C. Nick

    2009-01-01

    Our goal was to gain a better understanding of how protein stability can be increased by improving β-turns. We studied 22 β-turns in nine proteins with 66 to 370 residues by replacing other residues with proline and glycine and measuring the stability. These two residues are statistically preferred in some β-turn positions. We studied: Cold shock protein B (CspB), Histidine-containing phosphocarrier protein (HPr), Ubiquitin, Ribonucleases Sa2, Sa3, T1, and HI, Tryptophan synthetase α-subunit (TSα), and Maltose binding protein (MBP). Of the fifteen single proline mutations, 11increased stability (Average = 0.8 ± 0.3; Range = 0.3 – 1.5 kcal/mol), and the stabilizing effect of double proline mutants was additive. Based on this and our previous work, we conclude that proteins can generally be stabilized by replacing non-proline residues with proline residues at the i + 1 position of Type I and II β-turns and at the i position in Type II β-turns. Other turn positions can sometimes be used if the φ angle is near −60° for the residue replaced. It is important that the side chain of the residue replaced is less than 50% buried. Identical substitutions in β-turns in related proteins give similar results. Proline substitutions increase stability mainly by decreasing the entropy of the denatured state. In contrast, the large, diverse group of proteins considered here had almost no residues in β-turns that could be replaced by Gly to increase protein stability. Improving β-turns by substituting Pro residues is a generally useful way of increasing protein stability. PMID:19626709

  3. Evaluation of Tamm-Horsfall protein and uroplakin III for forensic identification of urine.

    PubMed

    Akutsu, Tomoko; Ikegaya, Hiroshi; Watanabe, Ken; Fukushima, Hisayo; Motani, Hisako; Iwase, Hirotaro; Sakurada, Koichi

    2010-05-01

    In this study, Tamm-Horsfall protein (THP), a major component of urinary protein, and uroplakin III (UPIII), a transmembrane protein widely regarded as a urothelium-specific marker, were evaluated for forensic identification of urine by ELISA and/or immunohistochemistry. THP was detected in urine, but not in plasma, saliva, semen, vaginal fluid, or sweat by the simple ELISA method developed in this study. In addition, most aged urine stains showed positive results. The urine specificity of THP was confirmed by gene expression analysis. Therefore, as reported previously, ELISA detection of THP can be used as a presumptive test for urine identification. UPIII was specific for immunohistochemical staining of cells in centrifuged precipitate of urine. However, ELISA and RT-PCR for UPIII were not specific for urine. UPIII may be applicable for forensic urine identification by immunohistochemistry.

  4. Analytical approaches for the characterization and identification of olive (Olea europaea) oil proteins.

    PubMed

    Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio

    2013-10-30

    Proteins in olive oil have been scarcely investigated probably due to the difficulty of working with such a lipidic matrix and the dramatically low abundance of proteins in this biological material. Additionally, this scarce information has generated contradictory results, thus requiring further investigations. This work treats this subject from a comprehensive point of view and proposes the use of different analytical approaches to delve into the characterization and identification of proteins in olive oil. Different extraction methodologies, including capture via combinational hexapeptide ligand libraries (CPLLs), were tried. A sequence of methodologies, starting with off-gel isoelectric focusing (IEF) followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) or high-performance liquid chromatography (HPLC) using an ultraperformance liquid chromatography (UPLC) column, was applied to profile proteins from olive seed, pulp, and oil. Besides this, and for the first time, a tentative identification of oil proteins by mass spectrometry has been attempted.

  5. Method for identification of rigid domains and hinge residues in proteins based on exhaustive enumeration.

    PubMed

    Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian

    2015-06-01

    Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins.

  6. Identification of a novel protein complex containing annexin A4, rabphilin and synaptotagmin.

    PubMed

    Willshaw, Angela; Grant, Karen; Yan, Jun; Rockliffe, Nichola; Ambavarapu, Sailaja; Burdyga, Galina; Varro, Andrea; Fukuoka, Shin-Ichi; Gawler, Debra

    2004-02-13

    Rabphilin is a synaptic vesicle-associated protein proposed to play a role in regulating neurotransmitter release. Here we report the isolation and identification of a novel protein complex containing rabphilin, annexin A4 and synaptotagmin 1. We show that the rabphilin C2B domain interacts directly with the N-terminus of annexin A4 and mediates the co-complexing of these two proteins in PC12 cells. Analyzing the cellular localisation of these co-complexing proteins we find that annexin A4 is located on synaptic membranes and co-localises with rabphilin at the plasma membrane in PC12 cells. Given that rabphilin and synaptotagmin are synaptic vesicle proteins involved in neurotransmitter release, the identification of this complex suggests that annexin A4 may play a role in synaptic exocytosis.

  7. Identification of Nucleic Acid High Affinity Binding Sequences of Proteins by SELEX.

    PubMed

    Bouvet, Philippe

    2015-01-01

    A technique is described for the identification of nucleic acid sequences bound with high affinity by proteins or by other molecules suitable for a partitioning assay. Here, a histidine-tagged protein is allowed to interact with a pool of nucleic acids and the protein-nucleic acid complexes formed are retained on a Ni-NTA matrix. Nucleic acids with a low level of recognition by the protein are washed away. The pool of recovered nucleic acids is amplified by the polymerase chain reaction and is submitted to further rounds of selection. Each round of selection increases the proportion of sequences that are avidly bound by the protein of interest. The cloning and sequencing of these sequences finally completes their identification.

  8. Identification of nucleic acid high-affinity binding sequences of proteins by SELEX.

    PubMed

    Bouvet, Philippe

    2009-01-01

    A technique is described for the identification of nucleic acid sequences bound with high affinity by proteins or by other molecules suitable for a partitioning assay. Here, a histidine-tagged protein is allowed to interact with a pool of nucleic acids and the protein-nucleic acid complexes formed are retained on a Ni-NTA matrix. Nucleic acids with a low level of recognition by the protein are washed away. The pool of recovered nucleic acids is amplified by the polymerase chain reaction and is submitted to further rounds of selection. Each round of selection increases the proportion of sequences that are avidly bound by the protein of interest. The cloning and sequencing of these sequences finally completes their identification.

  9. Can bioinformatics help in the identification of moonlighting proteins?

    PubMed

    Hernández, Sergio; Calvo, Alejandra; Ferragut, Gabriela; Franco, Luís; Hermoso, Antoni; Amela, Isaac; Gómez, Antonio; Querol, Enrique; Cedano, Juan

    2014-12-01

    Protein multitasking or moonlighting is the capability of certain proteins to execute two or more unique biological functions. This ability to perform moonlighting functions helps us to understand one of the ways used by cells to perform many complex functions with a limited number of genes. Usually, moonlighting proteins are revealed experimentally by serendipity, and the proteins described probably represent just the tip of the iceberg. It would be helpful if bioinformatics could predict protein multifunctionality, especially because of the large amounts of sequences coming from genome projects. In the present article, we describe several approaches that use sequences, structures, interactomics and current bioinformatics algorithms and programs to try to overcome this problem. The sequence analysis has been performed: (i) by remote homology searches using PSI-BLAST, (ii) by the detection of functional motifs, and (iii) by the co-evolutionary relationship between amino acids. Programs designed to identify functional motifs/domains are basically oriented to detect the main function, but usually fail in the detection of secondary ones. Remote homology searches such as PSI-BLAST seem to be more versatile in this task, and it is a good complement for the information obtained from protein-protein interaction (PPI) databases. Structural information and mutation correlation analysis can help us to map the functional sites. Mutation correlation analysis can be used only in very restricted situations, but can suggest how the evolutionary process of the acquisition of the second function took place.

  10. Parameter Identification of Steam Turbine Speed Governing System Using an Improved Gravitational Search Algorithm

    NASA Astrophysics Data System (ADS)

    Zhong, Jing-liang; Deng, Tong-tian; Wang, Jia-sheng

    2017-05-01

    Since most of the traditional parameter identification methods used in the steam turbine speed governing system (STSGS) have the shortages of great work load, poor fitness and long period by hand, a novel improved gravitational search algorithm (VGSA) method, whose gravitational parameter can be dynamically adjusted according to the current fitness and search space will keep being more and more narrow during the iteration process, is proposed in this paper based on an improved gravitational search algorithm (IGSA). The performance of this new method was identified through the comparisons of the steam turbine speed governing system identification results with IGSA using the measured data from a 600MW and a 300MW thermal power unit. The results show that the new method VGSA has the features of higher precision and higher speed during the identification process, and it brings a new scheme for steam turbine speed governing system identification.

  11. Identification of iron-acquisition proteins of Avibacterium paragallinarum.

    PubMed

    Abascal, E Negrete; Guerra, A Chantes; Vázquez, A Serrano; Tenorio, V R; Cruz, C Vázquez; Zenteno, E; Contreras, G Paniagua; Pacheco, S Vaca

    2009-06-01

    When Avibacterium paragallinarum reference strain 0083 (serovar A) was grown in an iron-restricted culture medium, the expression of the 60, 68 and 93 kDa outer membrane proteins increased as compared with normal media. Sera of chickens experimentally infected with Av. paragallinarum recognized these iron-restriction induced proteins, suggesting their expression in vivo. The three outer membrane proteins were identified as transferrin receptor and iron transport proteins by mass spectroscopy and a search in sequence databases. As these proteins have been reported to be regulated by the Fur protein in many bacteria, we investigated, through molecular methods, the presence of the fur gene in Av. paragallinarum. A candidate fur gene of Av. paragallinarum was amplified by polymerase chain reaction using complementary primers to conserved regions of fur gene sequences from members of the Pasteurellaceae family. The nucleotide sequence of the cloned gene, from ATG to TAA stop codon, was 453 base pairs in length and the deduced amino acid sequence showed 94% identity with Fur sequences of Actinobacillus pleuropneumoniae and Haemophilus ducreyi. The Av. paragallinarum deduced Fur protein (17.8 kDa) amino acid sequence contains the N-terminal helix-turn-helix DNA-binding domain and the two iron-binding sites in the C-terminal end, typical of other described Fur proteins. The study of iron-restriction-induced proteins and the mechanism regulating their expression could lead to an understanding of the responses of Av. paragallinarum to survive in an iron-restricted environment on host mucosal surfaces.

  12. Identification of low molecular weight proteins isolated by 2-D liquid separations.

    PubMed

    Zhu, Kan; Miller, Fred R; Barder, Timothy J; Lubman, David M

    2004-07-01

    Proteins with molecular mass (M(r)) <20 kDa are often poorly separated in 2-D sodium dodecyl sulfate polyacrylamide gel electrophoresis. In addition, low-M(r) proteins may not be readily identified using peptide mass fingerprinting (PMF) owing to the small number of peptides generated in tryptic digestion. In this work, we used a 2-D liquid separation method based on chromatofocusing and non-porous silica reversed-phase high-performance liquid chromatography to purify proteins for matrix-assisted laser desorption/ionization time-of-flight mass spectrometric (MALDI-TOFMS) analysis and protein identification. Several proteins were identified using the PMF method where the result was supported using an accurate M(r) value obtained from electrospray ionization TOFMS. However, many proteins were not identified owing to an insufficient number of peptides observed in the MALDI-TOF experiments. The small number of peptides detected in MALDI-TOFMS can result from internal fragmentation, the few arginines in its sequence and incomplete tryptic digestion. MALDI-QTOFMS/MS can be used to identify many of these proteins. The accurate experimental M(r) and pI confirm identification and aid in identifying post-translational modifications such as truncations and acetylations. In some cases, high-quality MS/MS data obtained from the MALDI-QTOF spectrometer overcome preferential cleavages and result in protein identification.

  13. Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Schäffler, Martin; Semmler-Behnke, Manuela; Sarioglu, Hakan; Takenaka, Shinji; Wenk, Alexander; Schleh, Carsten; Hauck, Stefanie M.; Johnston, Blair D.; Kreyling, Wolfgang G.

    2013-07-01

    When nanoparticles (NP) enter the body they come into contact with body fluids containing proteins which can adsorb to their surface. These proteins may influence the NP interactions with the biological vicinity, eventually determining their biological fate inside the body. Adsorption of the most abundantly binding proteins was studied after an in vitro 24 hr incubation of monodisperse, negatively charged 5, 15 and 80 nm gold spheres (AuNP) in mouse serum by a two-step analysis: proteomic protein identification and quantitative protein biochemistry. The adsorbed proteins were separated from non-adsorbed proteins by centrifugation and gel electrophoresis and identified using a MALDI-TOF-MS-Proteomics-Analyzer. Quantitative analysis of proteins in gel bands by protein densitometry, required the focus on predominantly binding serum proteins. Numerous proteins adsorbed to the AuNP depending on their size, e.g. apolipoproteins or complement C3. The qualitative and quantitative amount of adsorbed proteins differed between 5, 15 and 80 nm AuNP. Band intensities of adsorbed proteins decreased with increasing AuNP sizes based not only on their mass but also on their surface area. Summarizing, the AuNP surface is covered with serum proteins containing transport and immune related proteins among others. Hence, protein binding depends on the size, surface area and curvature of the AuNP.

  14. Process correlation analysis model for process improvement identification.

    PubMed

    Choi, Su-jin; Kim, Dae-Kyoo; Park, Sooyong

    2014-01-01

    Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data.

  15. A proteogenomics approach integrating proteomics and ribosome profiling increases the efficiency of protein identification and enables the discovery of alternative translation start sites.

    PubMed

    Koch, Alexander; Gawron, Daria; Steyaert, Sandra; Ndah, Elvis; Crappé, Jeroen; De Keulenaer, Sarah; De Meester, Ellen; Ma, Ming; Shen, Ben; Gevaert, Kris; Van Criekinge, Wim; Van Damme, Petra; Menschaert, Gerben

    2014-12-01

    Next-generation transcriptome sequencing is increasingly integrated with MS to enhance MS-based protein and peptide identification. Recently, a breakthrough in transcriptome analysis was achieved with the development of ribosome profiling (ribo-seq). This technology is based on the deep sequencing of ribosome-protected mRNA fragments, thereby enabling the direct observation of in vivo protein synthesis at the transcript level. In order to explore the impact of a ribo-seq-derived protein sequence search space on MS/MS spectrum identification, we performed a comprehensive proteome study on a human cancer cell line, using both shotgun and N-terminal proteomics, next to ribosome profiling, which was used to delineate (alternative) translational reading frames. By including protein-level evidence of sample-specific genetic variation and alternative translation, this strategy improved the identification score of 69 proteins and identified 22 new proteins in the shotgun experiment. Furthermore, we discovered 18 new alternative translation start sites in the N-terminal proteomics data and observed a correlation between the quantitative measures of ribo-seq and shotgun proteomics with a Pearson correlation coefficient ranging from 0.483 to 0.664. Overall, this study demonstrated the benefits of ribosome profiling for MS-based protein and peptide identification and we believe this approach could develop into a common practice for next-generation proteomics.

  16. Identification and characterization of Vibrio cholerae surface proteins by radioiodination

    SciTech Connect

    Richardson, K.; Parker, C.D.

    1985-04-01

    Whole cells and isolated outer membrane from Vibrio cholerae (Classical, Inaba) were radiolabeled with Iodogen or Iodo-beads as catalyst. Radiolabeling of whole cells was shown to be surface specific by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis of whole cells and cell fractions. Surface-labeled whole cells regularly showed 16 distinguishable protein species, of which nine were found in radiolabeled outer membrane preparations obtained by a lithium chloride- lithium acetate procedure. Eight of these proteins were found in outer membranes prepared by sucrose density gradient centrifugation and Triton X-100 extraction of radiolabeled whole cells. The mobility of several proteins was shown to be affected by temperature, and the major protein species exposed on the cell surface was shown to consist of at least two different peptides.

  17. The Identification of Perillyl Alcohol Glycosides with Improved Antiproliferative Activity

    PubMed Central

    2015-01-01

    A facile route to perillyl alcohol (POH) differential glycosylation and the corresponding synthesis of a set of 34 POH glycosides is reported. Subsequent in vitro studies revealed a sugar dependent antiproliferative activity and the inhibition of S6 ribosomal protein phosphorylation as a putative mechanism of representative POH glycosides. The most active glycoside from this cumulative study (4′-azido-d-glucoside, PG9) represents one of the most cytotoxic POH analogues reported to date. PMID:25121720

  18. Identification and Validation of PTEN Complex, Associated Proteins

    DTIC Science & Technology

    2005-11-01

    Rosalia construct was transcribed and translated using a wheat germ lysate transcription/translation system to generate an unphosphorylated protein...efficient using the wheat germ lysate transcription/translation, system the new antisera immunoprecipitated the protein as well as the C54 Ab, especially...pSGL-PTEN was in vitro translated in a Rabbit reticolocyte lysate system (A) or in a wheat germ system (B) in the presence of radioactively labeled

  19. Identification of novel sweet protein for nutritional applications.

    PubMed

    Gnanavel, Mutharasu; Serva Peddha, Muthukumar

    2011-01-01

    The prevalence of obesity and diabetes has increased exponentially in recent years around the globe, especially in India. Sweet proteins have the potential to substitute the sugars, by acting as natural, good and low calorie sweeteners. They also do not trigger a demand for insulin in diabetic patients unlike sucrose. In humans, the sweet taste perception is mainly due to taste-specific G protein-coupled heterodimeric receptors T1R2-T1R3. These receptors recognize diverse natural and synthetic sweeteners such as monelin, brazzein, thaumatin, curculin, mabinlin, miraculin and pentadin. Structural modeling of new sweetener proteins will be a great leap in further advancement of knowledge and their utility as sweeteners. We have explored the fingerprints of sweetness by studying the aminoacid composition and structure properties of the above proteins. The structural analysis of monellin revealed that the individual A or B chains of monellin are not contributing to its sweetness. However, the native conformation and ionic interaction between AspB7 of monellin with active site of T1R2-T1R3 receptor, along with hydrogen bonding stability of IleB6 and IleB8 are responsible for the sweet taste. Based on structural similarity search, we found a new hypothetical protein from Shewanella loihica, which has the presence of Asp(32) with adjacent isoleucine residues. Further, we examined the lead protein by two-step docking for the study of interaction of functionally conserved residues with receptors. The identified protein showed similar ionic and hydrophobic interactions with monelin. This gives a promising opportunity to explore this protein for potential health application in the low calorie sweetener industry viz., soft drinks, snacks, food, chocolate industries etc.

  20. Identification of novel sweet protein for nutritional applications

    PubMed Central

    Gnanavel, Mutharasu; Serva Peddha, Muthukumar

    2011-01-01

    The prevalence of obesity and diabetes has increased exponentially in recent years around the globe, especially in India. Sweet proteins have the potential to substitute the sugars, by acting as natural, good and low calorie sweeteners. They also do not trigger a demand for insulin in diabetic patients unlike sucrose. In humans, the sweet taste perception is mainly due to taste-specific G protein-coupled heterodimeric receptors T1R2-T1R3. These receptors recognize diverse natural and synthetic sweeteners such as monelin, brazzein, thaumatin, curculin, mabinlin, miraculin and pentadin. Structural modeling of new sweetener proteins will be a great leap in further advancement of knowledge and their utility as sweeteners. We have explored the fingerprints of sweetness by studying the aminoacid composition and structure properties of the above proteins. The structural analysis of monellin revealed that the individual A or B chains of monellin are not contributing to its sweetness. However, the native conformation and ionic interaction between AspB7 of monellin with active site of T1R2-T1R3 receptor, along with hydrogen bonding stability of IleB6 and IleB8 are responsible for the sweet taste. Based on structural similarity search, we found a new hypothetical protein from Shewanella loihica, which has the presence of Asp32 with adjacent isoleucine residues. Further, we examined the lead protein by two-step docking for the study of interaction of functionally conserved residues with receptors. The identified protein showed similar ionic and hydrophobic interactions with monelin. This gives a promising opportunity to explore this protein for potential health application in the low calorie sweetener industry viz., soft drinks, snacks, food, chocolate industries etc. PMID:22125379

  1. High-throughput identification of protein localization dependency networks.

    PubMed

    Christen, Beat; Fero, Michael J; Hillson, Nathan J; Bowman, Grant; Hong, Sun-Hae; Shapiro, Lucy; McAdams, Harley H

    2010-03-09

    Bacterial cells are highly organized with many protein complexes and DNA loci dynamically positioned to distinct subcellular sites over the course of a cell cycle. Such dynamic protein localization is essential for polar organelle development, establishment of asymmetry, and chromosome replication during the Caulobacter crescentus cell cycle. We used a fluorescence microscopy screen optimized for high-throughput to find strains with anomalous temporal or spatial protein localization patterns in transposon-generated mutant libraries. Automated image acquisition and analysis allowed us to identify genes that affect the localization of two polar cell cycle histidine kinases, PleC and DivJ, and the pole-specific pili protein CpaE, each tagged with a different fluorescent marker in a single strain. Four metrics characterizing the observed localization patterns of each of the three labeled proteins were extracted for hundreds of cell images from each of 854 mapped mutant strains. Using cluster analysis of the resulting set of 12-element vectors for each of these strains, we identified 52 strains with mutations that affected the localization pattern of the three tagged proteins. This information, combined with quantitative localization data from epitasis experiments, also identified all previously known proteins affecting such localization. These studies provide insights into factors affecting the PleC/DivJ localization network and into regulatory links between the localization of the pili assembly protein CpaE and the kinase localization pathway. Our high-throughput screening methodology can be adapted readily to any sequenced bacterial species, opening the potential for databases of localization regulatory networks across species, and investigation of localization network phylogenies.

