Wong, Alice M K; Lan, Ching
2008-01-01
Balance function begins to decline from middle age on, and poor balance function increases the risk of fall and injury. Suitable exercise training may improve balance function and prevent accidental falls. The coordination of visual, proprioceptive, vestibular and musculoskeletal system is important to maintain balance. Balance function can be evaluated by functional balance testing and sensory organization testing. Tai Chi Chuan (TC) is a popular conditioning exercise in the Chinese community, and recent studies substantiate that TC is effective in balance function enhancement and falls prevention. In studies utilizing functional balance testing, TC may increase the duration of one-leg standing and the distance of functional reach. In studies utilizing sensory organization testing, TC improves static and dynamic balance, especially in more challenging sensory perturbed condition. Therefore, TC may be prescribed as an alternative exercise program for elderly subjects or balance-impaired patients. Participants can choose to perform a complete set of TC or selected movements according to their needs. In conclusion, TC may improve balance function and is appropriate for implementation in the community.
Liao, Chun-De; Lin, Li-Fong; Huang, Yi-Ching; Huang, Shih-Wei; Chou, Lin-Chuan; Liou, Tsan-Hon
2015-09-01
To evaluate whether balance training after total knee replacement surgery improves functional outcomes and to determine whether postoperative balance is associated with mobility. A prospective intervention study and randomized controlled trial with an intention-to-treat analysis. The rehabilitation center of a university-based teaching hospital. A total of 130 patients with knee osteoarthritis who had undergone total knee replacement surgery were recruited to attend an outpatient rehabilitation program. They were randomly allocated to additional balance rehabilitation and functional rehabilitation groups. During the eight-week outpatient rehabilitation program, both groups received general functional training. Patients in the balance rehabilitation group received an additional balance-based rehabilitation program. The functional reach test, single-leg stance test, 10-m walk test, Timed Up and Go Test, timed chair-stand test, stair-climb test, and Western Ontario and McMaster Universities Osteoarthritis Index were measured at baseline, eight weeks (T(1)), and 32 weeks (T(2)). The balance rehabilitation group patients demonstrated significant improvement in the results of the functional reach test at T(1) (37.6 ±7.8 cm) and T(2) (39.3 ±9.7 cm) compared with the baseline assessment (11.5 ±2.9 cm) and Timed Up and Go Test at T(1) (8.9 ±1.2 seconds) and T(2) (8.0 ±1.9 seconds) compared with the baseline assessment (12.5 ±1.8 seconds). Moreover, the balance rehabilitation group patients exhibited significantly greater improvements in balance and mobility than did the functional rehabilitation group patients (all P < 0.001). Furthermore, improved balance was significantly associated with improved mobility at T(2). Postoperative outpatient rehabilitation with balance training improves the balance, mobility, and functional outcomes in patients with knee osteoarthritis after total knee replacement. © The Author(s) 2014.
Gatica-Rojas, Valeska; Cartes-Velásquez, Ricardo; Méndez-Rebolledo, Guillermo; Olave-Godoy, Felipe; Villalobos-Rebolledo, David
2016-08-01
[Purpose] This study aimed to explore the possibility of improving functional balance using an exercise program with Nintendo and the Balance Board peripheral in subjects with cerebral palsy. [Subjects and Methods] This study included 4 male outpatients of a neurological center. All participants received an exercise program based on the use of Nintendo with the Balance Board peripheral. Training consisted of three 25-min sessions per week for 6 weeks. Each session was guided by a physical therapist. Timed up-and-go and one-leg standing tests were conducted before and after the intervention. [Results] All subjects showed significant improvements in the results of the timed up-and-go test. However, there were no significant changes in the results of the one-leg standing test. [Conclusion] The exercise protocol involving Nintendo with the Balance Board peripheral appears to improve functional dynamic balance in patients with cerebral palsy. However, static functional balance does not improve after 6 weeks of training.
Gatica-Rojas, Valeska; Cartes-Velásquez, Ricardo; Méndez-Rebolledo, Guillermo; Olave-Godoy, Felipe; Villalobos-Rebolledo, David
2016-01-01
[Purpose] This study aimed to explore the possibility of improving functional balance using an exercise program with Nintendo and the Balance Board peripheral in subjects with cerebral palsy. [Subjects and Methods] This study included 4 male outpatients of a neurological center. All participants received an exercise program based on the use of Nintendo with the Balance Board peripheral. Training consisted of three 25-min sessions per week for 6 weeks. Each session was guided by a physical therapist. Timed up-and-go and one-leg standing tests were conducted before and after the intervention. [Results] All subjects showed significant improvements in the results of the timed up-and-go test. However, there were no significant changes in the results of the one-leg standing test. [Conclusion] The exercise protocol involving Nintendo with the Balance Board peripheral appears to improve functional dynamic balance in patients with cerebral palsy. However, static functional balance does not improve after 6 weeks of training. PMID:27630446
Zissimopoulos, Angelika; Fatone, Stefania; Gard, Steven
2014-04-01
One intervention often used to address physical impairments post stroke is an ankle-foot orthosis. Ankle-foot orthoses may improve walking speed, stride length, and gait pattern. However, effects on balance, crucial for safe ambulation, are thus far inconclusive. One aspect of balance shown to contribute to functional ability is self-efficacy. Self-efficacy, defined as the belief in one's ability to succeed in particular situations, has been shown to be more strongly associated with activity and participation (as defined by the International Classification of Functioning, Disability, and Health) than physical performance measures of gait or balance. We investigated whether self-efficacy, or balance confidence when referred to in the context of balance capabilities, is improved with ankle-foot orthosis use. Repeated measures study design. Balance confidence was measured using the Activities-specific Balance Confidence Scale in 15 persons with chronic poststroke hemiplegia, with and without their regular ankle-foot orthosis. Activities-specific Balance Confidence Scale scores were significantly higher (p ≤ 0.01) for the ankle-foot orthosis condition compared to no ankle-foot orthosis. One mechanism by which ankle-foot orthosis use may influence balance is improved balance confidence. Future work should explore the specific mechanisms underlying this improvement in self-efficacy. Clinical relevance Self-efficacy may be an important factor to consider when evaluating functioning post stroke. Rehabilitative interventions that improve balance confidence may help restore participation and overall functioning in pathological populations, particularly in the fall-prone poststroke population. Study results provide evidence for improvements in balance confidence with ankle-foot orthosis use.
Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen
2012-01-01
Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/ sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain s ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable providing imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles.
Tekin, Fatih; Kavlak, Erdogan; Cavlak, Ugur; Altug, Filiz
2018-01-01
The aim of this study was to show the effects of an 8-week Neurodevelopmental Treatment based posture and balance training on postural control and balance in diparetic and hemiparetic Cerebral Palsied children (CPC). Fifteen CPC (aged 5-15 yrs) were recruited from Denizli Yağmur Çocukları Rehabilitation Centre. Gross Motor Function Classification System, Gross Motor Function Measure, 1-Min Walking Test, Modified Timed Up and Go Test, Paediatric Balance Scale, Functional Independence Measure for Children and Seated Postural Control Measure were used for assessment before and after treatment. An 8-week NDT based posture and balance training was applied to the CPC in one session (60-min) 2 days in a week. After the treatment program, all participants showed statistically significant improvements in terms of gross motor function (p< 0.05). They also showed statistically significant improvements about balance abilities and independence in terms of daily living activities (p< 0.05). Seated Postural Control Measure scores increased after the treatment program (p< 0.05). The results of this study indicate that an 8-week Neurodevelopmental Treatment based posture and balance training is an effective approach in order to improve functional motor level and functional independency by improving postural control and balance in diparetic and hemiparetic CPC.
Visual Biofeedback Balance Training Using Wii Fit after Stroke: A Randomized Controlled Trial
Barcala, Luciana; Grecco, Luanda André Collange; Colella, Fernanda; Lucareli, Paulo Roberto Garcia; Salgado, Afonso Shiguemi Inoue; Oliveira, Claudia Santos
2013-01-01
[Purpose] The aim of the present study was to investigate the effect of balance training with visual biofeedback on balance, body symmetry, and function among individuals with hemiplegia following a stroke. [Subjects and Methods] The present study was performed using a randomized controlled clinical trial with a blinded evaluator. The subjects were twenty adults with hemiplegia following a stroke. The experimental group performed balance training with visual biofeedback using Wii Fit® together with conventional physical therapy. The control group underwent conventional physical therapy alone. The intervention lasted five weeks, with two sessions per week. Body symmetry (baropodometry), static balance (stabilometry), functional balance (Berg Balance Scale), functional mobility (Timed Up and Go test), and independence in activities of daily living (Functional Independence Measure) were assessed before and after the intervention. [Results] No statistically significant differences were found between the experimental and control groups. In the intragroup analysis, both groups demonstrated a significant improvement in all variables studied. [Conclusion] The physical therapy program combined with balance training involving visual biofeedback (Wii Fit®) led to an improvement in body symmetry, balance, and function among stroke victims. However, the improvement was similar to that achieved with conventional physical therapy alone. PMID:24259909
Hale, Sheri A; Fergus, Andrea; Axmacher, Rachel; Kiser, Kimberly
2014-01-01
Bilateral improvements in postural control have been reported among individuals with acute lateral ankle sprains and individuals with chronic ankle instability (CAI) when only the unstable ankle is rehabilitated. We do not know if training the stable ankle will improve function on the unstable side. To explore the effects of a unilateral balance-training program on bilateral lower extremity balance and function in individuals with CAI when only the stable limb is trained. Cohort study. University clinical research laboratory. A total of 34 volunteers (8 men, 26 women; age = 24.32 ± 4.95 years, height = 167.01 ± 9.45 cm, mass = 77.54 ± 23.76 kg) with CAI were assigned to the rehabilitation (n = 17) or control (n = 17) group. Of those, 27 (13 rehabilitation group, 14 control group) completed the study. Balance training twice weekly for 4 weeks. Foot and Ankle Disability Index (FADI), FADI Sport (FADI-S), Star Excursion Balance Test, and Balance Error Scoring System. The rehabilitation and control groups differed in changes in FADI-S and Star Excursion Balance Test scores over time. Only the rehabilitation group improved in the FADI-S and in the posteromedial and anterior reaches of the Star Excursion Balance Test. Both groups demonstrated improvements in posterolateral reach; however, the rehabilitation group demonstrated greater improvement than the control group. When the groups were combined, participants reported improvements in FADI and FADI-S scores for the unstable ankle but not the stable ankle. Our data suggest training the stable ankle may result in improvements in balance and lower extremity function in the unstable ankle. This further supports the existence of a centrally mediated mechanism in the development of postural-control deficits after injury, as well as improved postural control after rehabilitation.
Wii-habilitation as balance therapy for children with acquired brain injury.
Tatla, Sandy K; Radomski, Anna; Cheung, Jessica; Maron, Melissa; Jarus, Tal
2014-02-01
To evaluate the effectiveness of the Nintendo Wii compared to traditional balance therapy in improving balance, motivation, and functional ability in children undergoing acute rehabilitation after brain injury. A non-concurrent, randomized multiple baseline single-subject research design was used with three participants. Data were analyzed by visual inspection of trend lines. Daily Wii balance training was equally motivating to traditional balance therapy for two participants and more motivating for one participant. While improvements in dynamic balance were observed, the results for static balance remain inconclusive. All participants demonstrated improvements in functional ability. Wii balance therapy is a safe, feasible, and motivating intervention for children undergoing acute rehabilitation after an acquired brain injury. Further research to examine the effectiveness of Wii balance therapy in this population is warranted.
Improving traditional balancing methods for high-speed rotors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, J.; Cao, Y.
1996-01-01
This paper introduces frequency response functions, analyzes the relationships between the frequency response functions and influence coefficients theoretically, and derives corresponding mathematical equations for high-speed rotor balancing. The relationships between the imbalance masses on the rotor and frequency response functions are also analyzed based upon the modal balancing method, and the equations related to the static and dynamic imbalance masses and the frequency response function are obtained. Experiments on a high-speed rotor balancing rig were performed to verify the theory, and the experimental data agree satisfactorily with the analytical solutions. The improvement on the traditional balancing method proposed in thismore » paper will substantially reduce the number of rotor startups required during the balancing process of rotating machinery.« less
Zhao, Yanan; Chung, Pak-Kwong; Tong, Tom K
This study examined the effectivenss of a balance-focused training program (i.e., Exercise for Balance Improvement Program, ExBP) in improving functional fitness of older nonfallers at risk of falling. Sixty-one participants were randomly assigned to receive 16 weeks of ExBP or Tai Chi (TC) training, or no treatment (CON) with an 8-week follow-up. The Senior Fitness Test battery was applied to assess functional fitness. After the intervention, results revealed significant improvements in all fitness components in the ExBP group. Compared with the CON group, the ExBP group demonstrated more improvements in lower extremity muscle strength, agility and balance, and aerobic endurance. The ExBP group also displayed more improvements in aerobic endurance than the TC group in posttest and follow-up test. Therefore, the balance-focused exercise can be applied as an effective way in improving overall functional fitness among older nonfallers who are at risk of falling. Copyright © 2017 Elsevier Inc. All rights reserved.
Halvarsson, Alexandra; Franzén, Erika; Ståhle, Agneta
2015-04-01
To evaluate the effects of a balance training program including dual- and multi-task exercises on fall-related self-efficacy, fear of falling, gait and balance performance, and physical function in older adults with osteoporosis with an increased risk of falling and to evaluate whether additional physical activity would further improve the effects. Randomized controlled trial, including three groups: two intervention groups (Training, or Training+Physical activity) and one Control group, with a 12-week follow-up. Stockholm County, Sweden. Ninety-six older adults, aged 66-87, with verified osteoporosis. A specific and progressive balance training program including dual- and multi-task three times/week for 12 weeks, and physical activity for 30 minutes, three times/week. Fall-related self-efficacy (Falls Efficacy Scale-International), fear of falling (single-item question - 'In general, are you afraid of falling?'), gait speed with and without a cognitive dual-task at preferred pace and fast walking (GAITRite®), balance performance tests (one-leg stance, and modified figure of eight), and physical function (Late-Life Function and Disability Instrument). Both intervention groups significantly improved their fall-related self-efficacy as compared to the controls (p ≤ 0.034, 4 points) and improved their balance performance. Significant differences over time and between groups in favour of the intervention groups were found for walking speed with a dual-task (p=0.003), at fast walking speed (p=0.008), and for advanced lower extremity physical function (p=0.034). This balance training program, including dual- and multi-task, improves fall-related self-efficacy, gait speed, balance performance, and physical function in older adults with osteoporosis. © The Author(s) 2014.
The effect of balance training on cervical sensorimotor function and neck pain.
Beinert, Konstantin; Taube, Wolfgang
2013-01-01
The authors' aim was to evaluate the effect of balance training on cervical joint position sense in people with subclinical neck pain. Thirty-four participants were randomly assigned to balance training or to stay active. Sensorimotor function was determined before and after 5 weeks of training by assessing the ability to reproduce the neutral head position and a predefined rotated head position. After balance training, the intervention group showed improved joint repositioning accuracy and decreased pain whereas no effects were observed in the control group. A weak correlation was identified between reduced neck pain intensity and improved joint repositioning. The present data demonstrate that balance training can effectively improve cervical sensorimotor function and decrease neck pain intensity.
Daubs, Michael D; Lenke, Lawrence G; Bridwell, Keith H; Kim, Yongjung J; Hung, Man; Cheh, Gene; Koester, Linda A
2013-03-15
Retrospective study with prospectively collected outcomes data. Determine the significance of coronal balance on spinal deformity surgery outcomes. Sagittal balance has been confirmed as an important radiographic parameter correlating with adult deformity treatment outcomes. The significance of coronal balance on functional outcomes is less clear. Eighty-five patients with more than 4 cm of coronal imbalance who underwent reconstructive spinal surgery were evaluated to determine the significance of coronal balance on functional outcomes as measured with the Oswestry Disability Index (ODI) and Scoliosis Research Society outcomes questionnaires. Sixty-two patients had combined coronal (>4 cm) and sagittal imbalance (>5 cm), while 23 patients had coronal imbalance alone. Postoperatively, 85% of patients demonstrated improved coronal balance. The mean improvement in the coronal C7 plumb line was 26 mm for a mean correction of 42%. The mean preoperative sagittal C7 plumb line in patients with combined coronal and sagittal imbalance was 118 mm (range, 50-310 mm) and improved to a mean 49 mm. The mean preoperative and postoperative ODI scores were 42 (range, 0-90) and 27 (range, 0-78), for a mean improvement of 15 (36%) (P = 0.00001; 95% CI, 12-20). The mean Scoliosis Research Society scores improved by 17 points (29%) (P = 0.00). Younger age (P = 0.008) and improvement in sagittal balance (P = 0.014) were positive predictors for improved ODI scores. Improvement in sagittal balance (P = 0.010) was a positive predictor for improved Scoliosis Research Society scores. In patients with combined coronal and sagittal imbalance, improvement in sagittal balance was the most significant predictor for improved ODI scores (P = 0.009). In patients with preoperative coronal imbalance alone, improvement in coronal balance trended toward, but was not a significant predictor for improved ODI (P = 0.092). Sagittal balance improvement is the strongest predictor of improved outcomes in patients with combined coronal and sagittal imbalance. In patients with coronal imbalance alone, improvement in coronal balance was not a factor for predicting improved functional outcomes.
2017-01-01
Objective To investigate the clinical feasibility of a newly developed, portable, gait assistive robot (WA-H, ‘walking assist for hemiplegia’) for improving the balance function of patients with stroke-induced hemiplegia. Methods Thirteen patients underwent 12 weeks of gait training on the treadmill while wearing WA-H for 30 minutes per day, 4 days a week. Patients' balance function was evaluated by the Berg Balance Scale (BBS), Fugl-Meyer Assessment Scale (FMAS), Timed Up and Go Test (TUGT), and Short Physical Performance Battery (SPPB) before and after 6 and 12 weeks of training. Results There were no serious complications or clinical difficulties during gait training with WA-H. In three categories of BBS, TUGT, and the balance scale of SPPB, there was a statistically significant improvement at the 6th week and 12th week of gait training with WA-H. In the subscale of balance function of FMAS, there was statistically significant improvement only at the 12th week. Conclusion Gait training using WA-H demonstrated a beneficial effect on balance function in patients with hemiplegia without a safety issue. PMID:28503449
Hale, Sheri A.; Fergus, Andrea; Axmacher, Rachel; Kiser, Kimberly
2014-01-01
Context: Bilateral improvements in postural control have been reported among individuals with acute lateral ankle sprains and individuals with chronic ankle instability (CAI) when only the unstable ankle is rehabilitated. We do not know if training the stable ankle will improve function on the unstable side. Objective: To explore the effects of a unilateral balance-training program on bilateral lower extremity balance and function in individuals with CAI when only the stable limb is trained. Design: Cohort study. Setting: University clinical research laboratory. Patients or Other Participants: A total of 34 volunteers (8 men, 26 women; age = 24.32 ± 4.95 years, height = 167.01 ± 9.45 cm, mass = 77.54 ± 23.76 kg) with CAI were assigned to the rehabilitation (n = 17) or control (n = 17) group. Of those, 27 (13 rehabilitation group, 14 control group) completed the study. Intervention(s): Balance training twice weekly for 4 weeks. Main Outcome Measure(s): Foot and Ankle Disability Index (FADI), FADI Sport (FADI-S), Star Excursion Balance Test, and Balance Error Scoring System. Results: The rehabilitation and control groups differed in changes in FADI-S and Star Excursion Balance Test scores over time. Only the rehabilitation group improved in the FADI-S and in the posteromedial and anterior reaches of the Star Excursion Balance Test. Both groups demonstrated improvements in posterolateral reach; however, the rehabilitation group demonstrated greater improvement than the control group. When the groups were combined, participants reported improvements in FADI and FADI-S scores for the unstable ankle but not the stable ankle. Conclusions: Our data suggest training the stable ankle may result in improvements in balance and lower extremity function in the unstable ankle. This further supports the existence of a centrally mediated mechanism in the development of postural-control deficits after injury, as well as improved postural control after rehabilitation. PMID:24568231
Villafañe, Jorge H; Pirali, Caterina; Buraschi, Riccardo; Arienti, Chiara; Corbellini, Camilo; Negrini, Stefano
2015-12-01
We investigated the effectiveness of three different rehabilitative programs: group exercise, individual core stability or balance training intervention with a stabilometric platform to improve balance ability in elderly hospitalized patients. We used a prospective quasi-experimental study design. Twenty-eight patients, 39.3% women [age (mean±SD) 72.4±6.5 years], known to have had at least a fall in the last 12 months, were consecutively assigned to one of the following three groups: group exercise intervention, individual core stability or balance training with a stabilometric platform (five sessions a week for 3 weeks in each group). Outcomes were collected at baseline and immediately following the intervention period. In each intervention group, patients showed improvement in balance and mobility, shown as an improvement in the three functional tests score (the Tinetti scale, the Berg Balance Scale, and the Time Up and Go test) (all, P<0.05), whereas, generally, the changes in the score of the test of the stabilometric platform (Postural Stability Test and Fall Risk Test) were not significant for all the interventions. No significant group-by-time interaction was detected for any of the intervention groups, which suggests that the groups improved in the same way. These findings indicate that participation in an exercise program can improve balance and functional mobility, which might contribute toward the reductions of the falls of elderly hospitalized patients and the subsequent fall-related costs. Functional scales might be more appropriate than an instrumental test (Postural Stability Test and Fall Risk Test of the Biodex Balance System) in detecting the functional improvement because of a rehabilitative intervention.
Fisher-Pipher, Sarah; Kenyon, Lisa K; Westman, Marci
2017-07-01
Improving functional mobility is often a desired outcome for adolescents with cerebral palsy (CP). Traditional neurorehabilitation approaches are frequently directed at impairments; however, improvements may not be carried over into functional mobility. The purpose of this case report was to describe the examination, intervention, and outcomes of a task-oriented physical therapy intervention program to improve dynamic balance, functional mobility, and dual-task performance in an adolescent with CP. The participant was a 15-year-old girl with spastic triplegic CP (Gross Motor Classification System Level II). Examination procedures included the Canadian Occupational Performance Measure, 6-minute walk test, Muscle Power Sprint Test, 10 x 5-meter sprint test, Timed Up and Down Stairs Test, Gross Motor Function Measure, Gillette Functional Assessment Questionnaire, and functional lower extremity strength tests. Intervention focused on task-oriented dynamic balance and mobility tasks that incorporated coordination and speed demands as well as task-specific lower extremity and trunk strengthening activities. Dual task demands were integrated into all intervention activities. Post-intervention testing revealed improvements in cardiovascular endurance, anaerobic power, agility, stair climbing, gross motor skills, and mobility. The participant appeared to benefit from a task-oriented program to improve dynamic balance, functional mobility, and dual-task performance.
Zhu, Zhizhong; Cui, Liling; Yin, Miaomiao; Yu, Yang; Zhou, Xiaona; Wang, Hongtu; Yan, Hua
2016-06-01
To investigate the effects of hydrotherapy on walking ability and balance in patients with chronic stroke. Single-blind, randomized controlled pilot trial. Outpatient rehabilitation clinic at a tertiary neurological hospital in China. A total of 28 participants with impairments in walking and controlling balance more than six months post-stroke. After baseline evaluations, participants were randomly assigned to a land-based therapy (control group, n = 14) or hydrotherapy (study group, n = 14). Participants underwent individual sessions for four weeks, five days a week, for 45 minutes per session. After four weeks of rehabilitation, all participants were evaluated by a blinded assessor. Functional assessments included the Functional Reach Test, Berg Balance Scale, 2-minute walk test, and Timed Up and Go Test. After four weeks of treatment, the Berg Balance Scale, functional reach test, 2-minute walk test, and the Timed Up and Go Test scores had improved significantly in each group (P < 0.05). The mean improvement of the functional reach test and 2-minute walk test were significantly higher in the aquatic group than in the control group (P < 0.01). The differences in the mean values of the improvements in the Berg Balance Scale and the Timed Up and Go Test were not statistically significant. The results of this study suggest that a relatively short programme (four weeks) of hydrotherapy exercise resulted in a large improvement in a small group (n = 14) of individuals with relatively high balance and walking function following a stroke. © The Author(s) 2015.
Engineering redox balance through cofactor systems.
Chen, Xiulai; Li, Shubo; Liu, Liming
2014-06-01
Redox balance plays an important role in the production of enzymes, pharmaceuticals, and chemicals. To meet the demands of industrial production, it is desirable that microbes maintain a maximal carbon flux towards target metabolites with no fluctuations in redox. This requires functional cofactor systems that support dynamic homeostasis between different redox states or functional stability in a given redox state. Redox balance can be achieved by improving the self-balance of a cofactor system, regulating the substrate balance of a cofactor system, and engineering the synthetic balance of a cofactor system. This review summarizes how cofactor systems can be manipulated to improve redox balance in microbes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Park, Junhyuck; Yim, JongEun
2016-01-01
Aging is usually accompanied with deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity. Recently, intervention methods with virtual reality have been introduced, providing an enjoyable therapy for elderly. The aim of this study was to investigate whether a 3-D virtual reality kayak program could improve the cognitive function, muscle strength, and balance of community-dwelling elderly. Importantly, kayaking involves most of the upper body musculature and needs the balance control. Seventy-two participants were randomly allocated into the kayak program group (n = 36) and the control group (n = 36). The two groups were well matched with respect to general characteristics at baseline. The participants in both groups performed a conventional exercise program for 30 min, and then the 3-D virtual reality kayak program was performed in the kayak program group for 20 min, two times a week for 6 weeks. Cognitive function was measured using the Montreal Cognitive Assessment. Muscle strength was measured using the arm curl and handgrip strength tests. Standing and sitting balance was measured using the Good Balance system. The post-test was performed in the same manner as the pre-test; the overall outcomes such as cognitive function (p < 0.05), muscle strength (p < 0.05), and balance (standing and sitting balance, p < 0.05) were significantly improved in kayak program group compared to the control group. We propose that the 3-D virtual reality kayak program is a promising intervention method for improving the cognitive function, muscle strength, and balance of elderly.
Lazarou, Lazaros; Kofotolis, Nikolaos; Pafis, Georgios; Kellis, Eleftherios
2017-09-08
Following ankle sprain, residual symptoms are often apparent, and proprioceptive training is a treatment approach. Evidence, however, is limited and the optimal program has to be identified. To investigate the effects of two post-acute supervised proprioceptive training programs in individuals with ankle sprain. Participants were recruited from a physiotherapy center for ankle sprain rehabilitation. In a pre-post treatment, blinded-assessor design, 22 individuals were randomly allocated to a balance or a proprioceptive neuromuscular facilitation (PNF) group. Both groups received 10 rehabilitation sessions, within a six-week period. Dorsiflexion range of motion (ROM), pain, functional and balance performance were assessed at baseline, at the end of training and eight weeks after training. Follow-up data were provided for 20 individuals. Eight weeks after training, statistically significant (p< 0.017) improvements were found in dorsiflexion ROM and most functional performance measures for both balance and PNF groups. Eight weeks after training, significant (p< 0.017) improvements in the frontal plane balance test and pain were observed for the balance group. Balance and PNF programs are recommended in clinical practice for improving ankle ROM and functional performance in individuals with sprain. Balance programs are also recommended for pain relief.
Park, Junhyuck; Gong, Jihwan; Yim, Jongeun
2017-01-01
Boxing training including traditional stretching, muscular strength training, and duration training would be considered to be effective for improved functional stretching, dynamic balance, walking speed, and quality of life. We aimed to investigate upper limb function, balance, gait, and quality of life in stroke patients before and after a sitting boxing program. Twenty-six participants were randomly allocated to a boxing group (n = 13) and control group (n = 13) after the upper limb function, balance, gait, and quality of Life were recorded. The boxing group underwent a sitting boxing program (3 times/week) as well as conventional physical therapy (3 times/week) for 6 weeks. The control group only underwent conventional physical therapy (3 times/week) for 6 weeks. The Manual Functional Test (MFT), non-affected hand grip, Berg Balance Scale (BBS), velocity moment with eye opened, 10-m Walk Test (10 MWT), and Stroke-Specific Quality of Life questionnaire (SS-QOL) were significantly improved in the boxing group (p < 0.05) and showed significantly greater improvements in the boxing group compared to the control group (p < 0.05) after 6 weeks. The sitting boxing program group had positive effects on upper extremity function, balance, gait, and quality of life in stroke patients.
Tramontano, Marco; Shofany, Jacob; Iemma, Antonella; Musicco, Massimo; Paolucci, Stefano; Caltagirone, Carlo
2014-01-01
The video game-based therapy emerged as a potential valid tool in improving balance in several neurological conditions with controversial results, whereas little information is available regarding the use of this therapy in subacute stroke patients. The aim of this study was to investigate the efficacy of balance training using video game-based intervention on functional balance and disability in individuals with hemiparesis due to stroke in subacute phase. Fifty adult stroke patients participated to the study: 25 subjects were randomly assigned to balance training with Wii Fit, and the other 25 subjects were assigned to usual balance therapy. Both groups were also treated with conventional physical therapy (40 min 2 times/day). The main outcome was functional balance (Berg Balance Scale-BBS), and secondary outcomes were disability (Barthel Index-BI), walking ability (Functional Ambulation Category), and walking speed (10-meters walking test). Wii Fit training was more effective than usual balance therapy in improving balance (BBS: 53 versus 48, P = 0.004) and independency in activity of daily living (BI: 98 versus 93, P = 0.021). A balance training performed with a Wii Fit as an add on to the conventional therapy was found to be more effective than conventional therapy alone in improving balance and reducing disability in patients with subacute stroke. PMID:24877116
Nicholson, Vaughan P; McKean, Mark R; Burkett, Brendan J
2014-01-01
Purpose The purpose of the study was to evaluate the effect of BodyBalance® training on balance, functional task performance, fear of falling, and health-related quality of life in adults aged over 55 years. Participants and methods A total of 28 healthy, active adults aged 66±5 years completed the randomized controlled trial. Balance, functional task performance, fear of falling, and self-reported quality of life were assessed at baseline and after 12 weeks. Participants either undertook two sessions of BodyBalance per week for 12 weeks (n=15) or continued with their normal activities (n=13). Results Significant group-by-time interactions were found for the timed up and go (P=0.038), 30-second chair stand (P=0.037), and mediolateral center-of-pressure range in narrow stance with eyes closed (P=0.017). There were no significant effects on fear of falling or self-reported quality of life. Conclusion Twelve weeks of BodyBalance training is effective at improving certain balance and functional based tasks in healthy older adults. PMID:25395844
A small-group functional balance intervention for individuals with Alzheimer disease: a pilot study.
Ries, Julie D; Drake, Jamie Michelle; Marino, Christopher
2010-03-01
Individuals with Alzheimer disease (AD) have a higher risk of falls than their cognitively intact peers. This pilot study was designed to assess the feasibility and effectiveness of a small-group balance exercise program for individuals with AD in a day center environment. Seven participants met the inclusion criteria: diagnosis of AD or probable AD, medical stability, and ability to walk (with or without assistive device). We used an exploratory pre- and post-test study design. Participants engaged in a functional balance exercise program in two 45-minute sessions each week for eight weeks. Balance activities were functional and concrete, and the intervention was organized into constant, blocked, massed practice. Outcome measures included Berg Balance Scale (BBS), Timed Up and Go (TUG), and gait speed (GS; self-selected and fast assessed by an instrumented walkway). Data were analyzed by comparing individual change scores with previously identified minimal detectable change scores at the 90% confidence level (MDC90). Pre- and post-test data were acquired for five participants (two participants withdrew). The BBS improved in all five participants, and improved > or = 6.4 points (the MDC90 for the BBS in three participants. Four participants improved their performance on the TUG, and three participants improved > or = 4.09 seconds (the MDC90 for the TUG). Self-selected GS increased > or = 9.44 cm/sec (the MDC90 for gait speed) in three participants. Two participants demonstrated post-test self-selected GS comparable with their pretest fast GS. This pilot study suggests that a small-group functional balance intervention for individuals with AD is feasible and effective. Although participants had no explicit memory of the program, four of five improved in at least two outcome measures. Larger scale functional balance intervention studies with individuals with AD are warranted.
Brien, Marie; Sveistrup, Heidi
2011-01-01
To examine functional balance and mobility in adolescents with cerebral palsy classified at Gross Motor Function Classification System (GMFCS) level I following an intensive short-duration virtual reality (VR) intervention. Single-subject, multiple-baseline design with 4 adolescents. Outcomes included the Community Balance and Mobility Scale (CB&M), the 6-Minute Walk Test (6MWT), the Timed Up and Down Stairs, and the Gross Motor Function Measure Dimension E. Assessments were recorded 3 to 6 times at baseline, 5 times during intervention, and 4 times at follow-up. Daily 90-minute VR intervention was completed for 5 consecutive days. Visual, statistical, and clinical significance analyses were used. Statistically significant improvements were shown in all adolescents on CB&M and 6MWT. True change was recorded in all for the CB&M and in 3 for the 6MWT. Functional balance and mobility in adolescents with cerebral palsy classified at GMFCS level I improve with intense, short duration VR intervention, and changes are maintained at 1-month posttraining.
Anson, Eric; Ma, Lei; Meetam, Tippawan; Thompson, Elizabeth; Rathore, Roshita; Dean, Victoria; Jeka, John
2018-05-01
Virtual reality and augmented feedback have become more prevalent as training methods to improve balance. Few reports exist on the benefits of providing trunk motion visual feedback (VFB) during treadmill walking, and most of those reports only describe within session changes. To determine whether trunk motion VFB treadmill walking would improve over-ground balance for older adults with self-reported balance problems. 40 adults (75.8 years (SD 6.5)) with self-reported balance difficulties or a history of falling were randomized to a control or experimental group. Everyone walked on a treadmill at a comfortable speed 3×/week for 4 weeks in 2 min bouts separated by a seated rest. The control group was instructed to look at a stationary bulls-eye target while the experimental group also saw a moving cursor superimposed on the stationary bulls-eye that represented VFB of their walking trunk motion. The experimental group was instructed to keep the cursor in the center of the bulls-eye. Somatosensory (monofilaments and joint position testing) and vestibular function (canal specific clinical head impulses) was evaluated prior to intervention. Balance and mobility were tested before and after the intervention using Berg Balance Test, BESTest, mini-BESTest, and Six Minute Walk. There were no significant differences between groups before the intervention. The experimental group significantly improved on the BESTest (p = 0.031) and the mini-BEST (p = 0.019). The control group did not improve significantly on any measure. Individuals with more profound sensory impairments had a larger improvement on dynamic balance subtests of the BESTest. Older adults with self-reported balance problems improve their dynamic balance after training using trunk motion VFB treadmill walking. Individuals with worse sensory function may benefit more from trunk motion VFB during walking than individuals with intact sensory function. Copyright © 2018 Elsevier B.V. All rights reserved.
Improving Balance Function Using Low Levels of Electrical Stimulation of the Balance Organs
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob; Reschke, Millard; Mulavara, Ajitkumar; Wood, Scott; Serrador, Jorge; Fiedler, Matthew; Kofman, Igor; Peters, Brian T.; Cohen, Helen
2012-01-01
Crewmembers returning from long-duration space flight face significant challenges due to the microgravity-induced inappropriate adaptations in balance/sensorimotor function. The Neuroscience Laboratory at JSC is developing a method based on stochastic resonance to enhance the brain's ability to detect signals from the balance organs of the inner ear and use them for rapid improvement in balance skill, especially when combined with balance training exercises. This method involves a stimulus delivery system that is wearable/portable and provides imperceptible electrical stimulation to the balance organs of the human body. Stochastic resonance (SR) is a phenomenon whereby the response of a nonlinear system to a weak periodic input signal is optimized by the presence of a particular non-zero level of noise. This phenomenon of SR is based on the concept of maximizing the flow of information through a system by a non-zero level of noise. Application of imperceptible SR noise coupled with sensory input in humans has been shown to improve motor, cardiovascular, visual, hearing, and balance functions. SR increases contrast sensitivity and luminance detection; lowers the absolute threshold for tone detection in normal hearing individuals; improves homeostatic function in the human blood pressure regulatory system; improves noise-enhanced muscle spindle function; and improves detection of weak tactile stimuli using mechanical or electrical stimulation. SR noise has been shown to improve postural control when applied as mechanical noise to the soles of the feet, or when applied as electrical noise at the knee and to the back muscles. SR using imperceptible stochastic electrical stimulation of the vestibular system (stochastic vestibular stimulation, SVS) applied to normal subjects has shown to improve the degree of association between the weak input periodic signals introduced via venous blood pressure receptors and the heart-rate responses. Also, application of SVS over 24 hours improves the long-term heart-rate dynamics and motor responsiveness as indicated by daytime trunk activity measurements in patients with multi-system atrophy, Parkinson s disease, or both, including patients who were unresponsive to standard therapy for Parkinson s disease. Recent studies conducted at the NASA JSC Neurosciences Laboratories showed that imperceptible SVS, when applied to normal young healthy subjects, leads to significantly improved balance performance during postural disturbances on unstable compliant surfaces. These studies have shown the benefit of SR noise characteristic optimization with imperceptible SVS in the frequency range of 0-30 Hz, and amplitudes of stimulation have ranged from 100 to 400 microamperes.
Jung, Dae-In; Ko, Dae-Sik; Jeong, Mi-Ae
2015-01-01
[Purpose] This study evaluated the changes in balance ability and obstacle gait after lumbar stabilization exercise and Nintendo WiiTM Sports in elderly at risk for falls. [Subjects and Methods] Twenty-four elderly women with at risk for falls were randomly divided into the control, lumbar stabilization exercise, and Nintendo Wii Sports groups. Static balance was measured by the Berg Balance Scale and functional reach test, dynamic balance by the timed up-and-go test, and obstacle negotiation function by crossing velocity and maximum vertical heel clearance. [Results] Both the lumbar stabilization exercise and Nintendo Wii Sports groups showed significant improvements in obstacle negotiation function after the exercise compared to the control group. Berg Balance Scale and functional reach test scores were greater in the lumbar stabilization exercise group, while the timed up-and-go test time was significantly better in the Nintendo Wii Sports groups. [Conclusion] Lumbar stabilization exercises and Nintendo Wii Sports improve falling related balance and obstacle negotiation function in elderly women at risk for falls. PMID:26157228
Jung, Dae-In; Ko, Dae-Sik; Jeong, Mi-Ae
2015-05-01
[Purpose] This study evaluated the changes in balance ability and obstacle gait after lumbar stabilization exercise and Nintendo Wii(TM) Sports in elderly at risk for falls. [Subjects and Methods] Twenty-four elderly women with at risk for falls were randomly divided into the control, lumbar stabilization exercise, and Nintendo Wii Sports groups. Static balance was measured by the Berg Balance Scale and functional reach test, dynamic balance by the timed up-and-go test, and obstacle negotiation function by crossing velocity and maximum vertical heel clearance. [Results] Both the lumbar stabilization exercise and Nintendo Wii Sports groups showed significant improvements in obstacle negotiation function after the exercise compared to the control group. Berg Balance Scale and functional reach test scores were greater in the lumbar stabilization exercise group, while the timed up-and-go test time was significantly better in the Nintendo Wii Sports groups. [Conclusion] Lumbar stabilization exercises and Nintendo Wii Sports improve falling related balance and obstacle negotiation function in elderly women at risk for falls.
Smith, Derek T; Judge, Stacey; Malone, Ashley; Moynes, Rebecca C; Conviser, Jason; Skinner, James S
2016-01-01
Reduced strength, balance, and functional independence diminish quality of life and increase health care costs. Sixty adults (82.2 ± 4.9 years) were randomized to a control or three 12-week intervention groups: bioDensity (bD); Power Plate (PP) whole-body vibration (WBV); or bD+PP. bD involved one weekly 5-s maximal contraction of four muscle groups. PP involved two 5-min WBV sessions. Primary outcomes were strength, balance, and Functional Independence Measure (FIM). No groups differed initially. Strength significantly increased 22-51% for three muscle groups in bD and bD+PP (P < .001), with no changes in control and PP. Balance significantly improved in PP and bD+PP but not in control or bD. bD, PP, and bD+PP differentially improved FIM self-care and mobility. Strength improvements from weekly 5-min sessions of bD may impart health/clinical benefits. Balance and leg strength improvements suggest WBV beneficially impacts fall risk and incidence. Improved FIM scores are encouraging and justify larger controlled trials on bD and bD+PP efficacy.
Using Low Levels of Stochastic Vestibular Stimulation to Improve Balance Function
Goel, Rahul; Kofman, Igor; Jeevarajan, Jerome; De Dios, Yiri; Cohen, Helen S.; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.
2015-01-01
Low-level stochastic vestibular stimulation (SVS) has been associated with improved postural responses in the medio-lateral (ML) direction, but its effect in improving balance function in both the ML and anterior-posterior (AP) directions has not been studied. In this series of studies, the efficacy of applying low amplitude SVS in 0–30 Hz range between the mastoids in the ML direction on improving cross-planar balance function was investigated. Forty-five (45) subjects stood on a compliant surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in ML, AP and combined APML directions. Results show that binaural bipolar SVS given in the ML direction significantly improved balance performance with the peak of optimal stimulus amplitude predominantly in the range of 100–500 μA for all the three directions, exhibiting stochastic resonance (SR) phenomenon. Objective perceptual and body motion thresholds as estimates of internal noise while subjects sat on a chair with their eyes closed and were given 1 Hz bipolar binaural sinusoidal electrical stimuli were also measured. In general, there was no significant difference between estimates of perceptual and body motion thresholds. The average optimal SVS amplitude that improved balance performance (peak SVS amplitude normalized to perceptual threshold) was estimated to be 46% in ML, 53% in AP, and 50% in APML directions. A miniature patch-type SVS device may be useful to improve balance function in people with disabilities due to aging, Parkinson’s disease or in astronauts returning from long-duration space flight. PMID:26295807
Yatar, Gozde Iyigun; Yildirim, Sibel Aksu
2015-04-01
[Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke.
Tisher, Kristen; Mann, Kimberly; VanDyke, Sarah; Johansson, Charity; Vallabhajosula, Srikant
2018-03-05
Supervised balance training shows immediate benefit for older adults at fall risk. The long-term effectiveness of such training can be enhanced by implementing a safe and simple home exercise program (HEP). We investigated the effects of a12-week unsupervised HEP following supervised clinic-based balance training on functional mobility, balance, fall risk, and gait. Six older adults with an elevated fall risk obtained an HEP and comprised the HEP group (HEPG) and five older adults who were not given an HEP comprised the no HEP group (NoHEPG). The HEP consisted of three static balance exercises: feet-together, single-leg stance, and tandem. Each exercise was to be performed twice for 30-60 s, once per day, 3 days per week for 12 weeks. Participants were educated on proper form, safety, and progression of exercises. Pre- and post-HEP testing included Berg Balance Scale (BBS), Timed Up and Go, Short Physical Performance Battery (SPPB) assessments, Activities-Balance Confidence, Late-Life Functional Disability Instrument and instrumented assessments of balance and gait (Limits of Stability, modified Clinical Test of Sensory Interaction on Balance, Gait). A healthy control group (HCG; n = 11) was also tested. For most of the measures, the HEPG improved to the level of HCG. Though task-specific improvements like BBS and SPPB components were seen, the results did not carry over to more dynamic assessments. Results provide proof of concept that a simple HEP can be independently implemented and effective for sustaining and/or improving balance in older adults at elevated fall-risk after they have undergone a clinic-based balance intervention.
Virtual reality training improves balance function.
Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng
2014-09-01
Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.
Virtual reality training improves balance function
Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng
2014-01-01
Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651
Al-Khlaifat, Lara; Herrington, Lee C; Tyson, Sarah F; Hammond, Alison; Jones, Richard K
2016-10-01
Dynamic balance and quiet standing balance are decreased in knee osteoarthritis (OA), with dynamic balance being more affected. This study aimed to investigate the effectiveness of a group exercise programme of lower extremity muscles integrated with education on dynamic balance using the Star Excursion Balance test (SEBT) in knee OA. Experimental before-and-after pilot study design. Nineteen participants with knee OA attended the exercise sessions once a week for six weeks, in addition to home exercises. Before and after the exercise programme, dynamic balance was assessed using the SEBT in the anterior and medial directions in addition to hip and knee muscle strength, pain, and function. Fourteen participants completed the study. Dynamic balance on the affected side demonstrated significant improvements in the anterior and medial directions (p=0.02 and p=0.01, respectively). The contralateral side demonstrated significant improvements in dynamic balance in the anterior direction (p<0.001). However, balance in the medial direction did not change significantly (p=0.07). Hip and knee muscle strength, pain, and function significantly improved (p<0.05) after the exercise programme. This is the first study to explore the effect of an exercise programme on dynamic balance using the SEBT in knee OA. The exercise programme was effective in improving dynamic balance which is required in different activities of daily living where the patients might experience the risk of falling. This might be attributed to the improvement in muscle strength and pain after the exercise programme. Copyright © 2016 Elsevier B.V. All rights reserved.
Does hippotherapy effect use of sensory information for balance in people with multiple sclerosis?
Lindroth, Jodi L; Sullivan, Jessica L; Silkwood-Sherer, Debbie
2015-01-01
This case-series study aimed to determine if there were observable changes in sensory processing for postural control in individuals with multiple sclerosis (MS) following physical therapy using hippotherapy (HPOT), or changes in balance and functional gait. This pre-test non-randomized design study, with follow-up assessment at 6 weeks, included two females and one male (age range 37-60 years) with diagnoses of relapse-remitting or progressive MS. The intervention consisted of twelve 40-min physical therapy sessions which included HPOT twice a week for 6 weeks. Sensory organization and balance were assessed by the Sensory Organization Test (SOT) and Berg Balance Scale (BBS). Gait was assessed using the Functional Gait Assessment (FGA). Following the intervention period, all three participants showed improvements in SOT (range 1-8 points), BBS (range 2-6 points), and FGA (average 4 points) scores. These improvements were maintained or continued to improve at follow-up assessment. Two of the three participants no longer over-relied on vision and/or somatosensory information as the primary sensory input for postural control, suggesting improved use of sensory information for balance. The results indicate that HPOT may be a beneficial physical therapy treatment strategy to improve balance, functional gait, and enhance how some individuals with MS process sensory cues for postural control. Randomized clinical trials will be necessary to validate results of this study.
Esculier, Jean-Francois; Vaudrin, Joanie; Bériault, Patrick; Gagnon, Karine; Tremblay, Louis E
2012-02-01
To evaluate the effects of a home-based balance training programme using visual feedback (Nintendo Wii Fit game with balance board) on balance and functional abilities in subjects with Parkinson's disease, and to compare the effects with a group of paired healthy subjects. Ten subjects with moderate Parkinson's disease and 8 healthy elderly subjects. Subjects participated in a 6-week home-based balance training programme using Nintendo Wii Fit and balance board. Baseline measures were taken before training for the Sit-to-Stand test (STST), Timed-Up-and-Go (TUG), Tinetti Performance Oriented Mobility Assessment (POMA), 10-m walk test, Community Balance and Mobility assessment (CBM), Activities-specific Balance and Confidence scale (ABC), unipodal stance duration, and a force platform. All measurements were taken again after 3 and 6 weeks of training. The Parkinson's disease group significantly improved their results in TUG, STST, unipodal stance, 10-m walk test, CBM, POMA and force platform at the end of the 6-week training programme. The healthy subjects group significantly improved in TUG, STST, unipodal stance and CBM. This pilot study suggests that a home-based balance programme using Wii Fit with balance board could improve static and dynamic balance, mobility and functional abilities of people affected by Parkinson's disease.
Wii-based Balance Therapy to Improve Balance Function of Children with Cerebral Palsy: A Pilot Study
Tarakci, Devrim; Ozdincler, Arzu Razak; Tarakci, Ela; Tutuncuoglu, Fatih; Ozmen, Meral
2013-01-01
[Purpose] Cerebral palsy is a sensorimotor disorder that affects the control of posture and movement. The Nintendo® Wii Fit offers an inexpensive, enjoyable, suitable alternative to more complex systems for children with cerebral palsy. The aim of this study was to investigate the efficacacy of Wii-based balance therapy for children with ambulatory cerebral palsy. [Subjects] This pilot study design included fourteen ambulatory patients with cerebral palsy (11 males, 3 females; mean age 12.07 ± 3.36 years). [Methods] Balance functions before and after treatment were evaluated using one leg standing, the functional reach test, the timed up and go test, and the 6-minute walking test. The physiotherapist prescribed the Wii Fit activities,and supervised and supported the patients during the therapy sessions. Exercises were performed in a standardized program 2 times a week for 12 weeks. [Results] Balance ability of every patient improved. Statistically significant improvements were found in all outcome measures after 12 weeks. [Conclusion] The results suggest that the Nintendo® Wii Fit provides a safe, enjoyable, suitable and effective method that can be added to conventional treatments to improve the static balance of patients with cerebral palsy; however, further work is required. PMID:24259928
Song, Yong-Gwan; Ryu, Young-Uk; Im, Seung-Jin; Lee, Ye-Seung; Park, Jin-Hoon
2018-03-30
Individuals in the later stages of cerebellar ataxia usually experience serious balance and immobility problems. Currently, there is a lack of adequate rehabilitative programs for individuals with severe cerebellar ataxia that can help improve ataxia-related motor impairment. The purpose of the present study was to explore the potential physiotherapeutic benefits of partnered dance on balance, motor functions, and psychological well-being in an individual demonstrating severe cerebellar ataxia symptoms. The individual was a 39-year-old male diagnosed with cerebellar atrophy. He had the disease for more than 15 years prior to the study. The individual attended 24 intervention sessions over an 8-week period of dance-based movement training that aimed to improve his balance and postural stability by facilitating the perception and control of static and dynamic balance movements and body alignment. The individual demonstrated improvements in independent standing balance, gait characteristics, and functional mobility. In addition, improvements in self-reported depression and quality of life scores were observed after completion of the intervention. Although interpreting the findings of this study is limited to a single participant, partnered dance could be a suitable alternative physiotherapeutic intervention method for people with severely impaired mobility due to cerebellar dysfunction.
Kurt, Emine Eda; Büyükturan, Buket; Büyükturan, Öznur; Erdem, Hatice Rana; Tuncay, Figen
2018-04-01
In this study, we aimed to investigate effects of Ai Chi on balance, functional mobility, health-related quality of life, and motor impairment in patients with Parkinson's disease. This study was conducted as an open-label randomized controlled trial (ISRCTN26292510) with repeated measures. Forty patients with Parkinson's disease stages 2 to 3 according to the Hoehn and Yahr Scale were randomly allocated to either an Ai Chi exercise group or a land-based exercise control group for 5 weeks. Balance was measured using the Biodex-3,1 and the Berg Balance Scale. Functional mobility was evaluated using the Timed Up and Go Test. Additionally, health-related quality of life and motor activity were assessed with the Parkinson's Disease Questionnaire-39 and the Unified Parkinson's Disease Rating Scale-III. Although patients in both groups showed significant improvement in all outcome variables, improvement of dynamic balance was significantly greater in the Ai Chi group (p < 0.001), Berg Balance Scale (p < 0.001), Timed Up and Go Test (p = 0.002), Parkinson's Disease Questionnaire-39 (p < 0.001), Unified Parkinson's Disease Rating Scale-III (p < 0.001). Our results suggest that an Ai Chi exercise program improves balance, mobility, motor ability, and quality of life. In addition, Ai Chi exercise was more effective as an intervention than land-based exercise in patients with mild to moderate Parkinson's disease. Implications for rehabilitation Ai Chi exercises (aquatic exercises) may help improve balance, functional mobility, health-related quality of life, and motor ability in patients with mild to moderate Parkinson's disease more efficiently than similar land-based exercises. Ai Chi exercises should be considered as a rehabilitation option for treatment of patients with mild or moderate Parkinson's disease.
Lo, Wai Leung; Lin, Qiang; Xiao, Xiang; Raghavan, Preeti; Huang, Dong-Feng
2015-01-01
Objective. Gait performance is an indicator of mobility impairment after stroke. This study evaluated changes in balance, lower extremity motor function, and spatiotemporal gait parameters after receiving body weight supported treadmill training (BWSTT) and conventional overground walking training (CT) in patients with subacute stroke using 3D motion analysis. Setting. Inpatient department of rehabilitation medicine at a university-affiliated hospital. Participants. 24 subjects with unilateral hemiplegia in the subacute stage were randomized to the BWSTT (n = 12) and CT (n = 12) groups. Parameters were compared between the two groups. Data from twelve age matched healthy subjects were recorded as reference. Interventions. Patients received gait training with BWSTT or CT for an average of 30 minutes/day, 5 days/week, for 3 weeks. Main Outcome Measures. Balance was measured by the Brunel balance assessment. Lower extremity motor function was evaluated by the Fugl-Meyer assessment scale. Kinematic data were collected and analyzed using a gait capture system before and after the interventions. Results. Both groups improved on balance and lower extremity motor function measures (P < 0.05), with no significant difference between the two groups after intervention. However, kinematic data were significantly improved (P < 0.05) after BWSTT but not after CT. Maximum hip extension and flexion angles were significantly improved (P < 0.05) for the BWSTT group during the stance and swing phases compared to baseline. Conclusion. In subacute patients with stroke, BWSTT can lead to improved gait quality when compared with conventional gait training. Both methods can improve balance and motor function. PMID:26649295
Mao, Yu-Rong; Lo, Wai Leung; Lin, Qiang; Li, Le; Xiao, Xiang; Raghavan, Preeti; Huang, Dong-Feng
2015-01-01
Gait performance is an indicator of mobility impairment after stroke. This study evaluated changes in balance, lower extremity motor function, and spatiotemporal gait parameters after receiving body weight supported treadmill training (BWSTT) and conventional overground walking training (CT) in patients with subacute stroke using 3D motion analysis. Inpatient department of rehabilitation medicine at a university-affiliated hospital. 24 subjects with unilateral hemiplegia in the subacute stage were randomized to the BWSTT (n = 12) and CT (n = 12) groups. Parameters were compared between the two groups. Data from twelve age matched healthy subjects were recorded as reference. Patients received gait training with BWSTT or CT for an average of 30 minutes/day, 5 days/week, for 3 weeks. Balance was measured by the Brunel balance assessment. Lower extremity motor function was evaluated by the Fugl-Meyer assessment scale. Kinematic data were collected and analyzed using a gait capture system before and after the interventions. Both groups improved on balance and lower extremity motor function measures (P < 0.05), with no significant difference between the two groups after intervention. However, kinematic data were significantly improved (P < 0.05) after BWSTT but not after CT. Maximum hip extension and flexion angles were significantly improved (P < 0.05) for the BWSTT group during the stance and swing phases compared to baseline. In subacute patients with stroke, BWSTT can lead to improved gait quality when compared with conventional gait training. Both methods can improve balance and motor function.
Visual feedback training using WII Fit improves balance in Parkinson's disease.
Zalecki, Tomasz; Gorecka-Mazur, Agnieszka; Pietraszko, Wojciech; Surowka, Artur D; Novak, Pawel; Moskala, Marek; Krygowska-Wajs, Anna
2013-01-01
Postural instability including imbalance is the most disabling long term problem in Parkinson's disease (PD) that does not respond to pharmacotherapy. This study aimed at investigating the effectiveness of a novel visual-feedback training method, using Wii Fit balance board in improving balance in patients with PD. Twenty four patients with moderate PD were included in the study which comprised of a 6-week home-based balance training program using Nintendo Wii Fit and balance board. The PD patients significantly improved their results in Berg Balance Scale, Tinnet's Performance-Oriented Mobility Assessment, Timed Up-and-Go, Sit-to-stand test, 10-Meter Walk test and Activities-specific Balance Confidence scale at the end of the programme. This study suggests that visual feedback training using Wii-Fit with balance board could improve dynamic and functional balance as well as motor disability in PD patients.
Yatar, Gozde Iyigun; Yildirim, Sibel Aksu
2015-01-01
[Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke. PMID:25995576
Frih, Bechir; Mkacher, Wajdi; Jaafar, Hamdi; Frih, Ameur; Ben Salah, Zohra; El May, Mezry; Hammami, Mohamed
2018-04-01
The purpose of this study was to evaluate the effects of 6 months of specific balance training included in endurance-resistance program on postural balance in haemodialysis (HD) patients. Forty-nine male patients undergoing HD were randomly assigned to an intervention group (balance training included in an endurance-resistance training, n = 26) or a control group (resistance-endurance training only, n = 23). Postural control was assessed using six clinical tests; Timed Up and Go test, Tinetti Mobility Test, Berg Balance Scale, Unipodal Stance test, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scale. All balance measures increased significantly after the period of rehabilitation training in the intervention group. Only the Timed Up and Go, Berg Balance Scale, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scores were improved in the control group. The ranges of change in these tests were greater in the balance training group. In HD patients, specific balance training included in a usual endurance-resistance training program improves static and dynamic balance better than endurance-resistance training only. Implications for rehabilitation Rehabilitation using exercise in haemodialysis patients improved global mobility and functional abilities. Specific balance training included in usual endurance resistance training program could lead to improved static and dynamic balance.
Emilio, Emilio J. Martínez-López; Hita-Contreras, Fidel; Jiménez-Lara, Pilar M.; Latorre-Román, Pedro; Martínez-Amat, Antonio
2014-01-01
The purpose of the present study was to determine the effects of a proprioceptive training program on older adults, as well as to analyze the association between flexibility, balance and lumbar strength (physical fitness test) with balance ability and fall risk (functional balance tests). This study was a controlled, longitudinal trial with a 12-week follow-up period. Subjects from a population of older adults were allocated to the intervention group (n = 28) or to the usual care (control) group (n = 26). Subjects performed proprioceptive training twice weekly (6 specific exercises with Swiss ball and BOSU). Each session included 50 minutes (10 minutes of warm-up with slow walk, 10 minutes of mobility and stretching exercises, 30 minutes of proprioceptive exercises). The outcome variables were physical fitness (lower-body flexibility, hip-joint mobility, dynamic balance, static balance, and lumbar strength) and functional balance (Berg scale and Tinetti test). The experimental group obtained significantly higher values than the control group in lower-body flexibility, dynamic balance, and lumbar strength (p = 0.019, p < 0.001, and p = 0.034 respectively). Hip-joint mobility, dynamic balance, and lumbar strength were positively associated with balance ability (p < 0.001, p < 0.001, and p = 0.014, respectively) and the prevention of falls (p = 0.001, p < 0.001, and p = 0.017 respectively). These findings suggest that a 12-week proprioception program intervention (twice a week) significantly improves flexibility, balance, and lumbar strength in older adults. Hip-joint mobility, dynamic balance and lumbar strength are positively associated to balance ability and the risk of falls in older adults. This proprioceptive training does not show a significant improvement in hip-joint mobility or static balance. Key points A 12-week proprioceptive intervention program (two times per week) significantly improves flexibility, balance, and lumbar strength in older adults. The risk of falls and balance ability are significantly improved after a training program with Bosu and Swiss ball in older adults. An improvement in joint mobility, dynamic balance and lumbar strength is positively associated with balance ability and improved fall risk in older adults. A 12-week proprioceptive intervention program (two times per week) does not show a significant improvement in hip-joint mobility and static balance. PMID:24790489
Gabizon, Hadas; Press, Yan; Volkov, Ilia; Melzer, Itshak
2016-07-01
To evaluate the effect of a group-based Pilates training program on balance control and health status in healthy older adults. A single-blind, randomized, controlled trial. General community. A total of 88 community-dwelling older adults (age 71.15 ± 4.30 years), without evidence of functional balance impairment, were recruited and allocated at random to a Pilates intervention group (n = 44) or a control group (n = 44). The Pilates intervention group received 36 training sessions over three months (3 sessions a week), while the control group did not receive any intervention. Standing upright postural stability, performance-based measures of balance, and self-reported health status was assessed in both groups at baseline and at the end of the intervention period. Compared with the control group, the Pilates intervention did not improve postural stability, baseline functional measures of balance, or health status. The results suggest that because Pilates training is not task specific, it does not improve balance control or balance function in independent older adults.
Tai Ji Quan and global cognitive function in older adults with cognitive impairment: a pilot study.
Li, Fuzhong; Harmer, Peter; Liu, Yu; Chou, Li-Shan
2014-01-01
This study evaluated whether Tai Ji Quan: Moving for Better Balance (TJQMBB) could improve global cognitive function in older adults with cognitive impairment. Using a nonrandomized control group pretest-posttest design, participants aged ≥65 years who scored between 20 and 25 on the Mini-Mental State Examination (MMSE) were allocated into either a 14-week TJQMBB program (n=22) or a control group (n=24). The primary outcome was MMSE as a measure of global cognitive function with secondary outcomes of 50-ft speed walk, Timed Up&Go, and Activities-Specific Balance Confidence (ABC) scale. At 14 weeks, Tai Ji Quan participants showed significant improvement on MMSE (mean=2.26, p<0.001) compared to controls (mean=0.63, p=0.08). Similarly, Tai Ji Quan participants performed significantly better compared to the controls in both physical performance and balance efficacy measures (p<0.05). Improvement in cognition as measured by MMSE was related to improved physical performance and balance efficacy. These results provide preliminary evidence of the utility of the TJQMBB program to promote cognitive function in older adults in addition to physical benefits. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Role of ankle foot orthoses in functional stability of individuals with stroke.
Rao, N; Aruin, A S
2016-10-01
Ankle foot orthoses (AFOs) are frequently prescribed to improve ambulation in individuals with stroke. However, the role of AFOs in balance control is not completely understood. The aim of the study was to evaluate the contribution of the AFOs in functional stability of individuals with stroke. Twenty three individuals with unilateral hemiparesis due to stroke were assessed using the Functional Reach Test. The subjects performed reaches forward, left and right while standing with or without an AFO. When provided with AFO, individuals with stroke improved the maximal reaching distance in all the directions (p < 0.05). The study found that individuals with unilateral stroke clearly demonstrated improvements in functional stability when they were provided with AFOs. This outcome could be used in the optimization of balance rehabilitation of individuals with stroke. Implications for Rehabilitation Functional stability is impaired in individuals with stroke. Functional Reach Test (FRT) was used to assess the role of ankle foot orthoses (AFOs) in balance control. Individuals with stroke improved their functional stability while they were provided with AFOs. Functional Reach Test could assist clinicians in the evaluation of postural stability associated with the use of AFOs.
Telerehabilitation using virtual reality task can improve balance in patients with stroke.
Cikajlo, Imre; Rudolf, Marko; Goljar, Nika; Burger, Helena; Matjačić, Zlatko
2012-01-01
The objective of the telerehabilitation is a continuation of the rehabilitation process on patients' home. The study also compares the balance training in clinical environment with the telerehabilitation approach when the physiotherapists and physicians can follow the progress remotely. In this paper, the preliminary study of the pilot project with virtual reality (VR)-based tasks for dynamic standing frame supported balance training is presented. Six patients with stroke participated in the study. The patients performed the balance training 3 weeks, 2 weeks in the clinical settings and 1 week in the home environment, five times a week, and each time for up to 20 minutes. Objective effectiveness was demonstrated by parameters as track time, number of collisions and the clinical instruments Berg Balance Scale (BBS), Timed Up & Go (TUG), 10-m walk test and standing on the unaffected and affected extremity. The outcomes were compared to the balance training group without VR and telerehabilitation support. A 2-way ANOVA was used to explore the differences between the both stroke groups. In patients who were subject to VR supported balance training, the BBS demonstrated improvement for 15%, the TUG for 29%, the 10-m walk for 26%, stance time on the affected and unaffected extremity for 200 and 67%, respectively. The follow-up demonstrated that the patients preserved the gained functional improvement. The VR task performance time and number of collisions decreased to 45 and 68%, respectively. Besides, no statistical differences were found between the telerehabilitation approach with VR supported balance training and conventional balance training in clinical settings either regarding the overall mean level or regarding the mean improvement. The telerehabilitation approach in VR supported balance training improved balance in stroke patients and had similar effect on patients' postural functional improvement as conventional balance training in clinical settings. However, when balance training is continued on patient's home instead of the hospital, it would eventually decrease the number of outpatients' visits, reduce related costs and enable treatment of larger number of patients.
Lee, Myung Mo; Lee, Kyeong Jin; Song, Chang Ho
2018-04-27
BACKGROUND Virtual reality (VR) training with motion-controlled console games can be incorporated into stroke rehabilitation programs. The use of a variety of gaming software can provide the patient with an opportunity to perform activities that are exciting, entertaining, and that may not be feasible in clinical environments. The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke. MATERIAL AND METHODS Thirty patients, who were within six months following the diagnosis of stroke, were randomly allocated to either the experimental group (n=15) or the control group (n=15). All participants participated in a conventional rehabilitation program. Also, the experimental group (n=15) performed the VR canoe paddling training for 30 minutes each day, three times per week, for five weeks. After five weeks, outcomes of changes in postural balance and upper extremity function were evaluated and compared between the two groups. RESULTS At five weeks, postural balance and upper extremity function showed significant improvements in both patients groups when compared with the baseline measurements (p<0.05). However, postural balance and upper extremity function were significantly improved in the experimental group when compared with the control group (p<0.05). CONCLUSIONS Game-based VR canoe paddling training is an effective rehabilitation therapy that enhances postural balance and upper extremity function in patients with subacute stroke when combined with conventional physical rehabilitation programs.
Park, Jin-Hyuck
The purpose of this study was to investigate the effects of eyeball exercise on balance and fall efficacy of the elderly who have experienced a fall. Subjects were randomly assigned to the eyeball exercise group (n=30) or functional exercise group (n=31). All subjects received 30 sessions for 10 weeks. To identify the effects on balance, static and dynamic balance were measured using the center of pressure (CoP) measurement equipment and Timed Up and Go Test (TUGT) respectively. Fall efficacy was evaluated using the modified efficacy scale (MFES). The outcome measurements were performed before and after the 10 weeks training period. After 10 weeks, static balance, dynamic balance, and fall efficacy were significantly improved in both groups. Also, there were significant differences in the outcome measures between both groups (p<0.05). These results indicate that eyeball exercise is beneficial to improve the fall efficacy as well as the balance of the elderly compared with functional exercise. Eyeball exercise would be useful to improve balance and fall efficacy of the elderly who have experienced a fall. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Impact of tetrabenazine on gait and functional mobility in individuals with Huntington's disease.
Kegelmeyer, Deb A; Kloos, Anne D; Fritz, Nora E; Fiumedora, Marianne M; White, Susan E; Kostyk, Sandra K
2014-12-15
Chorea may contribute to balance problems and walking difficulties that lead to higher fall rates in individuals with Huntington's disease (HD). Few studies have examined the effects of tetrabenazine (TBZ), an anti-choreic drug, on function and mobility in HD. The purpose of this study was to compare: 1) gait measures in forward walking, 2) balance and mobility measures, and 3) hand and forearm function measures on and off TBZ. We hypothesized that use of TBZ would improve gait, transfers and hand and forearm function. Eleven individuals with HD on stable doses of TBZ were evaluated while off medication and again following resumption of medication. Significant improvements were found on the Unified Huntington's Disease Rating Scale (UHDRS) motor scores, Tinetti Mobility Test (TMT) total (t=4.20, p=0.002) and balance subscale (t=-4.61, p=0.001) scores, and the Five Times Sit-to-Stand test (5TSST, t=3.20, p=.009) when on-TBZ compared to off-TBZ. Spatiotemporal gait measures, the Six Condition Romberg test, and UHDRS hand and forearm function items were not changed by TBZ use. Improved TMT and 5TSST performance when on drug indicates that TBZ use may improve balance and functional mobility in individuals with HD. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Cho, Chunhee; Hwang, Wonjeong; Hwang, Sujin; Chung, Yijung
2016-03-01
Independent walking is an important goal of clinical and community-based rehabilitation for children with cerebral palsy (CP). Virtual reality-based rehabilitation therapy is effective in motivating children with CP. This study investigated the effects of treadmill training with virtual reality on gait, balance, muscular strength, and gross motor function in children with CP. Eighteen children with spastic CP were randomly divided into the virtual reality treadmill training (VRTT) group (9 subjects, mean age, 10.2 years) and treadmill training (TT) group (9 subjects, mean age, 9.4 years). The groups performed their respective programs as well as conventional physical therapy 3 times/week for 8 weeks. Muscle strength was assessed using a digitalized manual muscle tester. Gross motor function was assessed using the Gross Motor Functional Measure (GMFM). Balance was assessed using the Pediatric Balance Scale (PBS). Gait speed was assessed using the 10-meter walk test (10MWT), and gait endurance was assessed using the 2-minute walk test (2MWT). After training, gait and balance was improved in the VRTT compared to the TT group (P < 0.05). Muscular strength was significantly greater in the VRTT group than the TT group, except for right hamstring strength. The improvements in GMFM (standing) and PBS scores were greater in the VRTT group than the TT group (P < 0.05). Furthermore, the VRTT group showed the higher values of 10MWT and 2MWT compared to the TT group (P < 0.05). In conclusion, VRTT programs are effective for improving gait, balance, muscular strength, and gross motor function in children with CP.
Khurana, Meetika; Walia, Shefali
2017-01-01
Objective: To determine whether there is any difference between virtual reality game–based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test–post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game–based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure–III (SCIM-III). Results: There was a significant difference for time (p = .001) and Time × Group effect (p = .001) in mFRT scores, group effect (p = .05) in t-shirt test scores, and time effect (p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game–based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training. PMID:29339902
Khurana, Meetika; Walia, Shefali; Noohu, Majumi M
2017-01-01
Objective: To determine whether there is any difference between virtual reality game-based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test-post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game-based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure-III (SCIM-III). Results: There was a significant difference for time ( p = .001) and Time × Group effect ( p = .001) in mFRT scores, group effect ( p = .05) in t-shirt test scores, and time effect ( p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game-based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training.
Domínguez-Navarro, Fernando; Igual-Camacho, Celedonia; Silvestre-Muñoz, Antonio; Roig-Casasús, Sergio; Blasco, José María
2018-05-01
Balance and proprioceptive deficits are frequently persistent after total joint replacement, limiting functionality and involving altered movement patterns and difficulties in walking and maintaining postural control among patients. The goal of this systematic review was to evaluate the short- and mid-term effects of proprioceptive and balance training for patients undergoing total knee and hip replacement. This is a systematic review of literature. MEDLINE, Embase, Cochrane Library, PEDro, and Scopus were the databases searched. The review included randomized clinical trials in which the experimental groups underwent a training aimed at improving balance and proprioception, in addition to conventional care. The studies had to assess at least one of the following outcomes: self-reported functionality or balance (primary outcomes), knee function, pain, falls, or quality of life. Eight trials were included, involving 567 participants. The quantitative synthesis found a moderate to high significant effect of balance and proprioceptive trainings on self-reported functionality and balance after total knee replacement. The effects were maintained at mid-term in terms of balance alone. Conversely, preoperative training did not enhance outcomes after total hip arthroplasty. The synthesis showed that, in clinical terms, balance trainings are a convenient complement to conventional physiotherapy care to produce an impact on balance and functionality after knee replacement. If outcomes such as improvement in pain, knee range of movement, or patient quality of life are to be promoted, it would be advisable to explore alternative proposals specifically targeting these goals. Further research is needed to confirm or discard the current evidence ultimately, predominantly in terms of the effects on the hips and those yielded by preoperative interventions. Copyright © 2018 Elsevier B.V. All rights reserved.
Allison, Sarah J.; Brooke-Wavell, Katherine; Folland, Jonathan
2018-01-01
High impact exercise programmes can improve bone strength, but little is known about whether this type of training further benefits fracture risk by improving physical function in older people. Objectives: This study investigated the influence of high impact exercise on balance, muscle function and morphology in older men. Methods: Fifty, healthy men (65-80 years) were assigned to a 6-month multidirectional hopping programme (TG) and twenty age and physical activity matched volunteers served as controls (CG). Before and after training, muscle function (hop performance, leg press and plantar- and dorsiflexion strength) and physiological determinants (muscle thickness and architecture) as well as balance control (sway path, one leg stance duration) were measured. Resting gastrocnemius medialis (GM) muscle thickness and architecture were assessed using ultrasonography. Results: Significant improvements in hop impulse (+12%), isometric leg-press strength (+4%) and ankle plantarflexion strength (+11%), dorsiflexor strength (+20%) were found in the TG compared to the CG (ANOVA interaction, P<0.05) and unilateral stance time improved over time for TG. GM muscle thickness indicated modest hypertrophy (+4%), but muscle architecture was unchanged. Conclusion: The positive changes in strength and balance after high impact and odd impact training would be expected to improve physical function in older adults. PMID:29504585
Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan
2018-03-01
High impact exercise programmes can improve bone strength, but little is known about whether this type of training further benefits fracture risk by improving physical function in older people. This study investigated the influence of high impact exercise on balance, muscle function and morphology in older men. Fifty, healthy men (65-80 years) were assigned to a 6-month multidirectional hopping programme (TG) and twenty age and physical activity matched volunteers served as controls (CG). Before and after training, muscle function (hop performance, leg press and plantar- and dorsiflexion strength) and physiological determinants (muscle thickness and architecture) as well as balance control (sway path, one leg stance duration) were measured. Resting gastrocnemius medialis (GM) muscle thickness and architecture were assessed using ultrasonography. Significant improvements in hop impulse (+12%), isometric leg-press strength (+4%) and ankle plantarflexion strength (+11%), dorsiflexor strength (+20%) were found in the TG compared to the CG (ANOVA interaction, P⟨0.05) and unilateral stance time improved over time for TG. GM muscle thickness indicated modest hypertrophy (+4%), but muscle architecture was unchanged. The positive changes in strength and balance after high impact and odd impact training would be expected to improve physical function in older adults.