  2. Identification of structural domains in proteins by a graph heuristic.

    PubMed

    Wernisch, L; Hunting, M; Wodak, S J

    1999-05-15

    A novel automatic procedure for identifying domains from protein atomic coordinates is presented. The procedure, termed STRUDL (STRUctural Domain Limits), does not take into account information on secondary structures and handles any number of domains made up of contiguous or non-contiguous chain segments. The core algorithm uses the Kernighan-Lin graph heuristic to partition the protein into residue sets which display minimum interactions between them. These interactions are deduced from the weighted Voronoi diagram. The generated partitions are accepted or rejected on the basis of optimized criteria, representing basic expected physical properties of structural domains. The graph heuristic approach is shown to be very effective, it approximates closely the exact solution provided by a branch and bound algorithm for a number of test proteins. In addition, the overall performance of STRUDL is assessed on a set of 787 representative proteins from the Protein Data Bank by comparison to domain definitions in the CATH protein classification. The domains assigned by STRUDL agree with the CATH assignments in at least 81% of the tested proteins. This result is comparable to that obtained previously using PUU (Holm and Sander, Proteins 1994;9:256-268), the only other available algorithm designed to identify domains with any number of non-contiguous chain segments. A detailed discussion of the structures for which our assignments differ from those in CATH brings to light some clear inconsistencies between the concept of structural domains based on minimizing inter-domain interactions and that of delimiting structural motifs that represent acceptable folding topologies or architectures. Considering both concepts as complementary and combining them in a layered approach might be the way forward.

  3. Identification of immunoreactive proteins of Brucella melitensis by immunoproteomics.

    PubMed

    Zhao, Zhongpeng; Yan, Fang; Ji, Wenhui; Luo, Deyan; Liu, Xin; Xing, Li; Duan, Yueqiang; Yang, Penghui; Shi, Xiumin; Lu, Zhong; Wang, Xiliang

    2011-09-01

    Infection with Brucella causes brucellosis, a chronic disease in humans, which induces abortion and sterility in livestock. Among the different Brucella species, Brucella melitensis is considered the most virulent and is the predominant species associated with outbreaks in China. To date, no safe human vaccine is available against Brucella infection. The currently used live vaccines against Brucella in livestock induce antibodies that interfere with the diagnosis of field infection in vaccinated animals, which is harmful to eradication programs. However, there is as yet no complete profile of immunogenic proteins of B. melitensis. Towards the development of a safer, equally efficacious, and field infection-distinguishable vaccine, we used immunoproteomics to identify novel candidate immunogenic proteins from B. melitensis M5. Eighty-eight immunoreactive protein spots from B. melitensis M5 were identified by Western blotting and were assigned to sixty-one proteins by mass spectrometry, including many new immunoreactive proteins such as elongation factor G, F0F1 ATP synthase subunit beta, and OMP1. These provide many candidate immunoreactive proteins for vaccine development.

  4. Identification of Plasmodesmal Localization Sequences in Proteins In Planta.

    PubMed

    Yuan, Cheng; Lazarowitz, Sondra G; Citovsky, Vitaly

    2017-08-15

    Plasmodesmata (Pd) are cell-to-cell connections that function as gateways through which small and large molecules are transported between plant cells. Whereas Pd transport of small molecules, such as ions and water, is presumed to occur passively, cell-to-cell transport of biological macromolecules, such proteins, most likely occurs via an active mechanism that involves specific targeting signals on the transported molecule. The scarcity of identified plasmodesmata (Pd) localization signals (PLSs) has severely restricted the understanding of protein-sorting pathways involved in plant cell-to-cell macromolecular transport and communication. From a wealth of plant endogenous and viral proteins known to traffic through Pd, only three PLSs have been reported to date, all of them from endogenous plant proteins. Thus, it is important to develop a reliable and systematic experimental strategy to identify a functional PLS sequence, that is both necessary and sufficient for Pd targeting, directly in the living plant cells. Here, we describe one such strategy using as a paradigm the cell-to-cell movement protein (MP) of the Tobacco mosaic virus (TMV). These experiments, that identified and characterized the first plant viral PLS, can be adapted for discovery of PLS sequences in most Pd-targeted proteins.

  5. Identification and characterization of the pseudorabies virus UL43 protein

    SciTech Connect

    Klupp, Barbara G.; Altenschmidt, Jan; Granzow, Harald; Fuchs, Walter; Mettenleiter, Thomas C. . E-mail: thomas.mettenleiter@fli.bund.de

    2005-04-10

    Among the least characterized herpesvirus membrane proteins are the homologs of UL43 of herpes simplex virus 1 (HSV-1). To identify and characterize the UL43 protein of pseudorabies virus (PrV), part of the open reading frame was expressed in Escherichia coli and used for immunization of a rabbit. The antiserum recognized in Western blots a 34-kDa protein in lysates of PrV infected cells and purified virions, demonstrating that the UL43 protein is a virion component. In indirect immunofluorescence analysis, the antiserum labeled vesicular structures in PrV infected cells which also contained glycoprotein B. To functionally analyze UL43, a deletion mutant was constructed lacking amino acids 23-332 of the 373aa protein. This mutant was only slightly impaired in replication as assayed by one-step growth kinetics, measurement of plaque sizes, and electron microscopy. Interestingly, the PrV UL43 protein was able to inhibit fusion induced by PrV glycoproteins in a transient expression-fusion assay to a similar extent as gM. Double mutant viruses lacking, in addition to UL43, the multiply membrane spanning glycoproteins K or M did not show a phenotype beyond that observed in the gK and gM single deletion mutants.

  6. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2010-02-23

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  7. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G.; Ward, David C.; Bray-Ward, Patricia

    2016-10-18

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  8. Identification of cancer protein biomarkers using proteomic techniques

    DOEpatents

    Mor, Gil G; Ward, David C; Bray-Ward, Patricia

    2015-03-10

    The claimed invention describes methods to diagnose or aid in the diagnosis of cancer. The claimed methods are based on the identification of biomarkers which are particularly well suited to discriminate between cancer subjects and healthy subjects. These biomarkers were identified using a unique and novel screening method described herein. The biomarkers identified herein can also be used in the prognosis and monitoring of cancer. The invention comprises the use of leptin, prolactin, OPN and IGF-II for diagnosing, prognosis and monitoring of ovarian cancer.

  9. Discovering functional interdependence relationship in PPI networks for protein complex identification.

    PubMed

    Lam, Winnie W M; Chan, Keith C C

    2012-04-01

    Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation

  10. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry.

    PubMed

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application.

  11. Improved Functional Characteristics of Whey Protein Hydrolysates in Food Industry

    PubMed Central

    Jeewanthi, Renda Kankanamge Chaturika; Lee, Na-Kyoung; Paik, Hyun-Dong

    2015-01-01

    This review focuses on the enhanced functional characteristics of enzymatic hydrolysates of whey proteins (WPHs) in food applications compared to intact whey proteins (WPs). WPs are applied in foods as whey protein concentrates (WPCs), whey protein isolates (WPIs), and WPHs. WPs are byproducts of cheese production, used in a wide range of food applications due to their nutritional validity, functional activities, and cost effectiveness. Enzymatic hydrolysis yields improved functional and nutritional benefits in contrast to heat denaturation or native applications. WPHs improve solubility over a wide range of pH, create viscosity through water binding, and promote cohesion, adhesion, and elasticity. WPHs form stronger but more flexible edible films than WPC or WPI. WPHs enhance emulsification, bind fat, and facilitate whipping, compared to intact WPs. Extensive hydrolyzed WPHs with proper heat applications are the best emulsifiers and addition of polysaccharides improves the emulsification ability of WPHs. Also, WPHs improve the sensorial properties like color, flavor, and texture but impart a bitter taste in case where extensive hydrolysis (degree of hydrolysis greater than 8%). It is important to consider the type of enzyme, hydrolysis conditions, and WPHs production method based on the nature of food application. PMID:26761849

  12. Identification of Actin-Binding Proteins from Maize Pollen

    SciTech Connect

    Staiger, C.J.

    2004-01-13

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPs (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.

  13. Ubiquitin Ligase Substrate Identification through Quantitative Proteomics at Both the Protein and Peptide Levels

    PubMed Central

    Lee, Kimberly A.; Hammerle, Lisa P.; Andrews, Paul S.; Stokes, Matthew P.; Mustelin, Tomas; Silva, Jeffrey C.; Black, Roy A.; Doedens, John R.

    2011-01-01

    Protein ubiquitination is a key regulatory process essential to life at a cellular level; significant efforts have been made to identify ubiquitinated proteins through proteomics studies, but the level of success has not reached that of heavily studied post-translational modifications, such as phosphorylation. HRD1, an E3 ubiquitin ligase, has been implicated in rheumatoid arthritis, but no disease-relevant substrates have been identified. To identify these substrates, we have taken both peptide and protein level approaches to enrich for ubiquitinated proteins in the presence and absence of HRD1. At the protein level, a two-step strategy was taken using cells expressing His6-tagged ubiquitin, enriching proteins first based on their ubiquitination and second based on the His tag with protein identification by LC-MS/MS. Application of this method resulted in identification and quantification of more than 400 ubiquitinated proteins, a fraction of which were found to be sensitive to HRD1 and were therefore deemed candidate substrates. In a second approach, ubiquitinated peptides were enriched after tryptic digestion by peptide immunoprecipitation using an antibody specific for the diglycine-labeled internal lysine residue indicative of protein ubiquitination, with peptides and ubiquitination sites identified by LC-MS/MS. Peptide immunoprecipitation resulted in identification of over 1800 ubiquitinated peptides on over 900 proteins in each study, with several proteins emerging as sensitive to HRD1 levels. Notably, significant overlap exists between the HRD1 substrates identified by the protein-based and the peptide-based strategies, with clear cross-validation apparent both qualitatively and quantitatively, demonstrating the effectiveness of both strategies and furthering our understanding of HRD1 biology. PMID:21987572

  14. Improved protein refolding using hollow-fibre membrane dialysis.

    PubMed

    West, S M; Chaudhuri, J B; Howell, J A

    1998-03-05

    We have used a cellulose acetate, hollow-fibre (HF) ultrafiltration membrane to refold bovine carbonic anhydrase, loaded into the lumen space, by removing the denaturant through controlled dialysis via the shell side space. When challenged with GdnHCl-denatured carbonic anhydrase, 70% of the loaded protein reptated through the membrane into the circulating dialysis buffer. Reptation occurred because the protein, in its fully unfolded configuration, was able to pass through the pores. The loss of carbonic anhydrase through the membrane was controlled by the dialysis conditions. Dialysis against 0.05 M Tris-HCl for 30 min reduced the denaturant around the protein to a concentration that allowed the return of secondary structure, increasing the hydrodynamic radius, thus preventing protein transmission. Under these conditions a maximum of 42% of carbonic anhydrase was recovered (from a starting concentration of 5 mg/mL) with 94% activity. This is an improvement over refolding carbonic anhydrase by simple batch dilution, which gave a maximum reactivation of 85% with 35% soluble protein yield. The batch refolding of carbonic anhydrase is very sensitive to temperature; however, during HF refolding between 0 and 25 degrees C the temperature sensitivity was considerably reduced. In order to reduce the convection forces that give rise to aggregation and promote refolding the dialyzate was slowly heated from 4 to 25 degrees C. This slow, temperature-controlled refolding gave an improved soluble protein recovery of 55% with a reactivation yield of 90%. The effect of a number of additives on the refolding system performance were tested: the presence of PEG improved both the protein recovery and the recovered activity from the membrane, while the detergents Tween 20 and IGEPAL CA-630 increased only the refolding yield.

  15. Identification of human olfactory cleft mucus proteins using proteomic analysis.

    PubMed

    Débat, Hélène; Eloit, Corinne; Blon, Florence; Sarazin, Benoît; Henry, Céline; Huet, Jean-Claude; Trotier, Didier; Pernollet, Jean-Claude

    2007-05-01

    In humans, the olfactory epithelium is located in two narrow passages, the olfactory clefts, at the upper part of the nasal cavities. The olfactory epithelium is covered by a mucus layer which is essential for the function of the olfactory neurons that are directly connected with the brain through the cribriform plate. This anatomical weakness of the brain protection may be the source of infection. Little is known about the composition of this mucus in humans. Previous proteomic analyses have been performed on washes of the entire nasal cavities and therefore might better correspond to the mucus over the respiratory epithelium than to the mucus covering the olfactory epithelium. In the present study, we sampled the olfactory mucus directly from the clefts of 16 healthy adult volunteers, and 83 proteins were identified in the samples using two-dimensional gel electrophoresis, MALDI-TOF, RPLC, and Edman sequencing. Forty-three proteins were not previously observed either in nasal mucus sampled through washings, saliva, tear, or cerebrospinal fluid. In Accordance with the data in the protein databases, the most abundant proteins are secreted, whereas some others correspond to intracellular proteins covering a large range of functions: anti-inflammatory, antimicrobial, protease inhibition, antioxidant, transport, transcription, transduction, cytoskeletal, regulation, binding, and metabolism of odorant molecules. This study clearly demonstrates the complexity of the mucus covering the human olfactory epithelium, which might comprise potential markers for characterizing pathophysiological states.

  16. Identification of giant Mimivirus protein functions using RNA interference

    PubMed Central

    Sobhy, Haitham; Scola, Bernard La; Pagnier, Isabelle; Raoult, Didier; Colson, Philippe

    2015-01-01

    Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases. PMID:25972846

  17. Preliminary identification of differentially expressed tear proteins in keratoconus

    PubMed Central

    Wasinger, Valerie C.; Pye, David C.; Willcox, Mark D. P.

    2013-01-01

    Purpose To examine the proteins differentially expressed in the tear film of people with keratoconus and normal subjects. Methods Unstimulated tears from people with keratoconus (KC) and controls (C) were collected using a capillary tube. Tear proteins from people with KC and controls were partitioned using a novel in-solution electrophoresis, Microflow 10 (ProteomeSep), and analyzed using linear ion trap quadrupole fourier transform mass spectrometry. Spectral counting was used to quantify the individual tear proteins. Results Elevated levels of cathepsin B (threefold) were evident in the tears of people with KC. Polymeric immunoglobulin receptor (ninefold), fibrinogen alpha chain (eightfold), cystatin S (twofold), and cystatin SN (twofold) were reduced in tears from people with KC. Keratin type-1 cytoskeletal-14 and keratin type-2 cytoskeletal-5 were present only in the tears of people with KC. Conclusions The protein changes in tears, that is, the decrease in protease inhibitors and increase in proteases, found in the present and other previously published studies reflect the pathological events involved in KC corneas. Further investigations into tear proteins may help elucidate the underlying molecular mechanisms of KC, which could result in better treatment options. PMID:24194634

  18. Identification of Redox and Glucose-Dependent Txnip Protein Interactions

    PubMed Central

    Neuharth, Skyla; Kim, Dae In; Motamedchaboki, Khatereh; Roux, Kyle J.

    2016-01-01

    Thioredoxin-interacting protein (Txnip) acts as a negative regulator of thioredoxin function and is a critical modulator of several diseases including, but not limited to, diabetes, ischemia-reperfusion cardiac injury, and carcinogenesis. Therefore, Txnip has become an attractive therapeutic target to alleviate disease pathologies. Although Txnip has been implicated with numerous cellular processes such as proliferation, fatty acid and glucose metabolism, inflammation, and apoptosis, the molecular mechanisms underlying these processes are largely unknown. The objective of these studies was to identify Txnip interacting proteins using the proximity-based labeling method, BioID, to understand differential regulation of pleiotropic Txnip cellular functions. The BioID transgene fused to Txnip expressed in HEK293 identified 31 interacting proteins. Many protein interactions were redox-dependent and were disrupted through mutation of a previously described reactive cysteine (C247S). Furthermore, we demonstrate that this model can be used to identify dynamic Txnip interactions due to known physiological regulators such as hyperglycemia. These data identify novel Txnip protein interactions and demonstrate dynamic interactions dependent on redox and glucose perturbations, providing clarification to the pleiotropic cellular functions of Txnip. PMID:27437069

  19. Identification of giant Mimivirus protein functions using RNA interference.

    PubMed

    Sobhy, Haitham; Scola, Bernard La; Pagnier, Isabelle; Raoult, Didier; Colson, Philippe

    2015-01-01

    Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases.

  20. Protein social behavior makes a stronger signal for partner identification than surface geometry

    PubMed Central

    Laine, Elodie

    2016-01-01

    ABSTRACT Cells are interactive living systems where proteins movements, interactions and regulation are substantially free from centralized management. How protein physico‐chemical and geometrical properties determine who interact with whom remains far from fully understood. We show that characterizing how a protein behaves with many potential interactors in a complete cross‐docking study leads to a sharp identification of its cellular/true/native partner(s). We define a sociability index, or S‐index, reflecting whether a protein likes or not to pair with other proteins. Formally, we propose a suitable normalization function that accounts for protein sociability and we combine it with a simple interface‐based (ranking) score to discriminate partners from non‐interactors. We show that sociability is an important factor and that the normalization permits to reach a much higher discriminative power than shape complementarity docking scores. The social effect is also observed with more sophisticated docking algorithms. Docking conformations are evaluated using experimental binding sites. These latter approximate in the best possible way binding sites predictions, which have reached high accuracy in recent years. This makes our analysis helpful for a global understanding of partner identification and for suggesting discriminating strategies. These results contradict previous findings claiming the partner identification problem being solvable solely with geometrical docking. Proteins 2016; 85:137–154. © 2016 Wiley Periodicals, Inc. PMID:27802579

  1. High sensitivity identification of membrane proteins by MALDI TOF-MASS spectrometry using polystyrene beads.

    PubMed

    Bensalem, Noura; Masscheleyn, Sandrine; Mozo, Julien; Vallée, Benoit; Brouillard, Franck; Trudel, Stéphanie; Ricquier, Daniel; Edelman, Aleksander; Guerrera, Ida Chiara; Miroux, Bruno

    2007-04-01

    Membrane proteins play a large variety of functions in life and represent 30% of all genomes sequenced. Due to their hydrophobic nature, they are tightly bound to their biological membrane, and detergents are always required to extract and isolate them before identification by mass spectrometry (MS). The latter, however remains difficult. Peptide mass fingerprinting methods using techniques such as MALDI-TOF MS, for example, have become an important analytical tool in the identification of proteins. However, PMF of membrane proteins is a real challenge for at least three reasons. First, membrane proteins are naturally present at low levels; second, most of the detergents strongly inhibit proteases and have deleterious effects on MALDI spectra; and third, despite the presence of detergent, membrane proteins are unstable and often aggregate. We took the mitochondrial uncoupling protein 1 (UCP1) as a model and showed that differential acetonitrile extraction of tryptic peptides combined with the use of polystirene Bio-Beads triggered high resolution of the MALDI-TOF identification of mitochondrial membrane proteins solubilized either with Triton-X100 or CHAPS detergents.

  2. Gas-phase concentration, purification, and identification of whole proteins from complex mixtures.

    PubMed

    Reid, Gavin E; Shang, Hao; Hogan, Jason M; Lee, Gil U; McLuckey, Scott A

    2002-06-26

    Five proteins present in a relatively complex mixture derived from a whole cell lysate fraction of E. coli have been concentrated, purified, and dissociated in the gas phase, using a quadrupole ion trap mass spectrometer. Concentration of intact protein ions was effected using gas-phase ion/ion proton-transfer reactions in conjunction with mass-to-charge dependent ion "parking" to accumulate protein ions initially dispersed over a range of charge states into a single lower charge state. Sequential ion isolation events interspersed with additional ion parking ion/ion reaction periods were used to "charge-state purify" the protein ion of interest. Five of the most abundant protein components present in the mixture were subjected to this concentration/purification procedure and then dissociated by collisional activation of their intact multiply charged precursor ions. Four of the five proteins were subsequently identified by matching the uninterpreted product ion spectra against a partially annotated protein sequence database, coupled with a novel scoring scheme weighted for the relative abundances of the experimentally observed product ions and the frequency of fragmentations occurring at preferential cleavage sites. The identification of these proteins illustrates the potential of this "top-down" protein identification approach to reduce the reliance on condensed-phase chemistries and extensive separations for complex protein mixture analysis.

  3. Improving Hepatitis C Identification: Technology Alone Is Not the Answer.

    PubMed

    Nitsche, Bruce; Miller, Sara C; Giorgio, Margaret; Berry, Carolyn A; Muir, Andrew

    2017-09-01

    An estimated 3 to 5 million Americans are chronically infected with hepatitis C virus (HCV), and approximately 75% of those persons were born between 1945 and 1965 (the so-called baby boomer generation). Because of the largely asymptomatic nature of HCV, up to 50% of those infected are unaware of their disease. Risk-based testing has been largely ineffective. Based on prevalence data, the Centers for Disease Control and Prevention and other organizations recommend a onetime HCV antibody test for all baby boomers. However, uptake of this recommendation requires significant changes in clinical practice for already busy primary care clinicians. We studied the effectiveness of a quality improvement initiative based on continuous audit and feedback combined with education for improving testing in alignment with guidelines; the control group was a cohort of clinicians whose only reminder was an institution-wide electronic health record prompt. Our data show improved testing rates among all clinician groups, but more significant improvement occurred among providers who received continuous feedback about their clinical performance coupled with education.

  4. Identification of novel tick salivary gland proteins for vaccine development.

    PubMed

    Xu, Yun; Bruno, John F; Luft, Benjamin J

    2005-01-28

    Methods currently used to control Ixodes scapularis ticks rely principally on acaricidal applications which suffer from a number of limitations. Recently, host vaccination against ticks has been shown to be a promising alternative tick control method. In tick salivary glands, numerous genes are induced during the feeding process. Many of these newly expressed proteins are secreted in tick saliva and may play a role in modulating host immune responses and pathogen transmission. We have performed suppression subtraction hybridization to identify unique I. scapularis salary gland proteins specifically expressed during engorgement. We have cloned and sequenced ten unique salivary gland-associated cDNAs that are up-regulated during feeding. The protein products of these genes represent potential vaccine candidates for use in the control of ticks and to prevent transmission of tick-borne diseases.

  5. The Improvement of Automated Spectral Identification Tool ASERA

    NASA Astrophysics Data System (ADS)

    Yuan, Hailong; zhang, Yanxia

    2015-08-01

    The regular survey of Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) has acquired over four millions spectra of celestial objects by the summer of 2014, covering about a third of the whole sky area. More spectra will be obtained as the survey projects (eg. LAMOST, SDSS) keeps going on. To effectively make use of the massive spectral data, various advanced data analysis methods and technologies are in great requirement. ASERA, A Spectrum Eye Recognition Assistant, provides a simple convenient solution for the user to access spectra from LAMOST and SDSS, identify their types (QSO, galaxy, and various types of stars) and estimate their redshifts in an interactive graphic interface. The toolkit is at first especially designed for quasar identification. By shifting the quasar template overlaping the target spectrum interactively, one can easily find out the best broad emission line position and the redshift value. Now, besides the quasar template, various templates for different types of galaxies (early type, later type, starburst, bulge, elliptical and luminous red galaxies) and stars (O, B, A, F, G, K, M, WD, CV, Double Stars and Emission-Line-Objects) are added. We also have developed many new useful functionalities for inspecting and analyzing spectra, such as zooming, line fitting, smoothing and automatic result saving. The target information from input catalogues and data processing result from the pipeline as well as fitting parameters for various types of templates, can be presented at the same time. Several volume processing components are developed to support the cooperation with MySQL database, internet resources and SSAP services. ASERA will be a strong helper for astronomers to recognize spectra.

  6. Identification of protein pheromones that promote aggressive behaviour.

    PubMed

    Chamero, Pablo; Marton, Tobias F; Logan, Darren W; Flanagan, Kelly; Cruz, Jason R; Saghatelian, Alan; Cravatt, Benjamin F; Stowers, Lisa

    2007-12-06

    Mice use pheromones, compounds emitted and detected by members of the same species, as cues to regulate social behaviours such as pup suckling, aggression and mating. Neurons that detect pheromones are thought to reside in at least two separate organs within the nasal cavity: the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Each pheromone ligand is thought to activate a dedicated subset of these sensory neurons. However, the nature of the pheromone cues and the identity of the responding neurons that regulate specific social behaviours are largely unknown. Here we show, by direct activation of sensory neurons and analysis of behaviour, that at least two chemically distinct ligands are sufficient to promote male-male aggression and stimulate VNO neurons. We have purified and analysed one of these classes of ligand and found its specific aggression-promoting activity to be dependent on the presence of the protein component of the major urinary protein (MUP) complex, which is known to comprise specialized lipocalin proteins bound to small organic molecules. Using calcium imaging of dissociated vomeronasal neurons (VNs), we have determined that the MUP protein activates a sensory neuron subfamily characterized by the expression of the G-protein Galpha(o) subunit (also known as Gnao) and Vmn2r putative pheromone receptors (V2Rs). Genomic analysis indicates species-specific co-expansions of MUPs and V2Rs, as would be expected among pheromone-signalling components. Finally, we show that the aggressive behaviour induced by the MUPs occurs exclusively through VNO neuronal circuits. Our results substantiate the idea of MUP proteins as pheromone ligands that mediate male-male aggression through the accessory olfactory neural pathway.

  7. Identification of a Protein for Prostate-Specific Infection

    DTIC Science & Technology

    2007-12-01

    tissue-specific manner. In the third year, we worked on using gp41 HIV glycoprotein to fuse with these two peptides in a lentiviral vector. The gp41 ...HIV gp41 protein, we could increase gene delivery by 30% to 70% into LNCaP prostate cancer cells (Fig. 3C). Although the the fusion of the...in Fig. 4. We use influenza HA protein instead of Sindbis E1 gp41 Vector genome C. C-terminus N-terminus C-terminus N-terminus Modified with our

  8. [Identification of proteins interacting with the circadian clock protein PER1 in tumors using bacterial two-hybrid system technique].

    PubMed

    Zhang, Yu; Yao, Youlin; Jiang, Siyuan; Lu, Yilu; Liu, Yunqiang; Tao, Dachang; Zhang, Sizhong; Ma, Yongxin

    2015-04-01

    To identify protein-protein interaction partners of PER1 (period circadian protein homolog 1), key component of the molecular oscillation system of the circadian rhythm in tumors using bacterial two-hybrid system technique. Human cervical carcinoma cell Hela library was adopted. Recombinant bait plasmid pBT-PER1 and pTRG cDNA plasmid library were cotransformed into the two-hybrid system reporter strain cultured in a special selective medium. Target clones were screened. After isolating the positive clones, the target clones were sequenced and analyzed. Fourteen protein coding genes were identified, 4 of which were found to contain whole coding regions of genes, which included optic atrophy 3 protein (OPA3) associated with mitochondrial dynamics and homo sapiens cutA divalent cation tolerance homolog of E. coli (CUTA) associated with copper metabolism. There were also cellular events related proteins and proteins which are involved in biochemical reaction and signal transduction-related proteins. Identification of potential interacting proteins with PER1 in tumors may provide us new insights into the functions of the circadian clock protein PER1 during tumorigenesis.

  9. Protocol for the purification of proteins from biological extracts for identification by mass spectrometry.

    PubMed

    Guerrier, Luc; Boschetti, Egisto

    2007-01-01

    When a protein signal is selected by mass spectrometry as being a potential biomarker, it is necessary to formally identify it. This process involves separation of the protein in question and its identification by either peptide fingerprinting or tandem mass spectrometry sequencing. In the following pages, a simple and rapid protocol is described. Basically, the protocol consists of an initial rational selection of a few sorbents followed by alignment of these as a series of columns to obtain the purified target protein. This preparation is then submitted to electrophoresis, the band is excised and the trypsin digest is analyzed by either mass spectrometry (mass fingerprinting approach) or by LC-MS/MS (sequencing). The development of the process takes only a few days. Experimental data for the isolation and identification of proteins are discussed and two examples are shown.

  10. Identification of Chlamydia trachomatis outer membrane complex proteins by differential proteomics.

    PubMed

    Liu, Xiaoyun; Afrane, Mary; Clemmer, David E; Zhong, Guangming; Nelson, David E

    2010-06-01

    The extracellular chlamydial infectious particle, or elementary body (EB), is enveloped by an intra- and intermolecular cysteine cross-linked protein shell called the chlamydial outer membrane complex (COMC). A few abundant proteins, including the major outer membrane protein and cysteine-rich proteins (OmcA and OmcB), constitute the overwhelming majority of COMC proteins. The identification of less-abundant COMC proteins has been complicated by limitations of proteomic methodologies and the contamination of COMC fractions with abundant EB proteins. Here, we used parallel liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analyses of Chlamydia trachomatis serovar L2 434/Bu EB, COMC, and Sarkosyl-soluble EB fractions to identify proteins enriched or depleted from COMC. All well-described COMC proteins were specifically enriched in the COMC fraction. In contrast, multiple COMC-associated proteins found in previous studies were strongly enriched in the Sarkosyl-soluble fraction, suggesting that these proteins are not COMC components or are not stably associated with COMC. Importantly, we also identified novel proteins enriched in COMC. The list of COMC proteins identified in this study has provided reliable information for further understanding chlamydial protein secretion systems and modeling COMC and EB structures.

  11. Linker engineering for fusion protein construction: Improvement and characterization of a GLP-1 fusion protein.

    PubMed

    Kong, Yuelin; Tong, Yue; Gao, Mingming; Chen, Chen; Gao, Xiangdong; Yao, Wenbing

    2016-01-01

    Protein engineering has been successfully applied in protein drug discovery. Using this technology, we previously have constructed a fusion protein by linking the globular domain of adiponectin to the C-terminus of a glucagon-like peptide-1 (GLP-1) analog. Herein, to further improve its bioactivity, we reconstructed this fusion protein by introducing linker peptides of different length and flexibility. The reconstructed fusion proteins were overexpressed in Escherichia coli and purified using nickel affinity chromatography. Their agonist activity towards receptors of GLP-1 and adiponectin were assessed in vitro by using luciferase assay and AMP-activated protein kinase (AMPK) immunoblotting, respectively. The effects of the selected fusion protein on glucose and lipid metabolism were evaluated in mice. The fusion protein reconstructed using a linker peptide of AMGPSSGAPGGGGS showed high potency in activating GLP-1 receptor and triggering AMPK phosphorylation via activating the adiponectin receptor. Remarkably, the optimized fusion protein was highly effective in lowering blood glucose and lipids in mice. Collectively, these findings demonstrate that the bioactivity of this GLP-1 fusion protein can be significantly promoted by linker engineering, and indicate that the optimized GLP-1 fusion protein is a promising lead structure for anti-diabetic drug discovery.

  12. Identification of Nramp2 as an iron transport protein: another piece of the intestinal iron absorption puzzle.

    PubMed

    Fleet, J C

    1998-03-01

    Although a number of iron-binding proteins have been identified, the roles for specific proteins in mediating iron absorption have not been definitively assigned. Two recent papers report the identification of an iron transport protein that may be responsible for movement of iron from the intestinal lumen into the enterocyte. Coupled with the recent identification of the protein mutated in hemochromatosis, researchers are now establishing a clearer picture of the mechanism of intestinal iron absorption.

  13. An improved method for the molecular identification of single dinoflagellate cysts.

    PubMed

    Gao, Yangchun; Fang, Hongda; Dong, Yanhong; Li, Haitao; Pu, Chuanliang; Zhan, Aibin

    2017-01-01

    Dinoflagellate cysts (i.e., dinocysts) are biologically and ecologically important as they can help dinoflagellate species survive harsh environments, facilitate their dispersal and serve as seeds for harmful algal blooms. In addition, dinocysts derived from some species can produce more toxins than vegetative forms, largely affecting species through their food webs and even human health. Consequently, accurate identification of dinocysts represents the first crucial step in many ecological studies. As dinocysts have limited or even no available taxonomic keys, molecular methods have become the first priority for dinocyst identification. However, molecular identification of dinocysts, particularly when using single cells, poses technical challenges. The most serious is the low success rate of PCR, especially for heterotrophic species. In this study, we aim to improve the success rate of single dinocyst identification for the chosen dinocyst species (Gonyaulax spinifera, Polykrikos kofoidii, Lingulodinium polyedrum, Pyrophacus steinii, Protoperidinium leonis and Protoperidinium oblongum) distributed in the South China Sea. We worked on two major technical issues: cleaning possible PCR inhibitors attached on the cyst surface and designing new dinoflagellate-specific PCR primers to improve the success of PCR amplification. For the cleaning of single dinocysts separated from marine sediments, we used ultrasonic wave-based cleaning and optimized cleaning parameters. Our results showed that the optimized ultrasonic wave-based cleaning method largely improved the identification success rate and accuracy of both molecular and morphological identifications. For the molecular identification with the newly designed dinoflagellate-specific primers (18S634F-18S634R), the success ratio was as high as 86.7% for single dinocysts across multiple taxa when using the optimized ultrasonic wave-based cleaning method, and much higher than that (16.7%) based on traditional micropipette

  14. Systematic identification of proteins that elicit drug side effects

    PubMed Central

    Kuhn, Michael; Al Banchaabouchi, Mumna; Campillos, Monica; Jensen, Lars Juhl; Gross, Cornelius; Gavin, Anne-Claude; Bork, Peer

    2013-01-01

    Side effect similarities of drugs have recently been employed to predict new drug targets, and networks of side effects and targets have been used to better understand the mechanism of action of drugs. Here, we report a large-scale analysis to systematically predict and characterize proteins that cause drug side effects. We integrated phenotypic data obtained during clinical trials with known drug–target relations to identify overrepresented protein–side effect combinations. Using independent data, we confirm that most of these overrepresentations point to proteins which, when perturbed, cause side effects. Of 1428 side effects studied, 732 were predicted to be predominantly caused by individual proteins, at least 137 of them backed by existing pharmacological or phenotypic data. We prove this concept in vivo by confirming our prediction that activation of the serotonin 7 receptor (HTR7) is responsible for hyperesthesia in mice, which, in turn, can be prevented by a drug that selectively inhibits HTR7. Taken together, we show that a large fraction of complex drug side effects are mediated by individual proteins and create a reference for such relations. PMID:23632385

  15. Identification of Enhancer Binding Proteins Important for Myxococcus xanthus Development▿

    PubMed Central

    Giglio, Krista M.; Eisenstatt, Jessica; Garza, Anthony G.

    2010-01-01

    Enhancer binding proteins (EBPs) control the temporal expression of fruiting body development-associated genes in Myxococcus xanthus. Eleven previously uncharacterized EBP genes were inactivated. Six EBP gene mutations produced minor but reproducible defects in fruiting body development. One EBP gene mutation that affected A-motility produced strong developmental defects. PMID:19897655

  16. Identification of enhancer binding proteins important for Myxococcus xanthus development.

    PubMed

    Giglio, Krista M; Eisenstatt, Jessica; Garza, Anthony G

    2010-01-01

    Enhancer binding proteins (EBPs) control the temporal expression of fruiting body development-associated genes in Myxococcus xanthus. Eleven previously uncharacterized EBP genes were inactivated. Six EBP gene mutations produced minor but reproducible defects in fruiting body development. One EBP gene mutation that affected A-motility produced strong developmental defects.

  17. Identification of serum protein biomarkers for utrophin based DMD therapy

    PubMed Central

    Guiraud, Simon; Edwards, Benjamin; Squire, Sarah E.; Babbs, Arran; Shah, Nandini; Berg, Adam; Chen, Huijia; Davies, Kay E.

    2017-01-01

    Despite promising therapeutic avenues, there is currently no effective treatment for Duchenne muscular dystrophy (DMD), a lethal monogenic disorder caused by the loss of the large cytoskeletal protein, dystrophin. A highly promising approach to therapy, applicable to all DMD patients irrespective to their genetic defect, is to modulate utrophin, a functional paralogue of dystrophin, able to compensate for the primary defects of DMD restoring sarcolemmal stability. One of the major difficulties in assessing the effectiveness of therapeutic strategies is to define appropriate outcome measures. In the present study, we utilised an aptamer based proteomics approach to profile 1,310 proteins in plasma of wild-type, mdx and Fiona (mdx overexpressing utrophin) mice. Comparison of the C57 and mdx sera revealed 83 proteins with statistically significant >2 fold changes in dystrophic serum abundance. A large majority of previously described biomarkers (ANP32B, THBS4, CAMK2A/B/D, CYCS, CAPNI) were normalised towards wild-type levels in Fiona animals. This work also identified potential mdx markers specific to increased utrophin (DUS3, TPI1) and highlights novel mdx biomarkers (GITR, MYBPC1, HSP60, SIRT2, SMAD3, CNTN1). We define a panel of putative protein mdx biomarkers to evaluate utrophin based strategies which may help to accelerate their translation to the clinic. PMID:28252048

  18. Identification of extensin protein associated with sugar beet pectin.

    PubMed

    Nuñez, Alberto; Fishman, Marshall L; Fortis, Laurie L; Cooke, Peter H; Hotchkiss, Arland T

    2009-11-25

    Several studies have suggested that the emulsification properties associated with pectin obtained from sugar beet (Beta vulgaris) are due to the presence of a protein-pectin complex. Nevertheless, the identity of the protein has remained elusive. Pectin, extracted from sugar beet pulp by microwave-assisted extraction, and a commercial sample were both subjected to protease digestion with trypsin. The resulting peptides were separated from the pectin solution by ultrafiltration using a 3 kDa molecular weight cutoff (MWCO) membrane and analyzed using matrix-assisted laser desorption ionization with tandem time-of-flight mass spectrometry. The partial sequences derived from the mass spectrometry analyses of the resulting tryptic peptides are found to be highly consistent with extensin protein matched from the B. vulgaris Genetic Index database and also correspond to previously reported extensin peptides found in sugar beet cell suspension cultures. Further attempts were made to disassociate the protein from pectin using 1 M NaCl and a 100 kDa MWCO membrane; however, no peptides were observed following trypsin digestion of the permeate solution. This evidence suggests the existence of a complex between the pectin and extensin that is not due to ionic interactions. Trypsin digestion of commercial sugar beet pectin also produced the peptide profile observed with the microwave-assisted extracted pectin sample. Atomic force microscopy established that the number of rod-like elements decreased following protease treatment compared to the untreated sample.

  19. Leishmania infantum chagasi: A genome-based approach to identification of excreted/secreted proteins

    PubMed Central

    DebRoy, Sruti; Keenan, Alexandra B.; Ueno, Norikiyo; Jeronimo, Selma M. B.; Donelson, John E.; Wilson, Mary E.

    2010-01-01

    The parasitic protozoan, Leishmania, survives in harsh environments within its mammalian and sand fly hosts. Secreted proteins likely play critical roles in the parasite’s interactions with its environment. As a preliminary identification of the spectrum of potential excreted/secreted (ES) proteins of Leishmania infantum chagasi (Lic), a causative agent of visceral leishmaniasis, we used standard algorithms to screen the annotated L. infantum genome for genes whose predicted protein products have an N-terminal signal peptide and lack transmembrane domains and membrane anchors. A suite of 181 candidate ES proteins were identified. These included several that were documented in the literature to be released by other Leishmania spp. Six candidate ES proteins were selected for further validation of their expression and release by different parasite stages. We found both amastigote-specific and promastigote-specific released proteins. The ES proteins of Lic are candidates for future studies of parasite virulence determinants and host protective immunity. PMID:20542033

  20. Proteome study of the phloem sap of pumpkin using multidimensional protein identification technology.

    PubMed

    Cho, Won Kyong; Chen, Xiong-Yan; Rim, Yeonggil; Chu, Hyosub; Kim, Suwha; Kim, Seon-Won; Park, Zee-Yong; Kim, Jae-Yean

    2010-07-01

    The phloem is the major transport route for both small substances and large molecules, such as proteins and RNAs, from their sources to sink tissues. To investigate the proteins present in pumpkin phloem sap, proteome analysis using multidimensional protein identification technology was carried out. Pumpkin phloem peptides obtained by liquid chromatography/mass spectrometry/mass spectrometry were searched against pumpkin protein data derived from the National Center for Biotechnology Information. A total of 47 pumpkin phloem proteins were identified. The identified proteins mainly corresponded to enzymes involved in gibberellin biosynthesis, antioxidation processes, or defense mechanisms. Interestingly, seven enzymes required for gibberellin biosynthesis were identified for the first time by this proteomics approach. In summary, the new phloem proteins identified in this study provide strong evidence for stress and defense signaling and new insights regarding the role of gibberellin in the developmental programming of higher plants through the phloem.

  1. Leishmania infantum chagasi: a genome-based approach to identification of excreted/secreted proteins.

    PubMed

    DebRoy, Sruti; Keenan, Alexandra B; Ueno, Norikiyo; Jeronimo, Selma M B; Donelson, John E; Wilson, Mary E

    2010-12-01

    The parasitic protozoan, Leishmania, survives in harsh environments within its mammalian and sand fly hosts. Secreted proteins likely play critical roles in the parasite's interactions with its environment. As a preliminary identification of the spectrum of potential excreted/secreted (ES) proteins of Leishmania infantum chagasi (Lic), a causative agent of visceral leishmaniasis, we used standard algorithms to screen the annotated L. infantum genome for genes whose predicted protein products have an N-terminal signal peptide and lack transmembrane domains and membrane anchors. A suite of 181 candidate ES proteins were identified. These included several that were documented in the literature to be released by other Leishmania spp. Six candidate ES proteins were selected for further validation of their expression and release by different parasite stages. We found both amastigote-specific and promastigote-specific released proteins. The ES proteins of Lic are candidates for future studies of parasite virulence determinants and host protective immunity.

  2. MALDI imaging and in situ identification of integral membrane proteins from rat brain tissue sections

    PubMed Central

    Nicklay, Joshua J.; Harris, Glenn A.; Schey, Kevin L.; Caprioli, Richard M.

    2013-01-01

    Transmembrane proteins are greatly underrepresented in data generated by imaging mass spectrometry (IMS) because of analytical challenges related to their size and solubility. Here we present the first example of MALDI IMS of two highly modified multi-transmembrane domain proteins, myelin proteolipid protein (PLP, 30 kDa) and DM-20 (26 kDa), from various regions of rat brain, namely the cerebrum, cerebellum, and medulla. We utilize a novel tissue pre-treatment aimed at transmembrane protein enrichment to show the in situ distribution of fatty acylation of these proteins, particularly of post-translational palmitoylation. Additionally, we demonstrate the utility of protease-encapsulated hydrogels for spatially localized on-tissue protein digestion and peptide extraction for subsequent direct coupling to LC-MS/MS for protein identification. PMID:23829295

  3. Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening.

    PubMed

    Guazzaroni, María-Eugenia; Silva-Rocha, Rafael; Ward, Richard John

    2015-01-01

    There is a growing demand for enzymes with improved catalytic performance or tolerance to process-specific parameters, and biotechnology plays a crucial role in the development of biocatalysts for use in industry, agriculture, medicine and energy generation. Metagenomics takes advantage of the wealth of genetic and biochemical diversity present in the genomes of microorganisms found in environmental samples, and provides a set of new technologies directed towards screening for new catalytic activities from environmental samples with potential biotechnology applications. However, biased and low level of expression of heterologous proteins in Escherichia coli together with the use of non-optimal cloning vectors for the construction of metagenomic libraries generally results in an extremely low success rate for enzyme identification. The bottleneck arising from inefficient screening of enzymatic activities has been addressed from several perspectives; however, the limitations related to biased expression in heterologous hosts cannot be overcome by using a single approach, but rather requires the synergetic implementation of multiple methodologies. Here, we review some of the principal constraints regarding the discovery of new enzymes in metagenomic libraries and discuss how these might be resolved by using synthetic biology methods.