Lee, Myung Mo; Lee, Kyeong Jin
2018-01-01
Background Virtual reality (VR) training with motion-controlled console games can be incorporated into stroke rehabilitation programs. The use of a variety of gaming software can provide the patient with an opportunity to perform activities that are exciting, entertaining, and that may not be feasible in clinical environments. The aim of this preliminary randomized controlled study was to investigate the effects of game-based VR canoe paddling training, when combined with conventional physical rehabilitation programs, on postural balance and upper extremity function in 30 patients with subacute stroke. Material/Methods Thirty patients, who were within six months following the diagnosis of stroke, were randomly allocated to either the experimental group (n=15) or the control group (n=15). All participants participated in a conventional rehabilitation program. Also, the experimental group (n=15) performed the VR canoe paddling training for 30 minutes each day, three times per week, for five weeks. After five weeks, outcomes of changes in postural balance and upper extremity function were evaluated and compared between the two groups. Results At five weeks, postural balance and upper extremity function showed significant improvements in both patients groups when compared with the baseline measurements (p<0.05). However, postural balance and upper extremity function were significantly improved in the experimental group when compared with the control group (p<0.05). Conclusions Game-based VR canoe paddling training is an effective rehabilitation therapy that enhances postural balance and upper extremity function in patients with subacute stroke when combined with conventional physical rehabilitation programs. PMID:29702630
Sheehy, L; Taillon-Hobson, A; Sveistrup, H; Bilodeau, M; Fergusson, D; Levac, D; Finestone, H
2016-03-31
Sitting ability and function are commonly impaired after stroke. Balance training has been shown to be helpful, but abundant repetitions are required for optimal recovery and patients must be motivated to perform rehabilitation exercises repeatedly to maximize treatment intensity. Virtual reality training (VRT), which allows patients to interact with a virtual environment using computer software and hardware, is enjoyable and may encourage greater repetition of therapeutic exercises. However, the potential for VRT to promote sitting balance has not yet been explored. The objective of this study is to determine if supplemental VRT-based sitting balance exercises improve sitting balance ability and function in stroke rehabilitation inpatients. This is a single-site, single-blind, parallel-group randomized control trial. Seventy six stroke rehabilitation inpatients who cannot stand independently for greater than one minute but can sit for at least 20 minutes (including at least one minute without support) are being recruited from a tertiary-care dedicated stroke rehabilitation unit. Participants are randomly allocated to experimental or control groups. Both participate in 10-12 sessions of 30-45 minutes of VRT performed in sitting administered by a single physiotherapist, in addition to their traditional therapy. The experimental group plays five games which challenge sitting balance while the control group plays five games which minimize trunk lean. Outcome measures of sitting balance ability (Function in Sitting Test, Ottawa Sitting Scale, quantitative measures of postural sway) and function (Reaching Performance Scale, Wolf Motor Function Test, quantitative measures of the limits of stability) are administered prior to, immediately following, and one month following the intervention by a second physiotherapist blind to the participant's group allocation. The treatment of sitting balance post-stroke with VRT has not yet been explored. Results from the current study will provide important evidence for the use of low-cost, accessible VRT as an adjunct intervention to increase sitting balance in lower-functioning patients receiving inpatient rehabilitation. The motivating and enjoyable attributes of VRT may increase exercise dosage, leading to improved function and optimal results from rehabilitation. https://clinicaltrials.gov/; Identifier: NCT02285933. Registered 06 November 2014. Funded by the Heart & Stroke Foundation of Canada and a generous donation from Tony & Elizabeth Graham.
Effects of coordination and manipulation therapy for patients with Parkinson disease.
Zhao, Mingming; Hu, Caiyou; Wu, Zhixin; Chen, Yu; Li, Zhengming; Zhang, Mingsheng
2017-09-01
To determine the effects of a new exercise training regimen, i.e. coordination and manipulation therapy (CMT), on motor, balance, and cardiac functions in patients with Parkinson disease (PD). We divided 36 PD patients into the CMT (n = 22) and control (n = 14) groups. The patients in the CMT group performed dry-land swimming (imitation of the breaststroke) and paraspinal muscle stretching for 30 min/workday for 1 year. The control subjects did not exercise regularly. The same medication regimen was maintained in both groups during the study. Clinical characteristics, Unified Parkinson's Disease Rating Scale (UPDRS) scores, Berg balance scale (BBS) scores, mechanical balance measurements, timed up and go (TUG) test, and left ventricular ejection fraction (LVEF) were compared at 0 (baseline), 6, and 12 months. Biochemical test results were compared at 0 and 12 months. The primary outcome was motor ability. The secondary outcome was cardiac function. In the CMT group, UPDRS scores significantly improved, TUG test time and step number significantly decreased, BBS scores significantly increased, and most mechanical balance measurements significantly improved after 1 year of regular exercise therapy (all p < 0.05). In the control group, UPDRS scores significantly deteriorated, TUG test time and step number significantly increased, BBS scores significantly decreased, and most mechanical balance measurements significantly worsened after 1 year (all P < 0.05). LVEF improved in the CMT group only (P = 0.01). This preliminary study suggests that CMT effectively improved mobility disorder, balance, and cardiac function in PD patients over a 1-year period.
Kasser, Susan L; Jacobs, Jesse V; Ford, Marley; Tourville, Timothy W
2015-01-01
To evaluate the efficacy of functional balance exercises on balance impairment, physical activity and quality of life (QOL) in adults with multiple sclerosis (MS). A multiple-baseline time-series design with an uncontrolled intervention. Ten subjects with MS completed assessments twice before and once after a 10-week balance intervention. ANOVA were used to evaluate the effects of testing session on the Brief-BESTest, instrumented stance and gait recordings by inertial motion sensors, lower-limb strength recorded by force transducers, accelerometry-based activity, the 12-item MS Walking Scale (MSWS-12), the Multiple Sclerosis Quality of Life-54 (MSQOL-54) questionnaire, the Modified Fatigue Impact scale (MFIS) and the Activity-specific Balance Confidence (ABC) scale. The intervention associated with significantly improved scores on the MSQOL-54 mental component, MFIS, MSWS-12 and Brief-BESTest. Sway amplitude significantly decreased and jerk significantly increased during instrumented standing on foam with eyes closed. Instrumented gait recordings of sagittal trunk range of motion also significantly decreased. ABC scores, strength measures and activity measures were not significantly changed. Ten weeks of functional balance exercises provided a feasible intervention for individuals with MS that improved components of balance, mental well-being and perceived fatigue impact and ambulation disability. A future randomized, controlled clinical trial should confirm these preliminary findings. Implications for Rehabilitation A balance-specific exercise program is both safe and feasible for individuals with mild-to-moderate MS. Comprehensive exercise interventions that are conceptually driven and employ well-designed progressive exercise across multiple contexts of balance control can facilitate improvements in balance impairments associated with MS. Functional balance exercises can positively impact clinical and objective measures of balance control and favorably influence perceptions of ambulation disability and fatigue as well as perceived quality of life in people with MS.
Wii Fit balance board playing improves balance and gait in Parkinson disease.
Mhatre, Priya V; Vilares, Iris; Stibb, Stacy M; Albert, Mark V; Pickering, Laura; Marciniak, Christina M; Kording, Konrad; Toledo, Santiago
2013-09-01
To assess the effect of exercise training by using the Nintendo Wii Fit video game and balance board system on balance and gait in adults with Parkinson disease (PD). A prospective interventional cohort study. An outpatient group exercise class. Ten subjects with PD, Hoehn and Yahr stages 2.5 or 3, with a mean age of 67.1 years; 4 men, 6 women. The subjects participated in supervised group exercise sessions 3 times per week for 8 weeks by practicing 3 different Wii balance board games (marble tracking, skiing, and bubble rafting) adjusted for their individualized function level. The subjects trained for 10 minutes per game, a total of 30 minutes training per session. Pre-and postexercise training, a physical therapist evaluated subjects' function by using the Berg Balance Scale, Dynamic Gait Index, and Sharpened Romberg with eyes open and closed. Postural sway was assessed at rest and with tracking tasks by using the Wii balance board. The subjects rated their confidence in balance by using the Activities-specific Balance Confidence scale and depression on the Geriatric Depression Scale. Balance as measured by the Berg Balance Scale improved significantly, with an increase of 3.3 points (P = .016). The Dynamic Gait Index improved as well (mean increase, 2.8; P = .004), as did postural sway measured with the balance board (decreased variance in stance with eyes open by 31%; P = .049). Although the Sharpened Romberg with eyes closed increased by 6.85 points and with eyes opened by 3.3 points, improvements neared significance only for eyes closed (P = .07 versus P = .188). There were no significant changes on patient ratings for the Activities-specific Balance Confidence (mean decrease, -1%; P = .922) or the Geriatric Depression Scale (mean increase, 2.2; P = .188). An 8-week exercise training class by using the Wii Fit balance board improved selective measures of balance and gait in adults with PD. However, no significant changes were seen in mood or confidence regarding balance. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Wii Fit Balance Board Playing Improves Balance and Gait in Parkinson Disease
Mhatre, Priya V.; Vilares, Iris; Stibb, Stacy M.; Albert, Mark V.; Pickering, Laura; Marciniak, Christina M.; Kording, Konrad; Toledo, Santiago
2014-01-01
Objective To assess the effect of exercise training by using the Nintendo Wii Fit video game and balance board system on balance and gait in adults with Parkinson disease (PD). Design A prospective interventional cohort study. Setting An outpatient group exercise class. Participants Ten subjects with PD, Hoehn and Yahr stages 2.5 or 3, with a mean age of 67.1 years; 4 men, 6 women. Interventions The subjects participated in supervised group exercise sessions 3 times per week for 8 weeks by practicing 3 different Wii balance board games (marble tracking, skiing, and bubble rafting) adjusted for their individualized function level. The subjects trained for 10 minutes per game, a total of 30 minutes training per session. Main Outcome Measurements Pre-and postexercise training, a physical therapist evaluated subjects’ function by using the Berg Balance Scale, Dynamic Gait Index, and Sharpened Romberg with eyes open and closed. Postural sway was assessed at rest and with tracking tasks by using the Wii balance board. The subjects rated their confidence in balance by using the Activities-specific Balance Confidence scale and depression on the Geriatric Depression Scale. Results Balance as measured by the Berg Balance Scale improved significantly, with an increase of 3.3 points (P = .016). The Dynamic Gait Index improved as well (mean increase, 2.8; P = .004), as did postural sway measured with the balance board (decreased variance in stance with eyes open by 31%; P = .049). Although the Sharpened Romberg with eyes closed increased by 6.85 points and with eyes opened by 3.3 points, improvements neared significance only for eyes closed (P = .07 versus P = .188). There were no significant changes on patient ratings for the Activities-specific Balance Confidence (mean decrease, −1%; P = .922) or the Geriatric Depression Scale (mean increase, 2.2; P = .188). Conclusions An 8-week exercise training class by using the Wii Fit balance board improved selective measures of balance and gait in adults with PD. However, no significant changes were seen in mood or confidence regarding balance. PMID:23770422
Li, Zhen; Wang, Xiu-Xia; Liang, Yan-Yi; Chen, Shu-Yan; Sheng, Jing; Ma, Shao-Jun
2018-01-01
Force platform training with functional electric stimulation aimed at improving balance may be effective in fall prevention for older adults. Aim of the study is to evaluate the effects of the visual-feedback-based force platform balance training with functional electric stimulation on balance and fall prevention in older adults. A single-centre, unblinded, randomized controlled trial was conducted. One hundred and twenty older adults were randomly allocated to two groups: the control group ( n = 60, one-leg standing balance exercise, 12 min/d) or the intervention group ( n = 60, force platform training with functional electric stimulation, 12 min/d). The training was provided 15 days a month for 3 months by physical therapists. Medial-lateral and anterior-posterior maximal range of sway with eyes open and closed, the Berg Balance Scale, the Barthel Index, the Falls Efficacy scale-International were assessed at baseline and after the 3-month intervention. A fall diary was kept by each participant during the 6-month follow-up. On comparing the two groups, the intervention group showed significantly decreased ( p < 0.01) medial-lateral and anterior-posterior maximal range of sway with eyes open and closed. There was significantly higher improvement in the Berg Balance Scale ( p < 0.05), the Barthel Index ( p < 0.05) and the Falls Efficacy Scale-International ( p < 0.05), along with significantly lesser number of injurious fallers ( p < 0.05), number of fallers ( p < 0.05), and fall rates ( p < 0.05) during the 6-month follow-up in the intervention group. This study showed that the visual feedback-based force platform training with functional electric stimulation improved balance and prevented falls in older adults.
Lee, Ho Jeong; Kim, Young Mi; Lee, Dong Kyu
2017-03-01
[Purpose] The aim of this study was to evaluate the effects of action observation training and mirror therapy to improve on balance and gait function of stroke patients. [Subjects and Methods] The participants were randomly allocated to one of three groups: The action observation training with activity group practiced additional action observation training with activity for three 30-minute session for six weeks (n=12). The mirror therapy with activity group practiced additional mirror therapy with activity for three 30-minute sessions for six weeks (n=11). The only action observation training group practiced additional action observation training for three 30-minute sessions for weeks (n=12). All groups received conventional therapy for five 60-minute sessions over a six-week period. [Results] There were significant improvements in balance and gait function. The action observation training with activity group significantly improved subjects' static balance. The action observation training with activity group and the mirror therapy with activity group significantly improved subjects' gait ability. [Conclusion] The activation of mirror neurons combined with a conventional stroke physiotherapy program enhances lower-extremity motor recovery and motor functioning in stroke patients.
Pollock, Courtney L; Boyd, Lara A; Hunt, Michael A; Garland, S Jayne
2014-04-01
Stepping reactions are important for walking balance and community-level mobility. Stepping reactions of people with stroke are characterized by slow reaction times, poor coordination of motor responses, and low amplitude of movements, which may contribute to their decreased ability to recover their balance when challenged. An important aspect of rehabilitation of mobility after stroke is optimizing the motor learning associated with retraining effective stepping reactions. The Challenge Point Framework (CPF) is a model that can be used to promote motor learning through manipulation of conditions of practice to modify task difficulty, that is, the interaction of the skill of the learner and the difficulty of the task to be learned. This case series illustrates how the retraining of multidirectional stepping reactions may be informed by the CPF to improve balance function in people with stroke. Four people (53-68 years of age) with chronic stroke (>1 year) and mild to moderate motor recovery received 4 weeks of multidirectional stepping reaction retraining. Important tenets of motor learning were optimized for each person during retraining in accordance with the CPF. Participants demonstrated improved community-level walking balance, as determined with the Community Balance and Mobility Scale. These improvements were evident 1 year later. Aspects of balance-related self-efficacy and movement kinematics also showed improvements during the course of the intervention. The application of CPF motor learning principles in the retraining of stepping reactions to improve community-level walking balance in people with chronic stroke appears to be promising. The CPF provides a plausible theoretical framework for the progression of functional task training in neurorehabilitation.
Cho, Ki Hun; Lee, Kyoung Jin; Song, Chang Ho
2012-09-01
Stroke is one of the most serious healthcare problems and a major cause of impairment of cognition and physical functions. Virtual rehabilitation approaches to postural control have been used for enhancing functional recovery that may lead to a decrease in the risk of falling. In the present study, we investigated the effects of virtual reality balance training (VRBT) with a balance board game system on balance of chronic stroke patients. Participants were randomly assigned to 2 groups: VRBT group (11 subjects including 3 women, 65.26 years old) and control group (11 subjects including 5 women, 63.13 years old). Both groups participated in a standard rehabilitation program (physical and occupational therapy) for 60 min a day, 5 times a week for 6 weeks. In addition, the VRBT group participated in VRBT for 30 min a day, 3 times a week for 6 weeks. Static balance (postural sway velocity with eyes open or closed) was evaluated with the posturography. Dynamic balance was evaluated with the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) that measures balance and mobility in dynamic balance. There was greater improvement on BBS (4.00 vs. 2.81 scores) and TUG (-1.33 vs. -0.52 sec) in the VRBT group compared with the control group (P < 0.05), but not on static balance in both groups. In conclusion, we demonstrate a significant improvement in dynamic balance in chronic stroke patients with VRBT. VRBT is feasible and suitable for chronic stroke patients with balance deficit in clinical settings.
ERIC Educational Resources Information Center
Dano, Trine; Stensaker, Bjorn
2007-01-01
The role and function of external quality assurance is of great importance for the development of an internal quality culture in higher education. Research has shown that external quality assurance can stimulate but also create obstacles for institutional improvement. To strike a balance between improvement and accountability is, therefore, a key…
Balance self-efficacy in older adults following inpatient rehabilitation.
Kuys, Suzanne S; Donovan, Jacquelin; Mattin, Sarah; Low Choy, Nancy L
2015-06-01
Older adults discharging from inpatient rehabilitation were investigated to determine change in self-efficacy at 1 month after discharge, the relationship with discharge balance performance and physical function, and the influence of diagnosis. A prospective cohort of 101 adults older than 50 years of age, 43% men, average age 75.84 (SD 9.8) years, were recruited at discharge from inpatient rehabilitation. Balance self-efficacy was assessed using Activities-specific Balance Confidence (ABC) scale at discharge and 1 month following discharge. Balance and physical function were measured at discharge using the Functional Independence Measure, Balance Outcome Measure for Elder Rehabilitation, Modified Elderly Mobility Scale and gait speed. At discharge, balance self-efficacy was moderate (ABC score 62, SD 23) and did not change at follow-up. When grouped by discharge self-efficacy (ABC scores: low<50; moderate 51-80; high>80), significant between-group differences were found for balance (P=0.005) and physical function (P=0.035). At the 1-month follow-up, those with low discharge balance self-efficacy showed improvement (mean-change ABC score 12, 95% confidence interval 2-22) and those with high discharge balance self-efficacy had lower scores (mean-change ABC score 18, 95% confidence interval -8 to -28). Differences in ABC change scores were also found between diagnostic groups (F=3.740, P=0.03), with the orthopaedic group improving (ABC mean change=8) and the general frailty group showing a decrease in confidence (ABC mean change=10). The differences in balance self-efficacy change at 1 month following discharge were related to self-efficacy level at discharge and clinical group requiring rehabilitation. Clinicians need to be aware of these changes as patients are prepared for discharge.
Nnodim, Joseph O; Strasburg, Debra; Nabozny, Martina; Nyquist, Linda; Galecki, Andrzej; Chen, Shu; Alexander, Neil B
2006-12-01
To compare the effect of two 10-week balance training programs, Combined Balance and Step Training (CBST) versus tai chi (TC), on balance and stepping measures. Prospective intervention trial. Local senior centers and congregate housing facilities. Aged 65 and older with at least mild impairment in the ability to perform unipedal stance and tandem walk. Participants were allocated to TC (n = 107, mean age 78) or CBST, an intervention focused on improving dynamic balance and stepping (n = 106, mean age 78). At baseline and 10 weeks, participants were tested in their static balance (Unipedal Stance and Tandem Stance (TS)), stepping (Maximum Step Length, Rapid Step Test), and Timed Up and Go (TUG). Performance improved more with CBST than TC, ranging from 5% to 10% for the stepping tests (Maximum Step Length and Rapid Step Test) and 9% for TUG. The improvement in TUG represented an improvement of more than 1 second. Greater improvements were also seen in static balance ability (in TS) with CBST than TC. Of the two training programs, in which variants of each program have been proven to reduce falls, CBST results in modest improvements in balance, stepping, and functional mobility versus TC over a 10-week period. Future research should include a prospective comparison of fall rates in response to these two balance training programs.
Lee, Jong Hwa; Kim, Sang Beom; Lee, Kyeong Woo; Lee, Sook Joung; Park, Hyuntae; Kim, Dong Won
2017-09-01
The use of a whole-body vibration (WBV) therapy has recently been applied and investigated as a rehabilitation method for subacute stroke patients. To evaluate the effects of a WBV therapy on recovery of balance in subacute stroke patients who were unable to gain sitting balance. The conventional rehabilitation group (CG) received conventional physical therapy, including sitting balance training by a physical therapist, for 30 min a one session, for twice a day for five days a week for two weeks. The whole-body vibration group (VG) received one session of conventional physical therapy, and received WBV therapy instead of conventional physical therapy for 30 min a day for five days a week for two weeks. There were 15 patients in the CG and 15 patients in the VG who completed the two-week therapy. After the two-week therapy, both groups showed functional improvement. Patients in the VG improved functional ambulation categories, Berg balance scale, trunk impairment scale scores. But, no statistically significant correlations between the therapeutic methods and outcomes were observed in either group. Our results suggest that WBV therapy led to improvement of the recovery in balance recovery for subacute stroke patients. Because the WBV therapy was as effective as conventional physical therapy, we can consider a WBV therapy as a clinical method to improve the sitting balance of subacute stoke patients.
Supervised Versus Home Exercise Training Programs on Functional Balance in Older Subjects.
Youssef, Enas Fawzy; Shanb, Alsayed Abd Elhameed
2016-11-01
Aging is associated with a progressive decline in physical capabilities and a disturbance of both postural control and daily living activities. The aim of this study was to evaluate the effects of supervised versus home exercise programs on muscle strength, balance and functional activities in older participants. Forty older participants were equally assigned to a supervised exercise program (group-I) or a home exercise program (group-II). Each participant performed the exercise program for 35-45 minutes, two times per week for four months. Balance indices and isometric muscle strength were measured with the Biodex Balance System and Hand-Held Dynamometer. Functional activities were evaluated by the Berg Balance Scale (BBS) and the timed get-up-and-go test (TUG). The mean values of the Biodex balance indices and the BBS improved significantly after both the supervised and home exercise programs ( P < 0.05). However, the mean values of the TUG and muscle strength at the ankle, knee and hip improved significantly only after the supervised program. A comparison between the supervised and home exercise programs revealed there were only significant differences in the BBS, TUG and muscle strength. Both the supervised and home exercise training programs significantly increased balance performance. The supervised program was superior to the home program in restoring functional activities and isometric muscle strength in older participants.
He, Ying; Yang, Lei; Zhou, Jing; Yao, Liqing; Pang, Marco Yiu Chung
2018-02-01
This systematic review aimed to examine the effects of dual-task balance and mobility training in people with stroke. An extensive electronic databases literature search was conducted using MEDLINE, PubMed, EBSCO, The Cochrane Library, Web of Science, SCOPUS, and Wiley Online Library. Randomized controlled studies that assessed the effects of dual-task training in stroke patients were included for the review (last search in December 2017). The methodological quality was evaluated using the Cochrane Collaboration recommendation, and level of evidence was determined according to the criteria described by the Oxford Center for Evidence-Based Medicine. About 13 articles involving 457 participants were included in this systematic review. All had substantial risk of bias and thus provided level IIb evidence only. Dual-task mobility training was found to induce more improvement in single-task walking function (standardized effect size = 0.14-2.24), when compared with single-task mobility training. Its effect on dual-task walking function was not consistent. Cognitive-motor balance training was effective in improving single-task balance function (standardized effect size = 0.27-1.82), but its effect on dual-task balance ability was not studied. The beneficial effect of dual-task training on cognitive function was provided by one study only and thus inconclusive. There is some evidence that dual-task training can improve single-task walking and balance function in individuals with stroke. However, any firm recommendation cannot be made due to the weak methodology of the studies reviewed.
Jaume-i-Capó, Antoni; Martínez-Bueso, Pau; Moyà-Alcover, Biel; Varona, Javier
2014-03-01
The present study covers a new experimental system, designed to improve the balance and postural control of adults with cerebral palsy. This system is based on a serious game for balance rehabilitation therapy, designed using the prototype development paradigm and features for rehabilitation with serious games: feedback, adaptability, motivational elements, and monitoring. In addition, the employed interaction technology is based on computer vision because motor rehabilitation consists of body movements that can be recorded, and because vision capture technology is noninvasive and can be used for clients who have difficulties in holding physical devices. Previous research has indicated that serious games help to motivate clients in therapy sessions; however, there remains a paucity of clinical evidence involving functionality. We rigorously evaluated the effects of physiotherapy treatment on balance and gait function of adult subjects with cerebral palsy undergoing our experimental system. A 24-week physiotherapy intervention program was conducted with nine adults from a cerebral palsy center who exercised weekly in 20-min sessions. Findings demonstrated a significant increase in balance and gait function scores resulting in indicators of greater independence for our participating adults. Scores improved from 16 to 21 points in a scale of 28, according to the Tinetti Scale for risk of falls, moving from high fall risk to moderate fall risk. Our promising results indicate that our experimental system is feasible for balance rehabilitation therapy.
Rendos, Nicole K; Jun, Hyung-Pil; Pickett, Nancy M; Lew Feirman, Karen; Harriell, Kysha; Lee, Sae Yong; Signorile, Joseph F
2017-01-01
Chronic ankle instability (CAI) is a common condition following ankle injury that is associated with compromised balance. Whole body vibration training (WBVT) programmes are linked with improved balance and function in athletic and non-athletic populations and may improve balance in CAI. Twelve healthy and seven CAI participants completed two randomly assigned interventions. Two Power Plate® platforms were attached back to back using a Theraband®. Participants stood on the active plate and inactive plate for WBVT and sham interventions, respectively. Each intervention included vibration of the active plate. Centre of pressure (COP) and the star excursion balance test (SEBT) were measured before and at 3, 15 and 30 min following the interventions. Significant improvements were found in the anterior direction of the SEBT following both interventions in CAI and varying patterns of improvement were observed for COP measurements in all participants. Therefore, WBVT does not appear to acutely improve balance in CAI.
Use of Kinesiology Taping in Rehabilitation after Knee Arthroplasty: a Randomised Clinical Study.
Woźniak-Czekierda, Weronika; Woźniak, Kamil; Hadamus, Anna; Białoszewski, Dariusz
2017-10-31
Proprioception and body balance after knee arthroplasty have a considerable impact on restoration of joint function and a normal gait pattern. Kinesiology Taping (KT) is a method that may be able to influence these factors. The aim of this study was to assess the effects of KT application on sensorimotor efficiency, balance and gait in patients undergoing rehabili-ta--tion after knee replacement surgery. The study involved 120 male and female patients (mean age was 69 years) after total knee repla-cement. The patients were randomly assigned to one of two groups: Experimental Group (n=51) and Control Group (n=60). Both groups underwent standard rehabilitation lasting 20 days. In addition, the Experimental Group received KT applications. Treat-ment outcomes were assessed based on tests evaluating balance, joint position sense and functional gait performance, conducted both before and after the therapy. Statistically significant improvements were noted across all the parameters assessed in the Experimental Group (p<0.005). Significant improvements were also seen in the Control Group (p<0.005), but, in percentage terms, the improvement was higher in the Experimental Group. The only exception was the right/left foot load distribution, whose symmetry improved proportionally in both groups. 1. Patients after knee replacement surgery have considerable proprioception deficits, impaired body balance and reduced functional performance, which may increase the risk of falls in this group of patients. 2. Both standard physiotherapy and combination therapy with Kinesiology Taping (modified by the present authors) used in patients after knee arthroplasty may considerably improve the level of proprioception, body balance and overall functional performance. 3. The technique of dynamic taping proposed in this paper may optimise standard physiotherapy used in patients after knee arthroplasty and increase its clinical efficacy. Further studies are required.
Choi, Wonjae; Lee, Seungwon
2018-06-10
BACKGROUND Kayaking is an interesting and posturally challenging activity; however, kayaking may be limited by safety issues in older adults. The aim of this study was to determine whether ground kayak paddling (GKP) exercise can improve postural balance, muscle performance, and cognitive function in older adults with mild cognitive impairment. MATERIAL AND METHODS Sixty participants were randomly allocated to a GKP group (n=30; mean age, 74 years) or a control group (n=30; mean age, 74 years). GKP exercise consisted 5 types of exercise protocols, including paddling and multi-directional reaching with repetitive trunk and upper-extremities movements, which was performed for 60 min twice a week for 6 weeks. The outcome measures included the Timed Up and Go Test, the Functional Reach Test, the Berg Balance Scale, the Arm Curl Test, handgrip strength, and the Montreal Cognitive Assessment. RESULTS In this study, adherence to the regimen was 96% in the GKP group. Postural balance, muscle performance, and cognitive function were significantly improved after intervention (p<0.05), and all the values in the GKP group, except for the Berg Balance Scale scores, were significantly decreased or increased compared to the control group. Differences between the 2 groups were Timed Up and Go Test -0.74 s; Functional Reach Test +7.20 cm; Arm Curl Test +5.56 repetitions; right handgrip strength +3.57 kg; left handgrip strength +3.08 kg; and Montreal Cognitive Assessment, +3.46 score (p<0.05). CONCLUSIONS GKP exercise improves the physical and psychological ability of older adults with mild cognitive impairment.
Monticone, Marco; Ambrosini, Emilia; Brunati, Roberto; Capone, Antonio; Pagliari, Giulia; Secci, Claudio; Zatti, Giovanni; Ferrante, Simona
2018-03-01
To evaluate the efficacy of a rehabilitation programme including balance task-specific training in improving physical function, pain, activities of daily living (ADL), balance and quality of life in subjects after a hip fracture. Randomized controlled trial. A total of 52 older subjects selected for internal fixation due to extra-capsular hip fracture were randomized to be included in an experimental ( n = 26) and control group ( n = 26). The experimental group underwent a rehabilitation programme based on balance task-specific training. The control group underwent general physiotherapy, including open kinetic chain exercises and walking training. Both groups individually followed programmes of 90-minute sessions five times/week for three weeks. The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), a Pain Numerical Rating Scale, the Berg Balance Scale, the Functional Independence Measure and the 36-item Short-Form Health Survey. The participants were evaluated before and after training, and after 12 months. Significant effects of time, group and time × group were found for all outcome measures in favour of the experimental group. A clinically important between-group difference of 25 points was achieved after training and at follow-up in terms of the primary outcome (WOMAC function before treatment, after treatment and at follow-up was 84.8 (3.7), 39.8 (4.9) and 35.7 (6.2) for the experimental group and 80.9 (5.7), 65.2 (7.1) and 61.0 (11.1) for the control group). An inpatient rehabilitation programme based on balance task-specific training is useful in improving physical function, pain, ADL and quality of life in older patients after hip fracture.
Tütün Yümin, Eylem; Şimşek, Tülay Tarsuslu; Sertel, Meral; Ankaralı, Handan; Yumin, Murat
2017-02-01
The aim of this study was to investigate the effect of manual foot plantar massage (classic and friction massage) on functional mobility level, balance, and functional reach in patients with type II diabetes mellitus (T2 DM). A total of 38 subjects diagnosed with T2 DM were included in the study. A healthy control group could not be formed in this study. After the subjects' socio-demographic data were obtained, Timed Up & Go (TUG) Test, functional reach test (FRT), one-leg standing test with eyes open-closed, and Visual Analogue Scale (VAS) to measure foot pain intensity were performed. The results were also divided and assessed in three groups according to the ages of the individuals (40-54, 55-64, and 65 and over). As a result of statistical analysis, a difference was found in the values obtained from TUG, FRT, and one-leg standing test with eyes open and closed (p < 0.05). Following the massage, TUG values significantly decreased comparison with those before the massage, whereas the values of FRT and one-leg standing test with eyes open and closed significantly increased compared with those before the massage (p > 0.05). According to age groups, there were statistical differences (p < 0.05) between the TUG, one-leg standing test with eyes open and closed test values of the individuals before and after the massage. The results of our study indicated that application of plantar massage to patients with T2 DM caused an improvement in balance, functional mobility, and functional reach values. An increase in body balance and functional mobility may explain the improvement in TUG. Foot massage to be added to rehabilitation exercise programs of DM patients will be important in improving balance and mobility of patients.
Chisholm, Amanda E; Malik, Raza Naseem; Blouin, Jean-Sébastien; Borisoff, Jaimie; Forwell, Susan; Lam, Tania
2014-06-06
Previous evidence suggests the effects of task-specific therapy can be further enhanced when sensory stimulation is combined with motor practice. Sensory tongue stimulation is thought to facilitate activation of regions in the brain that are important for balance and gait. Improvements in balance and gait have significant implications for functional mobility for people with incomplete spinal cord injury (iSCI). The aim of this case study was to evaluate the feasibility of a lab- and home-based program combining sensory tongue stimulation with balance and gait training on functional outcomes in people with iSCI. Two male participants (S1 and S2) with chronic motor iSCI completed 12 weeks of balance and gait training (3 lab and 2 home based sessions per week) combined with sensory tongue stimulation using the Portable Neuromodulation Stimulator (PoNS). Laboratory based training involved 20 minutes of standing balance with eyes closed and 30 minutes of body-weight support treadmill walking. Home based sessions consisted of balancing with eyes open and walking with parallel bars or a walker for up to 20 minutes each. Subjects continued daily at-home training for an additional 12 weeks as follow-up. Both subjects were able to complete a minimum of 83% of the training sessions. Standing balance with eyes closed increased from 0.2 to 4.0 minutes and 0.0 to 0.2 minutes for S1 and S2, respectively. Balance confidence also improved at follow-up after the home-based program. Over ground walking speed improved by 0.14 m/s for S1 and 0.07 m/s for S2, and skilled walking function improved by 60% and 21% for S1 and S2, respectively. Sensory tongue stimulation combined with task-specific training may be a feasible method for improving balance and gait in people with iSCI. Our findings warrant further controlled studies to determine the added benefits of sensory tongue stimulation to rehabilitation training.
Markovic, Goran; Sarabon, Nejc; Greblo, Zrinka; Krizanic, Valerija
2015-01-01
Aging is associated with decline in physical function that could result in the development of physical impairment and disability. Hence, interventions that simultaneously challenge balance ability, trunk (core) and extremity strength of older adults could be particularly effective in preserving and enhancing these physical functions. The purpose of this study was to compare the effects of feedback-based balance and core resistance training utilizing the a special computer-controlled device (Huber®) with the conventional Pilates training on balance ability, neuromuscular function and body composition of healthy older women. Thirty-four older women (age: 70±4 years) were randomly assigned to a Huber group (n=17) or Pilates group (n=17). Both groups trained for 8 weeks, 3 times a week. Maximal isometric strength of the trunk flexors, extensors, and lateral flexors, leg power, upper-body strength, single- and dual-task static balance, and body composition were measured before and after the intervention programs. Significant group×time interactions and main effects of time (p<0.05) were found for body composition, balance ability in standard and dual-task conditions, all trunk muscle strength variables, and leg power in favor of the Huber group. The observed improvements in balance ability under both standard and dual-task conditions in the Huber group were mainly the result of enhanced postural control in medial-lateral direction (p<0.05). Feedback-based balance and core resistance training proved to be more effective in improving single- and dual-task balance ability, trunk muscle strength, leg power, and body composition of healthy older women than the traditional Pilates training. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Kibar, Sibel; Yıldız, Hatice Ecem; Ay, Saime; Evcik, Deniz; Ergin, Emine Süreyya
2015-09-01
To determine the effectiveness of balance exercises on the functional level and quality of life (QOL) of patients with fibromyalgia syndrome (FMS) and to investigate the circumstances associated with balance disorders in FMS. Randomized controlled trial. Physical medicine and rehabilitation clinic. Patients (N=57) (age range, 18-65y) with FMS were randomly assigned into 2 groups. Group 1 was given flexibility and balance exercises for 6 weeks, whereas group 2 received only a flexibility program as the control group. Functional balance was measured by the Berg Balance Scale (BBS), and dynamic and static balance were evaluated by a kinesthetic ability trainer (KAT) device. Fall risk was assessed with the Hendrich II fall risk model. The Nottingham Health Profile, Fibromyalgia Impact Questionnaire (FIQ), and Beck Depression Inventory (BDI) were used to determine QOL and functional and depression levels, respectively. Assessments were performed at baseline and after the 6-week program. In group 1, statistically significant improvements were observed in all parameters (P<.05), but no improvement was seen in group 2 (P>.05). When comparing the 2 groups, there were significant differences in group 1 concerning the KAT static balance test (P=.017) and FIQ measurements (P=.005). In the correlation analysis, the BDI was correlated with the BBS (r=-.434) and Hendrich II results (r=.357), whereas body mass index (BMI) was correlated with the KAT static balance measurements (r=.433), BBS (r=-.285), and fall frequency (r=.328). A 6-week balance training program had a beneficial effect on the static balance and functional levels of patients with FMS. We also observed that depression deterioration was related to balance deficit and fall risk. Higher BMI was associated with balance deficit and fall frequency. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
National Airspace System Plan: Facilities, Equipment, Associated Development and Other Capital Needs
1988-06-01
services will reflect a yes include: better balance between trip frequency and cost than would be the case under a closely regulated 0 Having an operating...terminal system). 0 Improved traffic flow planning and manage- ment, resulting in a more balanced workload. 0 A major improvement and integration of the...The AAS supervisors and specialists to assist them in will include AERA I functions and facilitate balancing sector staffing levels, later
Oh, Dongha; Kim, Gayeong; Lee, Wanhee; Shin, Mary Myong Sook
2016-01-01
[Purpose] This study evaluated the effects of inspiratory muscle training on pulmonary function, deep abdominal muscle thickness, and balance ability in stroke patients. [Subjects] Twenty-three stroke patients were randomly allocated to an experimental (n = 11) or control group (n = 12). [Methods] The experimental group received inspiratory muscle training-based abdominal muscle strengthening with conventional physical therapy; the control group received standard abdominal muscle strengthening with conventional physical therapy. Treatment was conducted 20 minutes per day, 3 times per week for 6 weeks. Pulmonary function testing was performed using an electronic spirometer. Deep abdominal muscle thickness was measured by ultrasonography. Balance was measured using the Berg balance scale. [Results] Forced vital capacity, forced expiratory volume in 1 second, deep abdominal muscle thickness, and Berg balance scale scores were significantly improved in the experimental group than in the control group. [Conclusion] Abdominal muscle strengthening accompanied by inspiratory muscle training is recommended to improve pulmonary function in stroke patients, and may also be used as a practical adjunct to conventional physical therapy. PMID:26957739
Taylor-Piliae, Ruth E.; Newell, Kathryn A.; Cherin, Rise; Lee, Martin J.; King, Abby C.; Haskell, William L.
2015-01-01
Objective To compare the effects of Tai Chi (TC, n = 37) and Western exercise (WE, n = 39) with an attention-control group (C, n = 56) on physical and cognitive functioning in healthy adults age 69 ± 5.8 yr, in a 2-phase randomized trial. Methods TC and WE involved combined class and home-based protocols. Physical functioning included balance, strength, flexibility, and cardiorespiratory endurance. Cognitive functioning included semantic fluency and digit-span tests. Data were analyzed using intention-to-treat analysis. Results At 6 mo, WE had greater improvements in upper body flexibility (F = 4.67, p = .01) than TC and C. TC had greater improvements in balance (F = 3.36, p = .04) and a cognitive-function measure (F = 7.75, p < .001) than WE and C. The differential cognitive-function improvements observed in TC were maintained through 12 mo. Conclusion The TC and WE interventions resulted in differential improvements in physical functioning among generally healthy older adults. TC led to improvement in an indicator of cognitive functioning that was maintained through 12 mo. PMID:20651414
Effects of Balance Control Training on Functional Outcomes in Subacute Hemiparetic Stroke Patients.
Huh, Jin Seok; Lee, Yang-Soo; Kim, Chul-Hyun; Min, Yu-Sun; Kang, Min-Gu; Jung, Tae-Du
2015-12-01
To investigate the efficacy of balance control training using a newly developed balance control trainer (BalPro) on the balance and gait of patients with subacute hemiparetic stroke. Forty-three subacute stroke patients were assigned to either a balance control training (BCT) group or a control group. The BCT group (n=23) was trained with BalPro for 30 minutes a day, 5 days a week for 2 weeks, and received one daily session of conventional physical therapy. The control group (n=20) received two sessions of conventional physical therapy every day for 2 weeks. The primary outcome was assessment with the Berg Balance Scale (BBS). Secondary outcomes were Functional Ambulation Category (FAC), the 6-minute walking test (6mWT), Timed Up and Go (TUG), the Korean version of Modified Barthel Index (K-MBI), and the manual muscle test (MMT) of the knee extensor. All outcome measures were evaluated before and after 2 weeks of training in both groups. There were statistically significant improvements in all parameters except MMT and FAC after 2 weeks of treatment in both groups. After training, the BCT group showed greater improvements in the BBS and the 6mWT than did the control group. Balance control training using BalPro could be a useful treatment for improving balance and gait in subacute hemiparetic stroke patients.
Effects of Balance Control Training on Functional Outcomes in Subacute Hemiparetic Stroke Patients
Huh, Jin Seok; Lee, Yang-Soo; Kim, Chul-Hyun; Min, Yu-Sun; Kang, Min-Gu
2015-01-01
Objective To investigate the efficacy of balance control training using a newly developed balance control trainer (BalPro) on the balance and gait of patients with subacute hemiparetic stroke. Methods Forty-three subacute stroke patients were assigned to either a balance control training (BCT) group or a control group. The BCT group (n=23) was trained with BalPro for 30 minutes a day, 5 days a week for 2 weeks, and received one daily session of conventional physical therapy. The control group (n=20) received two sessions of conventional physical therapy every day for 2 weeks. The primary outcome was assessment with the Berg Balance Scale (BBS). Secondary outcomes were Functional Ambulation Category (FAC), the 6-minute walking test (6mWT), Timed Up and Go (TUG), the Korean version of Modified Barthel Index (K-MBI), and the manual muscle test (MMT) of the knee extensor. All outcome measures were evaluated before and after 2 weeks of training in both groups. Results There were statistically significant improvements in all parameters except MMT and FAC after 2 weeks of treatment in both groups. After training, the BCT group showed greater improvements in the BBS and the 6mWT than did the control group. Conclusion Balance control training using BalPro could be a useful treatment for improving balance and gait in subacute hemiparetic stroke patients. PMID:26798615
Acute effects of rearfoot manipulation on dynamic standing balance in healthy individuals.
Wassinger, Craig A; Rockett, Ariel; Pitman, Lucas; Murphy, Matthew Matt; Peters, Charles
2014-06-01
Dynamic standing balance is essential to perform functional activities and is included in the treatment of many lower extremity injuries. Physiotherapists utilize many methods to restore standing balance including stability exercises, functional retraining, and manual therapy. The purpose of this study was to investigate the effects of a rearfoot distraction manipulation on dynamic standing balance. Twenty healthy participants (age: 24.4 ± 2.8 years; height: 162.9 ± 37.7 cm; mass: 68.0 ± 4.8 kg; right leg dominant = 20) completed this study. Following familiarization, dynamic standing balance was assessed during: (1) an experimental condition immediately following a rearfoot distraction manipulation, and (2) a control condition. Dominant leg balance was quantified using the Y-balance test which measures lower extremity reach distances. Reach distances were normalized to leg length and measured in the anterior, posteromedial and posterolateral directions. Overall balance was calculated through the summing of all normalized directions. Paired t-tests and Wilcoxon rank tests were used to compare balance scores for parametric and non-parametric data as appropriate. Significance was set at 0.05 a priori. Effect size (ES) was calculated to determine the clinical impact of the manipulation. Increased reach distances (indicating improved balance) were noted following manipulation for overall balance (p = 0.03, ES = 0.26) and in the posteromedial direction (p = 0.01, ES = 0.42). Reach distances did not differ for the anterior (p = 0.11, ES = 0.16) or posterolateral (p = 0.11, ES = 0.25) components. Dynamic standing balance improved after a rearfoot distraction manipulation in healthy participants. It is hypothesized that manual therapy applied to the foot and ankle may be beneficial to augment other therapeutic modalities when working with patients to improve dynamic standing balance. Copyright © 2013 Elsevier Ltd. All rights reserved.
Madureira, M. M.; Takayama, L.; Gallinaro, A. L.; Caparbo, V. F.; Costa, R. A.
2006-01-01
Introduction The purpose of this study was to investigate the effect of a 12-month Balance Training Program on balance, mobility and falling frequency in women with osteoporosis. Methods Sixty-six consecutive elderly women were selected from the Osteometabolic Disease Outpatient Clinic and randomized into 2 groups: the ‘Intervention’, submitted for balance training; and the ‘Control’, without intervention. Balance, mobility and falling frequency were evaluated before and at the end of the trial, using the Berg Balance Scale (BBS), the Clinical Test Sensory Interaction Balance (CTSIB) and the Timed “Up & Go” Test (TUGT). Intervention used techniques to improve balance consisting of a 1-hour session each week and a home-based exercise program. Results Sixty women completed the study and were analyzed. The BBS difference was significant higher in the Intervention group compared to Control (5.5 ± 5.67 vs −0.5 ± 4.88 score, p < 0.001). Similarly, the number of patients in the Intervention group presented improvement in two conditions of CTSIB compared to Control (eyes closed and unstable surface condition: 13 vs one patient, p < 0.001 and eyes open, visual conflict and unstable surface condition: 12 vs one patient, p < 0.001). Additionally, the differences between the TUGT were reduced in the Intervention group compared to Control (−3.65 ± 3.61 vs 2.27 ± 7.18 seconds, p< 0.001). Notably, this improvement was paralleled by a reduction in the number of falls/patient in the Intervention group compared to Control (−0.77 ± 1.76 vs 0.33 ± 0.96, p = 0.018). Conclusion This longitudinal prospective study demonstrated that an intervention using balance training is effective in improving functional and static balance, mobility and falling frequency in elderly women with osteoporosis. PMID:17089080
Lee, Myung-Mo; Shin, Doo-Chul; Song, Chang-Ho
2016-07-01
[Purpose] This study was aimed at investigating the preliminary therapeutic efficacy and usefulness of canoe game-based virtual reality training for stroke patients. [Subjects and Methods] Ten stroke patients were randomly assigned to an experimental group (EG; n=5) or a control group (CG; n=5). Patients in both groups participated in a conventional rehabilitation program, but those in the EG additionally participated in a 30-min canoe game-based virtual reality training program 3 days a week for 4 weeks. Therapeutic efficacy was assessed based on trunk postural stability, balance, and upper limb motor function. In addition, the usefulness of canoe game-based virtual reality training was assessed in the EG and therapist group (TG; n=20), which consisted of physical and occupational therapists, by using the System Usability Scale (SUS). [Results] Improvements in trunk postural stability, balance, and upper limb motor function were observed in the EG and CG, but were greater in the EG. The mean SUS scores in the EG and TG were 71 ± 5.2 and 74.2 ± 4.8, respectively. [Conclusion] Canoe game-based virtual reality training is an acceptable and effective intervention for improving trunk postural stability, balance, and upper limb motor function in stroke patients.
Ozaki, Kenichi; Kondo, Izumi; Hirano, Satoshi; Kagaya, Hitoshi; Saitoh, Eiichi; Osawa, Aiko; Fujinori, Yoichi
2017-11-01
To examine the efficacy of postural strategy training using a balance exercise assist robot (BEAR) as compared with conventional balance training for frail older adults. The present study was designed as a cross-over trial without a washout term. A total of 27 community-dwelling frail or prefrail elderly residents (7 men, 20 women; age range 65-85 years) were selected from a volunteer sample. Two exercises were prepared for interventions: robotic exercise moving the center of gravity by the balance exercise assist robot system; and conventional balance training combining muscle-strengthening exercise, postural strategy training and applied motion exercise. Each exercise was carried out twice a week for 6 weeks. Participants were allocated randomly to either the robotic exercise first group or the conventional balance exercise first group. preferred and maximal gait speeds, tandem gait speeds, timed up-and-go test, functional reach test, functional base of support, center of pressure, and muscle strength of the lower extremities were assessed before and after completion of each exercise program. Robotic exercise achieved significant improvements for tandem gait speed (P = 0.012), functional reach test (P = 0.002), timed up-and-go test (P = 0.023) and muscle strength of the lower extremities (P = 0.001-0.030) compared with conventional exercise. In frail or prefrail older adults, robotic exercise was more effective for improving dynamic balance and lower extremity muscle strength than conventional exercise. These findings suggest that postural strategy training with the balance exercise assist robot is effective to improve the gait instability and muscle weakness often seen in frail older adults. Geriatr Gerontol Int 2017; 17: 1982-1990. © 2017 The Authors. Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.
Wong, Christopher Kevin; Rheinstein, John; Stern, Michelle A
2015-10-01
Approximately 50% of people with leg amputation fall annually. Evidence suggests that microprocessor knees (MK) may decrease falls and improve prosthetic function in people with traumatic amputations. This study explored whether adults with transfemoral amputations and peripheral artery disease would have reduced falls and improved balance confidence, balance, and walking ability when using prostheses with MK compared with non-MK. This was a prospective cohort study. Eight subjects averaged 60.8 ± 11.3 yrs or age and 9.5 ± 16.1 yrs since first amputation. Four were K1-K2-level and four were K3-level functional walkers; only Houghton prosthetic use score was different between K1-K2 and K3 walkers (P = 0.03). After 48.3 ± 38.1 wks of acclimation using MK, subjects demonstrated improvements in fear of falling, balance confidence, Timed Up-and-Go time, and rate of falls (P < 0.05). The improvements in fear of falling, balance confidence, and rate of falls had large effect sizes (d > 0.80). Average decreased Timed Up-and-Go time (12.3 secs) had a medium effect size (d = 0.34). Decreases in the number of falls correlated with faster Timed Up-and-Go speed (ρ = -0.76) and greater balance confidence (ρ = 0.83). People with peripheral artery disease and transfemoral amputations had fewer falls and improved balance confidence and walking performance when using prostheses with MK.
Balance and gait improved in patients with MS after physiotherapy based on the Bobath concept.
Smedal, Tori; Lygren, Hildegunn; Myhr, Kjell-Morten; Moe-Nilssen, Rolf; Gjelsvik, Bente; Gjelsvik, Olav; Strand, Liv Inger; Inger, Liv
2006-06-01
Patients with multiple sclerosis (MS) tend to have movement difficulties, and the effect of physiotherapy for this group of patients has been subjected to limited systematic research. In the present study physiotherapy based on the Bobath concept, applied to MS patients with balance and gait problems, was evaluated. The ability of different functional tests to demonstrate change was evaluated. A single-subject experimental study design with ABAA phases was used, and two patients with relapsing-remitting MS in stable phase were treated. Tests were performed 12 times, three at each phase: A (at baseline); B (during treatment); A (immediately after treatment); and A (after two months). The key feature of treatment was facilitation of postural activity and selective control of movement. Several performance and self report measures and interviews were used. After intervention, improved balance was shown by the Berg Balance Scale (BBS) in both patients, and improved quality of gait was indicated by the Rivermead Visual Gait Assessment (RVGA). The patients also reported improved balance and gait function in the interviews and scored their condition as 'much improved'. Gait parameters, recorded by an electronic walkway, changed, but differently in the two patients. Among the physical performance tests the BBS and the RVGA demonstrated the highest change, while no or minimal change was demonstrated by the Rivermead Mobility Index (RMI) and Ratings of Perceived Exertion (RPE). The findings indicate that balance and gait can be improved after physiotherapy based on the Bobath concept, but this should be further evaluated in larger controlled trials of patients with MS.
Richardson, J K; Sandman, D; Vela, S
2001-02-01
To determine the effect of a specific exercise regimen on clinical measures of postural stability and confidence in a population with peripheral neuropathy (PN). Prospective, controlled, single blind study. Outpatient clinic of a university hospital. Twenty subjects with diabetes mellitus and electrodiagnostically confirmed PN. Ten subjects underwent a 3-week intervention exercise regimen designed to increase rapidly available distal strength and balance. The other 10 subjects performed a control exercise regimen. Unipedal stance time, functional reach, tandem stance time, and score on the activities-specific balance and confidence (ABC) scale. The intervention subjects, but not the control subjects, showed significant improvement in all 3 clinical measures of balance and nonsignificant improvement on the ABC scale. A brief, specific exercise regimen improved clinical measures of balance in patients with diabetic PN. Further studies are needed to determine if this result translates into a lower fall frequency in this high-risk population.
Karahan, Ali Yavuz; Tok, Fatih; Taşkın, Halil; Kuçuksaraç, Seher; Başaran, Aynur; Yıldırım, Pelin
2015-11-01
To compare the effects of exergames (EGs) using the Xbox Kinect™ device and home exercise (HE) on balance, functional mobility, and quality of life of individuals aged 65 years or older. One hundred participants who met the inclusion criteria were randomized to the EG or HE group. The EG group took part in a 6-week programme using the Xbox360Kinect™ device, and the HE group took part in a 6-week balance exercise programme at home 5 days a week. The Berg Balance Scale (BBS) was used to assess balance, the Timed Up and Go (TUG) test was used to evaluate functional walking, and the Short Form 36 (SF-36) was used to assess quality of life. Forty-eight participants in the EG group and 42 participants in the HE group completed the study. The groups were similar in terms of age, sex, and pretreatment values of BBS, TUG, and SF-36. Although the BBS scores of both groups improved significantly (all p<0.05), the post-treatment scores of the EG group were better than those of the HE group. The TUG scores improved only in the EG group (p<0.05). The increase in the BBS scores and decrease in the TUG test scores were significant only in the EG group (all p<0.05). A significant improvement was also observed in the quality of life parameters of physical functioning, social role functioning, physical role restriction, general health perceptions, and physical component scores in the post-exercise evaluations of the EG group. The participants commented that they found the EG programme very entertaining. The EG can be considered a safe, entertaining and sustainable alternative to HE programmes, and it may have positive effects on balance, functional walking and quality of life in geriatric subjects. Copyright© by the National Institute of Public Health, Prague 2015.
Task oriented training improves the balance outcome & reducing fall risk in diabetic population.
Ghazal, Javeria; Malik, Arshad Nawaz; Amjad, Imran
2016-01-01
The objective was to determine the balance impairments and to compare task oriented versus traditional balance training in fall reduction among diabetic patients. The randomized control trial with descriptive survey and 196 diabetic patients were recruited to assess balance impairments through purposive sampling technique. Eighteen patients were randomly allocated into two groups; task oriented balance training group TOB (n=8) and traditional balance training group TBT (n=10). The inclusion criteria were 30-50 years age bracket and diagnosed cases of Diabetes Mellitus with neuropathy. The demographics were taken through standardized & valid assessment tools include Berg Balance Scale and Functional Reach Test. The measurements were obtained at baseline, after 04 and 08 weeks of training. The mean age of the participants was 49 ±6.79. The result shows that 165(84%) were at moderate risk of fall and 31(15%) were at mild risk of fall among total 196 diabetic patients. There was significant improvement (p <0.05) in task oriented balance training group for dynamic balance, anticipatory balance and reactive balance after 8 weeks of training as compare to traditional balance training. Task oriented balance training is effective in improving the dynamic, anticipator and reactive balance. The task oriented training reduces the risk of falling through enhancing balance outcome.
Task oriented training improves the balance outcome & reducing fall risk in diabetic population
Ghazal, Javeria; Malik, Arshad Nawaz; Amjad, Imran
2016-01-01
Objectives: The objective was to determine the balance impairments and to compare task oriented versus traditional balance training in fall reduction among diabetic patients. Methods: The randomized control trial with descriptive survey and 196 diabetic patients were recruited to assess balance impairments through purposive sampling technique. Eighteen patients were randomly allocated into two groups; task oriented balance training group TOB (n=8) and traditional balance training group TBT (n=10). The inclusion criteria were 30-50 years age bracket and diagnosed cases of Diabetes Mellitus with neuropathy. The demographics were taken through standardized & valid assessment tools include Berg Balance Scale and Functional Reach Test. The measurements were obtained at baseline, after 04 and 08 weeks of training. Results: The mean age of the participants was 49 ±6.79. The result shows that 165(84%) were at moderate risk of fall and 31(15%) were at mild risk of fall among total 196 diabetic patients. There was significant improvement (p <0.05) in task oriented balance training group for dynamic balance, anticipatory balance and reactive balance after 8 weeks of training as compare to traditional balance training. Conclusion: Task oriented balance training is effective in improving the dynamic, anticipator and reactive balance. The task oriented training reduces the risk of falling through enhancing balance outcome. PMID:27648053
van den Heuvel, Maarten R C; van Wegen, Erwin E H; de Goede, Cees J T; Burgers-Bots, Ingrid A L; Beek, Peter J; Daffertshofer, Andreas; Kwakkel, Gert
2013-10-04
Patients with Parkinson's disease often suffer from reduced mobility due to impaired postural control. Balance exercises form an integral part of rehabilitative therapy but the effectiveness of existing interventions is limited. Recent technological advances allow for providing enhanced visual feedback in the context of computer games, which provide an attractive alternative to conventional therapy. The objective of this randomized clinical trial is to investigate whether a training program capitalizing on virtual-reality-based visual feedback is more effective than an equally-dosed conventional training in improving standing balance performance in patients with Parkinson's disease. Patients with idiopathic Parkinson's disease will participate in a five-week balance training program comprising ten treatment sessions of 60 minutes each. Participants will be randomly allocated to (1) an experimental group that will receive balance training using augmented visual feedback, or (2) a control group that will receive balance training in accordance with current physical therapy guidelines for Parkinson's disease patients. Training sessions consist of task-specific exercises that are organized as a series of workstations. Assessments will take place before training, at six weeks, and at twelve weeks follow-up. The functional reach test will serve as the primary outcome measure supplemented by comprehensive assessments of functional balance, posturography, and electroencephalography. We hypothesize that balance training based on visual feedback will show greater improvements on standing balance performance than conventional balance training. In addition, we expect that learning new control strategies will be visible in the co-registered posturographic recordings but also through changes in functional connectivity.
Eggenberger, Patrick; Wolf, Martin; Schumann, Martina; de Bruin, Eling D.
2016-01-01
Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE) or balance and stretching training (BALANCE). The 8-week intervention included three sessions of 30 min per week and was completed by 33 participants (mean age 74.9 ± 6.9 years). Prefrontal cortex (PFC) activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < 0.05 or trend, r = 0.25–0.36), while DANCE showed a larger reduction at the end of the 30-s walking task compared to BALANCE in the left PFC [F(1, 31) = 3.54, p = 0.035, r = 0.32]. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < 0.05 or trend, r = 0.31–0.50). The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults. PMID:27148041
Lee, Han Suk; Park, Jeung Hun
2015-08-01
[Purpose] This study investigated the effects of Nordic walking on physical functions and depression in frail people aged 70 years and above. [Subjects] Twenty frail elderly individuals ≥70 years old were assigned to either a Nordic walking group (n=8) or general exercise group (n=10). [Methods] The duration of intervention was equal in both groups (3 sessions/week for 12 weeks, 60 min/session). Physical function (balance, upper extremity strength, lower extremity strength, weakness) and depression were examined before and after the interventions. [Results] With the exception of upper extremity muscle strength, lower extremity strength, weakness, balance, and depression after Nordic walking demonstrated statistically significant improvement. However, in the general exercise group, only balance demonstrated a statistically significant improvement after the intervention. There were significant differences in the changes in lower extremity muscle strength, weakness and depression between the groups. [Conclusion] In conclusion, Nordic walking was more effective than general exercise. Therefore, we suggest that Nordic walking may be an attractive option for significant functional improvement in frail people over 70 years old.
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrador, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob
2010-01-01
Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant sensory signals. Application of imperceptible SR noise coupled with sensory input through the proprioceptive, visual, or vestibular sensory systems has been shown to improve motor function. Specifically, studies have shown that that vestibular electrical stimulation by imperceptible stochastic noise, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standardized balance task of standing on a block of 10 cm thick medium density foam with their eyes closed for a total of 40 seconds. Stochastic electrical stimulation was applied to the vestibular system through electrodes placed over the mastoid process behind the ears during the last 20 seconds of the test period. A custom built constant current stimulator with subject isolation delivered the stimulus. Stimulation signals were generated with frequencies in the bandwidth of 1-2 Hz and 0.01-30 Hz. Amplitude of the signals were varied in the range of 0- +/-700 micro amperes with the RMS of the signal increased by 30 micro amperes for each 100 micro amperes increase in the current range. Balance performance was measured using a force plate under the foam block and inertial motion sensors placed on the torso and head segments. Preliminary results indicate that balance performance is improved in the range of 10-25% compared to no stimulation conditions. Subjects improved their performance consistently across the blocks of stimulation. Further the signal amplitude at which the performance was maximized was different in the two frequency ranges. Optimization of the frequency and amplitude of the signal characteristics of the stochastic noise signals on maximizing balance performance will have a significant impact in its development as a unique system to aid recovery of function in astronauts after long duration space flight or for people with balance disorders.
Functional Fitness Training: Is it Right for You?
... risk of injury and improve your quality of life. Functional exercise training may be especially beneficial as part of a comprehensive program for older adults to improve balance, agility and muscle strength, and reduce the risk ...
Salgado, Bryan Coleman; Jones, Maitri; Ilgun, Suzanne; McCord, Gyandev; Loper-Powers, Mangala; van Houten, Peter
2013-01-01
Yoga has been found to be effective for addressing problems with strength, flexibility, balance, gait, anxiety, depression, and concentration. Varying degrees of these problems occur in individuals with multiple sclerosis (MS). This study examined the effects of a comprehensive, 4-month yoga program on strength, mobility, balance, respiratory function, and quality of life for individuals with MS. Twenty four individuals with MS participated in an intensive Ananda Yoga training followed by 17 weeks of home practice. Significant improvements in functional strength, balance, and peak expiratory flow and a trend toward improvements in mental health and quality of life outcomes were detected following the intervention. The results of this exploratory study suggest that yoga can have a positive impact on physical functioning and quality of life for persons with mild to moderate MS.
Harkema, Susan J; Schmidt-Read, Mary; Lorenz, Douglas J; Edgerton, V Reggie; Behrman, Andrea L
2012-09-01
To evaluate the effects of intensive locomotor training on balance and ambulatory function at enrollment and discharge during outpatient rehabilitation after incomplete SCI. Prospective observational cohort. Seven outpatient rehabilitation centers from the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN). Patients (N=196) with American Spinal Injury Association Impairment Scale (AIS) grade C or D SCI who received at least 20 locomotor training treatment sessions in the NRN. Intensive locomotor training, including step training using body-weight support and manual facilitation on a treadmill followed by overground assessment and community integration. Berg Balance Scale; Six-Minute Walk Test; 10-Meter Walk Test. Outcome measures at enrollment showed high variability between patients with AIS grades C and D. Significant improvement from enrollment to final evaluation was observed in balance and walking measures for patients with AIS grades C and D. The magnitude of improvement significantly differed between AIS groups for all measures. Time since SCI was not associated significantly with outcome measures at enrollment, but was related inversely to levels of improvement. Significant variability in baseline values of functional outcome measures is evident after SCI in individuals with AIS grades C and D and significant functional recovery can continue to occur even years after injury when provided with locomotor training. These results indicate that rehabilitation, which provides intensive activity-based therapy, can result in functional improvements in individuals with chronic incomplete SCI. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Coppack, Russell J; Bilzon, James L; Wills, Andrew K; McCurdie, Ian M; Partridge, Laura K; Nicol, Alastair M; Bennett, Alexander N
2016-01-01
Background There are no studies describing the clinical outcomes of a residential, multidisciplinary team (MDT) rehabilitation intervention for patients with prearthritic hip pain. The aim of this cohort study was to describe the functional and physical outcomes of multidisciplinary residential rehabilitation for UK military personnel with prearthritic hip pain. Methods Participants (N=40) with a mean age of 33 years referred to a specialist residential rehabilitation centre completed a comprehensive multidisciplinary residential intervention. The main outcome measures were mean pain, physical function (modified shuttle test (MST) and Y-balance test), hip range of motion (HROM) and a patient-reported outcome measure (The Copenhagen Hip and Groin Outcome Score, HAGOS). All scores for symptomatic hips were taken at baseline and post-treatment. Results There were improvements in the Y-balance test and HROM following rehabilitation. There were significant improvements in mean difference (T1-to-T2) for Y-balance scores (15.8 cm, 95% CI 10.7 to 20.9, p<0.001), HROM (6.5° increase in hip flexion, 95% CI 4.6 to 9.4, p<0.001) and hip internal rotation (4.6°, 95% CI 2.7 to 6.6, p<0.001). Scores for HAGOS, pain, MST and functional activity assessment showed no improvement. Conclusions Among UK military personnel with prearthritic hip pain, MDT residential rehabilitation resulted in improvements in a functional Y-balance test, hip flexion and internal rotation. The study suggests short-term benefits across some outcomes for the current UK military approach to MDT residential rehabilitation. PMID:27900174
Coppack, Russell J; Bilzon, James L; Wills, Andrew K; McCurdie, Ian M; Partridge, Laura K; Nicol, Alastair M; Bennett, Alexander N
2016-01-01
There are no studies describing the clinical outcomes of a residential, multidisciplinary team (MDT) rehabilitation intervention for patients with prearthritic hip pain. The aim of this cohort study was to describe the functional and physical outcomes of multidisciplinary residential rehabilitation for UK military personnel with prearthritic hip pain. Participants (N=40) with a mean age of 33 years referred to a specialist residential rehabilitation centre completed a comprehensive multidisciplinary residential intervention. The main outcome measures were mean pain, physical function (modified shuttle test (MST) and Y-balance test), hip range of motion (HROM) and a patient-reported outcome measure (The Copenhagen Hip and Groin Outcome Score, HAGOS). All scores for symptomatic hips were taken at baseline and post-treatment. There were improvements in the Y-balance test and HROM following rehabilitation. There were significant improvements in mean difference (T1-to-T2) for Y-balance scores (15.8 cm, 95% CI 10.7 to 20.9, p<0.001), HROM (6.5° increase in hip flexion, 95% CI 4.6 to 9.4, p<0.001) and hip internal rotation (4.6°, 95% CI 2.7 to 6.6, p<0.001). Scores for HAGOS, pain, MST and functional activity assessment showed no improvement. Among UK military personnel with prearthritic hip pain, MDT residential rehabilitation resulted in improvements in a functional Y-balance test, hip flexion and internal rotation. The study suggests short-term benefits across some outcomes for the current UK military approach to MDT residential rehabilitation.
Marigold, Daniel S; Eng, Janice J; Dawson, Andrew S; Inglis, J Timothy; Harris, Jocelyn E; Gylfadóttir, Sif
2005-03-01
To determine the effect of two different community-based group exercise programs on functional balance, mobility, postural reflexes, and falls in older adults with chronic stroke. A randomized, clinical trial. Community center. Sixty-one community-dwelling older adults with chronic stroke. Participants were randomly assigned to an agility (n=30) or stretching/weight-shifting (n=31) exercise group. Both groups exercised three times a week for 10 weeks. Participants were assessed before, immediately after, and 1 month after the intervention for Berg Balance, Timed Up and Go, step reaction time, Activities-specific Balance Confidence, and Nottingham Health Profile. Testing of standing postural reflexes and induced falls evoked by a translating platform was also performed. In addition, falls in the community were tracked for 1 year from the start of the interventions. Although exercise led to improvements in all clinical outcome measures for both groups, the agility group demonstrated greater improvement in step reaction time and paretic rectus femoris postural reflex onset latency than the stretching/weight-shifting group. In addition, the agility group experienced fewer induced falls on the platform. Group exercise programs that include agility or stretching/weight shifting exercises improve postural reflexes, functional balance, and mobility and may lead to a reduction of falls in older adults with stroke.
FES-assisted Cycling Improves Aerobic Capacity and Locomotor Function Postcerebrovascular Accident.
Aaron, Stacey E; Vanderwerker, Catherine J; Embry, Aaron E; Newton, Jennifer H; Lee, Samuel C K; Gregory, Chris M
2018-03-01
After a cerebrovascular accident (CVA) aerobic deconditioning contributes to diminished physical function. Functional electrical stimulation (FES)-assisted cycling is a promising exercise paradigm designed to target both aerobic capacity and locomotor function. This pilot study aimed to evaluate the effects of an FES-assisted cycling intervention on aerobic capacity and locomotor function in individuals post-CVA. Eleven individuals with chronic (>6 months) post-CVA hemiparesis completed an 8-wk (three times per week; 24 sessions) progressive FES-assisted cycling intervention. V˙O2peak, self-selected, and fastest comfortable walking speeds, gait, and pedaling symmetry, 6-min walk test (6MWT), balance, dynamic gait movements, and health status were measured at baseline and posttraining. Functional electrical stimulation-assisted cycling significantly improved V˙O2peak (12%, P = 0.006), self-selected walking speed (SSWS, 0.05 ± 0.1 m·s, P = 0.04), Activities-specific Balance Confidence scale score (12.75 ± 17.4, P = 0.04), Berg Balance Scale score (3.91 ± 4.2, P = 0.016), Dynamic Gait Index score (1.64 ± 1.4, P = 0.016), and Stroke Impact Scale participation/role domain score (12.74 ± 16.7, P = 0.027). Additionally, pedal symmetry, represented by the paretic limb contribution to pedaling (paretic pedaling ratio [PPR]) significantly improved (10.09% ± 9.0%, P = 0.016). Although step length symmetry (paretic step ratio [PSR]) did improve, these changes were not statistically significant (-0.05% ± 0.1%, P = 0.09). Exploratory correlations showed moderate association between change in SSWS and 6-min walk test (r = 0.74), and moderate/strong negative association between change in PPR and PSR. These results support FES-assisted cycling as a means to improve both aerobic capacity and locomotor function. Improvements in SSWS, balance, dynamic walking movements, and participation in familial and societal roles are important targets for rehabilitation of individuals after CVA. Interestingly, the correlation between PSR and PPR suggests that improvements in pedaling symmetry may translate to a more symmetric gait pattern.
Leach, Susan J; Magill, Richard A; Maring, Joyce R
2017-01-01
A spinal cord injury (SCI) frequently results in impaired balance, endurance, and strength with subsequent limitations in functional mobility and community participation. The purpose of this case report was to implement a training program for an individual with a chronic incomplete SCI using a novel divided-attention stepping accuracy task (DASAT) to determine if improvements could be made in impairments, activities, and participation. The client was a 51-year-old male with a motor incomplete C4 SCI sustained 4 years prior. He presented with decreased quality of life (QOL) and functional independence, and deficits in balance, endurance, and strength consistent with central cord syndrome. The client completed the DASAT intervention 3 times per week for 6 weeks. Each session incorporated 96 multi-directional steps to randomly-assigned targets in response to 3-step verbal commands. QOL, measured using the SF-36, was generally enhanced but fluctuated. Community mobility progressed from close supervision to independence. Significant improvement was achieved in all balance scores: Berg Balance Scale by 9 points [Minimal Detectable Change (MDC) = 4.9 in elderly]; Functional Reach Test by 7.62 cm (MDC = 5.16 in C5/C6 SCI); and Timed Up-and-Go by 0.53 s (MDC not established). Endurance increased on the 6-Minute Walk Test, with the client achieving an additional 47 m (MDC = 45.8 m). Lower extremity isokinetic peak torque strength measures were mostly unchanged. Six minutes of DASAT training per session provided an efficient, low-cost intervention utilizing multiple trials of variable practice, and resulted in better performance in activities, balance, and endurance in this client.