  4. Identification of a new tissue-kallikrein-binding protein.

    PubMed Central

    Chao, J; Tillman, D M; Wang, M Y; Margolius, H S; Chao, L

    1986-01-01

    We have identified a tissue-kallikrein-binding protein in human serum and in the serum-free culture media from human lung fibroblasts (WI-38) and rodent neuroblastoma X glioma hybrid cells (NG108-15). Purified and 125I-labelled tissue kallikrein and human serum form an approximately 92,000-Mr SDS-stable complex. The relative quantity of this complex-formation is measured by densitometric scanning of autoradiograms. Complex-formation between tissue kallikrein and the serum binding protein was time-dependent and detectable after 5 min incubation at 37 degrees C, with half-maximal binding at 28 min. Binding of 125I-kallikrein to kallikrein-binding protein is temperature-dependent and can be inhibited by heparin or excess unlabelled tissue kallikrein but not by plasma kallikrein, collagenase, thrombin, urokinase, alpha 1-antitrypsin or kininogens. The kallikrein-binding protein is acid- and heat-labile, as pretreatment of sera at pH 3.0 or at 60 degrees C for 30 min diminishes complex-formation. However, the formed complexes are stable to acid or 1 M-hydroxylamine treatment and can only be partially dissociated with 10 mM-NaOH. When kallikrein was inhibited by the active-site-labelling reagents phenylmethanesulphonyl fluoride or D-Phe-D-Phe-L-Arg-CH2Cl no complex-formation was observed. An endogenous approximately 92,000-Mr kallikrein-kallikrein-binding protein complex was isolated from normal human serum by using a human tissue kallikrein-agarose affinity column. These complexes were recognized by anti-(human tissue kallikrein) antibodies, but not by anti-alpha 1-antitrypsin serum, in Western-blot analyses. The results show that the kallikrein-binding protein is distinct from alpha 1-antitrypsin and is not identifiable with any of the well-characterized plasma proteinase inhibitors such as alpha 2-macroglobulin, inter-alpha-trypsin inhibitor, C1-inactivator or antithrombin III. The functional role of this kallikrein-binding protein and its impact on kallikrein

  5. Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species.

    PubMed

    Soares, Renata; Franco, Catarina; Pires, Elisabete; Ventosa, Miguel; Palhinhas, Rui; Koci, Kamila; Martinho de Almeida, André; Varela Coelho, Ana

    2012-07-19

    Proteomic approaches are gaining increasing importance in the context of all fields of animal and veterinary sciences, including physiology, productive characterization, and disease/parasite tolerance, among others. Proteomic studies mainly aim the proteome characterization of a certain organ, tissue, cell type or organism, either in a specific condition or comparing protein differential expression within two or more selected situations. Due to the high complexity of samples, usually total protein extracts, proteomics relies heavily on separation procedures, being 2D-electrophoresis and HPLC the most common, as well as on protein identification using mass spectrometry (MS) based methodologies. Despite the increasing importance of MS in the context of animal and veterinary science studies, the usefulness of such tools is still poorly perceived by the animal science community. This is primarily due to the limited knowledge on mass spectrometry by animal scientists. Additionally, confidence and success in protein identification is hindered by the lack of information in public databases for most of farm animal species and their pathogens, with the exception of cattle (Bos taurus), pig (Sus scrofa) and chicken (Gallus gallus). In this article, we will briefly summarize the main methodologies available for protein identification using mass spectrometry providing a case study of specific applications in the field of animal science. We will also address the difficulties inherent to protein identification using MS, with particular reference to experiments using animal species poorly described in public databases. Additionally, we will suggest strategies to increase the rate of successful identifications when working with farm animal species. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Identification of Important Process Variables for Fiber Spinning of Protein Nanotubes Generated from Waste Materials

    DTIC Science & Technology

    2012-01-11

    nanotubes , which sold at the same current cost as carbon nanotubes , this would equate to a $788 million industry. In the USA, the potential to source eye...advantages over carbon nanotubes due to the ability to functionalized them 31. The nanotubes are a highly ordered, insoluble form of protein. Fibrils...1756 Identification of important process variables for fiber spinning of protein nanotubes generated from waste materials. Research Team (listed

  7. Identification and Characterization of Prostate Cancer Associated Protein Biomarkers Using High-Throughput Mass Spectrometry

    DTIC Science & Technology

    2007-12-01

    of PCa in cohort. AIM 3. Isolation and identification of the protein biomarkers. AIM 4. Development of MS-assisted immunoassay for PCa diagnostics... Immunoassays for PCa Diagnostics. We have previously identified biomarker protein/peptides that comprise disease- specific signature profiles...gray area), would be tested using large sample sets on MALDI and SELDI-based immunoassays using sample cohorts from Dr. Ian Thompson. Data

  8. Odor Identification Screening Improves Diagnostic Classification in Incipient Alzheimer’s Disease

    PubMed Central

    Quarmley, Megan; Moberg, Paul J.; Mechanic-Hamilton, Dawn; Kabadi, Sushila; Arnold, Steven E.; Wolk, David A.; Roalf, David R.

    2017-01-01

    Background Measurements of olfaction may serve as useful biomarkers of incipient dementia. Here we examine the improvement in diagnostic accuracy of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) when assessing both cognitive functioning and odor identification. Objective To determine the utility of odor identification as a supplementary screening test in incipient AD. Methods Sniffin’ Sticks Odor Identification Test (SS-OIT) and the Montreal Cognitive Assessment (MoCA) were administered in 262 AD, 174 MCI [150 amnestic (aMCI), and 24 non-amnestic (naMCI)], and 292 healthy older adults (HOA). Results Odor identification scores were higher in HOA relative to MCI or AD groups, and MCI outperformed AD. Odor identification scores were higher in aMCI single domain than aMCI multiple domain. Complementing MoCA scores with the SS-OIT significantly improved diagnostic accuracy of individuals with AD and MCI, including within MCI subgroups. Discussion Odor identification is a useful supplementary screening tool that provides additional information relevant for clinical categorization of AD and MCI, including those who are at highest risk to convert to AD. PMID:27886011

  9. Text Mining Improves Prediction of Protein Functional Sites

    PubMed Central

    Cohn, Judith D.; Ravikumar, Komandur E.

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388

  10. Application of particle swarm optimization for improving the identification of image objects

    NASA Astrophysics Data System (ADS)

    Chiu, Nan-Hsing; Pu, Chang-En; Lin, Pei-Da; Wang, Shu-Shian

    2012-04-01

    Flight safety is very important issue for aviation industries. Analyzing the flight accidents on the basis of 2-dimensional image is hardly to illustrate the complex injuries of passengers in the flight cabin. However, how to illustrate the flight accident is a challenge from 2-dimensional space to 3-dimensional space. This study proposes a particle swarm optimization approach for improving the identification of objects from 2-dimensional image. The recognition results provide the information for building 3-dimensional systems for flight accident investigators. The experiments also show that it is a feasible approach for improving the identification of image objects.

  11. Extraction and identification of membrane proteins from black widow spider eggs

    PubMed Central

    FU, Si-Ling; LI, Jiang-Lin; CHEN, Jia; WANG, Qiu-Ting; LI, Jian-Jun; WANG, Xian-Chun

    2015-01-01

    The eggs of oviparous animals are storehouses of maternal proteins required for embryonic development. Identification and molecular characterization of such proteins will provide much insight into the regulation of embryonic development. We previously analyzed soluble proteins in the eggs of the black widow spider (Latrodectus tredecimguttatus), and report here on the extraction and mass spectrometric identification of the egg membrane proteins. Comparison of different lysis solutions indicated that the highest extraction of the membrane proteins was achieved with 3%-4% sodium laurate in 40 mmol/L Tris-HCl buffer containing 4% CHAPS and 2% DTT (pH 7.4). SDS-PAGE combined with nLC-MS/MS identified 39 proteins with membrane-localization annotation, including those with structural, catalytic, and regulatory activities. Nearly half of the identified membrane proteins were metabolic enzymes involved in various cellular processes, particularly energy metabolism and biosynthesis, suggesting that relevant metabolic processes were active during the embryonic development of the eggs. Several identified cell membrane proteins were involved in the special structure formation and function of the egg cell membranes. The present proteomic analysis of the egg membrane proteins provides new insight into the molecular mechanisms of spider embryonic development. PMID:26228476

  12. 2-DE Separation and Identification of Oat (Avena sativa L.) Proteins and Their Prolamin Fractions.

    PubMed

    Nałęcz, Dorota; Szerszunowicz, Iwona; Dziuba, Marta; Minkiewicz, Piotr

    2017-01-01

    At present two-dimensional polyacrylamide gel electrophoresis (2-DE) is the most widely used proteomic tool, which enables simultaneous separation of even thousands of proteins with a high degree of resolution. The quality of 2-DE separation depends on the type of biological material used as a protein source. The presence of interfering compounds (e.g., phenols, as it is the fact in plant material including oat seeds) impedes 2-DE run. With the use of this technique it is possible to analyze the complex protein mixtures, characteristic protein fractions, as well as individual proteins.The purpose of this chapter is to describe the 2-DE technique (the separate stages of the first and the second dimension) for determining the oat protein composition (oat seed proteome), separation and preliminary identification of oat prolamin fractions. Electrophoretically separated proteins are identified on the basis of pI markers (identifying the location of both ends of an IPG strip) and on 2D SDS-PAGE standards. The gel images of oat proteins are analyzed with the help of ImageMaster 2D Platinum 6.0 program (Amersham Bioscience, part of GE Healthcare, Uppsala, Sweden). It allows finding unique spot identifiers for the occurrence of oat prolamin fractions in oat total proteins. The characteristic spots of similar shape and intensity (anchoring spots) and characteristic groups of spots can be searched for the purpose of identification.

  13. Identification of proteins interacting with ammodytoxins in Vipera ammodytes ammodytes venom by immuno-affinity chromatography.

    PubMed

    Brgles, Marija; Kurtović, Tihana; Kovačič, Lidija; Križaj, Igor; Barut, Miloš; Lang Balija, Maja; Allmaier, Günter; Marchetti-Deschmann, Martina; Halassy, Beata

    2014-01-01

    In order to perform their function, proteins frequently interact with other proteins. Various methods are used to reveal protein interacting partners, and affinity chromatography is one of them. Snake venom is composed mostly of proteins, and various protein complexes in the venom have been found to exhibit higher toxicity levels than respective components separately. Complexes can modulate envenomation activity of a venom and/or potentiate its effect. Our previous data indicate that the most toxic components of the Vipera ammodytes ammodytes (Vaa) venom isolated so far-ammodytoxins (Atxs)-are contributing to the venom's toxicity only moderately; therefore, we aimed to explore whether they have some interacting partner(s) potentiating toxicity. For screening of possible interactions, immuno-affinity chromatography combined with identification by mass spectrometry was used. Various chemistries (epoxy, carbonyldiimidazole, ethylenediamine) as well as protein G functionality were used to immobilize antibodies on monolith support, a Convective Interaction Media disk. Monoliths have been demonstrated to better suit the separation of large biomolecules. Using such approach, several proteins were indicated as potential Atx-binding proteins. Among these, the interaction of Atxs with a Kunitz-type inhibitor was confirmed by far-Western dot-blot and surface plasmon resonance measurement. It can be concluded that affinity chromatography on monolithic columns combined with mass spectrometry identification is a successful approach for screening of protein interactions and it resulted with detection of the interaction of Atx with Kunitz-type inhibitor in Vaa venom for the first time.

  14. Retinal Identification Based on an Improved Circular Gabor Filter and Scale Invariant Feature Transform

    PubMed Central

    Meng, Xianjing; Yin, Yilong; Yang, Gongping; Xi, Xiaoming

    2013-01-01

    Retinal identification based on retinal vasculatures in the retina provides the most secure and accurate means of authentication among biometrics and has primarily been used in combination with access control systems at high security facilities. Recently, there has been much interest in retina identification. As digital retina images always suffer from deformations, the Scale Invariant Feature Transform (SIFT), which is known for its distinctiveness and invariance for scale and rotation, has been introduced to retinal based identification. However, some shortcomings like the difficulty of feature extraction and mismatching exist in SIFT-based identification. To solve these problems, a novel preprocessing method based on the Improved Circular Gabor Transform (ICGF) is proposed. After further processing by the iterated spatial anisotropic smooth method, the number of uninformative SIFT keypoints is decreased dramatically. Tested on the VARIA and eight simulated retina databases combining rotation and scaling, the developed method presents promising results and shows robustness to rotations and scale changes. PMID:23873409

  15. Web and database software for identification of intact proteins using "top down" mass spectrometry.

    PubMed

    Taylor, Gregory K; Kim, Yong-Bin; Forbes, Andrew J; Meng, Fanyu; McCarthy, Ryan; Kelleher, Neil L

    2003-08-15

    For the identification and characterization of proteins harboring posttranslational modifications (PTMs), a "top down" strategy using mass spectrometry has been forwarded recently but languishes without tailored software widely available. We describe a Web-based software and database suite called ProSight PTM constructed for large-scale proteome projects involving direct fragmentation of intact protein ions. Four main components of ProSight PTM are a database retrieval algorithm (Retriever), MySQL protein databases, a file/data manager, and a project tracker. Retriever performs probability-based identifications from absolute fragment ion masses, automatically compiled sequence tags, or a combination of the two, with graphical rendering and browsing of the results. The database structure allows known and putative protein forms to be searched, with prior or predicted PTM knowledge used during each search. Initial functionality is illustrated with a 36-kDa yeast protein identified from a processed cell extract after automated data acquisition using a quadrupole-FT hybrid mass spectrometer. A +142-Da delta(m) on glyceraldehyde-3-phosphate dehydrogenase was automatically localized between Asp90 and Asp192, consistent with its two cystine residues (149 and 153) alkylated by acrylamide (+71 Da each) during the gel-based sample preparation. ProSight PTM is the first search engine and Web environment for identification of intact proteins (https://prosightptm.scs.uiuc.edu/).

  16. THE IDENTIFICATION AND CHARACTERIZATION OF AN IGE-INDUCING PROTEIN IN METARHIZIUM ANISOPLIAE EXTRACT

    EPA Science Inventory

    The Identification and Characterization of an IgE-Inducing Protein in Metarhizium anisopliae Extract

    Marsha D.W. Ward1, Lisa B. Copeland1, Maura J. Donahue2, and Jody A. Shoemaker3
    1ORD, NHEERL, US EPA, RTP, NC; 2Oak Ridge Institute for Science and Education, Cincinnati...

  17. THE IDENTIFICATION AND CHARACTERIZATION OF AN IGE-INDUCING PROTEIN IN METARHIZIUM ANISOPLIAE EXTRACT

    EPA Science Inventory

    The Identification and Characterization of an IgE-Inducing Protein in Metarhizium anisopliae Extract

    Marsha D.W. Ward1, Lisa B. Copeland1, Maura J. Donahue2, and Jody A. Shoemaker3
    1ORD, NHEERL, US EPA, RTP, NC; 2Oak Ridge Institute for Science and Education, Cincinnati...

  18. Mass Spectrometric Identification of the Arginine and Lysine deficient Proline Rich Glutamine Rich Wheat Storage Proteins

    USDA-ARS?s Scientific Manuscript database

    Tandem mass spectrometry (MS/MS) of enzymatic digest has made possible identification of a wide variety of proteins and complex samples prepared by such techniques as RP-HPLC or 2-D gel electrophoresis. Success requires peptide fragmentation to be indicative of the peptide amino acid sequence. The f...

  19. Simulating Fatigue Cracks in Healthy Beam Models for Improved Identification

    NASA Astrophysics Data System (ADS)

    Cooley, Phillip E.; Slater, Joseph C.; Shiryayev, Oleg V.

    There is need for an automated Structural Health Monitoring (SHM) system capable of fatigue crack detection in bladed disks as current methods are slow, costly and imperfect. Prerequisite for such a system is a fast method for producing the necessary data libraries. In an effort to develop such a method for simulating nonlinear structural response, fatigue cracks in beams have been modeled by modifying the inputs to the structure rather than the structure model itself to produce a closed-form solution for the total response. Although the time savings are enormous, and the method has proven capable of correctly identifying fatigue cracks over an effective region in data generated by a more traditional bilinear model, additional refinement is needed. The method for calibrating the signature profiles used to identify fatigue cracks between methods is revisited and successfully improved. Existing signature profiles for the bilinear model are reproduced with higher resolution, and new features are observed. Different boundary conditions are evaluated with the new method and compared to published results. Although similar, there are still discrepancies that remain and will need to be investigated. Overall, the proposed method for modeling and identifying fatigue cracks in beams has been improved, but will require validation against physical experiments before being used on more complicated structures such as bladed disks.

  20. Improving Inpatients' Identification of Their Doctors: Use of FACE™ Cards

    PubMed Central

    Arora, Vineet M.; Schaninger, Caitlin; D'Arcy, Michael; Johnson, Julie K.; Humphrey, Holly J.; Woodruff, James N.; Meltzer, David

    2011-01-01

    Background Improving patients' ability to identify their inpatient physicians and understand their roles is vital to safe patient care. We designed picture cards to facilitate physician introductions. We assessed the effect of Feedback Care and Evaluation (FACE™) cards on patient: (1) ability to correctly identify their inpatient physicians, and (2) understanding of their roles. Methods In October 2006, team members introduced themselves with FACE™ cards, which included a photo and an explanation of their roles. During an inpatient interview research assistants asked patients to name their inpatient physicians and trainees, and rate their understanding of their physicians' roles. Results 1686 (80%) patients in the baseline period and 857 (67%) in the intervention period participated in the evaluation. With the FACE™ intervention, patients were significantly more likely to correctly identify at least one inpatient physician (attending, resident, or intern) [baseline 12.5% vs. intervention 21.1%; p<0.001]. Of the 181 patients who were able to correctly identify at least one inpatient physician in the intervention period, research assistants noted that 59% (n=107) had FACE™ cards visible in their rooms. Surprisingly, fewer patients rated their understanding of their physicians' roles as excellent or very good in the intervention period (45.6%) compared to the baseline period (55.3%) (p<0.001). Conclusions Although FACE™ cards improved patients' ability to identify their inpatient physicians, many patients still cannot identify their inpatient doctors. The FACE™ cards also served to highlight patients' misunderstanding of their physicians' roles. PMID:20043501

  1. Identification of proteins suppressing the functions of oncogenic phosphatase of regenerating liver 1 and 3

    PubMed Central

    Lee, Ju-Dong; Jung, Haiyoung; Min, Sang-Hyun

    2016-01-01

    The phosphatase of regenerating liver (PRL) family, including PRL-1, PRL-2, and PRL-3, comprises protein tyrosine phosphatases whose deregulation is associated with the tumorigenesis and metastasis of many types of cancer. However, the underlying mechanism is poorly understood. In this study, aiming to increase understanding of the molecular mechanisms underlying the functions of PRL-1 and PRL-3, a yeast two-hybrid system was employed to screen for their interacting proteins. Alignment with the NCBI BLAST database revealed 12 interactive proteins: Synaptic nuclear envelope protein 2, emerin, mannose 6-phosphate receptor-binding protein 1, low-density lipoprotein receptor-related protein 10, Rab acceptor 1, tumor protein D52-like 2, selectin P ligand (SELPLG), guanylate binding protein 1, transmembrane and ubiquitin-like domain-containing 2, NADH:ubiquinone oxidoreductase subunit B8, syndecan 4 and FK506-binding protein 8 (FKBP8). These proteins are associated with cell proliferation, apoptosis, immune response, cell fate specification and metabolic process in biological process categories, and involved in various signaling pathways, including Alzheimer's disease, Parkinson's disease, Huntington's disease, hypertrophic cardiomyopathy and cell adhesion molecules. Interactions of PRL-1 with the prey proteins SELPLG and FKBP8 were confirmed by immunoprecipitation or immunostaining. Furthermore, SELPLG and FKBP8 suppressed PRL-1− or PRL-3-mediated p53 activity. Identification of the proteins interacting with PRL family proteins may provide valuable information to better understand the mechanism of PRL-mediated signal transduction in cancer and other diverse diseases. PMID:27882103

  2. Learning representations for improved target identification, scene classification, and information fusion

    NASA Astrophysics Data System (ADS)

    Flenner, Arjuna; Culp, Michael; McGee, Ryan; Flenner, Jennifer; Garcia-Cardona, Cristina

    2015-05-01

    Object representation is fundamental to Automated Target Recognition (ATR). Many ATR approaches choose a basis, such as a wavelet or Fourier basis, to represent the target. Recently, advancements in Image and Signal processing have shown that object recognition can be improved if, rather than a assuming a basis, a database of training examples is used to learn a representation. We discuss learning representations using Non-parametric Bayesian topic models, and demonstrate how to integrate information from other sources to improve ATR. We apply the method to EO and IR information integration for vehicle target identification and show that the learned representation of the joint EO and IR information improves target identification by 4%. Furthermore, we demonstrate that we can integrate text and imagery data to direct the representation for mission specific tasks and improve performance by 8%. Finally, we illustrate integrating graphical models into representation learning to improve performance by 2%.

  3. Identification of leukemia cell surface proteins in clams

    SciTech Connect

    Reinisch, C.L.; Smolowitz, R.; Miosky, D. Marine Biological Lab., Woods Hole, MA )

    1988-09-01

    Soft-shell clams, Mya arenaria, develop leukemias which, in the advanced stages of disease, kill the host. The authors laboratory has developed an extensive panel of murine monoclonal antibodies to leukemia cells of Mya, and has used these powerful reagents to diagnose the disease with extreme accuracy. They have now ascertained that one membrane-associated protein of approximately 200kD is immunodominant. The function of this protein, regulation of its production and potential site of synthesis are being evaluated. Monoclonal antibodies have also permitted the exploration of the mechanism of leukemogensis. They have evaluated the specific staining pattern of one monoclonal antibody, and have concluded that at least one ontogenic source of leukemic cells may be connective tissue cells lining the sinusoids. Whether or not exposure to severely polluted sites such as New Bedford Harbor stimulates the export of immature hemocytes which then become transformed is at least one possibility amenable to testing using the monoclonal reagents.