Allen, Jessica L; McKay, J Lucas; Sawers, Andrew; Hackney, Madeleine E; Ting, Lena H
2017-07-01
Here we examined changes in muscle coordination associated with improved motor performance after partnered, dance-based rehabilitation in individuals with mild to moderate idiopathic Parkinson's disease. Using motor module (a.k.a. muscle synergy) analysis, we identified changes in the modular control of overground walking and standing reactive balance that accompanied clinically meaningful improvements in behavioral measures of balance, gait, and disease symptoms after 3 wk of daily Adapted Tango classes. In contrast to previous studies that revealed a positive association between motor module number and motor performance, none of the six participants in this pilot study increased motor module number despite improvements in behavioral measures of balance and gait performance. Instead, motor modules were more consistently recruited and distinctly organized immediately after rehabilitation, suggesting more reliable motor output. Furthermore, the pool of motor modules shared between walking and reactive balance increased after rehabilitation, suggesting greater generalizability of motor module function across tasks. Our work is the first to show that motor module distinctness, consistency, and generalizability are more sensitive to improvements in gait and balance function after short-term rehabilitation than motor module number. Moreover, as similar differences in motor module distinctness, consistency, and generalizability have been demonstrated previously in healthy young adults with and without long-term motor training, our work suggests commonalities in the structure of muscle coordination associated with differences in motor performance across the spectrum from motor impairment to expertise. NEW & NOTEWORTHY We demonstrate changes in neuromuscular control of gait and balance in individuals with Parkinson's disease after short-term, dance-based rehabilitation. Our work is the first to show that motor module distinctness, consistency, and generalizability across gait and balance are more sensitive than motor module number to improvements in motor performance following short-term rehabilitation. Our results indicate commonalities in muscle coordination improvements associated with motor skill reacquisition due to rehabilitation and motor skill acquisition in healthy individuals. Copyright © 2017 the American Physiological Society.
Fuenzalida Squella, Sara Agueda; Kannenberg, Andreas; Brandão Benetti, Ângelo
2018-04-01
Despite the evidence for improved safety and function of microprocessor stance and swing-controlled prosthetic knees, non-microprocessor-controlled prosthetic knees are still standard of care for persons with transfemoral amputations in most countries. Limited feature microprocessor-control enhancement of such knees could stand to significantly improve patient outcomes. To evaluate gait speed, balance, and fall reduction benefits of the new 3E80 default stance hydraulic knee compared to standard non-microprocessor-controlled prosthetic knees. Comparative within-subject clinical study. A total of 13 young, high-functioning community ambulators with a transfemoral amputation underwent assessment of performance-based (e.g. 2-min walk test, timed ramp/stair tests) and self-reported (e.g. falls, Activities-Specific Balance Confidence scale, Prosthesis Evaluation Questionnaire question #1, Satisfaction with the Prosthesis) outcome measures for their non-microprocessor-controlled prosthetic knees and again after 8 weeks of accommodation to the 3E80 microprocessor-enhanced knee. Self-reported falls significantly declined 77% ( p = .04), Activities-Specific Balance Confidence scores improved 12 points ( p = .005), 2-min walk test walking distance increased 20 m on level ( p = .01) and uneven ( p = .045) terrain, and patient satisfaction significantly improved ( p < .01) when using the 3E80 knee. Slope and stair ambulation performance did not differ between knee conditions. The 3E80 knee reduced self-reported fall incidents and improved balance confidence. Walking performance on both level and uneven terrains also improved compared to non-microprocessor-controlled prosthetic knees. Subjects' satisfaction was significantly higher than with their previous non-microprocessor-controlled prosthetic knees. The 3E80 may be considered a prosthetic option for improving gait performance, balance confidence, and safety in highly active amputees. Clinical relevance This study compared performance-based and self-reported outcome measures when using non-microprocessor and a new microprocessor-enhanced, default stance rotary hydraulic knee. The results inform rehabilitation professionals about the functional benefits of a limited-feature, microprocessor-enhanced hydraulic prosthetic knee over standard non-microprocessor-controlled prosthetic knees.
Lee, Hong-Jae; Lim, Kil-Byung; Jung, Tae-Ho; Kim, Dug-Young
2013-01-01
Objective To compare the effect of foot orthotics and rehabilitation exercises by assessing balancing ability and joint proprioception in athletes who have chronic ankle instability. Methods Forty-one athletes who visited hospitals due to chronic ankle instability were randomly assigned to two groups. One group had ankle rehabilitation exercises while the other group had the same rehabilitation exercises as well as foot orthotics. Joint position sense of the ankle joint was examined by using an isokinetic exercise machine. Balancing abilities categorized into static, dynamic and functional balance abilities were evaluated by using computerized posturography. We tested the subjects before and after the four-week rehabilitation program. Results After the four-week treatment, for joint reposition sense evaluation, external 75% angle evaluation was done, revealing that the group with the application of foot orthotics improved by -1.07±1.64 on average, showing no significant difference between the two groups (p>0.05). Static, dynamic and functional balancing abilities using balance masters were evaluated, revealing that the two groups improved in some items, but showing no significant difference between them (p>0.05). Conclusion This study found that athletes with chronic ankle instability who had foot orthotics applied for four weeks improved their proprioceptive and balancing abilities, but did not show additional treatment effects compared with rehabilitation exercise treatment. PMID:24020033
Lee, Hong-Jae; Lim, Kil-Byung; Jung, Tae-Ho; Kim, Dug-Young; Park, Kyung-Rok
2013-08-01
To compare the effect of foot orthotics and rehabilitation exercises by assessing balancing ability and joint proprioception in athletes who have chronic ankle instability. Forty-one athletes who visited hospitals due to chronic ankle instability were randomly assigned to two groups. One group had ankle rehabilitation exercises while the other group had the same rehabilitation exercises as well as foot orthotics. Joint position sense of the ankle joint was examined by using an isokinetic exercise machine. Balancing abilities categorized into static, dynamic and functional balance abilities were evaluated by using computerized posturography. We tested the subjects before and after the four-week rehabilitation program. After the four-week treatment, for joint reposition sense evaluation, external 75% angle evaluation was done, revealing that the group with the application of foot orthotics improved by -1.07±1.64 on average, showing no significant difference between the two groups (p>0.05). Static, dynamic and functional balancing abilities using balance masters were evaluated, revealing that the two groups improved in some items, but showing no significant difference between them (p>0.05). This study found that athletes with chronic ankle instability who had foot orthotics applied for four weeks improved their proprioceptive and balancing abilities, but did not show additional treatment effects compared with rehabilitation exercise treatment.
Effectiveness of Wii-based rehabilitation in stroke: A randomized controlled study.
Karasu, Ayça Utkan; Batur, Elif Balevi; Karataş, Gülçin Kaymak
2018-05-08
To investigate the efficacy of Nintendo Wii Fit®-based balance rehabilitation as an adjunc-tive therapy to conventional rehabilitation in stroke patients. During the study period, 70 stroke patients were evaluated. Of these, 23 who met the study criteria were randomly assigned to either the experimental group (n = 12) or the control group (n = 11) by block randomization. Primary outcome measures were Berg Balance Scale, Functional Reach Test, Postural Assessment Scale for Stroke Patients, Timed Up and Go Test and Static Balance Index. Secondary outcome measures were postural sway, as assessed with Emed-X, Functional Independence Measure Transfer and Ambulation Scores. An evaluator who was blinded to the groups made assessments immediately before (baseline), immediately after (post-treatment), and 4 weeks after completion of the study (follow-up). Group-time interaction was significant in the Berg Balance Scale, Functional Reach Test, anteroposterior and mediolateral centre of pressure displacement with eyes open, anteroposterior centre of pressure displacement with eyes closed, centre of pressure displacement during weight shifting to affected side, to unaffected side and total centre of pressure displacement during weight shifting. Demonstrating significant group-time interaction in those parameters suggests that, while both groups exhibited significant improvement, the experimental group showed greater improvement than the control group. Virtual reality exercises with the Nintendo Wii system could represent a useful adjunctive therapy to traditional treatment to improve static and dynamic balance in stroke patients.
BASIC Training: A Pilot Study of Balance/Strengthening Exercises in Heart Failure.
McGuire, Rita; Honaker, Julie; Pozehl, Bunny; Hertzog, Melody
2018-05-19
The aim of this pilot study was to evaluate the effect of a multicomponent balance and resistance training intervention on physical function, balance, and falls in older (≥65 years) community-dwelling heart failure (HF) patients. Randomized, two-group repeated-measures experimental design. The intervention involved once weekly supervised group sessions with home sessions encouraged twice weekly. Focus groups held pre/post intervention. Outcome variables included measures of physical function, balance confidence, and falling risk. In a sample size of 33, the Dynamic Gait Index change from baseline to 12 weeks was significantly different in the groups (p = .029). The number of reported falls declined from 0.92 to 0.54 per participant. A supervised group session intervention can increase mobility and gait and reduce fall rate for HF patients. This study was designed to improve lower extremity strength, balance, and falls in elderly HF patients, thus reducing costs and improving quality of life for this population.
Williams, John D; Topley, Nicholas; Craig, Kathrine J; Mackenzie, Ruth K; Pischetsrieder, Monika; Lage, Cristina; Passlick-Deetjen, Jutta
2004-07-01
Although peritoneal dialysis (PD) is a widely accepted form of renal replacement therapy (RRT), concerns remain regarding the bioincompatible nature of standard PD fluid. In order to evaluate whether a newly formulated fluid of neutral pH, and containing low levels of glucose degradation products (GDP), resulted in improved in vivo biocompatibility, it was compared in a clinical study to a standard PD fluid. In a multicenter, open, randomized, prospective study with a crossover design and parallel arms, a conventional, acidic, lactate-buffered fluid (SPDF) was compared with a pH neutral, lactate-buffered, low GDP fluid (balance). Overnight effluent was collected and assayed for cancer antigen 125 (CA125), hyaluronic acid (HA), procollagen peptide (PICP), vascular endothelial growth factor (VEGF), and tumor necrosis factor alpha (TNFalpha). Serum samples were assayed for circulating advanced glycosylation end products (AGE), N(epsilon)-(carboxymethyl)lysine (CML), and imidazolone. Clinical end points were residual renal function (RRF), adequacy of dialysis, ultrafiltration, and peritoneal membrane function. Eighty-six patients were randomized to either group I starting with SPDF for 12 weeks (Phase I), then switching to "balance" for 12 weeks (Phase II), or group II, which was treated vice versa. Seventy-one patients completed the study with data suitable for entry into the per protocol analysis. Effluent and serum samples, together with peritoneal function tests and adequacy measurements, were undertaken at study centers on three occasions during the study: after the four-week run-in period, after Phase I, and again after Phase II. In patients treated with balance there were significantly higher effluent levels of CA125 and PICP in both arms of the study. Conversely, levels of HA were lower in patients exposed to balance, while there was no change in the levels of either VEGF or TNFalpha. Serum CML and imidazolone levels fell significantly in balance-treated patients. Renal urea and creatinine clearances were higher in both treatment arms after patients were exposed to balance. Urine volume was higher in patients exposed to balance. In contrast, peritoneal ultrafiltration was higher in patients on SPDF. When anuric patients were analyzed as a subgroup, there was no significant difference in peritoneal transport characteristics or in ultrafiltration on either fluid. There were no changes in peritonitis incidence on either solution. This study indicates that the use of balance, a neutral pH, low GDP fluid, is accompanied by a significant improvement in effluent markers of peritoneal membrane integrity and significantly decreased circulating AGE levels. Clinical parameters suggest an improvement in residual renal function on balance, with an accompanying decrease in peritoneal ultrafiltration. It would appear that balance solution results in an improvement in local peritoneal homeostasis, as well as having a positive impact on systemic parameters, including circulating AGE and residual renal function.
Instability resistance training across the exercise continuum.
Behm, David G; Colado, Juan C; Colado, Juan C
2013-11-01
Instability resistance training (IRT; unstable surfaces and devices to strengthen the core or trunk muscles) is popular in fitness training facilities. To examine contradictory IRT recommendations for health enthusiasts and rehabilitation. A literature search was performed using MEDLINE, SPORT Discus, ScienceDirect, Web of Science, and Google Scholar databases from 1990 to 2012. Databases were searched using key terms, including "balance," "stability," "instability," "resistance training," "core," "trunk," and "functional performance." Additionally, relevant articles were extracted from reference lists. To be included, research questions addressed the effect of balance or IRT on performance, healthy and active participants, and physiologic or performance outcome measures and had to be published in English in a peer-reviewed journal. There is a dichotomy of opinions on the effectiveness and application of instability devices and conditions for health and performance training. Balance training without resistance has been shown to improve not only balance but functional performance as well. IRT studies document similar training adaptations as stable resistance training programs with recreationally active individuals. Similar progressions with lower resistance may improve balance and stability, increase core activation, and improve motor control. IRT is highly recommended for youth, elderly, recreationally active individuals, and highly trained enthusiasts.
Jorrakate, Chaiyong; Kongsuk, Jutaluk; Pongduang, Chiraprapa; Sadsee, Boontiwa; Chanthorn, Phatchari
2015-01-01
[Purpose] The aim of the present study was to investigate the effect of yoga training on static and dynamic standing balance in obese individuals with poor standing balance. [Subjects and Methods] Sixteen obese volunteers were randomly assigned into yoga and control groups. The yoga training program was performed for 45 minutes per day, 3 times per week, for 4 weeks. Static and dynamic balance were assessed in volunteers with one leg standing and functional reach tests. Outcome measures were tested before training and after a single week of training. Two-way repeated measure analysis of variance with Tukey’s honestly significant difference post hoc statistics was used to analyze the data. [Results] Obese individuals showed significantly increased static standing balance in the yoga training group, but there was no significant improvement of static or dynamic standing balance in the control group after 4 weeks. In the yoga group, significant increases in static standing balance was found after the 2nd, 3rd, and 4th weeks. Compared with the control group, static standing balance in the yoga group was significantly different after the 2nd week, and dynamic standing balance was significantly different after the 4th week. [Conclusion] Yoga training would be beneficial for improving standing balance in obese individuals with poor standing balance. PMID:25642038
Effects of Nintendo Wii-Fit® video games on balance in children with mild cerebral palsy.
Tarakci, Devrim; Ersoz Huseyinsinoglu, Burcu; Tarakci, Ela; Razak Ozdincler, Arzu
2016-10-01
This study compared the effects of Nintendo Wii-Fit ® balance-based video games and conventional balance training in children with mild cerebral palsy (CP). This randomized controlled trial involved 30 ambulatory pediatric patients (aged 5-18 years) with CP. Participants were randomized to either conventional balance training (control group) or to Wii-Fit balance-based video games training (Wii group). Both group received neuro-developmental treatment (NDT) during 24 sessions. In addition, while the control group received conventional balance training in each session, the Wii group played Nintendo Wii Fit games such as ski slalom, tightrope walk and soccer heading on balance board. Primary outcomes were Functional Reach Test (forward and sideways), Sit-to-Stand Test and Timed Get up and Go Test. Nintendo Wii Fit balance, age and game scores, 10 m walk test, 10-step climbing test and Wee-Functional Independence Measure (Wee FIM) were secondary outcomes. After the treatment, changes in balance scores and independence level in activities of daily living were significant (P < 0.05) in both groups. Statistically significant improvements were found in the Wii-based game group compared with the control group in all balance tests and total Wee FIM score (P < 0.05). Wii-fit balance-based video games are better at improving both static and performance-related balance parameters when combined with NDT treatment in children with mild CP. © 2016 Japan Pediatric Society.
Halabchi, Farzin; Alizadeh, Zahra; Sahraian, Mohammad Ali; Abolhasani, Maryam
2017-09-16
Multiple sclerosis (MS) can result in significant mental and physical symptoms, specially muscle weakness, abnormal walking mechanics, balance problems, spasticity, fatigue, cognitive impairment and depression. Patients with MS frequently decrease physical activity due to the fear from worsening the symptoms and this can result in reconditioning. Physicians now believe that regular exercise training is a potential solution for limiting the reconditioning process and achieving an optimal level of patient activities, functions and many physical and mental symptoms without any concern about triggering the onset or exacerbation of disease symptoms or relapse. Appropriate exercise can cause noteworthy and important improvements in different areas of cardio respiratory fitness (Aerobic fitness), muscle strength, flexibility, balance, fatigue, cognition, quality of life and respiratory function in MS patients. Aerobic exercise training with low to moderate intensity can result in the improvement of aerobic fitness and reduction of fatigue in MS patients affected by mild or moderate disability. MS patients can positively adapt to resistance training which may result in improved fatigue and ambulation. Flexibility exercises such as stretching the muscles may diminish spasticity and prevent future painful contractions. Balance exercises have beneficial effects on fall rates and better balance. Some general guidelines exist for exercise recommendation in the MS population. The individualized exercise program should be designed to address a patient's chief complaint, improve strength, endurance, balance, coordination, fatigue and so on. An exercise staircase model has been proposed for exercise prescription and progression for a broad spectrum of MS patients. Exercise should be considered as a safe and effective means of rehabilitation in MS patients. Existing evidence shows that a supervised and individualized exercise program may improve fitness, functional capacity and quality of life as well as modifiable impairments in MS patients.
Tillman, Alex; Muthalib, Makii; Hendy, Ashlee M.; Johnson, Liam G.; Rantalainen, Timo; Kidgell, Dawson J.; Enticott, Peter G.; Teo, Wei-Peng
2015-01-01
The use of progressive resistance training (PRT) to improve gait and balance in people with Parkinson’s disease (PD) is an emerging area of interest. However, the main effects of PRT on lower limb functions such as gait, balance, and leg strength in people with PD remain unclear. Therefore, the aim of the meta-analysis is to evaluate the evidence surrounding the use of PRT to improve gait and balance in people with PD. Five electronic databases, from inception to December 2014, were searched to identify the relevant studies. Data extraction was performed by two independent reviewers and methodological quality was assessed using the PEDro scale. Standardized mean differences (SMD) and 95% confidence intervals (CIs) of fixed and random effects models were used to calculate the effect sizes between experimental and control groups and I2 statistics were used to determine levels of heterogeneity. In total, seven studies were identified consisting of 172 participants (experimental n = 84; control n = 88). The pooled results showed a moderate but significant effect of PRT on leg strength (SMD 1.42, 95% CI 0.464–2.376); however, no significant effects were observed for gait speed (SMD 0.418, 95% CI −0.219 to 1.055). No significant effects were observed for balance measures included in this review. In conclusion, our results showed no discernable effect of PRT on gait and balance measures, although this is likely due to the lack of studies available. It may be suggested that PRT be performed in conjunction with balance or task-specific functional training to elicit greater lower limb functional benefits in people with PD. PMID:25852550
Tillman, Alex; Muthalib, Makii; Hendy, Ashlee M; Johnson, Liam G; Rantalainen, Timo; Kidgell, Dawson J; Enticott, Peter G; Teo, Wei-Peng
2015-01-01
The use of progressive resistance training (PRT) to improve gait and balance in people with Parkinson's disease (PD) is an emerging area of interest. However, the main effects of PRT on lower limb functions such as gait, balance, and leg strength in people with PD remain unclear. Therefore, the aim of the meta-analysis is to evaluate the evidence surrounding the use of PRT to improve gait and balance in people with PD. Five electronic databases, from inception to December 2014, were searched to identify the relevant studies. Data extraction was performed by two independent reviewers and methodological quality was assessed using the PEDro scale. Standardized mean differences (SMD) and 95% confidence intervals (CIs) of fixed and random effects models were used to calculate the effect sizes between experimental and control groups and I (2) statistics were used to determine levels of heterogeneity. In total, seven studies were identified consisting of 172 participants (experimental n = 84; control n = 88). The pooled results showed a moderate but significant effect of PRT on leg strength (SMD 1.42, 95% CI 0.464-2.376); however, no significant effects were observed for gait speed (SMD 0.418, 95% CI -0.219 to 1.055). No significant effects were observed for balance measures included in this review. In conclusion, our results showed no discernable effect of PRT on gait and balance measures, although this is likely due to the lack of studies available. It may be suggested that PRT be performed in conjunction with balance or task-specific functional training to elicit greater lower limb functional benefits in people with PD.
Zhang, Xiaohui; Hu, Min; Lou, Zhen; Liao, Bagen
2017-02-01
The aims of this study were to determine an effective knee function rehabilitation program for athletes undergoing partial medial meniscectomy. Participants were randomly assigned to neuromuscular training (NT) or strength training (ST) group and subjected to functional assessments before surgery and again at 4, and 8 weeks post hoc . Functional knee assessment, such as Lysholm knee scoring, star excursion balance, and BTE PrimusRS isokinetic performance tests were evaluated in each group. All postoperational symptoms were significantly improved after 4 and 8 weeks of NT and ST. Both NT and ST programs showed effective knee function recovery seen as an increase in muscular strength and endurance. However, the NT program showed the most significant functional improvement of dynamic balance and coordination.
Heinonen, Ilkka; Sorop, Oana; de Beer, Vincent J; Duncker, Dirk J; Merkus, Daphne
2015-10-15
Coronary microvascular function and cardiac function are closely related in that proper cardiac function requires adequate oxygen delivery through the coronary microvasculature. Because of the close proximity of cardiomyocytes and coronary microvascular endothelium, cardiomyocytes not only communicate their metabolic needs to the coronary microvasculature, but endothelium-derived factors also directly modulate cardiac function. This review summarizes evidence that the myocardial oxygen balance is disturbed in the failing heart because of increased extravascular compressive forces and coronary microvascular dysfunction. The perturbations in myocardial oxygen balance are exaggerated during exercise and are due to alterations in neurohumoral influences, endothelial function, and oxidative stress. Although there is some evidence from animal studies that the myocardial oxygen balance can partly be restored by exercise training, it is largely unknown to what extent the beneficial effects of exercise training include improvements in endothelial function and/or oxidative stress in the coronary microvasculature and how these improvements are impacted by risk factors such as diabetes, obesity, and hypercholesterolemia. Copyright © 2015 the American Physiological Society.
Fino, Peter C; Peterka, Robert J; Hullar, Timothy E; Murchison, Chad; Horak, Fay B; Chesnutt, James C; King, Laurie A
2017-02-23
Complaints of imbalance are common non-resolving signs in individuals with post-concussive syndrome. Yet, there is no consensus rehabilitation for non-resolving balance complaints following mild traumatic brain injury (mTBI). The heterogeneity of balance deficits and varied rates of recovery suggest varied etiologies and a need for interventions that address the underlying causes of poor balance function. Our central hypothesis is that most chronic balance deficits after mTBI result from impairments in central sensorimotor integration that may be helped by rehabilitation. Two studies are described to 1) characterize balance deficits in people with mTBI who have chronic, non-resolving balance deficits compared to healthy control subjects, and 2) determine the efficacy of an augmented vestibular rehabilitation program using auditory biofeedback to improve central sensorimotor integration, static and dynamic balance, and functional activity in patients with chronic mTBI. Two studies are described. Study 1 is a cross-sectional study to take place jointly at Oregon Health and Science University and the VA Portland Health Care System. The study participants will be individuals with non-resolving complaints of balance following mTBI and age- and gender-matched controls who meet all inclusion criteria. The primary outcome will be measures of central sensorimotor integration derived from a novel central sensorimotor integration test. Study 2 is a randomized controlled intervention to take place at Oregon Health & Science University. In this study, participants from Study 1 with mTBI and abnormal central sensorimotor integration will be randomized into two rehabilitation interventions. The interventions will be 6 weeks of vestibular rehabilitation 1) with or 2) without the use of an auditory biofeedback device. The primary outcome measure is the daily activity of the participants measured using an inertial sensor. The results of these two studies will improve our understanding of the nature of balance deficits in people with mTBI by providing quantitative metrics of central sensorimotor integration, balance, and vestibular and ocular motor function. Study 2 will examine the potential for augmented rehabilitation interventions to improve central sensorimotor integration. This trial is registered at clinicaltrials.gov ( NCT02748109 ).
Gandolfi, Marialuisa; Geroin, Christian; Picelli, Alessandro; Munari, Daniele; Waldner, Andreas; Tamburin, Stefano; Marchioretto, Fabio; Smania, Nicola
2014-01-01
Background: Extensive research on both healthy subjects and patients with central nervous damage has elucidated a crucial role of postural adjustment reactions and central sensory integration processes in generating and “shaping” locomotor function, respectively. Whether robotic-assisted gait devices might improve these functions in Multiple sclerosis (MS) patients is not fully investigated in literature. Purpose: The aim of this study was to compare the effectiveness of end-effector robot-assisted gait training (RAGT) and sensory integration balance training (SIBT) in improving walking and balance performance in patients with MS. Methods: Twenty-two patients with MS (EDSS: 1.5–6.5) were randomly assigned to two groups. The RAGT group (n = 12) underwent end-effector system training. The SIBT group (n = 10) underwent specific balance exercises. Each patient received twelve 50-min treatment sessions (2 days/week). A blinded rater evaluated patients before and after treatment as well as 1 month post treatment. Primary outcomes were walking speed and Berg Balance Scale. Secondary outcomes were the Activities-specific Balance Confidence Scale, Sensory Organization Balance Test, Stabilometric Assessment, Fatigue Severity Scale, cadence, step length, single and double support time, Multiple Sclerosis Quality of Life-54. Results: Between groups comparisons showed no significant differences on primary and secondary outcome measures over time. Within group comparisons showed significant improvements in both groups on the Berg Balance Scale (P = 0.001). Changes approaching significance were found on gait speed (P = 0.07) only in the RAGT group. Significant changes in balance task-related domains during standing and walking conditions were found in the SIBT group. Conclusion: Balance disorders in patients with MS may be ameliorated by RAGT and by SIBT. PMID:24904361
Feasibility of Wii Fit training to improve clinical measures of balance in older adults.
Bieryla, Kathleen A; Dold, Neil M
2013-01-01
Numerous interventions have been proposed to improve balance in older adults with varying degrees of success. A novel approach may be to use an off-the-shelf video game system utilizing real-time force feedback to train older adults. The purpose of this study is to investigate the feasibility of using Nintendo's Wii Fit for training to improve clinical measures of balance in older adults and to retain the improvements after a period of time. Twelve healthy older adults (aged >70 years) were randomly divided into two groups. The experimental group completed training using Nintendo's Wii Fit game three times a week for 3 weeks while the control group continued with normal activities. Four clinical measures of balance were assessed before training, 1 week after training, and 1 month after training: Berg Balance Scale (BBS), Fullerton Advanced Balance (FAB) scale, Functional Reach (FR), and Timed Up and Go (TUG). Friedman two-way analysis of variance by ranks was conducted on the control and experimental group to determine if training using the Wii Balance Board with Wii Fit had an influence on clinical measures of balance. Nine older adults completed the study (experimental group n = 4, control group n = 5). The experimental group significantly increased their BBS after training while the control group did not. There was no significant change for either group with FAB, FR, and TUG. Balance training with Nintendo's Wii Fit may be a novel way for older adults to improve balance as measured by the BBS.
Onoda, Ko; Huo, Ming; Maruyama, Hitoshi
2015-05-01
[Purpose] The aim of this study was to investigate the change in standing balance of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 57 healthy young people, who were divided into three groups: The NJF group, and the Proprioceptive Neuromuscular Facilitation (PNF) group and the control group. [Methods] Functional reach test and body sway were measured before and after intervention in three groups. Four hip patterns of NJF or PNF were used. Two-way ANOVA and multiple comparisons were performed. [Results] The rate of change of FRT in the NJF group increased than the PNF group. The root mean square area at NJF and PNF group increased than control group. [Conclusion] The results suggest that caput femoris rotation function can be improved by NJF treatment, and that improvement of caput femoris rotation contributes to improve dynamic balance.
[Evidence-based rehabilitation of mobility after stroke].
Dohle, C; Tholen, R; Wittenberg, H; Quintern, J; Saal, S; Stephan, K M
2016-10-01
Approximately two thirds of stroke patients initially suffer from at least impaired mobility. Various rehabilitation concepts have been proposed. Based on the current literature, which rehabilitation methods can be recommended for improvement of gait, gait velocity, gait distance and balance? A systematic literature search was carried out for randomized clinical studies and reviews with clinically relevant outcome variables. Formulation of recommendations, separated for target variables and time after stroke. Restoration and improvement of gait function relies on a high number of repetitions of gait movements, which for more severely affected patients is preferentially machine-based. For improvement of gait velocity for less severely affected patients intensive gait training does not necessarily rely on mechanical support. Gait distance can be improved by aerobic endurance exercises with a cardiovascular effect, which have to be performed in a functional context. Improvement of balance should be achieved by intensive functional gait training. Additional stimulation techniques are only effective when included in a functionally relevant training program. These guidelines not only provide recommendations for action but also provide pathophysiological insights into functional restoration of stance and gait after stroke.
Lee, Myungsun; Han, Gunsoo
2016-04-01
[Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subjects were randomly divided into two groups: The experimental group (N=5) and the control group (N=5). The experimental group underwent peculiar complex core balance training. [Results] According to the analysis of covariance, there was a significant effect of peculiar complex core balance training. Therefore, the isokinetic muscle function of the knee joint and lumbus in the experimental group participating in peculiar complex core balance training was significantly increased compared to the control group. [Conclusion] It is concluded that peculiar complex core balance training had a positive effect on the isokinetic muscle function of the knee and lumbus in throwing event athletes.
Carlisi, Ettore; Feltroni, Lucia; Tinelli, Carmine; Verlotta, Mariarosaria; Gaetani, Paolo; Dalla Toffola, Elena
2017-02-01
Chronic subdural hematoma (CSDH) can have a negative impact on autonomy of the elderly. Ambulatory and functional status may remain limited despite successful surgical evacuation. To evaluate the outcome of a postoperative assisted rehabilitation program. Single-institution short-term observational study. Inpatient (Neurosurgery Unit of a University Hospital). Thirty-five patients, aged 65 or older, who underwent burr-hole drainage for chronic subdural hematoma. Postoperatively all participants underwent a rehabilitation program, described in details, aimed at recovering standing position and gait as soon as possible. The program involved daily 30-minute individual sessions assisted by a physiotherapist, until discharge from hospital. The Markwalder's Grading Scale was used to assess the neurological status preoperatively and at discharge. The Trunk Control Test, the Standing Balance by Bohannon Scale and the Modified Rankin Scale were used to evaluate balance and general function (primary outcome) in the immediate postoperative and at discharge. We also recorded the rate of pre-CSDH walking patients who maintained ambulation at discharge and the discharge destination (secondary outcome). Total scores of Markwalder's Grading Scale, Trunk Control Test, Standing Balance by Bohannon Scale and Modified Rankin Scale improved (P<0.05), indicating a global favorable outcome, especially for balance. Excluding the patients who were dependent pre-CSDH, the others maintained gait function in 74.2% of cases. Only 45.7% of the patients were discharged home, the others being divided between inpatient medical settings and rehabilitation. The rehabilitation program was well tolerated by the patients. Our study showed a clear improvement in trunk control and standing balance and an overall favorable outcome for neurological and ambulatory status at discharge. Despite an assisted postoperative rehabilitation program, the residual impairment in general function was the main factor that prevents us to discharge more elderly patients home rather than to assisted settings. The results of this descriptive study suggest that an assisted rehabilitation program may be helpful in improving short-term postoperative balance and ambulatory status (more than functional status), but further studies, with a randomized controlled design, are certainly justified to understand the efficacy of rehabilitation in this context.
Caruana, Erin L; Kuys, Suzanne S; Clarke, Jane; Bauer, Sandra G
2017-08-01
This study determined the impact of a pragmatic 6-day physiotherapy service on length of stay, functional independence, gait and balance in people undergoing inpatient rehabilitation, compared to a 5-day service. A prospective cohort study with historical comparison was undertaken in a mixed inpatient rehabilitation unit. Intervention period participants (2011) meeting inclusion criteria were eligible for a 6-day physiotherapy service. All other participants, including the historical cohort (2010) received usual care (5-day physiotherapy). Length of stay, functional independence, gait and balance performance were measured. A total of 536 individuals participated in this study; 270 in 2011 (60% received 6-day physiotherapy) and 266 in 2010. Participants in 2011 showed a trend for reduced length of stay (1.7 days, 95%CI -0.53 to 3.92) compared to 2010. Other measures showed no significant differences between cohorts. In 2011, those receiving 6-day physiotherapy were more dependent, but showed significantly improved functional independence and balance compared to those receiving 5-day physiotherapy (p < 0.040) without impacting length of stay. Implementing a 6-day physiotherapy service in a "real-world" rehabilitation setting demonstrated a trend towards reduced length of stay, and improved functional gains. This service could lead to cost-savings for hospitals and improved patient flow. Implications for Rehabilitation "Real-world" implementation of a 6-day physiotherapy service in rehabilitation shows a trend for reducing length of stay. This reduction in length of stay may lead to cost-savings for the hospital system, and improve patient flow into rehabilitation. Patients receiving 6-day physiotherapy made significant gains in balance and functional independence compared to patients receiving 5-day physiotherapy services in the rehabilitation setting.
Creative Dance Practice Improves Postural Control in a Child With Cerebral Palsy.
Stribling, Kate; Christy, Jennifer
2017-10-01
To investigate the effect of creative dance instruction on postural control and balance in an 11-year-old with spastic triplegic cerebral palsy, Gross Motor Function Classification Scale level II. We conducted 1-hour dance interventions twice weekly for 8 weeks, with a focus on somatosensory awareness and movement in all planes of motion. Computerized dynamic posturography using the SMART Balance Master/EquiTest (NeuroCom) was used to assess postural control and balance reactions before the first class and following the final class. Gains in standing stability, balance recovery, directional control, and endpoint excursion of movement were found. Participation in creative dance lessons appears to improve somatosensory effectiveness and postural control in a child with cerebral palsy. Dance is a fun way to improve balance and coordination. These interventions could be easily implemented into programs for children with cerebral palsy.
Improved Regression Analysis of Temperature-Dependent Strain-Gage Balance Calibration Data
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2015-01-01
An improved approach is discussed that may be used to directly include first and second order temperature effects in the load prediction algorithm of a wind tunnel strain-gage balance. The improved approach was designed for the Iterative Method that fits strain-gage outputs as a function of calibration loads and uses a load iteration scheme during the wind tunnel test to predict loads from measured gage outputs. The improved approach assumes that the strain-gage balance is at a constant uniform temperature when it is calibrated and used. First, the method introduces a new independent variable for the regression analysis of the balance calibration data. The new variable is designed as the difference between the uniform temperature of the balance and a global reference temperature. This reference temperature should be the primary calibration temperature of the balance so that, if needed, a tare load iteration can be performed. Then, two temperature{dependent terms are included in the regression models of the gage outputs. They are the temperature difference itself and the square of the temperature difference. Simulated temperature{dependent data obtained from Triumph Aerospace's 2013 calibration of NASA's ARC-30K five component semi{span balance is used to illustrate the application of the improved approach.
Kwak, Cheol-Jin; Kim, You Lim; Lee, Suk Min
2016-11-01
[Purpose] The purpose of this study was to analyze the effects of elastic-band resistance exercise on balance, gait function, flexibility and fall efficacy in the elderly people of rural community. [Subjects and Methods] It is selected by 45 outpatients. They have come into the clinic continually to treat of physical therapy at least 1-2 times for a week. A group treated with both general physical therapy and elastic-band resistance exercise (23 patients), and the other group treated with only general physical therapy (22 patients). Elastic-band resistance exercise is composed of 8 movements of lower extremity joints. It is performed for 30 minutes during 8 weeks by 3 times for a week. It is measured and recorded at the pre and post test that sit and reach test (SRT), functional reach test (FRT), timed up and go test (TUG) for every subjects by measurement equipments. And, subjects performed for the form of performance and question as its rated scale by Berg's balance scale (BBS), dynamic gait index (DGI), activities-specific balance confidence scale (ABC). [Results] In the study, both the elastic-band exercise group and the general physical therapy group showed a significant improvement in balance, gait function, flexibility and fall efficacy. And the group with elastic-band resistance exercise showed more effectiveness than the contrast group in value of variation. [Conclusion] From this study, it was confirmed that elastic-band resistance exercise has influence on balance, gait function, flexibility and fall efficacy are working for agriculture of elderly people of rural community. Based on this result, elastic-band resistance exercise can be better instrument and easier to elderly people of rural community for the improvement in balance, gait function, flexibility and fall efficacy as it performing along with and reciprocal physical therapy.
Lee, Kyeongjin; Lee, Yong Woo
2017-09-01
[Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults.
Lee, Kyeongjin; Lee, Yong Woo
2017-01-01
[Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults. PMID:28931994
Freund, Jane E; Stetts, Deborah M
2010-10-01
The purpose of this study is to describe the effects of trunk stabilization training and locomotor training (LT) using body-weight support on a treadmill (BWST) and overground walking on balance, gait, self-reported function, and trunk muscle performance in an adult with severe ataxia secondary to brain injury. There are no studies on the effectiveness of these combined interventions in persons with ataxia. The subject was a 23-year-old male who had a traumatic brain injury 13 months prior. An A-B-A withdrawal single-system design was used. Outcome measures were Berg Balance Test (BBT), timed unsupported stance, Functional Ambulation Category (FAC), 10-meter walk test (10-MWT), Outpatient Physical Therapy Improvement in Movement Assessment Log (OPTIMAL), transverse abdominis (TrA) thickness, and isometric trunk endurance tests. Performance on the BBT, timed unsupported stance, FAC, 10-MWT, and OPTIMAL each improved after 10 weeks of intervention. In additions, TrA symmetry at rest improved as did right side-bridge endurance time. LT, using BWST and overground walking, and trunk stabilization training may be effective in improving balance, gait, function, and trunk performance in individuals with severe ataxia. Further research with additional subjects is indicated.
Berthelsen, Martin Peter; Husu, Edith; Christensen, Sofie Bouschinger; Prahm, Kira Philipsen; Vissing, John; Jensen, Bente Rona
2014-06-01
Recent studies in patients with muscular dystrophies suggest positive effects of aerobic and strength training. These studies focused training on using bicycle ergometers and conventional strength training, which precludes more severely affected patients from participating, because of their weakness. We investigated the functional effects of combined aerobic and strength training in patients with Becker and limb-girdle muscular dystrophies with knee muscle strength levels as low as 3% of normal strength. Eight patients performed 10 weeks of aerobic and strength training on an anti-gravity treadmill, which offered weight support up to 80% of their body weight. Six minute walking distance, dynamic postural balance, and plasma creatine kinase were assessed 10 weeks prior to training, immediately before training and after 10 weeks of training. Training elicited an improvement of walking distance by 8±2% and dynamic postural balance by 13±4%, indicating an improved physical function. Plasma creatine kinase remained unchanged. These results provide evidence that a combination of aerobic and strength training during anti-gravity has the potential to safely improve functional ability in severely affected patients with Becker and limb-girdle muscular dystrophies. Copyright © 2014 Elsevier B.V. All rights reserved.
Lee, Yongwoo; Choi, Wonjae; Lee, Kyeongjin; Song, Changho; Lee, Seungwon
2017-10-01
Avatar-based three-dimensional technology is a new approach to improve physical function in older adults. The aim of this study was to use three-dimensional video gaming technology in virtual reality training to improve postural balance and lower extremity strength in a population of community-dwelling older adults. The experimental group participated in the virtual reality training program for 60 min, twice a week, for 6 weeks. Both experimental and control groups were given three times for falls prevention education at the first, third, and fifth weeks. The experimental group showed significant improvements not only in static and dynamic postural balance but also lower extremity strength (p < .05). Furthermore, the experimental group was improved to overall parameters compared with the control group (p < .05). Therefore, three-dimensional video gaming technology might be beneficial for improving postural balance and lower extremity strength in community-dwelling older adults.
Lee, Hwang-Jae; Chang, Won Hyuk; Hwang, Sun Hee; Choi, Byung-Ok; Ryu, Gyu-Ha; Kim, Yun-Hee
2017-04-01
The purpose of this study was to examine age-related gait characteristics and their associations with balance function in older adults. A total of 51 adult volunteers participated. All subjects underwent locomotion analysis using a 3D motion analysis and 12-channel dynamic electromyography system. Dynamic balance function was assessed by the Berg Balance Scale. Older adults showed a higher level of muscle activation than young adults, and there were significant positive correlations between increased age and activation of the trunk and thigh muscles in the stance and swing phase of the gait cycle. In particular, back extensor muscle activity was mostly correlated with the dynamic balance in older adults. Thus, back extensor muscle activity in walking may provide a clue for higher falling risk in older adults. This study demonstrates that the back extensor muscles play very important roles with potential for rehabilitation training to improve balance and gait in older adults.
The effect of virtual reality gaming on dynamic balance in older adults.
Rendon, Abel Angel; Lohman, Everett B; Thorpe, Donna; Johnson, Eric G; Medina, Ernie; Bradley, Bruce
2012-07-01
physical therapy interventions that increase functional strength and balance have been shown to reduce falls in older adults. this study compared a virtual reality group (VRG) and a control group (CG). randomised controlled 6-week intervention with pre- and post-test evaluations. outpatient geriatric orthopaedic and balance physical therapy clinic. forty participants were randomised into two groups. the VRG received three different Nintendo® Wii FIT balance interventions three times per week for 6 weeks and the CG received no intervention. compared with the CG, post-intervention measurements showed significant improvements for the VRG in the 8-foot Up & Go test [median decrease of 1.0 versus -0.2 s, (P=0.038) and the Activities-specific Balance Confidence Scale (6.9 versus 1.3%) (P=0.038)]. virtual reality gaming provides clinicians with a useful tool for improving dynamic balance and balance confidence in older adults.
Donath, Lars; Rössler, Roland; Faude, Oliver
2016-09-01
Balance training is considered an important means to decrease fall rates in seniors. Whether virtual reality training (VRT) might serve as an appropriate treatment strategy to improve neuromuscular fall risk parameters in comparison to alternative balance training programs (AT) is as yet unclear. To examine and classify the effects of VRT on fall-risk relevant balance performance and functional mobility compared to AT and an inactive control condition (CON) in healthy seniors. The literature search was conducted in five databases (CINAHL, EMBASE, ISI Web of Knowledge, PubMed, SPORTDiscus). The following search terms were used with Boolean conjunction: (exergam* OR exer-gam* OR videogam* OR video-gam* OR video-based OR computer-based OR Wii OR Nintendo OR X-box OR Kinect OR play-station OR playstation OR virtua* realit* OR dance dance revolution) AND (sport* OR train* OR exercis* OR intervent* OR balanc* OR strength OR coordina* OR motor control OR postur* OR power OR physical* OR activit* OR health* OR fall* risk OR prevent*) AND (old* OR elder* OR senior*). Randomized and non-randomized controlled trials applying VRT as interventions focusing on improving standing balance performance (single and double leg stance with closed and open eyes, functional reach test) and functional mobility (Berg balance scale, Timed-up and go test, Tinetti test) in healthy community-dwelling seniors of at least 60 years of age were screened for eligibility. Eligibility and study quality (PEDro scale) were independently assessed by two researchers. Standardized mean differences (SMDs) served as main outcomes for the comparisons of VRT versus CON and VRT versus AT on balance performance and functional mobility indices. Statistical analyses were conducted using a random effects inverse-variance model. Eighteen trials (mean PEDro score: 6 ± 2) with 619 healthy community dwellers were included. The mean age of participants was 76 ± 5 years. Meaningful effects in favor of VRT compared to CON were found for balance performance [p < 0.001, SMD: 0.77 (95 % CI 0.45-1.09)] and functional mobility [p = 0.004, SMD: 0.56 (95 % CI 0.25-0.78)]. Small overall effects in favor of AT compared to VRT were found for standing balance performance [p = 0.31, SMD: -0.35 (95 % CI -1.03 to 0.32)] and functional mobility [p = 0.05, SMD: -0.44 (95 % CI: -0.87 to 0.00)]. Sensitivity analyses between "weaker" (n = 9, PEDro ≤5) and "stronger" (n = 9, PEDro ≥6) studies indicated that weaker studies showed larger effects in favor of VRT compared to CON regarding balance performance (p < 0.001). Although slightly less effective than AT, VRT-based balance training is an acceptable method for improving balance performance as well as functional mobility outcomes in healthy community dwellers. VRT might serve as an attractive complementary training approach for the elderly. However, more high-quality research is needed in order to derive valid VRT recommendations compared to both AT and CON.
Choi, Ho-Suk; Shin, Won-Seob; Bang, Dae-Hyouk; Choi, Sung-Jin
2017-03-01
The aims of this work were to determine whether game-based constraint-induced movement therapy (CIMT) is effective at improving balance ability in patients with stroke, and to provide clinical knowledge of game-based training that allows application of CIMT to the lower extremities. Thirty-six patients with chronic stroke were randomly assigned to game-based CIMT (n = 12), general game-based training (n = 12), and conventional (n = 12) groups. All interventions were conducted 3 times a week for 4 weeks. The static balance control and weight-bearing symmetry were assessed, and the Functional Reach Test (FRT), modified Functional Reach Test (mFRT), and Timed Up and Go (TUG) test were performed to evaluate balance ability. All 3 groups showed significant improvement in anterior-posterior axis (AP-axis) distance, sway area, weight-bearing symmetry, FRT, mFRT, and TUG test after the intervention (P < 0.05). Post hoc analysis revealed significant differences in AP-axis, and sway area, weight-bearing symmetry of the game-based CIMT group compared with the other group (P < 0.05). Although the general game-based training and the game-based CIMT both improved on static and dynamic balance ability, game-based CIMT had a larger effect on static balance control, weight-bearing symmetry, and side-to-side weight shift.
Functional Performance and Balance in the Oldest-Old.
Kafri, Michal; Hutzler, Yeshayahu; Korsensky, Olga; Laufer, Yocheved
2017-06-01
The group of individuals 85 years and over (termed oldest-old) is the fastest-growing population in the Western world. Although daily functional abilities and balance capabilities are known to decrease as an individual grows older, little is known about the balance and functional characteristics of the oldest-old population. The aims of this study were to characterize balance control, functional abilities, and balance self-efficacy in the oldest-old, to test the correlations between these constructs, and to explore differences between fallers and nonfallers in this age group. Forty-five individuals living in an assisted living facility who ambulated independently participated in the study. The mean age was 90.3 (3.7) years. Function was tested using the Late-Life Function and Disability Instrument (LLFDI). Balance was tested with the mini-Balance Evaluation System Test (mini-BESTest) and the Timed Up and Go (TUG) test. Balance self-efficacy was tested with the Activities-Specific Balance Confidence (ABC) scale. The mean total function LLFDI score was 63.2 (11.4). The mean mini-BESTest score was 69.8% (18.6%) and the mean TUG time was 12.6 (6.9) seconds. The mean ABC score was 80.2% (14.2%). Good correlation (r > 0.7) was observed between the ABC and the function component of the LLFDI, as well as with the lower extremity domains. Correlations between the mini-BESTest scores and the LLFDI were fair to moderate (r's range: 0.38-0.62). Age and ABC scores were significant independent explanators of LLFDI score (P = .0141 and P = .0009, respectively). Fallers and nonfallers differed significantly across all outcome measures scores, except for TUG and for the "Reactive Postural Control" and "Sensory Orientation" domains of the mini-BESTest. The results of this study provide normative data regarding the balance and functional abilities of the oldest-old, and indicate a strong association between self-efficacy and function. These results emphasize the importance of incorporating strategies that maintain and improve balance self-efficacy in interventions aimed at enhancing the functional level of this cohort.
Pedroso, Renata Valle; Coelho, Flávia Gomes de Melo; Santos-Galduróz, Ruth Ferreira; Costa, José Luiz Riani; Gobbi, Sebastião; Stella, Florindo
2012-01-01
Elderly individuals with AD are more susceptible to falls, which might be associated with decrements in their executive functions and balance, among other things. We aimed to analyze the effects of a program of dual task physical activity on falls, executive functions and balance of elderly individuals with AD. We studied 21 elderly with probable AD, allocated to two groups: the training group (TG), with 10 elderly who participated in a program of dual task physical activity; and the control group (CG), with 11 elderly who were not engaged in regular practice of physical activity. The Clock Drawing Test (CDT) and the Frontal Assessment Battery (FAB) were used in the assessment of the executive functions, while the Berg Balance Scale (BBS) and the Timed Up-and-Go (TUG)-test evaluated balance. The number of falls was obtained by means of a questionnaire. We observed a better performance of the TG as regards balance and executive functions. Moreover, the lower the number of steps in the TUG scale, the higher the scores in the CDT, and in the FAB. The practice of regular physical activity with dual task seems to have contributed to the maintenance and improvement of the motor and cognitive functions of the elderly with AD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Balance and Gait Impairment: Sensor-Based Assessment for Patients With Peripheral Neuropathy.
Campbell, Grace; Skubic, Marjorie A
2018-06-01
Individuals with peripheral neuropathy (PN) frequently experience balance and gait impairments that can lead to poor physical function, falls, and injury. Nurses are aware that patients with cancer experience balance and gait impairments but are unsure of optimal assessment and management strategies. This article reviews options for balance and gait assessment for patients diagnosed with cancer experiencing PN, describes advantages and limitations of the various options, and highlights innovative, clinically feasible technologies to improve clinical assessment and management. The literature was reviewed to identify and assess the gold standard quantitative measures for assessing balance and gait. Gold standard quantitative measures are burdensome for patients and not often used in clinical practice. Sensor-based technologies improve balance and gait assessment options by calculating precise impairment measures during performance of simple clinical tests at the point of care.
Scheltinga, Alja; Honegger, Flurin; Timmermans, Dionne P H; Allum, John H J
2016-01-01
An acute unilateral peripheral vestibular loss (aUVL) initially causes severe gaze and balance control problems. However, vestibulo-ocular reflexes (VOR) and balance control are nearly normal 3 months later as a result of peripheral recovery and/or central compensation. As pre-existing vestibular sensory loss is assumed to be greater in the healthy elderly, this study investigated whether improvements in VOR and balance function over time after aUVL are different for the elderly than for the young. Thirty aUVL patients divided into three age-groups were studied (8 age range 23-35, 10 with range 43-58, and 12 with range 60-74 years). To measure VOR function eye movements were recorded during caloric irrigation, rotating chair (ROT), and head impulse tests. Balance control during stance and gait was recorded as lower trunk angular velocity in the pitch and roll planes. Measurements were taken at deficit onset, and 3, 6, and 13 weeks later. There was one difference in VOR improvements over time between the age-groups: Low acceleration ROT responses were less at onset in the elderly group. Deficit side VOR responses and asymmetries in each group improved to within ranges of healthy controls at 13 weeks. Trunk sway of the elderly was greater for stance and gait at onset when compared to healthy age-matched controls and the young and greater than that of the young and controls during gait tasks at 13 weeks. The sway of the young was not different from controls at either time point. Balance control for the elderly improved slower than for the young. These results indicate that VOR improvement after an aUVL does not differ with age, except for low accelerations. Recovery rates are different between age-groups for balance control tests. Balance control in the elderly is more abnormal at aUVL onset for stance and gait tasks with the gait abnormalities remaining after 13 weeks. Thus, we conclude that balance control in the elderly is more affected by the UVL than for the young, and the young overcome balance deficits more rapidly. These differences with age should be taken into account when planning rehabilitation.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chen, Ling-Che; Shih, Ching-Tien
2012-01-01
The latest researches have adopted software technology to modify the Nintendo Wii Balance Board functionality and used it to enable two people with developmental disabilities to actively perform physical activities. This study extended the latest research of the Wii Balance Board application to assess whether four people (two groups) with…
Hyun, Gi Jung; Jung, Tae-Woon; Park, Jeong Ha; Kang, Kyoung Doo; Kim, Sun Mi; Son, Young Don; Cheong, Jae Hoon; Kim, Bung-Nyun; Han, Doug Hyun
2016-04-01
Equine-assisted activity and training (EAAT) is thought to improve body balance and clinical symptoms in children with attention deficit hyperactivity disorder (ADHD). The study hypostheses were that EAAT would improve the clinical symptoms and gait balance in children with ADHD and that these improvements would be associated with increased brain connectivity within the balance circuit. A total of 12 children with ADHD and 12 age- and sex-matched healthy control children were recruited. EAAT consisted of three training sessions, each 70 minutes long, once a week for 4 weeks. Brain functional connectivity was assessed by using functional magnetic resonance imaging. After 4 weeks of EAAT, children with ADHD showed improved scores on the Korean ADHD scale (K-ARS), while the K-ARS scores of healthy children did not change. During the 4 weeks, the plantar pressure difference between the left foot and right foot decreased in both the healthy control group and the ADHD group. After 4 weeks of EAAT, healthy controls showed increased brain connectivity from the cerebellum to the left occipital lingual gyrus, fusiform gyrus, right and left thalami, right caudate, right precentral gyrus, and right superior frontal gyrus. However, children with ADHD showed increased brain connectivity from the cerebellum to the right insular cortex, right middle temporal gyrus, left superior temporal gyrus, and right precentral gyrus. In contrast, children with ADHD exhibited decreased brain connectivity from the cerebellum to the left inferior frontal gyrus. EAAT may improve clinical symptoms, gait balance, and brain connectivity, the last of which controls gait balance, in children with ADHD. However, children with ADHD who have deficits in the fronto-cerebellar tract did not exhibit changes in brain connectivity as extensive as those in healthy children in response to EAAT.
Fulk, George D
2005-03-01
Impaired walking ability, balance, and fatigue are common problems for people with multiple sclerosis (MS). The purpose of this case report is to describe the use of plan of care that included locomotor training using both a body weight support (BWS) with a treadmill (TM) and overground walking as well as a virtual reality (VR)-based balance intervention to improve walking ability, balance, and endurance for an individual with MS. The client was a 48-year-old female with a 10-year history of MS. Her main goals were to improve walking ability, balance, and endurance. She presented with impaired gait, balance, motor function, and increased fatigue. Locomotor training using a BWS/TM system and overground and VR-based balance interventions were implemented 2 days a week for 12 weeks. The client demonstrated improvements in gait speed, gait endurance, and balance postintervention and maintained the improvements at a 2-month follow up. This case report is the first to report on the use of locomotor training with BWS/TM system and overground and VR-based balance interventions for a client with MS. The plan of care was formulated based on the patient's goals and the available literature on the use of the interventions with other patients with neurologic conditions to provide an intervention that was task-oriented, skilled, and intensive.
Feasibility of Wii Fit training to improve clinical measures of balance in older adults
Bieryla, Kathleen A; Dold, Neil M
2013-01-01
Background and purpose Numerous interventions have been proposed to improve balance in older adults with varying degrees of success. A novel approach may be to use an off-the-shelf video game system utilizing real-time force feedback to train older adults. The purpose of this study is to investigate the feasibility of using Nintendo’s Wii Fit for training to improve clinical measures of balance in older adults and to retain the improvements after a period of time. Methods Twelve healthy older adults (aged >70 years) were randomly divided into two groups. The experimental group completed training using Nintendo’s Wii Fit game three times a week for 3 weeks while the control group continued with normal activities. Four clinical measures of balance were assessed before training, 1 week after training, and 1 month after training: Berg Balance Scale (BBS), Fullerton Advanced Balance (FAB) scale, Functional Reach (FR), and Timed Up and Go (TUG). Friedman two-way analysis of variance by ranks was conducted on the control and experimental group to determine if training using the Wii Balance Board with Wii Fit had an influence on clinical measures of balance. Results Nine older adults completed the study (experimental group n = 4, control group n = 5). The experimental group significantly increased their BBS after training while the control group did not. There was no significant change for either group with FAB, FR, and TUG. Conclusion Balance training with Nintendo’s Wii Fit may be a novel way for older adults to improve balance as measured by the BBS. PMID:23836967
Efficacy of a Student-Led, Community-Based, Multifactorial Fall Prevention Program: Stay in Balance.
Der Ananian, Cheryl A; Mitros, Melanie; Buman, Matthew Paul
2017-01-01
Falls are a major public health concern in older adults. Recent fall prevention guidelines recommend the use of multifactorial fall prevention programs (FPPs) that include exercise for community-dwelling older adults; however, the availability of sustainable, community-based FPPs is limited. We conducted a 24-week quasi-experimental study to evaluate the efficacy of a community-based, multifactorial FPP [Stay in Balance (SIB)] on dynamic and functional balance and muscular strength. The SIB program was delivered by allied health students and included a health education program focused on fall risk factors and a progressive exercise program emphasizing lower-extremity strength and balance. All participants initially received the 12-week SIB program, and participants were non-randomly assigned at baseline to either continue the SIB exercise program at home or as a center-based program for an additional 12 weeks. Adults aged 60 and older ( n = 69) who were at-risk of falling (fall history or 2+ fall risk factors) were recruited to participate. Mixed effects repeated measures using Statistical Application Software Proc Mixed were used to examine group, time, and group-by-time effects on dynamic balance (8-Foot Up and Go), functional balance (Berg Balance Scale), and muscular strength (30 s chair stands and 30 s arm curls). Non-normally distributed outcome variables were log-transformed. After adjusting for age, gender, and body mass index, 8-Foot Up and Go scores, improved significantly over time [ F (2,173) = 8.92, p = 0.0; T0 - T2 diff = 1.2 (1.0)]. Berg Balance Scores [ F (2,173) = 29.0, p < 0.0001; T0 - T2 diff = 4.96 (0.72)], chair stands [ F (2,171) = 10.17, p < 0.0001; T0 - T2 diff = 3.1 (0.7)], and arm curls [ F (2,171) = 12.7, p < 0.02; T0 - T2 diff = 2.7 (0.6)] also all improved significantly over time. There were no significant group-by-time effects observed for any of the outcomes. The SIB program improved dynamic and functional balance and muscular strength in older adults at-risk for falling. Our findings indicate continuing home-based strength and balance exercises at home after completion of a center-based FPP program may be an effective and feasible way to maintain improvements in balance and strength parameters.
Hawley-Hague, Helen; Roden, Amy; Abbott, Jo
2017-08-01
We aimed to evaluate a strength and balance program delivered in the community. There is little evidence of implementation of evidence-based exercise in practice. The program was a step-down model, designed to encourage long-term exercise in community classes. The program consisted of a fully funded referral only evidence-based 12-week strength and balance (Community Otago) class, followed by an evidence-based continuous open-access community strength and balance class (Active Always). The program was offered to patients: 1) after formal falls rehabilitation (falls and fracture service); 2) after falls rehabilitation in intermediate care; and 3) referred by a GP who were not eligible for rehabilitation (preventative measure). Outcome evaluation used descriptive statistics to report changes in function, confidence in balance, hospital attendance/admission for falls/fractures and transition to community classes. Focus groups established participant experience/satisfaction. Seventy-nine participants were included, aged 56-96, and 53 (67%) were women. About 63.3% of patients transitioned to Active Always classes, demonstrating improvement in maintenance. Follow-up scores from baseline attendance at falls and fracture service to 12-weeks follow-up (24 weeks) in Community Otago showed the majority of patients improved their function (Timed up and Go), confidence (ConfBal) and lowered their falls risk (Tinetti). Follow-up of participants from Community Otago baseline to the end of 12-weeks showed improvement in function and confidence, but only a third of participants lowered their falls risk. Focus groups data suggest that continuity of delivery, the role of the instructor, health professional, and social and physical outcomes were essential for maintenance. A supportive environment can be created which encourages older adults' continued participation in group-based strength and balance, helping the delivery of evidence-based practice.
Effects of an Ai Chi fall prevention programme for patients with Parkinson's disease.
Pérez-de la Cruz, S; García Luengo, A V; Lambeck, J
2016-04-01
One of the main symptoms of Parkinson's disease is the high incidence of falls occurring due to the decline of both static and dynamic balance. The aim of this study is to determine the effect of an Ai Chi programme designed to prevent falls in patients with Parkinson's disease by improving both functional independence and perception of physical pain. Fifteen patients diagnosed with Parkinson's disease (Hoehn and Yahr stages 1-3) participated in a 10-week Ai Chi programme consisting of 30 to 45-minute aquatic exercise sessions twice a week. The assessment measures used in this study were the pain visual analogue scale (VAS), the Tinetti gait and balance assessment tool, and the Timed Get up and Go test. The results were calculated by applying the Friedman test to 3 related measurements: patients at baseline, at post-treatment (at the end of the 10 week programme) and after one month of follow-up. The data obtained showed a significant improvement (p <.001) in scores for pain perception, balance, and gait function after the treatment programme. Furthermore, patients continued to show significant improvements and the benefits remained at the one-month follow-up visit. Ai Chi is a promising and feasible aquatic treatment for improving pain perception, balance, and functional capacity in patients diagnosed with mild or moderate Parkinson's disease. Copyright © 2015 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.
Stimulus Characteristics for Vestibular Stochastic Resonance to Improve Balance Function
NASA Technical Reports Server (NTRS)
Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrado, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob
2010-01-01
Stochastic resonance (SR) is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Studies have shown that imperceptible stochastic vestibular electrical stimulation, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the amplitude characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standard balance task of standing on a block of foam with their eyes closed. Bipolar stochastic electrical stimulation was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process behind the ears. Amplitude of the signals varied in the range of 0-700 microamperes. Balance performance was measured using a force plate under the foam block, and inertial motion sensors were placed on the torso and head. Balance performance with stimulation was significantly greater (10%-25%) than with no stimulation. The signal amplitude at which performance was maximized was in the range of 100-300 microamperes. Optimization of the amplitude of the stochastic signals for maximizing balance performance will have a significant impact on development of vestibular SR as a unique system to aid recovery of function in astronauts after long-duration space flight or in patients with balance disorders.
Miller, Carol A; Hayes, Dawn M; Dye, Kelli; Johnson, Courtney; Meyers, Jennifer
2012-01-01
Lower limb amputation in older adults has a significant impact on balance, gait, and cardiovascular fitness, resulting in diminished community participation. The purpose of this case study was to describe the effects of a balance training program utilizing the Nintendo Wii™ Fit (Nintendo of America, Inc, Redmond, Washington) balance board and body-weight supported gait training on aerobic capacity, balance, gait, and fear of falling in two persons with transfemoral amputation. Participant A, a 62 year-old male 32 months post traumatic transfemoral amputation, reported fear of falling and restrictions in community activity. Participant B, a 58 year-old male 9 years post transfemoral amputation, reported limited energy and balance deficits during advanced gait activities. 6-weeks, 2 supervised sessions per week included 20 minutes of Nintendo™ Wii Fit Balance gaming and 20 minutes of gait training using Body Weight Support. Measures included oxygen uptake efficiency slope (OUES), economy of movement, dynamic balance (Biodex platform system), Activities-Specific Balance Confidence (ABC) Scale, and spatial-temporal parameters of gait (GAITRite). Both participants demonstrated improvement in dynamic balance, balance confidence, economy of movement, and spatial-temporal parameters of gait. Participant A reduced the need for an assistive device during community ambulation. Participant B improved his aerobic capacity, indicated by an increase in OUES. This case study illustrated that the use of Nintendo Wii™ Fit training and Body Weight Support were effective interventions to achieve functional goals for improving balance confidence, reducing use of assistive devices, and increasing energy efficiency when ambulating with a transfemoral prosthesis.
Mansfield, Avril; Aqui, Anthony; Centen, Andrew; Danells, Cynthia J; DePaul, Vincent G; Knorr, Svetlana; Schinkel-Ivy, Alison; Brooks, Dina; Inness, Elizabeth L; McIlroy, William E; Mochizuki, George
2015-06-06
Falls are one of the most common medical complications post-stroke. Physical exercise, particularly exercise that challenges balance, reduces the risk of falls among healthy and frail older adults. However, exercise has not proven effective for preventing falls post-stroke. Falls ultimately occur when an individual fails to recover from a loss of balance. Thus, training to specifically improve reactive balance control could prevent falls. Perturbation training aims to improve reactive balance control by repeatedly exposing participants to postural perturbations. There is emerging evidence that perturbation training reduces fall rates among individuals with neurological conditions, such as Parkinson disease. The primary aim of this work is to determine if perturbation-based balance training can reduce occurrence of falls in daily life among individuals with chronic stroke. Secondary objectives are to determine the effect of perturbation training on balance confidence and activity restriction, and functional balance and mobility. Individuals with chronic stroke will be recruited. Participants will be randomly assigned to one of two groups: 1) perturbation training, or 2) 'traditional' balance training. Perturbation training will involve both manual perturbations (e.g., a push or pull from a physiotherapist), and rapid voluntary movements to cause a loss of balance. Training will occur twice per week for 6 weeks. Participants will record falls and activity for 12 months following completion of the training program. Standardized clinical tools will be used to assess functional balance and mobility, and balance confidence before and after training. Falls are a significant problem for those with stroke. Despite the large body of work demonstrating effective interventions, such as exercise, for preventing falls in other populations, there is little evidence for interventions that prevent falls post-stroke. The proposed study will investigate a novel and promising intervention: perturbation training. If effective, this training has the potential to not only prevent falls, but to also improve safe independent mobility and engagement in daily activities for those with stroke. Current Controlled Trials: ISRCTN05434601 .
Kapadia, Naaz; Masani, Kei; Catharine Craven, B.; Giangregorio, Lora M.; Hitzig, Sander L.; Richards, Kieva; Popovic, Milos R.
2014-01-01
Background Multi-channel surface functional electrical stimulation (FES) for walking has been used to improve voluntary walking and balance in individuals with spinal cord injury (SCI). Objective To investigate short- and long-term benefits of 16 weeks of thrice-weekly FES-assisted walking program, while ambulating on a body weight support treadmill and harness system, versus a non-FES exercise program, on improvements in gait and balance in individuals with chronic incomplete traumatic SCI, in a randomized controlled trial design. Methods Individuals with traumatic and chronic (≥18 months) motor incomplete SCI (level C2 to T12, American Spinal Cord Injury Association Impairment Scale C or D) were recruited from an outpatient SCI rehabilitation hospital, and randomized to FES-assisted walking therapy (intervention group) or aerobic and resistance training program (control group). Outcomes were assessed at baseline, and after 4, 6, and 12 months. Gait, balance, spasticity, and functional measures were collected. Results Spinal cord independence measure (SCIM) mobility sub-score improved over time in the intervention group compared with the control group (baseline/12 months: 17.27/21.33 vs. 19.09/17.36, respectively). On all other outcome measures the intervention and control groups had similar improvements. Irrespective of group allocation walking speed, endurance, and balance during ambulation all improved upon completion of therapy, and majority of participants retained these gains at long-term follow-ups. Conclusions Task-oriented training improves walking ability in individuals with incomplete SCI, even in the chronic stage. Further randomized controlled trials, involving a large number of participants are needed, to verify if FES-assisted treadmill training is superior to aerobic and strength training. PMID:25229735
Magon, Stefano; Donath, Lars; Gaetano, Laura; Thoeni, Alain; Radue, Ernst-Wilhelm; Faude, Oliver; Sprenger, Till
2016-09-01
Practice-induced effects of specific balance training on brain structure and activity in elderly people are largely unknown. In the present study, we investigated morphological and functional brain changes following slacking training (balancing over nylon ribbons) in a group of elderly people. Twenty-eight healthy volunteers were recruited and randomly assigned to the intervention (mean age: 62.3±5.4years) or control group (mean age: 61.8±5.3years). The intervention group completed six-weeks of slackline training. Brain morphological changes were investigated using voxel-based morphometry and functional connectivity changes were computed via independent component analysis and seed-based analyses. All analyses were applied to the whole sample and to a subgroup of participants who improved in slackline performance. The repeated measures analysis of variance showed a significant interaction effect between groups and sessions. Specifically, the Tukey post-hoc analysis revealed a significantly improved slackline standing performance after training for the left leg stance time (pre: 4.5±3.6s vs. 26.0±30.0s, p<0.038) as well as for tandem stance time (pre: 1.4±0.6s vs. post: 4.5±4.0s, p=0.003) in the intervention group. No significant changes in balance performance were observed in the control group. The MRI analysis did not reveal morphological or functional connectivity differences before or after the training between the intervention and control groups (whole sample). However, subsequent analysis in subjects with improved slackline performance showed a decrease of connectivity between the striatum and other brain areas during the training period. These preliminary results suggest that improved balance performance with slackline training goes along with an increased efficiency of the striatal network. Copyright © 2016 Elsevier B.V. All rights reserved.
Eklund, Mona; Tjörnstrand, Carina; Sandlund, Mikael; Argentzell, Elisabeth
2017-11-09
Many with a mental illness have an impoverished everyday life with few meaningful activities and a sedentary lifestyle. The study aim was to evaluate the effectiveness of the 16-week Balancing Everyday Life (BEL) program, compared to care as usual (CAU), for people with mental illness in specialized and community-based psychiatric services. The main outcomes concerned different aspects of subjectively evaluated everyday activities, in terms of the engagement and satisfaction they bring, balance among activities, and activity level. Secondary outcomes pertained to various facets of well-being and functioning. It was hypothesized that those who received the BEL intervention would improve more than the comparison group regarding activity, well-being and functioning outcomes. BEL is a group and activity-based lifestyle intervention. CAU entailed active support, mainly standard occupational therapy. The BEL group included 133 participants and the CAU group 93. They completed self-report questionnaires targeting activity and well-being on three occasions - at baseline, after completed intervention (at 16 weeks) and at a six-month follow-up. A research assistant rated the participants' level of functioning and symptom severity on the same occasions. Non-parametric statistics were used since these instruments produced ordinal data. The BEL group improved more than the CAU group from baseline to 16 weeks on primary outcomes in terms of activity engagement (p < 0.001), activity level (p = 0.036) and activity balance (p < 0.042). The BEL group also improved more on the secondary outcomes of symptom severity (p < 0.018) and level of functioning (p < 0.046) from baseline to 16 weeks, but not on well-being. High intra-class correlations (0.12-0.22) indicated clustering effects for symptom severity and level of functioning. The group differences on activity engagement (p = 0.001) and activity level (p = 0.007) remained at the follow-up. The BEL group also improved their well-being (quality of life) more than the CAU group from baseline to the follow-up (p = 0.049). No differences were found at that time for activity balance, level of functioning and symptom severity. The BEL program was effective compared to CAU in terms of activity engagement. Their improvements were not, however, greater concerning other subjective perceptions, such as satisfaction with daily activities and self-rated health, and clustering effects lowered the dependability regarding findings of improvements on symptoms and functioning. Although the CAU group had "caught up" at the follow-up, the BEL group had improved more on general quality of life. BEL appeared to be important in shortening the time required for participants to develop their engagement in activity and in attaining improved quality of life in a follow-up perspective. The study was registered with ClinicalTrial.gov. Reg. No. NCT02619318 .
THE IMMEDIATE AND LONG-TERM EFFECTS OF KINESIOTAPE® ON BALANCE AND FUNCTIONAL PERFORMANCE.
Wilson, Victoria; Douris, Peter; Fukuroku, Taryn; Kuzniewski, Michael; Dias, Joe; Figueiredo, Patrick
2016-04-01
The application of Kinesio Tex® tape (KT) results, in theory, in the improvement of muscle contractibility by supporting weakened muscles. The effect of KT on muscle strength has been investigated by numerous researchers who have theorized that KT facilitates an immediate increase in muscle strength by generating a concentric pull on the fascia. The effect of KT on balance and functional performance has been controversial because of the inconsistencies of tension and direction of pull required during application of KT and whether its use on healthy individuals provides therapeutic benefits. The purpose of the present study was to investigate the immediate and long-term effects of the prescribed application (for facilitation) of KT when applied to the dominant lower extremity of healthy individuals. The hypothesis was that balance and functional performance would improve with the prescribed application of KT versus the sham application. Pretest-posttest repeated measures control group design. Seventeen healthy subjects (9 males; 8 females) ranging from 18-35 years of age (mean age 23.3 ± 0.72), volunteered to participate in this study. KT was applied to the gastrocnemius of the participant's dominant leg using a prescribed application to facilitate muscle performance for the experimental group versus a sham application for the control group. The Biodex Balance System and four hop tests were utilized to assess balance, proprioception, and functional performance beginning on the first day including pre- and immediately post-KT application measurements. Subsequent measurements were performed 24, 72, and 120 hours after tape application. Repeated measures ANOVA's were performed for each individual dependent variable. There were no significant differences for main and interaction effects between KT and sham groups for the balance and four hop tests. The results of the present study did not indicate any significant differences in balance and functional performance when KT was applied to the gastrocnemius muscle of the lower extremity. Level 1- Randomized Clinical Trial.
Lee, Myungsun; Han, Gunsoo
2016-01-01
[Purpose] This study aimed to investigate the effect of peculiar complex core balance training on the isokinetic muscle function of the knee joint and lumbus to provide fundamental data for establishing a training program that focuses on improving the performance and prevention of injury by developing the core and low extremity muscles. [Subjects and Methods] The participants in this study included a total of ten high school athletes involved in a throwing event for over five years. The subjects were randomly divided into two groups: The experimental group (N=5) and the control group (N=5). The experimental group underwent peculiar complex core balance training. [Results] According to the analysis of covariance, there was a significant effect of peculiar complex core balance training. Therefore, the isokinetic muscle function of the knee joint and lumbus in the experimental group participating in peculiar complex core balance training was significantly increased compared to the control group. [Conclusion] It is concluded that peculiar complex core balance training had a positive effect on the isokinetic muscle function of the knee and lumbus in throwing event athletes. PMID:27190470
Laufer, Yocheved; Dar, Gali; Kodesh, Einat
2014-01-01
Exercise programs that challenge an individual's balance have been shown to reduce the risk of falls among older adults. Virtual reality computer-based technology that provides the user with opportunities to interact with virtual objects is used extensively for entertainment. There is a growing interest in the potential of virtual reality-based interventions for balance training in older adults. This work comprises a systematic review of the literature to determine the effects of intervention programs utilizing the Nintendo Wii console on balance control and functional performance in independently functioning older adults. STUDIES WERE OBTAINED BY SEARCHING THE FOLLOWING DATABASES: PubMed, CINAHL, PEDro, EMBASE, SPORTdiscus, and Google Scholar, followed by a hand search of bibliographic references of the included studies. Included were randomized controlled trials written in English in which Nintendo Wii Fit was used to enhance standing balance performance in older adults and compared with an alternative exercise treatment, placebo, or no treatment. Seven relevant studies were retrieved. The four studies examining the effect of Wii-based exercise compared with no exercise reported positive effects on at least one outcome measure related to balance performance in older adults. Studies comparing Wii-based training with alternative exercise programs generally indicated that the balance improvements achieved by Wii-based training are comparable with those achieved by other exercise programs. The review indicates that Wii-based exercise programs may serve as an alternative to more conventional forms of exercise aimed at improving balance control. However, due to the great variability between studies in terms of the intervention protocols and outcome measures, as well as methodological limitations, definitive recommendations as to optimal treatment protocols and the potential of such an intervention as a safe and effective home-based treatment cannot be made at this point.
Alsubiheen, Abdulrahman; Petrofsky, Jerrold; Daher, Noha; Lohman, Everett; Balbas, Edward
2015-10-10
One of the effects of diabetes mellitus (DM), peripheral neuropathy, affects the sensation in the feet and can increase the chance of falling. The purpose of the study was to investigate the effect of 8 weeks of Tai Chi (TC) training combined with mental imagery (MI) on improving balance in people with diabetes and an age matched control group. Seventeen healthy subjects and 12 diabetic sedentary subjects ranging from 40-80 years of age were recruited. All subjects in both groups attended a Yang style of TC class using MI strategies, 2 sessions a week for 8 weeks. Each session was one hour long. Measures were taken using a balance platform test, an Activities-specific Balance Confidence (ABC) Scale, a one leg standing test (OLS), functional reach test (FRT) and hemoglobin A1C. These measures were taken twice, pre and post-study, for both groups. Both groups experienced significant improvements in ABC, OLS, FRT (P<0.01) after completing 8 weeks of TC exercise with no significant improvement between groups. Subjects using the balance platform test demonstrated improvement in balance in all different tasks with no significant change between groups. There was no significant change in HbA1C for the diabetic group. All results showed an improvement in balance in the diabetic and the control groups; however, no significant difference between the groups was observed. Since the DM group had more problems with balance impairment at baseline than the control, the diabetic group showed the most benefit from the TC exercise.
Dohrn, Ing-Mari; Hagströmer, Maria; Hellénius, Mai-Lis; Ståhle, Agneta
We have developed a 12-week balance training program for older adults shown to improve fall-related concerns, gait speed, balance performance, and physical function. We hypothesized that this balance training would also contribute to higher habitual physical activity (PA) levels and improved health-related quality of life (HRQoL). The primary aim was to evaluate short- and long-term effects of the balance training program on objectively measured habitual PA in older adults with osteoporosis. Secondary aims were to assess the effects of the balance training on HRQoL, and to study whether any effects on PA were associated with changes in HRQoL, gait speed, balance performance, fall-related concerns, and physical function. A randomized controlled trial with follow-up at 3, 9, and 15 months, including 91 participants with osteoporosis (75.6 ± 5.4 years), compared a balance training group (n = 61) with a control group (n = 30). The primary outcome was effect on habitual PA measured as steps/day, dichotomized into less than 5000 or 5000 or more steps/day. Physical activity was assessed with pedometers (Yamax) and accelerometers (Actigraph), HRQoL with the Short Form-36 (SF-36), gait with a GAITRite walkway, balance performance with Modified-Figure-Eight test and one-leg stance, fall-related concerns with Falls Efficacy Scale International, and physical function with the advanced lower extremity subscale of the questionnaire Late Life Function and Disability Instrument. Statistical methods used were multivariate logistic regression and logistic generalized estimating equation. Sixty-eight participants completed the short-term follow-up at 3 months, and 53 participants completed the long-term follow-up at 15 months. Per-protocol analysis (n = 68) showed that the odds ratio for having a daily step count of 5000 or more at 3 months was 6.17 (95% confidence interval, 1.23-30.91), P = .027, for the intervention group compared with the control group. The longitudinal analysis (n = 91) showed that the odds ratio for having a daily step count of 5000 or more at 15 months was 2.02 (95% confidence interval, 0.88-4.64), P = .096, for the intervention group compared with the control group. The mental component sum of the SF-36 improved significantly from baseline to 3 months in the intervention group, and the physical component sum improved in both groups, but no statistically significant differences were found between groups. No associations were found between PA and changes in covariates. The short-term evaluation showed that balance training increased habitual PA in community-dwelling older adults with osteoporosis. A significantly higher proportion of participants in the intervention group reached a level of 5000 or more steps/day, which is important for overall health. This effect was not associated with improvements in HRQoL, gait speed, balance performance, or fall-related concerns, and did not persist through the long-term follow-up. To accomplish a sustained PA change, a prolonged intervention or more support regarding habitual PA may be required, such as reinforcement with personalized behavior change counseling or PA on prescription.
Mikolajczyk, Edyta; Jankowicz-Szymanska, Agnieszka
2015-03-01
Maintaining postural balance, overcoming visual and motor coordination disorders and experiencing problems with low general fitness - typical of intellectually disabled individuals - adversely affect the performance quality of their activities of daily living (ADLs). Physical fitness and postural balance can be improved by taking part in special intervention programs. Our study was designed to test whether extending the dual-task intervention program (combining ADLs with balance exercises on unstable surfaces) from 12 to 24 weeks additionally improved postural balance in individuals with intellectual disability (ID). We also attempted to assess whether the effects of the above intervention program were still noticeable after 8 weeks of holidays, in which participants did not take any rehabilitation exercises. A total of 34 adolescents, aged 14-16 years (15.06±0.9), with moderate ID took part in our study. The experimental group (E) consisted of 17 individuals, who continued the intervention program originated 3 months earlier, and the control group (C) comprised the same number of participants. Postural balance was assessed on a stabilometric platform Alfa. Having extended the workout period by another 12 weeks, we noticed that the path length of the center of pressure (COP) covered by participants on tests with their eyes open and closed significantly shortened. After a lapse of 8 weeks from the completion of the program, the experimental group revealed a statistically significant decrease in the velocity along the medio-lateral (M/L) and anterior-posterior (A/P) axes. The remaining variables stayed at the same level and the control group did not demonstrate any statistically significant changes. Dual-task exercises, in which enhancing functional tasks of daily living is combined with a parallel stimulation of balance reactions, may improve static balance in persons with ID. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lam, Freddy Mh; Huang, Mei-Zhen; Liao, Lin-Rong; Chung, Raymond Ck; Kwok, Timothy Cy; Pang, Marco Yc
2018-01-01
Does physical exercise training improve physical function and quality of life in people with cognitive impairment and dementia? Which training protocols improve physical function and quality of life? How do cognitive impairment and other patient characteristics influence the outcomes of exercise training? Systematic review with meta-analysis of randomised trials. People with mild cognitive impairment or dementia as the primary diagnosis. Physical exercise. Strength, flexibility, gait, balance, mobility, walking endurance, dual-task ability, activities of daily living, quality of life, and falls. Forty-three clinical trials (n=3988) were included. According to the Grades of Recommendation, Assessment, Development and Evaluation (GRADE) system, the meta-analyses revealed strong evidence in support of using supervised exercise training to improve the results of 30-second sit-to-stand test (MD 2.1 repetitions, 95% CI 0.3 to 3.9), step length (MD 5cm, 95% CI 2 to 8), Berg Balance Scale (MD 3.6 points, 95% CI 0.3 to 7.0), functional reach (3.9cm, 95% CI 2.2 to 5.5), Timed Up and Go test (-1second, 95% CI -2 to 0), walking speed (0.13m/s, 95% CI 0.03 to 0.24), and 6-minute walk test (50m, 95% CI 18 to 81) in individuals with mild cognitive impairment or dementia. Weak evidence supported the use of exercise in improving flexibility and Barthel Index performance. Weak evidence suggested that non-specific exercise did not improve dual-tasking ability or activity level. Strong evidence indicated that exercise did not improve quality of life in this population. The effect of exercise on falls remained inconclusive. Poorer physical function was a determinant of better response to exercise training, but cognitive performance did not have an impact. People with various levels of cognitive impairment can benefit from supervised multi-modal exercise for about 60minutes a day, 2 to 3days a week to improve physical function. [Lam FMH , Huang MZ, Liao LR, Chung RCK, Kwok TCY, Pang MYC (2018) Physical exercise improves strength, balance, mobility, and endurance in people with cognitive impairment and dementia: a systematic review. Journal of Physiotherapy 64: 4-15]. Copyright © 2017 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Springer, Shmuel; Friedman, Itamar; Ohry, Avi
2018-01-01
Background Age-related changes in coordinated movement pattern of the thorax and pelvis may be one of the factors contributing to fall risk. This report describes the feasibility of using a new thoracopelvic assisted movement device to improve gait and balance in an elderly population with increased risk for falls. Methods In this case series, 19 older adults were recruited from an assisted living facility. All had gait difficulties (gait speed <1.0 m/s) and history of falls. Participants received 12 training sessions with the thoracopelvic assisted movement device. Functional performance was measured before, during (after 6 sessions), and after the 12 sessions. Outcomes measures were Timed Up and Go, Functional Reach Test, and the 10-meter Walk Test. Changes in outcomes were calculated for each participant in the context of minimal detectable change (MDC) values. Results More than 25% of participants showed changes >MDC in their clinical measures after 6 treatment sessions, and more than half improved >MDC after 12 sessions. Six subjects (32%) improved their Timed Up and Go time by >4 seconds after 6 sessions, and 10 (53%) after 12 sessions. After the intervention, 4 subjects (21%) improved their 10-meter Walk Test velocity from limited community ambulation (0.4–0.8 m/s) to functional community ambulation (>0.8 m/s). Conclusion Thoracopelvic assisted movement training that mimics normal walking pattern may have clinical implications, by improving skills that enhance balance and gait function. Additional randomized, controlled studies are required to examine the effects of this intervention on larger cohorts with a variety of subjects.
A rehabilitation tool for functional balance using altered gravity and virtual reality.
Oddsson, Lars I E; Karlsson, Robin; Konrad, Janusz; Ince, Serdar; Williams, Steve R; Zemkova, Erika
2007-07-10
There is a need for effective and early functional rehabilitation of patients with gait and balance problems including those with spinal cord injury, neurological diseases and recovering from hip fractures, a common consequence of falls especially in the elderly population. Gait training in these patients using partial body weight support (BWS) on a treadmill, a technique that involves unloading the subject through a harness, improves walking better than training with full weight bearing. One problem with this technique not commonly acknowledged is that the harness provides external support that essentially eliminates associated postural adjustments (APAs) required for independent gait. We have developed a device to address this issue and conducted a training study for proof of concept of efficacy. We present a tool that can enhance the concept of BWS training by allowing natural APAs to occur mediolaterally. While in a supine position in a 90 deg tilted environment built around a modified hospital bed, subjects wear a backpack frame that is freely moving on air-bearings (cf. puck on an air hockey table) and attached through a cable to a pneumatic cylinder that provides a load that can be set to emulate various G-like loads. Veridical visual input is provided through two 3-D automultiscopic displays that allow glasses free 3-D vision representing a virtual surrounding environment that may be acquired from sites chosen by the patient. Two groups of 12 healthy subjects were exposed to either strength training alone or a combination of strength and balance training in such a tilted environment over a period of four weeks. Isokinetic strength measured during upright squat extension improved similarly in both groups. Measures of balance assessed in upright showed statistically significant improvements only when balance was part of the training in the tilted environment. Postural measures indicated less reliance on visual and/or increased use of somatosensory cues after training. Upright balance function can be improved following balance specific training performed in a supine position in an environment providing the perception of an upright position with respect to gravity. Future studies will implement this concept in patients.
Malling, Anne Sofie B; Jensen, Bente R
2016-01-01
Recent studies indicate that the effect of training on motor performance in persons with Parkinson's disease (PDP) is dependent on motor intensity. However, training of high motor intensity can be hard to apply in PDP due to e.g. bradykinesia, rigidity, tremor and postural instability. Therefore, the aim was to study the effect of motor intensive training performed in a safe anti-gravity environment using lower-body positive pressure (LBPP) technology on performance during dynamic balance related tasks. Thirteen male PDP went through an 8-week control period followed by 8 weeks of motor intensive antigravity training. Seventeen healthy males constituted a control group (CON). Performance during a five repetition sit-to-stand test (STS; sagittal plane) and a dynamic postural balance test (DPB; transversal plane) was evaluated. Effect measures were completion time, functional rates of force development, directional changes and force variance. STS completion time improved by 24% to the level of CON which was explained by shorter sitting-time and standing-time and larger numeric rate of force change during lowering to the chair, indicating faster vertical directional change and improved relaxation. DPB completion time tended to improve and was accompanied by improvements of functional medial and lateral rates of force development and higher vertical force variance during DPB. Our results suggest that the performance improvements may relate to improved inter-limb coordination. It is concluded that 8 weeks of motor intensive training in a safe LBPP environment improved performance during dynamic balance related tasks in PDP. Copyright © 2015 Elsevier B.V. All rights reserved.
Haruyama, Koshiro; Kawakami, Michiyuki; Otsuka, Tomoyoshi
2017-03-01
Trunk function is important for standing balance, mobility, and functional outcome after stroke, but few studies have evaluated the effects of exercises aimed at improving core stability in stroke patients. To investigate the effectiveness of core stability training on trunk function, standing balance, and mobility in stroke patients. An assessor-blinded, randomized controlled trial was undertaken in a stroke rehabilitation ward, with 32 participants randomly assigned to an experimental group or a control group (n = 16 each). The experimental group received 400 minutes of core stability training in place of conventional programs within total training time, while the control group received only conventional programs. Primary outcome measures were evaluated using the Trunk Impairment Scale (TIS), which reflects trunk function. Secondary outcome measures were evaluated by pelvic tilt active range of motion in the sagittal plane, the Balance Evaluation Systems Test-brief version (Brief-BESTest), Functional Reach test, Timed Up-and-Go test (TUG), and Functional Ambulation Categories (FAC). A general linear repeated-measures model was used to analyze the results. A treatment effect was found for the experimental group on the dynamic balance subscale and total score of the TIS ( P = .002 and P < .001, respectively), pelvic tilt active range of motion ( P < .001), Brief-BESTest ( P < .001), TUG ( P = .008), and FAC ( P = .022). Core stability training has beneficial effects on trunk function, standing balance, and mobility in stroke patients. Our findings might provide support for introducing core stability training in stroke rehabilitation.
Carmeli, Eli; Bar-Chad, Shmuel; Lotan, Meir; Merrick, Joav; Coleman, Raymond
2003-08-01
Incidence rates of falling increase progressively with aging. Preventing or delaying the onset of functional decline is a crucial important goal, because more individuals with intellectual disability (ID) are living well into their sixth and seventh decades. The question of whether walking and ball exercises can effect balance performance has never been reported. This pilot study was conducted to determine the effects of therapeutic training on improving balance capabilities in adults with mild ID. The study included 13 women and 4 men, aged 50-67 years (mean age 56.5 years) residing in a residential care center. Five clinical tests were used to determine the "real" picture of the locomotor function and balance before and after the training protocol. Baseline values were determined using 2 control groups of age-matched adults with and without ID. The tests included modified get-up-and-go, full turn, forward reach, sit-to-stand, and one-legged standing. Therapeutic training for 6 months included dynamic ball exercises and treadmill walking with a 2-3% positive inclination. Participants in the program showed little to no improvement in terms of their static and dynamic balance compared to their initial values. Thus, only 2 of the tests showed statistical significance. Lack of improvement was noted in both postural and balance control in adults with mild ID as a result of 6 months of intervention by means of ball exercise and treadmill training.
The balance principle in scientific research.
Hu, Liang-ping; Bao, Xiao-lei; Wang, Qi
2012-05-01
The principles of balance, randomization, control and repetition, which are closely related, constitute the four principles of scientific research. The balance principle is the kernel of the four principles which runs through the other three. However, in scientific research, the balance principle is always overlooked. If the balance principle is not well performed, the research conclusion is easy to be denied, which may lead to the failure of the whole research. Therefore, it is essential to have a good command of the balance principle in scientific research. This article stresses the definition and function of the balance principle, the strategies and detailed measures to improve balance in scientific research, and the analysis of the common mistakes involving the use of the balance principle in scientific research.
Jeon, Hye Joo; Hwang, Byong Yong
2018-02-01
[Purpose] To evaluate the effect of bilateral lower limb strengthening designed to improve balance and walking in stroke patients. [Subjects and Methods] Twenty hemiparetic stroke patients were divided into two groups: a unilateral therapy group (UTG) (n=10) and a bilateral therapy group (BTG) (n=10). The UTG completed strength training only in the paretic lower limb. The BTG completed strength training in the paretic and non-paretic lower limbs. Assessment tools included the functional reach test (FRT), the Berg balance scale (BBS), the timed up and go (TUG) test, and a 10-meter walk test (10MWT). [Results] In both groups, the lower limb strengthening exercise for balance and walking significantly improved the FRT, BBS, TUG, and 10MWT scores. Compared with UTG, the BTG attained significantly improved FRT and BBS scores. [Conclusion] Bilateral therapy using this lower limb strengthening exercise effectively promotes balance in hemiparetic stroke patients.
Jeon, Hye Joo; Hwang, Byong Yong
2018-01-01
[Purpose] To evaluate the effect of bilateral lower limb strengthening designed to improve balance and walking in stroke patients. [Subjects and Methods] Twenty hemiparetic stroke patients were divided into two groups: a unilateral therapy group (UTG) (n=10) and a bilateral therapy group (BTG) (n=10). The UTG completed strength training only in the paretic lower limb. The BTG completed strength training in the paretic and non-paretic lower limbs. Assessment tools included the functional reach test (FRT), the Berg balance scale (BBS), the timed up and go (TUG) test, and a 10-meter walk test (10MWT). [Results] In both groups, the lower limb strengthening exercise for balance and walking significantly improved the FRT, BBS, TUG, and 10MWT scores. Compared with UTG, the BTG attained significantly improved FRT and BBS scores. [Conclusion] Bilateral therapy using this lower limb strengthening exercise effectively promotes balance in hemiparetic stroke patients. PMID:29545693
Donovan, Luke; Hart, Joseph M.; Saliba, Susan A.; Park, Joseph; Feger, Mark Anthony; Herb, Christopher C.; Hertel, Jay
2016-01-01
Context: Individuals with chronic ankle instability (CAI) have deficits in neuromuscular control and altered movement patterns. Ankle-destabilization devices have been shown to increase lower extremity muscle activity during functional tasks and may be useful tools for improving common deficits and self-reported function. Objective: To determine whether a 4-week rehabilitation program that includes destabilization devices has greater effects on self-reported function, range of motion (ROM), strength, and balance than rehabilitation without devices in patients with CAI. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: A total of 26 patients with CAI (7 men, 19 women; age = 21.34 ± 3.06 years, height = 168.96 ± 8.77 cm, mass = 70.73 ± 13.86 kg). Intervention(s): Patients completed baseline measures and were randomized into no-device and device groups. Both groups completed 4 weeks of supervised, impairment-based progressive rehabilitation with or without devices and then repeated baseline measures. Main Outcome Measure(s): We assessed self-reported function using the Foot and Ankle Ability Measure. Ankle ROM was measured with an inclinometer. Ankle strength was assessed using a handheld dynamometer during maximal voluntary isometric contractions. Balance was measured using a composite score of 3 reach directions from the Star Excursion Balance Test and a force plate to calculate center of pressure during eyes-open and eyes-closed single-limb balance. We compared each dependent variable using a 2 × 2 (group × time) analysis of variance and post hoc tests as appropriate and set an a priori α level at .05. The Hedges g effect sizes and associated 95% confidence intervals were calculated. Results: We observed no differences between the no-device and device groups for any measure. However, both groups had large improvements in self-reported function and ankle strength. Conclusions: Incorporating destabilization devices into rehabilitation did not improve ankle function more effectively than traditional rehabilitation tools because both interventions resulted in similar improvements. Impairment-based progressive rehabilitation improved clinical outcomes associated with CAI. PMID:26934211
Elbasan, Bulent; Akaya, Kamile Uzun; Akyuz, Mufit; Oskay, Deran
2018-02-06
Neurodevelopmental treatment (NDT), neuromuscular electrical stimulation (NMES), and Kinesio Taping (KT) applications are separately used to improve postural control and sitting balance in children with cerebral palsy (CP). The aim of this study is to examine the combined effect of NDT, NMES and KT applications on postural control and sitting balance in children with CP. Forty five children, in 3 groups, between the ages 5-12 years were included in the study. Group 1 received NDT; group 2 received NDT + NMES; and the group 3 received NDT + NMES + KT for 6 weeks. Sitting function evaluated by the sitting section of the gross motor function measure (GMFM), and postural control assessed with the seated postural control measurement (SPCM). Seating section of GMFM was improved significantly in all the groups; however, increases in the group 3 were higher than groups 1 and 2 (p= 0.001). While significant differences were observed in all groups in the SPCM posture (p< 0.001), function (p< 0.001), and the total scores (p< 0.001); the change in the third group was higher according to the comparison of the three groups within each other. Implementation of the NMES, and KT additionally to NDT improve the sitting posture, postural control, seating function, and gross motor function in children with CP.
Effects of virtual reality programs on balance in functional ankle instability
Kim, Ki-Jong; Heo, Myoung
2015-01-01
[Purpose] The aim of present study was to identify the impact that recent virtual reality training programs used in a variety of fields have had on the ankle’s static and dynamic senses of balance among subjects with functional ankle instability. [Subjects and Methods] This study randomly divided research subjects into two groups, a strengthening exercise group (Group I) and a balance exercise group (Group II), with each group consisting of 10 people. A virtual reality program was performed three times a week for four weeks. Exercises from the Nintendo Wii Fit Plus program were applied to each group for twenty minutes along with ten minutes of warming up and wrap-up exercises. [Results] Group II showed a significant decrease of post-intervention static and dynamic balance overall in the anterior-posterior, and mediolateral directions, compared with the pre-intervention test results. In comparison of post-intervention static and dynamic balance between Group I and Group II, a significant decrease was observed overall. [Conclusion] Virtual reality programs improved the static balance and dynamic balance of subjects with functional ankle instability. Virtual reality programs can be used more safely and efficiently if they are implemented under appropriate monitoring by a physiotherapist. PMID:26644652
Effects of virtual reality programs on balance in functional ankle instability.
Kim, Ki-Jong; Heo, Myoung
2015-10-01
[Purpose] The aim of present study was to identify the impact that recent virtual reality training programs used in a variety of fields have had on the ankle's static and dynamic senses of balance among subjects with functional ankle instability. [Subjects and Methods] This study randomly divided research subjects into two groups, a strengthening exercise group (Group I) and a balance exercise group (Group II), with each group consisting of 10 people. A virtual reality program was performed three times a week for four weeks. Exercises from the Nintendo Wii Fit Plus program were applied to each group for twenty minutes along with ten minutes of warming up and wrap-up exercises. [Results] Group II showed a significant decrease of post-intervention static and dynamic balance overall in the anterior-posterior, and mediolateral directions, compared with the pre-intervention test results. In comparison of post-intervention static and dynamic balance between Group I and Group II, a significant decrease was observed overall. [Conclusion] Virtual reality programs improved the static balance and dynamic balance of subjects with functional ankle instability. Virtual reality programs can be used more safely and efficiently if they are implemented under appropriate monitoring by a physiotherapist.
Ross, Scott E.; Linens, Shelley W.; Wright, Cynthia J.; Arnold, Brent L.
2013-01-01
Context: Stochastic resonance stimulation (SRS) administered at an optimal intensity could maximize the effects of treatment on balance. Objective: To determine if a customized optimal SRS intensity is better than a traditional SRS protocol (applying the same percentage sensory threshold intensity for all participants) for improving double- and single-legged balance in participants with or without functional ankle instability (FAI). Design: Case-control study with an embedded crossover design. Setting: Laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women; age = 22 ± 2 years, height = 170 ± 7 cm, mass = 64 ± 10 kg) and 12 participants (6 men, 6 women; age = 23 ± 3 years, height = 174 ± 8 cm, mass = 69 ± 10 kg) with FAI. Intervention(s): The SRS optimal intensity level was determined by finding the intensity from 4 experimental intensities at the percentage sensory threshold (25% [SRS25], 50% [SRS50], 75% [SRS75], 90% [SRS90]) that produced the greatest improvement in resultant center-of-pressure velocity (R-COPV) over a control condition (SRS0) during double-legged balance. We examined double- and single-legged balance tests, comparing optimal SRS (SRSopt1) and SRS0 using a battery of center-of-pressure measures in the frontal and sagittal planes. Main Outcome Measure(s): Anterior-posterior (A-P) and medial-lateral (M-L) center-of-pressure velocity (COPV) and center-of-pressure excursion (COPE), R-COPV, and 95th percentile center-of-pressure area ellipse (COPA-95). Results: Data were organized into bins that represented optimal (SRSopt1), second (SRSopt2), third (SRSopt3), and fourth (SRSopt4) improvement over SRS0. The SRSopt1 enhanced R-COPV (P ≤ .05) over SRS0 and other SRS conditions (SRS0 = 0.94 ± 0.32 cm/s, SRSopt1 = 0.80 ± 0.19 cm/s, SRSopt2 = 0.88 ± 0.24 cm/s, SRSopt3 = 0.94 ± 0.25 cm/s, SRSopt4 = 1.00 ± 0.28 cm/s). However, SRS did not improve R-COPV over SRS0 when data were categorized by sensory threshold. Furthermore, SRSopt1 improved double-legged balance over SRS0 from 11% to 25% in all participants for the center-of-pressure frontal- and sagittal-plane assessments (P ≤ .05). The SRSopt1 also improved single-legged balance over SRS0 from 10% to 17% in participants with FAI for the center-of-pressure frontal- and sagittal-plane assessments (P ≤ .05). The SRSopt1 did not improve single-legged balance in participants with stable ankles. Conclusions: The SRSopt1 improved double-legged balance and transfers to enhancing single-legged balance deficits associated with FAI. PMID:23724774
A water balance model to estimate flow through the Old and Middle River corridor
Andrews, Stephen W.; Gross, Edward S.; Hutton, Paul H.
2016-01-01
We applied a water balance model to predict tidally averaged (subtidal) flows through the Old River and Middle River corridor in the Sacramento–San Joaquin Delta. We reviewed the dynamics that govern subtidal flows and water levels and adopted a simplified representation. In this water balance approach, we estimated ungaged flows as linear functions of known (or specified) flows. We assumed that subtidal storage within the control volume varies because of fortnightly variation in subtidal water level, Delta inflow, and barometric pressure. The water balance model effectively predicts subtidal flows and approaches the accuracy of a 1–D Delta hydrodynamic model. We explore the potential to improve the approach by representing more complex dynamics and identify possible future improvements.
Ulanowski, Elizabeth A; Danzl, Megan M; Sims, Kara M
2017-01-01
There is a lack of evidence examining the role of physical therapy (PT) to address movement dysfunction for individuals with essential tremor (ET). A 61-year-old male with ET and prolonged bilateral deep brain stimulation (DBS) completed 14 sessions of outpatient PT that emphasized balance, functional movements, and proximal stability training with an integration of principles of body awareness training and visual motor coordination. Improvements were noted in all outcome measures. This report describes a novel PT approach that offers a promising means of improving functional mobility and balance while decreasing falls risk in patients with ET.
Health benefits of hard martial arts in adults: a systematic review.
Origua Rios, Sandra; Marks, Jennifer; Estevan, Isaac; Barnett, Lisa M
2018-07-01
Participation in organized sports is promoted as a means of increasing physical activity levels and reducing chronic disease risk in adults. Hard martial arts practice (i.e. using body contact techniques), has gained in popularity over time. This review explores the evidence for health benefits of "hard" martial arts practice within the adult population. A systematic electronic database search was conducted, and quality assessments applied the Effective Public Health Practice Project tool. Twenty-eight studies met the inclusion criteria, examining balance, cognitive function, muscular skeletal status, psychological, cardiovascular fitness, and metabolic effects. The majority of studies reported positive effects resulting from hard martial arts practice, showing some improvement and maintenance of balance, cognitive function and psychological health. Benefits may be obtained regardless of the age of practice commencement. However, quality of the evidence is affected by methodological weaknesses across the studies. "Hard" martial arts seem to have potential to improve balance and cognitive functions that decline with age, which can lead to poorer health outcomes among the elderly (e.g. cognitive decline, falls and fractures). Benefits should be further investigated with improved intervention studies, representative samples and longer follow-up periods in order to establish associations with morbidity and mortality in the long term.
Holviala, Jarkko H S; Sallinen, Janne M; Kraemer, William J; Alen, Markku J; Häkkinen, Keijo K T
2006-05-01
Progressive strength training can lead to substantial increases in maximal strength and mass of trained muscles, even in older women and men, but little information is available about the effects of strength training on functional capabilities and balance. Thus, the effects of 21 weeks of heavy resistance training--including lower loads performed with high movement velocities--twice a week on isometric maximal force (ISOmax) and force-time curve (force produced in 500 milliseconds, F0-500) and dynamic 1 repetition maximum (1RM) strength of the leg extensors, 10-m walking time (10WALK) and dynamic balance test (DYN.D) were investigated in 26 middle-aged (MI; 52.8 +/- 2.4 years) and 22 older women (O; 63.8 +/- 3.8 years). 1RM, ISOmax, and F0-500 increased significantly in MI by 28 +/- 10%, 20 +/- 19%, 31 +/- 34%, and in O by 27 +/- 8%, 20 +/- 16%, 18 +/- 45%, respectively. 10WALK (MI and O, p < 0.001) shortened and DYN.D improved (MI and O, p < 0.001). The present strength-training protocol led to large increases in maximal and explosive strength characteristics of leg extensors and in walking speed, as well to an improvement in the present dynamic balance test performance in both age groups. Although training-induced increase in explosive strength is an important factor for aging women, there are other factors that contribute to improvements in dynamic balance capacity. This study indicates that total body heavy resistance training, including explosive dynamic training, may be applied in rehabilitation or preventive exercise protocols in aging women to improve dynamic balance capabilities.
Kovács, E; Sztruhár Jónásné, I; Karóczi, C K; Korpos, A; Gondos, T
2013-10-01
Exercise programs have important role in prevention of falls, but to date, there are conflicting findings about the effects of exercise programs on balance, functional performance and fall risk among cognitively impaired older adults. AIM. To investigate the effects of a multimodal exercise program on static and dynamic balance, and risk of falls in older adults with mild or moderate cognitive impairment. A randomized controlled study. A long-term care institute. Cognitively impaired individuals aged over 60 years. Eighty-six participants were randomized to an exercise group providing multimodal exercise program for 12 months or a control group which did not participate in any exercise program. The Performance Oriented Mobility Assessment scale, Timed Up and Go test, and incidence of falls were measured at baseline, at 6 months and at 12 months. There was a significant improvement in balance-related items of Performance Oriented Mobility Assessment scale in the exercise group both at 6 month and 12 month (P<0.0001, P=0.002; respectively). There was no statistically significant increase in gait-related items of Performance Oriented Mobility Assessment scale after the first 6-month treatment period (P=0.210), but in the second 6-month treatment period the POMA-G score improved significantly (P=0.001). There was no significant difference between groups regarding falls. Our results confirmed that a 12-month multimodal exercise program can improve the balance in cognitively impaired older adults. Based on our results, the multimodal exercise program may be a promising fall prevention exercise program for older adults with mild or moderate cognitive impairment improving static balance but it is supposed that more emphasis should be put on walking component of exercise program and environmental fall risk assessment.
Kurz, Ilan; Gimmon, Yoav; Shapiro, Amir; Debi, Ronen; Snir, Yoram; Melzer, Itshak
2016-03-04
Falls are common among elderly, most of them occur while slipping or tripping during walking. We aimed to explore whether a training program that incorporates unexpected loss of balance during walking able to improve risk factors for falls. In a double-blind randomized controlled trial 53 community dwelling older adults (age 80.1±5.6 years), were recruited and randomly allocated to an intervention group (n = 27) or a control group (n = 26). The intervention group received 24 training sessions over 3 months that included unexpected perturbation of balance exercises during treadmill walking. The control group performed treadmill walking with no perturbations. The primary outcome measures were the voluntary step execution times, traditional postural sway parameters and Stabilogram-Diffusion Analysis. The secondary outcome measures were the fall efficacy Scale (FES), self-reported late life function (LLFDI), and Performance-Oriented Mobility Assessment (POMA). Compared to control, participation in intervention program that includes unexpected loss of balance during walking led to faster Voluntary Step Execution Times under single (p = 0.002; effect size [ES] =0.75) and dual task (p = 0.003; [ES] = 0.89) conditions; intervention group subjects showed improvement in Short-term Effective diffusion coefficients in the mediolateral direction of the Stabilogram-Diffusion Analysis under eyes closed conditions (p = 0.012, [ES] = 0.92). Compared to control there were no significant changes in FES, LLFDI, and POMA. An intervention program that includes unexpected loss of balance during walking can improve voluntary stepping times and balance control, both previously reported as risk factors for falls. This however, did not transferred to a change self-reported function and FES. ClinicalTrials.gov NCT01439451 .
Intervention for an Adolescent With Cerebral Palsy During Period of Accelerated Growth.
Reubens, Rebecca; Silkwood-Sherer, Debbie J
2016-01-01
The purpose of this case report was to describe changes in body functions and structures, activities, and participation after a biweekly 10-week program of home physical therapy and hippotherapy using a weighted compressor belt. A 13-year-old boy with spastic diplegic cerebral palsy, Gross Motor Function Classification System level II, was referred because of accelerated growth and functional impairments that limited daily activities. The Modified Ashworth Scale, passive range of motion, 1-Minute Walk Test, Timed Up and Down Stairs, Pediatric Balance Scale, Pediatric Evaluation of Disability Inventory Computer Adaptive Test, and Dimensions of Mastery Questionnaire 17 were examined at baseline, 5, and 10 weeks. Data at 5 and 10 weeks demonstrated positive changes in passive range of motion, balance, strength, functional activities, and motivation, with additional improvements in endurance and speed after 10 weeks. This report reveals enhanced body functions and structures and activities and improved participation and motivation.
do Carmo, Carolina Mendes; Almeida da Rocha, Bruna; Tanaka, Clarice
2017-11-01
[Purpose] To verify the effects of individual and group exercise programs on pain, balance, mobility and perceived benefits of rheumatoid arthritis patients (RA) with pain and foot deformities. [Subjects and Methods] Thirty patients with RA pain and foot deformity were allocated into two groups: G1: individual exercise program and G2: group exercise program. The variables analyzed were Numerical Rating Scale (NRS) for pain, Berg Balance Scale (BBS) for balance, Timed Up & Go Test (TUG) and Functional Reach (FR) for mobility, and Foot Health Status Questionnaire (FHSQ-Br) for perceived benefits. Both exercise programs consisted of functional rehabilitation exercises and self-care guidance aimed at reducing pain and improving balance and mobility. Intragroup comparisons of variables between A1 (pre-intervention) and A2 (post-intervention) were performed. [Results] Patients in both groups were similar in A1 (pre-intervention) in all the variables analyzed. Comparison between A1 and A2 for each variable showed improvement for G1 in the NRS, BBS, FR, TUG and in four out of ten domains of FHSQ-Br. G2 showed improvement in the NRS, BBS and eight out of ten domains of FHSQ-Br. [Conclusion] Both individual and group programs revealed benefits for patients with RA, however, group exercise programs showed better perception of benefits.
Efficacy of Aquatic Treadmill Training on Gait Symmetry and Balance in Subacute Stroke Patients
2017-01-01
Objective To determine the efficacy of aquatic treadmill training (ATT) as a new modality for stroke rehabilitation, by assessing changes in gait symmetry, balance function, and subjective balance confidence for the paretic and non-paretic leg in stroke patients. Methods Twenty-one subacute stroke patients participated in 15 intervention sessions of aquatic treadmill training. The Comfortable 10-Meter Walk Test (CWT), spatiotemporal gait parameters, Berg Balance Scale (BBS), and Activities-specific Balance Confidence scale (ABC) were assessed pre- and post-interventions. Results From pre- to post-intervention, statistically significant improvements were observed in the CWT (0.471±0.21 to 0.558±0.23, p<0.001), BBS (39.66±8.63 to 43.80±5.21, p<0.001), and ABC (38.39±13.46 to 46.93±12.32, p<0.001). The step-length symmetry (1.017±0.25 to 0.990±0.19, p=0.720) and overall temporal symmetry (1.404±0.36 to 1.314±0.34, p=0.218) showed improvement without statistical significance. Conclusion ATT improves the functional aspects of gait, including CWT, BBS and ABC, and spatiotemporal gait symmetry, though without statistical significance. Further studies are required to examine and compare the potential benefits of ATT as a new modality for stroke therapy, with other modalities. PMID:28758074
Efficacy of Aquatic Treadmill Training on Gait Symmetry and Balance in Subacute Stroke Patients.
Lee, Mi Eun; Jo, Geun Yeol; Do, Hwan Kwon; Choi, Hee Eun; Kim, Woo Jin
2017-06-01
To determine the efficacy of aquatic treadmill training (ATT) as a new modality for stroke rehabilitation, by assessing changes in gait symmetry, balance function, and subjective balance confidence for the paretic and non-paretic leg in stroke patients. Twenty-one subacute stroke patients participated in 15 intervention sessions of aquatic treadmill training. The Comfortable 10-Meter Walk Test (CWT), spatiotemporal gait parameters, Berg Balance Scale (BBS), and Activities-specific Balance Confidence scale (ABC) were assessed pre- and post-interventions. From pre- to post-intervention, statistically significant improvements were observed in the CWT (0.471±0.21 to 0.558±0.23, p<0.001), BBS (39.66±8.63 to 43.80±5.21, p<0.001), and ABC (38.39±13.46 to 46.93±12.32, p<0.001). The step-length symmetry (1.017±0.25 to 0.990±0.19, p=0.720) and overall temporal symmetry (1.404±0.36 to 1.314±0.34, p=0.218) showed improvement without statistical significance. ATT improves the functional aspects of gait, including CWT, BBS and ABC, and spatiotemporal gait symmetry, though without statistical significance. Further studies are required to examine and compare the potential benefits of ATT as a new modality for stroke therapy, with other modalities.
Summary of comprehensive systematic review: Rehabilitation in multiple sclerosis
Haselkorn, Jodie K.; Hughes, Christina; Rae-Grant, Alex; Henson, Lily Jung; Bever, Christopher T.; Lo, Albert C.; Brown, Theodore R.; Kraft, George H.; Getchius, Thomas; Gronseth, Gary; Armstrong, Melissa J.; Narayanaswami, Pushpa
2015-01-01
Objective: To systematically review the evidence regarding rehabilitation treatments in multiple sclerosis (MS). Methods: We systematically searched the literature (1970–2013) and classified articles using 2004 American Academy of Neurology criteria. Results: This systematic review highlights the paucity of well-designed studies, which are needed to evaluate the available MS rehabilitative therapies. Weekly home/outpatient physical therapy (8 weeks) probably is effective for improving balance, disability, and gait (MS type unspecified, participants able to walk ≥5 meters) but probably is ineffective for improving upper extremity dexterity (1 Class I). Inpatient exercises (3 weeks) followed by home exercises (15 weeks) possibly are effective for improving disability (relapsing-remitting MS [RRMS], primary progressive MS [PPMS], secondary progressive MS [SPMS], Expanded Disability Status Scale [EDSS] 3.0–6.5) (1 Class II). Six weeks' worth of comprehensive multidisciplinary outpatient rehabilitation possibly is effective for improving disability/function (PPMS, SPMS, EDSS 4.0–8.0) (1 Class II). Motor and sensory balance training or motor balance training (3 weeks) possibly is effective for improving static and dynamic balance, and motor balance training (3 weeks) possibly is effective for improving static balance (RRMS, SPMS, PPMS) (1 Class II). Breathing-enhanced upper extremity exercises (6 weeks) possibly are effective for improving timed gait and forced expiratory volume in 1 second (RRMS, SPMS, PPMS, mean EDSS 4.5); this change is of unclear clinical significance. This technique possibly is ineffective for improving disability (1 Class II). Inspiratory muscle training (10 weeks) possibly improves maximal inspiratory pressure (RRMS, SPMS, PPMS, EDSS 2–6.5) (1 Class II). PMID:26598432
Wikstrom, Erik A; McKeon, Patrick O
2017-04-01
Sensory Targeted Ankle Rehabilitation Strategies that stimulate sensory receptors improve postural control in chronic ankle instability participants. However, not all participants have equal responses. Therefore, identifying predictors of treatment success is needed to improve clinician efficiency when treating chronic ankle instability. Therefore, the purpose was to identify predictors of successfully improving postural control in chronic ankle instability participants. Secondary data analysis. Fifty-nine participants with self-reported chronic ankle instability participated. The condition was defined as a history of at least two episodes of "giving way" within the past 6 months; and limitations in self-reported function as measured by the Foot and Ankle Ability Measure. Participants were randomized into three treatment groups (plantar massage, ankle joint mobilization, calf stretching) that received 6, 5-min treatment sessions over a 2-week period. The main outcome measure was treatment success, defined as a participant exceeding the minimal detectable change score for a clinician-oriented single limb balance test. Participants with ≥3 balance test errors had a 73% probability of treatment success following ankle joint mobilizations. Participants with a self-reported function between limb difference <16.07% and who made >2.5 errors had a 99% probability of treatment success following plantar massage. Those who sustained ≥11 ankle sprains had a 94% treatment success probability following calf stretching. Self-reported functional deficits, worse single limb balance, and number of previous ankle sprains are important characteristics when determining if chronic ankle instability participants will have an increased probability of treatment success. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Sung, Kiwol
2009-01-01
The purpose of this study was to compare the effects of 16-week group exercise program on the physical function (ie, strength, flexibility, and balance) and mental health (ie, self-esteem and depression) of older elderlyl women (>or=75 years old) compared with younger elderly women (<75 years old). Exercise is crucial in maintaining older women's health and well-being. However, because most elders have at least one chronic disease, their physical function declines, so their dependence on others for instrumental daily living activities often increases. Older women typically have multiple barriers to participation in physical activities including higher disability rates. Of the total of 40 older women (older than 65 years) enrolled, 21 were older elders and 16 were younger elders. Lower body strength (using 30-second chair test), flexibility (sit-and-reach test), and static balance (ability to balance on one leg with open and closed eyes) were assessed. Self-esteem (using Rosenberg's Self-esteem Questionnaire) and depressive symptoms (using Yesavage's Geriatric Depression Scale) were assessed. Two-way analysis of variance was used to examine the differences between the 2 age groups. The intervention program was effective in improving body strength, flexibility, static balance, and self-esteem, regardless of age. Furthermore, older elders receiving the intervention program demonstrated greater improvement in self-esteem than younger elders did, although there were intervention effects in both age groups. Elderly women can realize benefits from a group exercise program that can improve their functional ability and self-esteem, both important to cardiovascular health.
Latham, Nancy K.; Jette, Alan M.; Wagenaar, Robert C.; Ni, Pengsheng; Slavin, Mary D.; Bean, Jonathan F.
2012-01-01
Background Impaired balance has a significant negative impact on mobility, functional independence, and fall risk in older adults. Although several, well-respected balance measures are currently in use, there is limited evidence regarding the most appropriate measure to assess change in community-dwelling older adults. Objective The aim of this study was to compare floor and ceiling effects, sensitivity to change, and responsiveness across the following balance measures in community-dwelling elderly people with functional limitations: Berg Balance Scale (BBS), Performance-Oriented Mobility Assessment total scale (POMA-T), POMA balance subscale (POMA-B), and Dynamic Gait Index (DGI). Design Retrospective data from a 16-week exercise trial were used. Secondary analyses were conducted on the total sample and by subgroups of baseline functional limitation or baseline balance scores. Methods Participants were 111 community-dwelling older adults 65 years of age or older, with functional limitations. Sensitivity to change was assessed using effect size, standardized response mean, and paired t tests. Responsiveness was assessed using minimally important difference (MID) estimates. Results No floor effects were noted. Ceiling effects were observed on all measures, including in people with moderate to severe functional limitations. The POMA-T, POMA-B, and DGI showed significantly larger ceiling effects compared with the BBS. All measures had low sensitivity to change in total sample analyses. Subgroup analyses revealed significantly better sensitivity to change in people with lower compared with higher baseline balance scores. Although both the total sample and lower baseline balance subgroups showed statistically significant improvement from baseline to 16 weeks on all measures, only the lower balance subgroup showed change scores that consistently exceeded corresponding MID estimates. Limitations This study was limited to comparing 4 measures of balance, and anchor-based methods for assessing MID could not be reported. Conclusions Important limitations, including ceiling effects and relatively low sensitivity to change and responsiveness, were noted across all balance measures, highlighting their limited utility across the full spectrum of the community-dwelling elderly population. New, more challenging measures are needed for better discrimination of balance ability in community-dwelling elderly people at higher functional levels. PMID:22114200
Villiger, Michael; Liviero, Jasmin; Awai, Lea; Stoop, Rahel; Pyk, Pawel; Clijsen, Ron; Curt, Armin; Eng, Kynan; Bolliger, Marc
2017-01-01
Key factors positively influencing rehabilitation and functional recovery after spinal cord injury (SCI) include training variety, intensive movement repetition, and motivating training tasks. Systems supporting these aspects may provide profound gains in rehabilitation, independent of the subject's treatment location. In the present study, we test the hypotheses that virtual reality (VR)-augmented training at home (i.e., unsupervised) is feasible with subjects with an incomplete SCI (iSCI) and that it improves motor functions such as lower limb muscle strength, balance, and functional mobility. In the study, 12 chronic iSCI subjects used a home-based, mobile version of a lower limb VR training system. The system included motivating training scenarios and combined action observation and execution. Virtual representations of the legs and feet were controlled via movement sensors. The subjects performed home-based training over 4 weeks, with 16-20 sessions of 30-45 min each. The outcome measures assessed were the Lower Extremity Motor Score (LEMS), Berg Balance Scale (BBS), Timed Up and Go (TUG), Spinal Cord Independence Measure mobility, Walking Index for Spinal Cord Injury II, and 10 m and 6 min walking tests. Two pre-treatment assessment time points were chosen for outcome stability: 4 weeks before treatment and immediately before treatment. At post-assessment (i.e., immediately after treatment), high motivation and positive changes were reported by the subjects (adapted Patients' Global Impression of Change). Significant improvements were shown in lower limb muscle strength (LEMS, P = 0.008), balance (BBS, P = 0.008), and functional mobility (TUG, P = 0.007). At follow-up assessment (i.e., 2-3 months after treatment), functional mobility (TUG) remained significantly improved ( P = 0.005) in contrast to the other outcome measures. In summary, unsupervised exercises at home with the VR training system led to beneficial functional training effects in subjects with chronic iSCI, suggesting that it may be useful as a neurorehabilitation tool. Canton of Zurich ethics committee (EK-24/2009, PB_2016-00545), ClinicalTrials.gov: NCT02149186. Registered 24 April 2014.
Alsubiheen, Abdulrahman; Petrofsky, Jerrold; Daher, Noha; Lohman, Everett; Balbas, Edward
2015-01-01
Background One of the effects of diabetes mellitus (DM), peripheral neuropathy, affects the sensation in the feet and can increase the chance of falling. The purpose of the study was to investigate the effect of 8 weeks of Tai Chi (TC) training combined with mental imagery (MI) on improving balance in people with diabetes and an age matched control group. Material/Methods Seventeen healthy subjects and 12 diabetic sedentary subjects ranging from 40–80 years of age were recruited. All subjects in both groups attended a Yang style of TC class using MI strategies, 2 sessions a week for 8 weeks. Each session was one hour long. Measures were taken using a balance platform test, an Activities-specific Balance Confidence (ABC) Scale, a one leg standing test (OLS), functional reach test (FRT) and hemoglobin A1C. These measures were taken twice, pre and post-study, for both groups. Results Both groups experienced significant improvements in ABC, OLS, FRT (P<0.01) after completing 8 weeks of TC exercise with no significant improvement between groups. Subjects using the balance platform test demonstrated improvement in balance in all different tasks with no significant change between groups. There was no significant change in HbA1C for the diabetic group. Conclusions All results showed an improvement in balance in the diabetic and the control groups; however, no significant difference between the groups was observed. Since the DM group had more problems with balance impairment at baseline than the control, the diabetic group showed the most benefit from the TC exercise. PMID:26454826
Sremakaew, Munlika; Jull, Gwendolen; Treleaven, Julia; Barbero, Marco; Falla, Deborah; Uthaikhup, Sureeporn
2018-02-13
Impaired cervical joint position sense and balance are associated with neck pain. Specific therapeutic exercise and manual therapy are effective for improving neck pain and functional ability but their effects on joint position sense and balance impairments remain uncertain. Changes in the joint position sense and balance may need to be addressed specifically. The primary objective is to investigate the most effective interventions to improve impaired cervical joint position sense and balance in individuals with neck pain. The secondary objective is to assess the effectiveness of the interventions on pain intensity and disability, pain location, dizziness symptoms, cervical range of motion, gait speed, functional ability, treatment satisfaction and quality of life. A 2 × 2 factorial, single blind RCT with immediate, short- and long-term follow-ups. One hundred and sixty eight participants with neck pain with impaired joint position sense and balance will be recruited into the trial. Participants will be randomly allocated to one of four intervention groups: i) local neck treatment, ii) local treatment plus tailored sensorimotor exercises, iii) local treatment plus balance exercises, and iv) local treatment plus sensorimotor and balance exercises. Participants receive two treatments for 6 weeks. Primary outcomes are postural sway and cervical joint position error. Secondary outcomes include gait speed, dizziness intensity, neck pain intensity, neck disability, pain extent and location, cervical range of motion, functional ability, perceived benefit, and quality of life. Assessment will be measured at baseline, immediately after treatment and at 3, 6, 12 month-follow ups. Neck pain is one of the major causes of disability. Effective treatment must address not only the symptoms but the dysfunctions associated with neck pain. This trial will evaluate the effectiveness of interventions for individuals with neck pain with impaired cervical joint position sense and balance. This trial will impact on clinical practice by providing evidence towards optimal and efficient management. ClinicalTrials.gov ( NCT03149302 ). May 10, 2017.
Liu-Ambrose, Teresa; Khan, Karim M; Eng, Janice J; Lord, SR; McKay, HA
2012-01-01
Background While the fear of falling is a common psychological consequence of falling, older adults who have not fallen also frequently report this fear. Fear of falling can lead to activity restriction that is self-imposed rather than due to actual physical impairments. Evidence suggests that exercise can significantly improve balance confidence, as measured by falls-related self-efficacy scales. However, there are no prospective reports that correlate change in balance confidence with changes in fall risk and physical abilities as induced by participating in a group-based exercise program. Objective The primary purpose of this prospective study was to examine the relationship between the change in balance confidence and the changes in fall risk and physical abilities in older women with confirmed low bone mass after 13 weeks of exercise participation. The secondary purpose of this study was to examine the relationship between the change in balance confidence and the change in physical activity level. Methods The sample comprised 98 women aged 75 to 85 years old women with low bone mass. Participants were randomly assigned to one of three groups: Resistance Training (n=32), Agility Training (n=34), and Stretching (sham) exercises (n=32). The 50-minute exercise classes for each study arm were held twice weekly at a local YMCA community centre. Results Both resistance training and agility training significantly improved balance confidence by 6% from baseline after 13 weeks. However, the change in balance confidence was only weakly correlated with improved general physical function and not significantly correlated with the changes in fall risk score, postural stability, gait speed, or physical activity level. As well, we observed balance confidence enhancement in the presence of increased fall risk or deterioration in physical abilities. Conclusions Two different types of exercise training improved balance confidence in older women with low bone mass. This change in balance confidence was significantly correlated with change in general physical function. Because of the observation of discordance between balance confidence change and changes in fall risk and physical abilities, those who design group-based exercise programs for community-dwelling older adults may wish to consider including an education component on factors that influence fear of falling. Objective changes in fall risk factors cannot be assumed to mirror change of fear of falling and physical abilities in older adults in the short-term. PMID:15477698
Abreu, Mauro; Hartley, Greg
2013-01-01
Recent studies have looked at the effects of dance on functional outcomes for persons with balance, gait, and cognitive impairments. The purpose of this report is to quantify the effects of Salsa dance therapy on function, balance, and fall risk in a sedentary older patient with multiple comorbidities. CASE DESCRIPTION/INTERVENTION: The patient was an 84-year-old woman with functional decline due to Alzheimer's dementia, late effects of a cerebral hemorrhagic aneurysm with right hemiparesis in the lower extremity, arthritis, and recurrent falls. Intervention consisted largely of Salsa dancing activities for 24 sessions over 12 weeks. The patient showed improvements in range of motion, strength, balance, functional mobility, gait distance, and speed. During the course of therapy, 1 fall was reported with no significant injuries and 6 months postintervention the patient/caregiver reported no falls. This case describes the clinically meaningful effects of Salsa dance therapy as a primary intervention and its impact on functional recovery in a geriatric patient with multiple impairments.
Uphill and Downhill Walking in Multiple Sclerosis
Samaei, Afshin; Hajihasani, Abdolhamid; Fatemi, Elham; Motaharinezhad, Fatemeh
2016-01-01
Background: Various exercise protocols have been recommended for patients with multiple sclerosis (MS). We investigated the effects of uphill and downhill walking exercise on mobility, functional activities, and muscle strength in MS patients. Methods: Thirty-four MS patients were randomly allocated to either the downhill or uphill treadmill walking group for 12 sessions (3 times/wk) of 30 minutes' walking on a 10% negative slope (n = 17) or a 10% positive slope (n = 17), respectively. Measurements were taken before and after the intervention and after 4-week follow-up and included fatigue by Modified Fatigue Impact Scale; mobility by Modified Rivermead Mobility Index; disability by Guy's Neurological Disability Scale; functional activities by 2-Minute Walk Test, Timed 25-Foot Walk test, and Timed Up and Go test; balance indices by Biodex Balance System; and quadriceps and hamstring isometric muscles by torque of left and right knee joints. Analysis of variance with repeated measures was used to investigate the intervention effects on the measurements. Results: After the intervention, significant improvement was found in the downhill group versus the uphill group in terms of fatigue, mobility, and disability indices; functional activities; balance indices; and quadriceps isometric torque (P < .05). The results were stable at 4-week follow-up. Conclusions: Downhill walking on a treadmill may improve muscle performance, functional activity, and balance control in MS patients. These findings support the idea of using eccentric exercise training in MS rehabilitation protocols. PMID:26917996
Gibbons, Emma Maureen; Thomson, Alecia Nicole; de Noronha, Marcos; Joseph, Samer
2016-12-01
Stroke is one of the leading causes of disability worldwide with many survivors restricted to their immediate environment secondary to various impairments. To review existing studies assessing effects of virtual reality (VR) on lower limb outcomes in stroke patients. We searched MEDLINE, CINAHL, EMBASE, PEDro, and Cochrane Library from their beginning to August 2015. Eighteen meta-analyses were performed using weighted mean differences (WMD) and standardized mean differences (SMD) and 95% confidence intervals (CI) to summarize results. Randomized control trials using VR interventions within adult stroke populations for lower limb outcomes. Trials were screened by two independent authors for eligibility and bias. Trials were grouped according to acute-subacute and chronic stroke populations and outcomes were classified as functional balance, static balance, functional gait/mobility, spatiotemporal gait parameters, or motor function. 22 studies with 552 participants were included. Significant differences in favor of VR group were found for functional balance (SMD 0.42, 95% CI 0.11-0.73), gait velocity (WMD 0.12, 95% CI 0.03-0.22), cadence (WMD 11.91, 95% CI 2.05-21.78), and stride length (WMD 9.79, 95% CI 0.74-18.84) within the chronic population. VR improves functional balance and various aspects of gait in chronic populations. Evidence also suggests that VR is just as effective as conventional therapy, hence its' use in practice is determined by affordability, and patient/practitioner preferences.
National Airspace System Plan: Facilities, Equipment, Associated Development and Other Capital Needs
1989-09-01
yes include: 0 Air carrier routes and services will reflect a * Having an operating National Airspace System better balance between trip frequency and... balanced workload. " A major improvement and integration of the FAA communications system will be imple- 0 Reliable equipment, which minimizes the stress...them in this will lead to the development of production level balancing sector staffing levels, specifications in FY 97. * Trial flight plan function
Negrini, Stefano; Bissolotti, Luciano; Ferraris, Alessandro; Noro, Fulvia; Bishop, Mark D; Villafañe, Jorge Hugo
2017-01-01
Impaired postural stability places individuals with Parkinson's disease (PD) at an increased risk for falls. We evaluated the effectiveness of 10 vs. 15 sessions of Nintendo Wii Fit for balance recovery for outpatients PD. Twenty-seven patients, 48.1% female (66 ± 8 years), with PD. Patients with PD were consecutively assigned to one of two groups receiving either 10 or 15 sessions (low dose or high dose group, respectively) with Nintendo Wii Fit in recovering balancing ability. All outcome measures were collected at baseline, immediately following the intervention period, and 1-month following the end of the intervention. Falls risk test (FRT), Stability index (PST), Berg balance scale (BBS) and Tinetti scale. The patients undergoing the 10 sessions demonstrated significantly improvement on the balance performances (Tinetti balance and gait scales, BBS and BSF) (all, P < 0.05) as those undergoing 15 treatment with Nintendo Wii Fit, but no significant group effect or group-by-time interaction was detected for any of them, which suggests that both groups improved in the same way. The results suggest that functional improvement can be made in fewer visits during outpatient rehabilitation sessions with Nintendo Wii Fit improving the efficiency of intervention. Copyright © 2016 Elsevier Ltd. All rights reserved.
In, Taesung; Lee, Kyeongjin; Song, Changho
2016-10-28
BACKGROUND Virtual reality reflection therapy (VRRT) is a technically enhanced version of the mirror therapy concept. The aim of this study was to investigate whether VRRT could improve the postural balance and gait ability of patients with chronic stroke. MATERIAL AND METHODS Twenty-five patients with chronic stroke were randomly allocated into the VRRT group (n=13) and the control group (n=12). The participants in both groups performed a conventional rehabilitation program for 30 minutes. The VRRT group also performed a VRRT program for 30 minutes, five times a week for 4 weeks. The control group performed conventional rehabilitation program and a placebo VRRT program. Outcome measures included Berg Balance Scale (BBS), the Functional Reaching Test (FRT), and the Timed Up and Go (TUG) test (for dynamic balance ability), postural sway (for static balance ability), and 10 meter walking velocity (10 mWV) for gait ability. RESULTS There were statistically significant improvements in the VRRT group compared with the control group for BBS, FRT, TUG, postural sway (mediolateral sway distance with eyes open and eyes closed, anteroposterior and total sway distance with eyes open but not with eyes closed), and 10 mWV (p<0.05). CONCLUSIONS Applying VRRT (even as a home treatment) along with a conventional rehabilitation program for patients with chronic stroke might be even more beneficial than conventional rehabilitation program alone in improving affected lower limb function. Future studies should investigate the effectiveness of VRRT with optimal patient selection, and duration and intensity of training.
Michael, Kathleen; Goldberg, Andrew P.; Treuth, Margarita S.; Beans, Jeffrey; Normandt, Peter; Macko, Richard F.
2010-01-01
Purpose We conducted a noncontrolled pilot intervention study in stroke survivors to examine the efficacy of low-intensity adaptive physical activity to increase balance, improve walking function, and increase cardiovascular fitness and to determine whether improvements were carried over into activity profiles in home and community. Method Adaptive physical activity sessions were conducted 3 times/week for 6 months. The main outcomes were Berg Balance Scale, Dynamic Gait Index, 6-Minute Walk Test, cardiovascular fitness (VO2 peak), Falls Efficacy Scale, and 5-day Step Activity Monitoring. Results Seven men and women with chronic ischemic stroke completed the 6-month intervention. The mean Berg Balance baseline score increased from 33.9 ± 8.5 to 46 ± 6.7 at 6 months (mean ± SD; p = .006). Dynamic Gait Index increased from 13.7 ± 3.0 to 19.0 ± 3.5 (p = .01). Six-minute walk distance increased from 840 ± 110 feet to 935 ± 101 feet (p = 0.02). VO2 peak increased from 15.3 ± 4.1 mL/kg/min to 17.5 ± 4.7 mL/kg/min (p = .03). There were no significant changes in falls efficacy or free-living ambulatory activity. Conclusion A structured adaptive physical activity produces improvements in balance, gait, fitness, and ambulatory performance but not in falls efficacy or free-living daily step activity. Randomized studies are needed to determine the cardiovascular health and functional benefits of structured group physical activity programs and to develop behavioral interventions that promote increased free-living physical activity patterns. PMID:19581199
In, Taesung; Lee, Kyeongjin; Song, Changho
2016-01-01
Background Virtual reality reflection therapy (VRRT) is a technically enhanced version of the mirror therapy concept. The aim of this study was to investigate whether VRRT could improve the postural balance and gait ability of patients with chronic stroke. Material/Methods Twenty-five patients with chronic stroke were randomly allocated into the VRRT group (n=13) and the control group (n=12). The participants in both groups performed a conventional rehabilitation program for 30 minutes. The VRRT group also performed a VRRT program for 30 minutes, five times a week for 4 weeks. The control group performed conventional rehabilitation program and a placebo VRRT program. Outcome measures included Berg Balance Scale (BBS), the Functional Reaching Test (FRT), and the Timed Up and Go (TUG) test (for dynamic balance ability), postural sway (for static balance ability), and 10 meter walking velocity (10 mWV) for gait ability. Results There were statistically significant improvements in the VRRT group compared with the control group for BBS, FRT, TUG, postural sway (mediolateral sway distance with eyes open and eyes closed, anteroposterior and total sway distance with eyes open but not with eyes closed), and 10 mWV (p<0.05). Conclusions Applying VRRT (even as a home treatment) along with a conventional rehabilitation program for patients with chronic stroke might be even more beneficial than conventional rehabilitation program alone in improving affected lower limb function. Future studies should investigate the effectiveness of VRRT with optimal patient selection, and duration and intensity of training. PMID:27791207
Hagströmer, Maria; Hellénius, Mai-Lis; Ståhle, Agneta
2017-01-01
Background and Purpose: We have developed a 12-week balance training program for older adults shown to improve fall-related concerns, gait speed, balance performance, and physical function. We hypothesized that this balance training would also contribute to higher habitual physical activity (PA) levels and improved health-related quality of life (HRQoL). The primary aim was to evaluate short- and long-term effects of the balance training program on objectively measured habitual PA in older adults with osteoporosis. Secondary aims were to assess the effects of the balance training on HRQoL, and to study whether any effects on PA were associated with changes in HRQoL, gait speed, balance performance, fall-related concerns, and physical function. Methods: A randomized controlled trial with follow-up at 3, 9, and 15 months, including 91 participants with osteoporosis (75.6 ± 5.4 years), compared a balance training group (n = 61) with a control group (n = 30). The primary outcome was effect on habitual PA measured as steps/day, dichotomized into less than 5000 or 5000 or more steps/day. Physical activity was assessed with pedometers (Yamax) and accelerometers (Actigraph), HRQoL with the Short Form-36 (SF-36), gait with a GAITRite walkway, balance performance with Modified-Figure-Eight test and one-leg stance, fall-related concerns with Falls Efficacy Scale International, and physical function with the advanced lower extremity subscale of the questionnaire Late Life Function and Disability Instrument. Statistical methods used were multivariate logistic regression and logistic generalized estimating equation. Results: Sixty-eight participants completed the short-term follow-up at 3 months, and 53 participants completed the long-term follow-up at 15 months. Per-protocol analysis (n = 68) showed that the odds ratio for having a daily step count of 5000 or more at 3 months was 6.17 (95% confidence interval, 1.23-30.91), P = .027, for the intervention group compared with the control group. The longitudinal analysis (n = 91) showed that the odds ratio for having a daily step count of 5000 or more at 15 months was 2.02 (95% confidence interval, 0.88-4.64), P = .096, for the intervention group compared with the control group. The mental component sum of the SF-36 improved significantly from baseline to 3 months in the intervention group, and the physical component sum improved in both groups, but no statistically significant differences were found between groups. No associations were found between PA and changes in covariates. Discussion and Conclusions: The short-term evaluation showed that balance training increased habitual PA in community-dwelling older adults with osteoporosis. A significantly higher proportion of participants in the intervention group reached a level of 5000 or more steps/day, which is important for overall health. This effect was not associated with improvements in HRQoL, gait speed, balance performance, or fall-related concerns, and did not persist through the long-term follow-up. To accomplish a sustained PA change, a prolonged intervention or more support regarding habitual PA may be required, such as reinforcement with personalized behavior change counseling or PA on prescription. PMID:26859463
Young, Sonia N; VanWye, William R; Wallmann, Harvey W
2018-06-25
To describe the use of sport simulation activities as a form of implicit motor learning training with a geriatric former athlete following a stroke. An active 76-year-old former professional male softball player presented to outpatient physical therapy with medical history of right stroke with left hemiparesis 2 weeks following onset of symptoms of impaired balance, coordination, gait, and motor planning. Initial physical therapy included gait, balance, and coordination training. Additional sport-related balance and coordination activities were later added to the treatment plan. After approximately 3 weeks of treatment, the patient was able to return to work and had dramatically improved balance, coordination, and gait with sport simulation activities. Implicit motor learning techniques were incorporated through sport and job task simulation activities along with task-oriented neuromuscular reeducation. The patient demonstrated improvements with gait, balance, gross motor function, and decreased fall risk.
Chen, Po-Yin; Wei, Shun-Hwa; Hsieh, Wan-Ling; Cheen, Jang-Rong; Chen, Liang-Kung; Kao, Chung-Lan
2012-01-01
Declined balance functions have adverse effects on elderly population. Lower limbs muscle power training is currently an emerging concept in rehabilitation on individuals with decreased balance and mobility. In this prospective, controlled study, we used a human-computer interactive video-game-based rehabilitation device (LLPR) for training of lower limb muscle power in the elderly. Forty (aged >65 years) individuals were recruited from the community. Twenty participants in the exercise group received 30-min training, twice a week, using the LLPR system. The LLPR system allows participants to perform fast speed sit-to-stand (STS) movements. Twenty age-matched participants in the control group performed slow speed STS movements, as well as strengthening and balance exercises, with the same frequency and duration. The results were compared after 12 sessions (6 weeks) of training. The mechanical and time parameters during STS movement were measured using the LLPR system. Modified falls efficacy scale (MFES), Tinetti Performance-Oriented Mobility Assessment (POMA), function reach test, five times sit to stand (FTSS) and Timed Up and Go (TUG) were administered to participants as clinical assessments. Results showed that in the exercise group, all the mechanical and time parameters showed significant improvement. In control group, only the maximal vertical ground reaction force (MVGRF) improved significantly. For clinical assessments (balance, mobility, and self-confidence), exercise group showed significantly better scores. The STS movements in video-game-based training mimic real life situations which may help to transfer the training effects into daily activities. The effectiveness of lower limb muscle training is worthy of further investigation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Real-time loudness normalisation with combined cochlear implant and hearing aid stimulation
Van Eeckhoutte, Maaike; Van Deun, Lieselot; Francart, Tom
2018-01-01
Background People who use a cochlear implant together with a contralateral hearing aid—so-called bimodal listeners—have poor localisation abilities and sounds are often not balanced in loudness across ears. In order to address the latter, a loudness balancing algorithm was created, which equalises the loudness growth functions for the two ears. The algorithm uses loudness models in order to continuously adjust the two signals to loudness targets. Previous tests demonstrated improved binaural balance, improved localisation, and better speech intelligibility in quiet for soft phonemes. In those studies, however, all stimuli were preprocessed so spontaneous head movements and individual head-related transfer functions were not taken into account. Furthermore, the hearing aid processing was linear. Study design In the present study, we simplified the acoustical loudness model and implemented the algorithm in a real-time system. We tested bimodal listeners on speech perception and on sound localisation, both in normal loudness growth configuration and in a configuration with a modified loudness growth function. We also used linear and compressive hearing aids. Results The comparison between the original acoustical loudness model and the new simplified model showed loudness differences below 3% for almost all tested speech-like stimuli and levels. We found no effect of balancing the loudness growth across ears for speech perception ability in quiet and in noise. We found some small improvements in localisation performance. Further investigation with a larger sample size is required. PMID:29617421
Schmid, Arlene A; Miller, Kristine K; Van Puymbroeck, Marieke; Schalk, Nancy
2016-01-01
The purpose of this mixed-methods case study was to investigate whether an 8-week 1:1 yoga program was feasible and beneficial to people with traumatic brain injury (TBI). This was a mixed-methods case study of one-to-one yoga for people with TBI included three people. We completed assessments before and after the 8-week yoga intervention and included measures of balance, balance confidence, pain, range of motion, strength and mobility. Qualitative interviews were included at the post-assessment. We include a percent change calculation and salient quotes that represent the perceived impact of the yoga intervention. All participants completed the yoga intervention and all demonstrated improvements in physical outcome measures. For the group, balance increased by 36%, balance confidence by 39%, lower extremity strength by 100% and endurance by 105%. Qualitative data support the use of yoga to improve multiple aspects of physical functioning, one participant stated: "I mean it's rocked my world. It's changed my life. I mean all the different aspects. I mean physically, emotionally, mentally, it's given me you know my life back…". Yoga, delivered in a one-to-one setting, appears to be feasible and beneficial to people with chronic TBI. Chronic traumatic brain injury (TBI) leads to many aspects of physical functioning impairment. Yoga delivered in a one-to-one setting may be feasible and beneficial for people with chronic TBI.
Regulation of protein metabolism by glutamine: implications for nutrition and health.
Xi, Pengbin; Jiang, Zongyong; Zheng, Chuntian; Lin, Yingcai; Wu, Guoyao
2011-01-01
Glutamine is the most abundant free alpha-amino acid in plasma and skeletal muscle. This nutrient plays an important role in regulating gene expression, protein turnover, anti-oxidative function, nutrient metabolism, immunity, and acid-base balance. Interestingly, intracellular and extracellular concentrations of glutamine exhibit marked reductions in response to infection, sepsis, severe burn, cancer, and other pathological factors. This raised an important question of whether glutamine may be a key mediator of muscle loss and negative nitrogen balance in critically ill and injured patients. Therefore, since the initial reports in late 1980s that glutamine could stimulate protein synthesis and inhibit proteolysis in rat skeletal muscle, there has been growing interest in the use of this functional amino acid to improve protein balance under various physiological and disease conditions. Although inconsistent results have appeared in the literature regarding a therapeutic role of glutamine in clinical medicine, a majority of studies indicate that supplementing appropriate doses of glutamine to enteral diets or parenteral solutions is beneficial for improving nitrogen balance in animals or humans with glutamine deficiency.
A Two-Phase Model for Trade Matching and Price Setting in Double Auction Water Markets
NASA Astrophysics Data System (ADS)
Xu, Tingting; Zheng, Hang; Zhao, Jianshi; Liu, Yicheng; Tang, Pingzhong; Yang, Y. C. Ethan; Wang, Zhongjing
2018-04-01
Delivery in water markets is generally operated by agencies through channel systems, which imposes physical and institutional market constraints. Many water markets allow water users to post selling and buying requests on a board. However, water users may not be able to choose efficiently when the information (including the constraints) becomes complex. This study proposes an innovative two-phase model to address this problem based on practical experience in China. The first phase seeks and determines the optimal assignment that maximizes the incremental improvement of the system's social welfare according to the bids and asks in the water market. The second phase sets appropriate prices under constraints. Applying this model to China's Xiying Irrigation District shows that it can improve social welfare more than the current "pool exchange" method can. Within the second phase, we evaluate three objective functions (minimum variance, threshold-based balance, and two-sided balance), which represent different managerial goals. The threshold-based balance function should be preferred by most users, while the two-sided balance should be preferred by players who post extreme prices.