  4. Identification of Proteins in the Exosporium of Bacillus Anthracis

    DTIC Science & Technology

    2004-01-01

    aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services , Directorate for...composi- tion of exosporium from spores of Bacillus cereus. J Bacteriol 101, 196–201. Mesnage, S., Couture -Tosi, E., Mock, M., Gounon, P. & Fouet, A...23, 1147–1155. Mignot, T., Mesnage, S., Couture -Tosi, E., Mock, M. & Fouet, A. (2002). Developmental switch of S-layer protein synthesis in Bacillus

  5. Identification of an additional protein involved in mannan biosynthesis

    PubMed Central

    Wang, Yan; Mortimer, Jennifer C; Davis, Jonathan; Dupree, Paul; Keegstra, Kenneth

    2013-01-01

    Galactomannans comprise a β-1,4-mannan backbone substituted with α-1,6-galactosyl residues. Genes encoding the enzymes that are primarily responsible for backbone synthesis and side-chain addition of galactomannans were previously identified and characterized. To identify additional genes involved in galactomannan biosynthesis, we previously performed deep EST profiling of fenugreek (Trigonella foenum-graecum L.) seed endosperm, which accumulates large quantities of galactomannans as a reserve carbohydrate during seed development. One of the candidate genes encodes a protein that is likely to be a glycosyltransferase. Because this protein is involved in mannan biosynthesis, we named it ‘mannan synthesis-related’ (MSR). Here, we report the characterization of a fenugreek MSR gene (TfMSR) and its two Arabidopsis homologs, AtMSR1 and AtMSR2. TfMSR was highly and specifically expressed in the endosperm. TfMSR, AtMSR1 and AtMSR2 proteins were all determined to be localized to the Golgi by fluorescence confocal microscopy. The level of mannosyl residues in stem glucomannans decreased by approximately 40% for Arabidopsis msr1 single T-DNA insertion mutants and by more than 50% for msr1 msr2 double mutants, but remained unchanged for msr2 single mutants. In addition, in vitro mannan synthase activity from the stems of msr1 single and msr1 msr2 double mutants also decreased. Expression of AtMSR1 or AtMSR2 in the msr1 msr2 double mutant completely or partially restored mannosyl levels. From these results, we conclude that the MSR protein is important for mannan biosynthesis, and offer some ideas about its role. PMID:22966747

  6. Latest methods of fluorescence-based protein crystal identification

    SciTech Connect

    Meyer, Arne; Betzel, Christian

    2015-01-28

    Fluorescence, whether intrinsic or by using trace fluorescent labeling, can be a powerful aid in macromolecule crystallization. Its use in screening for crystals is discussed here. Successful protein crystallization screening experiments are dependent upon the experimenter being able to identify positive outcomes. The introduction of fluorescence techniques has brought a powerful and versatile tool to the aid of the crystal grower. Trace fluorescent labeling, in which a fluorescent probe is covalently bound to a subpopulation (<0.5%) of the protein, enables the use of visible fluorescence. Alternatively, one can avoid covalent modification and use UV fluorescence, exploiting the intrinsic fluorescent amino acids present in most proteins. By the use of these techniques, crystals that had previously been obscured in the crystallization drop can readily be identified and distinguished from amorphous precipitate or salt crystals. Additionally, lead conditions that may not have been obvious as such under white-light illumination can be identified. In all cases review of the screening plate is considerably accelerated, as the eye can quickly note objects of increased intensity.

  7. First identification of proteins involved in motility of Mycoplasma gallisepticum.

    PubMed

    Indikova, Ivana; Vronka, Martin; Szostak, Michael P

    2014-10-17

    Mycoplasma gallisepticum, the most pathogenic mycoplasma in poultry, is able to glide over solid surfaces. Although this gliding motility was first observed in 1968, no specific protein has yet been shown to be involved in gliding. We examined M. gallisepticum strains and clonal variants for motility and found that the cytadherence proteins GapA and CrmA were required for gliding. Loss of GapA or CrmA resulted in the loss of motility and hemadsorption and led to drastic changes in the characteristic flask-shape of the cells. To identify further genes involved in motility, a transposon mutant library of M. gallisepticum was generated and screened for motility-deficient mutants, using a screening assay based on colony morphology. Motility-deficient mutants had transposon insertions in gapA and the neighbouring downstream gene crmA. In addition, insertions were seen in gene mgc2, immediately upstream of gapA, in two motility-deficient mutants. In contrast to the GapA/CrmA mutants, the mgc2 motility mutants still possessed the ability to hemadsorb. Complementation of these mutants with a mgc2-hexahistidine fusion gene restored the motile phenotype. This is the first report assigning specific M. gallisepticum proteins to involvement in gliding motility.

  8. Identification of membrane proteins mediating the interaction of human platelets

    PubMed Central

    Phillips, D; Jennings, L; Edwards, H

    1980-01-01

    Membrane glycoproteins that mediate platelet-platelet interactions were investigated by identifying those associated with the cytoskeletal structures from aggregated platelets. The cytoskeletal structures from washed platelets, thrombin-activated platelets (platelets incubated with thrombin in the presence of mM EDTA to prevent aggregation) and thrombin- aggregated platelets (platelets activated in the presence of mM Ca(++) were prepared by first treating platelet suspensions with 1 percent Triton X-100 and 5 mM EGTA and then isolating the insoluble residue by centrifugation. The readily identifiable structures in electron micrographs of the residue from washed platelets had the shape and dimensions of actin filaments. Analysis of this residue from washed platelets had the shape and dimensions of actin filaments. Analysis of this residue by SDS gel electrophoresis showed that it consisted primarily of three proteins: actin (mol wt = 43,000), myosin (mol wt = 200,000) and a high molecular weight polypeptide (mol wt = 255,000) which had properties indentical to actin-binding protein (filamin). When platelets are activated with thrombin in the presence of EDTA to prevent aggregation, there was a marked increase in the amount of insoluble precipitate in the subsequent Triton extraction. Transmission electron microscopy showed that this residue not only contained the random array of actin filaments as seen above, but also organized structures from individual platelets which appeared as balls of electron-dense filamentous material approximately 1mum in diameter. SDS polyacrylamide gel analysis of the Triton residue of activated platelets showed that this preparation contained more actin, myosin and actin-binding protein than that from washed platelets plus polypeptides with mol wt of 56,000 and 90,000 and other minor polypeptides. Thus, thrombin activation appeared to increase polymerization of actin in association with other cytoskeletal proteins into structures that

  9. Improving inpatients' identification of their doctors: use of FACE cards.

    PubMed

    Arora, Vineet M; Schaninger, Caitlin; D'Arcy, Michael; Johnson, Julie K; Humphrey, Holly J; Woodruff, James N; Meltzer, David O

    2009-12-01

    Improving patients' ability to identify their inpatient physicians and understand their roles is vital to safe patient care. Picture cards were designed to facilitate physician introductions. The effect of Feedback Care and Evaluation (FACE) cards on patients' ability to correctly identify their inpatient physicians and on patients understanding of physicians roles was assessed. In October 2006, team members introduced themselves with FACE cards, which included a photo and an explanation of their roles. During an inpatient interview, research assistants asked patients to name their inpatient physicians and trainees and to rate their understanding of their physicians' roles. Of 2,100 eligible patients, 1,686 (80%) patients participated in the baseline period, and 857 (67%) of the 1,278 patients in the intervention period participated in the evaluation. With the FACE intervention, patients were significantly more likely to correctly identify at least one inpatient physician (attending, resident, or intern; baseline 12.5% versus intervention 21.1%; p < .001). Of the 181 patients who were able to correctly identify at least one inpatient physician in the intervention period, research assistants noted that 59% (107) had FACE cards visible in their rooms. Surprisingly, fewer patients rated their understanding of their physicians' roles as excellent or very good in the intervention period (45.6%) compared with the baseline period (55.3%; p < .001). Although FACE cards improved patients ability to identify their inpatient physicians, many patients still could not identify their inpatient doctors. FACE cards may have served as a reminder to physicians to introduce themselves to their patients. The FACE cards also served to highlight patients' misunderstanding of their physicians' roles.

  10. Identification of proteins bound to a thioaptamer probe on a proteomics array

    SciTech Connect

    Wang He; Yang, Xianbin; Bowick, Gavin C.; Herzog, Norbert K.; Luxon, Bruce A.; Lomas, Lee O. . E-mail: lomas@ciphergen.com; Gorenstein, David G. . E-mail: dggorens@utmb.edu

    2006-09-01

    A rapid method to screen and identify unknown bound proteins to specific nucleic acid probes anchored on ProteinChip array surfaces from crude biological samples has been developed in this paper. It was demonstrated with screening specific binding proteins from LPS-stimulated mouse 70Z/3 pre-B cell nuclear extracts by direct coupling of thioaptamer XBY-S2 to the pre-activated ProteinChip array surfaces. With pre-fractionation of crude nuclear extracts by ion exchange method, specific 'on-chip' captured proteins have been obtained that were pure enough to do 'on-chip' digestion and the subsequent identification of the 'on-chip' bound proteins by microsequencing of the trypsin digested peptide fragments through tandem MS. Five mouse heterogeneous nuclear ribonucleoproteins (hnRNPs) A1, A2/B1, A3, A/B, and D0 were identified. To verify those bound hnRNPs, a novel thioaptamer/antibody sandwich assay provides highly sensitive and selective identification of proteins on ProteinChip arrays.

  11. Protein markers for identification of Yersinia pestis and their variation related to culture

    SciTech Connect

    Wunschel, David S.; Engelmann, Heather E.; Victry, Kristin D.; Clowers, Brian H.; Sorensen, Christina M.; Valentine, Nancy B.; Mahoney Fahey, Christine M.; Wietsma, Thomas W.; Wahl, Karen L.

    2013-12-11

    The detection of high consequence pathogens, such as Yersinia pestis, is well established in biodefense laboratories for bioterror situations. Laboratory protocols are well established using specified culture media and a growth temperature of 37 °C for expression of specific antigens. Direct detection of Y. pestis protein markers, without prior culture, depends on their expression. Unfortunately protein expression can be impacted by the culture medium which cannot be predicted ahead of time. Furthermore, higher biomass yields are obtained at the optimal growth temperature (i.e. 28 °C–30 °C) and therefore are more likely to be used for bulk production. Analysis of Y. pestis grown on several types of media at 30 °C showed that several protein markers were found to be differentially detected in different media. Analysis of the identified proteins against a comprehensive database provided an additional level of organism identification. Peptides corresponding to variable regions of some proteins could separate large groups of strains and aid in organism identification. This work illustrates the need to understand variability of protein expression for detection targets. The potential for relating expression changes of known proteins to specific media factors, even in nutrient rich and chemically complex culture medium, may provide the opportunity to draw forensic information from protein profiles.

  12. Identification of cardiac myofilament protein isoforms using multiple mass spectrometry based approaches.

    PubMed

    Kooij, Viola; Venkatraman, Vidya; Kirk, Jonathan A; Ubaida-Mohien, Ceereena; Graham, David R; Faber, Matthijs J; Van Eyk, Jennifer E

    2014-08-01

    The identification of protein isoforms in complex biological samples is challenging. We, therefore, used an MS approach to unambiguously identify cardiac myofilament protein isoforms based on the observation of a tryptic peptide consisting of a sequence unique to a particular isoform. Three different workflows were used to isolate and fractionate rat cardiac myofilament subproteomes. All fractions were analyzed on an LTQ-Orbitrap MS, proteins were identified using various search engines (MASCOT, X!Tandem, X!Tandem Kscore, and OMSSA) with results combined via PepArML Meta-Search engine, and a postsearch analysis was performed by MASPECTRAS. All MS data have been deposited in the ProteomeXchange with identifier PXD000874 (http://proteomecentral.proteomexchange.org/dataset/PXD000874). The combination of multiple workflows and search engines resulted in a larger number of nonredundant proteins identified than with individual methods. A total of 102 myofilament annotated proteins were observed overlapping in two or three of the workflows. Literature search for myofilament presence with manual validation of the MS spectra was carried out for unambiguous identification: ten cardiac myofilament and 17 cardiac myofilament-associated proteins were identified with 39 isoforms and subisoforms. We have identified multiple isoforms of myofilament proteins that are present in cardiac tissue using unique tryptic peptides. Changes in distribution of these protein isoforms under pathological conditions could ultimately allow for clinical diagnostics or as therapeutic targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Identification of Cardiac Myofilament Protein Isoforms Using Multiple Mass Spectrometry Based Approaches

    PubMed Central

    Kirk, Jonathan A.; Ubaida-Mohien, Ceereena; Graham, David R.; Faber, Matthijs J.; Van Eyk, Jennifer E.

    2014-01-01

    Purpose The identification of protein isoforms in complex biological samples is challenging. We, therefore, used a mass spectrometry (MS) approach to unambiguously identify cardiac myofilament protein isoforms based on the observation of a tryptic peptide consisting of a sequence unique to a particular isoform. Experimental design Three different workflows were used to isolate and fractionate rat cardiac myofilament subproteomes. All fractions were analyzed on an LTQ-Orbitrap MS, proteins were identified using various search engines (Mascot, X!Tandem, X!Tandem Kscore and OMSSA) with results combined via PepArML Meta-Search Engine, and a post-search analysis was performed by MASPECTRAS. Results The combination of multiple workflows and search engines resulted in a larger number of non-redundant proteins identified than with individual methods. A total of 102 myofilament annotated proteins were observed overlapping in two or three of the workflows. Literature search for myofilament presence with manual validation of the MS spectra was carried out for unambiguous identification: 10 cardiac myofilament and 17 cardiac myofilament-associated proteins were identified with 39 isoforms and sub-isoforms. Conclusion and clinical relevance We have identified multiple isoforms of myofilament proteins that are present in cardiac tissue using unique tryptic peptides. Changes in distribution of these protein isoforms under pathological conditions could ultimately allow for clinical diagnostics or as therapeutic targets. PMID:24974818

  14. Extraction methods of red blood cell membrane proteins for Multidimensional Protein Identification Technology (MudPIT) analysis.

    PubMed

    De Palma, Antonella; Roveri, Antonella; Zaccarin, Mattia; Benazzi, Louise; Daminelli, Simone; Pantano, Giorgia; Buttarello, Mauro; Ursini, Fulvio; Gion, Massimo; Mauri, Pier Luigi

    2010-08-13

    Since red blood cells (RBCs) lack nuclei and organelles, cell membrane is their main load-bearing component and, according to a dynamic interaction with the cytoskeleton compartment, plays a pivotal role in their functioning. Even if erythrocyte membranes are available in large quantities, the low abundance and the hydrophobic nature of cell membrane proteins complicate their purification and detection by conventional 2D gel-based proteomic approaches. So, in order to increase the efficiency of RBC membrane proteome identification, here we took advantage of a simple and reproducible membrane sub-fractionation method coupled to Multidimensional Protein Identification Technology (MudPIT). In addition, the adoption of a stringent RBC filtration strategy from the whole blood, permitted to remove exhaustively contaminants, such as platelets and white blood cells, and to identify a total of 275 proteins in the three RBC membrane fractions collected and analysed. Finally, by means of software for the elaboration of the great quantity of data obtained and programs for statistical analysis and protein classification, it was possible to determine the validity of the entire system workflow and to assign the proper sub-cellular localization and function for the greatest number of the identified proteins.

  15. Identification of a nuclear localization signal in the retinitis pigmentosa-mutated RP26 protein, ceramide kinase-like protein

    SciTech Connect

    Inagaki, Yuichi; Mitsutake, Susumu; Igarashi, Yasuyuki . E-mail: yigarash@pharm.hokudai.ac.jp

    2006-05-12

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. A mutation in a new ceramide kinase (CERK) homologous gene, named CERK-like protein (CERKL), was found to cause autosomal recessive retinitis pigmentosa (RP26). Here, we show a point mutation of one of two putative nuclear localization signal (NLS) sequences inhibited the nuclear localization of the protein. Furthermore, the tetra-GFP-tagged NLS, which cannot passively enter the nucleus, was observed not only in the nucleus but also in the nucleolus. Our results provide First evidence of the active nuclear import of CERKL and suggest that the identified NLS might be responsible for nucleolar retention of the protein. As recent studies have shown other RP-related proteins are localized in the nucleus or the nucleolus, our identification of NLS in CERKL suggests that CERKL likely plays important roles for retinal functions in the nucleus and the nucleolus.

  16. APoc: large-scale identification of similar protein pockets

    PubMed Central

    Gao, Mu; Skolnick, Jeffrey

    2013-01-01

    Motivation: Most proteins interact with small-molecule ligands such as metabolites or drug compounds. Over the past several decades, many of these interactions have been captured in high-resolution atomic structures. From a geometric point of view, most interaction sites for grasping these small-molecule ligands, as revealed in these structures, form concave shapes, or ‘pockets’, on the protein’s surface. An efficient method for comparing these pockets could greatly assist the classification of ligand-binding sites, prediction of protein molecular function and design of novel drug compounds. Results: We introduce a computational method, APoc (Alignment of Pockets), for the large-scale, sequence order-independent, structural comparison of protein pockets. A scoring function, the Pocket Similarity Score (PS-score), is derived to measure the level of similarity between pockets. Statistical models are used to estimate the significance of the PS-score based on millions of comparisons of randomly related pockets. APoc is a general robust method that may be applied to pockets identified by various approaches, such as ligand-binding sites as observed in experimental complex structures, or predicted pockets identified by a pocket-detection method. Finally, we curate large benchmark datasets to evaluate the performance of APoc and present interesting examples to demonstrate the usefulness of the method. We also demonstrate that APoc has better performance than the geometric hashing-based method SiteEngine. Availability and implementation: The APoc software package including the source code is freely available at http://cssb.biology.gatech.edu/APoc. Contact: skolnick@gatech.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23335017

  17. Identification of target proteins involved in cochlear otosclerosis.

    PubMed

    Richard, Céline; Doherty, Joni K; Fayad, Jose N; Cordero, Ana; Linthicum, Fred H

    2015-06-01

    Investigation of differential protein expression will provide clues to pathophysiology in otosclerosis. Otosclerosis is a bone remodeling disorder limited to the endochondral layer of the otic capsule within the temporal bone. Some authors have suggested an inflammatory etiology for otosclerosis resulting from persistent measles virus infection involving the otic capsule. Despite numerous genetic studies, implication of candidate genes in the otosclerotic process remains elusive. We employed liquid chromatography-mass spectrometry (LC-MS) analysis on formalin-fixed celloidin-embedded temporal bone tissues for postmortem investigation of otosclerosis. Proteomic analysis was performed using human temporal bones from a patient with severe otosclerosis and a control temporal bone. Sections were dissected under microscopy to remove otosclerotic lesions and normal otic capsule for proteomic analysis. Tandem 2D chromatography mass spectrometry was employed. Data analysis and peptide matching to FASTA human databases was done using SEQUEST and proteome discoverer software. TGFβ1 was identified in otosclerosis but not in the normal control temporal bone specimen. Aside from TGFβ1, many proteins and predicted cDNA-encoded proteins were observed, with implications in cell death and/or proliferation pathways, suggesting a possible role in otosclerotic bone remodeling. Immunostaining using TGFβ1 monoclonal revealed marked staining of the spongiotic otosclerotic lesions. Mechanisms involved in cochlear extension of otosclerosis are still unclear, but the implication of TGFβ1 is supported by the present proteomic data and immunostaining results. The established role of TGFβ1 in the chondrogenesis process supports the theory of a reaction targeting the globulae interossei within the otic capsule.

  18. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display

    PubMed Central

    Connor, Daniel O.; Zantow, Jonas; Hust, Michael; Bier, Frank F.; von Nickisch-Rosenegk, Markus

    2016-01-01

    Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae. PMID:26859666

  19. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display.

    PubMed

    Connor, Daniel O; Zantow, Jonas; Hust, Michael; Bier, Frank F; von Nickisch-Rosenegk, Markus

    2016-01-01

    Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.

  20. Proline brackets and identification of potential functional sites in proteins: toxins to therapeutics.

    PubMed

    Kini, R M

    1998-11-01

    Protein toxins induce their specific pharmacological effects through protein protein interaction. Identification of these protein-protein interaction sites could lead to prototypes of highly specific therapeutic agents. However, deciphering the structure function relationships of protein toxins and locating the functional sites is a difficult, tedious and cumbersome task. We recently developed a novel predictive method to identify potential protein protein interaction sites directly from the amino acid sequence of a protein (R. M. Kini and H. J. Evans (1996) FEBS Lett. 385, 81-86) based on the presence of proline residues, a common residue found predominantly in the flanking segments of protein-protein interaction sites (R. M. Kini and H. J. Evans (1996) Biochem. Biophys. Res. Commun. 212, 1115-1124). It is a simple and straight-forward method. This review describes the new method and its application to solve structure function relationships of protein toxins. The method is useful in identifying functional sites in toxins, despite the subtle and complex nature of their structure function relationships and saves significant amounts of time and money.

  1. Identification of rare slipknots in proteins and their implications for stability and folding.

    PubMed

    King, Neil P; Yeates, Eric O; Yeates, Todd O

    2007-10-12

    Among the thousands of known three-dimensional protein folds, only a few have been found whose backbones are in knotted configurations. The rarity of knotted proteins has important implications for how natural proteins reach their natively folded states. Proteins with such unusual features offer unique opportunities for studying the relationships between structure, folding, and stability. Here we report the identification of a unique slipknot feature in the fold of a well-known thermostable protein, alkaline phosphatase. A slipknot is created when a knot is formed by part of a protein chain, after which the backbone doubles back so that the entire structure becomes unknotted in a mathematical sense. Slipknots are therefore not detected by computational tests that look for knots in complete protein structures. A computational survey looking specifically for slipknots in the Protein Data Bank reveals a few other instances in addition to alkaline phosphatase. Unexpected similarities are noted among some of the proteins identified. In addition, two transmembrane proteins are found to contain slipknots. Finally, mutagenesis experiments on alkaline phosphatase are used to probe the contribution the slipknot feature makes to thermal stability. The trends and conserved features observed in these proteins provide new insights into mechanisms of protein folding and stability.

  2. Proteomic analysis of human aqueous humor using multidimensional protein identification technology

    PubMed Central

    Richardson, Matthew R.; Price, Marianne O.; Price, Francis W.; Pardo, Jennifer C.; Grandin, Juan C.; You, Jinsam; Wang, Mu

    2009-01-01

    Aqueous humor (AH) supports avascular tissues in the anterior segment of the eye, maintains intraocular pressure, and potentially influences the pathogenesis of ocular diseases. Nevertheless, the AH proteome is still poorly defined despite several previous efforts, which were hindered by interfering high abundance proteins, inadequate animal models, and limited proteomic technologies. To facilitate future investigations into AH function, the AH proteome was extensively characterized using an advanced proteomic approach. Samples from patients undergoing cataract surgery were pooled and depleted of interfering abundant proteins and thereby divided into two fractions: albumin-bound and albumin-depleted. Multidimensional Protein Identification Technology (MudPIT) was utilized for each fraction; this incorporates strong cation exchange chromatography to reduce sample complexity before reversed-phase liquid chromatography and tandem mass spectrometric analysis. Twelve proteins had multi-peptide, high confidence identifications in the albumin-bound fraction and 50 proteins had multi-peptide, high confidence identifications in the albumin-depleted fraction. Gene ontological analyses were performed to determine which cellular components and functions were enriched. Many proteins were previously identified in the AH and for several their potential role in the AH has been investigated; however, the majority of identified proteins were novel and only speculative roles can be suggested. The AH was abundant in anti-oxidant and immunoregulatory proteins as well as anti-angiogenic proteins, which may be involved in maintaining the avascular tissues. This is the first known report to extensively characterize and describe the human AH proteome and lays the foundation for future work regarding its function in homeostatic and pathologic states. PMID:20019884

  3. Improving identification of dijet resonances at hadron colliders.

    PubMed

    Izaguirre, Eder; Shuve, Brian; Yavin, Itay

    2015-01-30

    The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC.

  4. Improving Identification of Dijet Resonances at Hadron Colliders

    NASA Astrophysics Data System (ADS)

    Izaguirre, Eder; Shuve, Brian; Yavin, Itay

    2015-01-01

    The experimental detection of resonances has played a vital role in the development of subatomic physics. The overwhelming multijet backgrounds at the Large Hadron Collider (LHC) necessitate the invention of new techniques to identify resonances decaying into a pair of partons. In this Letter we introduce an observable that achieves a significant improvement in several key measurements at the LHC: the Higgs boson decay to a pair of b quarks; W±/Z0 vector-boson hadronic decay; and extensions of the standard model (SM) with a new hadronic resonance. Measuring the Higgs decay to b quarks is a central test of the fermion mass generation mechanism in the SM, whereas the W±/Z0 production rates are important observables of the electroweak sector. Our technique is effective in large parts of phase space where the resonance is mildly boosted and is particularly well suited for experimental searches dominated by systematic uncertainties, which is true of many analyses in the high-luminosity running of the LHC.

  5. Improving the efficiency of attractor cycle identification in Boolean networks

    NASA Astrophysics Data System (ADS)

    Irons, David James

    2006-05-01

    Boolean network models provide a computationally efficient way of studying dynamical processes on networks and are most frequently used to study the dynamical properties of genetic regulatory networks. Presented here is a new and more efficient method for finding every attractor cycle (stable state) in a Boolean network. The critical part of this new method can be executed in polynomial time (O(v3)), as opposed to the exponential time taken for the standard exhaustive search (O(v2v)). The efficiency of this new method is dependent on the topology of the underlying network. In particular, efficiency significantly improves when the out-degree distribution is skewed, such as with a power law distribution. The findings also provide added insight into the dynamics on power law networks and make the method more applicable to biological networks, which are believed to have this property. This method can also be extended to some non-Boolean discrete models (e.g. cellular automata).

  6. Improved packing of protein side chains with parallel ant colonies

    PubMed Central

    2014-01-01

    Introduction The accurate packing of protein side chains is important for many computational biology problems, such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the protein structures with correct side chains. Methods We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy functions and generates protein side-chain conformations with the lowest energies jointly determined by the various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer minimisation, which reasonably improved the discreteness of the rotamer library. Results We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442 proteins, 87.19% of X1 and 77.11% of X12 angles were predicted correctly within 40° of the X-ray positions. We compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains. Conclusions This parallel approach combines various sources of searching intelligence and energy

  7. Improved packing of protein side chains with parallel ant colonies.

    PubMed

    Quan, Lijun; Lü, Qiang; Li, Haiou; Xia, Xiaoyan; Wu, Hongjie

    2014-01-01

    The accurate packing of protein side chains is important for many computational biology problems, such as ab initio protein structure prediction, homology modelling, and protein design and ligand docking applications. Many of existing solutions are modelled as a computational optimisation problem. As well as the design of search algorithms, most solutions suffer from an inaccurate energy function for judging whether a prediction is good or bad. Even if the search has found the lowest energy, there is no certainty of obtaining the protein structures with correct side chains. We present a side-chain modelling method, pacoPacker, which uses a parallel ant colony optimisation strategy based on sharing a single pheromone matrix. This parallel approach combines different sources of energy functions and generates protein side-chain conformations with the lowest energies jointly determined by the various energy functions. We further optimised the selected rotamers to construct subrotamer by rotamer minimisation, which reasonably improved the discreteness of the rotamer library. We focused on improving the accuracy of side-chain conformation prediction. For a testing set of 442 proteins, 87.19% of X1 and 77.11% of X12 angles were predicted correctly within 40° of the X-ray positions. We compared the accuracy of pacoPacker with state-of-the-art methods, such as CIS-RR and SCWRL4. We analysed the results from different perspectives, in terms of protein chain and individual residues. In this comprehensive benchmark testing, 51.5% of proteins within a length of 400 amino acids predicted by pacoPacker were superior to the results of CIS-RR and SCWRL4 simultaneously. Finally, we also showed the advantage of using the subrotamers strategy. All results confirmed that our parallel approach is competitive to state-of-the-art solutions for packing side chains. This parallel approach combines various sources of searching intelligence and energy functions to pack protein side chains

  8. X!TandemPipeline: A Tool to Manage Sequence Redundancy for Protein Inference and Phosphosite Identification.

    PubMed

    Langella, Olivier; Valot, Benoît; Balliau, Thierry; Blein-Nicolas, Mélisande; Bonhomme, Ludovic; Zivy, Michel

    2017-02-03

    X!TandemPipeline is a software designed to perform protein inference and to manage redundancy in the results of phosphosite identification by database search. It provides the minimal list of proteins or phosphosites that are present in a set of samples using grouping algorithms based on the principle of parsimony. Regarding proteins, a two-level classification is performed, where groups gather proteins sharing at least one peptide and subgroups gather proteins that are not distinguishable according to the identified peptides. Regarding phosphosites, an innovative approach based on the concept of phosphoisland is used to gather overlapping phosphopeptides. The graphical interface of X!TandemPipeline allows the users to launch X!tandem identification, to inspect spectra and to manually validate their assignment to peptides, to launch the grouping program, and to visualize elementary data as well as grouping and redundancy information. Identification results obtained from other search engines can also be processed. X!TandemPipeline results can be exported as ready-to-use tabulated files or as XML files that can be directly used by the PROTICdb database or by the MassChroQ quantification software. X!TandemPipeline runs fast, is easy to use, and can process hundreds of samples simultaneously. It is freely available under the GNU General Public License v3.0 at http://pappso.inra.fr/bioinfo/xtandempipeline/ .

  9. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-04

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.

  10. NMR identification of protein surfaces using paramagnetic probes

    SciTech Connect

    Petros, A.M.; Mueller, L.; Kopple, K.D. )

    1990-10-01

    Paramagnetic agents produce line broadening and thus cancellation of anti phase cross-peak components in two-dimensional correlated nulcear magnetic resonance spectra. The specificity of this effect was examined to determine its utility for identifying surface residues of proteins. Ubiquitin and hen egg white lysozyme, for which X-ray crystal structures and proton NMR assignments are available, served as test cases. Two relaxation reagents were employed, 4-hydroxy-2,2,6,6-tetramethylpiperidinyl-1 oxy and the gadolinium(III) diethylenetriaminepentaacetate complex ion. Correlations were sought between reagent-produced decreases of side-chain cross-peak volumes in double-quantum-filtered proton correlation (DQF-COSY) spectra and the solvent-exposed side-chain surface area of the corresponding residues. The lanthanide complex produced strong effects ascribable to association with carboxylate groups but was not otherwise useful in delineating surface residues. The nitroxyl, on the other hand, produced clear distinctions among the Val, Leu, and Ile residues that generally paralleled side-chain exposure in the crystal, although consistent correlations were not observed with residues of other types. Although an instance of possible specific protein-nitroxyl association was noted, the nitroxyl appears to be a tool for identifying hydrophobic surface residues.

  11. Identification of Sequence Similarities among Isomerization Hotspots in Crystallin Proteins

    PubMed Central

    2017-01-01

    The eye lens crystallins represent an ideal target for studying the effects of aging on protein structure. Herein we examine separately the water-soluble (WS) and water-insoluble (WI) crystallin fractions and identify sites of isomerization and epimerization. Both collision-induced dissociation and radical-directed dissociation are needed for detection of these non-mass-shifting post-translational modifications. Isomerization levels differ significantly between the WS and the WI fractions from sheep, pig, and cow eye lenses. Residues that are most susceptible to isomerization are identified site-specifically and are found to reside in structurally disordered regions. However, isomerization in structured domains, although less common, often yields more dramatic effects on solubility. Numerous isomerization hotspots were also identified and occur in regions with aspartic acid and serine repeats. For example, 128KMEIVDDDVPSLW140 in βB3 crystallin contains three sequential aspartic acid residues and is isomerized heavily in the WI fractions, while it is not modified at all in the WS fractions. Potential causes for enhanced isomerization at sites with acidic residue repeats are presented. The importance of acidic residue repeats extends beyond the lens, as they are found in many other long-lived proteins associated with disease. PMID:28234481

  12. Identification, nomenclature, and evolutionary relationships of mitogen-activated protein kinase (MAPK) genes in soybean.

    PubMed

    Neupane, Achal; Nepal, Madhav P; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S; Reese, R Neil; Benson, Benjamin V

    2013-01-01

    Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution.

  13. Identification, Nomenclature, and Evolutionary Relationships of Mitogen-Activated Protein Kinase (MAPK) Genes in Soybean

    PubMed Central

    Neupane, Achal; Nepal, Madhav P.; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S.; Reese, R. Neil; Benson, Benjamin V.

    2013-01-01

    Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution. PMID:24137047

  14. Cell surface proteins of Candida albicans: Preparation of extracts and improved detection of proteins

    PubMed Central

    Vediyappan, Govindsamy; Bikandi, Joseba; Braley, Richard; Chaffin, W. LaJean

    2016-01-01

    We have reexamined the detection of the components in a β-mercaptoethanol and ammonium carbonate buffer extract of surface proteins of Candida albicans and the effects of postextraction manipulation of the extract on recovery of extract components. Following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), preferential staining of some moieties was observed when bands detected by a commercial silver staining method or a Coomassie Brilliant Blue (CBB) staining method were compared. Additional protein bands that were either not detected or poorly detected by a single method alone were readily observed by a combined silver-CBB staining method. This method also detected alterations in the profile of extracted proteins from organisms grown in the presence of galactose or hemoglobin rather than glucose. Two-dimensional electrophoresis (2-DE) gel analysis by double stain showed better detection of several acidic and basic protein spots. Less than 10% of the extract as determined by a dye-binding assay was lost following either or both lyophilization and dialysis. These manipulations of the extract did not change the protein profile following SDS-PAGE as determined by the combined staining or Western blot analysis of a 70 kDa protein. These observations suggest that soluble cell wall proteins are not unusually sensitive to procedures routinely used in protein purification. In addition, these studies suggest that a modified staining method that combines both silver stain and CBB stain provides improved detection of cell wall proteins compared to either method alone. PMID:10768782

  15. Can computationally designed protein sequences improve secondary structure prediction?

    PubMed

    Bondugula, Rajkumar; Wallqvist, Anders; Lee, Michael S

    2011-05-01

    Computational sequence design methods are used to engineer proteins with desired properties such as increased thermal stability and novel function. In addition, these algorithms can be used to identify an envelope of sequences that may be compatible with a particular protein fold topology. In this regard, we hypothesized that sequence-property prediction, specifically secondary structure, could be significantly enhanced by using a large database of computationally designed sequences. We performed a large-scale test of this hypothesis with 6511 diverse protein domains and 50 designed sequences per domain. After analysis of the inherent accuracy of the designed sequences database, we realized that it was necessary to put constraints on what fraction of the native sequence should be allowed to change. With mutational constraints, accuracy was improved vs. no constraints, but the diversity of designed sequences, and hence effective size of the database, was moderately reduced. Overall, the best three-state prediction accuracy (Q(3)) that we achieved was nearly a percentage point improved over using a natural sequence database alone, well below the theoretical possibility for improvement of 8-10 percentage points. Furthermore, our nascent method was used to augment the state-of-the-art PSIPRED program by a percentage point.

  16. Identification of Bacterial Target Proteins for the Salicylidene Acylhydrazide Class of Virulence-blocking Compounds*

    PubMed Central

    Wang, Dai; Zetterström, Caroline E.; Gabrielsen, Mads; Beckham, Katherine S. H.; Tree, Jai J.; Macdonald, Sarah E.; Byron, Olwyn; Mitchell, Tim J.; Gally, David L.; Herzyk, Pawel; Mahajan, Arvind; Uvell, Hanna; Burchmore, Richard; Smith, Brian O.; Elofsson, Mikael; Roe, Andrew J.

    2011-01-01

    A class of anti-virulence compounds, the salicylidene acylhydrazides, has been widely reported to block the function of the type three secretion system of several Gram-negative pathogens by a previously unknown mechanism. In this work we provide the first identification of bacterial proteins that are targeted by this group of compounds. We provide evidence that their mode of action is likely to result from a synergistic effect arising from a perturbation of the function of several conserved proteins. We also examine the contribution of selected target proteins to the pathogenicity of Yersinia pseudotuberculosis and to expression of virulence genes in Escherichia coli O157. PMID:21724850

  17. Identification of Protein-Protein Interactions and Topologies in Living Cells with Chemical Cross-linking and Mass Spectrometry*S⃞

    PubMed Central

    Zhang, Haizhen; Tang, Xiaoting; Munske, Gerhard R.; Tolic, Nikola; Anderson, Gordon A.; Bruce, James E.

    2009-01-01

    We present results from a novel strategy that enables concurrent identification of protein-protein interactions and topologies in living cells without specific antibodies or genetic manipulations for immuno-/affinity purifications. The strategy consists of (i) a chemical cross-linking reaction: intact cell labeling with a novel class of chemical cross-linkers, protein interaction reporters (PIRs); (ii) two-stage mass spectrometric analysis: stage 1 identification of PIR-labeled proteins and construction of a restricted database by two-dimensional LC/MSMS and stage 2 analysis of PIR-labeled peptides by multiplexed LC/FTICR-MS; and (iii) data analysis: identification of cross-linked peptides and proteins of origin using accurate mass and other constraints. The primary advantage of the PIR approach and distinction from current technology is that protein interactions together with topologies are detected in native biological systems by stabilizing protein complexes with new covalent bonds while the proteins are present in the original cellular environment. Thus, weak or transient interactions or interactions that require properly folded, localized, or membrane-bound proteins can be labeled and identified through the PIR approach. This strategy was applied to Shewanella oneidensis bacterial cells, and initial studies resulted in identification of a set of protein-protein interactions and their contact/binding regions. Furthermore most identified interactions involved membrane proteins, suggesting that the PIR approach is particularly suited for studies of membrane protein-protein interactions, an area under-represented with current widely used approaches. PMID:18936057

  18. Metabolic engineering of Escherichia coli to improve recombinant protein production.

    PubMed

    Liu, Min; Feng, Xinjun; Ding, Yamei; Zhao, Guang; Liu, Huizhou; Xian, Mo

    2015-12-01

    Escherichia coli is one of the most widely used strains for recombinant protein production. However, obstacles also exist in both academic researches and industrial applications, such as the metabolic burden, the carbon source waste, and the cells' physiological deterioration. This article reviews recent approaches for improving recombinant protein production in metabolic engineering, including workhorse selection, stress factor application, and carbon flux regulation. Selecting a suitable host is the first key point for recombinant protein production. In general, it all depends on characteristics of the strains and the target proteins. It will be triggered cells physiological deterioration when the medium is significantly different from the cell's natural environment. Coexpression of stress factors can help proteins to fold into their native conformation. Carbon flux regulation is a direct approach for redirecting more carbon flux toward the desirable pathways and products. However, some undesirable consequences are usually found in metabolic engineering, such as glucose transport inhibition, cell growth retardation, and useless metabolite accumulation. More efficient regulators and platform cell factories should be explored to meet a variety of production demands.

  19. An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology.

    PubMed

    Jain, Shobhit; Bader, Gary D

    2010-11-15

    Semantic similarity measures are useful to assess the physiological relevance of protein-protein interactions (PPIs). They quantify similarity between proteins based on their function using annotation systems like the Gene Ontology (GO). Proteins that interact in the cell are likely to be in similar locations or involved in similar biological processes compared to proteins that do not interact. Thus the more semantically similar the gene function annotations are among the interacting proteins, more likely the interaction is physiologically relevant. However, most semantic similarity measures used for PPI confidence assessment do not consider the unequal depth of term hierarchies in different classes of cellular location, molecular function, and biological process ontologies of GO and thus may over-or under-estimate similarity. We describe an improved algorithm, Topological Clustering Semantic Similarity (TCSS), to compute semantic similarity between GO terms annotated to proteins in interaction datasets. Our algorithm, considers unequal depth of biological knowledge representation in different branches of the GO graph. The central idea is to divide the GO graph into sub-graphs and score PPIs higher if participating proteins belong to the same sub-graph as compared to if they belong to different sub-graphs. The TCSS algorithm performs better than other semantic similarity measurement techniques that we evaluated in terms of their performance on distinguishing true from false protein interactions, and correlation with gene expression and protein families. We show an average improvement of 4.6 times the F1 score over Resnik, the next best method, on our Saccharomyces cerevisiae PPI dataset and 2 times on our Homo sapiens PPI dataset using cellular component, biological process and molecular function GO annotations.

  20. An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology

    PubMed Central

    2010-01-01

    Background Semantic similarity measures are useful to assess the physiological relevance of protein-protein interactions (PPIs). They quantify similarity between proteins based on their function using annotation systems like the Gene Ontology (GO). Proteins that interact in the cell are likely to be in similar locations or involved in similar biological processes compared to proteins that do not interact. Thus the more semantically similar the gene function annotations are among the interacting proteins, more likely the interaction is physiologically relevant. However, most semantic similarity measures used for PPI confidence assessment do not consider the unequal depth of term hierarchies in different classes of cellular location, molecular function, and biological process ontologies of GO and thus may over-or under-estimate similarity. Results We describe an improved algorithm, Topological Clustering Semantic Similarity (TCSS), to compute semantic similarity between GO terms annotated to proteins in interaction datasets. Our algorithm, considers unequal depth of biological knowledge representation in different branches of the GO graph. The central idea is to divide the GO graph into sub-graphs and score PPIs higher if participating proteins belong to the same sub-graph as compared to if they belong to different sub-graphs. Conclusions The TCSS algorithm performs better than other semantic similarity measurement techniques that we evaluated in terms of their performance on distinguishing true from false protein interactions, and correlation with gene expression and protein families. We show an average improvement of 4.6 times the F1 score over Resnik, the next best method, on our Saccharomyces cerevisiae PPI dataset and 2 times on our Homo sapiens PPI dataset using cellular component, biological process and molecular function GO annotations. PMID:21078182

  1. Improvement of protein secondary structure prediction using binary word encoding.

    PubMed

    Kawabata, T; Doi, J

    1997-01-01

    We propose a binary word encoding to improve the protein secondary structure prediction. A binary word encoding encodes a local amino acid sequence to a binary word, which consists of 0 or 1. We use an encoding function to map an amino acid to 0 or 1. Using the binary word encoding, we can statistically extract the multiresidue information, which depends on more than one residue. We combine the binary word encoding with the GOR method, its modified version, which shows better accuracy, and the neural network method. The binary word encoding improves the accuracy of GOR by 2.8%. We obtain similar improvement when we combine this with the modified GOR method and the neural network method. When we use multiple sequence alignment data, the binary word encoding similarly improves the accuracy. The accuracy of our best combined method is 68.2%. In this paper, we only show improvement of the GOR and neural network method, we cannot say that the encoding improves the other methods. But the improvement by the encoding suggests that the multiresidue interaction affects the formation of secondary structure. In addition, we find that the optimal encoding function obtained by the simulated annealing method relates to nonpolarity. This means that nonpolarity is important to the multiresidue interaction.