Geiger, M; Supiot, A; Zory, R; Aegerter, P; Pradon, D; Roche, N
2017-10-23
Following stroke, patients are often left with hemiparesis that reduces balance and gait capacity. A recent, non-invasive technique, transcranial direct current stimulation, can be used to modify cortical excitability when used in an anodal configuration. It also increases the excitability of spinal neuronal circuits involved in movement in healthy subjects. Many studies in patients with stroke have shown that this technique can improve motor, sensory and cognitive function. For example, anodal tDCS has been shown to improve motor performance of the lower limbs in patients with stroke, such as voluntary quadriceps strength, toe-pinch force and reaction time. Nevertheless, studies of motor function have been limited to simple tasks. Surprisingly, the effects of tDCS on the locomotion and balance of patients with chronic stroke have never been evaluated. In this study, we hypothesise that anodal tDCS will improve balance and gait parameters in patients with chronic stroke-related hemiparesis through its effects at cortical and spinal level. This is a prospective, randomised, placebo-controlled, double-blinded, single-centre, cross-over study over 36 months. Forty patients with chronic stroke will be included. Each patient will participate in three visits: an inclusion visit, and two visits during which they will all undergo either one 30-min session of transcranial direct current stimulation or one 30-min session of placebo stimulation in a randomised order. Evaluations will be carried out before, during and twice after stimulation. The primary outcome is the variability of the displacement of the centre of mass during gait and a static-balance task. Secondary outcomes include clinical and functional measures before and after stimulation. A three-dimensional gait analysis, and evaluation of static balance on a force platform will be also conducted before, during and after stimulation. These results should constitute a useful database to determine the aspects of complex motor function that are the most improved by transcranial direct current stimulation in patients with hemiparesis. It is the first essential step towards validating this technique as a treatment, coupled with task-oriented training. ClinicalTrials.gov, ID: NCT02134158 . First received on 18 December 2013; last updated on 14 September 2016. Other study ID numbers: P120135 / AOM12126, 2013-A00952-43.
Cattaneo, Davide; Rasova, Kamila; Gervasoni, Elisa; Dobrovodská, Gabriela; Montesano, Angelo; Jonsdottir, Johanna
2018-03-01
People with Multiple Sclerosis (PwMS) have a high incidence of accidental falls that have a potentially detrimental effect on their daily life participation. The effect of balance specific rehabilitation on clinical balance measures and frequency of falls in PwMS was studied. A bi-centre randomised rater-blinded controlled trial. Participants in both groups received 20 treatment sessions. Participants in the intervention group received treatment aimed at improving balance and mobility. Participants in the control group received treatments to reduce limitations at activity and body function level. Primary measures were frequency of fallers (>1 fall in two months) and responders (>3 points improvement) at the Berg Balance Scale (BBS). Data was analysed according to an intention to treat approach. One hundred and nineteen participants were randomised. Following treatment frequency of fallers was 22% in the intervention group and 23% in the control group, odds ratio (OR) and (confidence limits): 1.05 (0.41 to 2.77). Responders on the BBS were 28% in the intervention group and 33% in the control group, OR = 0.75 (0.30 to 1.91). At follow up ORs for fallers and responders at BBS were 0.98 (0.48 to 2.01) and 0.79 (0.26 to 2.42), respectively. Twenty sessions 2-3 times/week of balance specific rehabilitation did not reduce fall frequency nor improve balance suggesting the need for more frequent and challenging interventions. Implications for Rehabilitation Programs for balance rehabilitation can improve balance but their effects in fall prevention are unclear. Twenty treatments sessions 2/3 times per week did not reduced frequency of falls in MS. The comparison with similar studies suggests that higher intensity of practice of highly challenging balance activities appears to be critical to maximizing effectiveness.
Haselkorn, Jodie K; Hughes, Christina; Rae-Grant, Alex; Henson, Lily Jung; Bever, Christopher T; Lo, Albert C; Brown, Theodore R; Kraft, George H; Getchius, Thomas; Gronseth, Gary; Armstrong, Melissa J; Narayanaswami, Pushpa
2015-11-24
To systematically review the evidence regarding rehabilitation treatments in multiple sclerosis (MS). We systematically searched the literature (1970-2013) and classified articles using 2004 American Academy of Neurology criteria. This systematic review highlights the paucity of well-designed studies, which are needed to evaluate the available MS rehabilitative therapies. Weekly home/outpatient physical therapy (8 weeks) probably is effective for improving balance, disability, and gait (MS type unspecified, participants able to walk ≥5 meters) but probably is ineffective for improving upper extremity dexterity (1 Class I). Inpatient exercises (3 weeks) followed by home exercises (15 weeks) possibly are effective for improving disability (relapsing-remitting MS [RRMS], primary progressive MS [PPMS], secondary progressive MS [SPMS], Expanded Disability Status Scale [EDSS] 3.0-6.5) (1 Class II). Six weeks' worth of comprehensive multidisciplinary outpatient rehabilitation possibly is effective for improving disability/function (PPMS, SPMS, EDSS 4.0-8.0) (1 Class II). Motor and sensory balance training or motor balance training (3 weeks) possibly is effective for improving static and dynamic balance, and motor balance training (3 weeks) possibly is effective for improving static balance (RRMS, SPMS, PPMS) (1 Class II). Breathing-enhanced upper extremity exercises (6 weeks) possibly are effective for improving timed gait and forced expiratory volume in 1 second (RRMS, SPMS, PPMS, mean EDSS 4.5); this change is of unclear clinical significance. This technique possibly is ineffective for improving disability (1 Class II). Inspiratory muscle training (10 weeks) possibly improves maximal inspiratory pressure (RRMS, SPMS, PPMS, EDSS 2-6.5) (1 Class II). © 2015 American Academy of Neurology.
Moraes, Andréa Gomes; Copetti, Fernando; Ângelo, Vera Regina; Chiavoloni, Luana; de David, Ana Cristina
2018-06-11
To verify the effects of 12, 24, 36 hippotherapy sessions over time on postural balance while sitting in children with cerebral palsy as well the effects of treatment after one interruption period of 45 days. Hippotherapy program with a twice-weekly treatment with a total of 13 children aged 5-10 years old. Measurements of postural balance during sitting were performed using the AMTI AccuSway Plus platform. There was a statistically significant reduction in mediolateral and anteroposterior sway after the first 12 hippotherapy sessions, and further significant sway reduction occurred as the treatment progressed. Changes in the center of pressure displacement velocity variable began to occur after 24 sessions. Seated postural balance improved in children with cerebral palsy, as evidenced by lower COP displacement, particularly after a greater number of sessions. After the last evaluations, when completing 36 sessions of hippotherapy, it was verified that the improvements to the postural balance continued to occur. Therefore, further studies with a longer treatment period may help to clarify if, at some point, there is stabilization in the improvement of postural balance. Furthermore, it is important to analyze the impact of hippotherapy on functional activities over time.
Sajan, Jane Elizabeth; John, Judy Ann; Grace, Pearlin; Sabu, Sneha Sara; Tharion, George
2017-08-01
To assess the effect of interactive video gaming (IVG) with Nintendo Wii (Wii) supplemented to conventional therapy in rehabilitation of children with cerebral palsy (CP). Randomized, controlled, assessor-blinded study. Children with CP; 10 children each in the control and intervention groups. IVG using Wii, given as a supplement to conventional therapy, for 45 min per day, 6 days a week for 3 weeks. The children in the control group received conventional therapy alone. Posture control and balance, upper limb function, visual-perceptual skills, and functional mobility. Significant improvement in upper limb functions was seen in the intervention group but not in the control group. Improvements in balance, visual perception, and functional mobility were not significantly different between control and intervention groups. Wii-based IVG may be offered as an effective supplement to conventional therapy in the rehabilitation of children with CP.
Altmann, Lori J P; Stegemöller, Elizabeth; Hazamy, Audrey A; Wilson, Jonathan P; Bowers, Dawn; Okun, Michael S; Hass, Chris J
2016-10-01
Parkinson's disease (PD) results in a range of non-motor deficits that can affect mood, cognition, and language, and many of these issues are unresponsive to pharmacological intervention. Aerobic exercise can improve mood and cognition in healthy older adults, although only a few studies have examined exercise effects on these domains in PD. The current study assesses the effects of aerobic exercise on aspects of cognition, mood, and language production in people with PD. This study compares the effects of aerobic exercise to stretch-balance training and a no-contact control group in participants with idiopathic PD. The aerobic and stretch-balance groups trained three times a week for 16 weeks, while controls continued normal activities. Outcome measures included disease severity, mood, cognition (speed of processing, memory, and executive function), and language production (picture descriptions). Cognition and language were assessed in single and dual task conditions. Depressive symptoms increased only in the control group (p<.02). Executive function improved in the aerobic exercise group only in the single task (p=.007) and declined in controls in the dual task. Completeness of picture descriptions improved significantly more in the aerobic group than in the stretch-balance group (p<.02). Aerobic exercise is a viable intervention for PD that can be protective against increased depressive symptoms, and can improve several non-motor domains, including executive dysfunction and related aspects of language production. (JINS, 2016, 22, 878-889).
THE IMMEDIATE AND LONG-TERM EFFECTS OF KINESIOTAPE® ON BALANCE AND FUNCTIONAL PERFORMANCE
Douris, Peter; Fukuroku, Taryn; Kuzniewski, Michael; Dias, Joe; Figueiredo, Patrick
2016-01-01
Background The application of Kinesio Tex® tape (KT) results, in theory, in the improvement of muscle contractibility by supporting weakened muscles. The effect of KT on muscle strength has been investigated by numerous researchers who have theorized that KT facilitates an immediate increase in muscle strength by generating a concentric pull on the fascia. The effect of KT on balance and functional performance has been controversial because of the inconsistencies of tension and direction of pull required during application of KT and whether its use on healthy individuals provides therapeutic benefits. Hypotheses/Purpose The purpose of the present study was to investigate the immediate and long-term effects of the prescribed application (for facilitation) of KT when applied to the dominant lower extremity of healthy individuals. The hypothesis was that balance and functional performance would improve with the prescribed application of KT versus the sham application. Study Design Pretest-posttest repeated measures control group design. Methods Seventeen healthy subjects (9 males; 8 females) ranging from 18-35 years of age (mean age 23.3 ± 0.72), volunteered to participate in this study. KT was applied to the gastrocnemius of the participant's dominant leg using a prescribed application to facilitate muscle performance for the experimental group versus a sham application for the control group. The Biodex Balance System and four hop tests were utilized to assess balance, proprioception, and functional performance beginning on the first day including pre- and immediately post-KT application measurements. Subsequent measurements were performed 24, 72, and 120 hours after tape application. Repeated measures ANOVA's were performed for each individual dependent variable. Results There were no significant differences for main and interaction effects between KT and sham groups for the balance and four hop tests. Conclusion The results of the present study did not indicate any significant differences in balance and functional performance when KT was applied to the gastrocnemius muscle of the lower extremity. Level of evidence Level 1- Randomized Clinical Trial PMID:27104058
Clinical Evidence of Exercise Benefits for Stroke.
Han, Peipei; Zhang, Wen; Kang, Li; Ma, Yixuan; Fu, Liyuan; Jia, Liye; Yu, Hairui; Chen, Xiaoyu; Hou, Lin; Wang, Lu; Yu, Xing; Kohzuki, Masahiro; Guo, Qi
2017-01-01
Even though stroke is the third, not the first, most common cause of disability-adjusted life years in developed countries, it is one of the most expensive to treat. Part of the expense is due to secondary problems in the post-stroke period including: cognition, memory, attention span, pain, sensation loss, psychological issues, and problems with mobility and balance. Research has identified that exercise has both positive physical and psychosocial effects for post-stroke patients. Therefore, this scientific statement provides an overview on exercise rehabilitation for post-stroke patients.We will use systematic literature reviews, clinical and epidemiology reports, published morbidity and mortality studies, clinical and public health guidelines, patient files, and authoritative statements to support this overview.Evidence clearly supports the use of various kinds of exercise training (e.g., aerobic, strength, flexibility, neuromuscular, and traditional Chinese exercise) for stroke survivors. Aerobic exercise, the main form of cardiac rehabilitation, may play an important role in improving aerobic fitness, cardiovascular fitness, cognitive abilities, walking speed and endurance, balance, quality of life, mobility, and other health outcomes among stroke patients. Strength exercise, included in national stroke guidelines and recommended for general health promotion for stroke survivors, can lead to improvements in functionality, psychosocial aspects, and quality of life for post-stroke patients. Flexibility exercises can relieve muscle spasticity problems, improve motor function, range of motion, and prevent contractures. Stretching exercises can also prevent joint contractures, muscle shortening, decrease spasticity, reduce joint stiffness and improve a post-stroke patient's overall function. Neuromuscular exercises can improve activities of daily living (ADL) through coordination and balance activities. Traditional Chinese exercises are used to improve walking and balance ability as well as increase muscle strength, which is important for post-stroke patients.The present evidence strongly supports the power of exercise for post-stroke patients, which in this study combined aerobic exercises, strength training, flexibility exercises, neuromuscular exercises, and traditional Chinese exercises. This research can encourage post-stroke survivors to consider the importance of exercise in the rehabilitation process.
Hackney, Madeleine E.; Earhart, Gammon M.
2009-01-01
Objective The basal ganglia may be selectively activated during rhythmic, metered movement like tango dancing, which may improve motor control in individuals with Parkinson disease (PD). Other partner dances may be suitable and preferable for those with PD. The purpose of this study was to compare the effects of tango, waltz/foxtrot and no intervention on functional motor control in individuals with PD. Design This study employed a randomised, between-subject, prospective, repeated measures design. Subjects/Patients Fifty-eight people with mild-moderate PD participated. Methods Participants were randomly assigned to Tango, Waltz/Foxtrot or no intervention (Control). Those in the dance groups attended 1-hour classes 2 times per week, completing 20 lessons within thirteen weeks. Balance, functional mobility, forward and backward walking were evaluated before and after the intervention. Results Both dance groups improved more than the Control group, which did not improve. Tango and Waltz/Foxtrot significantly improved on the Berg Balance Scale, six minute walk distance, and backward stride length. Tango improved as much or more than those in Waltz/Foxtrot on several measures. Conclusions Tango may target deficits associated with PD more than Waltz/Foxtrot, but both dances may benefit balance and locomotion. PMID:19479161
Lee, DongGeon; Lee, GyuChang; Jeong, JiSim
2016-07-27
This study was to investigate the effects of Mirror Therapy (MT) combined with Neuromuscular Electrical Stimulation (NMES) on muscle strength and tone, motor function, balance, and gait ability in stroke survivors with hemiplegia. This study was a randomized controlled trial. Twenty-seven hemiplegic stroke survivors from a rehabilitation center participated in the study. The participants were randomly assigned to either an experimental or a control group. The experimental group (n = 14) underwent MT combined with NMES and conventional physical therapy, and the control group (n = 13) underwent conventional physical therapy alone. Muscle strength and tone, balance, and gait ability were examined at baseline and after 4 weeks of intervention. A hand-held dynamometer was used to assess muscle strength, the Modified Ashworth Scale (MAS) was used to assess muscle tone, the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) were used to ascertain balance, and the 6-m Walk Test (6mWT) was used to examine gait ability. After the intervention, compared to baseline values, there were significant improvements in muscle strength and MAS, BBS, TUG, and 6mWT values in the experimental group (P< 0.05). In addition, at post-intervention, there were significant differences between the two groups in muscle strength and BBS (P< 0.05). MT combined with NMES may effectively improve muscle strength and balance in hemiplegic stroke survivors. However, further studies are necessary to demonstrate brain reorganization after MT combined with NMES.
Eckardt, Nils
2016-11-24
It is well documented that both balance and resistance training have the potential to mitigate intrinsic fall risk factors in older adults. However, knowledge about the effects of simultaneously executed balance and resistance training (i.e., resistance training conducted on unstable surfaces [URT]) on lower-extremity muscle strength, power and balance in older adults is insufficient. The objective of the present study was to compare the effects of machine-based stable resistance training (M-SRT) and two types of URT, i.e., machine-based (M-URT) and free-weight URT (F-URT), on measures of lower-extremity muscle strength, power and balance in older adults. Seventy-five healthy community-dwelling older adults aged 65-80 years, were assigned to three intervention groups: M-SRT, M-URT and F-URT. Over a period of ten weeks, all participants exercised two times per week with each session lasting ~60 min. Tests included assessment of leg muscle strength (e.g., maximal isometric leg extension strength), power (e.g., chair rise test) and balance (e.g., functional reach test), carried out before and after the training period. Furthermore, maximal training load of the squat-movement was assessed during the last training week. Maximal training load of the squat-movement was significantly lower in F-URT in comparison to M-SRT and M-URT. However, lower-extremity resistance training conducted on even and uneven surfaces meaningfully improved proxies of strength, power and balance in all groups. M-URT produced the greatest improvements in leg extension strength and F-URT in the chair rise test and functional reach test. Aside from two interaction effects, overall improvements in measures of lower-extremity muscle strength, power and balance were similar across training groups. Importantly, F-URT produced similar results with considerably lower training load as compared to M-SRT and M-URT. Concluding, F-URT seems an effective and safe alternative training program to mitigate intrinsic fall risk factors in older adults. This trial has been registered with clinicaltrials.gov ( NCT02555033 ) on 09/18/2015.
Lee, Kyoungjin; Lee, Seungwon; Song, Changho
2013-12-01
Elderly patients with diabetes and peripheral neuropathy are more likely to experience falls. However, the information available on how such falls can be prevented is scarce. We investigated the effects of whole-body vibration (WBV) combined with a balance exercise program on balance, muscle strength, and glycosylated hemoglobin (HbA1c) in elderly patients with diabetic peripheral neuropathy. Fifty-five elderly patients with diabetic neuropathy were randomly assigned to WBV with balance exercise group, balance exercise (BE) group, and control group. The WBV and BE groups performed the balance exercise program for 60 min per day, 2 times per week, for 6 weeks. Further, the WBV group performed WBV training (up to 3 × 3 min, 3 times per week, for 6 weeks). The control group did not participate in any training. The main outcome measures were assessed at baseline and after 6 weeks of training; namely, we assessed the postural sway and one leg stance (OLS) for static balance; Berg balance scale (BBS), timed up-and-go (TUG) test, and functional reach test (FRT) for dynamic balance; five-times-sit-to-stand (FTSTS) test for muscle strength; and HbA1c for predicting the progression of diabetes. Significant improvements were noted in the static balance, dynamic balance, muscle strength, and HbA1c in the WBV group, compared to the BE and control groups (P < 0.05). Thus, in combination with the balance exercise program, the short-term WBV therapy is beneficial in improving balance, muscle strength and HbA1c, in elderly patients with diabetic neuropathy who are at high risk for suffering falls.
Forte, Roberta; Boreham, Colin A G; De Vito, Giuseppe; Ditroilo, Massimiliano; Pesce, Caterina
2014-12-01
Age-related reductions in strength and power are considered to negatively impact balance control, but the existence of a direct association is still an issue of debate. This is possibly due to the fact that balance assessment is complex, reflects different underlying physiologic mechanisms and involves quantitative measurements of postural sway or timing of performance during balance tasks. The present study evaluated the moderator effect of static postural control on the association of power and strength with dynamic balance tasks. Fifty-seven healthy 65-75 year old individuals performed tests of dynamic functional balance (walking speed under different conditions) and of strength, power and static postural control. Dynamic balance performance (walking speed) was associated with lower limb strength and power, as well as postural control under conditions requiring postural adjustments (narrow surface walking r(2) = 0.31, p < 0.001). An interaction effect between strength and static postural control was found with narrow surface walking and talking while walking (change of β 0.980, p < 0.001 in strength for 1 SD improvements in static postural control for narrow walking, and [Formula: see text] -0.730, p < 0.01 in talking while walking). These results indicate that good static postural control facilitates the utilisation of lower limb strength to better perform complex, dynamic functional balance tasks. Practical implications for assessment and training are discussed.
Noah, Sean; Gibson-Horn, Cynthia; Vincenzo, Jennifer L
2018-01-18
The Centers for Disease Control and Prevention estimated that there were 29 million falls and 7 million injuries in 2014 in the United States. Falls, decreased balance, and mobility disability are common in older adults and often result in loss of independence. Finding interventions to address these issues is important, as this age group is growing exponentially. Prior studies indicate balance and mobility can be improved by the balance-based torso-weighting (BBTW) assessment implemented through wear of a balance orthotic (BO). This study sought to determine the impact of wearing a BO on balance, mobility, and fall risk over time. This quasiexperimental, 1-group pre-/posttest study investigated the effect of 4 months of daily wear (4 hours per day) of a BO on mobility, balance, and falls efficacy in 30 older adults living in a retirement community with limited mobility defined by a Short Physical Performance Battery (SPPB) score range between 4 and 9 out of a maximum of 12 points. Pre- and posttreatment tests included the Timed Up and Go (TUG), Functional Gait Assessment (FGA), Falls Efficacy Scale (FES), and SPPB. Participants received the BBTW assessment, consisting of individualized assessment of 3-dimensional balance loss, and treatment with a strategically weighted and fitted BO to control balance loss. The BO was worn twice a day for 2 hours (4 hours per day) for 4 months. Participants continued regular activity and no other interventions were provided. All posttests were conducted after 4 months and at least 8 hours after removal of the BO. Subitems from the SPPB (gait speed [GS], 5-time sit-to-stand [FTSST], and tandem stance time [TST]) were analyzed as separate outcome measures. Data were analyzed with paired t tests with a Bonferroni correction (SPPB, GS, FGA, and FES) when statistical assumptions were met. Data that did not meet the statistical assumptions of the paired t test (FTSST, TST, and TUG) were analyzed with Wilcoxon signed rank tests with a Bonferroni correction. Twenty-four subjects, average age 87 (5.7) years, completed the study. Paired t tests indicated that mean group scores on the SPPB, GS, and FGA significantly improved from pre- to posttests. The SPPB improved by 1.3 points (P = .001). GS improved by 0.09 m/s (P = .004) and both mean values improved beyond fall risk cutoffs. The FGA also improved by 2.6 points (P = .001). There were no significant changes in FES scores (P = .110). Wilcoxon signed rank tests indicated median group scores of the FTSST significantly improved from pre- to posttests by 7.4 seconds (P = .002) and median TUG times improved by 3.5 seconds (P = .004). There were no changes in TST (P = .117). This study suggests that wearing a BO for 4 hours per day for 4 months results in improvements in functional assessments related to fall risk (SPPB, GS, FGA, TUG, and FTSST) in a group of older adult participants with limited mobility.
Tally, Zachary; Boetefuer, Laura; Kauk, Courtney; Perez, Gabriela; Schrand, Lorraine; Hoder, Jeffrey
2017-10-01
Physical activity and exercise interventions are useful in facilitating the functional recovery of those with chronic stroke and, routinely, are gait-specific. While treadmill training has proven useful in gait performance recovery post-stroke, its efficacy on balance dysfunction has not been systematically reviewed. The purpose of this systematic review was to determine the effect of treadmill training (TT) interventions on balance dysfunction in individuals with chronic stroke. A systematic literature search of PubMed, EMBASE, and CINAHL was performed. Eligible randomized controlled trials were published between 2007 and 2016. Selected trials investigated TT interventions in persons with chronic stroke and implemented at least one objective balance measure. Methodological quality was assessed using PEDro criteria. Eight studies met eligibility criteria and were included in the qualitative analysis. Studies differed in TT implementation and use of adjunctive treatments; however, all trials demonstrated improvements in balance measures that were as effective, if not more so, than conventional physical therapy treatments, including targeted balance training. This review recognized moderate evidence in favor of TT interventions in balance and stroke rehabilitation programs. With TT, intensity may be a more critical factor than specificity and may offer additional carryover to recovery parameters of postural control and balance, beyond gait performance. It is recommended that clinicians utilizing TT incorporate objective measures of balance to assess the potential for skill transference and improvements in balance. Higher quality studies and additional research are needed to denote critical parameters by which improvements in balance may be optimized.
Lee, So Hyun; Byun, Seung Deuk; Kim, Chul Hyun; Go, Jin Young; Nam, Hyeon Uk; Huh, Jin Seok; Jung, Tae Du
2012-08-01
To investigate the feasibility and effects of balance training with a newly developed Balance Control Trainer (BCT) that applied the concept of vertical movement for the improvements of mobility and balance in chronic stroke patients. Forty chronic stroke patients were randomly assigned to an experimental or a control group. The experimental group (n=20) underwent training with a BCT for 20 minutes a day, 5 days a week for 4 weeks, in addition to concurrent conventional physical therapy. The control group (n=20) underwent only conventional therapy for 4 weeks. All participants were assessed by: the Functional Ambulation Categories (FAC), 10-meter Walking Test (10mWT), Timed Up and Go test (TUG), Berg Balance Scale (BBS), Korean Modified Barthel Index (MBI), and Manual Muscle Test (MMT) before training, and at 2 and 4 weeks of training. There were statistically significant improvements in all parameters except knee extensor power at 2 weeks of treatment, and in all parameters except MBI which showed further statistically significant progress in the experimental group over the next two weeks (p<0.05). Statistically significant improvements on all measurements were observed in the experimental group after 4 weeks total. Comparing the two groups at 2 and 4 weeks of training respectively, 10mWT, TUG, and BBS showed statistically more significant improvements in the experimental group (p<0.05). Balance training with a newly developed BCT is feasible and may be an effective tool to improve balance and gait in ambulatory chronic stroke patients. Furthermore, it may provide additional benefits when used in conjunction with conventional therapies.
Alsubiheen, Abdulrahman; Petrofsky, Jerrold; Daher, Noha; Lohman, Everett; Balbas, Edward; Lee, Haneul
2017-04-01
Diabetes is a disease that leads to damage to the peripheral nerves which may eventually cause balance instability. The purpose of this study was to determine the effect of 8 weeks of Tai Chi (TC) training combined with mental imagery (MI) on soleus H-reflex and nerve conduction velocity (NCV) of the sural and superficial peroneal nerves in people with diabetes. Quasi-experimental, one group pretest-posttest design. Human Research Laboratory. A series of Yang style of Tai Chi classes with mental imagery, one hour, two sessions per week for 8 weeks was done. The Activities-specific Balance Confidence (ABC) Scale, Functional Reach Test (FRT), and One Leg Standing Test (OLS) were measured as functional data. Hoffman reflex (H-reflex), and sural and superficial peroneal NCV were measured as main outcomes. All functional outcomes measures were significantly improved after the intervention (p<0.01). In the H-reflex, there was a significant increase in amplitude (μV) after completing 8 weeks of TC exercise (p=0.02). In the sural nerve, the velocity (p=0.01), amplitude (p=0.01), and latency (p=0.01) were significantly improved between pre and post-test. In the superficial peroneal nerve, significant improvements were observed in (p=0.02) and latency (p=0.01), but not in amplitude (μV) (p>0.05). Combining TC intervention with MI theory showed an improvement in the H-reflex and NCV tests, which suggests improved balance and walking stability. Copyright © 2017 Elsevier Ltd. All rights reserved.
Santos, Suhaila M; da Silva, Rubens A; Terra, Marcelle B; Almeida, Isabela A; de Melo, Lúcio B; Ferraz, Henrique B
2017-04-01
Evidences have shown that physiotherapy programs may improve the balance of individuals with Parkinson's disease (PD), although it is not clear which specific exercise program is better. The aim of this study was to compare the effectiveness of balance versus resistance training on postural control measures in PD patients. Randomized controlled trial. The study was conducted in a physiotherapy outpatient clinic of a university hospital. A total of 40 PD participants were randomly divided into two groups: balance training (BT) and resistance training (RT). The BT group focused on balance training, functional independence and gait while the RT group performed resistance exercises emphasizing the lower limbs and trunk, both supervised by trained physiotherapists. Therapy sessions were held twice a week (at 60 minutes), totaling 24 sessions. The primary outcome was evaluated by force platform with center of pressure sway measures in different balance conditions and the secondary outcome was evaluated by Balance Evaluation Systems Test (BESTest) scale to determine the effects of the intervention on postural control. Significant improvement of postural control (pre vs. post 15.1 vs. 9.6 cm2) was only reported in favor of BT group (d=1.17) for one-legged stand condition on force platform. The standardized mean difference between groups was significantly (P<0.02), with 36% of improvement for BT vs. 0.07% for RT on this condition. Significant improvement (P<0.05) was also observed in favor of BT (in mean 3.2%) for balance gains in some BESTest scores, when compared to RT group (-0.98%). Postural control in Parkinson's disease is improved when training by a directional and specific balance program than a resistance training program. Balance training is superior to resistance training in regard to improving postural control of individuals with PD. Gold standard instruments (high in cost and difficult to access) were used to assess balance, as well as scales with clinical applicability (low cost, easily acceptable, applicable and valid), which can guide the management of physiotherapists both in their decision-making and in clinical practice.
Laufer, Yocheved; Dar, Gali; Kodesh, Einat
2014-01-01
Background Exercise programs that challenge an individual’s balance have been shown to reduce the risk of falls among older adults. Virtual reality computer-based technology that provides the user with opportunities to interact with virtual objects is used extensively for entertainment. There is a growing interest in the potential of virtual reality-based interventions for balance training in older adults. This work comprises a systematic review of the literature to determine the effects of intervention programs utilizing the Nintendo Wii console on balance control and functional performance in independently functioning older adults. Methods Studies were obtained by searching the following databases: PubMed, CINAHL, PEDro, EMBASE, SPORTdiscus, and Google Scholar, followed by a hand search of bibliographic references of the included studies. Included were randomized controlled trials written in English in which Nintendo Wii Fit was used to enhance standing balance performance in older adults and compared with an alternative exercise treatment, placebo, or no treatment. Results Seven relevant studies were retrieved. The four studies examining the effect of Wii-based exercise compared with no exercise reported positive effects on at least one outcome measure related to balance performance in older adults. Studies comparing Wii-based training with alternative exercise programs generally indicated that the balance improvements achieved by Wii-based training are comparable with those achieved by other exercise programs. Conclusion The review indicates that Wii-based exercise programs may serve as an alternative to more conventional forms of exercise aimed at improving balance control. However, due to the great variability between studies in terms of the intervention protocols and outcome measures, as well as methodological limitations, definitive recommendations as to optimal treatment protocols and the potential of such an intervention as a safe and effective home-based treatment cannot be made at this point. PMID:25364238
Li, Fuzhong
2014-03-01
Tai Ji Quan, developed as a martial art, has traditionally served multiple purposes, including self-defense, competition/performance, and health promotion. With respect to health, the benefits historically and anecdotally associated with Tai Ji Quan are now being supported by scientific and clinical research, with mounting evidence indicating its potential value in preventing and managing various diseases and improving well-being and quality of life in middle-aged and older adults. The research findings produced to date have both public health significance and clinical relevance. However, because of its roots in the martial arts, transforming traditional Tai Ji Quan movements and training approaches into contemporary therapeutic programs and functional applications is needed to maximize its ultimate utility. This paper addresses this issue by introducing Tai Ji Quan: Moving for Better Balance , a functional therapy that involves the use of Tai Ji Quan principles and Yang-style-based movements to form an innovative, contemporary therapeutic approach that integrates motor, sensory, and cognitive components to improve postural control, gait, and mobility for older adults and those who have neurodegenerative movement impairments. It provides a synergy of traditional and contemporary Tai Ji Quan practice with the ultimate goal of improving balance and gait, enhancing performance of daily functional tasks, and reducing incidence of falls among older adults.
Cabanas-Valdés, Rosa; Bagur-Calafat, Caritat; Girabent-Farrés, Montserrat; Caballero-Gómez, Fernanda Mª; du Port de Pontcharra-Serra, Helena; German-Romero, Ana; Urrútia, Gerard
2017-11-01
Analyse the effect of core stability exercises in addition to conventional physiotherapy training three months after the intervention ended. A randomized controlled trial. Outpatient services. Seventy-nine stroke survivors. In the intervention period, both groups underwent conventional physiotherapy performed five days/week for five weeks, and in addition the experimental group performed core stability exercises for 15 minutes/day. Afterwards, during a three-month follow-up period, both groups underwent usual care that could eventually include conventional physiotherapy or physical exercise but not in a controlled condition. Primary outcome was trunk control and dynamic sitting balance assessed by the Spanish-Version of Trunk Impairment Scale 2.0 and Function in Sitting Test. Secondary outcomes were standing balance and gait evaluated by the Berg Balance Scale, Tinetti Test, Brunel Balance Assessment, Spanish-Version of Postural Assessment Scale for Stroke and activities of daily living using the Barthel Index. A total of 68 subjects out of 79 completed the three-month follow-up period. The mean difference (SD) between groups was 0.78 (1.51) points ( p = 0.003) for total score on the Spanish-Version of Trunk Impairment Scale 2.0, 2.52 (6.46) points ( p = 0.009) for Function in Sitting Test, dynamic standing balance was 3.30 (9.21) points ( p= 0.009) on the Berg Balance Scale, gait was 0.82 (1.88) points ( p = 0.002) by Brunel Balance Assessment (stepping), and 1.11 (2.94) points ( p = 0.044) by Tinetti Test (gait), all in favour of core stability exercises. Core stability exercises plus conventional physiotherapy have a positive long-term effect on improving dynamic sitting and standing balance and gait in post-stroke patients.
Peripheral neuropathy: an often-overlooked cause of falls in the elderly.
Richardson, J K; Ashton-Miller, J A
1996-06-01
Peripheral neuropathy is common in the elderly and results in impairments in distal proprioception and strength that hinder balance and predispose them to falls. The loss of heel reflexes, decreased vibratory sense that improves proximally, impaired position sense at the great toe, and inability to maintain unipedal stance for 10 seconds in three attempts all suggest functionally significant peripheral neuropathy. Physicians can help their patients with peripheral neuropathy to prevent falls by teaching them and their families about peripheral nerve dysfunction and its effects on balance and by advising patients to substitute vision for the lost somatosensory function, correctly use a cane, wear proper shoes and orthotics, and perform balance and upper extremity strengthening exercises.
Overend, Tom J; Spaulding, Sandi J; Zecevic, Aleksandra; Kramer, John F
2015-01-01
Objectives: To determine the effectiveness of balance exercises in the acute post-operative phase following total hip arthroplasty or total knee arthroplasty. Methods: Patients who had total hip arthroplasty (n = 30) or total knee arthroplasty (n = 33) were seen in their residence 1–2 times per week for 5 weeks. At the first post-operative home visit, patients were randomly assigned to either typical (TE, n = 33) or typical plus balance (TE + B, n = 30) exercise groups. The TE group completed seven typical surgery-specific joint range-of-motion and muscle strengthening exercises, while the TE + B group completed the typical exercises plus three balance exercises. Patients were assessed before and 5 weeks after administering the rehabilitation program using four outcome measures: (1) the Berg Balance Scale, (2) the Timed Up and Go test, (3) the Western Ontario McMaster Universities Osteoarthritis Index, and (4) the Activities-specific Balance Confidence Scale. Results: Post-intervention scores for all four outcome measures were significantly improved (p < 0.01) over baseline scores. Patients who participated in the TE + B group demonstrated significantly greater improvement on the Berg Balance Scale and the Timed Up and Go tests (p < 0.01). Conclusion: Balance exercises added to a typical rehabilitation program resulted in significantly greater improvements in balance and functional mobility compared to typical exercises alone. PMID:26770765
Kim, Kyoung; Lee, Dong-Kyu; Jung, Sang-In
2015-01-01
[Purpose] To investigate the effect of coordination movement using the Proprioceptive Neuromuscular Facilitation pattern underwater on the balance and gait of stroke patients. [Subjects and Methods] Twenty stroke patients were randomly assigned to an experimental group that performed coordination movement using the Proprioceptive Neuromuscular Facilitation pattern underwater and a control group (n =10 each). Both the groups underwent neurodevelopmental treatment, and the experimental group performed coordination movement using the Proprioceptive neuromuscular facilitation pattern underwater. Balance was measured using the Berg Balance Scale and Functional Reach Test, and gait was measured using the 10-Meter Walk Test and Timed Up and Go Test. To compare in-group data before and after the intervention, paired t-test was used. Independent t-test was used to compare differences in the results of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test before and after the intervention between the groups. [Results] Comparison within the groups showed significant differences in the results of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test before and after the experimental intervention. On comparison between the groups, there were greater improvements in the scores of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test in the experimental group. [Conclusion] The findings demonstrate that coordination movement using the Proprioceptive Neuromuscular Facilitation pattern under water has a significant effect on the balance and gait of stroke patients. PMID:26834335
Intensive strength and balance training with the Kinect console (Xbox 360) in a patient with CMT1A.
Pagliano, Emanuela; Foscan, Maria; Marchi, Alessia; Corlatti, Alice; Aprile, Giorgia; Riva, Daria
2017-08-01
Effective drugs for type 1A Charcot-Marie-Tooth (CMT1A) disease are not available. Various forms of moderate exercise are beneficial, but few data are available on the effectiveness of exercise in CMT1A children. To investigate the feasibility and effectiveness of exercises to improve ankle strength and limb function in a child with CMT1A. Outpatient clinic. Nine-year-old boy with CMT1A. The rehabilitation program consisted of ankle exercises and Kinect videogame-directed physical activities (using an Xbox 360 console/movement sensor) that aimed to improve balance and limb strength. The program was given 3 times a week for 5 weeks. The child was assessed at baseline, after 5 weeks, and 3 and 6 months after. By the end of follow-up, child balance and endurance had improved, but ankle strength did not. The encouraging results for balance and endurance justify further studies on videogame-directed activities in CMT1A children/adolescents.
The Use of Nintendo Wii in the Rehabilitation of Poststroke Patients: A Systematic Review.
Dos Santos, Luan Rafael Aguiar; Carregosa, Adriani Andrade; Masruha, Marcelo Rodrigues; Dos Santos, Pietro Araújo; Da Silveira Coêlho, Marília Lira; Ferraz, Daniel Dominguez; Da Silva Ribeiro, Nildo Manoel
2015-10-01
To evaluate the effectiveness of the video game console Nintendo Wii (NW) in motor function, balance, and functional independence in the treatment of poststroke patients and to identify which games are commonly used in therapy. Randomized controlled trials were researched in MEDLINE, Cochrane Library, PEDro, CAPES Periodic, BIREME, and LILACS databases, covering publications up to March 31, 2014. The assessment of methodological quality was performed using the PEDro Scale as reference. The 5 studies included for analysis showed that NW can provide an improvement of motor function of the individual, but the data are unclear when it comes to the balance and functional independence. It was concluded that there is little evidence to ensure the effectiveness and support the inclusion of the treatment with NW in patients with sequelae caused by a stroke; however, some of the studies analyzed suggest that NW can provide improvement in motor function. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Lin, Guan-Yu; Chan, Hsiu-Yu; Cheng, Chun-An; Lin, Lan-Ping; Peng, Giia-Sheun; Hsiao, Pei-Min; Lin, Chun-Chieh; Lin, Chun-Chih; Lee, Jiunn-Tay
2016-01-01
This study aimed to explore the effect of functional foods on aphasia related to a previous ischemic stroke. When stroke-related neurological deficits result in physical dependency and poor selfcare that persists longer than 6 months, full recovery is almost impossible and the patient often requires long-term care. The functional foods, EASE123 and BioBalance#6, include numerous plant and marine-based nutrient supplements that could prove beneficial for such patients. This open-labelled study included 10 patients diagnosed with prior ischemic stroke and aphasia lasting longer than 6 months. Each patient was administered 6 tablets of EASE123 at 10:30 AM and at 90 minutes before sleeping, and 3 tablets of BioBalance# 6 at 2:30 PM. After a treatment period of 12 weeks, the patients were followed during a 4-week withdrawal period. Functional improvement was assessed by scores and subscores on the Concise Chinese Aphasia Test (CCAT) at weeks 4, 8, 12, and 16. Average total CCAT scores and matching ability improved significantly at weeks 4, 8, 12, and 16 (p<0.05). Simple response scores improved significantly at weeks 8 and 12 (p<0.05). Auditory comprehension improved significantly at weeks 4 and 12 (p<0.05), and reading comprehension, at week 12 (p<0.05). Repetition ability improved significantly at weeks 8, 12, and 16 (p<0.05), and spontaneous writing, at weeks 4, 12, and 16 (p<0.05). Matching, repetition, and average total CCAT scores improved over the course of the study. Therefore, 6 months after ischemic stroke, EASE123 and BioBalance# 6 administration may improve stroke-related aphasia.
The gait and balance of patients with diabetes can be improved: a randomised controlled trial.
Allet, L; Armand, S; de Bie, R A; Golay, A; Monnin, D; Aminian, K; Staal, J B; de Bruin, E D
2010-03-01
Gait characteristics and balance are altered in diabetic patients. Little is known about possible treatment strategies. This study evaluates the effect of a specific training programme on gait and balance of diabetic patients. This was a randomised controlled trial (n=71) with an intervention (n=35) and control group (n=36). The intervention consisted of physiotherapeutic group training including gait and balance exercises with function-orientated strengthening (twice weekly over 12 weeks). Controls received no treatment. Individuals were allocated to the groups in a central office. Gait, balance, fear of falls, muscle strength and joint mobility were measured at baseline, after intervention and at 6-month follow-up. The trial is closed to recruitment and follow-up. After training, the intervention group increased habitual walking speed by 0.149 m/s (p<0.001) compared with the control group. Patients in the intervention group also significantly improved their balance (time to walk over a beam, balance index recorded on Biodex balance system), their performance-oriented mobility, their degree of concern about falling, their hip and ankle plantar flexor strength, and their hip flexion mobility compared with the control group. After 6 months, all these variables remained significant except for the Biodex sway index and ankle plantar flexor strength. Two patients developed pain in their Achilles tendon: the progression for two related exercises was slowed down. Specific training can improve gait speed, balance, muscle strength and joint mobility in diabetic patients. Further studies are needed to explore the influence of these improvements on the number of reported falls, patients' physical activity levels and quality of life. ClinicalTrials.gov NCT00637546 This work was supported by the Swiss National Foundation (SNF): PBSKP-123446/1/
Trombetti, Andrea; Hars, Mélany; Herrmann, François R; Kressig, Reto W; Ferrari, Serge; Rizzoli, René
2011-03-28
Falls occur mainly while walking or performing concurrent tasks. We determined whether a music-based multitask exercise program improves gait and balance and reduces fall risk in elderly individuals. We conducted a 12-month randomized controlled trial involving 134 community-dwelling individuals older than 65 years, who are at increased risk of falling. They were randomly assigned to an intervention group (n = 66) or a delayed intervention control group scheduled to start the program 6 months later (n = 68). The intervention was a 6-month multitask exercise program performed to the rhythm of piano music. Change in gait variability under dual-task condition from baseline to 6 months was the primary end point. Secondary outcomes included changes in balance, functional performances, and fall risk. At 6 months, there was a reduction in stride length variability (adjusted mean difference, -1.4%; P < .002) under dual-task condition in the intervention group, compared with the delayed intervention control group. Balance and functional tests improved compared with the control group. There were fewer falls in the intervention group (incidence rate ratio, 0.46; 95% confidence interval, 0.27-0.79) and a lower risk of falling (relative risk, 0.61; 95% confidence interval, 0.39-0.96). Similar changes occurred in the delayed intervention control group during the second 6-month period with intervention. The benefit of the intervention on gait variability persisted 6 months later. In community-dwelling older people at increased risk of falling, a 6-month music-based multitask exercise program improved gait under dual-task condition, improved balance, and reduced both the rate of falls and the risk of falling. Trial Registration clinicaltrials.gov Identifier: NCT01107288.
Demirci, Serdar; Kinikli, Gizem Irem; Callaghan, Michael J; Tunay, Volga Bayrakci
2017-12-01
The aim of this study was to compare the short-term effects of Mobilization with movement (MWM) and Kinesiotaping (KT) on patients with patellofemoral pain (PFP) respect to pain, function and balance. Thirty-five female patients diagnosed with unilateral PFP were assigned into 2 groups. The first group (n = 18) received two techniques of MWM intervention (Straight Leg-Raise with Traction and Tibial Gliding) while KT was applied to the other group (n = 17). Both groups received 4 sessions of treatment twice a week for a period of 2 weeks with a 6-week-home exercise program. Pain severity, knee range of motion, hamstring flexibility, and physical performance (10-step stair climbing test, timed up and go test), Kujala Patellofemoral Pain Scoring and Y-Balance test were assessed. These outcomes were evaluated before the treatment, 45 min after the initial treatment, at the end of the 4-session-treatment during 2-week period and 6 weeks later in both groups. Both treatment groups had statistically significant improvements on pain, function and balance (p < 0.05). Pain at rest (p = 0.008) and the hamstring muscle flexibility (p = 0.027) were demonstrated significant improvements in favor of MWM group. Our results demonstrated similar results for both treatment techniques in terms of pain, function and balance. The MWM technique with exercise had a short-term favorable effect on pain at rest and hamstring muscle flexibility than the KT technique with exercise in patients with PFP. Level I, therapeutic study. Copyright © 2017 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Tong, Raymond K Y; Ng, Maple F W; Li, Leonard S W; So, Elaine F M
2006-09-01
This case report describes the implementation of gait training intervention that used an electromechanical gait trainer with simultaneous functional electrical stimulation (FES) for 2 patients with acute ischemic stroke. Two individuals with post-stroke hemiplegia of less than 6 weeks' duration participated in a 4-week gait training program as an adjunct to physical therapy received at a hospital. After the 4-week intervention, both patients were discharged from the hospital, and they returned after 6 months for a follow-up evaluation. By the end of the 4-week intervention, both patients had shown improvements in scores on the Barthel Index, Berg Balance Scale, Functional Ambulation Categories Scale, 5-m timed walking test, and Motricity Index. In the 6-month follow-up evaluation, both patients continued to have improvements in all outcome measures. This case report shows that, following the use of an electromechanical gait trainer simultaneously with FES, patients after acute stroke had improvements in gait performance, functional activities, balance, and motor control in the long term.
Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe
2015-01-01
To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening training was applied to the knee-ankle muscles bilaterally to the isokinetic group 5 days a week for 3 weeks. Biodex System 3 Pro Multijoint System isokinetic dynamometer was used for isokinetic evaluation. The groups were assessed by Functional Independence Measure, Stroke Specific Quality of Life Scale, Timed 10-Meter Walk Test, Six-Minute Walk Test, Stair-Climbing Test, Timed up&go Test, Berg Balance Scale, and Rivermead Mobility Index. Compared with baseline, the isokinetic PT values of the knee and ankle on both sides significantly increased in all cases. PT change values were significantly higher in the isokinetic group than the control group (P<0.025). Furthermore, the quality of life, gait, balance and mobility index values improved significantly in both groups, besides the increase levels were found significantly higher in the isokinetic group (P<0.025, P<0.05). Bilateral isokinetic strengthening training in addition to conventional rehabilitation program after stroke seems to be effective on strengthening muscles on both sides, improving functional parameters, gait, balance and life quality.
Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe
2015-01-01
Objective: To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Methods: Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening training was applied to the knee-ankle muscles bilaterally to the isokinetic group 5 days a week for 3 weeks. Biodex System 3 Pro Multijoint System isokinetic dynamometer was used for isokinetic evaluation. The groups were assessed by Functional Independence Measure, Stroke Specific Quality of Life Scale, Timed 10-Meter Walk Test, Six-Minute Walk Test, Stair-Climbing Test, Timed up&go Test, Berg Balance Scale, and Rivermead Mobility Index. Results: Compared with baseline, the isokinetic PT values of the knee and ankle on both sides significantly increased in all cases. PT change values were significantly higher in the isokinetic group than the control group (P<0.025). Furthermore, the quality of life, gait, balance and mobility index values improved significantly in both groups, besides the increase levels were found significantly higher in the isokinetic group (P<0.025, P<0.05). Conclusion: Bilateral isokinetic strengthening training in addition to conventional rehabilitation program after stroke seems to be effective on strengthening muscles on both sides, improving functional parameters, gait, balance and life quality. PMID:26629238
Welfare, Tax Burden and Fiscal Balance in Artificial Societies
NASA Astrophysics Data System (ADS)
Kikuchi, Toshiko
Japan's social security system is facing a crisis by short-sighted policies to balance of the accounts in a financial crisis. However, such a balance of accounts does not necessarily bring remedy of financial difficulties. If it is possible to reduce the social security payments because the weak become independent, it is considered that short-sighted reforms cause a further financial crisis. This study explores how welfare and tax burden influence fiscal balance using multi-agent simulations. The results of simulation show that fiscal balance is improved by high-welfare than a cut in fiscal expenditures, and that welfare reducing is impossible unless the three relations of social configuration (market, obligatory, and communal relations) function in balance with each other.
Giagazoglou, Paraskevi; Kokaridas, Dimitrios; Sidiropoulou, Maria; Patsiaouras, Asterios; Karra, Chrisanthi; Neofotistou, Konstantina
2013-09-01
Balance and motor impairments are most evident among inactive individuals with ID that might be particularly susceptible to a loss of basic functioning and further limit the person's autonomy in activities of daily living. The aim of the study was to assess the effect of a 12-week trampoline exercise intervention program on motor and balance ability of school aged children with intellectual disability (ID). Eighteen healthy schools aged children (mean age=10.3 ± 1.6 years) with moderate ID were assigned either to an experimental group (n=9) or a control group (n=9). The experiment group attended a 12 weeks trampoline training intervention program consisting of daily individualized 20-min sessions, while the control group followed the regular school schedule. Balance was assessed using three tasks of increased difficulty (double-leg stance with eyes opened or closed, and one-leg stance with eyes opened) performed while standing on an electronic pressure platform (EPS). Motor performance of all participants was tested using sit and reach test and long and vertical jump tests all derived from the Eurofit Test Battery of physical fitness. Trampoline intervention resulted in significant improvements of participants' performance in all motor and balance tests. In conclusion, trampoline training can be an effective intervention for improving functional outcomes and can be recommended as an alternative mode of physical activity programming for improving balance and motor performance. Furthermore, it also supports the idea that individuals with ID require enjoyable and interesting intervention programs such as the trampoline program used in this study so as to remain active and consequently to facilitate their overall development and promote a more active and healthier way of life. Copyright © 2013 Elsevier Ltd. All rights reserved.
Stockburger, Carola; Miano, Davide; Pallas, Thea; Friedland, Kristina; Müller, Walter E
2016-01-01
The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer's disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity. We here report that piracetam at therapeutically relevant concentrations improves neuritogenesis in the human cell line SH-SY5Y over conditions mirroring the whole spectrum of age-associated cognitive decline. These effects go parallel with improvement of impaired mitochondrial dynamics shifting back fission and fusion balance to the energetically more favorable fusion site. Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP) function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. These changes are also reduced by piracetam. These findings suggest the mPTP as an important target for the beneficial effects of piracetam on mitochondrial function.
Stockburger, Carola; Miano, Davide; Pallas, Thea; Müller, Walter E.
2016-01-01
The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer's disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity. We here report that piracetam at therapeutically relevant concentrations improves neuritogenesis in the human cell line SH-SY5Y over conditions mirroring the whole spectrum of age-associated cognitive decline. These effects go parallel with improvement of impaired mitochondrial dynamics shifting back fission and fusion balance to the energetically more favorable fusion site. Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP) function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. These changes are also reduced by piracetam. These findings suggest the mPTP as an important target for the beneficial effects of piracetam on mitochondrial function. PMID:27747106
Jadczak, Agathe D; Makwana, Naresh; Luscombe-Marsh, Natalie; Visvanathan, Renuka; Schultz, Timothy J
2018-03-01
This umbrella review aimed to determine the effectiveness of exercise interventions, alone or in combination with other interventions, in improving physical function in community-dwelling older people identified as pre-frail or frail. Exercise is said to have a positive impact on muscle mass and strength which improves physical function and hence is beneficial for the treatment of frailty. Several systematic reviews discuss the effects of exercise interventions on physical function parameters, such as strength, mobility, gait, balance and physical performance, and indicate that multi-component exercise, including resistance, aerobic, balance and flexibility training, appears to be the best way in which to improve physical function parameters in frail older people. However, there is still uncertainty as to which exercise characteristics (type, frequency, intensity, duration and combinations) are the most effective and sustainable over the long-term. Participants were adults, 60 years or over, living in the community and identified as pre-frail or frail. Quantitative systematic reviews, with or without meta-analysis that examined the effectiveness of exercise interventions of any form, duration, frequency and intensity, alone or in combination with other interventions designed to alter physical function parameters in frail older people, were considered. The quantitative outcome measures were physical function, including muscular strength, gait, balance, mobility and physical performance. An iterative search strategy for ten bibliometric databases and gray literature was developed. Critical appraisal of seven systematic reviews was conducted independently by two reviewers using a standard Joanna Briggs Institute tool. Data was extracted independently by two reviewers using a standard Joanna Briggs Institute data extraction tool and summarized using a narrative synthesis approach. Seven systematic reviews were included in this umbrella review, with a total of 58 relevant randomized controlled trials and 6927 participants. Five systematic reviews examined the effects of exercise only, while two systematic reviews reported on exercise in combination with a nutritional approach, including protein supplementations, as well as fruit and dairy products. The average exercise frequency was 2-3 times per week (mean 3.0 ± 1.5 times per week; range 1-7 weekly) for 10-90 minutes per session (mean of 52.0 ± 16.5 mins) and a total duration of 5-72 weeks with the majority lasting a minimum of 2.5 months (mean 22.7 ± 17.7 weeks). Multi-component exercise interventions can currently be recommended for pre-frail and frail older adults to improve muscular strength, gait speed, balance and physical performance, including resistance, aerobic, balance and flexibility tasks. Resistance training alone also appeared to be beneficial, in particular for improving muscular strength, gait speed and physical performance. Other types of exercise were not sufficiently studied and their effectiveness is yet to be established. Interventions for pre-frail and frail older adults should include multi-component exercises, including in particular resistance training, as well as aerobic, balance and flexibility tasks. Future research should adopt a consistent definition of frailty and investigate the effects of other types of exercise alone or in combination with nutritional interventions so that more specific recommendations can be made.
McMain, Shelley; Links, Paul S; Guimond, Tim; Wnuk, Susan; Eynan, Rahel; Bergmans, Yvonne; Warwar, Serine
2013-01-01
This exploratory study examined specific emotion processes and cognitive problem-solving processes in individuals with borderline personality disorder (BPD), and assessed the relationship of these changes to treatment outcome. Emotion and cognitive problem-solving processes were assessed using the Toronto Alexithymia Scale, the Linguistic Inquiry Word Count, the Derogatis Affect Balance Scale, and the Problem Solving Inventory. Participants who showed greater improvements in affect balance, problem solving, and the ability to identify and describe emotions showed greater improvements on treatment outcome, with affect balance remaining statistically significant under the most conservative conditions. The results provide preliminary evidence to support the theory that specific improvements in emotion and cognitive processes are associated with positive treatment outcomes (symptom distress, interpersonal functioning) in BPD. The implications for treatment are discussed.
Tang, Ada; Eng, Janice J; Krassioukov, Andrei V; Tsang, Teresa S M; Liu-Ambrose, Teresa
2016-11-11
To determine the effects of high versus low-intensity exercise on cognitive function following stroke. Secondary analysis from a randomized controlled trial with blinded assessors. 50-80 years old, living in the community, > 1 year post-stroke. Participants were randomized into a high-intensity Aerobic Exercise or low-intensity non-aerobic Balance/Flexibility program. Both programs were 6 months long, with 3 60-min sessions/week. Verbal item and working memory, selective attention and conflict resolution, set shifting were assessed before and after the program. Forty-seven participants completed the study (22/25 in Aerobic Exercise group, 25/25 in Balance/Flexibility group). There was an improvement in verbal item memory in both groups (time effect p = 0.04), and no between-group differences in improvement in the other outcomes (p > 0.27). There was no association between pre-exercise cognitive function and post-exercise improvement. In contrast to a small body of previous research suggesting positive benefits of exercise on cognition post-stroke, the current study found that 6 months of high or low intensity exercise was not effective in improving cognitive function, specifically executive functions. Further research in this area is warranted to establish the effectiveness of post-stroke exercise programs on cognition, and examine the mechanisms that underlie these changes.
Balci, Nilay Çömük; Tonga, Eda; Gülşen, Mustafa
2013-09-01
This pilot study aimed to investigate the effect of balance training by Tetraks Interactive Balance System (TIBS) on balance and fall risk in patients with mild to moderate Parkinson's disease. Four patients with Parkinson's disease between the ages of 56 and 70 years (61.25±6.70) were applied balance training for 3 weeks by TIBS. Sociodemographic features and physical properties of the subjects were recorded. Their motor performance was evaluated by the Unified Parkinson's Disease Rating Scale (UPDRS), balance was measured using the Berg Balance Scale (BBS), Functional Reach Test (FRT), Timed Up and Go Test (TUG), and the Standing on One Leg Balance Test (SOL) and, their fall risks were evaluated by TIBS. Evaluations were performed twice, before and after treatment. Following training, Parkinson's patients showed improvements in UPDRS, TUG, BBS, FRT, SOL and fall risk. Balance training by TIBS has positive effects on balance and decreases fall risk in Parkinson's disease patients.
Seidel, Oliver; Carius, Daniel; Kenville, Rouven; Ragert, Patrick
2017-09-01
Studies suggested that motor expertise is associated with functional and structural brain alterations, which positively affect sensorimotor performance and learning capabilities. The purpose of the present study was to unravel differences in motor skill learning and associated functional neuroplasticity between endurance athletes (EA) and nonathletes (NA). For this purpose, participants had to perform a multimodal balance task (MBT) training on 2 sessions, which were separated by 1 wk. Before and after MBT training, a static balance task (SBT) had to be performed. MBT-induced functional neuroplasticity and neuromuscular alterations were assessed by means of functional near-infrared spectroscopy (fNIRS) and electromyography (EMG) during SBT performance. We hypothesized that EA would showed superior initial SBT performance and stronger MBT-induced improvements in SBT learning rates compared with NA. On a cortical level, we hypothesized that MBT training would lead to differential learning-dependent functional changes in motor-related brain regions [such as primary motor cortex (M1)] during SBT performance. In fact, EA showed superior initial SBT performance, whereas learning rates did not differ between groups. On a cortical level, fNIRS recordings (time × group interaction) revealed a stronger MBT-induced decrease in left M1 and inferior parietal lobe (IPL) for deoxygenated hemoglobin in EA. Even more interesting, learning rates were correlated with fNIRS changes in right M1/IPL. On the basis of these findings, we provide novel evidence for superior MBT training-induced functional neuroplasticity in highly trained athletes. Future studies should investigate these effects in different sports disciplines to strengthen previous work on experience-dependent neuroplasticity. NEW & NOTEWORTHY Motor expertise is associated with functional/structural brain plasticity. How such neuroplastic reorganization translates into altered motor learning processes remains elusive. We investigated endurance athletes (EA) and nonathletes (NA) in a multimodal balance task (MBT). EA showed superior static balance performance (SBT), whereas MBT-induced SBT improvements did not differ between groups. Functional near-infrared spectroscopy recordings revealed a differential MBT training-induced decrease of deoxygenated hemoglobin in left primary motor cortex and inferior parietal lobe between groups. Copyright © 2017 the American Physiological Society.
McKeon, Patrick O; Hertel, Jay
2008-01-01
To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability.
Kim, Arim; Lee, Hye-Sun; Song, Chiang-Soon
2017-01-01
[Purpose] The purpose of this study was to examine the effects of interactive metronome training on the postural stability and upper extremity function of an individual with Parkinson's disease. [Subject and Methods] The participant of this case study was a 75-year-old female with Parkinson's disease diagnosed 7 years prior. This study was a single-subject research with an A-B-A design. She received IM training during the treatment phase (B phase) for 40 minutes per session. She was assessed pretest and posttest using the Berg balance scale and Wolf motor function test, and at baseline and the treatment phase using the measured box-and-block test and a Tetrax system. [Results] After training, the patient's static and dynamic balance, functional activity, and performance time of the upper extremity improved. Interactive metronome therapy improved the manual dexterity of both hands. Interactive metronome therapy also improved the limit of stability of the Parkinson's disease. [Conclusion] Though a case study, the results of this study suggest that IM therapy is effective at restoring the postural stability and upper extremity function of patients with Parkinson's disease.
Kim, Arim; Lee, Hye-Sun; Song, Chiang-Soon
2017-01-01
[Purpose] The purpose of this study was to examine the effects of interactive metronome training on the postural stability and upper extremity function of an individual with Parkinson’s disease. [Subject and Methods] The participant of this case study was a 75-year-old female with Parkinson’s disease diagnosed 7 years prior. This study was a single-subject research with an A-B-A design. She received IM training during the treatment phase (B phase) for 40 minutes per session. She was assessed pretest and posttest using the Berg balance scale and Wolf motor function test, and at baseline and the treatment phase using the measured box-and-block test and a Tetrax system. [Results] After training, the patient’s static and dynamic balance, functional activity, and performance time of the upper extremity improved. Interactive metronome therapy improved the manual dexterity of both hands. Interactive metronome therapy also improved the limit of stability of the Parkinson’s disease. [Conclusion] Though a case study, the results of this study suggest that IM therapy is effective at restoring the postural stability and upper extremity function of patients with Parkinson’s disease. PMID:28210066
2011-01-01
Background Acquired brain injury (ABI) is the main cause of death and disability among young adults. In most cases, survivors can experience balance instability, resulting in functional impairments that are associated with diminished health-related quality of life. Traditional rehabilitation therapy may be tedious. This can reduce motivation and adherence to the treatment and thus provide a limited benefit to patients with balance disorders. We present eBaViR (easy Balance Virtual Rehabilitation), a system based on the Nintendo® Wii Balance Board® (WBB), which has been designed by clinical therapists to improve standing balance in patients with ABI through motivational and adaptative exercises. We hypothesize that eBaViR, is feasible, safe and potentially effective in enhancing standing balance. Methods In this contribution, we present a randomized and controlled single blinded study to assess the influence of a WBB-based virtual rehabilitation system on balance rehabilitation with ABI hemiparetic patients. This study describes the eBaViR system and evaluates its effectiveness considering 20 one-hour-sessions of virtual reality rehabilitation (n = 9) versus standard rehabilitation (n = 8). Effectiveness was evaluated by means of traditional static and dynamic balance scales. Results The final sample consisted of 11 men and 6 women. Mean ± SD age was 47.3 ± 17.8 and mean ± SD chronicity was 570.9 ± 313.2 days. Patients using eBaViR had a significant improvement in static balance (p = 0.011 in Berg Balance Scale and p = 0.011 in Anterior Reaches Test) compared to patients who underwent traditional therapy. Regarding dynamic balance, the results showed significant improvement over time in all these measures, but no significant group effect or group-by-time interaction was detected for any of them, which suggests that both groups improved in the same way. There were no serious adverse events during treatment in either group. Conclusions The results suggest that eBaViR represents a safe and effective alternative to traditional treatment to improve static balance in the ABI population. These results have encouraged us to reinforce the virtual treatment with new exercises, so an evolution of the system is currently being developed. PMID:21600066
Gil-Gómez, José-Antonio; Lloréns, Roberto; Alcañiz, Mariano; Colomer, Carolina
2011-05-23
Acquired brain injury (ABI) is the main cause of death and disability among young adults. In most cases, survivors can experience balance instability, resulting in functional impairments that are associated with diminished health-related quality of life. Traditional rehabilitation therapy may be tedious. This can reduce motivation and adherence to the treatment and thus provide a limited benefit to patients with balance disorders. We present eBaViR (easy Balance Virtual Rehabilitation), a system based on the Nintendo® Wii Balance Board® (WBB), which has been designed by clinical therapists to improve standing balance in patients with ABI through motivational and adaptative exercises. We hypothesize that eBaViR, is feasible, safe and potentially effective in enhancing standing balance. In this contribution, we present a randomized and controlled single blinded study to assess the influence of a WBB-based virtual rehabilitation system on balance rehabilitation with ABI hemiparetic patients. This study describes the eBaViR system and evaluates its effectiveness considering 20 one-hour-sessions of virtual reality rehabilitation (n = 9) versus standard rehabilitation (n = 8). Effectiveness was evaluated by means of traditional static and dynamic balance scales. The final sample consisted of 11 men and 6 women. Mean ± SD age was 47.3 ± 17.8 and mean ± SD chronicity was 570.9 ± 313.2 days. Patients using eBaViR had a significant improvement in static balance (p = 0.011 in Berg Balance Scale and p = 0.011 in Anterior Reaches Test) compared to patients who underwent traditional therapy. Regarding dynamic balance, the results showed significant improvement over time in all these measures, but no significant group effect or group-by-time interaction was detected for any of them, which suggests that both groups improved in the same way. There were no serious adverse events during treatment in either group. The results suggest that eBaViR represents a safe and effective alternative to traditional treatment to improve static balance in the ABI population. These results have encouraged us to reinforce the virtual treatment with new exercises, so an evolution of the system is currently being developed.
Robot-guided ankle sensorimotor rehabilitation of patients with multiple sclerosis.
Lee, Yunju; Chen, Kai; Ren, Yupeng; Son, Jongsang; Cohen, Bruce A; Sliwa, James A; Zhang, Li-Qun
2017-01-01
People with multiple sclerosis (MS) often develop symptoms including muscle weakness, spasticity, imbalance, and sensory loss in the lower limbs, especially at the ankle, which result in impaired balance and locomotion and increased risk of falls. Rehabilitation strategies that improve ankle function may improve mobility and safety of ambulation in patients with MS. This pilot study investigated effectiveness of a robot-guided ankle passive-active movement training in reducing motor and sensory impairments and improving balance and gait functions. Seven patients with MS participated in combined passive stretching and active movement training using an ankle rehabilitation robot. Six of the patients finished robotic training 3 sessions per week over 6 weeks for a total of 18 sessions. Biomechanical and clinical outcome evaluations were done before and after the 6-week treatment, and at a follow-up six weeks afterwards. After six-week ankle sensorimotor training, there were increases in active range of motion in dorsiflexion, dorsiflexor and plantar flexor muscle strength, and balance and locomotion (p<0.05). Proprioception acuity showed a trend of improvement. Improvements in four biomechanical outcome measures and two of the clinical outcome measures were maintained at the 6-week follow-up. The study showed the six-week training duration was appropriate to see improvement of range of motion and strength for MS patients with ankle impairment. Robot-guided ankle training is potentially a useful therapeutic intervention to improve mobility in patients with MS. Copyright © 2016 Elsevier B.V. All rights reserved.
Bobić Lucić, Lana; Grazio, Simeon
2018-01-01
The objective of this study was to explore the impact of balance confidence on different activities of daily living (ADL) in older people with knee osteoarthritis (OA). Forty-seven consecutive participants with knee OA were included in this cross-sectional study. They were divided according to the results of the Activities-specific Balance Confidence (ABC) Scale into a group with a low level of confidence in physical functioning (ABC < 50, n = 22) and a group with moderate and high levels of confidence (ABC ≥ 50, n = 25). In the ABC < 50 group, the effect of pain on ADL, the physician's global assessment of the disease, and the Western Ontario and McMaster Universities Osteoarthritis Index scores were significantly higher, while quality of life (Short form-36) was lower compared to the ABC ≥ 50 group. No significant difference was found between the two groups regarding the static and dynamic balance measurements. Older people with knee OA who were less confident in their daily physical activities had more physical difficulties and a greater effect of pain on ADL, lower quality of life, and a higher physician's global assessment, but no differences were obtained in balance tests. In people with knee OA, decreased balance confidence is associated with more physical difficulties, an increased effect of pain on ADL, and lower quality of life. An improved awareness of decreased balance confidence may lead to more effective management of older people with knee OA by improving their mobility and QOL through rehabilitation. Furthermore, future research in that direction is warranted.
Prehn, Kristin; Jumpertz von Schwartzenberg, Reiner; Mai, Knut; Zeitz, Ulrike; Witte, A Veronica; Hampel, Dierk; Szela, Anna-Maria; Fabian, Sonja; Grittner, Ulrike; Spranger, Joachim; Flöel, Agnes
2017-03-01
Dietary modifications such as caloric restriction (CR) have been suggested as a means to improve memory and prevent age-related decline. However, it is unclear whether those effects remain stable over time or are related specifically to negative energy balance during the weight loss phase of CR. Using a randomized interventional design, we investigated changes in recognition memory and neural correlates in postmenopausal obese women (n = 19): 1) after intense weight loss in the course of a 12-week low-caloric diet (reduced body weight and negative energy balance) and 2) after having sustained the reduced weight over 4 more weeks (reduced body weight, but energy balance equilibrium). Participants were contrasted to a control group (n = 18) instructed not to change dietary habits. In the CR group, we found improved recognition memory, paralleled by increased gray matter volume in inferior frontal gyrus and hippocampus, and augmented hippocampal resting-state functional connectivity to parietal areas. Moreover, effects were specific for transient negative energy balance and could not be detected after subsequent weight maintenance. Our data demonstrate for the first time in humans that beneficial effects of CR on brain structure and function are due to weight loss rather than an overall reduced weight. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Community-based group exercise for persons with Parkinson disease: a randomized controlled trial.
Combs, Stephanie A; Diehl, M Dyer; Chrzastowski, Casey; Didrick, Nora; McCoin, Brittany; Mox, Nicholas; Staples, William H; Wayman, Jessica
2013-01-01
The purpose of this study was to compare group boxing training to traditional group exercise on function and quality of life in persons with Parkinson disease (PD). A convenience sample of adults with PD (n = 31) were randomly assigned to boxing training or traditional exercise for 24-36 sessions, each lasting 90 minutes, over 12 weeks. Boxing training included: stretching, boxing (e.g. lateral foot work, punching bags), resistance exercises, and aerobic training. Traditional exercise included: stretching, resistance exercises, aerobic training, and balance activities. Participants were tested before and after completion of training on balance, balance confidence, mobility, gait velocity, gait endurance, and quality of life. The traditional exercise group demonstrated significantly greater gains in balance confidence than the boxing group (p < 0.025). Only the boxing group demonstrated significant improvements in gait velocity and endurance over time with a medium between-group effect size for the gait endurance (d = 0.65). Both groups demonstrated significant improvements with the balance, mobility, and quality of life with large within-group effect sizes (d ≥ 0.80). While groups significantly differed in balance confidence after training, both groups demonstrated improvements in most outcome measures. Supporting options for long-term community-based group exercise for persons with PD will be an important future consideration for rehabilitation professionals.
Granacher, Urs; Gollhofer, Albert; Hortobágyi, Tibor; Kressig, Reto W; Muehlbauer, Thomas
2013-07-01
The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations. Traditionally, balance and/or lower extremity resistance training were used to mitigate these age-related deficits. However, the effects of resistance training are limited and poorly translate into improvements in balance, functional tasks, activities of daily living, and fall rates. Thus, it is necessary to develop and design new intervention programs that are specifically tailored to counteract age-related weaknesses. Recent studies indicate that measures of trunk muscle strength (TMS) are associated with variables of static/dynamic balance, functional performance, and falls (i.e., occurrence, fear, rate, and/or risk of falls). Further, there is preliminary evidence in the literature that core strength training (CST) and Pilates exercise training (PET) have a positive influence on measures of strength, balance, functional performance, and falls in older adults. The objectives of this systematic literature review are: (a) to report potential associations between TMS/trunk muscle composition and balance, functional performance, and falls in old adults, and (b) to describe and discuss the effects of CST/PET on measures of TMS, balance, functional performance, and falls in seniors. A systematic approach was employed to capture all articles related to TMS/trunk muscle composition, balance, functional performance, and falls in seniors that were identified using the electronic databases PubMed and Web of Science (1972 to February 2013). A systematic approach was used to evaluate the 582 articles identified for initial review. Cross-sectional (i.e., relationship) or longitudinal (i.e., intervention) studies were included if they investigated TMS and an outcome-related measure of balance, functional performance, and/or falls. In total, 20 studies met the inclusionary criteria for review. Longitudinal studies were evaluated using the Physiotherapy Evidence Database (PEDro) scale. Effect sizes (ES) were calculated whenever possible. For ease of discussion, the 20 articles were separated into three groups [i.e., cross-sectional (n = 6), CST (n = 9), PET (n = 5)]. The cross-sectional studies reported small-to-medium correlations between TMS/trunk muscle composition and balance, functional performance, and falls in older adults. Further, CST and/or PET proved to be feasible exercise programs for seniors with high-adherence rates. Age-related deficits in measures of TMS, balance, functional performance, and falls can be mitigated by CST (mean strength gain = 30 %, mean effect size = 0.99; mean balance/functional performance gain = 23 %, mean ES = 0.88) and by PET (mean strength gain = 12 %, mean ES = 0.52; mean balance/functional performance gain = 18 %, mean ES = 0.71). Given that the mean PEDro quality score did not reach the predetermined cut-off of ≥6 for the intervention studies, there is a need for more high-quality studies to explicitly identify the relevance of CST and PET to the elderly population. Core strength training and/or PET can be used as an adjunct or even alternative to traditional balance and/or resistance training programs for old adults. Further, CST and PET are easy to administer in a group setting or in individual fall preventive or rehabilitative intervention programs because little equipment and space is needed to perform such exercises.