  2. Identification of whey proteins in tradional Bulgarian yougurt.

    PubMed

    Ivanova, I; Antonova-Nikolova, S; Iliev, I

    2001-01-01

    Functional foods hold a great promise for future trends in human nutrition. Consumption of milk and milk products have a pronounced probiotic effects together with the expected modification of allergenic properties of milk due to the process of fermentation. The proteolytic system of lactic acid bacteria consists a cell wall bound proteinase and several intracellular peptidases, and can contribute to the liberation of bioactive peptides. Food-derived bioactive peptides are claimed to be health enhancing components which can be used for functional food. In our study we focused our attention on beta-lactoglobulin and alpha-lactalbumin in early stages of yogurt fermentation of traditional Bulgarian products. Biochemical techniques were used to measure the concentration of these two whey proteins during fermentation. At a result of the done study alteration in the concentration of beta-lactoglobulin and alpha-lactalbumin were detected. The studied proteolytic activity of the strains, used in the fermentation process confirmed the received results.

  3. Identification of bitter peptides in whey protein hydrolysate.

    PubMed

    Liu, Xiaowei; Jiang, Deshou; Peterson, Devin G

    2014-06-25

    Bitterness of whey protein hydrolysates (WPH) can negatively affect product quality and limit utilization in food and pharmaceutical applications. Four main bitter peptides were identified in a commercial WPH by means of sensory-guided fractionation techniques that included ultrafiltration and offline two-dimensional reverse phase chromatography. LC-TOF-MS/MS analysis revealed the amino acid sequences of the bitter peptides were YGLF, IPAVF, LLF, and YPFPGPIPN that originated from α-lactalbumin, β-lactoglobulin, serum albumin, and β-casein, respectively. Quantitative LC-MS/MS analysis reported the concentrations of YGLF, IPAVF, LLF, and YPFPGPIPN to be 0.66, 0.58, 1.33, and 2.64 g/kg powder, respectively. Taste recombination analysis of an aqueous model consisting of all four peptides was reported to explain 88% of the bitterness intensity of the 10% WPH solution.

  4. Identification and characterization of antioxidant peptides from chickpea protein hydrolysates.

    PubMed

    Torres-Fuentes, Cristina; Contreras, María del Mar; Recio, Isidra; Alaiz, Manuel; Vioque, Javier

    2015-08-01

    Oxidative stress due to the excess of radical oxygen species (ROS) contribute to the development of different diseases. The use of antioxidants may prevent the development of these diseases by counteracting ROS levels. There is an increasing interest in natural antioxidants as they are safer for consumers than synthetic antioxidants. In this work, reducing power, free radical scavenging and cellular antioxidant activities of chickpea peptides fractions have been investigated. Peptide sequences included in fractions with antioxidant activity were identified. Main sequences, ALEPDHR, TETWNPNHPEL, FVPH and SAEHGSLH, corresponded to legumin, the main seed protein. Most peptides contained histidine, which has shown antioxidant activity. Two peptides also included tryptophan and phenylalanine, in which the phenolic group could also serve as hydrogen donor. These results show that legumin is a source of antioxidant peptides of high interest for food and pharmaceutical industries to develop new nutraceuticals and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Identification of Protein Succination as a Novel Modification of Tubulin

    PubMed Central

    Piroli, Gerardo G.; Manuel, Allison M.; Walla, Michael D.; Jepson, Matthew J.; Brock, Jonathan W.C.; Rajesh, Mathur P.; Tanis, Ross M.; Cotham, William E.; Frizzell, Norma

    2015-01-01

    Protein succination is a stable post-translational modification that occurs when fumarate reacts with cysteine residues to generate S-(2-succino)cysteine (2SC). We demonstrate that both alpha (α) and beta (β) tubulin are increasingly modified by succination in 3T3-L1 adipocytes and in the adipose tissue of db/db mice. Incubation of purified tubulin from porcine brain with fumarate (50 mM) or the pharmacological compound dimethylfumarate (DMF, 500 μM) inhibited polymerization up to 35% and 59%, respectively. Using mass spectrometry we identified Cys347α, Cys376α, Cys12β and Cys303β as sites of succination in porcine brain tubulin and the relative abundance of succination at these cysteines increased in association with fumarate concentration. The increase in succination after incubation with fumarate altered tubulin recognition by an anti-α-tubulin antibody. Succinated tubulin in adipocytes cultured in high glucose vs. normal glucose also had reduced reactivity with the anti-αtubulin antibody; suggesting that succination may interfere with tubulin:protein interactions. DMF reacted rapidly with 11 of the 20 cysteines in the αβ tubulin dimer, decreased the number of free sulfhydryls and inhibited the proliferation of 3T3-L1 fibroblasts. Our data suggests that inhibition of tubulin polymerization is an important, undocumented mechanism of action of DMF. Taken together, our results demonstrate that succination is a novel post-translational modification of tubulin and suggest that extensive modification by fumarate, either physiologically or pharmacologically, may alter microtubule dynamics. PMID:24909641

  6. Surface protein composition of Aeromonas hydrophila strains virulent for fish: identification of a surface array protein

    SciTech Connect

    Dooley, J.S.G.; Trust, T.J.

    1988-02-01

    The surface protein composition of members of a serogroup of Aeromonas hydrophila was examined. Immunoblotting with antiserum raised against formalinized whole cells of A. hydrophila TF7 showed a 52K S-layer protein to be the major surface protein antigen, and impermeant Sulfo-NHS-Biotin cell surface labeling showed that the 52K S-layer protein was the only protein accessible to the Sulfo-NHS-Biotin label and effectively masked underlying outer membrane (OM) proteins. In its native surface conformation the 52K S-layer protein was only weakly reactive with a lactoperoxidase /sup 125/I surface iodination procedure. A UV-induced rough lipopolysaccharide (LPS) mutant of TF7 was found to produce an intact S layer, but a deep rough LPS mutant was unable to maintain an array on the cell surface and excreted the S-layer protein into the growth medium, indicating that a minimum LPS oligosaccharide size required for A. hydrophila S-layer anchoring. The native S layer was permeable to /sup 125/I in the lactoperoxidase radiolabeling procedure, and two major OM proteins of molecular weights 30,000 and 48,000 were iodinated. The 48K species was a peptidoglycan-associated, transmembrane protein which exhibited heat-modifiable SDS solubilization behavior characteristic of a porin protein. A 50K major peptidoglycan-associated OM protein which was not radiolabeled exhibited similar SDS heat modification characteristics and possibly represents a second porin protein.

  7. Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory

    PubMed Central

    Suarez, Stéphanie; Ferroni, Agnès; Lotz, Aurélie; Jolley, Keith A.; Guérin, Philippe; Leto, Julie; Dauphin, Brunhilde; Jamet, Anne; Maiden, Martin C.J.; Nassif, Xavier; Armengaud, Jean

    2014-01-01

    Whole-cell matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for identification of microorganisms that is increasingly used in microbiology laboratories. This identification is based on the comparison of the tested isolate mass spectrum with reference databases. Using Neisseria meningitidis as a model organism, we showed that in one of the available databases, the Andromas database, 10 of the 13 species-specific biomarkers correspond to ribosomal proteins. Remarkably, one biomarker, ribosomal protein L32, was subject to inter-strain variability. The analysis of the ribosomal protein patterns of 100 isolates for which whole genome sequences were available, confirmed the presence of inter-strain variability in the molecular weight of 29 ribosomal proteins, thus establishing a correlation between the sequence type (ST) and/or clonal complex (CC) of each strain and its ribosomal protein pattern. Since the molecular weight of three of the variable ribosomal proteins (L30, L31 and L32) was included in the spectral window observed by MALDI-TOF MS in clinical microbiology, i.e., 3640–12000 m/z, we were able by analyzing the molecular weight of these three ribosomal proteins to classify each strain in one of six subgroups, each of these subgroups corresponding to specific STs and/or CCs. Their detection by MALDI-TOF allows therefore a quick typing of N. meningitidis isolates. PMID:23916798

  8. Identification of Arsenic Direct-Binding Proteins in Acute Promyelocytic Leukaemia Cells

    PubMed Central

    Zhang, Tao; Lu, Haojie; Li, Weijun; Hu, Ronggui; Chen, Zi

    2015-01-01

    The identification of arsenic direct-binding proteins is essential for determining the mechanism by which arsenic trioxide achieves its chemotherapeutic effects. At least two cysteines close together in the amino acid sequence are crucial to the binding of arsenic and essential to the identification of arsenic-binding proteins. In the present study, arsenic binding proteins were pulled down with streptavidin and identified using a liquid chromatograph-mass spectrometer (LC-MS/MS). More than 40 arsenic-binding proteins were separated, and redox-related proteins, glutathione S-transferase P1 (GSTP1), heat shock 70 kDa protein 9 (HSPA9) and pyruvate kinase M2 (PKM2), were further studied using binding assays in vitro. Notably, PKM2 has a high affinity for arsenic. In contrast to PKM2, GSTP1and HSPA9 did not combine with arsenic directly in vitro. These observations suggest that arsenic-mediated acute promyelocytic leukaemia (APL) suppressive effects involve PKM2. In summary, we identified several arsenic binding proteins in APL cells and investigated the therapeutic mechanisms of arsenic trioxide for APL. Further investigation into specific signal pathways by which PKM2 mediates APL developments may lead to a better understanding of arsenic effects on APL. PMID:26569224

  9. Use of sequential chemical extractions to purify nuclear membrane proteins for proteomics identification.

    PubMed

    Korfali, Nadia; Fairley, Elizabeth A L; Swanson, Selene K; Florens, Laurence; Schirmer, Eric C

    2009-01-01

    The nuclear envelope (NE) is a double membrane system that is both a part of the endoplasmic reticulum and part of the nucleus. As its constituent proteins tend to be highly complexed with nuclear and cytoplasmic components, it is notoriously difficult to purify. Two methods can reduce this difficulty for the identification of nuclear membrane proteins: comparison to contaminating membranes and chemical extractions to enrich for certain groups of proteins. The purification of nuclear envelopes and contaminating microsomal membranes is described here along with procedures for chemical extraction using salt and detergent, chaotropes, or alkaline solutions. Each extraction method enriches for different combinations of nuclear envelope proteins. Finally, we describe the analysis of these fractions with MudPIT, a proteomics methodology that avoids gel extraction of bands to facilitate identification of minor proteins and membrane proteins that do not resolve well on gels. Together these three approaches can significantly increase the output of proteomics studies aimed at identifying the protein complement of subcellular membrane systems.

  10. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography

    PubMed Central

    Wang, Kevin; Peng, Eric D.; Huang, Amy S.; Xia, Dong; Vermont, Sarah J.; Lentini, Gaelle; Lebrun, Maryse; Wastling, Jonathan M.; Bradley, Peter J.

    2016-01-01

    Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC), rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL) to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins. PMID:26950937

  11. The RIPper case: identification of RNA-binding protein targets by RNA immunoprecipitation.

    PubMed

    Köster, Tino; Haas, Meike; Staiger, Dorothee

    2014-01-01

    Control at the posttranscriptional level emerges as an important layer of regulation in the circadian timing system. RNA-binding proteins that specifically interact with cis-regulatory motifs within pre-mRNAs are key elements of this regulation. While the ability to interact with RNA in vitro has been demonstrated for numerous Arabidopsis RNA-binding proteins, a full understanding of posttranscriptional networks controlled by an RNA-binding protein requires the identification of its immediate in vivo targets. Here we describe differential RNA immunoprecipitation in transgenic Arabidopsis thaliana plants expressing RNA-binding protein variants epitope-tagged with green fluorescent protein. To control for RNAs that nonspecifically co-purify with the RNA-binding protein, transgenic plants are generated with a mutated version of the RNA-binding protein that is not capable of binding to its target RNAs. The RNA-binding protein variants are expressed under the control of their authentic promoter and cis-regulatory motifs. Incubation of the plants with formaldehyde in vivo cross-links the proteins to their RNA targets. A whole-cell extract is then prepared and subjected to immunoprecipitation with an antibody against the GFP tag and to mock precipitation with an antibody against the unrelated red fluorescent protein. The RNAs coprecipitating with the proteins are eluted from the immunoprecipitate and identified via reverse transcription-PCR.

  12. Identification of Novel O-Linked Glycosylated Toxoplasma Proteins by Vicia villosa Lectin Chromatography.

    PubMed

    Wang, Kevin; Peng, Eric D; Huang, Amy S; Xia, Dong; Vermont, Sarah J; Lentini, Gaelle; Lebrun, Maryse; Wastling, Jonathan M; Bradley, Peter J

    2016-01-01

    Toxoplasma gondii maintains its intracellular life cycle using an extraordinary arsenal of parasite-specific organelles including the inner membrane complex (IMC), rhoptries, micronemes, and dense granules. While these unique compartments play critical roles in pathogenesis, many of their protein constituents have yet to be identified. We exploited the Vicia villosa lectin (VVL) to identify new glycosylated proteins that are present in these organelles. Purification of VVL-binding proteins by lectin affinity chromatography yielded a number of novel proteins that were subjected to further study, resulting in the identification of proteins from the dense granules, micronemes, rhoptries and IMC. We then chose to focus on three proteins identified by this approach, the SAG1 repeat containing protein SRS44, the rhoptry neck protein RON11 as well as a novel IMC protein we named IMC25. To assess function, we disrupted their genes by homologous recombination or CRISPR/Cas9. The knockouts were all successful, demonstrating that these proteins are not essential for invasion or intracellular survival. We also show that IMC25 undergoes substantial proteolytic processing that separates the C-terminal domain from the predicted glycosylation site. Together, we have demonstrated that lectin affinity chromatography is an efficient method of identifying new glycosylated parasite-specific proteins.

  13. The role of DNA deformation energy at individual base steps for the identification of DNA-protein binding sites.

    PubMed

    Steffen, Nicholas R; Murphy, Scott D; Lathrop, Richard H; Opel, Michael L; Tolleri, Lorenzo; Hatfield, G Wesley

    2002-01-01

    We examine the use of deformation propensity at individual base steps for the identification of DNA-protein binding sites. We have previously demonstrated that estimates of the total energy to bend DNA to its bound conformation can partially explain indirect DNA-protein interactions. We now show that the deformation propensities at each base step are not equally informative for classifying a sequence as a binding site, and that applying non-uniform weights to the contribution of each base step to aggregate deformation propensity can greatly improve classification accuracy. We show that a perceptron can be trained to use the deformation propensity at each step in a sequence to generate such weights.

  14. Protein Depth Calculation and the Use for Improving Accuracy of Protein Fold Recognition

    PubMed Central

    Xu, Dong; Li, Hua

    2013-01-01

    Abstract Protein structure and function are largely specified by the distribution of different atoms and residues relative to the core and surface of the molecule. Relative depths of atoms therefore are key attributions that have been widely used in protein structure modeling and function annotation. However, accurate calculation of depth is time consuming. Here, we developed an algorithm which uses Euclidean distance transform (EDT) to convert the target protein structure into a 3D gray-scale image, where depths of atoms in the protein can be conveniently and precisely derived from the minimum distance of the pixels to the surface of the protein. We tested the proposed EDT-based method on a set of 261 non-redundant protein structures, which shows that the method is 2.6 times faster than the widely used method proposed by Chakravarty and Varadarajan. Depth values by EDT method are highly accurate with a Pearson's correlation coefficient ≈1 compared to the calculations from exhaustive search. To explore the usefulness of the method in protein structure prediction, we add the calculated residue depth to the scoring function of the state of the art, profile–profile alignment based fold-recognition program, which shows an additional 3% improvement in the TM-score of the alignments. The data demonstrate that the EDT-based depth calculation program can be used as an efficient tool to assist protein structure analysis and structure-based function annotation. PMID:23992298

  15. Targeting SR proteins improves SMN expression in spinal muscular atrophy cells.

    PubMed

    Wee, Claribel D; Havens, Mallory A; Jodelka, Francine M; Hastings, Michelle L

    2014-01-01

    Spinal muscular atrophy (SMA) is one of the most common inherited causes of pediatric mortality. SMA is caused by deletions or mutations in the survival of motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Humans have a centromeric copy of the survival of motor neuron gene, SMN2, which is nearly identical to SMN1. However, SMN2 cannot compensate for the loss of SMN1 because SMN2 has a single-nucleotide difference in exon 7, which negatively affects splicing of the exon. As a result, most mRNA produced from SMN2 lacks exon 7. SMN2 mRNA lacking exon 7 encodes a truncated protein with reduced functionality. Improving SMN2 exon 7 inclusion is a goal of many SMA therapeutic strategies. The identification of regulators of exon 7 inclusion may provide additional therapeutic targets or improve the design of existing strategies. Although a number of regulators of exon 7 inclusion have been identified, the function of most splicing proteins in exon 7 inclusion is unknown. Here, we test the role of SR proteins and hnRNP proteins in SMN2 exon 7 inclusion. Knockdown and overexpression studies reveal that SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF11, hnRNPA1/B1 and hnRNP U can inhibit exon 7 inclusion. Depletion of two of the most potent inhibitors of exon 7 inclusion, SRSF2 or SRSF3, in cell lines derived from SMA patients, increased SMN2 exon 7 inclusion and SMN protein. Our results identify novel regulators of SMN2 exon 7 inclusion, revealing potential targets for SMA therapeutics.

  16. Targeting SR Proteins Improves SMN Expression in Spinal Muscular Atrophy Cells

    PubMed Central

    Hastings, Michelle L.

    2014-01-01

    Spinal muscular atrophy (SMA) is one of the most common inherited causes of pediatric mortality. SMA is caused by deletions or mutations in the survival of motor neuron 1 (SMN1) gene, which results in SMN protein deficiency. Humans have a centromeric copy of the survival of motor neuron gene, SMN2, which is nearly identical to SMN1. However, SMN2 cannot compensate for the loss of SMN1 because SMN2 has a single-nucleotide difference in exon 7, which negatively affects splicing of the exon. As a result, most mRNA produced from SMN2 lacks exon 7. SMN2 mRNA lacking exon 7 encodes a truncated protein with reduced functionality. Improving SMN2 exon 7 inclusion is a goal of many SMA therapeutic strategies. The identification of regulators of exon 7 inclusion may provide additional therapeutic targets or improve the design of existing strategies. Although a number of regulators of exon 7 inclusion have been identified, the function of most splicing proteins in exon 7 inclusion is unknown. Here, we test the role of SR proteins and hnRNP proteins in SMN2 exon 7 inclusion. Knockdown and overexpression studies reveal that SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF11, hnRNPA1/B1 and hnRNP U can inhibit exon 7 inclusion. Depletion of two of the most potent inhibitors of exon 7 inclusion, SRSF2 or SRSF3, in cell lines derived from SMA patients, increased SMN2 exon 7 inclusion and SMN protein. Our results identify novel regulators of SMN2 exon 7 inclusion, revealing potential targets for SMA therapeutics. PMID:25506695

  17. Identification of physicochemical selective pressure on protein encoding nucleotide sequences

    PubMed Central

    Wong, Wendy SW; Sainudiin, Raazesh; Nielsen, Rasmus

    2006-01-01

    Background Statistical methods for identifying positively selected sites in protein coding regions are one of the most commonly used tools in evolutionary bioinformatics. However, they have been limited by not taking the physiochemical properties of amino acids into account. Results We develop a new codon-based likelihood model for detecting site-specific selection pressures acting on specific physicochemical properties. Nonsynonymous substitutions are divided into substitutions that differ with respect to the physicochemical properties of interest, and those that do not. The substitution rates of these two types of changes, relative to the synonymous substitution rate, are then described by two parameters, γ and ω respectively. The new model allows us to perform likelihood ratio tests for positive selection acting on specific physicochemical properties of interest. The new method is first used to analyze simulated data and is shown to have good power and accuracy in detecting physicochemical selective pressure. We then re-analyze data from the class-I alleles of the human Major Histocompatibility Complex (MHC) and from the abalone sperm lysine. Conclusion Our new method allows a more flexible framework to identify selection pressure on particular physicochemical properties. PMID:16542458

  18. Systematic and fully automated identification of protein sequence patterns.

    PubMed

    Hart, R K; Royyuru, A K; Stolovitzky, G; Califano, A

    2000-01-01

    We present an efficient algorithm to systematically and automatically identify patterns in protein sequence families. The procedure is based on the Splash deterministic pattern discovery algorithm and on a framework to assess the statistical significance of patterns. We demonstrate its application to the fully automated discovery of patterns in 974 PROSITE families (the complete subset of PROSITE families which are defined by patterns and contain DR records). Splash generates patterns with better specificity and undiminished sensitivity, or vice versa, in 28% of the families; identical statistics were obtained in 48% of the families, worse statistics in 15%, and mixed behavior in the remaining 9%. In about 75% of the cases, Splash patterns identify sequence sites that overlap more than 50% with the corresponding PROSITE pattern. The procedure is sufficiently rapid to enable its use for daily curation of existing motif and profile databases. Third, our results show that the statistical significance of discovered patterns correlates well with their biological significance. The trypsin subfamily of serine proteases is used to illustrate this method's ability to exhaustively discover all motifs in a family that are statistically and biologically significant. Finally, we discuss applications of sequence patterns to multiple sequence alignment and the training of more sensitive score-based motif models, akin to the procedure used by PSI-BLAST. All results are available at httpl//www.research.ibm.com/spat/.