Nepocatych, Svetlana; Ketcham, Caroline J; Vallabhajosula, Srikant; Balilionis, Gytis
2018-01-01
This study examined the effects of balance training routine, using both sides utilized balance trainer (BOSU) and aerobic step (STEP) on postural sway and functional ability in middle-aged women. Twenty-seven females participated in the study, age 40.6±12.0 years, body mass 72.0±14.0 kg, height 164.0±7.7 cm, BMI 26.5±4.5 kg/m2, and relative body fat 33.1±7.4%. Participants were divided into two groups and performed progressive exercise routine on either STEP or BOSU for three weeks. Pre- and post-test consisted of Postural Sway Test performed on the Biodex Balance System, Functional Ability Test, Sit and Reach Test and Plank. A significant time effect was observed for both groups for sway index(P=0.029) and center of pressure antero-posterior (AP) displacement (P=0.038) but not for sway area or medio-lateral (ML) displacement (P>0.05). In addition, BOSU group had significantly lower Sway Index(P=0.048) and ML range (P=0.035) scores when vision and surface was altered compared to STEP group. A significant time effect was observed in walking-up the stairs (P=0.020), sit and reach test (P=0.035), and plank (P<0.001), but not for walking down the stairs. However, no other significant interactions were observed. Programs that incorporate multisensory balance training have a potential to induce adaptive responses in neuromuscular system that enhances postural control, balance and functional ability of women. The training using BOSU may help improve static balance and functional ability in women.
Kovács, E; Prókai, L; Mészáros, L; Gondos, T
2013-06-01
Exercise programmes have important role in prevention of falls, but to date, we have little knowledge about the effects of Adapted Physical Activity programme on balance of older women. The aim of this study was to investigate the effects of an Adapted Physical Activity programme on balance, risk of falls and quality of life in community-dwelling older women. This was a randomized controlled study. Community, in a local sport centre. Older women aged over 60 years. Seventy-six women were randomised to an exercise group providing Adapted Physical Activity programme for 25 weeks or a control group (in which they did not participate in any exercise programme). The one-leg stance test, Timed Up and Go test, incidence of fall and the quality of life (SF-36V2) were measured at baseline and after 25 weeks. The one-leg stance test and the Timed Up and Go test in the exercise group was significantly better than in the control group after the intervention period (P=0.005; P=0.001, respectively). The Physical Functioning, Vitality and General Health subdomains of quality of life were also significantly better in the exercise group compared to the control group (P=0.004; P=0.005; P=0.038, respectively). Relative risk was 0.40 (90% CI 0.174 to 0.920) and the number needed to treat was 5 (95% CI 2.3 to 23.3). This 25-week Adapted Physical Activity programme improves static balance, functional mobility, as well as Physical Functioning, Vitality and General Health subdomains of quality of life. Based on our results, the Adapted Physical Activity programme may be a promising fall prevention exercise programme improving static balance and functional mobility for community-dwelling older women.
Balance training reduces falls risk in older individuals with type 2 diabetes.
Morrison, Steven; Colberg, Sheri R; Mariano, Mira; Parson, Henri K; Vinik, Arthur I
2010-04-01
This study assessed the effects of balance/strength training on falls risk and posture in older individuals with type 2 diabetes. Sixteen individuals with type 2 diabetes and 21 age-matched control subjects (aged 50-75 years) participated. Postural stability and falls risk was assessed before and after a 6-week exercise program. Diabetic individuals had significantly higher falls risk score compared with control subjects. The diabetic group also exhibited evidence of mild-to-moderate neuropathy, slower reaction times, and increased postural sway. Following exercise, the diabetic group showed significant improvements in leg strength, faster reaction times, decreased sway, and, consequently, reduced falls risk. Older individuals with diabetes had impaired balance, slower reactions, and consequently a higher falls risk than age-matched control subjects. However, all these variables improved after resistance/balance training. Together these results demonstrate that structured exercise has wide-spread positive effects on physiological function for older individuals with type 2 diabetes.
Tao, Jing; Rao, Ting; Lin, Lili; Liu, Wei; Wu, Zhenkai; Zheng, Guohua; Su, Yusheng; Huang, Jia; Lin, Zhengkun; Wu, Jinsong; Fang, Yunhua; Chen, Lidian
2015-02-25
Balance dysfunction after stroke limits patients' general function and participation in daily life. Previous researches have suggested that Tai Chi exercise could offer a positive improvement in older individuals' balance function and reduce the risk of falls. But convincing evidence for the effectiveness of enhancing balance function after stroke with Tai Chi exercise is still inadequate. Considering the difficulties for stroke patients to complete the whole exercise, the current trial evaluates the benefit of Tai Chi Yunshou exercise for patients with balance dysfunction after stroke through a cluster randomization, parallel-controlled design. A single-blind, cluster-randomized, parallel-controlled trial will be conducted. A total of 10 community health centers (5 per arm) will be selected and randomly allocated into Tai Chi Yunshou exercise group or balance rehabilitation training group. Each community health centers will be asked to enroll 25 eligible patients into the trial. 60 minutes per each session, 1 session per day, 5 times per week and the total training round is 12 weeks. Primary and secondary outcomes will be measured at baseline and 4-weeks, 8-weeks, 12-weeks, 6-week follow-up, 12-week follow-up after randomization. Safety and economic evaluation will also be assessed. This protocol aims to evaluate the effectiveness of Tai Chi Yunshou exercise for the balance function of patients after stroke. If the outcome is positive, this project will provide an appropriate and economic balance rehabilitation technology for community-based stroke patients. Chinese Clinical Trial Registry: ChiCTR-TRC-13003641. Registration date: 22 August, 2013 http://www.chictr.org/usercenter/project/listbycreater.aspx .
The Effects of Shoulder Slings on Balance in Patients With Hemiplegic Stroke.
Sohn, Min Kyun; Jee, Sung Ju; Hwang, Pyoungsik; Jeon, Yumi; Lee, Hyunkeun
2015-12-01
To investigate the effects of a shoulder sling on balance in patients with hemiplegia. Twenty-seven hemiplegic stroke patients (right 13, left 14) were enrolled in this study. The subjects' movement in their centers of gravity (COGs) during their static and dynamic balance tests was measured with their eyes open in each sling condition-without a sling, with Bobath's axillary support (Bobath sling), and with a simple arm sling. The percent times in quadrant, overall, anterior/posterior, and medial/lateral stability indexes were measured using a posturography platform (Biodex Balance System SD). Functional balance was evaluated using the Berg Balance Scale and the Trunk Impairment Scale. All balance tests were performed with each sling in random order. The COGs of right hemiplegic stroke patients and all hemiplegic stroke patients shifted to, respectively, the right and posterior quadrants during the static balance test without a sling (p<0.05). This weight asymmetry pattern did not improve with either the Bobath or the simple arm sling. There was no significant improvement in any stability index during either the static or the dynamic balance tests in any sling condition. The right and posterior deviations of the hemiplegic stroke patients' COGs were maintained during the application of the shoulder slings, and there were no significant effects of the shoulder slings on the patients' balance in the standing still position.
The Effects of Shoulder Slings on Balance in Patients With Hemiplegic Stroke
Sohn, Min Kyun; Jee, Sung Ju; Hwang, Pyoungsik; Jeon, Yumi
2015-01-01
Objective To investigate the effects of a shoulder sling on balance in patients with hemiplegia. Methods Twenty-seven hemiplegic stroke patients (right 13, left 14) were enrolled in this study. The subjects' movement in their centers of gravity (COGs) during their static and dynamic balance tests was measured with their eyes open in each sling condition-without a sling, with Bobath's axillary support (Bobath sling), and with a simple arm sling. The percent times in quadrant, overall, anterior/posterior, and medial/lateral stability indexes were measured using a posturography platform (Biodex Balance System SD). Functional balance was evaluated using the Berg Balance Scale and the Trunk Impairment Scale. All balance tests were performed with each sling in random order. Results The COGs of right hemiplegic stroke patients and all hemiplegic stroke patients shifted to, respectively, the right and posterior quadrants during the static balance test without a sling (p<0.05). This weight asymmetry pattern did not improve with either the Bobath or the simple arm sling. There was no significant improvement in any stability index during either the static or the dynamic balance tests in any sling condition. Conclusion The right and posterior deviations of the hemiplegic stroke patients' COGs were maintained during the application of the shoulder slings, and there were no significant effects of the shoulder slings on the patients' balance in the standing still position. PMID:26798614
York, Sally C; Shumway-Cook, Anne; Silver, Ilene F; Morrison, A Clare
2011-11-01
Falls in older adults are the leading cause of injury hospitalizations and fatalities in the United States; primary risk factors are muscle weakness, impaired mobility, and balance deficits. This article describes the 12-month translational research evaluation of the Stay Active and Independent for Life (SAIL) community-based public health, public domain fall prevention exercise and education program. Recruitment reached the target goal by 154%; 331 adults (mean age = 74.6) attended more than one class (mean classes attended = 24.8, SD = 26.6, range = 1-120) at nine community sites in one county in the 12-month period; 173 completed health and demographic forms, 132 completed program surveys, and 91 completed baseline and follow-up physical function tests. Physical function test results showed significant improvements in strength, balance, and mobility in those who were below normal limits at baseline, and in those who attended classes twice a week or more for more than 2 months. Survey results found that 93% of respondents reported improved performance of daily activities; 92% reported improved strength, balance, fitness, or flexibility; and 80% found the SAIL information guide education component helpful.
Kılınç, Muhammed; Avcu, Fatma; Onursal, Ozge; Ayvat, Ender; Savcun Demirci, Cevher; Aksu Yildirim, Sibel
2016-02-01
The aim of this study was to investigate the effects of Bobath-based individually designed trunk exercises on trunk control, upper and lower extremity function, and walking and balance in stroke patients. The main aim of treatment was to eliminate individual trunk impairments during various patient functions. The study was planned as an assessor-blinded, randomized controlled trial. A total of 22 patients volunteered to participate in the study. Trunk function, functional capacity, and gait were assessed with the Trunk Impairment Scale (TIS), stroke rehabilitation assessment of movement (STREAM), and a 10-m walking test, respectively. The Berg Balance Test (BBT), functional reach (FR), and timed up-and-go (TUG) tests were used to evaluate balance. After the initial assessment, the patients were divided randomly into two groups, the study group (12 patients) and the control group (10 patients). The mean age of the patients in the study group was 55.91 years (duration of stroke 58.66 months) and that of the control group was 54.00 years (duration of stroke 67.20 months). Individual training programs were determined for the patients in the study group, taking into consideration their evaluation results; and strengthening, stretching, range of motion, and mat exercises were determined for the control group according to their functional level. The participants in both groups were taken into the physiotherapy program for 12 weeks, 3 days a week for 1 hour a day. In group analyses, both groups showed improvement in STREAM, TIS, and TUG tests. Only the study group produced significant gains in the BBT, FR, and 10 m walking tests (P < 0.05). According to the pre- and post-treatment results, no significant difference was observed in any of the evaluated parameters between the two groups (P>0.05). Individually developed exercise programs in the Bobath concept improve trunk performance, balance, and walking ability in stroke patients more than do conventional exercises.
Roig-Casasús, Sergio; María Blasco, José; López-Bueno, Laura; Blasco-Igual, María Clara
2017-03-01
Sensorimotor training has proven to be an efficient approach for recovering balance control following total knee replacement (TKR). The purpose of this trial was to evaluate the influence of specific balance-targeted training using a dynamometric platform on the overall state of balance in older adults undergoing TKR. This was a randomized controlled clinical trial conducted at a university hospital rehabilitation unit. Patients meeting the inclusion criteria were randomly assigned to a control group or an experimental group. Both groups participated in the same 4-week postoperative rehabilitation training protocol. Participants in the experimental group performed additional balance training with a dynamometric platform consisting of tests related to stability challenges, weight-shifting, and moving to the limits of stability. The primary outcome measure was the overall state of balance rated according to the Berg Balance Scale. Secondary outcomes in terms of balance were the Timed Up and Go Test, Functional Reach Test, and Romberg open and closed-eyes tests. Data processing included between-group analysis of covariance, minimal detectable change assessment for the primary outcome measure, and effect size estimation. Confidence intervals (CIs) were set at 95%. Forty-three participants meeting the inclusion criteria and having signed the informed consent were randomly assigned to 2 groups. Thirty-seven completed the training (86.1%). Significant between-group differences in balance performance were found as measured with the Berg Balance Scale (P = .03) and Functional Reach Test (P = .04) with a CI = 95%. Significant differences were not recorded for the Timed Up and Go Test or Romberg open and closed-eyes tests (P > .05). Furthermore, Cohen's effect size resulted in a value of d = 0.97, suggesting a high practical significance of the trial. According to the Berg Balance Scale and Functional Reach Test, participants with TKR who have followed a 4-week training program using a dynamometric platform improved balance performance to a higher extent than a control group training without such a device. The inclusion of this instrument in the functional training protocol may be beneficial for recovering balance following TKR.
Bao, Tian; Carender, Wendy J; Kinnaird, Catherine; Barone, Vincent J; Peethambaran, Geeta; Whitney, Susan L; Kabeto, Mohammed; Seidler, Rachael D; Sienko, Kathleen H
2018-01-18
Sensory augmentation has been shown to improve postural stability during real-time balance applications. Limited long-term controlled studies have examined retention of balance improvements in healthy older adults after training with sensory augmentation has ceased. This pilot study aimed to assess the efficacy of long-term balance training with and without sensory augmentation among community-dwelling healthy older adults. Twelve participants (four males, eight females; 75.6 ± 4.9 yrs) were randomly assigned to the experimental group (n = 6) or control group (n = 6). Participants trained in their homes for eight weeks, completing three 45-min exercise sessions per week using smart phone balance trainers that provided written, graphic, and video guidance, and monitored trunk sway. During each session, participants performed six repetitions of six exercises selected from five categories (static standing, compliant surface standing, weight shifting, modified center of gravity, and gait). The experimental group received vibrotactile sensory augmentation for four of the six repetitions per exercise via the smart phone balance trainers, while the control group performed exercises without sensory augmentation. The smart phone balance trainers sent exercise performance data to a physical therapist, who recommended exercises on a weekly basis. Balance performance was assessed using a battery of clinical balance tests (Activity Balance Confidence Scale, Sensory Organization Test, Mini Balance Evaluation Systems Test, Five Times Sit to Stand Test, Four Square Step Test, Functional Reach Test, Gait Speed Test, Timed Up and Go, and Timed Up and Go with Cognitive Task) before training, after four weeks of training, and after eight weeks of training. Participants in the experimental group were able to use vibrotactile sensory augmentation independently in their homes. After training, the experimental group had significantly greater improvements in Sensory Organization Test and Mini Balance Evaluation Systems Test scores than the control group. Significant improvement was also observed for Five Times Sit to Stand Test duration within the experimental group, but not in the control group. No significant improvements between the two groups were observed in the remaining clinical outcome measures. The findings of this study support the use of sensory augmentation devices by community-dwelling healthy older adults as balance rehabilitation tools, and indicate feasibility of telerehabilitation therapy with reduced input from clinicians.
Treadmill sideways gait training with visual blocking for patients with brain lesions.
Kim, Tea-Woo; Kim, Yong-Wook
2014-09-01
[Purpose] The aim of this study was to verify the effect of sideways treadmill training with and without visual blocking on the balance and gait function of patients with brain lesions. [Subjects] Twenty-four stroke and traumatic brain injury subjects participated in this study. They were divided into two groups: an experimental group (12 subjects) and a control group (12 subjects). [Methods] Each group executed a treadmill training session for 20 minutes, three times a week, for 6 weeks. The sideways gait training on the treadmill was performed with visual blocking by the experimental group and with normal vision by the control group. A Biodex Gait Trainer 2 was used to assess the gait function. It was used to measure walking speed, walking distance, step length, and stance time on each foot. The Five-Times-Sit-To-Stand test (FTSST) and Timed Up and Go test (TUG) were used as balance measures. [Results] The sideways gait training with visual blocking group showed significantly improved walking speed, walking distance, step length, and stance time on each foot after training; FTSST and TUG times also significantly improved after training in the experimental group. Compared to the control group, the experimental group showed significant increases in stance time on each foot. [Conclusion] Sideways gait training on a treadmill with visual blocking performed by patients with brain lesions significantly improved their balance and gait function.
Santaella, Danilo F; Devesa, Cesar R S; Rojo, Marcos R; Amato, Marcelo B P; Drager, Luciano F; Casali, Karina R; Montano, Nicola
2011-01-01
Objectives Since ageing is associated with a decline in pulmonary function, heart rate variability and spontaneous baroreflex, and recent studies suggest that yoga respiratory exercises may improve respiratory and cardiovascular function, we hypothesised that yoga respiratory training may improve respiratory function and cardiac autonomic modulation in healthy elderly subjects. Design 76 healthy elderly subjects were enrolled in a randomised control trial in Brazil and 29 completed the study (age 68±6 years, 34% males, body mass index 25±3 kg/m2). Subjects were randomised into a 4-month training program (2 classes/week plus home exercises) of either stretching (control, n=14) or respiratory exercises (yoga, n=15). Yoga respiratory exercises (Bhastrika) consisted of rapid forced expirations followed by inspiration through the right nostril, inspiratory apnoea with generation of intrathoracic negative pressure, and expiration through the left nostril. Pulmonary function, maximum expiratory and inspiratory pressures (PEmax and PImax, respectively), heart rate variability and blood pressure variability for spontaneous baroreflex determination were determined at baseline and after 4 months. Results Subjects in both groups had similar demographic parameters. Physiological variables did not change after 4 months in the control group. However, in the yoga group, there were significant increases in PEmax (34%, p<0.0001) and PImax (26%, p<0.0001) and a significant decrease in the low frequency component (a marker of cardiac sympathetic modulation) and low frequency/high frequency ratio (marker of sympathovagal balance) of heart rate variability (40%, p<0.001). Spontaneous baroreflex did not change, and quality of life only marginally increased in the yoga group. Conclusion Respiratory yoga training may be beneficial for the elderly healthy population by improving respiratory function and sympathovagal balance. Trial Registration CinicalTrials.gov identifier: NCT00969345; trial registry name: Effects of respiratory yoga training (Bhastrika) on heart rate variability and baroreflex, and quality of life of healthy elderly subjects. PMID:22021757
Wikstrom, Erik A; McKeon, Patrick O
2017-04-01
Therapeutic modalities that stimulate sensory receptors around the foot-ankle complex improve chronic ankle instability (CAI)-associated impairments. However, not all patients have equal responses to these modalities. Identifying predictors of treatment success could improve clinician efficiency when treating patients with CAI. To conduct a response analysis on existing data to identify predictors of improved self-reported function in patients with CAI. Secondary analysis of a randomized controlled clinical trial. Sports medicine research laboratories. Fifty-nine patients with CAI, which was defined in accordance with the International Ankle Consortium recommendations. Participants were randomized into 3 treatment groups (plantar massage [PM], ankle-joint mobilization [AJM], or calf stretching [CS]) that received six 5-minute treatments over 2 weeks. Treatment success, defined as a patient exceeding the minimally clinically important difference of the Foot and Ankle Ability Measure-Sport (FAAM-S). Patients with ≤5 recurrent sprains and ≤82.73% on the Foot and Ankle Ability Measure had a 98% probability of having a meaningful FAAM-S improvement after AJM. As well, ≥5 balance errors demonstrated 98% probability of meaningful FAAM-S improvements from AJM. Patients <22 years old and with ≤9.9 cm of dorsiflexion had a 99% probability of a meaningful FAAM-S improvement after PM. Also, those who made ≥2 single-limb-stance errors had a 98% probability of a meaningful FAAM-S improvement from PM. Patients with ≤53.1% on the FAAM-S had an 83% probability of a meaningful FAAM-S improvement after CS. Each sensory-targeted ankle-rehabilitation strategy resulted in a unique combination of predictors of success for patients with CAI. Specific indicators of success with AJM were deficits in self-reported function, single-limb balance, and <5 previous sprains. Age, weight-bearing-dorsiflexion restrictions, and single-limb balance deficits identified patients with CAI who will respond well to PM. Assessing self-reported sport-related function can identify CAI patients who will respond positively to CS.
Dordevic, Milos; Hökelmann, Anita; Müller, Patrick; Rehfeld, Kathrin; Müller, Notger G
2017-01-01
Background: Slackline-training has been shown to improve mainly task-specific balancing skills. Non-task specific effects were assessed for tandem stance and preferred one-leg stance on stable and perturbed force platforms with open eyes. It is unclear whether transfer effects exist for other balancing conditions and which component of the balancing ability is affected. Also, it is not known whether slackline-training can improve non-visual-dependent spatial orientation abilities, a function mainly supported by the hippocampus. Objective: To assess the effect of one-month of slackline-training on different components of balancing ability and its transfer effects on non-visual-dependent spatial orientation abilities. Materials and Methods: Fifty subjects aged 18-30 were randomly assigned to the training group (T) ( n = 25, 23.2 ± 2.5 years; 12 females) and the control group (C) ( n = 25, 24.4 ± 2.8 years; 11 females). Professional instructors taught the intervention group to slackline over four consecutive weeks with three 60-min-trainings in each week. Data acquisition was performed (within 2 days) by blinded investigators at the baseline and after the training. Main outcomes Improvement in the score of a 30-item clinical balance test (CBT) developed at our institute (max. score = 90 points) and in the average error distance (in centimeters) in an orientation test (OT), a triangle completion task with walking and wheelchair conditions for 60°, 90°, and 120°. Results: Training group performed significantly better on the closed-eyes conditions of the CBT (1.6 points, 95% CI: 0.6 to 2.6 points vs. 0.1 points, 95% CI: -1 to 1.1 points; p = 0.011, [Formula: see text] = 0.128) and in the wheelchair (vestibular) condition of the OT (21 cm, 95% CI: 8-34 cm vs. 1 cm, 95% CI: -14-16 cm; p = 0.049, [Formula: see text] = 0.013). Conclusion: Our results indicate that one month of intensive slackline training is a novel approach for enhancing clinically relevant balancing abilities in conditions with closed eyes as well as for improving the vestibular-dependent spatial orientation capability; both of the benefits are likely caused by positive influence of slackline-training on the vestibular system function.
Dordevic, Milos; Hökelmann, Anita; Müller, Patrick; Rehfeld, Kathrin; Müller, Notger G.
2017-01-01
Background: Slackline-training has been shown to improve mainly task-specific balancing skills. Non-task specific effects were assessed for tandem stance and preferred one-leg stance on stable and perturbed force platforms with open eyes. It is unclear whether transfer effects exist for other balancing conditions and which component of the balancing ability is affected. Also, it is not known whether slackline-training can improve non-visual-dependent spatial orientation abilities, a function mainly supported by the hippocampus. Objective: To assess the effect of one-month of slackline-training on different components of balancing ability and its transfer effects on non-visual-dependent spatial orientation abilities. Materials and Methods: Fifty subjects aged 18–30 were randomly assigned to the training group (T) (n = 25, 23.2 ± 2.5 years; 12 females) and the control group (C) (n = 25, 24.4 ± 2.8 years; 11 females). Professional instructors taught the intervention group to slackline over four consecutive weeks with three 60-min-trainings in each week. Data acquisition was performed (within 2 days) by blinded investigators at the baseline and after the training. Main outcomes Improvement in the score of a 30-item clinical balance test (CBT) developed at our institute (max. score = 90 points) and in the average error distance (in centimeters) in an orientation test (OT), a triangle completion task with walking and wheelchair conditions for 60°, 90°, and 120°. Results: Training group performed significantly better on the closed-eyes conditions of the CBT (1.6 points, 95% CI: 0.6 to 2.6 points vs. 0.1 points, 95% CI: –1 to 1.1 points; p = 0.011, ηp2 = 0.128) and in the wheelchair (vestibular) condition of the OT (21 cm, 95% CI: 8–34 cm vs. 1 cm, 95% CI: –14–16 cm; p = 0.049, ηp2 = 0.013). Conclusion: Our results indicate that one month of intensive slackline training is a novel approach for enhancing clinically relevant balancing abilities in conditions with closed eyes as well as for improving the vestibular-dependent spatial orientation capability; both of the benefits are likely caused by positive influence of slackline-training on the vestibular system function. PMID:28239345
Bogaerts, An; Delecluse, Christophe; Boonen, Steven; Claessens, Albrecht L; Milisen, Koen; Verschueren, Sabine M P
2011-03-01
Falls in the elderly constitute a growing public health problem. This randomized controlled trial investigated the potential benefit of 6 months of whole body vibration (WBV) training and/or vitamin D supplementation on balance, functionality and estimated fall risk in institutionalized elderly women. A total of 113 women (mean age: 79.6) were randomly assigned to either a WBV or a no-training group, receiving either a conventional dose (880 IU/d) or a high dose (1600 IU/d) of vitamin D3. The WBV group performed exercises on a vibration platform 3×/week. Balance was evaluated by computerized posturography. Functionality was assessed by 10 m walk test, Timed up and Go (TUG) performance and endurance capacity (Shuttle Walk). Fall risk was determined with the Physiological Profile Assessment. Performance on the 10 m walk test and on TUG improved over time in all groups. For none of the parameters, high-dose vitamin D resulted in a better performance than conventional dosing. The improvements in the WBV group in endurance capacity, walking at preferred speed, and TUG were significantly larger than the changes with supplementation alone. No additional benefit of WBV training could be detected on fall risk and postural control, although sway velocity and maximal isometric knee extension strength improved only in the WBV group. This trial showed that a high-dose vitamin D supplementation is not more efficient than conventional dosing in improving functionality in institutionalized elderly. WBV training on top of vitamin D supplementation provided an added benefit with regard to walking, TUG performance, and endurance capacity. Copyright © 2010 Elsevier B.V. All rights reserved.
Burnfield, Judith M; Eberly, Valerie J; Gronely, Joanne K; Perry, Jacquelin; Yule, William Jared; Mulroy, Sara J
2012-03-01
Microprocessor controlled prosthetic knees (MPK) offer opportunities for improved walking stability and function, but some devices' swing phase features may exceed needs of users with invariable cadence. One MPK offers computerized control of only stance (C-Leg Compact). To assess Medicare Functional Classification Level K2 walkers' ramp negotiation performance, function and balance while using a non-MPK (NMPK) compared to the C-Leg Compact. Crossover. Gait while ascending and descending a ramp (stride characteristics, kinematics, electromyography) and function were assessed in participant's existing NMPK and again in the C-Leg Compact following accommodation. Ramp ascent and descent were markedly faster in the C-Leg Compact compared to the NMPK (p ≤ 0.006), owing to increases in stride length (p ≤ 0.020) and cadence (p ≤ 0.020). Residual limb peak knee flexion and ankle dorsiflexion were significantly greater (12.9° and 4.9° more, respectively) during single limb support while using the C-Leg Compact to descend ramps. Electromyography (mean, peak) did not differ significantly between prosthesis. Function improved in the C-Leg Compact as evidenced by a significantly faster Timed Up and Go and higher functional questionnaire scores. Transfemoral K2 walkers exhibited significantly improved function and balance while using the stance-phase only MPK compared to their traditional NMPK.
Gunay, Selim M; Keser, Ilke; Bicer, Zemzem T
2018-01-01
Ankylosing spondylitis (AS) can cause severe functional disorders that lead to loss of balance. The aim of this study was to investigate the effects of balance and postural stability exercises on spa based rehabilitation programme in AS subjects. Twenty-one participants were randomized to the study (n= 11) and control groups (n= 10). Patients balance and stability were assessed with the Berg Balance Scale (BBS), Timed Up and Go (TUG) Test, Single Leg Stance Test (SLST) and Functional Reach Test (FRT). AS spesicied measures were used for assessing to other parameters. The treatment plan for both groups consisted of conventional transcutaneous electrical nerve stimulation (TENS), spa and land-based exercises 5 days per week for 3 weeks. The study group performed exercises based on postural stability and balance with routine physiotherapy practice in thermal water and in exercise room. The TUG, SLST and FUT scores were significantly increased in the study group. In both groups, the BASMI, BASFI, BASDAI and ASQoL scores decreased significantly by the end of the treatment period (p< 0.05). In AS rehabilitation, performing balance and stability exercises in addition to spa based routine approaches can increase the duration of maintaining balance and can improve the benefits of physiotherapy.
Vijayakumar, Sarath; Depreux, Frederic F; Jodelka, Francine M; Lentz, Jennifer J; Rigo, Frank; Jones, Timothy A; Hastings, Michelle L
2017-09-15
Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Toward Balance Recovery With Leg Prostheses Using Neuromuscular Model Control
Geyer, Hartmut
2016-01-01
Objective Lower limb amputees are at high risk of falling as current prosthetic legs provide only limited functionality for recovering balance after unexpected disturbances. For instance, the most established control method used on powered leg prostheses tracks local joint impedance functions without taking the global function of the leg in balance recovery into account. Here we explore an alternative control policy for powered transfemoral prostheses that considers the global leg function and is based on a neuromuscular model of human locomotion. Methods We adapt this model to describe and simulate an amputee walking with a powered prosthesis using the proposed control, and evaluate the gait robustness when confronted with rough ground and swing leg disturbances. We then implement and partially evaluate the resulting controller on a leg prosthesis prototype worn by a non-amputee user. Results In simulation, the proposed prosthesis control leads to gaits that are more robust than those obtained by the impedance control method. The initial hardware experiments with the prosthesis prototype show that the proposed control reproduces normal walking patterns qualitatively and effectively responds to disturbances in early and late swing. However, the response to mid-swing disturbances neither replicates human responses nor averts falls. Conclusions The neuromuscular model control is a promising alternative to existing prosthesis controls, although further research will need to improve on the initial implementation and determine how well these results transfer to amputee gait. Significance This work provides a potential avenue for future development of control policies that help improve amputee balance recovery. PMID:26315935
Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability.
Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung
2015-11-01
[Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost.
Alguacil Diego, I M; Pedrero Hernández, C; Molina Rueda, F; Cano de la Cuerda, R
2012-04-01
Postural and balance disorders, functionality impairment and fatigue, are the most incapacitating problems in multiple sclerosis (MS) patients. Whole Body Vibration (WBV), through the transmission of mechanical stimuli, appears to be a useful therapeutic tool in the treatment of neurological diseases. The objective of this study is to assess the effect of the WBV on postural control, balance, functionality and fatigue in patients with MS. A total of 34 patients with mild-moderate MS were randomised into a control group and an intervention group. For the intervention group, the protocol consisted of 5 consecutive days, daily series of 5 periods of 1 minute of duration of WBV at a frequency of 6 Hz. Posturographic assessment using the Sensory Organization Test (SOT) and Motor Control Test (MCT), the Timed Get Up and Go Test, 10 metres Test, the Berg Balance Scale and Krupp's Fatigue Severity Scale were used before and after intervention. The analysis showed improvements in the intervention group for conditions SOT 1, SOT 3 and latency in MCT. In the comparison between groups, only the latency or reaction time in MCT improved significantly in favour of the intervention group (from 173.78±12.46 to 161.25±13.64 ms; P=.04). No side-effects were found. The results of this pilot study show that WBV can improve, in the short-term, the time of response to recover the uprightness after sudden disturbances, appearing as a possible therapeutic tool maintaining balance and posture. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Zinchuk, V V; Shul'ga, E V; Guliaĭ, I E
2010-01-01
We aimed to study the erythropoietin influence on oxygen transport function of blood and prooxidant/antioxidant balance in rabbits under lipopolysaccharide injection. Recombinant human erythropoietin-alpha was administered intraperitoneally in the dose 1000 U/kg 30 minutes before intravenous injection of 500 mkg/kg lipopolysaccharide from E. coli. After 12 hours, blood samples were collected for the assessment of oxygen transport function of blood; nitrate/nitrite levels and tissue samples were collected for measurement of conjugated dienes, malondialdehyde, alpha-tocopherol and catalase. Erythropoietin improves parameters of oxygen transport function of blood, increases hemoglobin-oxygen affinity through the NO-dependent mechanism, reduces activity of free radical processes, and increases antioxidant protection under lipopolysaccharide injection.
BALCI, Nilay Çömük; TONGA, Eda; GÜLŞEN, Mustafa
2013-01-01
This pilot study aimed to investigate the effect of balance training by Tetraks Interactive Balance System (TIBS) on balance and fall risk in patients with mild to moderate Parkinson’s disease. Four patients with Parkinson’s disease between the ages of 56 and 70 years (61.25±6.70) were applied balance training for 3 weeks by TIBS. Sociodemographic features and physical properties of the subjects were recorded. Their motor performance was evaluated by the Unified Parkinson’s Disease Rating Scale (UPDRS), balance was measured using the Berg Balance Scale (BBS), Functional Reach Test (FRT), Timed Up and Go Test (TUG), and the Standing on One Leg Balance Test (SOL) and, their fall risks were evaluated by TIBS. Evaluations were performed twice, before and after treatment. Following training, Parkinson’s patients showed improvements in UPDRS, TUG, BBS, FRT, SOL and fall risk. Balance training by TIBS has positive effects on balance and decreases fall risk in Parkinson’s disease patients. PMID:28360557
2012-01-01
Background Falls are the leading cause of unintentional injury and injury-related death among older people. In addition to physical activity, vitamin D also may affect balance and neuromuscular function. Low serum 25-hydroksivitamin D level increases the risk of bone loss, falls and fractures. Thus, an appropriate exercise program and sufficient vitamin D intake may significantly improve not only functional balance, but also balance confidence. Balance represents a complex motor skill determined by reaction time, muscle strength, and speed and coordination of movement. Methods/Design A 2-year randomized double-blind placebo-controlled vitamin D and open exercise trial of 409 home-dwelling women 70 to 80 years of age comprising four study arms: 1) exercise + vitamin D (800 IU/d), 2) exercise + placebo, 3) no exercise + vitamin D (800 IU/d), 4) no exercise + placebo. In addition to monthly fall diaries, general health status, life style, bone health, physical functioning, and vitamin D metabolism will be assessed. The primary outcomes are the rate of falls and fall-related injuries. Secondary outcomes include changes in neuromuscular functioning (e.g. body balance, muscle strength), ADL- and mobility functions, bone density and structure, cardiovascular risk factors, quality of life and fear of falling. Discussion The successful completion of this trial will provide evidence on the effectiveness of exercise and vitamin D for falls reduction. Trial Registration ClinicalTrial.gov -register (NCT00986466). PMID:22448872
Carling, Anna; Forsberg, Anette; Gunnarsson, Martin; Nilsagård, Ylva
2017-09-01
Imbalance leading to falls is common in people with multiple sclerosis (PwMS). To evaluate the effects of a balance group exercise programme (CoDuSe) on balance and walking in PwMS (Expanded Disability Status Scale, 4.0-7.5). A multi-centre, randomized, controlled single-blinded pilot study with random allocation to early or late start of exercise, with the latter group serving as control group for the physical function measures. In total, 14 supervised 60-minute exercise sessions were delivered over 7 weeks. Pretest-posttest analyses were conducted for self-reported near falls and falls in the group starting late. Primary outcome was Berg Balance Scale (BBS). A total of 51 participants were initially enrolled; three were lost to follow-up. Post-intervention, the exercise group showed statistically significant improvement ( p = 0.015) in BBS and borderline significant improvement in MS Walking Scale ( p = 0.051), both with large effect sizes (3.66; -2.89). No other significant differences were found between groups. In the group starting late, numbers of falls and near falls were statistically significantly reduced after exercise compared to before ( p < 0.001; p < 0.004). This pilot study suggests that the CoDuSe exercise improved balance and reduced perceived walking limitations, compared to no exercise. The intervention reduced falls and near falls frequency.
Wii Fit exer-game training improves sensory weighting and dynamic balance in healthy young adults.
Cone, Brian L; Levy, Susan S; Goble, Daniel J
2015-02-01
The Nintendo Wii Fit is a balance training tool that is growing in popularity due to its ease of access and cost-effectiveness. While considerable evidence now exists demonstrating the efficacy of the Wii Fit, no study to date has determined the specific mechanism underlying Wii Fit balance improvement. This paucity of knowledge was addressed in the present study using the NeuroCom Balance Manager's Sensory Organization Test (SOT) and Limits of Stability (LOS) test. These well-recognized posturography assessments, respectively, measure sensory weighting and dynamic stability mechanisms of balance. Forty healthy, young participants were recruited into two groups: Wii Fit Balance Intervention (WFBI) (n=20) and Control (CON) (n=20). Balance training consisted of seven Wii Fit exer-games played over the course of six consecutive weeks (2-4×/week, 30-45min/day). The WFBI group performed Neurocom testing before and after the intervention, while the CON group was tested along a similar timeline with no intervention. Mixed-design ANOVAs found significant interactions for testing time point and condition 5 of the SOT (p<0.02), endpoint excursion (p<0.01), movement velocity (p<0.02), and response time (p<0.01). These effects were such that greater improvements were seen for the WFBI group following Wii Fit training. These findings suggest that individuals with known issues regarding the processing of multiple sources of sensory information and/or who have limited functional bases of support may benefit most from Wii Fit balance training. Copyright © 2015 Elsevier B.V. All rights reserved.
Cadore, Eduardo Lusa; Rodríguez-Mañas, Leocadio; Sinclair, Alan; Izquierdo, Mikel
2013-04-01
The aim of this review was to recommend training strategies that improve the functional capacity in physically frail older adults based on scientific literature, focusing specially in supervised exercise programs that improved muscle strength, fall risk, balance, and gait ability. Scielo, Science Citation Index, MEDLINE, Scopus, Sport Discus, and ScienceDirect databases were searched from 1990 to 2012. Studies must have mentioned the effects of exercise training on at least one of the following four parameters: Incidence of falls, gait, balance, and lower-body strength. Twenty studies that investigated the effects of multi-component exercise training (10), resistance training (6), endurance training (1), and balance training (3) were included in the present revision. Ten trials investigated the effects of exercise on the incidence of falls in elderly with physical frailty. Seven of them have found a fewer falls incidence after physical training when compared with the control group. Eleven trials investigated the effects of exercise intervention on the gait ability. Six of them showed enhancements in the gait ability. Ten trials investigated the effects of exercise intervention on the balance performance and seven of them demonstrated enhanced balance. Thirteen trials investigated the effects of exercise intervention on the muscle strength and nine of them showed increases in the muscle strength. The multi-component exercise intervention composed by strength, endurance and balance training seems to be the best strategy to improve rate of falls, gait ability, balance, and strength performance in physically frail older adults.
Cadore, Eduardo Lusa; Rodríguez-Mañas, Leocadio; Sinclair, Alan
2013-01-01
Abstract The aim of this review was to recommend training strategies that improve the functional capacity in physically frail older adults based on scientific literature, focusing specially in supervised exercise programs that improved muscle strength, fall risk, balance, and gait ability. Scielo, Science Citation Index, MEDLINE, Scopus, Sport Discus, and ScienceDirect databases were searched from 1990 to 2012. Studies must have mentioned the effects of exercise training on at least one of the following four parameters: Incidence of falls, gait, balance, and lower-body strength. Twenty studies that investigated the effects of multi-component exercise training (10), resistance training (6), endurance training (1), and balance training (3) were included in the present revision. Ten trials investigated the effects of exercise on the incidence of falls in elderly with physical frailty. Seven of them have found a fewer falls incidence after physical training when compared with the control group. Eleven trials investigated the effects of exercise intervention on the gait ability. Six of them showed enhancements in the gait ability. Ten trials investigated the effects of exercise intervention on the balance performance and seven of them demonstrated enhanced balance. Thirteen trials investigated the effects of exercise intervention on the muscle strength and nine of them showed increases in the muscle strength. The multi-component exercise intervention composed by strength, endurance and balance training seems to be the best strategy to improve rate of falls, gait ability, balance, and strength performance in physically frail older adults. PMID:23327448
Gilbreath, Julie P; Gaven, Stacey L; Van Lunen, L; Hoch, Matthew C
2014-04-01
Previous studies have examined the effectiveness of a manual therapy intervention known as Mobilization with Movement (MWM) to increase dorsiflexion range of motion (ROM) in individuals with chronic ankle instability (CAI). While a single talocrural MWM treatment has increased dorsiflexion ROM in these individuals, examining the effects of multiple treatments on dorsiflexion ROM, dynamic balance, and self-reported function would enhance the clinical application of this intervention. This study sought to determine if three treatment sessions of talocrural MWM would improve dorsiflexion ROM, Star Excursion Balance Test (SEBT) reach distances, and self-reported function using the Foot and Ankle Ability Measure (FAAM) in individuals with CAI. Eleven participants with CAI (5 Males, 6 Females, age: 21.5 ± 2.2 years, weight: 83.9 ± 15.6 kg, height: 177.7 ± 10.9 cm, Cumberland Ankle Instability Tool: 17.5 ± 4.2) volunteered in this repeated-measures study. Subjects received three MWM treatments over one week. Weight-bearing dorsiflexion ROM (cm), normalized SEBT reach distances (%), and self-reported function (%) were assessed one week before the intervention (baseline), prior to the first MWM treatment (pre-intervention), and 24–48 h following the final treatment (post-intervention). No significant changes were identified in dorsiflexion ROM, SEBT reach distances, or the FAAM-Activities of Daily Living scale (p > 0.05). Significant changes were identified on the FAAM-Sport (p = 0.01). FAAM-Sport scores were significantly greater post-intervention (86.82 ± 9.18%) compared to baseline (77.27 ± 11.09%; p = 0.01) and pre-intervention (79.82 ± 13.45%; p = 0.04). These results indicate the MWM intervention did not improve dorsiflexion ROM, dynamic balance, or patient-centered measures of activities of daily living. However, MWM did improve patient-centered measures of sport-related activities in individuals with CAI.
Sazo-Rodríguez, Sergio; Méndez-Rebolledo, Guillermo; Guzmán-Muñoz, Eduardo; Rubio-Palma, Paulo
2017-01-01
[Purpose] To determine the effects of progressive neuromuscular training on postural balance and functionality in elderly patients with knee osteoarthritis (OA). [Subjects and Methods] Eleven participants between 60 and 75 years of age performed the progressive neuromuscular training for 8 weeks and 4 weeks of follow-up. The area and velocity of the center of pressure were measured on a force platform, and the functionality was measured with a Western Ontario and McMaster Universities Osteoarthritis Index. [Results] The area and velocity (anteroposterior and mediolateral directions) of the center of pressure showed significant differences after 4 and 8 weeks of intervention. Additionally, the global score and some questionnaire dimensions (pain and physical function) showed significant differences after 4 and 8 weeks of intervention. These changes were maintained in all variables at week 4 of follow-up. [Conclusion] The intervention generated improvements in balance and functionality in elderly patients with knee OA. These changes were observed after 4 weeks of training and were maintained 4 weeks after the end of the intervention. PMID:28744054
Meat-based functional foods for dietary equilibrium omega-6/omega-3.
Reglero, Guillermo; Frial, Paloma; Cifuentes, Alejandro; García-Risco, Mónica R; Jaime, Laura; Marin, Francisco R; Palanca, Vicente; Ruiz-Rodríguez, Alejandro; Santoyo, Susana; Señoráns, Francisco J; Soler-Rivas, Cristina; Torres, Carlos; Ibañez, Elena
2008-10-01
Nutritionists encourage improving the diet by combining meat products with fish or other sea-related foods, in order to equilibrate the omega-6/omega-3 ratio. Strong scientific evidence supports the beneficial health effects of a balanced omega-6/omega-3 PUFA (poly unsaturated fatty acids) diets. In the present work, the scientific bases of new functional meat products with both a balanced omega-6/omega-3 ratio and a synergic combination of antioxidants are discussed. The aim is to contribute to the dietary equilibrium omega-6/omega-3 and to increase the antioxidant intake. Conventional meat products supplemented with a specific fatty acids and antioxidants combination led to functional foods with healthier nutritional parameters.
Effects of functional training on pain, leg strength, and balance in women with fibromyalgia.
Latorre Román, Pedro Ángel; Santos E Campos, María Aparecida; García-Pinillos, Felipe
2015-01-01
The aim of this study was to analyze the effect of 18-week functional training (FT) program consisting in two sessions a week of in-water exercise and one of on-land exercise on pain, strength, and balance in women with fibromyalgia. A sample consisting of 36 fibromyalgia patients was included in the study. The patients were allocated randomly into the experimental group (EG, n = 20), and control group (CG, n = 16). Standardized field-based fitness tests were used to assess muscle strength (30-s chair stand and handgrip strength) and agility/dynamic balance and static balance. Fibromyalgia impact and pain were analyzed by Fibromyalgia Impact Questionnaire (FIQ), tender points (TPs), visual analog scale (VAS). We observed a significant reduction in the FIQ (p = 0.042), the algometer scale of TP (p = 0.008), TP (p < 0.001), and VAS (p < 0.001) in the EG. The EG shows better results in leg strength (p < 0.001), handgrip strength (p = 0.025), agility/dynamic balance (p = 0.032) and balance (p = 0.006). An 18-week intervention consisting in two sessions of in-water exercise and one session of on-land exercise of FT reduces pain and improves functional capacity in FM patients. These results suggested that FT could play an important role in maintaining an independent lifestyle in patients with FM.
Effect of Wii-based balance training on corticomotor excitability post stroke.
Omiyale, Oluwabunmi; Crowell, Charles R; Madhavan, Sangeetha
2015-01-01
The objective was to examine the effectiveness of a 3-week balance training program using the Nintendo Wii Fit gaming system (Nintendo Wii Sports, Nintendo, Redmond, WA) on lower limb corticomotor excitability and other clinical measures in chronic stroke survivors. Ten individuals diagnosed with ischemic stroke with residual hemiparesis received balance training using the Wii Fit for 60 min/day, three times/week, for three weeks. At the end of training, an increase in interhemispheric symmetry of corticomotor excitability of the tibialis anterior muscle representations was noted (n = 9). Participants also showed improvements in reaction time, time to perform the Dual Timed-Up-and-Go test, and balance confidence. The training-induced balance in corticomotor excitability suggests that this Wii-based balance training paradigm has the potential to influence neural plasticity and thereby functional recovery.
Amstrup, Anne Kristine; Sikjaer, Tanja; Mosekilde, Leif; Rejnmark, Lars
2015-09-30
Melatonin is often used as a sleeping aid in elderly adults. As previous studies suggest a protective role of melatonin against osteoporosis, it is important to document its safety. Treatment should not cause any hangover effect that could potentially lead to falls and fractures. We therefore aimed to evaluate the effect of melatonin on balance- and muscle function. In a double-blind placebo-controlled study, we randomized 81 postmenopausal women with osteopenia to receive 1 or 3 mg melatonin, or placebo nightly for 12 months. Postural balance as well as muscle function was measured. In addition, we assessed quality of life and sleep at baseline and after 12 months treatment. Compared to placebo, one-year treatment with melatonin did not affect postural balance or risk of falls. Furthermore, no significant changes between groups were observed in muscle strength in neither upper- nor lower extremities. Treatment did not affect quality of life or sleep. However, in the subgroup of women with sleep disturbances at baseline, a trend towards an improved sleep quality was seen (p = 0.08). Treatment with melatonin is safe in postmenopausal women with osteopenia. There is no hangover effect affecting balance- and muscle function following the intake of melatonin. In women with a good quality of sleep, melatonin has no effect, however in poor quality of sleep, small doses of melatonin trended towards improving the quality. (# NCT01690000).
Gunn, Hilary; Markevics, Sophie; Haas, Bernhard; Marsden, Jonathan; Freeman, Jennifer
2015-10-01
To evaluate the effectiveness of interventions in reducing falls and/or improving balance as a falls risk in multiple sclerosis (MS). Computer-based and manual searches included the following medical subject heading keywords: "Multiple Sclerosis AND accidental falls" OR "Multiple Sclerosis AND postural balance" OR "Multiple Sclerosis AND exercise" OR "Multiple Sclerosis AND physical/physio therapy" NOT animals. All literature published to November 2014 with available full-text details were included. Studies were reviewed against the PICO (participants, interventions, comparisons, outcomes) selection criteria: P, adults with MS; I, falls management/balance rehabilitation interventions; C, randomized/quasi-randomized studies comparing intervention with usual care or placebo control; O, falls outcomes and measures of balance. Fifteen articles of the original 529 search results were included. Two reviewers independently extracted data and assessed methodological quality using the Cochrane Risk of Bias tool. Random-effects meta-analysis indicated a small decrease in falls risk (risk ratio, .74), although the 95% confidence interval (CI) crossed 1 (95% CI, .12-4.38). The pooled standardized mean difference (SMD) for balance outcomes was .55 (95% CI, .35-.74). SMD varied significantly between exercise subgroupings; gait, balance, and functional training interventions yielded the greatest pooled effect size (ES) (SMD=.82; 95% CI, 0.55-1.10). There was a moderate positive correlation between program volume (min/wk) and ES (Cohen's d) (r=.70, P=.009), and a moderate negative correlation between program duration in weeks and ES (r=-.62, P=.03). Variations in interventions and outcomes and methodological limitations mean that results must be viewed with caution. This review suggests that balance may improve through exercise interventions, but that the magnitude of the improvements achieved in existing programs may not be sufficient to impact falls outcomes. Supporting participants to achieve an appropriate intensity of practice of highly challenging balance activities appears to be critical to maximizing effectiveness. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Among older adults, falls are a leading cause of distress, pain, injury, loss of confidence, and ultimately, loss of independence and death. Previous studies in our laboratory have demonstrated that berry supplementation improves the age-related declines in balance, muscle strength, and coordination...
Effect of Low-Impact Aerobic Dance on the Functional Fitness of Elderly Women.
ERIC Educational Resources Information Center
Hopkins, David R.; And Others
1990-01-01
Examined effect of low-impact aerobic dance on 53 sedentary older women. After 12 weeks of dance, subjects improved significantly on all functional fitness components except motor control/coordination, including cardiorespiratory endurance, strength/endurance, body agility, flexibility, body fat, and balance. (Author/NB)
Footing the bill: patient portals, part I.
Lawrence, Daphne
2009-05-01
Tie financial portal strategy into overall portal strategy. Savings from patient portals for finance come in the areas of call center volumes, bill pay, scheduling, and increased volume. Financial functions on the patient portal should be balanced with clinical functions. Improve the revenue cycle process before going to a portal.
Yang, Wen-Chieh; Wang, Hsing-Kuo; Wu, Ruey-Meei; Lo, Chien-Shun; Lin, Kwan-Hwa
2016-09-01
Virtual reality has the advantage to provide rich sensory feedbacks for training balance function. This study tested if the home-based virtual reality balance training is more effective than the conventional home balance training in improving balance, walking, and quality of life in patients with Parkinson's disease (PD). Twenty-three patients with idiopathic PD were recruited and underwent twelve 50-minute training sessions during the 6-week training period. The experimental group (n = 11) was trained with a custom-made virtual reality balance training system, and the control group (n = 12) was trained by a licensed physical therapist. Outcomes were measured at Week 0 (pretest), Week 6 (posttest), and Week 8 (follow-up). The primary outcome was the Berg Balance Scale. The secondary outcomes included the Dynamic Gait Index, timed Up-and-Go test, Parkinson's Disease Questionnaire, and the motor score of the Unified Parkinson's Disease Rating Scale. The experimental and control groups were comparable at pretest. After training, both groups performed better in the Berg Balance Scale, Dynamic Gait Index, timed Up-and-Go test, and Parkinson's Disease Questionnaire at posttest and follow-up than at pretest. However, no significant differences were found between these two groups at posttest and follow-up. This study did not find any difference between the effects of the home-based virtual reality balance training and conventional home balance training. The two training options were equally effective in improving balance, walking, and quality of life among community-dwelling patients with PD. Copyright © 2015. Published by Elsevier B.V.
Zech, Astrid; Klahn, Philipp; Hoeft, Jon; zu Eulenburg, Christine; Steib, Simon
2014-02-01
Injury prevention effects of neuromuscular training have been partly attributed to postural control adaptations. Uncertainty exists regarding the magnitude of these adaptations and on how they can be adequately monitored. The objective was to determine the time course of neuromuscular training effects on functional, dynamic and static balance measures. Thirty youth (14.9 ± 3 years) field hockey athletes were randomised to an intervention or control group. The intervention included a 20-min neuromuscular warm-up program performed twice weekly for 10 weeks. Balance assessments were performed at baseline, week three, week six and post-intervention. They included the star excursion balance test (SEBT), balance error scoring system (BESS), jump-landing time to stabilization (TTS) and center of pressure (COP) sway velocity during single-leg standing. No baseline differences were found between groups in demographic data and balance measures. Adherence was at 86%. All balance measures except the medial-lateral TTS improved significantly over time (p < 0.05) in both groups. Significant group by time interactions were found for the BESS score (p < 0.001). The intervention group showed greater improvements (69.3 ± 10.3%) after 10 weeks in comparison to controls (31.8 ± 22.1%). There were no significant group by time interactions in the SEBT, TTS and COP sway velocity. Neuromuscular training was effective in improving postural control in youth team athletes. However, this effect was not reflected in all balance measures suggesting that the neuromuscular training did not influence all dimensions of postural control. Further studies are needed to confirm the potential of specific warm-up programs to improve postural control.
Gschwind, Yves J; Schoene, Daniel; Lord, Stephen R; Ejupi, Andreas; Valenzuela, Trinidad; Aal, Konstantin; Woodbury, Ashley; Delbaere, Kim
2015-01-01
There is good evidence that balance challenging exercises can reduce falls in older people. However, older people often find it difficult to incorporate such programs in their daily life. Videogame technology has been proposed to promote enjoyable, balance-challenging exercise. As part of a larger analysis, we compared feasibility and efficacy of two exergame interventions: step-mat-training (SMT) and Microsoft-Kinect® (KIN) exergames. 148 community-dwelling people, aged 65+ years participated in two exergame studies in Sydney, Australia (KIN: n = 57, SMT: n = 91). Both interventions were delivered as unsupervised exercise programs in participants' homes for 16 weeks. Assessment measures included overall physiological fall risk, muscle strength, finger-press reaction time, proprioception, vision, balance and executive functioning. For participants allocated to the intervention arms, the median time played each week was 17 min (IQR 32) for KIN and 48 min (IQR 94) for SMT. Compared to the control group, SMT participants improved their fall risk score (p = 0.036), proprioception (p = 0.015), reaction time (p = 0.003), sit-to-stand performance (p = 0.011) and executive functioning (p = 0.001), while KIN participants improved their muscle strength (p = 0.032) and vision (p = 0.010), and showed a trend towards improved fall risk scores (p = 0.057). The findings suggest that it is feasible for older people to conduct an unsupervised exercise program at home using exergames. Both interventions reduced fall risk and SMT additionally improved specific cognitive functions. However, further refinement of the systems is required to improve adherence and maximise the benefits of exergames to deliver fall prevention programs in older people's homes. ACTRN12613000671763 (Step Mat Training RCT) ACTRN12614000096651 (MS Kinect RCT).
Bullo, Valentina; Gobbo, Stefano; Vendramin, Barbara; Duregon, Federica; Cugusi, Lucia; Di Blasio, Andrea; Bocalini, Danilo Sales; Zaccaria, Marco; Bergamin, Marco; Ermolao, Andrea
2018-04-01
The aim of this systematic review and meta-analysis was to summarize and analyze the effects of Nordic Walking on physical fitness, body composition, and quality of life in the elderly. Keyword "Nordic Walking" associated with "elderly" AND/OR "aging" AND/OR "old subjects" AND/OR "aged" AND/OR "older adults" were used in the online database MEDLINE, Embase, PubMed, Scopus, PsycINFO, and SPORTDiscus. Only studies written in English language and published in peer-reviewed journals were considered. A meta-analysis was performed and effect sizes calculated. Fifteen studies were identified; age of participants ranged from 60 to 92 years old. Comparing with a sedentary group, effect sizes showed that Nordic Walking was able to improve dynamic balance (0.30), functional balance (0.62), muscle strength of upper (0.66) and lower limbs (0.43), aerobic capacity (0.92), cardiovascular outcomes (0.23), body composition (0.30), and lipid profile (0.67). It seemed that Nordic Walking had a negative effect on static balance (-0.72). Comparing with a walking (alone) training, effect sizes showed that Nordic Walking improved the dynamic balance (0.30), flexibility of the lower body (0.47), and quality of life (0.53). Walking training was more effective in improving aerobic capacity (-0.21). Comparing Nordic Walking with resistance training, effect sizes showed that Nordic Walking improved dynamic balance (0.33), muscle strength of the lower body (0.39), aerobic capacity (0.75), flexibility of the upper body (0.41), and the quality of life (0.93). Nordic Walking can be considered as a safe and accessible form of aerobic exercise for the elderly population, able to improve cardiovascular outcomes, muscle strength, balance ability, and quality of life.
McKeon, Patrick O; Hertel, Jay
2008-01-01
Objective: To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. Data Extraction: We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Data Synthesis: Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Conclusions: Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability. PMID:18523567
Bird, Marie-Louise; Fell, James
2014-07-01
This study investigated the effect of Pilates exercise on physical fall risk factors 12 months after an initial 5-week Pilates intervention. The authors hypothesized that ongoing Pilates participation would have a positive effect on physical fall risk factors in those who continued with Pilates exercise compared with those who ceased. Thirty older ambulatory adults (M = 69 years, SD = 7) participated in Pilates classes for 5 weeks with testing preintevention (Time 1 [T1]) and postintervention (Time 2 [T2]) and 12 months later (Time 3 [T3]). Balance and leg strength were compared using a 2-way analysis of variance with repeated measures. Postural sway, dynamic balance, and function improvements evident after the initial Pilates training (T1-T2) were maintained at T3 (p < .01). Significant differences existed at T3 for dynamic balance and strength between participants who continued performing Pilates (n = 14) and those who had ceased. Balance improvements after a short Pilates intervention were maintained 1 year later in all participants, with increased benefits from ongoing participation.
2013-01-01
Background Impaired balance and mobility are common among rehabilitation inpatients. Poor balance and mobility lead to an increased risk of falling. Specific balance exercise has been shown to improve balance and reduce falls within the community setting. However few studies have measured the effects of balance exercises on balance within the inpatient setting. The aim of this randomised controlled trial is to investigate whether the addition of circuit classes targeting balance to usual therapy lead to greater improvements in balance among rehabilitation inpatients than usual therapy alone. Methods/Design A single centre, randomised controlled trial with concealed allocation, assessor blinding and intention-to-treat analysis. One hundred and sixty two patients admitted to the general rehabilitation ward at Bankstown-Lidcombe Hospital will be recruited. Eligible participants will have no medical contraindications to exercise and will be able to: fully weight bear; stand unaided independently for at least 30 seconds; and participate in group therapy sessions with minimal supervision. Participants will be randomly allocated to an intervention group or usual-care control group. Both groups will receive standard rehabilitation intervention that includes physiotherapy mobility training and exercise for at least two hours on each week day. The intervention group will also receive six 1-hour circuit classes of supervised balance exercises designed to maximise the ability to make postural adjustments in standing, stepping and walking. The primary outcome is balance. Balance will be assessed by measuring the total time the participant can stand unsupported in five different positions; feet apart, feet together, semi-tandem, tandem and single-leg-stance. Secondary outcomes include mobility, self reported physical functioning, falls and hospital readmissions. Performance on the outcome measures will be assessed before randomisation and at two-weeks and three-months after randomisation by physiotherapists unaware of intervention group allocation. Discussion This study will determine the impact of additional balance circuit classes on balance among rehabilitation inpatients. The results will provide essential information to guide evidence-based physiotherapy at the study site as well as across other rehabilitation inpatient settings. Trial registration The protocol for this study is registered with the Australian New Zealand, Clinical Trials Registry: ACTRN=12611000412932 PMID:23870654
Nilsagård, Ylva E; Forsberg, Anette S; von Koch, Lena
2013-02-01
The use of interactive video games is expanding within rehabilitation. The evidence base is, however, limited. Our aim was to evaluate the effects of a Nintendo Wii Fit® balance exercise programme on balance function and walking ability in people with multiple sclerosis (MS). A multi-centre, randomised, controlled single-blinded trial with random allocation to exercise or no exercise. The exercise group participated in a programme of 12 supervised 30-min sessions of balance exercises using Wii games, twice a week for 6-7 weeks. Primary outcome was the Timed Up and Go test (TUG). In total, 84 participants were enrolled; four were lost to follow-up. After the intervention, there were no statistically significant differences between groups but effect sizes for the TUG, TUGcognitive and, the Dynamic Gait Index (DGI) were moderate and small for all other measures. Statistically significant improvements within the exercise group were present for all measures (large to moderate effect sizes) except in walking speed and balance confidence. The non-exercise group showed statistically significant improvements for the Four Square Step Test and the DGI. In comparison with no intervention, a programme of supervised balance exercise using Nintendo Wii Fit® did not render statistically significant differences, but presented moderate effect sizes for several measures of balance performance.
Küçük, Fadime; Kara, Bilge; Poyraz, Esra Çoşkuner; İdiman, Egemen
2016-01-01
[Purpose] The aim of this study was to determine the effects of clinical Pilates in multiple sclerosis patients. [Subjects and Methods] Twenty multiple sclerosis patients were enrolled in this study. The participants were divided into two groups as the clinical Pilates and control groups. Cognition (Multiple Sclerosis Functional Composite), balance (Berg Balance Scale), physical performance (timed performance tests, Timed up and go test), tiredness (Modified Fatigue Impact scale), depression (Beck Depression Inventory), and quality of life (Multiple Sclerosis International Quality of Life Questionnaire) were measured before and after treatment in all participants. [Results] There were statistically significant differences in balance, timed performance, tiredness and Multiple Sclerosis Functional Composite tests between before and after treatment in the clinical Pilates group. We also found significant differences in timed performance tests, the Timed up and go test and the Multiple Sclerosis Functional Composite between before and after treatment in the control group. According to the difference analyses, there were significant differences in Multiple Sclerosis Functional Composite and Multiple Sclerosis International Quality of Life Questionnaire scores between the two groups in favor of the clinical Pilates group. There were statistically significant clinical differences in favor of the clinical Pilates group in comparison of measurements between the groups. Clinical Pilates improved cognitive functions and quality of life compared with traditional exercise. [Conclusion] In Multiple Sclerosis treatment, clinical Pilates should be used as a holistic approach by physical therapists. PMID:27134355
Küçük, Fadime; Kara, Bilge; Poyraz, Esra Çoşkuner; İdiman, Egemen
2016-03-01
[Purpose] The aim of this study was to determine the effects of clinical Pilates in multiple sclerosis patients. [Subjects and Methods] Twenty multiple sclerosis patients were enrolled in this study. The participants were divided into two groups as the clinical Pilates and control groups. Cognition (Multiple Sclerosis Functional Composite), balance (Berg Balance Scale), physical performance (timed performance tests, Timed up and go test), tiredness (Modified Fatigue Impact scale), depression (Beck Depression Inventory), and quality of life (Multiple Sclerosis International Quality of Life Questionnaire) were measured before and after treatment in all participants. [Results] There were statistically significant differences in balance, timed performance, tiredness and Multiple Sclerosis Functional Composite tests between before and after treatment in the clinical Pilates group. We also found significant differences in timed performance tests, the Timed up and go test and the Multiple Sclerosis Functional Composite between before and after treatment in the control group. According to the difference analyses, there were significant differences in Multiple Sclerosis Functional Composite and Multiple Sclerosis International Quality of Life Questionnaire scores between the two groups in favor of the clinical Pilates group. There were statistically significant clinical differences in favor of the clinical Pilates group in comparison of measurements between the groups. Clinical Pilates improved cognitive functions and quality of life compared with traditional exercise. [Conclusion] In Multiple Sclerosis treatment, clinical Pilates should be used as a holistic approach by physical therapists.
McAuley, Edward
2016-01-01
Abstract Background. Despite yoga’s popularity, few clinical trials have employed rigorous methodology to systematically explore its functional benefits compared with more established forms of exercise. The objective of this study was to compare the functional benefits of yoga with the conventional stretching–strengthening exercises recommended for adults. Methods. Sedentary healthy adults ( N = 118; Mage = 62.0) participated in an 8-week (three times a week for 1 hour) randomized controlled trial, which consisted of a Hatha yoga group ( n = 61) and a stretching–strengthening exercise group ( n = 57). Standardized functional fitness tests assessing balance, strength, flexibility, and mobility were administered at baseline and postintervention. Results. A repeated measures multivariate analysis of variance showed a significant time effect for measures of balance [ F (3,18) = 4.88, p < .01, partial η 2 = .45], strength [ F (2,19) = 15.37, p < .001, partial η 2 = .62], flexibility [ F (4,17) = 8.86, p < .001, partial η 2 = .68], and mobility [ F (2,19) = 8.54, p < .002, partial η 2 = .47]. Both groups showed significant improvements on measures of balance (left–right leg and four square step); strength (chair stands and arm curls); flexibility (back scratch and sit-and-reach); and mobility (gait speed and 8-feet up and go), with partial η 2 ranging from .05 to .47. Conclusions. These data suggest that regular yoga practice is just as effective as stretching–strengthening exercises in improving functional fitness. To our knowledge, this is the first study to examine functional benefits of yoga in comparison with stretching–strengthening exercises in sedentary, healthy, community-dwelling older adults. These findings have clinical implications as yoga is a more amenable form of exercise than strengthening exercises as it requires minimal equipment and can be adapted for individuals with lower levels of functioning or disabilities. PMID:26297940
Gothe, Neha P; McAuley, Edward
2016-03-01
Despite yoga's popularity, few clinical trials have employed rigorous methodology to systematically explore its functional benefits compared with more established forms of exercise. The objective of this study was to compare the functional benefits of yoga with the conventional stretching-strengthening exercises recommended for adults. Sedentary healthy adults (N = 118; M age = 62.0) participated in an 8-week (three times a week for 1 hour) randomized controlled trial, which consisted of a Hatha yoga group (n = 61) and a stretching-strengthening exercise group (n = 57). Standardized functional fitness tests assessing balance, strength, flexibility, and mobility were administered at baseline and postintervention. A repeated measures multivariate analysis of variance showed a significant time effect for measures of balance [F(3,18) = 4.88, p < .01, partial η(2) = .45], strength [F(2,19) = 15.37, p < .001, partial η(2) = .62], flexibility [F(4,17) = 8.86, p < .001, partial η(2) = .68], and mobility [F(2,19) = 8.54, p < .002, partial η(2) = .47]. Both groups showed significant improvements on measures of balance (left-right leg and four square step); strength (chair stands and arm curls); flexibility (back scratch and sit-and-reach); and mobility (gait speed and 8-feet up and go), with partial η(2) ranging from .05 to .47. These data suggest that regular yoga practice is just as effective as stretching-strengthening exercises in improving functional fitness. To our knowledge, this is the first study to examine functional benefits of yoga in comparison with stretching-strengthening exercises in sedentary, healthy, community-dwelling older adults. These findings have clinical implications as yoga is a more amenable form of exercise than strengthening exercises as it requires minimal equipment and can be adapted for individuals with lower levels of functioning or disabilities. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rivas Neira, Sabela; Pasqual Marques, Amélia; Pegito Pérez, Irene; Fernández Cervantes, Ramón; Vivas Costa, Jamile
2017-01-19
Fibromyalgia is a disease with an increasing incidence. It impairs the quality of life of patients and decreases their functional capacity. Aquatic therapy has already been used for managing the symptoms of this syndrome. However, aquatic therapy has only recently been introduced as a treatment modality for improving proprioception in fibromyalgia. The main objective of this study is to determine the effectiveness of two physiotherapy protocols, one in and one out of water, for improving balance and decreasing pain in women with fibromyalgia. The study protocol will be a single-blind randomised controlled trial. Forty women diagnosed with fibromyalgia will be randomly assigned into 2 groups: Aquatic Therapy (n = 20) or Land-based Therapy (n = 20). Both interventions include 60-min therapy sessions, structured into 4 sections: Warm-up, Proprioceptive Exercises, Stretching and Relaxation. These sessions will be carried out 3 times a week for 3 months. Primary outcomes are balance (static and dynamic) and pain (intensity and threshold). Secondary outcomes include functional balance, quality of life, quality of sleep, fatigue, self-confidence in balance and physical ability. Outcome measures will be evaluated at baseline, at the end of the 3-month intervention period, and 6-weeks post-treatment. Statistical analysis will be carried out using the SPSS 21.0 program for Windows and a significance level of p ≤ 0.05 will be used for all tests. This study protocol details two physiotherapy interventions in women with fibromyalgia to improve balance and decrease pain: aquatic therapy and land-based therapy. In current literature there is a lack of methodological rigour and a limited number of studies that describe physiotherapy protocols to manage fibromyalgia symptoms. High-quality scientific works are required to highlight physiotherapy as one of the most recommended treatment options for this syndrome. Date of publication in ClinicalTrials.gov: 18/02/2016. ClinicalTrials.gov Identifier: NCT02695875 .
Review of the randomized clinical stroke rehabilitation trials in 2009
Rabadi, Meheroz H.
2011-01-01
Summary Background Recent review of the available evidence on interventions for motor recovery after stroke, showed that improvements in recovery of arm function were seen for constraint-induced movement therapy, electromyographic biofeedback, mental practice with motor imagery, and robotics. Similar improvement in transfer ability or balance were seen with repetitive task training, biofeedback, and training with a moving platform. Walking speed was improved by physical fitness training, high-intensity physiotherapy and repetitive task training. However, most of these trials were small and had design limitations. Material/Methods In this article, randomized control trials (RCT’s) published in 2009 of rehabilitation therapies for acute (≤2 weeks), sub-acute (2 to 12 weeks) and chronic (≥12 weeks) stroke was reviewed. A Medline search was performed to identify all RCT’s in stroke rehabilitation in the year 2009. The search strategy that was used for PubMed is presented in the Appendix 1. The objective was to examine the effectiveness of these treatment modalities in stroke rehabilitation. Results This generated 35 RCT’s under 5 categories which were found and analyzed. The methodological quality was assessed by using the PEDro scale for external and internal validity. Conclusions These trials were primarily efficacy studies. Most of these studies enrolled small numbers of patient which precluded their clinical applicability (limited external validity). However, the constraint induced movement therapy (CIT), regularly used in chronic stroke patients did not improve affected arm-hand function when used in acute stroke patients at ≤4 weeks. Intensive CIT did not lead to motor improvement in arm-hand function. Robotic arm treatment helped decrease motor impairment and improved function in chronic stroke patients only. Therapist provided exercise programs (when self-administered by patients during their off-therapy time in a rehabilitation setting) did improve arm-hand function. Tai Chi exercises helped improve balance and weight bearing. Exercise programs for community dwelling stroke patient helped maintain and even improve their functional state. PMID:21278702
Review of the randomized clinical stroke rehabilitation trials in 2009.
Rabadi, Meheroz H
2011-02-01
Recent review of the available evidence on interventions for motor recovery after stroke, showed that improvements in recovery of arm function were seen for constraint-induced movement therapy, electromyographic biofeedback, mental practice with motor imagery, and robotics. Similar improvement in transfer ability or balance were seen with repetitive task training, biofeedback, and training with a moving platform. Walking speed was improved by physical fitness training, high-intensity physiotherapy and repetitive task training. However, most of these trials were small and had design limitations. In this article, randomized control trials (RCT's) published in 2009 of rehabilitation therapies for acute (≤ 2 weeks), sub-acute (2 to 12 weeks) and chronic (≥ 12 weeks) stroke was reviewed. A Medline search was performed to identify all RCT's in stroke rehabilitation in the year 2009. The search strategy that was used for PubMed is presented in the Appendix 1. The objective was to examine the effectiveness of these treatment modalities in stroke rehabilitation. This generated 35 RCT's under 5 categories which were found and analyzed. The methodological quality was assessed by using the PEDro scale for external and internal validity. These trials were primarily efficacy studies. Most of these studies enrolled small numbers of patient which precluded their clinical applicability (limited external validity). However, the constraint induced movement therapy (CIT), regularly used in chronic stroke patients did not improve affected arm-hand function when used in acute stroke patients at ≤ 4 weeks. Intensive CIT did not lead to motor improvement in arm-hand function. Robotic arm treatment helped decrease motor impairment and improved function in chronic stroke patients only. Therapist provided exercise programs (when self-administered by patients during their off-therapy time in a rehabilitation setting) did improve arm-hand function. Tai Chi exercises helped improve balance and weight bearing. Exercise programs for community dwelling stroke patient helped maintain and even improve their functional state.
Bower, Kelly J; Clark, Ross A; McGinley, Jennifer L; Martin, Clarissa L; Miller, Kimberly J
2013-04-01
Balance deficits following stroke are common and debilitating. Commercially available gaming systems, such as the Nintendo(®) (Kyoto, Japan) Wii™, have been widely adopted clinically; however, there is limited evidence supporting their feasibility and efficacy for improving balance performance following stroke. The aim of this trial is to investigate the clinical feasibility and efficacy of using the Nintendo Wii gaming system as an adjunct to standard care to improve balance performance following stroke in an inpatient rehabilitation setting. Thirty participants undergoing inpatient stroke rehabilitation will be recruited into this Phase II, single-blind, randomized controlled trial. Participants will be allocated into a Balance or Upper Limb Group, and both groups will perform activities using the Nintendo Wii in addition to their standard care. Participants will attend three 45-minute sessions per week, for a minimum of 2 and a maximum of 4 weeks. The main focus of the study is to investigate the feasibility of the intervention protocol. This will be evaluated through recruitment, retention, adherence, acceptability, and safety. The Step Test and Functional Reach Test will be the primary efficacy outcomes. Secondary outcomes will include force platform, mobility, and upper limb measures. Assessments will occur at baseline, 2 weeks, and 4 weeks after study entry. To the authors' knowledge, this will be the largest randomized clinical trial to investigate the feasibility and efficacy of the Nintendo Wii gaming system for improving balance performance in a stroke population. The results will inform the design of a Phase III multicenter trial.
Lintanf, Mael; Bourseul, Jean-Sébastien; Houx, Laetitia; Lempereur, Mathieu; Brochard, Sylvain; Pons, Christelle
2018-04-01
To determine the effects of ankle-foot orthoses (AFOs) on gait, balance, gross motor function and activities of daily living in children with cerebral palsy. Five databases were searched (Pubmed, Psycinfo, Web of Science, Academic Search Premier and Cochrane Library) before January 2018. Studies of the effect of AFOs on gait, balance, gross motor function and activities of daily living in children with cerebral palsy were included. Articles with a modified PEDRO score ≥ 5/9 were selected. Data regarding population, AFO, interventions and outcomes were extracted. When possible, standardized mean differences (SMDs) were calculated from the outcomes. Thirty-two articles, corresponding to 56 studies (884 children) were included. Fifty-one studies included children with spastic cerebral palsy. AFOs increased stride length (SMD = 0.88, P < 0.001) and gait speed (SMD = 0.28, P < 0.001), and decreased cadence (SMD = -0.72, P < 0.001). Gross motor function scores improved (Gross Motor Function Measure (GMFM) D (SMD = 0.30, P = 0.004), E (SMD = 0.28, P = 0.02), Pediatric Evaluation of Disability Inventory (PEDI) (SMD = 0.57, P < 0.001)). Data relating to balance and activities of daily living were insufficient to conclude. Posterior AFOs (solid, hinged, supra-malleolar, dynamic) increased ankle dorsiflexion at initial contact (SMD = 1.65, P < 0.001) and during swing (SMD = 1.34, P < 0.001), and decreased ankle power generation in stance (SMD = -0.72, P < 0.001) in children with equinus gait. In children with spastic cerebral palsy, there is strong evidence that AFOs induce small improvements in gait speed and moderate evidence that AFOs have a small to moderate effect on gross motor function. In children with equinus gait, there is strong evidence that posterior AFOs induce large changes in distal kinematics.
Comprehensive Outpatient Rehabilitation Program: Hospital-Based Stroke Outpatient Rehabilitation.
Rice, Danielle; Janzen, Shannon; McIntyre, Amanda; Vermeer, Julianne; Britt, Eileen; Teasell, Robert
2016-05-01
Few studies have considered the effectiveness of outpatient rehabilitation programs for stroke patients. The objective of this study was to assess the effectiveness of a hospital-based interdisciplinary outpatient stroke rehabilitation program with respect to physical functioning, mobility, and balance. The Comprehensive Outpatient Rehabilitation Program provides a hospital-based interdisciplinary approach to stroke rehabilitation in Southwestern Ontario. Outcome measures from physiotherapy and occupational therapy sessions were available at intake and discharge from the program. A series of paired sample t-tests were performed to assess patient changes between time points for each outcome measure. A total of 271 patients met the inclusion criteria for analysis (56.1% male; mean age = 62.9 ± 13.9 years). Significant improvements were found between admission and discharge for the Functional Independence Measure, grip strength, Chedoke-McMaster Stroke Assessment, two-minute walk test, maximum walk test, Timed Up and Go, Berg Balance Scale, and one-legged stance (P < .003 for all). The findings indicate that an interdisciplinary rehabilitation program was effective at improving the physical functioning, mobility, and balance of individuals after a stroke. A hospital-based, stroke-specific rehabilitation program should be considered when patients continue to experience deficits after inpatient rehabilitation. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Clinical Benefits of Joint Mobilization on Ankle Sprains: A Systematic Review and Meta-Analysis.
Weerasekara, Ishanka; Osmotherly, Peter; Snodgrass, Suzanne; Marquez, Jodie; de Zoete, Rutger; Rivett, Darren A
2018-07-01
To assess the clinical benefits of joint mobilization for ankle sprains. MEDLINE, MEDLINE In-Process, Embase, AMED, PsycINFO, CINAHL, Cochrane Library, PEDro, Scopus, SPORTDiscus, and Dissertations and Theses were searched from inception to June 2017. Studies investigating humans with grade I or II lateral or medial sprains of the ankle in any pathologic state from acute to chronic, who had been treated with joint mobilization were considered for inclusion. Any conservative intervention was considered as a comparator. Commonly reported clinical outcomes were considered such as ankle range of movement, pain, and function. After screening of 1530 abstracts, 56 studies were selected for full-text screening, and 23 were eligible for inclusion. Eleven studies on chronic sprains reported sufficient data for meta-analysis. Data were extracted using the participants, interventions, comparison, outcomes, and study design approach. Clinically relevant outcomes (dorsiflexion range, proprioception, balance, function, pain threshold, pain intensity) were assessed at immediate, short-term, and long-term follow-up points. Methodological quality was assessed independently by 2 reviewers, and most studies were found to be of moderate quality, with no studies rated as poor. Meta-analysis revealed significant immediate benefits of joint mobilization compared with comparators on improving posteromedial dynamic balance (P=.0004), but not for improving dorsiflexion range (P=.16), static balance (P=.96), or pain intensity (P=.45). Joint mobilization was beneficial in the short-term for improving weight-bearing dorsiflexion range (P=.003) compared with a control. Joint mobilization appears to be beneficial for improving dynamic balance immediately after application, and dorsiflexion range in the short-term. Long-term benefits have not been adequately investigated. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Ozaki, Kenichi; Kagaya, Hitoshi; Hirano, Satoshi; Kondo, Izumi; Tanabe, Shigeo; Itoh, Norihide; Saitoh, Eiichi; Fuwa, Toshio; Murakami, Ryo
2013-01-01
To examine the efficacy of postural strategy training using a personal transport assistance robot (PTAR) for patients with central nervous system disorders. Single-group intervention trial. Rehabilitation center at a university hospital. Outpatients (N=8; 5 men, 3 women; mean age, 50±13y) with a gait disturbance (mean time after onset, 34±29mo) as a result of central nervous system disorders were selected from a volunteer sample. Two methods of balance exercise using a PTAR were devised: exercise against perturbation and exercise moving the center of gravity. The exercises were performed twice a week for 4 weeks. Preferred and tandem gait speeds, Functional Reach Test, functional base of support, center of pressure (COP), muscle strength of lower extremities, and grip strength were assessed before and after the completion of the exercise program. After the exercise program, enjoyment of exercise was investigated via a visual analog scale questionnaire. After the program, statistically significant improvements were noted for tandem gait speeds (P=.009), Functional Reach Test (P=.003), functional base of support (P=.014), and lower extremity muscle strength (P<.001-.042). On the other hand, preferred gait speeds (P=.151), COP (P=.446-.714), and grip power (P=.584) did not change. Finally, subjects rated that this exercise was more enjoyable than traditional balance exercises. Dynamic balance and lower extremity muscle strength were significantly improved in response to postural strategy training with the PTAR. These results suggest that postural strategy training with the PTAR may contribute to fall prevention of patients with a balance disorder. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Gordt, Katharina; Gerhardy, Thomas; Najafi, Bijan; Schwenk, Michael
2018-01-01
Wearable sensors (WS) can accurately measure body motion and provide interactive feedback for supporting motor learning. This review aims to summarize current evidence for the effectiveness of WS training for improving balance, gait and functional performance. A systematic literature search was performed in PubMed, Cochrane, Web of Science, and CINAHL. Randomized controlled trials (RCTs) using a WS exercise program were included. Study quality was examined by the PEDro scale. Meta-analyses were conducted to estimate the effects of WS balance training on the most frequently reported outcome parameters. Eight RCTs were included (Parkinson n = 2, stroke n = 1, Parkinson/stroke n = 1, peripheral neuropathy n = 2, frail older adults n = 1, healthy older adults n = 1). The sample size ranged from n = 20 to 40. Three types of training paradigms were used: (1) static steady-state balance training, (2) dynamic steady-state balance training, which includes gait training, and (3) proactive balance training. RCTs either used one type of training paradigm (type 2: n = 1, type 3: n = 3) or combined different types of training paradigms within their intervention (type 1 and 2: n = 2; all types: n = 2). The meta-analyses revealed significant overall effects of WS training on static steady-state balance outcomes including mediolateral (eyes open: Hedges' g = 0.82, CI: 0.43-1.21; eyes closed: g = 0.57, CI: 0.14-0.99) and anterior-posterior sway (eyes open: g = 0.55, CI: 0.01-1.10; eyes closed: g = 0.44, CI: 0.02-0.86). No effects on habitual gait speed were found in the meta-analysis (g = -0.19, CI: -0.68 to 0.29). Two RCTs reported significant improvements for selected gait variables including single support time, and fast gait speed. One study identified effects on proactive balance (Alternate Step Test), but no effects were found for the Timed Up and Go test and the Berg Balance Scale. Two studies reported positive results on feasibility and usability. Only one study was performed in an unsupervised setting. This review provides evidence for a positive effect of WS training on static steady-state balance in studies with usual care controls and studies with conventional balance training controls. Specific gait parameters and proactive balance measures may also be improved by WS training, yet limited evidence is available. Heterogeneous training paradigms, small sample sizes, and short intervention durations limit the validity of our findings. Larger studies are required for estimating the true potential of WS technology. © 2017 S. Karger AG, Basel.
Evaluation of Predictive Factors Influencing Community Reintegration in Adult Patients with Stroke
Olawale, Olajide Ayinla; Usman, Jibrin Sammani; Oke, Kayode Israel; Osundiya, Oladunni Caroline
2018-01-01
Objectives: Patients with stroke are faced with gait, balance, and fall difficulties which could impact on their community reintegration. In Nigeria, community reintegration after stroke has been understudied. The objective of this study was to evaluate the predictors of community reintegration in adult patients with stroke. Materials and Methods: Participants were 91 adult patients with stroke. Gait variables, balance self-efficacy, community balance/mobility, and fall self-efficacy were assessed using Rivermead Mobility Index, Activities-specific Balance Confidence Scale, Community Balance and Mobility Scale, and Falls Efficacy Scale-International respectively. Reintegration to Normal Living Index was used to assess satisfaction with community reintegration. Pearson Product-Moment Correlation Coefficient was used to determine the relationship between community reintegration and gait spatiotemporal variables, balance performance, and risk of fall. Multiple regression analysis was used to determine predictors of community reintegration (P ≤ 0.05). Results: There was significant positive relationship between community reintegration and cadence (r = 0.250, P = 0.017), functional mobility (r = 0.503, P = 0.001), balance self-efficacy (r = 0.608, P = 0.001), community balance/mobility (r = 0.586, P = 0.001), and duration of stroke (r = 0.220, P = 0.036). Stride time (r = −0.282, P = 0.073) and fall self-efficacy (r = 0.566, P = 0.001) were negatively correlated with community reintegration. Duration of stroke, balance self-efficacy, community balance/mobility, and fall self-efficacy (52.7% of the variance) were the significant predictors of community reintegration. Conclusion: Community reintegration is influenced by cadence, functional mobility, balance self-efficacy, community balance/mobility, and duration of stroke. Hence, improving balance and mobility during rehabilitation is important in enhancing community reintegration in patients with stroke. PMID:29456337
Shih, Ching-Hsiang; Chen, Ling-Che; Shih, Ching-Tien
2012-01-01
The latest researches have adopted software technology to modify the Nintendo Wii Balance Board functionality and used it to enable two people with developmental disabilities to actively perform physical activities. This study extended the latest research of the Wii Balance Board application to assess whether four people (two groups) with developmental disabilities would be able to actively improve their physical activities collaboration--walking to the designated location following simple instructions, by controlling their favorite environmental stimulation through using three Nintendo Wii Balance Boards. We employed an A-B-A-B design, with A represented the baseline and B represented intervention phases. Data showed that both groups of participants significantly increased their collaborative target response (collaboratively performing designated physical activities) by activating the control system to produce their preferred environmental stimulation during the intervention phases. Practical and developmental implications of the findings are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tebet, Marcos Antonio
2014-01-01
Treatment of spondylolysis and spondylolisthesis remains a challenge for orthopaedic surgeons, neurosurgeons and paediatrics. In spondylolisthesis, it has been clearly demonstrated over the past decade that spino-pelvic morphology is abnormal and that it can be associated to an abnormal sacro-pelvic orientation as well as to a disturbed global sagittal balance of spine. This article presents the SDSG (Spinal Deformity Study Group) classification of lumbosacral spondylolisthesis. The proper treatment of spondylolisthesis is dependent on recognizing the type of slip, sacro-pelvic balance and overall sagittal balance and its natural history. Although a number of clinical radiographic features have been identified as risk factors, their role as primary causative factors or secondary adaptative changes is not clear. The conservative treatment of adult isthmic spondylolisthesis results in good outcome in the majority of cases. Of those patients who fail conservative treatment, success with surgery is quite good, with significant improvement in neurologic function in those patients with deficits, as well as improvement in patients with back pain. PMID:26229765
Balance Training Reduces Falls Risk in Older Individuals With Type 2 Diabetes
Morrison, Steven; Colberg, Sheri R.; Mariano, Mira; Parson, Henri K.; Vinik, Arthur I.
2010-01-01
OBJECTIVE This study assessed the effects of balance/strength training on falls risk and posture in older individuals with type 2 diabetes. RESEARCH DESIGN AND METHODS Sixteen individuals with type 2 diabetes and 21 age-matched control subjects (aged 50–75 years) participated. Postural stability and falls risk was assessed before and after a 6-week exercise program. RESULTS Diabetic individuals had significantly higher falls risk score compared with control subjects. The diabetic group also exhibited evidence of mild-to-moderate neuropathy, slower reaction times, and increased postural sway. Following exercise, the diabetic group showed significant improvements in leg strength, faster reaction times, decreased sway, and, consequently, reduced falls risk. CONCLUSIONS Older individuals with diabetes had impaired balance, slower reactions, and consequently a higher falls risk than age-matched control subjects. However, all these variables improved after resistance/balance training. Together these results demonstrate that structured exercise has wide-spread positive effects on physiological function for older individuals with type 2 diabetes. PMID:20097781
Gene Therapy Restores Balance and Auditory Functions in a Mouse Model of Usher Syndrome.
Isgrig, Kevin; Shteamer, Jack W; Belyantseva, Inna A; Drummond, Meghan C; Fitzgerald, Tracy S; Vijayakumar, Sarath; Jones, Sherri M; Griffith, Andrew J; Friedman, Thomas B; Cunningham, Lisa L; Chien, Wade W
2017-03-01
Dizziness and hearing loss are among the most common disabilities. Many forms of hereditary balance and hearing disorders are caused by abnormal development of stereocilia, mechanosensory organelles on the apical surface of hair cells in the inner ear. The deaf whirler mouse, a model of human Usher syndrome (manifested by hearing loss, dizziness, and blindness), has a recessive mutation in the whirlin gene, which renders hair cell stereocilia short and dysfunctional. In this study, wild-type whirlin cDNA was delivered to the inner ears of neonatal whirler mice using adeno-associated virus serotype 2/8 (AAV8-whirlin) by injection into the posterior semicircular canal. Unilateral whirlin gene therapy injection was able to restore balance function as well as improve hearing in whirler mice for at least 4 months. Our data indicate that gene therapy is likely to become a treatment option for hereditary disorders of balance and hearing. Copyright © 2017. Published by Elsevier Inc.
Samitier, C Beatriz; Guirao, Lluis; Costea, Maria; Camós, Josep M; Pleguezuelos, Eulogio
2016-02-01
Lower limb amputation leads to impaired balance, ambulation, and transfers. Proper fit of the prosthesis is a determining factor for successful ambulation. Vacuum-assisted socket systems extract air from the socket, which decreases pistoning and probability of soft-tissue injuries and increases proprioception and socket comfort. To investigate the effect of vacuum-assisted socket system on transtibial amputees' performance-based and perceived balance, transfers, and gait. Quasi-experimental before-and-after study. Subjects were initially assessed using their prosthesis with the regular socket and re-evaluated 4 weeks after fitting including the vacuum-assisted socket system. We evaluated the mobility grade using Medicare Functional Classification Level, Berg Balance Scale, Four Square Step Test, Timed Up and Go Test, the 6-Min Walk Test, the Locomotor Capabilities Index, Satisfaction with Prosthesis (SAT-PRO questionnaire), and Houghton Scale. A total of 16 unilateral transtibial dysvascular amputees, mean age 65.12 (standard deviation = 10.15) years. Using the vacuum-assisted socket system, the patients significantly improved in balance, gait, and transfers: scores of the Berg Balance Scale increased from 45.75 (standard deviation = 6.91) to 49.06 (standard deviation = 5.62) (p < 0.01), Four Square Step Test decreased from 18.18 (standard deviation = 3.84) s to 14.97 (3.9) s (p < 0.01), Timed Up and Go Test decreased from 14.3 (standard deviation = 3.29) s to 11.56 (2.46) s (p < 0.01). The distance walked in the 6-Min Walk Test increased from 288.53 (standard deviation = 59.57) m to 321.38 (standard deviation = 72.81) m (p < 0.01). Vacuum-assisted socket systems are useful for improving balance, gait, and transfers in over-50-year-old dysvascular transtibial amputees. This study gives more insight into the use of vacuum-assisted socket systems to improve elderly transtibial dysvascular amputees' functionality and decrease their risk of falls. The use of an additional distal valve in the socket should be considered in patients with a lower activity level. © The International Society for Prosthetics and Orthotics 2014.
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2005-09-01
It is demonstrated that the LYP correlation functional is not suited to be used for the calculation of electron spin resonance hyperfine structure (HFS) constants, nuclear magnetic resonance spin-spin coupling constants, magnetic, shieldings and other properties that require a balanced account of opposite- and equal-spin correlation, especially in the core region. In the case of the HFS constants of alkali atoms, LYP exaggerates opposite-spin correlation effects thus invoking too strong in-out correlation effects, an exaggerated spin-polarization pattern in the core shells of the atoms, and, consequently, too large HFS constants. Any correlation functional that provides a balanced account of opposite- and equal-spin correlation leads to improved HFS constants, which is proven by comparing results obtained with the LYP and the PW91 correlation functional. It is suggested that specific response properties are calculated with the PW91 rather than the LYP correlation functional.
Toots, Annika; Littbrand, Håkan; Lindelöf, Nina; Wiklund, Robert; Holmberg, Henrik; Nordström, Peter; Lundin-Olsson, Lillemor; Gustafson, Yngve; Rosendahl, Erik
2016-01-01
Objectives To investigate the effects of a high-intensity functional exercise program on independence in activities of daily living (ADLs) and balance in older people with dementia and whether exercise effects differed between dementia types. Design Cluster-randomized controlled trial: Umeå Dementia and Exercise (UMDEX) study. Setting Residential care facilities, Umeå, Sweden. Participants Individuals aged 65 and older with a dementia diagnosis, a Mini-Mental State Examination score of 10 or greater, and dependence in ADLs (N = 186). Intervention Ninety-three participants each were allocated to the high-intensity functional exercise program, comprising lower limb strength and balance exercises, and 93 to a seated control activity. Measurements Blinded assessors measured ADL independence using the Functional Independence Measure (FIM) and Barthel Index (BI) and balance using the Berg Balance Scale (BBS) at baseline and 4 (directly after intervention completion) and 7 months. Results Linear mixed models showed no between-group effect on ADL independence at 4 (FIM=1.3, 95% confidence interval (CI)=−1.6–4.3; BI=0.6, 95% CI=−0.2–1.4) or 7 (FIM=0.8, 95% CI=−2.2–3.8; BI=0.6, 95% CI=−0.3–1.4) months. A significant between-group effect on balance favoring exercise was observed at 4 months (BBS=4.2, 95% CI=1.8–6.6). In interaction analyses, exercise effects differed significantly between dementia types. Positive between-group exercise effects were found in participants with non-Alzheimer's dementia according to the FIM at 7 months and BI and BBS at 4 and 7 months. Conclusion In older people with mild to moderate dementia living in residential care facilities, a 4-month high-intensity functional exercise program appears to slow decline in ADL independence and improve balance, albeit only in participants with non-Alzheimer's dementia. PMID:26782852
Toots, Annika; Littbrand, Håkan; Lindelöf, Nina; Wiklund, Robert; Holmberg, Henrik; Nordström, Peter; Lundin-Olsson, Lillemor; Gustafson, Yngve; Rosendahl, Erik
2016-01-01
To investigate the effects of a high-intensity functional exercise program on independence in activities of daily living (ADLs) and balance in older people with dementia and whether exercise effects differed between dementia types. Cluster-randomized controlled trial: Umeå Dementia and Exercise (UMDEX) study. Residential care facilities, Umeå, Sweden. Individuals aged 65 and older with a dementia diagnosis, a Mini-Mental State Examination score of 10 or greater, and dependence in ADLs (N=186). Ninety-three participants each were allocated to the high-intensity functional exercise program, comprising lower limb strength and balance exercises, and 93 to a seated control activity. Blinded assessors measured ADL independence using the Functional Independence Measure (FIM) and Barthel Index (BI) and balance using the Berg Balance Scale (BBS) at baseline and 4 (directly after intervention completion) and 7 months. Linear mixed models showed no between-group effect on ADL independence at 4 (FIM=1.3, 95% confidence interval (CI)=-1.6-4.3; BI=0.6, 95% CI=-0.2-1.4) or 7 (FIM=0.8, 95% CI=-2.2-3.8; BI=0.6, 95% CI=-0.3-1.4) months. A significant between-group effect on balance favoring exercise was observed at 4 months (BBS=4.2, 95% CI=1.8-6.6). In interaction analyses, exercise effects differed significantly between dementia types. Positive between-group exercise effects were found in participants with non-Alzheimer's dementia according to the FIM at 7 months and BI and BBS at 4 and 7 months. In older people with mild to moderate dementia living in residential care facilities, a 4-month high-intensity functional exercise program appears to slow decline in ADL independence and improve balance, albeit only in participants with non-Alzheimer's dementia. © 2016 The Authors. The Journal of the American Geriatrics Society published by Wiley Periodicals, Inc. on behalf of The American Geriatrics Society.
Effects of whole-body vibration on heart rate variability: acute responses and training adaptations.
Wong, Alexei; Figueroa, Arturo
2018-05-18
Heart rate variability (HRV) is a noninvasive and practical measure of cardiac autonomic nervous system function, mainly the sympathetic and parasympathetic modulations of heart rate. A low HRV has been shown to be indicative of compromised cardiovascular health. Interventions that enhance HRV are therefore beneficial to cardiovascular health. Whole-body vibration (WBV) training has been proposed as an alternative time-efficient exercise intervention for the improvement of cardiovascular health. In this review, we discuss the effect of WBV both acute and after training on HRV. WBV training appears to be a useful therapeutic intervention to improve cardiac autonomic function in different populations, mainly through decreases in sympathovagal balance. Although the mechanisms by which WBV training improves symphathovagal balance are not yet well understood; enhancement of baroreflex sensitivity, nitric oxide bioavailability and angiotensin II levels seem to play an important role. © 2018 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Bonini-Rocha, Ana Clara; de Andrade, Anderson Lúcio Souza; Moraes, André Marques; Gomide Matheus, Liana Barbaresco; Diniz, Leonardo Rios; Martins, Wagner Rodrigues
2018-04-01
Several interventions have been proposed to rehabilitate patients with neurologic dysfunctions due to stroke. However, the effectiveness of circuit-based exercises according to its actual definition, ie, an overall program to improve strength, stamina, balance or functioning, was not provided. To examine the effectiveness of circuit-based exercise in the treatment of people affected by stroke. A search through PubMed, Embase, Cochrane Library, and Physiotherapy Evidence Database databases was performed to identify controlled clinical trials without language or date restriction. The overall mean difference with 95% confidence interval was calculated for all outcomes. Two independent reviewers assessed the risk of bias. Eleven studies met the inclusion criteria, and 8 presented suitable data to perform a meta-analysis. Quantitative analysis showed that circuit-based exercise was more effective than conventional intervention on gait speed (mean difference of 0.11 m/s) and circuit-based exercise was not significantly more effective than conventional intervention on balance and functional mobility. Our results demonstrated that circuit-based exercise presents better effects on gait when compared with conventional intervention and that its effects on balance and functional mobility were not better than conventional interventions. I. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Balancing ecosystem function, services and disservices resulting from expanding goose populations.
Buij, Ralph; Melman, Theodorus C P; Loonen, Maarten J J E; Fox, Anthony D
2017-03-01
As goose populations increase in abundance, their influence on ecological processes is increasing. We review the evidence for key ecological functions of wild goose populations in Eurasia and North America, including aquatic invertebrate and plant propagule transport, nutrient deposition in terrestrial and aquatic ecosystems, the influence of goose populations on vegetation biomass, carbon storage and methane emission, species diversity and disease transmission. To estimate the implications of their growing abundance for humans, we explore how these functions contribute to the provision of ecosystem services and disservices. We assess the weight, extent and trends among such impacts, as well as the balance of their value to society. We examine key unresolved issues to enable a more balanced assessment of the economic costs or benefits of migratory geese along their flyways, including the spatial and temporal variation in services and their contrasting value to different user groups. Many ecological functions of geese are concluded to provide neither services nor disservices and, ecosystem disservices currently appear to outweigh services, although this varies between regions. We consider an improved quantification of ecosystem services and disservices, and how these vary along population flyways with respect to variation in valuing certain cultural services, and under different management scenarios aimed at reducing their disservices, essential for a more balanced management of goose populations.
Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability
Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung
2015-01-01
[Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost. PMID:26696703
ERIC Educational Resources Information Center
Silva, V.; Campos, C.; Sá, A.; Cavadas, M.; Pinto, J.; Simões, P.; Machado, S.; Murillo-Rodríguez, E.; Barbosa-Rocha, N.
2017-01-01
Background: People with Down syndrome (DS) usually display reduced physical fitness (aerobic capacity, muscle strength and abnormal body composition), motor proficiency impairments (balance and postural control) and physical functional limitations. Exergames can be an appealing alternative to enhance exercise engagement and compliance, whilst…
Meneghini, Robert M; Ziemba-Davis, Mary M; Lovro, Luke R; Ireland, Phillip H; Damer, Brent M
2016-10-01
The optimal "target" ligament balance for each patient undergoing total knee arthroplasty (TKA) remains unknown. The study purpose was to determine if patient outcomes are affected by intraoperative ligament balance measured with force-sensing implant trials and if an optimal "target" balance exists. A multicenter, retrospective study reviewed consecutive TKAs performed by 3 surgeons. TKA's were performed with standard surgical techniques and ligament releases. After final implants were made, sensor-embedded smart tibial trials were inserted, and compartment forces recorded throughout the range of motion. Clinical outcome measures were obtained preoperatively and at 4 months. Statistical analysis correlated ligament balance with clinical outcomes. One hundred eighty-nine consecutive TKAs were analyzed. Patients were grouped by average medial and lateral compartment force differences. Twenty-nine TKAs (15%) were balanced within 15 lbs and 53 (28%) were "balanced" greater than 75 lbs. Greater improvement in University of California Los Angeles activity level was associated with a mediolateral force difference <60 lbs. (P = .006). Knee Society objective, function, and satisfaction scores, and self-reported health state were unrelated to mediolateral balance in the knee. Intraoperative force-sensing has potential in providing real-time objective data to optimize TKA outcomes. These data support some early outcomes may improve by balancing TKAs within 60 lbs difference. Close follow-up is warranted to determine if gait pattern adaptations affect longer term outcomes with greater or less ligament "imbalance." Copyright © 2016 Elsevier Inc. All rights reserved.
Greiner, Chieko; Ono, Kana; Otoguro, Chizuru; Chiba, Kyoko; Ota, Noriko
2016-08-01
The purpose of this study was to examine the effectiveness of an exercise class implemented in an area affected by the Great East Japan Earthquake and Tsunami for maintaining and improving physical function and quality of life (QOL) among elderly victims. Participants were 45 elderly disaster victims. To measure the effectiveness of the exercise classes, results on the Functional Reach Test (FRT), Timed Up and Go Test (TUG), One-leg Standing Balance (OSB), and Chair Stand Test (CST) were measured at the beginning of the exercise classes, and after 3 and 6months. In order to assess health-related QOL, the 8-item Short-Form Health Survey (SF-8) was carried out at the beginning of the exercise classes, and after 1, 3, and 6months. Of the 45 people who consented to participate, 27 continued the program for 6months and were used for analysis. Analysis of the results for FRT, OSB, and CST showed significant improvements (respectively, p=.000, .007, and .000). SF-8 showed significant increases for the subscales of bodily pain (p=.004), general health perception (p=.001), and mental health (p=.035). By continuing an exercise program for 6months, improvements were seen in lower limb muscle strength and balance functions. Effectiveness for HRQOL was also observed. Copyright © 2016 Elsevier Inc. All rights reserved.
Kayama, Hiroki; Okamoto, Kazuya; Nishiguchi, Shu; Yukutake, Taiki; Tanigawa, Takanori; Nagai, Koutatsu; Yamada, Minoru; Aoyama, Tomoki
2013-08-01
The purpose of this study was to demonstrate whether a 12-week program of training with dual-task Tai Chi (DTTC), which is a new concept game we developed using Kinect (Microsoft, Redmond, WA), would be effective in improving physical functions of fall risk factors. This study examined balance, muscle strength, locomotive ability, and dual-task ability in community-dwelling older adults (75.4±6.3 years) before and after 12 weeks of DTTC training (training group [TG]; n=32) or standardized training (control group [CG]; n=41). Primary end points were based on the difference in physical functions between the TG and the CG. Significant differences were observed between the two groups with significant group×time interaction for the following physical function measures: timed up-and-go (TUG) (P<0.01), one-leg standing (OLS) (P<0.05), and 5 chair stand (5-CS) (P<0.05). There were no significant differences among the other measures: 10-m walking time under standard conditions, manual-task conditions, and cognitive-task conditions, 10-m maximal walking time, and Functional Reach test scores. Thus, the scores of TUG, OLS, and 5-CS in the TG improved significantly with DTTC training compared with the CG. The results suggest that the DTTC training is effective in improving balance ability and mobility, which are risk factors for falls.
Dunsky, Ayelet; Yahalom, Tal; Arnon, Michal; Lidor, Ronnie
2017-07-01
To explore the use of step aerobics (SA) and the stability ball (SB) as tools for balance improvement in community-dwelling older adults. Forty-two women (age: 72.2±5.8 years) who attended a community day center volunteered to participate in the study. Following the first assessment session, 28 women were assigned randomly to one of two experimental groups (the use of either SA or SB). The other 14 participants, who were engaged in a ceramic class, served as the control group. The study design was based on four assessment sessions and eight weeks of intervention. Assessment included four balance tests: Timed Up and Go (TUG), One-Leg Stand, Functional Reach, and the Performance-Oriented Assessment of Mobility (POMA). Quality of life was assessed by the use of the Short Form-36 Health Survey questionnaire. The TUG and POMA intervention improved significantly (d=.83 and d=.95, respectively) following the SA. In addition, general health perception following both the SA and SB interventions improved significantly relative to the control condition (d=.62 and d=.22, respectively). The findings of this study may imply that trainers should consider the inclusion of SA and SB as components of physical activity programs for seniors, aimed at improving balance ability and quality of life. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterizing left-right gait balance using footstep-induced structural vibrations
NASA Astrophysics Data System (ADS)
Fagert, Jonathon; Mirshekari, Mostafa; Pan, Shijia; Zhang, Pei; Noh, Hae Young
2017-04-01
In this paper, we introduce a method for estimating human left/right walking gait balance using footstep-induced structural vibrations. Understanding human gait balance is an integral component of assessing gait, neurological and musculoskeletal conditions, overall health status, and risk of falls. Existing techniques utilize pressure- sensing mats, wearable devices, and human observation-based assessment by healthcare providers. These existing methods are collectively limited in their operation and deployment; often requiring dense sensor deployment or direct user interaction. To address these limitations, we utilize footstep-induced structural vibration responses. Based on the physical insight that the vibration energy is a function of the force exerted by a footstep, we calculate the vibration signal energy due to a footstep and use it to estimate the footstep force. By comparing the footstep forces while walking, we determine balance. This approach enables non-intrusive gait balance assessment using sparsely deployed sensors. The primary research challenge is that the floor vibration signal energy is also significantly affected by the distance between the footstep location and the vibration sensor; this function is unclear in real-world scenarios and is a mixed function of wave propagation and structure-dependent properties. We overcome this challenge through footstep localization and incorporating structural factors into an analytical force-energy-distance function. This function is estimated through a nonlinear least squares regression analysis. We evaluate the performance of our method with a real-world deployment in a campus building. Our approach estimates footstep forces with a RMSE of 61.0N (8% of participant's body weight), representing a 1.54X improvement over the baseline.
Andrade, Marilia Dos Santos; Fleury, Anna Maria; de Lira, Claudio Andre Barbosia; Dubas, Joao Paulo; da Silva, Antonio Carlos
2010-05-01
The purpose of this study was to establish the isokinetic profile of shoulder rotator muscles strength in female handball players. Twenty-seven handball players performed concentric and eccentric strength tests of both dominant and non-dominant upper limbs on an isokinetic dynamometer. Internal and external rotator muscles peak torque was assessed at 1.05, 3.14, and 5.23 rad . s(-1) in concentric mode and at 3.14 and 5.23 rad . s(-1) in eccentric mode. Concentric balance ratio and functional ratio were obtained. Bi-lateral deficiency was compared. Concentric strength for internal and external rotation was significantly greater for the dominant than for the non-dominant limb for all speeds (P < or = 0.0001). For eccentric actions, internal rotator muscles were stronger in the dominant than the non-dominant limb (P < or = 0.0001) at both speeds. Concentric balance and functional balance ratios did not differ between sides at 3.14 rad . s(-1) (P = 0.1631), but at 5.23 rad . s(-1) the functional balance ratio in the dominant limb was lower than for the non-dominant limb (P = 0.0500). Although the dominant side was stronger than the non-dominant side, balance concentric ratios remained the same, with only the functional strength ratio different at 5.23 rad . s(-1). Our results suggest that concentric strength exercises be used for internal and external rotators on the non-dominant side, and functional exercise that improves eccentric rotation strength for prevention programmes.
Villiger, Michael; Bohli, Dominik; Kiper, Daniel; Pyk, Pawel; Spillmann, Jeremy; Meilick, Bruno; Curt, Armin; Hepp-Reymond, Marie-Claude; Hotz-Boendermaker, Sabina; Eng, Kynan
2013-10-01
Neurorehabilitation interventions to improve lower limb function and neuropathic pain have had limited success in people with chronic, incomplete spinal cord injury (iSCI). We hypothesized that intense virtual reality (VR)-augmented training of observed and executed leg movements would improve limb function and neuropathic pain. Patients used a VR system with a first-person view of virtual lower limbs, controlled via movement sensors fitted to the patient's own shoes. Four tasks were used to deliver intensive training of individual muscles (tibialis anterior, quadriceps, leg ad-/abductors). The tasks engaged motivation through feedback of task success. Fourteen chronic iSCI patients were treated over 4 weeks in 16 to 20 sessions of 45 minutes. Outcome measures were 10 Meter Walking Test, Berg Balance Scale, Lower Extremity Motor Score, Spinal Cord Independence Measure, Locomotion and Neuropathic Pain Scale (NPS), obtained at the start and at 4 to 6 weeks before intervention. In addition to positive changes reported by the patients (Patients' Global Impression of Change), measures of walking capacity, balance, and strength revealed improvements in lower limb function. Intensity and unpleasantness of neuropathic pain in half of the affected participants were reduced on the NPS test. Overall findings remained stable 12 to 16 weeks after termination of the training. In a pretest/posttest, uncontrolled design, VR-augmented training was associated with improvements in motor function and neuropathic pain in persons with chronic iSCI, several of which reached the level of a minimal clinically important change. A controlled trial is needed to compare this intervention to active training alone or in combination.
Chisholm, Amanda E; Alamro, Raed A; Williams, Alison M M; Lam, Tania
2017-04-11
Robotic overground gait training devices, such as the Ekso, require users to actively participate in triggering steps through weight-shifting movements. It remains unknown how much the trunk muscles are activated during these movements, and if it is possible to transfer training effects to seated balance control. This study was conducted to compare the activity of postural control muscles of the trunk during overground (Ekso) vs. treadmill-based (Lokomat) robotic gait training, and evaluate changes in seated balance control in people with high-thoracic motor-complete spinal cord injury (SCI). Three individuals with motor-complete SCI from C7-T4, assumed to have no voluntary motor function below the chest, underwent robotic gait training. The participants were randomly assigned to Ekso-Lokomat-Ekso or Lokomat-Ekso-Lokomat for 10 sessions within each intervention phase for a total of 30 sessions. We evaluated static and dynamic balance control through analysis of center of pressure (COP) movements after each intervention phase. Surface electromyography was used to compare activity of the abdominal and erector spinae muscles during Ekso and Lokomat walking. We observed improved postural stability after training with Ekso compared to Lokomat during static balance tasks, indicated by reduced COP root mean square distance and ellipse area. In addition, Ekso training increased total distance of COP movements during a dynamic balance task. The trunk muscles showed increased activation during Ekso overground walking compared to Lokomat walking. Our findings suggest that the Ekso actively recruits trunk muscles through postural control mechanisms, which may lead to improved balance during sitting. Developing effective training strategies to reactivate the trunk muscles is important to facilitate independence during seated balance activity in people with SCI.
Booth, Vicky; Masud, Tahir; Bath-Hextall, Fiona
Balance impairment can result in falls and reduced activities of daily living and function. Virtual reality and interactive gaming systems provide a novel and potentially environmentally flexible treatment option to improve postural stability and reduce falls in balance impaired populations. There are no existing systematic reviews in this topic area. To search, critically appraise and synthesise the best available evidence on whether virtual reality interventions, including interactive gaming systems, are effective at improving balance in adults with impaired balance. Adults with impaired, altered or reduced balance identified either through reduced balance outcome measure score or increased risk or incidence of falls.Types of interventions:Any virtual reality or interactive gaming systems used within a rehabilitative setting.The primary outcome was an objective measure of balance (i.e. balance outcome measure such as Berg Balance Score) or number and/or incidence of falls. Secondary outcome measures of interest included any adverse effects experienced, an outcome measure indicating functional balance (i.e. walking speed), quality of life (through use of an objective measure i.e. EuroQOL), and number of days in hospital due to falls.Types of studies:Randomised controlled trials (RCT). A three-stage strategy searched the following electronic databases: The Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, PsycBITE, OTseeker, Ei Compendex, Inspec, Current Controlled Trials, and the National Institute of Health Clinical Trials Database. The methodological quality of each included study was independently assessed using the Joanna Briggs Institute Meta Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI) to systematically comment on influence of bias. Data was individually extracted from the included studies using the standardised JBI data extraction tool from JBI-MAStARI. Data was analysed using Review Manager 5 software. Results were expressed as mean difference (MD) with 95% confidence intervals for continuous outcomes. Meta-analysis was not possible due to the variation of the interventions given and small number of included trials; hence, a description of the results was given. Four studies were included in the systematic review. All the included studies used different types of virtual reality or interactive gaming interventions. Two of the included studies used the same balance outcome measure. There was a notable inconsistency of balance outcome measurement between all the included studies. No data was given regarding falls in any of the studies. A secondary outcome, the 10m walk test, was recorded in two of the studies. The four included studies had small sample sizes and poor methodological quality. Despite the presentation of statistically significant results, the clinical significance is questionable. The review can not recommend the inclusion of virtual reality or interactive gaming systems into the rehabilitation of balance impairment based on the results of the four included studies. Further investigation in this topic area is required.
Lam, Freddy Mh; Chan, Philip Fl; Liao, L R; Woo, Jean; Hui, Elsie; Lai, Charles Wk; Kwok, Timothy Cy; Pang, Marco Yc
2018-04-01
To investigate whether a comprehensive exercise program was effective in improving physical function among institutionalized older adults and whether adding whole-body vibration to the program conferred additional therapeutic benefits. A single-blinded randomized controlled trial was conducted. This study was carried out in residential care units. In total, 73 older adults (40 women, mean age: 82.3 ± 7.3 years) were enrolled into this study. Participants were randomly allocated to one of the three groups: strength and balance program combined with whole-body vibration, strength and balance program without whole-body vibration, and social and recreational activities consisting of upper limb exercises only. All participants completed three training sessions per week for eight weeks. Assessment of mobility, balance, lower limb strength, walking endurance, and self-perceived balance confidence were conducted at baseline and immediately after the eight-week intervention. Incidences of falls requiring medical attention were recorded for one year after the end of the training period. A significant time × group interaction was found for lower limb strength (five-times-sit-to-stand test; P = 0.048), with the exercise-only group showing improvement (pretest: 35.8 ± 16.1 seconds; posttest: 29.0 ± 9.8 seconds), compared with a decline in strength among controls (pretest: 27.1 ± 10.4 seconds; posttest: 28.7 ± 12.3 seconds; P = 0.030). The exercise with whole-body vibration group had a significantly better outcome in balance confidence (pretest: 39.2 ± 29.0; posttest: 48.4 ± 30.6) than the exercise-only group (pretest: 35.9 ± 24.8; posttest: 38.2 ± 26.5; P = 0.033). The exercise program was effective in improving lower limb strength among institutionalized older adults but adding whole-body vibration did not enhance its effect. Whole-body vibration may improve balance confidence without enhancing actual balance performance.
Boutière, Clémence; Rey, Caroline; Zaaraoui, Wafaa; Le Troter, Arnaud; Rico, Audrey; Crespy, Lydie; Achard, Sophie; Reuter, Françoise; Pariollaud, Fanelly; Wirsich, Jonathan; Asquinazi, Patrick; Confort-Gouny, Sylviane; Soulier, Elisabeth; Guye, Maxime; Pelletier, Jean; Ranjeva, Jean-Philippe; Audoin, Bertrand
2017-05-01
Intermittent theta burst stimulation (iTBS) of the primary motor cortex improves transiently lower limbs spasticity in multiple sclerosis (MS). However, the cerebral mechanisms underlying this effect have never been investigated. To assess whether modulation of spasticity induced by iTBS is underlined by functional reorganization of the primary motor cortices. A total of 17 patients with MS suffering from lower limbs spasticity were randomized to receive real iTBS or sham iTBS during the first half of a 5-week indoor rehabilitation programme. Spasticity was assessed using the Modified Ashworth Scale and the Visual Analogue Scale at baseline, after the stimulation session and at the end of the rehabilitation programme. Resting-state functional magnetic resonance imaging (fMRI) was performed at the three time points, and brain functional networks topology was analysed using graph-theoretical approach. At the end of stimulation, improvement of spasticity was greater in real iTBS group than in sham iTBS group ( p = 0.026). iTBS had a significant effect on the balance of the connectivity degree between the stimulated and the homologous primary motor cortex ( p = 0.005). Changes in inter-hemispheric balance were correlated with improvement of spasticity (rho = 0.56, p = 0.015). This longitudinal resting-state fMRI study evidences that functional reorganization of the primary motor cortices may underlie the effect of iTBS on spasticity in MS.
Ni, Meng; Mooney, Kiersten; Richards, Luca; Balachandran, Anoop; Sun, Mingwei; Harriell, Kysha; Potiaumpai, Melanie; Signorile, Joseph F
2014-09-01
To compare the effect of a custom-designed yoga program with 2 other balance training programs. Randomized controlled trial. Research laboratory. A group of older adults (N=39; mean age, 74.15 ± 6.99 y) with a history of falling. Three different exercise interventions (Tai Chi, standard balance training, yoga) were given for 12 weeks. Balance performance was examined during pre- and posttest using field tests, including the 8-foot up-and-go test, 1-leg stance, functional reach, and usual and maximal walking speed. The static and dynamic balances were also assessed by postural sway and dynamic posturography, respectively. Training produced significant improvements in all field tests (P<.005), but group difference and time × group interaction were not detected. For postural sway, significant decreases in the area of the center of pressure with eyes open (P=.001) and eyes closed (P=.002) were detected after training. For eyes open, maximum medial-lateral velocity significantly decreased for the sample (P=.013). For eyes closed, medial-lateral displacement decreased for Tai Chi (P<.01). For dynamic posturography, significant improvements in overall score (P=.001), time on the test (P=.006), and 2 linear measures in lateral (P=.001) and anterior-posterior (P<.001) directions were seen for the sample. Yoga was as effective as Tai Chi and standard balance training for improving postural stability and may offer an alternative to more traditional programs. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
An Engineering Model of Human Balance Control-Part I: Biomechanical Model.
Barton, Joseph E; Roy, Anindo; Sorkin, John D; Rogers, Mark W; Macko, Richard
2016-01-01
We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task-with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities.
An Engineering Model of Human Balance Control—Part I: Biomechanical Model
Barton, Joseph E.; Roy, Anindo; Sorkin, John D.; Rogers, Mark W.; Macko, Richard
2016-01-01
We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task—with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities. PMID:26328608
Lima, Rubianne
2017-12-01
Hearing loss changes the functionality and body structure a disability that limits activity and restricts the participation of the individual in situations of daily life. It is believed that capoeira can help people with visual disabilities to minimize these deficits. BSE is a low specificity scale that evaluates objectively and functionally aspects of balance and risk of falls in the elderly and children, including the effect of environment on balance function. The objective of the research is to analyze deaf children and adolescents prior to and post-practice of capoeira using the Berg Balance Scale (BBS). Quantitative, clinical and observational studies. Twenty five deaf children between 10 and 16 years old of both genders were assessed. BBS was applied in two stages: before starting capoeira and after 6 months of training. The one-hour classes were held once a week for quantitative evaluation purposes. The subjects were divided and evaluated in two groups (10-13 years old and 14-16 years old). There was a significant statistical difference in BBS scores. The general group and the group of 10-13 years old (p = 0.0251) showed an increase in scores after practicing capoeira (p = 0.0039). There were no statistically significant differences in the group from 14 to 16 years of age (p = 0.0504). Using the Berg Balance Scale, it was possible to observe an improvement in the balance of the group of children and adolescents who practiced capoeira, and consequently, a decrease in the risk of falling.
NASA Technical Reports Server (NTRS)
Goel, R.; Kofman, I.; DeDios, Y. E.; Jeevarajan, J.; Stepanyan, V.; Nair, M.; Congdon, S.; Fregia, M.; Cohen, H.; Bloomberg, J.J.;
2015-01-01
Sensorimotor changes such as postural and gait instabilities can affect the functional performance of astronauts when they transition across different gravity environments. We are developing a method, based on stochastic resonance (SR), to enhance information transfer by applying non-zero levels of external noise on the vestibular system (vestibular stochastic resonance, VSR). Our previous work has shown the advantageous effects of VSR in a balance task of standing on an unstable surface [1]. This technique to improve detection of vestibular signals uses a stimulus delivery system that provides imperceptibly low levels of white noise-based binaural bipolar electrical stimulation of the vestibular system. The goal of this project is to determine optimal levels of stimulation for SR applications by using a defined vestibular threshold of motion detection. A series of experiments were carried out to determine a robust paradigm to identify a vestibular threshold that can then be used to recommend optimal stimulation levels for sensorimotor adaptability (SA) training applications customized to each crewmember. The amplitude of stimulation to be used in the VSR application has varied across studies in the literature such as 60% of nociceptive stimulus thresholds [2]. We compared subjects' perceptual threshold with that obtained from two measures of body sway. Each test session was 463s long and consisted of several 15s long sinusoidal stimuli, at different current amplitudes (0-2 mA), interspersed with 20-20.5s periods of no stimulation. Subjects sat on a chair with their eyes closed and had to report their perception of motion through a joystick. A force plate underneath the chair recorded medio-lateral shear forces and roll moments. Comparison of threshold of motion detection obtained from joystick data versus body sway suggests that perceptual thresholds were significantly lower. In the balance task, subjects stood on an unstable surface and had to maintain balance, and the stimulation was administered from 20-400% of subjects' vestibular threshold. Optimal stimulation amplitude was determined at which the balance performance was best compared to control (no stimulation). Preliminary results show that, in general, using stimulation amplitudes at 40-60% of perceptual motion threshold significantly improved the balance performance. We hypothesize that VSR stimulation will act synergistically with SA training to improve adaptability by increasing utilization of vestibular information and therefore will help us to optimize and personalize a SA countermeasure prescription. This combination may help to significantly reduce the number of days required to recover functional performance to preflight levels after long-duration spaceflight.
Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.
2014-01-01
Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306
Balance training using an interactive game to enhance the use of the affected side after stroke.
Ciou, Shih-Hsiang; Hwang, Yuh-Shyan; Chen, Chih-Chen; Chen, Shih-Ching; Chou, Shih-Wei; Chen, Yu-Luen
2015-12-01
[Purpose] Stroke and other cerebrovascular diseases are major causes of adult mobility problems. Because stroke immobilizes the affected body part, balance training uses the healthy body part to complete the target movement. The muscle utilization rate on the stroke affected side is often reduced which further hinders affected side functional recovery in rehabilitation. [Subjects and Methods] This study tested a newly-developed interactive device with two force plates to measuring right and left side centers of pressure, to establish its efficacy in the improvement of the static standing ability of patients with hemiplegia. An interactive virtual reality game with different side reaction ratios was used to improve patient balance. The feasibility of the proposed approach was experimentally demonstrated. [Results] Although the non-affected-side is usually used to support the body weight in the standing position, under certain circumstances the patients could switch to using the affected side. A dramatic improvement in static standing balance control was achieved in the eyes open condition. [Conclusion] The proposed dual force plate technique used in this study separately measured the affected and non-affected-side centers of pressure. Based on this approach, different side ratio integration was achieved using an interactive game that helped stroke patients improve balance on the affected side. Only the patient who had suffered stroke relatively recently benefited significantly. The proposed technique is of little benefit for patients whose mobility has stagnated to a certain level.
The effect of spatial auditory landmarks on ambulation.
Karim, Adham M; Rumalla, Kavelin; King, Laurie A; Hullar, Timothy E
2018-02-01
The maintenance of balance and posture is a result of the collaborative efforts of vestibular, proprioceptive, and visual sensory inputs, but a fourth neural input, audition, may also improve balance. Here, we tested the hypothesis that auditory inputs function as environmental spatial landmarks whose effectiveness depends on sound localization ability during ambulation. Eight blindfolded normal young subjects performed the Fukuda-Unterberger test in three auditory conditions: silence, white noise played through headphones (head-referenced condition), and white noise played through a loudspeaker placed directly in front at 135 centimeters away from the ear at ear height (earth-referenced condition). For the earth-referenced condition, an additional experiment was performed where the effect of moving the speaker azimuthal position to 45, 90, 135, and 180° was tested. Subjects performed significantly better in the earth-referenced condition than in the head-referenced or silent conditions. Performance progressively decreased over the range from 0° to 135° but all subjects then improved slightly at the 180° compared to the 135° condition. These results suggest that presence of sound dramatically improves the ability to ambulate when vision is limited, but that sound sources must be located in the external environment in order to improve balance. This supports the hypothesis that they act by providing spatial landmarks against which head and body movement and orientation may be compared and corrected. Balance improvement in the azimuthal plane mirrors sensitivity to sound movement at similar positions, indicating that similar auditory mechanisms may underlie both processes. These results may help optimize the use of auditory cues to improve balance in particular patient populations. Copyright © 2017 Elsevier B.V. All rights reserved.
Short-term risk of falling after cochlear implantation.
Stevens, Madelyn N; Baudhuin, Jacqueline E; Hullar, Timothy E
2014-01-01
Cochlear implantation is a highly effective intervention for hearing loss, but insertion of an implant into the cochlea is often accompanied by loss of residual hearing function. Sometimes, postoperative testing also shows loss of function in the semicircular canals or otolith organs. The effect of this loss on equilibrium, particularly in the short term following surgery, and the risk of falling due to this loss is unknown. We prospectively measured balance in 16 consecutive adult cochlear implant patients before and 2 weeks after surgery. Subjects stood on a foam pad with eyes closed, feet together and arms at the side. The length of time over which this posture could be maintained was recorded up to a maximum value of 30 s indicating normal performance. Ten of 16 subjects reached a maximal time on preoperative testing. Nine of 16 subjects lost balance function after surgery. Four of the 10 subjects with normal preoperative balance function lost function. Subjects older than the age of 60 were more likely to lose balance function than younger subjects. We used previously published values relating balance performance on foam to risk of falling to calculate the fall risk among our subjects. The relative risk of falling increased after surgery by more than threefold in some patients. Imbalance after cochlear implantation may be much more common, particularly in the short term, than previously appreciated. This imbalance is accompanied by an increased risk of falling in many patients. Careful preoperative counseling before implantation and postoperative therapeutic intervention to improve comfort and reduce the chance of falling may be warranted, particularly in patients at a risk for injuries from falls (level of evidence: 2b). © 2014 S. Karger AG, Basel.
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Kofman, I. S.; De Dios, Y. E; Galvan, R.; Goel, R.; Miller, C.; Peters, B.; Cohen, H. S.; Jeevarajan, J.; Reschke, M.;
2014-01-01
Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after gravitational transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" - immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance to enhance information transfer by improving the brain's ability to detect vestibular signals (Vestibular Stochastic Resonance, VSR) especially when combined with balance training exercises such as sensorimotor adaptability (SA) training for rapid improvement in functional skill, for standing and mobility. This countermeasure to improve detection of vestibular signals is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation). To determine efficacy of vestibular stimulation on physiological and perceptual responses during otolith-canal conflicts and dynamic perturbations we have conducted a series of studies: We have shown that imperceptible binaural bipolar electrical stimulation of the vestibular system across the mastoids enhances balance performance in the mediolateral (ML) plane while standing on an unstable surface. We have followed up on the previous study showing VSR stimulation improved balance performance in both ML and anteroposterior planes while stimulating in the ML axis only. We have shown the efficacy of VSR stimulations on enhancing physiological and perceptual responses of whole-body orientation during low frequency perturbations (0.1 Hz) on the ocular motor system using a variable radius centrifuge on both physiological (using eye movements) and perceptual responses (using a joystick) to track imposed oscillations. The variable radius centrifuge provides a selective tilting sensation that is detectable only by the otolith organs providing conflicting information from the canal organs of the vestibular system (intra-vestibular conflict). These results indicate that VSR can improve performance in sensory conflict scenarios like that experienced during space flight. We have showed the efficacy of VSR stimulation to improve balance and locomotor control on subjects exposed to continuous, sinusoidal lateral motion of the support surface while walking on a treadmill while viewing perceptually matched linear optic flow. We have shown the safety of short term continuous use of up to 4 hours of VSR stimulation and its efficacy in improving balance and locomotor function in Parkinson's Disease patients. This technique for improving vestibular signal detection may thus provide additional information to improve strategic abilities. We hypothesize that VSR stimulation will act synergistically with SA training to improve adaptability by increased utilization of vestibular information and therefore serve to optimize and personalize the SA countermeasure prescription. This forms the basis of its usefulness both as a training modality and further help in significantly reducing the number of days required to recover functional performance to preflight levels after long duration space flight.
Tripp, Florian; Krakow, Karsten
2014-05-01
To evaluate the effects of an aquatic physiotherapy method (Halliwick-Therapy) upon mobility in the post-acute phase of stroke rehabilitation. Randomized controlled trial. Hospital for neurological rehabilitation. Adult patients after first-ever stroke in post-acute inpatient rehabilitation at least two weeks after the onset of stroke (n = 30). In the Halliwick-Therapy group (n = 14) the treatment over a period of two weeks included 45 minutes of aquatic therapy three times per week and a conventional physiotherapeutic treatment twice a week. Subjects in the control group (n = 16) received conventional physiotherapeutic treatment over a period of two weeks five times per week. The primary outcome variable was postural stability (Berg Balance Scale). Secondary outcome variables were functional reach, functional gait ability and basic functional mobility. Compared to the control group, significantly more subjects in the Halliwick-Therapy group (83.3% versus 46.7%) attained significant improvement of the Berg Balance Scale (P < 0.05). Improvement of the functional gait ability was significantly higher in the Halliwick-Therapy group (mean (SD) 1.25(0.86)) than in the control group (mean (SD) 0.73 (0.70)) (P < 0.1). The mean differences of improvements in functional reach and basic functional mobility were not statistically significant between groups. This study indicates that Halliwick-Therapy is safe and well tolerated in stroke patients in post-acute rehabilitation and has positive effects upon some aspects of mobility.
Kao, Ching-Chiu; Chiu, Huei-Ling; Liu, Doresses; Chan, Pi-Tuan; Tseng, Ing-Jy; Chen, Ruey; Niu, Shu-Fen; Chou, Kuei-Ru
2018-06-01
Aging is a normal degenerative process that results in a decline in the gait and balance performance of older adults. Interactive cognitive motor training is an intervention that integrates cognitive and motor tasks to promote individuals' physical and cognitive fall risk factors. However, the additive effects of the interactive cognitive motor training on objective quantitative data and comprehensive descriptions of gait and balance warrants further investigation. To investigate the effect of interactive cognitive motor training on older adults' gait and balance from immediate to long-term time points. A double-blind randomized control trial. Four senior service centers and community service centers in Taiwan. 62 older adults who met the inclusion criteria. The study participants were older adults without cognitive impairment, and they were randomly allocated to the experimental group or active control group. In both groups, older adults participated in three sessions of 30-min training per week for a total of 8 weeks, with the total number of training sessions being 24. The primary outcome was gait performance, which was measured using objective and subjective indicators. iWALK was used as an objective indicator to measure pace and dynamic stability; the Functional Gait Assessment was employed as a subjective indicator. The secondary outcome was balance performance, which was measured using iSWAY. A generalized estimating equation was used to identify whether the results of the two groups differ after receiving different intervention measures; the results were obtained from immediate to long-term posttests. Stride length in the pace category of the experimental group improved significantly in immediate posttest (p = 0.01), 3-month follow-up (p = 0.01), and 6-month follow-up (p = 0.04). The range of motion of the leg exhibited significant improvement in immediate posttest (p = 0.04) and 3-month follow-up (p = 0.04). The Functional Gait Assessment result indicated that statistically significant improvement was observed in immediate posttest (p = 0.02) and 12-month follow-up (p = 0.01). The results of balance performance showed that the experimental group attained statistically significant improvement in centroid frequency in the immediate posttest (p = 0.02). The research results validated that the 24 sessions of the interactive cognitive motor training intervention significantly improved gait and balance performance. Future studies should extend the sample to communities to promote the gait and balance performance of community-dwelling older adults without cognitive impairment and reduce their risk of falling and developing gait-related diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.
Christofoletti, Gustavo; Oliani, Merlyn Mércia; Gobbi, Sebastião; Stella, Florindo; Bucken Gobbi, Lilian Teresa; Renato Canineu, Paulo
2008-07-01
To analyse the effects of two interventions on the cognition and balance of institutionalized elderly people with mixed dementia. Fifty-four participants were allocated into three groups. Group 1 was assisted by an interdisciplinary programme comprising physiotherapy, occupational therapy and physical education. A physiotherapist alone carried out the intervention in group 2. Group 3 was considered as control. Assessors were blinded to guarantee the absence of bias. Cognitive functions were analysed with the Mini-Mental State Examination and the Brief Cognitive Screening Battery. Balance was assessed with the Berg Balance Scale and the Timed Get-Up-and-Go Test. Multiple analysis of variance (MANOVA) was used to test possible main effects of the interventions. The results showed benefits on the balance of subjects in both groups 1 (F=3.9, P<0.05) and 2 (F=3.1, P<0.05), compared with group 3. MANOVA did not indicate benefits on the cognitive functions between groups 1 and 3 (F=1.1, P>0.05) and groups 2 and 3 (F=1.6, P>0.05). However, univariate analysis indicated some benefits of the interdisciplinary intervention on two specific domains measured by the Brief Cognitive Screening Battery (F=26.5, P<0.05; F=4.4, P<0.05). Six months of multidisciplinary or physiotherapeutic intervention were able to improve a person's balance. Although global cognition did not improve through treatment, when the intervention was carried out on a multidisciplinary basis we observed an attenuation in the decline of global cognition on two specific cognitive domains. Exercises applied in different contexts may have positive outcomes for people with dementia.
Lee, So Young; Han, Eun Young; Kim, Bo Ryun; Im, Sang Hee
2018-03-12
The aim of this study was to assess the effects of a motorized aquatic treadmill exercise program improve the isometric strength of the knee muscles, cardiorespiratory fitness, arterial stiffness, motor function, balance, functional outcomes and quality of life in subacute stroke patients. Thirty-two patients were randomly assigned to 4-week training sessions of either aquatic therapy(n=19) or land-based aerobic exercise(n=18). Isometric strength was measured using an isokinetic dynamometer. Cardiopulmonary fitness was evaluated using a symptom-limited exercise tolerance test and by measuring brachial ankle pulse wave velocity. Moreover, motor function(Fugl-Meyer Assessment[FMA] and FMA-lower limb[FMA-LL]), balance(Berg Balance Scale[BBS]), Activities of daily living(Korean version of the Modified Barthel Index [K-MBI]), and Quality of life(EQ-5D index) were examined. There were no inter-group differences between demographic and clinical characteristics at baseline(p>0.05). The results shows significant improvements in peak oxygen consumption (p=0.02), maximal isometric strength of the bilateral knee extensors (p<0.01) and paretic knee flexors (p=0.01), FMA (p=0.03), FMA-LL (p=0.01), BBS (p=0.01), K-MBI (p<0.01), and EQ-5D index (p=0.04) after treatment in the aquatic therapy group. However, only significant improvements in maximal isometric strength in the knee extensors (p=0.03) and flexors (p=0.04) were found within the aquatic therapy group and control group. Water-based aerobic exercise performed on a motorized aquatic treadmill had beneficial effect on isometric muscle strength in the lower limb.
Lipardo, Donald S; Aseron, Anne Marie C; Kwan, Marcella M; Tsang, William W
2017-10-01
To evaluate the effect of exercise and cognitive training on falls reduction and on factors known to be associated with falls among community-dwelling older adults with mild cognitive impairment (MCI). Seven databases (PubMed, CINAHL, Cochrane Library, Web of Science, ProQuest, ProQuest Dissertations and Theses, Digital Dissertation Consortium) and reference lists of pertinent articles were searched. Randomized controlled trials (RCTs) on the effect of exercise, cognitive training, or a combination of both on falls and factors associated with falls such as balance, lower limb muscle strength, gait, and cognitive function among community-dwelling older adults with MCI were included. Data were extracted using the modified Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI) tool. Study quality was assessed using the JBI-MAStARI appraisal instrument. Seventeen RCTs (1679 participants; mean age ± SD, 74.4±2.4y) were included. Exercise improved gait speed and global cognitive function in MCI; both are known factors associated with falls. Cognitive training alone had no significant effect on cognitive function, while combined exercise and cognitive training improved balance in MCI. Neither fall rate nor the number of fallers was reported in any of the studies included. This review suggests that exercise, and combined exercise and cognitive training improve specific factors associated with falls such as gait speed, cognitive function, and balance in MCI. Further research on the direct effect of exercise and cognitive training on the fall rate and incidence in older adults with MCI with larger sample sizes is highly recommended. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
A Novel Balance Training Program for Children With Developmental Coordination Disorder
Fong, Shirley S.M.; Guo, X.; Cheng, Yoyo T.Y.; Liu, Karen P.Y.; Tsang, William W.N.; Yam, Timothy T.T.; Chung, Louisa M.Y.; Macfarlane, Duncan J.
2016-01-01
Abstract This study aimed to compare the effectiveness of a specific functional movement–power training (FMPT) program, a functional movement training (FMT) program and no training in the improvement of balance strategies, and neuromuscular performance in children with developmental coordination disorder (DCD). It was a randomized, single-blinded, parallel group controlled trial. Methods: 161 children with DCD (age: 6–10 years) were randomly assigned to the FMPT, FMT, or control groups. The 2 intervention groups received FMPT or FMT twice a week for 3 months. Measurements were taken before, after, and 3 months after the end of the intervention period. The primary outcomes were the composite score and strategy scores on the sensory organization test as measured by a computerized dynamic posturography machine. Secondary outcomes included the knee muscle peak force and the time taken to reach the peak force. The balance strategies adopted in sensory challenging environments of the FMPT participants showed greater improvement from baseline to posttest than those of the FMT participants (7.10 points; 95% confidence interval, 1.51–12.69; P = 0.008) and the control participants (7.59 points; 95% confidence interval, 1.81–13.38; P = 0.005). The FMPT participants also exhibited greater improvement from baseline to the posttest in the knee extensor peak force and time to peak force in the knee flexors. The FMPT program was more effective than the conventional FMT program in the enhancement of balance strategies and neuromuscular performance in children with DCD. PMID:27100457
Physical Activity Associated with Prayer Regimes Improves Standing Dynamic Balance of Healthy People
AlAbdulwahab, Sami Saleh; Kachanathu, Shaji John; Oluseye, Kamaldeen
2014-01-01
[Purpose] Preparing for prayers, practicing religious meditation and performing prayers are believed to stimulate the visual, vestibular and somatosensory systems, which provide the sensory information that influences human balance. The purpose of this study was to determine the effect of the Islamic prayer regime on balance. [Subjects and Methods] Sixty healthy male subjects with a mean age of 31 ± 5 years and a mean body mass index of 27 ± 2 kg/cm2 voluntarily participated in this study. The subjects were divided into two equal groups: one group of subjects who regularly practiced Islamic prayer, and another group of non-practicing subjects. The dynamic balance of individuals in both groups was measured using a Balance Master. [Results] Adult healthy subjects practicing Islamic prayer regimes exhibited statistically significantly better dynamic balance than the non-practicing healthy subjects. [Conclusions] The results of this study support the hypothesis that religious meditation and prayers benefit human physiological function, especially balance. PMID:24409021
2012-01-01
Background In rehabilitation, training intensity is usually adapted to optimize the trained system to attain better performance (overload principle). However, in balance rehabilitation, the level of intensity required during training exercises to optimize improvement in balance has rarely been studied, probably due to the difficulty in quantifying the stability level during these exercises. The goal of the present study was to test whether the stabilizing/destabilizing forces model could be used to analyze how stability is challenged during several exergames, that are more and more used in balance rehabilitation, and a dynamic functional task, such as gait. Methods Seven healthy older adults were evaluated with three-dimensional motion analysis during gait at natural and fast speed, and during three balance exergames (50/50 Challenge, Ski Slalom and Soccer). Mean and extreme values for stabilizing force, destabilizing force and the ratio of the two forces (stability index) were computed from kinematic and kinetic data to determine the mean and least level of dynamic, postural and overall balance stability, respectively. Results Mean postural stability was lower (lower mean destabilizing force) during the 50/50 Challenge game than during all the other tasks, but peak postural instability moments were less challenging during this game than during any of the other tasks, as shown by the minimum destabilizing force values. Dynamic stability was progressively more challenged (higher mean and maximum stabilizing force) from the 50/50 Challenge to the Soccer and Slalom games, to the natural gait speed task and to the fast gait speed task, increasing the overall stability difficulty (mean and minimum stability index) in the same manner. Conclusions The stabilizing/destabilizing forces model can be used to rate the level of balance requirements during different tasks such as gait or exergames. The results of our study showed that postural stability did not differ much between the evaluated tasks (except for the 50/50 Challenge), compared to dynamic stability, which was significantly less challenged during the games than during the functional tasks. Games with greater centre of mass displacements and changes in the base of support are likely to stimulate balance control enough to see improvements in balance during dynamic functional tasks, and could be tested in pathological populations with the approach used here. PMID:22607025
Gokalp, Oguzhan; Akkaya, Semih; Akkaya, Nuray; Buker, Nihal; Gungor, Harun R; Ok, Nusret; Yorukoglu, Cagdas
2016-04-27
Impaired postural balance due to somatosensory data loss with mechanical instability has been shown in patients with ACL deficiency. To assess postural balance in patients with ACL insufficiency prior to surgery and following reconstruction with serial evaluations. Thirty patients (mean age of 27.7 ± 6.7 years) who underwent arthroscopic reconstruction of ACL with bone-patellar tendon-bone autograft were examined for clinical and functional variables at preoperative day and postoperative 12th week. Posturographic analysis were performed by using Tetrax Interactive Balance System (Sunlight Medical Ltd, Israel) at preoperative day, at 4th, 8th, and 12th weeks following reconstruction. Data computed by posturographic software by the considerations of the oscillation velocities of body sways is fall risk as a numeric value (0-100, lower values indicate better condition). All of the patients (mean age of 27.7 ± 6.7 years) had significant improvements for clinical, functional evaluations and fall risk (p< 0.05). Mean fall risk was within high-risk category (59.9 ± 22.8) preoperatively. The highest fall risk was detected at postoperative 4th week. Patients had high fall risk at 8th week similar to preoperative value. Mean fall risk decreased to low level risk at 12th week. Preoperative symptom duration had relationships with preoperative fall risk and postoperative improvement of fall risk (p= 0.001, r= -0.632, p= 0.001, r= -0.870, respectively). The improvement of fall risk was higher in patients with symptoms shorter than 6 months (p= 0.001). According to these results, mean fall risk of patients with ACL insufficiency was within high risk category preoperatively, and fall risk improves after surgical reconstruction, but as the duration of complaints lengthens especially longer than 6 months, the improvement of fall risk decreases following reconstruction.
Balance exercise in patients with chronic sensory ataxic neuropathy: a pilot study.
Riva, Nilo; Faccendini, Simone; Lopez, Ignazio D; Fratelli, Annamaria; Velardo, Daniele; Quattrini, Angelo; Gatti, Roberto; Comi, Giancarlo; Comola, Mauro; Fazio, Raffaella
2014-06-01
Although exercise therapy is considered part of the treatment of neuropathic patients, and somatosensory input is essential for motor learning, performance and neural plasticity, rehabilitation of patients with sensory ataxia has received little attention so far. The aim of this prospective pilot study was to explore the short- and medium-term efficacy of a 3-week intensive balance and treadmill exercise program in chronic ataxic neuropathy patients; 20 consecutive patients with leg overall disability sum score (ODSS-leg) ≥2, absent/mild motor signs, clinical and therapeutic stability ≥4 months were enrolled. Evaluations were done at baseline, at the end of treatment and at 3- and 6-month follow-up. Outcome measurements included: ODSS-leg, Berg balance scale, 6-min walk distance, and the functional independence measure (FIM) scale. The short-form-36 health status scale (SF-36) was used to measure health-related quality of life (HRQoL). ODSS-leg improved significantly compared with baseline, 3 weeks, 3 months (primary outcome), and 6 months follow-up. A significant improvement in all functional secondary outcome measurements and in some SF-36 subscales was also observed. This pilot study suggests that balance exercise is safe and well tolerated and might be effective in ameliorating disability and HRQoL in patients with chronic peripheral sensory ataxia. © 2014 Peripheral Nerve Society.
Mohan, Uthra; Babu, S Karthik; Kumar, K Vijay; Suresh, B V; Misri, Z K; Chakrapani, M
2013-10-01
To evaluate the effectiveness of mirror therapy on lower extremity motor recovery, balance and mobility in patients with acute stroke. A randomized, sham-controlled, assessor blinded, pilot trial. Inpatient stroke rehabilitation unit. First time onset of stroke with mean post-stroke duration of 6.41 days, able to respond to verbal instructions, and Brunnstrom recovery stage 2 and above were enrolled. Mirror therapy group performed 30 minutes of functional synergy movements of non-paretic lower extremity, whereas control group underwent sham therapy with similar duration. In addition, both groups were administered with conventional stroke rehabilitation regime. Altogether 90 minutes therapy session per day, six days a week, for two weeks duration was administered to both groups. Lower extremity motor subscale of Fugl Meyer Assessment (FMA), Brunnel Balance Assessment (BBA) and Functional Ambulation Categories (FAC). Amongst the 22 patients included, equal number of patients participated in mirror group (N = 11) and control group (N = 11). Baseline variables were similar in both groups, except for Brunnstrom recovery stage. There was no statistical difference between groups, except for FAC. (FMA: P = 0.894; BBA: P = 0.358; FAC: P = 0.02). Significance was set at P < 0.05. Administration of mirror therapy early after stroke is not superior to conventional treatment in improving lower limb motor recovery and balance, except for improvement in mobility.