  19. Identification of albumin-binding proteins in capillary endothelial cells

    PubMed Central

    1988-01-01

    Isolated fat tissue microvessels and lung, whose capillary endothelia express in situ specific binding sites for albumin, were homogenized and subjected to SDS-gel electrophoresis and electroblotting. The nitrocellulose strips were incubated with either albumin-gold (Alb-Au) and directly visualized, or with [125I]albumin (monomeric or polymeric) and autoradiographed. The extracts of both microvascular endothelium and the lung express albumin-binding proteins (ABPs) represented by two pairs of polypeptides with major components of molecular mass 31 and 18 kD. The ABP peptides have pIs 8.05 to 8.75. Rabbit aortic endothelium, used as control, does not express detectable amounts of ABPs. The ABPs subjected to electrophoresis bind specifically and with high affinity (Kd = approximately 60 X 10(-9)M) both monomeric and polymeric albumin: the binding is saturable at approximately 80 nM concentration and 50% inhibition is reached at 5.5 micrograms/ml albumin concentration. Sulfhydryl-reducing agents beta-mercaptoethanol and dithiothreitol do not markedly affect the ABPs electrophoretic mobility and binding properties. As indicated by cell surface iodination of isolated capillary endothelium followed by electroblotting, autoradiography, and incubation with Alb-Au, the bands specifically stained by this ligand are also labeled with radioiodine. PMID:2839518

  20. Tenebrio molitor antifreeze protein gene identification and regulation.

    PubMed

    Qin, Wensheng; Walker, Virginia K

    2006-02-15

    The yellow mealworm, Tenebrio molitor, is a freeze susceptible, stored product pest. Its winter survival is facilitated by the accumulation of antifreeze proteins (AFPs), encoded by a small gene family. We have now isolated 11 different AFP genomic clones from 3 genomic libraries. All the clones had a single coding sequence, with no evidence of intervening sequences. Three genomic clones were further characterized. All have putative TATA box sequences upstream of the coding regions and multiple potential poly(A) signal sequences downstream of the coding regions. A TmAFP regulatory region, B1037, conferred transcriptional activity when ligated to a luciferase reporter sequence and after transfection into an insect cell line. A 143 bp core promoter including a TATA box sequence was identified. Its promoter activity was increased 4.4 times by inserting an exotic 245 bp intron into the construct, similar to the enhancement of transgenic expression seen in several other systems. The addition of a duplication of the first 120 bp sequence from the 143 bp core promoter decreased promoter activity by half. Although putative hormonal response sequences were identified, none of the five hormones tested enhanced reporter activity. These studies on the mechanisms of AFP transcriptional control are important for the consideration of any transfer of freeze-resistance phenotypes to beneficial hosts.

  1. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Huang, Y.; Kieber, J.; Luan, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.

  2. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis

    NASA Technical Reports Server (NTRS)

    Gupta, R.; Huang, Y.; Kieber, J.; Luan, S.; Evans, M. L. (Principal Investigator)

    1998-01-01

    Mitogen-activated protein kinases (MAPKs) play a key role in plant responses to stress and pathogens. Activation and inactivation of MAPKs involve phosphorylation and dephosphorylation on both threonine and tyrosine residues in the kinase domain. Here we report the identification of an Arabidopsis gene encoding a dual-specificity protein phosphatase capable of hydrolysing both phosphoserine/threonine and phosphotyrosine in protein substrates. This enzyme, designated AtDsPTP1 (Arabidopsis thaliana dual-specificity protein tyrosine phosphatase), dephosphorylated and inactivated AtMPK4, a MAPK member from the same plant. Replacement of a highly conserved cysteine by serine abolished phosphatase activity of AtDsPTP1, indicating a conserved catalytic mechanism of dual-specificity protein phosphatases from all eukaryotes.

  3. Identification of ADAM 31: a protein expressed in Leydig cells and specialized epithelia.

    PubMed

    Liu, L; Smith, J W

    2000-06-01

    A family of proteins containing a disintegrin and metalloproteinase domain (ADAMs) has been identified recently. Here, we report the identification of a novel member of the ADAM protein family from mouse. This protein is designated ADAM 31. The complementary DNA sequence of ADAM 31 predicts a transmembrane protein with metalloproteinase, disintegrin, cysteine-rich, and cytoplasmic domains. Messenger RNA encoding ADAM 31 was most abundant in testes, but was also detected in many other tissues. More significantly, the antibodies raised against ADAM 31 reveal that the protein has a unique and restricted expression pattern. ADAM 31 is expressed in Leydig cells of the testes, but unlike many other ADAMs, it is not found on developing sperm. Furthermore, ADAM 31 is highly expressed on four types of specialized epithelia: the cauda epididymidis, the vas deferens, the convoluted tubules of the kidney, and the parietal cells of the stomach.

  4. An Improved Algorithm of Congruent Matching Cells (CMC) Method for Firearm Evidence Identifications

    PubMed Central

    Tong, Mingsi; Song, John; Chu, Wei

    2015-01-01

    The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for firearm evidence identifications. The CMC method divides the measured image of a surface area, such as a breech face impression from a fired cartridge case, into small correlation cells and uses four identification parameters to identify correlated cell pairs originating from the same firearm. The CMC method was validated by identification tests using both 3D topography images and optical images captured from breech face impressions of 40 cartridge cases fired from a pistol with 10 consecutively manufactured slides. In this paper, we discuss the processing of the cell correlations and propose an improved algorithm of the CMC method which takes advantage of the cell correlations at a common initial phase angle and combines the forward and backward correlations to improve the identification capability. The improved algorithm is tested by 780 pairwise correlations using the same optical images and 3D topography images as the initial validation. PMID:26958441

  5. MASCOT HTML and XML parser: an implementation of a novel object model for protein identification data.

    PubMed

    Yang, Chunguang G; Granite, Stephen J; Van Eyk, Jennifer E; Winslow, Raimond L

    2006-11-01

    Protein identification using MS is an important technique in proteomics as well as a major generator of proteomics data. We have designed the protein identification data object model (PDOM) and developed a parser based on this model to facilitate the analysis and storage of these data. The parser works with HTML or XML files saved or exported from MASCOT MS/MS ions search in peptide summary report or MASCOT PMF search in protein summary report. The program creates PDOM objects, eliminates redundancy in the input file, and has the capability to output any PDOM object to a relational database. This program facilitates additional analysis of MASCOT search results and aids the storage of protein identification information. The implementation is extensible and can serve as a template to develop parsers for other search engines. The parser can be used as a stand-alone application or can be driven by other Java programs. It is currently being used as the front end for a system that loads HTML and XML result files of MASCOT searches into a relational database. The source code is freely available at http://www.ccbm.jhu.edu and the program uses only free and open-source Java libraries.

  6. Towards a Semen Proteome of the Dengue Vector Mosquito: Protein Identification and Potential Functions

    PubMed Central

    Sirot, Laura K.; Ribeiro, José M. C.; Kimura, Mari; Deewatthanawong, Prasit; Wolfner, Mariana F.; Harrington, Laura C.

    2011-01-01

    -mating changes (e.g., in feeding patterns and egg production). Therefore, identification of these proteins may lead to new approaches for manipulating the reproductive output and vectorial capacity of Ae. aegypti. PMID:21423647

  7. Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana.

    PubMed

    Guelette, Brandon S; Benning, Urs F; Hoffmann-Benning, Susanne

    2012-06-01

    The phloem plays a crucial role in assimilate and nutrient transport, pathogen response, and plant growth and development. Yet, few species have yielded pure phloem exudate and, if proteins need to be analysed, those species may not have sequenced genomes, making identification difficult. The enrichment of Arabidopsis thaliana phloem exudate in amounts large enough to allow for metabolite and protein analysis is described. Using this method, it was possible to identify 65 proteins present in the Arabidopsis phloem exudate. The majority of these proteins could be grouped by response to pathogens, stress, or hormones, carbon metabolism, protein interaction, modification, and turnover, and transcription factors. It was also possible to detect 11 proteins that play a role in lipid/fatty acid metabolism (aspartic protease, putative 3-β-hydroxysteroid dehydrogenase, UDP-sulphoquinovose synthase/SQD1, lipase, PIG-P-like protein: phosphatidylinositol-N-acetylglucosaminyltransferase), storage (glycine-rich protein), binding (annexin, lipid-associated family protein, GRP17/oleosin), and/or signalling (annexin, putative lipase, PIG-P-like protein). Along with putative lipid-binding proteins, several lipids and fatty acids could be identified. Only a few examples exist of lipids (jasmonic acid, oxylipins) or lipid-binding proteins (DIR1, acyl-CoA-binding protein) in the phloem. Finding hydrophobic compounds in an aqueous environment is not without precedence in biological systems: human blood contains a variety of lipids, many of which play a significant role in human health. In blood, lipids are transported while bound to proteins. The present findings of lipids and lipid-binding proteins in phloem exudates suggest that a similar long-distance lipid signalling exists in plants and may play an important role in plant growth and development.

  8. Differential extraction and enrichment of human sperm surface proteins in a proteome: identification of immunocontraceptive candidates.

    PubMed

    Shetty, J; Diekman, A B; Jayes, F C; Sherman, N E; Naaby-Hansen, S; Flickinger, C J; Herr, J C

    2001-08-01

    The objective of this study was to discover previously unknown human sperm surface proteins that may be candidate contraceptive vaccinogens. To this end, methods of concentrating human sperm proteins for microsequencing by mass spectrometry were used, which increased the likelihood of identifying surface proteins. Vectorial labeling, differential extraction and two-dimensional (2-D) gel electrophoresis were employed to identify and isolate proteins accessible at the cell surface. Percoll harvested or swim-up sperm were either solubilized directly or solubilized after surface labeling with sulfo-succinimidyl-6-(biotinamido)hexanoate (sulfo-NHS-LC-biotin). Comparisons were made of proteins extracted with four lysis buffers: (i) Celis buffer containing 9.8 M urea and 2% Igepal CA-630; (ii) 1% Triton X (TX)-100; (iii) 1.7% TX-114 followed by phase partitioning; or (iv) 1 M NaCl. Blots of proteins separated by high-resolution 2-D electrophoresis were probed with avidin and antibodies to known proteins specific for three domains: the sperm surface (SAGA-1), the acrosome (SP-10), and the cytoskeleton (alpha-tubulin). Celis buffer (45 min) extracted proteins from all three major compartments. However, a 20-s extraction in Celis buffer enriched for several proteins and enabled the identification of several novel peptides by mass spectrometry. Mild extraction with TX-100 or 1 M NaCl solubilized mainly membrane and acrosomal proteins, but not cytoskeletal proteins. Comparison of biotinylated proteins extracted by each method showed that the major vectorially labeled proteins solubilized by Celis buffer were also solubilized by TX-100, TX-114, and 1 M NaCl. Extraction with TX-114 followed by phase-partitioning significantly enriched hydrophobic surface proteins and aided resolution and isolation. Eight protein spots microsequenced following all these extraction methods proved to be novel sperm molecules.

  9. Improving the quality of protein structures derived by NMR spectroscopy.

    PubMed

    Spronk, Christian A E M; Linge, Jens P; Hilbers, Cornelis W; Vuister, Geerten W

    2002-03-01

    Biomolecular structures provide the basis for many studies in several research areas such as homology modelling, structure-based drug design and functional genomics. It is an important prerequisite that the structure is reliable in terms of accurate description of the experimental data, and in terms of good quality of local- and overall geometry. Recent surveys indicate that structures solved by NMR-spectroscopy normally are of lower precision than high-resolution X-ray structures. Here, we present a refinement protocol that improves the quality of protein structures determined by NMR-spectroscopy to the level of those determined by high resolution X-ray crystallography in terms of local geometry. The protocol was tested on experimental data of the proteins IL4 and Ubiquitin and on simulated data of the protein Crambin. In almost all aspects, the protocol yielded better results in terms of accuracy and precision. Independent validation of the results for Ubiquitin, using residual dipolar couplings, indicates that the ensemble of NMR structure is substantially improved by the protocol.

  10. Protein engineering of improved prolyl endopeptidases for celiac sprue therapy

    PubMed Central

    Ehren, Jennifer; Govindarajan, Sridhar; Morón, Belén; Minshull, Jeremy; Khosla, Chaitan

    2008-01-01

    Due to their unique ability to cleave immunotoxic gluten peptides endoproteolytically, prolyl endopeptidases (PEPs) are attractive oral therapeutic candidates for protecting celiac sprue patients from the toxic effects of dietary gluten. Enhancing the activity and stability of PEPs under gastric conditions (low pH, high pepsin concentration) is a challenge for protein engineers. Using a combination of sequence- and structure-based approaches together with machine learning algorithms, we have identified improved variants of the Sphingomonas capsulata PEP, a target of clinical relevance. Through two rounds of iterative mutagenesis and analysis, variants with as much as 20% enhanced specific activity at pH 4.5 and 200-fold greater resistance to pepsin were identified. Our results vividly reinforce the concept that conservative changes in proteins, especially in hydrophobic residues within tightly packed regions, can profoundly influence protein structure and function in ways that are difficult to predict entirely from first principles and must therefore be optimized through iterative design and analytical cycles. Incubation with whole wheat bread under simulated gastric conditions also suggests that some variants have pharmacologically significant improvements in gluten detoxification activity. PMID:18836204

  11. Secondary Reactions and Strategies to Improve Quantitative Protein Footprinting

    SciTech Connect

    Xu,G.; Kiselar, J.; He, Q.; Chance, M.

    2005-01-01

    Hydroxyl radical-mediated footprinting permits detailed examination of structure and dynamic processes of proteins and large biological assemblies, as changes in the rate of reaction of radicals with target peptides are governed by changes in the solvent accessibility of the side-chain probe residues. The precise and accurate determination of peptide reaction rates is essential to successfully probing protein structure using footprinting. In this study, we specifically examine the magnitude and mechanisms of secondary oxidation occurring after radiolytic exposure and prior to mass spectrometric analysis. Secondary oxidation results from hydrogen peroxide and other oxidative species generated during radiolysis, significantly impacting the oxidation of Met and Cys but not aromatic or other reactive residues. Secondary oxidation of Met with formation of sulfoxide degrades data reproducibility and inflates the perceived solvent accessibility of Met-containing peptides. It can be suppressed by adding trace amounts of catalase or millimolar Met-NH{sub 2} (or Met-OH) buffer immediately after irradiation; this leads to greatly improved adherence to first-order kinetics and more precise observed oxidation rates. The strategy is shown to suppress secondary oxidation in model peptides and improve data quality in examining the reactivity of peptides within the Arp2/3 protein complex. Cysteine is also subject to secondary oxidation generating disulfide as the principal product. The disulfides can be reduced before mass spectrometric analysis by reducing agents such as TCEP, while methionine sulfoxide is refractory to reduction by this reagent under typical reducing conditions.

  12. Improving classification in protein structure databases using text mining.

    PubMed

    Koussounadis, Antonis; Redfern, Oliver C; Jones, David T

    2009-05-05

    The classification of protein domains in the CATH resource is primarily based on structural comparisons, sequence similarity and manual analysis. One of the main bottlenecks in the processing of new entries is the evaluation of 'borderline' cases by human curators with reference to the literature, and better tools for helping both expert and non-expert users quickly identify relevant functional information from text are urgently needed. A text based method for protein classification is presented, which complements the existing sequence and structure-based approaches, especially in cases exhibiting low similarity to existing members and requiring manual intervention. The method is based on the assumption that textual similarity between sets of documents relating to proteins reflects biological function similarities and can be exploited to make classification decisions. An optimal strategy for the text comparisons was identified by using an established gold standard enzyme dataset. Filtering of the abstracts using a machine learning approach to discriminate sentences containing functional, structural and classification information that are relevant to the protein classification task improved performance. Testing this classification scheme on a dataset of 'borderline' protein domains that lack significant sequence or structure similarity to classified proteins showed that although, as expected, the structural similarity classifiers perform better on average, there is a significant benefit in incorporating text similarity in logistic regression models, indicating significant orthogonality in this additional information. Coverage was significantly increased especially at low error rates, which is important for routine classification tasks: 15.3% for the combined structure and text classifier compared to 10% for the structural classifier alone, at 10-3 error rate. Finally when only the highest scoring predictions were used to infer classification, an extra 4.2% of

  13. Development of BIATECH-54 standard mixtures for assessment of protein identification and relative expression.

    PubMed

    Kolker, Eugene; Hogan, Jason M; Higdon, Roger; Kolker, Natali; Landorf, Elizabeth; Yakunin, Alexander F; Collart, Frank R; van Belle, Gerald

    2007-10-01

    Mixtures of known proteins have been very useful in the assessment and validation of methods for high-throughput (HTP) MS (MS/MS) proteomics experiments. However, these test mixtures have generally consisted of few proteins at near equal concentration or of a single protein at varied concentrations. Such mixtures are too simple to effectively assess the validity of error rates for protein identification and differential expression in HTP MS/MS studies. This work aimed at overcoming these limitations and simulating studies of complex biological samples. We introduced a pair of 54-protein standard mixtures of variable concentrations with up to a 1000-fold dynamic range in concentration and up to ten-fold expression ratios with additional negative controls (infinite expression ratios). These test mixtures comprised 16 off-the-shelf Sigma-Aldrich proteins and 38 Shewanella oneidensis proteins produced in-house. The standard proteins were systematically distributed into three main concentration groups (high, medium, and low) and then the concentrations were varied differently for each mixture within the groups to generate different expression ratios. The mixtures were analyzed with both low mass accuracy LCQ and high mass accuracy FT-LTQ instruments. In addition, these 54 standard proteins closely follow the molecular weight distributions of both bacterial and human proteomes. As a result, these new standard mixtures allow for a much more realistic assessment of approaches for protein identification and label-free differential expression than previous mixtures. Finally, methodology and experimental design developed in this work can be readily applied in future to development of more complex standard mixtures for HTP proteomics studies.

  14. Proteomics of Soil and Sediment: Protein Identification by De Novo Sequencing of Mass Spectra Complements Traditional Database Searching

    NASA Astrophysics Data System (ADS)

    Miller, S.; Rizzo, A. I.; Waldbauer, J.

    2015-12-01

    Proteomics has the potential to elucidate the metabolic pathways and taxa responsible for in situ biogeochemical transformations. However, low rates of protein identification from high resolution mass spectra have been a barrier to the development of proteomics in complex environmental samples. Much of the difficulty lies in the computational challenge of linking mass spectra to their corresponding proteins. Traditional database search methods for matching peptide sequences to mass spectra are often inadequate due to the complexity of environmental proteomes and the large database search space, as we demonstrate with soil and sediment proteomes generated via a range of extraction methods. One alternative to traditional database searching is de novo sequencing, which identifies peptide sequences without the need for a database. BLAST can then be used to match de novo sequences to similar genetic sequences. Assigning confidence to putative identifications has been one hurdle for the implementation of de novo sequencing. We found that accurate de novo sequences can be screened by quality score and length. Screening criteria are verified by comparing the results of de novo sequencing and traditional database searching for well-characterized proteomes from simple biological systems. The BLAST hits of screened sequences are interrogated for taxonomic and functional information. We applied de novo sequencing to organic topsoil and marine sediment proteomes. Peak-rich proteomes, which can result from various extraction techniques, yield thousands of high-confidence protein identifications, an improvement over previous proteomic studies of soil and sediment. User-friendly software tools for de novo metaproteomics analysis have been developed. This "De Novo Analysis" Pipeline is also a faster method of data analysis than constructing a tailored sequence database for traditional database searching.

  15. Proteomics of Soil and Sediment: Protein Identification by De Novo Sequencing of Mass Spectra Complements Traditional Database Searching

    NASA Astrophysics Data System (ADS)

    Miller, S.; Rizzo, A. I.; Waldbauer, J.

    2014-12-01

    Proteomics has the potential to elucidate the metabolic pathways and taxa responsible for in situ biogeochemical transformations. However, low rates of protein identification from high resolution mass spectra have been a barrier to the development of proteomics in complex environmental samples. Much of the difficulty lies in the computational challenge of linking mass spectra to their corresponding proteins. Traditional database search methods for matching peptide sequences to mass spectra are often inadequate due to the complexity of environmental proteomes and the large database search space, as we demonstrate with soil and sediment proteomes generated via a range of extraction methods. One alternative to traditional database searching is de novo sequencing, which identifies peptide sequences without the need for a database. BLAST can then be used to match de novo sequences to similar genetic sequences. Assigning confidence to putative identifications has been one hurdle for the implementation of de novo sequencing. We found that accurate de novo sequences can be screened by quality score and length. Screening criteria are verified by comparing the results of de novo sequencing and traditional database searching for well-characterized proteomes from simple biological systems. The BLAST hits of screened sequences are interrogated for taxonomic and functional information. We applied de novo sequencing to organic topsoil and marine sediment proteomes. Peak-rich proteomes, which can result from various extraction techniques, yield thousands of high-confidence protein identifications, an improvement over previous proteomic studies of soil and sediment. User-friendly software tools for de novo metaproteomics analysis have been developed. This "De Novo Analysis" Pipeline is also a faster method of data analysis than constructing a tailored sequence database for traditional database searching.

  16. Improved feed protein fractionation schemes for formulating rations with the cornell net carbohydrate and protein system.

    PubMed

    Lanzas, C; Broderick, G A; Fox, D G

    2008-12-01

    Adequate predictions of rumen-degradable protein (RDP) and rumen-undegradable protein (RUP) supplies are necessary to optimize performance while minimizing losses of excess nitrogen (N). The objectives of this study were to evaluate the original Cornell Net Carbohydrate Protein System (CNCPS) protein fractionation scheme and to develop and evaluate alternatives designed to improve its adequacy in predicting RDP and RUP. The CNCPS version 5 fractionates CP into 5 fractions based on solubility in protein precipitant agents, buffers, and detergent solutions: A represents the soluble nonprotein N, B1 is the soluble true protein, B2 represents protein with intermediate rates of degradation, B3 is the CP insoluble in neutral detergent solution but soluble in acid detergent solution, and C is the unavailable N. Model predictions were evaluated with studies that measured N flow data at the omasum. The N fractionation scheme in version 5 of the CNCPS explained 78% of the variation in RDP with a root mean square prediction error (RMSPE) of 275 g/d, and 51% of the RUP variation with RMSPE of 248 g/d. Neutral detergent insoluble CP