Nilsagård, Ylva Elisabet; von Koch, Lena Kristina; Nilsson, Malin; Forsberg, Anette Susanne
2014-12-01
To evaluate the effects of a balance exercise program on falls in people with mild to moderate multiple sclerosis (MS). Multicenter, single-blinded, single-group, pretest-posttest trial. Seven rehabilitation units within 5 county councils. Community-dwelling adults with MS (N=32) able to walk 100m but unable to maintain 30-second tandem stance with arms alongside the body. Seven weeks of twice-weekly, physiotherapist-led 60-minute sessions of group-based balance exercise targeting core stability, dual tasking, and sensory strategies (CoDuSe). Primary outcomes: number of prospectively reported falls and proportion of participants classified as fallers during 7 preintervention weeks, intervention period, and 7 postintervention weeks. Secondary outcomes: balance performance on the Berg Balance Scale, Four Square Step Test, sit-to-stand test, timed Up and Go test (alone and with cognitive component), and Functional Gait Assessment Scale; perceived limitations in walking on the 12-item MS Walking Scale; and balance confidence on the Activities-specific Balance Confidence Scale rated 7 weeks before intervention, directly after intervention, and 7 weeks later. Number of falls (166 to 43; P≤.001) and proportion of fallers (17/32 to 10/32; P≤.039) decreased significantly between the preintervention and postintervention periods. Balance performance improved significantly. No significant differences were detected for perceived limitations in walking, balance confidence, the timed Up and Go test, or sit-to-stand test. The CoDuSe program reduced falls and proportion of fallers and improved balance performance in people with mild to moderate MS but did not significantly alter perceived limitations in walking and balance confidence. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Chaouachi, Anis; Othman, Aymen Ben; Hammami, Raouf; Drinkwater, Eric J; Behm, David G
2014-02-01
Because balance is not fully developed in children and studies have shown functional improvements with balance only training studies, a combination of plyometric and balance activities might enhance static balance, dynamic balance, and power. The objective of this study was to compare the effectiveness of plyometric only (PLYO) with balance and plyometric (COMBINED) training on balance and power measures in children. Before and after an 8-week training period, testing assessed lower-body strength (1 repetition maximum leg press), power (horizontal and vertical jumps, triple hop for distance, reactive strength, and leg stiffness), running speed (10-m and 30-m sprint), static and dynamic balance (Standing Stork Test and Star Excursion Balance Test), and agility (shuttle run). Subjects were randomly divided into 2 training groups (PLYO [n = 14] and COMBINED [n = 14]) and a control group (n = 12). Results based on magnitude-based inferences and precision of estimation indicated that the COMBINED training group was considered likely to be superior to the PLYO group in leg stiffness (d = 0.69, 91% likely), 10-m sprint (d = 0.57, 84% likely), and shuttle run (d = 0.52, 80% likely). The difference between the groups was unclear in 8 of the 11 dependent variables. COMBINED training enhanced activities such as 10-m sprints and shuttle runs to a greater degree. COMBINED training could be an important consideration for reducing the high velocity impacts of PLYO training. This reduction in stretch-shortening cycle stress on neuromuscular system with the replacement of balance and landing exercises might help to alleviate the overtraining effects of excessive repetitive high load activities.
The effects of dance training program on the postural stability of middle aged women.
Kostić, Radmila; Uzunović, Slavoljub; Purenović-Ivanović, Tijana; Miletić, Đurđica; Katsora, Georgija; Pantelić, Saša; Milanović, Zoran
2015-11-01
The aim of the study was to determine the effects of Greek folk dancing on postural stability in middle age women. Sixty-three women aged from 47-53 participated in this study. All participants were randomly divided into the experimental group - 33 participants (mean ± SD; body height=160.13 ± 12.07 cm, body mass=63.81 ± 10.56 kg), and the control group - 30 participants (mean ± SD; body height=160.63 ± 6.22 cm, body mass=64.79 ± 8.19 kg). The following tests were used to evaluate the motor balance and posture stability of participants; the double-leg stance along the length of a balance beam (eyes open), the double-leg stance along the width of a balance beam (eyes open), the single-leg stance (eyes open) and the double-leg stance on one's toes (eyes closed). The Functional Reach Test for balance and the Star Excursion Balance Test were used to evaluate dynamic balance. The multivariate analysis of covariance of static and dynamic balance between participants of the experimental and control group at the final measuring, with neutralized differences at the initial measuring (Wilks' λ=0.45), revealed a significant difference (p<0.05). The intergroup difference at the final measuring was also found to be significant (p<0.05) for the following variables; the double-leg stance on one's toes, the Functional Reach Test, balance of the right anterolateral, balance of the right posterolateral and balance of the left posteromedial. An organized dance activity programme does lead to the improvement of static and dynamic balance in middle aged women. Copyright© by the National Institute of Public Health, Prague 2015.
A combination of clinical balance measures and FRAX® to improve identification of high-risk fallers.
Najafi, David A; Dahlberg, Leif E; Hansson, Eva Ekvall
2016-05-03
The FRAX® algorithm quantifies a patient's 10-year probability of a hip or major osteoporotic fracture without taking an individual's balance into account. Balance measures assess the functional ability of an individual and the FRAX® algorithm is a model that integrates the individual patients clinical risk factors [not balance] and bone mineral density. Thus, clinical balance measures capture aspects that the FRAX® algorithm does not, and vice versa. It is therefore possible that combining FRAX® and clinical balance measures can improve the identification of patients at high fall risk and thereby high fracture risk. Our study aim was to explore whether there is an association between clinical balance measures and fracture prediction obtained from FRAX®. A cross-sectional study design was used where post hoc was performed on a dataset of 82 participants (54 to 89 years of age, mean age 71.4, 77 female), with a fall-related wrist-fracture between 2008 and 2012. Balance was measured by tandem stance, standing one leg, walking in the figure of eight, walking heel to toe on a line, walking as fast as possible for 30 m and five times sit to stand balance measures [tandem stance and standing one leg measured first with open and then with closed eyes] and each one analyzed for bivariate relations with the 10-year probability values for hip and major osteoporotic fractures as calculated by FRAX® using Spearman's rank correlation test. Individuals with high FRAX® values had poor outcome in balance measures; however the significance level of the correlation differed between tests. Standing one leg eyes closed had strongest correlation to FRAX® (0.610 p = < 0.01) and Five times sit to stand was the only test that did not correlate with FRAX® (0.013). This study showed that there is an association between clinical balance measures and FRAX®. Hence, the use of clinical balance measures and FRAX® in combination, might improve the identification of individuals with high risk of falls and thereby following fractures. Results enable healthcare providers to optimize treatment and prevention of fall-related fractures. The study has been registered in Clinical Trials.gov, registration number NCT00988572 .
Skvortsova, V I; Ivanova, G E; Kovrazhkina, E A; Rumiantseva, N A; Staritsyn, A N; Suvorov, A Iu; Sogomonian, E K
2008-01-01
An aim of the study was to evaluate efficacy of using Gait Trainer GT1, a robot-assisted gait trainer with a system of body-weight support, for the rehabilitation of gait in patients in the acute period of cerebral stroke. A main group included 30 patients in the acute period of ischemic and hemorrhage stroke and a control group--20 age- and sex matched patients. Patients of both groups had daily kinesitherapy sessions with a rehabilitator. Patients of the main group had additional sessions on the Gait Trainer GT1 from the moment of functional readiness to adequate orthostatic probe. Efficacy of rehabilitation was assessed in the four following phases: the first verticalization of patient in the standing position, adaptation of patient to the standing position, walking with assistance, independent walking. Muscular power (scores) in all muscles of low extremities, muscle tonus (the Ashfort scale), amplitude of tendinous reflexes on the reflexes scale, sensory disturbances and discoordination syndromes (specially elaborated scales), pathological positions in the axial muscular system and extremities, functional status (a steadiness scale, the Berg balance scale, the Barthel scale, 5 m test) were assessed in each phase. Stabilometry was conducted for objective evaluation of vertical balance function. The duration of sessions on GT1 and a number of exercises were depended on the patient's tolerability to physical activity. Percentage of relief was determined by the ability of a patient to balance in the standing position. Each patient had 8-10 sessions. A significant improvement of the functional status: ability to balance in standing position, walking, increase of self-care skills were observed in both groups. No significant differences in the level of functional improvements were found compared to the control group. However some peculiarities of the rehabilitation of primary neurologic deficit were observed during CT1-trainings: the normalization of muscle tonus both in spastic and hypotonic muscles, predominate rehabilitation of flexor muscular system (p = 0.005), significant improvement of deep and surface sensitivity (p < 0.005). The stabilometric data revealed the normalization of strategy of vertical posture support--from hip to ankle (p = 0.001), proprioceptive control of balance by the Romberg coefficient (p = 0.005). Robot-assisted gait trainers are commonly used in trainings of step patterns in highly disabled patients who are not able to walk without assistance. These peculiarities of the rehabilitation of primary neurologic deficit during the GT-trainings allowed to use a differential approach to a candidate selection for the sessions.
Mulligan, Ivan; Boland, Mark; Payette, Justin
2012-07-01
Prospective cohort. To identify the prevalence of neurocognitive and balance deficits in collegiate football players 48 hours following competition. Neurocognitive testing, balance assessments, and subjective report of symptoms are a commonly used test battery in examining athletes when concussion is suspected. Previous literature suggests many concussions go unreported. Little research exists examining the prevalence of neurocognitive or balance deficits in athletes who do not report concussion-like symptoms to a health care provider. Forty-five Division IA collegiate football players participated in this study. Preseason baseline scores using the Balance Error Scoring System, the Immediate Post-Concussion Assessment and Cognitive Testing, and the Postconcussion Symptom Scale were compared to posttest results obtained 48 hours following a game. Prevalence of symptoms was analyzed and reported. Thirty-two (71%) of the 45 athletes tested demonstrated at least 1 deficit in either the Postconcussion Symptom Scale, Balance Error Scoring System, or at least 1 composite score of the Immediate Post-Concussion Assessment and Cognitive Testing. Nineteen of the 32 subjects demonstrated a change in 2 or more categories of neurocognitive and balance function. In a cohort of football players tested 48 hours following their last game of the season, who did not seek medical attention related to a concussion, a significant number demonstrated limitations in neurocognitive and balance performance, suggesting that further research may need to be performed to improve recognition of an athlete's deficits and to improve the ability to assess concussion. Differential diagnosis/symptom prevalence, level 3b.
Partial Body Weight-Supported Treadmill Training in Spinocerebellar Ataxia.
de Oliveira, Laura Alice Santos; Martins, Camilla Polonini; Horsczaruk, Carlos Henrique Ramos; da Silva, Débora Cristina Lima; Vasconcellos, Luiz Felipe; Lopes, Agnaldo José; Meira Mainenti, Míriam Raquel; Rodrigues, Erika de Carvalho
2018-01-01
The motor impairments related to gait and balance have a huge impact on the life of individuals with spinocerebellar ataxia (SCA). Here, the aim was to assess the possibility of retraining gait, improving cardiopulmonary capacity, and challenging balance during gait in SCA using a partial body weight support (BWS) and a treadmill. Also, the effects of this training over functionality and quality of life were investigated. Eight SCA patients were engaged in the first stage of the study that focused on gait training and cardiovascular conditioning. From those, five took part in a second stage of the study centered on dynamic balance training during gait. The first and second stages lasted 8 and 10 weeks, respectively, both comprising sessions of 50 min (2 times per week). The results showed that gait training using partial BWS significantly increased gait performance, treadmill inclination, duration of exercise, and cardiopulmonary capacity in individuals with SCA. After the second stage, balance improvements were also found. Combining gait training and challenging tasks to the postural control system in SCA individuals is viable, well tolerated by patients with SCA, and resulted in changes in capacity for walking and balance.
Partial Body Weight-Supported Treadmill Training in Spinocerebellar Ataxia
Martins, Camilla Polonini; Horsczaruk, Carlos Henrique Ramos; da Silva, Débora Cristina Lima; Meira Mainenti, Míriam Raquel; Rodrigues, Erika de Carvalho
2018-01-01
Background and Purpose The motor impairments related to gait and balance have a huge impact on the life of individuals with spinocerebellar ataxia (SCA). Here, the aim was to assess the possibility of retraining gait, improving cardiopulmonary capacity, and challenging balance during gait in SCA using a partial body weight support (BWS) and a treadmill. Also, the effects of this training over functionality and quality of life were investigated. Methods Eight SCA patients were engaged in the first stage of the study that focused on gait training and cardiovascular conditioning. From those, five took part in a second stage of the study centered on dynamic balance training during gait. The first and second stages lasted 8 and 10 weeks, respectively, both comprising sessions of 50 min (2 times per week). Results The results showed that gait training using partial BWS significantly increased gait performance, treadmill inclination, duration of exercise, and cardiopulmonary capacity in individuals with SCA. After the second stage, balance improvements were also found. Conclusion Combining gait training and challenging tasks to the postural control system in SCA individuals is viable, well tolerated by patients with SCA, and resulted in changes in capacity for walking and balance. PMID:29535874
Resource allocation in neural networks for motor control
NASA Astrophysics Data System (ADS)
Milton, J.; Cummins, J.; Gunnoe, J.; Tollefson, M.; Cabrera, J. L.; Ohira, T.
2006-03-01
Multiplicative noise plays an important part of a non-predictive control mechanism for stick balancing at the fingertip. However, intentionally-directed movements are also used in stick balancing, particularly by beginners. The interplay between intentional and non-predictive control mechanisms for stick balancing was assessed using two dual task paradigms: the subject was asked to either move one of their legs rhythmically or to imagine moving their leg while balancing a stick (55.4 cm, 35 g) at their fingertip. Performance was measured by determining the stick survival function, i.e. the fraction of trials (total >=25) for which the stick remained balanced at time t as a function of t. Performance was increased by concurrent rhythmic leg movements (50% survival time shifted from 8-9s to 15s in a typical subject). Imagined movements resulted in a similar improvement (50% survival time of 20s for the above subject) suggesting that this enhancement is not simply related to mechanical vibrations of the fingertip induced by leg movement. These observations emphasize the importance of the development of mathematical models for neural control of skilled motor movements that take into resource allocation of limited resources, such as intention.
Chen, Chia-Hsin; Chen, Yi-Jen; Tu, Hung-Pin; Huang, Mao-Hsiung; Jhong, Jing-Hui; Lin, Ko-Long
2014-10-01
Cardiopulmonary exercise training is beneficial to people with coronary artery disease (CAD). Nevertheless, the correlation between aerobic capacity, and functional mobility and quality of life in elderly CAD patients is less addressed. The purpose of the current study is to investigate the beneficial effects of exercise training in elderly people with CAD, integrating exercise stress testing, functional mobility, handgrip strength, and health-related quality of life. Elderly people with CAD were enrolled from the outpatient clinic of a cardiac rehabilitation unit in a medical center. Participants were assigned to the exercise training group (N = 21) or the usual care group (N = 15). A total of 36 sessions of exercise training, completed in 12 weeks, was prescribed. Echocardiography, exercise stress testing, the 6-minute walking test, Timed Up and Go test, and handgrip strength testing were performed, and the Short-Form 36 questionnaire (SF-36) was administered at baseline and at 12-week follow-up. Peak oxygen consumption improved significantly after training. The heart rate recovery improved from 13.90/minute to 16.62/minute after exercise training. Functional mobility and handgrip strength also improved after training. Significant improvements were found in SF-36 physical function, social function, role limitation due to emotional problems, and mental health domains. A significant correlation between dynamic cardiopulmonary exercise testing parameters, the 6-minute walking test, Timed Up and Go test, handgrip strength, and SF-36 physical function and general health domains was also detected. Twelve-week, 36-session exercise training, including moderate-intensity cardiopulmonary exercise training, strengthening exercise, and balance training, is beneficial to elderly patients with CAD, and cardiopulmonary exercise testing parameters correlate well with balance and quality of life. Copyright © 2014. Published by Elsevier Taiwan.
Multidimensional exercise for people with Parkinson's disease: a case report.
Kluding, Patricia; McGinnis, Patricia Quinn
2006-06-01
The primary impairments associated with Parkinson's disease occur in combination with the secondary, preventable effects of immobility. A community-based fitness program may help increase activity and maintain function in people in the early or middle stages of the disease. This article describes a unique program designed to reduce fall risk and promote independent exercise for people with Parkinson's disease. Two 66-year-old males, both community ambulators and in early or middle stages of Parkinson's disease, participated in 3 months of various physical activities. Group balance classes were held twice weekly during the first month, participants joined a fitness center and self-directed their exercise program during the second month, and group Tai Chi classes were held twice weekly during the third month. At conclusion of the program, participants were given suggestions for continued physical fitness activities. After the 3-month program, improvements were noted for both individuals in functional reach, Timed Up and Go, and Berg Balance scores. Both participants continued to exercise regularly for at least 8 months following the program. Two individuals with Parkinson's disease demonstrated improvement in their balance test performance over a 3-month period. Perhaps most importantly, these participants independently continued exercising after completing this program.
Podubecka, J; Scheer, S; Theilig, S; Wiederer, R; Oberhoffer, R; Nowak, D A
2011-07-01
Recovery of impaired motor functions following stroke is commonly incomplete in spite of intensive rehabilitation programmes. At 6 months following a stroke up to 60 % of affected individuals still suffer from permanent motor deficits, in particular hemiparetic gait, that are relevant for daily life. Novel innovative therapeutic strategies are needed to enhance the recovery of impaired gait function following stroke. This pilot study has investigated the effectiveness of conventional physiotherapy in comparison to an apparative cyclic movement training over a period of 4 weeks to improve (i) power during a submaximal cyclic movement training of the lower limbs, (ii) cardiac fitness, (iii) balance and gait ability, and (iv) quality of life in stroke patients. In comparison to physiotherapy apparative cyclic movement training improved power, balance, cardiac fitness and quality of life to a greater extent. However, there was a statistically significant difference between both intervention groups only for balance but not for the other parameters assessed. The present pilot study should inspire future research with larger patient cohorts to allow appropriate judgement on the effectiveness of apparative cyclic movement training in stroke rehabilitation. © Georg Thieme Verlag KG Stuttgart · New York.
A dynamic re-partitioning strategy based on the distribution of key in Spark
NASA Astrophysics Data System (ADS)
Zhang, Tianyu; Lian, Xin
2018-05-01
Spark is a memory-based distributed data processing framework, has the ability of processing massive data and becomes a focus in Big Data. But the performance of Spark Shuffle depends on the distribution of data. The naive Hash partition function of Spark can not guarantee load balancing when data is skewed. The time of job is affected by the node which has more data to process. In order to handle this problem, dynamic sampling is used. In the process of task execution, histogram is used to count the key frequency distribution of each node, and then generate the global key frequency distribution. After analyzing the distribution of key, load balance of data partition is achieved. Results show that the Dynamic Re-Partitioning function is better than the default Hash partition, Fine Partition and the Balanced-Schedule strategy, it can reduce the execution time of the task and improve the efficiency of the whole cluster.
Bennett, Crystal G; Hackney, Madeleine E
2018-06-01
Older adults with mobility limitations are at greater risk for aging-related declines in physical function. Line dancing is a popular form of exercise that can be modified, and is thus feasible for older adults with mobility limitations. The purpose of this study was to assess the effects of 8 weeks of line dancing on balance, muscle strength, lower extremity function, endurance, gait speed, and perceived mobility limitations. An experimental design randomly assigned older adults to either an 8-week line dancing or usual care group. The convenience sample consisted of 23 participants with mobility limitations (age range: 65-93 years). The intervention used simple routines from novice line dance classes. At baseline and at 8 weeks, balance, knee muscle strength, lower extremity function, endurance, gait speed, and mobility limitations were measured. ANCOVA tests were conducted on each dependent variable to assess the effects of the intervention over time. Results found significant positive differences for the intervention group in lower extremity function (p < 0.01); endurance (p < 0.01); gait speed (p < 0.001); and self-reported mobility limitations (p < 0.05). Eight weeks of line dancing significantly improved physical function and reduced self-reported mobility limitations in these individuals. Line dancing could be recommended by clinicians as a potential adjunct therapy that addresses mobility limitations. Implications for Rehabilitation Line dancing may be an alternative exercise for older adults who need modifications due to mobility limitations. Line dancing incorporates cognitive and motor control. Line dancing can be performed alone or in a group setting. Dancing improves balance which can reduce risk of falls.
Feinn, Richard; Chui, Kevin; Cheng, M. Samuel
2015-01-01
Purpose To assess the effects of virtual reality using the NintendoTM Wii Fit on balance, gait, and quality of life in ambulatory individuals with incomplete spinal cord injury (iSCI). Relevance There is a need for continued research to support effective treatment techniques in individuals with iSCI to maximize each individual's potential functional performance. Subjects Five males with a mean age of 58.6 years who had an iSCI and were greater than one-year post injury. Methods An interrupted time series design with three pre-tests over three weeks, a post-test within one week of the intervention, and a four-week follow up. Outcome measures: gait speed, timed up and go (TUG), forward functional reach test (FFRT) and lateral functional reach test (LFRT), RAND SF-36. Intervention consisted of one-hour sessions with varied games using the Nintendo Wii Fit twice per week for seven weeks. Survey data was also collected at post-test. Results There were statistically significant changes found in gait speed and functional reach. The changes were also maintained at the four-week follow up post-test. Survey reports suggested improvements in balance, endurance, and mobility with daily tasks at home. Conclusion All subjects who participated in training with the NintendoTM Wii Fit demonstrated statistically significant improvements in gait speed and functional reach after seven weeks of training. Given the potential positive impact that the NintendoTM Wii Fit has on functional reach and gait speed in patients with iSCI, physical therapists may want to incorporate these activities as part of a rehabilitation program. PMID:25613853
Jørgensen, Martin Grønbech
2014-01-01
The overall purpose of this thesis was to examine selected methodological aspects and novel approaches for measuring postural balance older adults, and to examine the effects of biofeedback-based Nintendo Wii training on selected physiological, psychological and functional outcome variables in community-dwelling older adults. In Study I balance control was investigated using force plate analysis of Centre of Pressure (COP) excursion during static bilateral standing in 32 community-dwelling older adults at three different time-points (09:00, 12:30, and 16:00) throughout the day. An overall significant time-of-day effect was observed for all selected COP variables. The greatest change in all COP variables was observed (on average ~15%) between midday (12:30) and the afternoon (16:00), indicating that a systematic time-of-day influence on static postural balance exists in community-dwelling older adults. Consequently, longitudinal (i.e. pre-to-post training) comparisons of postural balance in in older adults with repeated assessments should be conducted at the same time-of-day. In Study II a novel approach for measuring postural balance (using the Nintendo Wii Stillness and Agility tests) was examined for reproducibility and concurrent validity in 30 community-dwelling older adults. While the Nintendo Wii Stillness test showed a high reproducibility, a systematic learning effect between successive sessions was observed for the Agility test. Moderate-to-excellent concurrent validity was seen for the Stillness test. In contrast, the Agility test revealed a poor concurrent validity. In conclusion, the Wii Stillness test seems to represent a low-cost objective reproducible test of postural balance in community-dwelling older adults and appears feasible in various clinical settings. A habituation (familiarization) period is necessary for the Wii Agility test to avoid a systematic learning effect between successive test sessions. Study III investigated the effect of ten weeks of biofeedback-based Nintendo Wii training on static postural balance, mechanical lower limb muscle function, and functional performance in 58 community-dwelling older adults. Additionally, the study investigated the participant motivation for this type of training (Exergaming). Marked improvements in maximal leg muscle strength, rapid force capacity and functional performance were observed following the period of biofeedback-based Nintendo Wii training. Unexpectedly, static bilateral postural balance remained unaltered following the period of intervention. The study participants perceived the Nintendo Wii training as enjoyable and highly motivating, which suggests that this type of exercise may be successfully implemented at senior citizens' centers and/or in the home of the elderly. The results presented in this thesis suggest that strict control of time-of-day is an important methodological aspect when evaluating postural balance in older adults, and an assessment protocol using the Nintendo Wii-Balance Board is reproducible and valid. Biofeedback-based Nintendo Wii exercise intervention appeared unsuccessful in improving static bilateral postural balance, most likely due to a test ceiling effect in the selected outcome measures, but the intervention elicited marked positive changes in various key risk factors associated to fall accidents. Notably, Wii based biofeedback exercise was perceived by the older adults as a highly motivating type of training.
Prediction of Balance Compensation After Vestibular Schwannoma Surgery.
Parietti-Winkler, Cécile; Lion, Alexis; Frère, Julien; Perrin, Philippe P; Beurton, Renaud; Gauchard, Gérome C
2016-06-01
Background Balance compensation after vestibular schwannoma (VS) surgery is under the influence of specific preoperative patient and tumor characteristics. Objective To prospectively identify potential prognostic factors for balance recovery, we compared the respective influence of these preoperative characteristics on balance compensation after VS surgery. Methods In 50 patients scheduled for VS surgical ablation, we measured postural control before surgery (BS), 8 (AS8) days after, and 90 (AS90) days after surgery. Based on factors found previously in the literature, we evaluated age, body mass index and preoperative physical activity (PA), tumor grade, vestibular status, and preference for visual cues to control balance as potential prognostic factors using stepwise multiple regression models. Results An asymmetric vestibular function was the sole significant explanatory factor for impaired balance performance BS, whereas the preoperative PA alone significantly contributed to higher performance at AS8. An evaluation of patients' balance recovery over time showed that PA and vestibular status were the 2 significant predictive factors for short-term postural compensation (BS to AS8), whereas none of these preoperative factors was significantly predictive for medium-term postoperative postural recovery (AS8 to AS90). Conclusions We identified specific preoperative patient and vestibular function characteristics that may predict postoperative balance recovery after VS surgery. Better preoperative characterization of these factors in each patient could inform more personalized presurgical and postsurgical management, leading to a better, more rapid balance recovery, earlier return to normal daily activities and work, improved quality of life, and reduced medical and societal costs. © The Author(s) 2015.
Design and development of a novel balancer with variable difficulty for training and evaluation.
Ang, W T; Tan, U-X; Tan, H G; Myo, T; Ng, C K; Koh, K L; Cheam, B S
2008-11-01
This paper presents a novel, portable and cost-effective balance trainer with the necessary important features to improve the reach of rehabilitation to the masses. There are three factors that contribute to a person's ability to maintain standing balance: Proprioceptive feedback (from the joints), vision, and the vestibular system. These systems can be affected by injury, infection, or brain damage caused by stroke. One example of such injuries is ankle injury. A large focus of the physiotherapy and sports medicine community is using postural-control tasks to prevent, assess and rehabilitate patients. Unfortunately, there are presently two extreme ends of balance training devices. On one end, there is high-end equipment which only large hospitals are capable of buying. On the other end are the simple balance boards which offer limited features. To develop the new balance trainer - the Pro.Balance - therapists at the Singapore General Hospital drafted a new 'wish list' of requirements. The prototype was built at the Nanyang Technological University, Singapore, and was commercialized by Lab Rehab Pte Ltd as the Pro.Balance. The device has a small footprint, incorporating only the most important and frequently used functions. These functions include being able to provide different levels of difficulty, setting different difficulties in different directions, the storing of a patient's performance, real-time visual feedback to aid the patient and different types of modes for different purposes. Springs are used to vary the amount of supporting moments, thus varying the difficulty levels. This paper describes the design and features of the Pro.Balance.
Suttanon, Plaiwan; Hill, Keith D; Said, Catherine M; Williams, Susan B; Byrne, Karin N; LoGiudice, Dina; Lautenschlager, Nicola T; Dodd, Karen J
2013-05-01
To evaluate the feasibility and safety of a home-based exercise programme for people with Alzheimer's disease, and to provide preliminary evidence of programme effectiveness in improving balance and mobility and reducing falls risk. A randomized controlled trial. Community. Forty people with mild to moderate Alzheimer's disease (mean age 81.9, SD 5.72; 62.5% female). Participants were randomized to a six-month home-based individually tailored balance, strengthening and walking exercise programme (physiotherapist) or a six-month home-based education programme (control) (occupational therapist). Both programmes provided six home-visits and five follow-up phone calls. Balance, mobility, falls and falls risk were measured at baseline and programme completion. Intention-to-treat analysis using a generalized linear model with group allocation as a predictor variable was performed to evaluate programme effectiveness. Feasibility and adverse events were systematically recorded at each contact. Fifty-eight per cent of the exercise group finished the programme, completing an average of 83% of prescribed sessions, with no adverse events reported. Functional Reach improved significantly (P = 0.002) in the exercise group (mean (SD), 2.28 (4.36)) compared to the control group (-2.99 (4.87)). Significant improvement was also observed for the Falls Risk for Older People - Community score (P = 0.008) and trends for improvement on several other balance, mobility, falls and falls risk measures for the exercise group compared to the control group. The exercise programme was feasible and safe and may help improve balance and mobility performance and reduce falls risk in people with Alzheimer's disease.
Cakar, E; Durmus, O; Tekin, L; Dincer, U; Kiralp, M Z
2010-09-01
Ankle foot orthoses (AFO) are commonly used orthotic device in order to restore the ankle foot function and to improve the balance and gait in post-stroke hemiparetic patients. However, there remain some discussions about their effectiveness on long term hemiparetic patients who had mild to moderate spasticity. To investigate the relative effect of prefabricated thermoplastic posterior leaf spring AFO (PLS-AFO) on balance and fall risk. A cross-over interventional study The Department of PMR of a tertiary hospital. Twenty-five chronic post-stroke long duration hemiparetic patients who had Ashworth grade 1-2 spasticity at affected calf muscles and lower limb Brunnstrom stage 2-3 and also able to walk independently without an assistive device. Berg Balance Scale (BERG), and the postural stability test (PST) and the fall risk test (FRT) of Biodex balance systems were used for the assessments. All of the patients were assessed with AFO and without AFO. All assessments were made with footwear. The mean post-stroke duration was 20,32±7,46 months. The BERG scores were 42,12±9,05 without AFO and 47,52±7,77 with AFO; the overall stability scores of FRT were 3,35±1,97 without AFO and 2,69±1,65 with AFO (P<0,001). It was found that the prefabricated thermoplastic PLS-AFO improve balance and provide fall risk reduction in chronic post-stroke ambulatory hemiparetic patients who had mild to moderate spasticity on their affected lower limb. These results encourage the usage of AFO on long duration hemiparetic patients in order to provide better balance and lesser fall risk.
[Results of a physical therapy program in nursing home residents: A randomized clinical trial].
Casilda-López, Jesús; Torres-Sánchez, Irene; Garzón-Moreno, Victor Manuel; Cabrera-Martos, Irene; Valenza, Marie Carmen
2015-01-01
The maintenance of the physical functionality is a key factor in the care of the elderly. Inactive people have a higher risk of death due to diseases associated with inactivity. In addition, the maintenance of optimal levels of physical and mental activity has been suggested as a protective factor against the development and progression of chronic illnesses and disability. The objective of this study is to assess the effectiveness of an 8-week exercise program with elastic bands, on exercise capacity, walking and balance in nursing home residents. A nursing home sample was divided into two groups, intervention group (n=26) and control group (n=25). The intervention group was included in an 8-week physical activity program using elastic bands, twice a week, while the control group was took part in a walking programme. Outcome measurements were descriptive variables (anthropometric characteristics, quality of life, fatigue, fear of movement) and fundamental variables (exercise capacity, walking and balance). A significant improvement in balance and walking speed was observed after the programme. Additionally, exercise capacity improved significantly (P≤.001), and the patients showed an improvement in perceived dyspnea after the physical activity programme in the intervention group. The exercise program was safe and effective in improving dyspnea, exercise capacity, walking, and balance in elderly. Copyright © 2014 SEGG. Published by Elsevier Espana. All rights reserved.
Yoga practice improves executive function by attenuating stress levels.
Gothe, Neha P; Keswani, Rahul K; McAuley, Edward
2016-12-01
Prolonged activation of the hypothalamus-pituitary-adrenal system is thought to have deleterious effects on brain function. Neuroendocrine studies suggest that brain exposure to higher cortisol concentrations contribute to cognitive deficits as we age. Mind-body techniques such as yoga have shown to improve stress levels by restoring the body's sympathetic-parasympathetic balance. The objective of this study was to determine whether yoga practice moderated the stress response resulting in improved executive function. Sedentary community dwelling older adults (N=118, Mean age=62.02) were randomized to an 8-week yoga intervention or a stretching control group. At baseline and following 8 weeks, all participants completed measures of executive function, self-reported stress and anxiety and provided saliva samples before and after cognitive testing to assess cortisol. Yoga participants showed improved accuracy on executive function measures and an attenuated cortisol response compared to their stretching counterparts who showed increased cortisol levels and poor cognitive performance at follow up. The change in cortisol levels as well as self-reported stress and anxiety levels predicted performance on the running span task, n-back working memory and task switching paradigm (β's=0.27-0.38, p's≤0.05 for yoga and β's=-0.37-0.47, p's≤0.01 for stretching control). Eight weeks of regular yoga practice resulted in improved working memory performance that was mediated by an attenuated response to stress as measured by self-report stress and objective salivary cortisol measurements. This trial offers evidence for non-traditional physical activity interventions such as yoga that may be helpful in restoring HPA balance in older adults, thereby preventing cognitive decline. Copyright © 2016 Elsevier B.V. All rights reserved.
van het Reve, Eva; de Bruin, Eling D
2014-12-15
Exercise interventions often do not combine physical and cognitive training. However, this combination is assumed to be more beneficial in improving walking and cognitive functioning compared to isolated cognitive or physical training. A multicenter parallel randomized controlled trial was conducted to compare a motor to a cognitive-motor exercise program. A total of 182 eligible residents of homes-for-the-aged (n = 159) or elderly living in the vicinity of the homes (n = 23) were randomly assigned to either strength-balance (SB) or strength-balance-cognitive (SBC) training. Both groups conducted similar strength-balance training during 12 weeks. SBC additionally absolved computerized cognitive training. Outcomes were dual task costs of walking, physical performance, simple reaction time, executive functions, divided attention, fear of falling and fall rate. Participants were analysed with an intention to treat approach. The 182 participants (mean age ± SD: 81.5 ± 7.3 years) were allocated to either SB (n = 98) or SBC (n = 84). The attrition rate was 14.3%. Interaction effects were observed for dual task costs of step length (preferred walking speed: F(1,174) = 4.94, p = 0.028, η2 = 0.027, fast walking speed: F(1,166) = 6.14, p = 0.009, η2 = 0.040) and dual task costs of the standard deviation of step length (F(1,166) = 6.14, p = 0.014, η2 = 0.036), in favor of SBC. Significant interactions in favor of SBC revealed for in gait initiation (F(1,166) = 9.16, p = 0.003, η2 = 0.052), 'reaction time' (F(1,180) = 5.243, p = 0.023, η² = 0.028) & 'missed answers' (F(1,180) = 11.839, p = 0.001, η² = 0.062) as part of the test for divided attention. Within-group comparison revealed significant improvements in dual task costs of walking (preferred speed; velocity (p = 0.002), step time (p = 0.018), step length (p = 0.028), fast speed; velocity (p < 0.001), step time (p = 0.035), step length (p = 0.001)), simple reaction time (p < 0.001), executive functioning (Trail making test B; p < 0.001), divided attention (p < 0.001), fear of falling (p < 0.001), and fall rate (p < 0.001). Combining strength-balance training with specific cognitive training has a positive additional effect on dual task costs of walking, gait initiation, and divided attention. The findings further confirm previous research showing that strength-balance training improves executive functions and reduces falls. This trial has been registered under ISRCTN75134517.
Monjezi, Saeideh; Negahban, Hossein; Tajali, Shirin; Yadollahpour, Nava; Majdinasab, Nastaran
2017-02-01
To investigate the effects of dual-task balance training on postural performance in patients with multiple sclerosis as compared with single-task balance training. Double-blind, pretest-posttest, randomized controlled pilot trial. Local Multiple Sclerosis Society. A total of 47 patients were randomly assigned to two equal groups labeled as single-task training and dual-task training groups. All patients received supervised balance training sessions, 3 times per week for 4 weeks. The patients in the single-task group performed balance activities, alone. However, patients in dual-task group practiced balance activities while simultaneously performing cognitive tasks. The 10-Meter Walk Test and Timed Up-and-Go under single-task and dual-task conditions, in addition to Activities-specific Balance Confidence, Berg Balance Scale, and Functional Gait Assessment were assessed pre-, and post intervention and also 6-weeks after the end of intervention. Only 38 patients completed the treatment plan. There was no difference in the amount of improvement seen between the two study groups. In both groups there was a significant effect of time for dual-10 Meter Walk Test (F 1, 36 =11.33, p=0.002) and dual-Timed Up-and-Go (F 1, 36 =14.27, p=0.001) but not for their single-tasks. Moreover, there was a significant effect of time for Activities-specific Balance Confidence, Berg Balance Scale, and Functional Gait Assessment ( P<0.01). This pilot study did not show more benefits from undertaking dual-task training than single-task training. A power analysis showed 71 patients per group would be needed to determine whether there was a clinically relevant difference for dual-task gait speed between the groups.
Kargarfard, Mehdi; Shariat, Ardalan; Ingle, Lee; Cleland, Joshua A; Kargarfard, Mina
2018-02-01
To assess the effects of an 8-week aquatic exercise training program on functional capacity, balance, and perceptions of fatigue in women with multiple sclerosis (MS). Randomized controlled design. Referral center of an MS society. Women (N=32; mean age ± SD, 36.4±8.2y) with diagnosed relapsing-remitting MS. After undergoing baseline testing by a neurologist, participants were allocated to either an intervention (aquatic training program, n=17) or a control group (n=15). The intervention consisted of an 8-week aquatic training program (3 supervised training sessions per week; session duration, 45-60min; 50%-75% estimated maximum heart rate). Six-minute walk test (6-MWT), balance (Berg Balance Scale [BBS]), and perceptions of fatigue (Modified Fatigue Impact Scale; [MFIS]) at baseline and after the 8-week intervention. Differences over time between the experimental and control groups were assessed by a 2×2 (group by time) repeated-measures analysis of variance. Thirty-two women completed the 8-week aquatic training intervention (experimental group, n=17; control group, n=15). All outcome measures improved in the experimental group: 6-MWT performance (pretest mean ± SD, 451±58m; posttest mean ± SD, 503±57m; P<.001); BBS (pretest mean ± SD, 53.59±1.70; posttest mean ± SD, 55.18±1.18; P<.001), and MFIS (pretest mean ± SD, 43.1±14.6; posttest mean ± SD, 32.8±5.9; P<.01). A significant group-by-time interaction was evident between the experimental and control groups for 6-MWT (P<.001, partial eta 2 [η p 2 ]=.551), BBS (P<.001, η p 2 =.423), and MFIS (P<.001, η p 2 =.679). Aquatic exercise training improved functional capacity, balance, and perceptions of fatigue in women with MS. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Vestibular rehabilitation using video gaming in adults with dizziness: a pilot study.
Phillips, J S; Fitzgerald, J; Phillis, D; Underwood, A; Nunney, I; Bath, A
2018-03-01
To determine the effectiveness of vestibular rehabilitation using the Wii Fit balance platform, in adults with dizziness. A single-site prospective clinical trial was conducted in a university hospital in the UK. Forty patients with dizziness, who would normally be candidates for vestibular rehabilitation, were identified and considered as potential participants. Participants were randomised into either the treatment group (the Wii Fit group) or the control group (standard customised vestibular rehabilitation protocol). Participants were assessed over a 16-week period using several balance and quality of life questionnaires. Both exercise regimes resulted in a reduction of dizziness and an improvement in quality of life scores over time, but no statistically significant difference between the two interventions was identified. This pilot study demonstrated that use of the Wii Fit balance platform resulted in a statistically significant improvement in balance function and quality of life. Furthermore, outcomes were comparable to a similar group of individuals following a standard customised vestibular rehabilitation protocol. The study provides useful information to inform the design and execution of a larger clinical trial.
Effect of balance training in older adults using Wii fit plus.
Afridi, Ayesha; Malik, Arshad Nawaz; Ali, Shaukat; Amjad, Imran
2018-03-01
The Nintendo Wii-fit plus is a type of Virtual Reality exer-gaming with graphical and auditory response system. A case series was conducted at Shifa Tamer-e-Millat University Islamabad from January-July 2016. Sixteen adults more than 60 years age (07 males and 09 females) were recruited through convenient sampling. The specified Wii fit plus training was provided to all patients and the games included the Soccer heading, Ski slalom, table tilt and yoga. Berg balance test, time up and go and functional reach test were used before and after 06 weeks of treatment (4 days / week). Data was analysed by SPSS V-20. The mean age of the sample was 67.56±7.29 years, with 56% female and 44% males were in sample. There was a statistically significant difference in pre and post Berg Balance Score, time up and go test and functional reach. In this case series Wii-fit plus training was effective in improving dynamic balance and mobility in older adults. This should be explored further in large trials.
NASA Technical Reports Server (NTRS)
Buccello-Stout, Regina R.; Cromwell, Ronita L.; Bloomberg, Jacob J.; Weaver, G. D.
2010-01-01
Research indicates a main contributor of injury in older adults is from falling. The decline in sensory systems limits information needed to successfully maneuver through the environment. The objective of this study was to determine if prolonged exposure to the realignment of perceptual-motor systems increases adaptability of balance, and if balance confidence improves after training. A total of 16 older adults between ages 65-85 were randomized to a control group (walking on a treadmill while viewing a static visual scene) and an experimental group (walking on a treadmill while viewing a rotating visual scene). Prior to visual exposure, participants completed six trials of walking through a soft foamed obstacle course. Participants came in twice a week for 4 weeks to complete training of walking on a treadmill and viewing the visual scene for 20 minutes each session. Participants completed the obstacle course after training and four weeks later. Average time, penalty, and Activity Balance Confidence Scale scores were computed for both groups across testing times. The older adults who trained, significantly improved their time through the obstacle course F (2, 28) = 9.41, p < 0.05, as well as reduced their penalty scores F (2, 28) = 21.03, p < 0.05, compared to those who did not train. There was no difference in balance confidence scores between groups across testing times F (2, 28) = 0.503, p > 0.05. Although the training group improved mobility through the obstacle course, there were no differences between the groups in balance confidence.
Effect of Sling Exercise Training on Balance in Patients with Stroke: A Meta-Analysis
Peng, Qiyuan; Chen, Jingjie; Zou, Yucong; Liu, Gang
2016-01-01
Objective This study aims to evaluate the effect of sling exercise training (SET) on balance in patients with stroke. Methods PubMed, Cochrane Library, Ovid LWW, CBM, CNKI, WanFang, and VIP databases were searched for randomized controlled trials of the effect of SET on balance in patients with stroke. The study design and participants were subjected to metrological analysis. Berg balance Scale (BBS), Barthel index score (BI), and Fugl-Meyer Assessment (FMA) were used as independent parameters for evaluating balance function, activities of daily living(ADL) and motor function after stroke respectively, and were subjected to meta-analysis by RevMan5.3 software. Results Nine studies with 460 participants were analyzed. Results of meta-analysis showed that the SET treatment combined with conventional rehabilitation was superior to conventional rehabilitation treatments, with increased degrees of BBS (WMD = 3.81, 95% CI [0.15, 7.48], P = 0.04), BI (WMD = 12.98, 95% CI [8.39, 17.56], P < 0.00001), and FMA (SMD = 0.76, 95% CI [0.41, 1.11], P < 0.0001). Conclusion Based on limited evidence from 9 trials, the SET treatment combined with conventional rehabilitation was superior to conventional rehabilitation treatments, with increased degrees of BBS, BI and FMA, So the SET treatment can improvement of balance function after stroke, but the interpretation of our findings is required to be made with caution due to limitations in included trials such as small sample sizes and the risk of bias. Therefore, more multi-center and large-sampled randomized controlled trials are needed to confirm its clinical applications. PMID:27727288
Liu, Hsin-Yun; Tseng, Ming-Yueh; Li, Hsiao-Juan; Wu, Chi-Chuan; Cheng, Huey-Shinn; Yang, Ching-Tzu; Chou, Shih-Wei; Chen, Ching-Yen; Shyu, Yea-Ing L
2014-06-01
The effects of nutritional management among other intervention components have not been examined for hip-fractured elderly persons with poor nutritional status. Accordingly, this study explored the intervention effects of an in-home program using a comprehensive care model that included a nutrition-management component on recovery of hip-fractured older persons with poor nutritional status at hospital discharge. A secondary analysis of data from a randomized controlled trial with 24-month follow-up. A 3000-bed medical center in northern Taiwan. Subjects were included only if they had "poor nutritional status" at hospital discharge, including those at risk for malnutrition or malnourished. The subsample included 80 subjects with poor nutritional status in the comprehensive care group, 87 in the interdisciplinary care group, and 85 in the usual care group. The 3 care models were usual care, interdisciplinary care, and comprehensive care. Usual care provided no in-home care, interdisciplinary care provided 4 months of in-home rehabilitation, and comprehensive care included management of depressive symptoms, falls, and nutrition as well as 1 year of in-home rehabilitation. Data were collected on nutritional status and physical functions, including range of motion, muscle power, proprioception, balance and functional independence, and analyzed using a generalized estimating equation approach. We also compared patients' baseline characteristics: demographic characteristics, type of surgery, comorbidities, length of hospital stay, cognitive function, and depression. Patients with poor nutritional status who received comprehensive care were 1.67 times (95% confidence interval 1.06-2.61) more likely to recover their nutritional status than those who received interdisciplinary and usual care. Furthermore, the comprehensive care model improved the functional independence and balance of patients who recovered their nutritional status over the first year following discharge, but not of those who had not yet recovered. An in-home program using the comprehensive care model with a nutritional component effectively improved the nutritional status of hip-fractured patients with poor nutrition. This comprehensive care intervention more effectively improved recovery of functional independence and balance for patients with recovered nutritional status. Copyright © 2014 American Medical Directors Association, Inc. Published by Elsevier Inc. All rights reserved.
Granacher, Urs; Lacroix, Andre; Muehlbauer, Thomas; Roettger, Katrin; Gollhofer, Albert
2013-01-01
Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 ± 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 ± 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group × test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. Copyright © 2012 S. Karger AG, Basel.
Hendy, Ashlee M; Tillman, Alex; Rantalainen, Timo; Muthalib, Makii; Johnson, Liam; Kidgell, Dawson J; Wundersitz, Daniel; Enticott, Peter G; Teo, Wei-Peng
2016-07-19
Parkinson's disease (PD) results from a loss of dopamine in the brain, leading to movement dysfunctions such as bradykinesia, postural instability, resting tremor and muscle rigidity. Furthermore, dopamine deficiency in PD has been shown to result in maladaptive plasticity of the primary motor cortex (M1). Progressive resistance training (PRT) is a popular intervention in PD that improves muscular strength and results in clinically significant improvements on the Unified Parkinson's Disease Rating Scale (UPDRS). In separate studies, the application of anodal transcranial direct current stimulation (a-tDCS) to the M1 has been shown to improve motor function in PD; however, the combined use of tDCS and PRT has not been investigated. We propose a 6-week, double-blind randomised controlled trial combining M1 tDCS and PRT of the lower body in participants (n = 42) with moderate PD (Hoehn and Yahr scale score 2-4). Supervised lower body PRT combined with functional balance tasks will be performed three times per week with concurrent a-tDCS delivered at 2 mA for 20 minutes (a-tDCS group) or with sham tDCS (sham group). Control participants will receive standard care (control group). Outcome measures will include functional strength, gait speed and variability, balance, neurophysiological function at rest and during movement execution, and the UPDRS motor subscale, measured at baseline, 3 weeks (during), 6 weeks (post), and 9 weeks (retention). Ethical approval has been granted by the Deakin University Human Research Ethics Committee (project number 2015-014), and the trial has been registered with the Australian New Zealand Clinical Trials Registry (ACTRN12615001241527). This will be the first randomised controlled trial to combine PRT and a-tDCS targeting balance and gait in people with PD. The study will elucidate the functional, clinical and neurophysiological outcomes of combined PRT and a-tDCS. It is hypothesised that combined PRT and a-tDCS will significantly improve lower limb strength, postural sway, gait speed and stride variability compared with PRT with sham tDCS. Further, we hypothesise that pre-frontal cortex activation during dual-task cognitive and gait/balance activities will be reduced, and that M1 excitability and inhibition will be augmented, following the combined PRT and a-tDCS intervention. Australian New Zealand Clinical Trials Registry ACTRN12615001241527 . Registered on 12 November 2015.
Schättin, Alexandra; Arner, Rendel; Gennaro, Federico; de Bruin, Eling D.
2016-01-01
During aging, the prefrontal cortex (PFC) undergoes age-dependent neuronal changes influencing cognitive and motor functions. Motor-learning interventions are hypothesized to ameliorate motor and cognitive deficits in older adults. Especially, video game-based physical exercise might have the potential to train motor in combination with cognitive abilities in older adults. The aim of this study was to compare conventional balance training with video game-based physical exercise, a so-called exergame, on the relative power (RP) of electroencephalographic (EEG) frequencies over the PFC, executive function (EF), and gait performance. Twenty-seven participants (mean age 79.2 ± 7.3 years) were randomly assigned to one of two groups. All participants completed 24 trainings including three times a 30 min session/week. The EEG measurements showed that theta RP significantly decreased in favor of the exergame group [L(14) = 6.23, p = 0.007]. Comparing pre- vs. post-test, EFs improved both within the exergame (working memory: z = −2.28, p = 0.021; divided attention auditory: z = −2.51, p = 0.009; divided attention visual: z = −2.06, p = 0.040; go/no-go: z = −2.55, p = 0.008; set-shifting: z = −2.90, p = 0.002) and within the balance group (set-shifting: z = −2.04, p = 0.042). Moreover, spatio-temporal gait parameters primarily improved within the exergame group under dual-task conditions (speed normal walking: z = −2.90, p = 0.002; speed fast walking: z = −2.97, p = 0.001; cadence normal walking: z = −2.97, p = 0.001; stride length fast walking: z = −2.69, p = 0.005) and within the balance group under single-task conditions (speed normal walking: z = −2.54, p = 0.009; speed fast walking: z = −1.98, p = 0.049; cadence normal walking: z = −2.79, p = 0.003). These results indicate that exergame training as well as balance training positively influence prefrontal cortex activity and/or function in varying proportion. PMID:27932975
[Ensure - complete and balanced nutrition, convenient on work].
Kurenkov, A V; Iuriatin, A A
2013-01-01
The work conditions often may compromise a company ability to supply their employees with adequate, hot meals. For heavy labor workers and some office employees it is important to restore energy and nutrients with food, balanced in nutrients. The lack of adequate nutritive support can give a negative impact on different organs functions. One of the main principles of healthy nutrition is - diet must be balanced in nutrients. Which is easy to say, but difficult to implement, especially on some industries. Complete and balanced liquid and ready-to-use nutrition is new trend in nutrition of healthy people who cannot consume optimal diet, and in people with the risk of nutrient deficiencies. One-two packs of Ensure daily can significantly improve a worker ration. 2 and more packs could serve as a real complete and balanced lunch (>or=780 kcal). Also Ensure is easy to store and to deliver in distant places of work and can be recommended for use as a convenient, complete and balanced nutrition on work.
Cannell, John; Jovic, Emelyn; Rathjen, Amy; Lane, Kylie; Tyson, Anna M; Callisaya, Michele L; Smith, Stuart T; Ahuja, Kiran Dk; Bird, Marie-Louise
2018-02-01
To compare the efficacy of novel interactive, motion capture-rehabilitation software to usual care stroke rehabilitation on physical function. Randomized controlled clinical trial. Two subacute hospital rehabilitation units in Australia. In all, 73 people less than six months after stroke with reduced mobility and clinician determined capacity to improve. Both groups received functional retraining and individualized programs for up to an hour, on weekdays for 8-40 sessions (dose matched). For the intervention group, this individualized program used motivating virtual reality rehabilitation and novel gesture controlled interactive motion capture software. For usual care, the individualized program was delivered in a group class on one unit and by rehabilitation assistant 1:1 on the other. Primary outcome was standing balance (functional reach). Secondary outcomes were lateral reach, step test, sitting balance, arm function, and walking. Participants (mean 22 days post-stroke) attended mean 14 sessions. Both groups improved (mean (95% confidence interval)) on primary outcome functional reach (usual care 3.3 (0.6 to 5.9), intervention 4.1 (-3.0 to 5.0) cm) with no difference between groups ( P = 0.69) on this or any secondary measures. No differences between the rehabilitation units were seen except in lateral reach (less affected side) ( P = 0.04). No adverse events were recorded during therapy. Interactive, motion capture rehabilitation for inpatients post stroke produced functional improvements that were similar to those achieved by usual care stroke rehabilitation, safely delivered by either a physical therapist or a rehabilitation assistant.
McGibbon, Chris A; Krebs, David E; Parker, Stephen W; Scarborough, Donna M; Wayne, Peter M; Wolf, Steven L
2005-01-01
Background Vestibular rehabilitation (VR) is a well-accepted exercise program intended to remedy balance impairment caused by damage to the peripheral vestibular system. Alternative therapies, such as Tai Chi (TC), have recently gained popularity as a treatment for balance impairment. Although VR and TC can benefit people with vestibulopathy, the degree to which gait improvements may be related to neuromuscular adaptations of the lower extremities for the two different therapies are unknown. Methods We examined the relationship between lower extremity neuromuscular function and trunk control in 36 older adults with vestibulopathy, randomized to 10 weeks of either VR or TC exercise. Time-distance measures (gait speed, step length, stance duration and step width), lower extremity sagittal plane mechanical energy expenditures (MEE), and trunk sagittal and frontal plane kinematics (peak and range of linear and angular velocity), were measured. Results Although gait time-distance measures were improved in both groups following treatment, no significant between-groups differences were observed for the MEE and trunk kinematic measures. Significant within groups changes, however, were observed. The TC group significantly increased ankle MEE contribution and decreased hip MEE contribution to total leg MEE, while no significant changes were found within the VR group. The TC group exhibited a positive relationship between change in leg MEE and change in trunk velocity peak and range, while the VR group exhibited a negative relationship. Conclusion Gait function improved in both groups consistent with expectations of the interventions. Differences in each group's response to therapy appear to suggest that improved gait function may be due to different neuromuscular adaptations resulting from the different interventions. The TC group's improvements were associated with reorganized lower extremity neuromuscular patterns, which appear to promote a faster gait and reduced excessive hip compensation. The VR group's improvements, however, were not the result of lower extremity neuromuscular pattern changes. Lower-extremity MEE increases corresponded to attenuated forward trunk linear and angular movement in the VR group, suggesting better control of upper body motion to minimize loss of balance. These data support a growing body of evidence that Tai Chi may be a valuable complementary treatment for vestibular disorders. PMID:15717934
Treacy, Daniel; Schurr, Karl; Sherrington, Catherine
2013-07-20
Impaired balance and mobility are common among rehabilitation inpatients. Poor balance and mobility lead to an increased risk of falling. Specific balance exercise has been shown to improve balance and reduce falls within the community setting. However few studies have measured the effects of balance exercises on balance within the inpatient setting. A single centre, randomised controlled trial with concealed allocation, assessor blinding and intention-to-treat analysis. One hundred and sixty two patients admitted to the general rehabilitation ward at Bankstown-Lidcombe Hospital will be recruited. Eligible participants will have no medical contraindications to exercise and will be able to: fully weight bear; stand unaided independently for at least 30 seconds; and participate in group therapy sessions with minimal supervision. Participants will be randomly allocated to an intervention group or usual-care control group. Both groups will receive standard rehabilitation intervention that includes physiotherapy mobility training and exercise for at least two hours on each week day. The intervention group will also receive six 1-hour circuit classes of supervised balance exercises designed to maximise the ability to make postural adjustments in standing, stepping and walking. The primary outcome is balance. Balance will be assessed by measuring the total time the participant can stand unsupported in five different positions; feet apart, feet together, semi-tandem, tandem and single-leg-stance. Secondary outcomes include mobility, self reported physical functioning, falls and hospital readmissions. Performance on the outcome measures will be assessed before randomisation and at two-weeks and three-months after randomisation by physiotherapists unaware of intervention group allocation. This study will determine the impact of additional balance circuit classes on balance among rehabilitation inpatients. The results will provide essential information to guide evidence-based physiotherapy at the study site as well as across other rehabilitation inpatient settings. The protocol for this study is registered with the Australian New Zealand, Clinical Trials Registry: ACTRN=12611000412932.
Walsh, Sharon Fleming; Scharf, Michael G
2014-04-01
The purpose of this study was to describe the effects of an ice skating program on the ambulation, strength, posture and balance of a child with cerebral palsy (CP). The subject was a five-year-old female with a diagnosis of CP and a Gross Motor Classification System level of III. The subject was a slow and labored household ambulator on level surfaces with bilateral forearm crutches and bilateral ankle foot orthoses. She was unable to transfer to and from the floor to stand independently, stand unsupported or take steps independently. Until the initiation of this study she was receiving physical therapy services 2×/week. For the purpose of this study she participated in a 1 h/week local ice skating program for people with disabilities for a period of four months. The subject displayed clinically significant improvements in functional mobility including: improved standing posture; independent transfer to and from the floor to stand; maintenance of independent standing for 3 min; independent walking for 10 feet; increased ability to isolate extremity musculature; increased strength; improved Gross Motor Function Measure-88 scores and increased endurance. A subsequent testing session four months after the ice skating program had ended displayed declines but not to pre-intervention levels in muscle strength; ability to transfer to and from the floor to stand; functional mobility and standing balance. The results appear to suggest that the participation in an ice skating program clinically improved this child's functional mobility. Further research needs to be done with regard to physical recreational programs and the benefit they can have on the function of children with activity limitations.
Salvage reconstruction of failed interposition arthroplasty at the base of the thumb.
Braun, Richard M; Rechnic, Mark; Shah, Kalpit N
2012-12-01
We present an operative procedure designed to revise a failed arthroplasty at the base of the thumb. This report describes a reliable operation that corrects residual instability and malignment which results in thumbs that are weak and painful despite a previous procedure. The operation has also been used as a primary procedure for arthritis of the trapeziometacarpal joint where instability and subluxation was a major component of the problem requiring joint reconstruction. The unique features of this procedure include a reinforced double-thickness tendon graft, a unique tendon anchor, and a fascia lata allograft spacer. Significant functional improvement is anticipated when joint reconstruction provides increased proximal stability. Pinch and grip measurements improve. Pain scores also diminish after the operation. Hand function and patient satisfaction can be substantially improved with revision arthroplasty when the initial operation has failed to provide a thumb that is mobile, stable, and pain free. The technical features of the procedure address reduction of malignment, restoring of anatomic balance, and secure fixation of the proximal apex of the thumb metacarpal which restores thumb reduction position and digital balance.
Iwamoto, J; Sato, Y; Takeda, T; Matsumoto, H
2012-09-01
A randomized controlled trial was conducted to determine the effect of 6 months of whole body vibration (WBV) exercise on physical function in postmenopausal osteoporotic women treated with alendronate. Fifty-two ambulatory postmenopausal women with osteoporosis (mean age: 74.2 years, range: 51-91 years) were randomly divided into two groups: an exercise group and a control group. A four-minute WBV exercise was performed two days per week only in the exercise group. No exercise was performed in the control group. All the women were treated with alendronate. After 6 months of the WBV exercise, the indices for flexibility, body balance, and walking velocity were significantly improved in the exercise group compared with the control group. The exercise was safe and well tolerated. The reductions in serum alkaline phosphatase and urinary cross-linked N-terminal telopeptides of type I collagen during the 6-month period were comparable between the two groups. The present study showed the benefit and safety of WBV exercise for improving physical function in postmenopausal osteoporotic women treated with alendronate.
[Cataract surgery and its impact on balance and autonomy in elderly].
Raynal, M; Aupy, B; Jahidi, A; Ettien, D; Le Page, P; Briche, T; Kossowski, M; Pailllaud, E
2009-01-01
Cataract is a major cause of visual impairment among elderly. Cataract surgery improves visual afferencies and can have an impact on balance. The present study assessed the impact of cataract surgery upon balance and autonomy in elderly. We realized clinical examinations and objective tests the day before surgery and 2-months later. The initial cohort consisted of 66 patients that had to undergo a cataract surgery. Their mean age was 79 +/- 0.5. For logistic reasons, only 33 patients have been completely evaluated before and after surgery. Each patient underwent a history and examination that have assessed autonomy, walking, visual and then cochleo-vestibular functions including bone vibratory test and dynamic computerized posturography (Equitest). After 2 months, cataract surgery had no incidence on balance. The fear of falling has stayed the same whereas the number of falls has been noticeably reduced by surgery. The overall score of Equitest has shown an increase in visual dependence after surgery. Although cataract surgery has no incidence on autonomy, it may improve the quality of life among older people by leisure activities recovery. An early physical rehabilitation facilitated by visual improvement after surgery can also prevent visual dependence and autonomy loss. We recommend vestibular rehabilitation in elderly with major visual dependence.
Eyigor, Sibel; Karapolat, Hale; Durmaz, Berrin; Ibisoglu, Ugur; Cakir, Serap
2009-01-01
The present study has been carried out to investigate the effects of group-based Turkish folkloric dances on physical performance, balance, depression and quality of life (QoL) in 40 healthy adult elderly females over the age of 65 years. Subjects were randomly allocated into Group 1 (folkloric dance-based exercise) and Group 2 (control). A 8-week dance-based exercise program was performed. Outcome measures included a 20-m walk test, a 6-min walk test, stair climbing and chair rise time, Berg balance scale (BBS), the Medical Outcomes Study (MOS) 36-item short form health survey (SF-36), and geriatric depression scale (GDS) questionnaires. In Group 1 statistically significant improvements were found in most of the physical performance tests, BBS and some SF-36 subscales after the exercise (p<0.05). In the Group 2 there was no clinically significant change in the variables. Comparing the groups, significant improvements in favor of Group 1 have emerged in most of the functional performance tests, in some of the SF-36 subscales and BBS score (p<0.05). We achieved improvements in physical performance, balance and QoL in elderly females. Application of folkloric dance specific to countries as an exercise program for elderly people may be helpful.
Aunsholt, Lise; Jeppesen, Palle Bekker; Lund, Pernille; Sangild, Per Torp; Ifaoui, Inge Bøtker Rasmussen; Qvist, Niels; Husby, Steffen
2014-01-01
Management of short bowel syndrome (SBS) aims to achieve intestinal autonomy to prevent fluid, electrolyte, and nutrient deficiencies and maintain adequate development. Remnant intestinal adaptation is required to obtain autonomy. In the newborn pig, colostrum has been shown to support intestinal development and hence adaptive processes. The efficacy of bovine colostrum to improve intestinal function in children with SBS was evaluated by metabolic balance studies. Nine children with SBS were included in a randomized, double-blind, crossover study. Twenty percent of enteral fluid intake was replaced with bovine colostrum or a mixed milk diet for 4 weeks, separated by a 4-week washout period. Intestinal absorption of energy and wet weight was used to assess intestinal function and the efficacy of colostrum. Colostrum did not improve energy or wet weight absorption compared with the mixed milk diet (P = 1.00 and P = .93, respectively). Growth as measured by weight and knemometry did not differ between diets (P = .93 and P = .28). In these patients, <150% enteral energy absorption of basal metabolic rate and 50% enteral fluid absorption of basal fluid requirement suggested intestinal failure and a need for parenteral nutrition (PN). Inclusion of bovine colostrum to the diet did not improve intestinal function. Metabolic nutrient and wet weight balance studies successfully assessed intestinal function, and this method may distinguish between intestinal insufficiency (non-PN-dependent) and intestinal failure (PN-dependent) patients.
Castaneda-Sceppa, Carmen; Price, Lori Lyn; Noel, Sabrina E.; Midle, Jennifer Bassett; Falcon, Luis M.; Tucker, Katherine L.
2015-01-01
Objectives This article describes physical function in Puerto Rican older adults and examines associations between health status and physical function. It also assesses relationships between physical function and disability. Method This study uses a cross-sectional study of Puerto Ricans 45 to 75 years in Boston (N = 1,357). Measures included performance-based physical function (handgrip strength, walking speed, balance, chair stands, foot tapping), health conditions (obesity, diabetes, depressive symptomatology, history of heart disease, heart attack, stroke, and arthritis), and self-reported disability (activities of daily living, instrumental activities of daily living). Results Older women (60-75 years) had the poorest physical function. Poor physical function was associated with obesity, diabetes, depression, history of heart attack, stroke, and arthritis, after adjusting for age, sex, education, income, and lifestyle (p < .05). Physical function and disability were correlated (p < .01). Discussion Health status among Puerto Ricans appears to contribute to poor physical function. Targeted interventions to improve strength, endurance, and balance are needed to combat physical frailty and its consequences in this population. PMID:20495158
NASA Astrophysics Data System (ADS)
Jonny, Zagloed, Teuku Yuri M.
2017-11-01
This paper aims to present an integrated health care model for Indonesian health care industry. Based on previous researches, there are two health care models in the industry such as decease- and patient-centered care models. In their developments, the patient-centered care model is widely applied due to its capability in reducing cost and improving quality simultaneously. However, there is still no comprehensive model resulting in cost reduction, quality improvement, patient satisfaction and hospital profitability simultaneously. Therefore, this research is intended to develop that model. In doing so, first, a conceptual model using Kano's Model, Quality Function Deployment (QFD) and Balanced Scorecard (BSC) is developed to generate several important elements of the model as required by stakeholders. Then, a case study of an Indonesian hospital is presented to evaluate the validity of the model using correlation analysis. As a result, it can be concluded that the model is validated implying several managerial insights among its elements such as l) leadership (r=0.85) and context of the organization (r=0.77) improve operations; 2) planning (r=0.96), support process (r=0.87) and continual improvement (r=0.95) also improve operations; 3) operations improve customer satisfaction (r=0.89) and financial performance (r=0.93) and 4) customer satisfaction improves the financial performance (0.98).
Manlapaz, Donald G; Sole, Gisela; Jayakaran, Prasath; Chapple, Cathy M
2017-04-01
Balance is crucial in performing functional tasks particularly among older adults. Exergaming is gaining attention as a novel approach to enhance balance in a number of clinical populations. The aim of this review was to synthesize and present published evidence for Nintendo Wii Fit™ gaming system protocols. These include game preference, intervention setting, and exercise dosage for improving balance in healthy older adults. Commonly used outcome measures were also identified. A literature search was developed using the PICOS strategy using keywords such as "older adult," "Nintendo Wii Fit," "exergaming," and "balance" in the databases: MEDLINE, PubMed, EMBASE, CINAHL, Scopus, Science Direct, and Web of Science. Sixteen articles were included with participants (n = 491) mostly female (69%), and mean age ranged between 71 and 85 years old. Participants were recruited mainly from the community. The most commonly used Wii Fit games were Table tilt, Soccer Heading, Ski Slalom, and Ski jump, performed three times per week, with a duration of 30 minutes per session for 6 weeks. Berg Balance Scale, Timed Up and Go Test, and Centre of Pressure were the most commonly used outcome measures. Wii Fit exergames can be a potential alternative to improve balance if safety and technical procedures are provided. With conflicting and mechanism-based evidence on dosage presented, exergaming parameters require further research before firm recommendations can be made. Clinically, effective dosage is an important component in any type of interventions, and exergaming should not be an exception.
Therapeutic Effects of Mechanical Horseback Riding on Gait and Balance Ability in Stroke Patients
Han, Jun Young; Kim, Shin Kyoung; Chung, Jin Sang; Lee, Hyun-Cheol; Lim, Jae Kuk; Lee, Jiwon; Park, Kawn Yong
2012-01-01
Objective To investigate the therapeutic effects of mechanical horseback riding for gait and balance parameters in post-stroke patients. Method This study was a non randomized prospective positive-controlled trial over a 12 week period. From May 2011 to October 2011, 37 stroke patients were recruited from our outpatient clinic and divided into two groups. The control group received the conventional physiotherapy while the intervention group received the conventional physiotherapy along with mechanical horseback riding therapy for 12 weeks. Outcome measurements of gait included the Functional Ambulation Category (FAC) and gait part of the Performance Oriented Mobility Assessment (G-POMA) while those of balance included the Berg Balance Scale (BBS) and the balance part of the Performance Oriented Mobility Assessment (B-POMA). These measurements were taken before and after treatment. Results There were no significant differences in the baseline characteristics and initial values between the two groups. When comparing baseline and 12 weeks post treatment in each group, the intervention group showed significant improvement on BBS (39.9±5.7 → 45.7±4.8, p=0.001) and B-POMA (10.4±2.6 → 12.6±2.1, p=0.001), but significant improvement on gait parameters. When comparing the groups, the dynamic balance category of BBS in post treatment showed significant difference (p=0.02). Conclusion This study suggests that mechanical horseback riding therapy may be an effective treatment tool for enhancing balance in adults with stroke. PMID:23342307
Community Delivery of a Comprehensive Fall-Prevention Program in People with Multiple Sclerosis
Frankel, Debra; Tompkins, Sara A.; Cameron, Michelle
2016-01-01
Background: People with multiple sclerosis (MS) fall frequently. In 2011, the National Multiple Sclerosis Society launched a multifactorial fall-prevention group exercise and education program, Free From Falls (FFF), to prevent falls in MS. The objective of this study was to assess the impact of participation in the FFF program on balance, mobility, and falls in people with MS. Methods: This was a retrospective evaluation of assessments from community delivery of FFF. Changes in Activities-specific Balance Confidence scale scores, Berg Balance Scale scores, 8-foot Timed Up and Go performance, and falls were assessed. Results: A total of 134 participants completed the measures at the first and last FFF sessions, and 109 completed a 6-month follow-up assessment. Group mean scores on the Activities-specific Balance Confidence scale (F1,66 = 17.14, P < .05, η2 = 0.21), Berg Balance Scale (F1,68 = 23.39, P < .05, η2 = 0.26), and 8-foot Timed Up and Go (F1,79 = 4.83, P < .05, η2 = 0.06) all improved significantly from the first to the last session. At the 6-month follow-up, fewer falls were reported (χ2 [4, N = 239] = 10.56, P < .05, Phi = 0.21). Conclusions: These observational data suggest that the FFF group education and exercise program improves balance confidence, balance performance, and functional mobility and reduces falls in people with MS. PMID:26917997
Giagazoglou, Paraskevi; Sidiropoulou, Maria; Mitsiou, Maria; Arabatzi, Fotini; Kellis, Eleftherios
2015-01-01
The present study aimed to examine movement difficulties among typically developing 8- to 9-year-old elementary students in Greece and to investigate the possible effects of a balance training program to those children assessed with Developmental Coordination Disorder (DCD). The Body Coordination Test for Children (BCTC; Körperkoordinationstest fur Kinder, KTK, Kiphard & Schilling, 1974) was chosen for the purposes of this study and 20 children out of the total number of 200, exhibited motor difficulties indicating a probable DCD disorder. The 20 students diagnosed with DCD were equally separated into two groups where each individual of the experimental group was paired with an individual of the control group. The intervention group attended a 12-week balance training program while students of the second - control group followed the regular school schedule. All participants were tested prior to the start and after the end of the 12-week period by performing static balance control tasks while standing on an EPS pressure platform and structured observation of trampoline exercises while videotaping. The results indicated that after a 12-week balance training circuit including a trampoline station program, the intervention group improved both factors that were examined. In conclusion, balance training with the use of attractive equipment such as trampoline can be an effective intervention for improving functional outcomes and can be recommended as an alternative mode of physical activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Volpe, Daniele; Giantin, Maria Giulia; Fasano, Alfonso
2014-01-01
Background Muscle spindles endings are extremely sensitive to externally applied vibrations, and under such circumstances they convey proprioceptive inflows to the central nervous system that modulate the spinal reflexes excitability or the muscle responses elicited by postural perturbations. The aim of this pilot study is to test the feasibility and effectiveness of a balance training program in association with a wearable proprioceptive stabilizer (Equistasi) that emits focal mechanical vibrations in patients with PD. Methods Forty patients with PD were randomly divided in two groups wearing an active or inactive device. All the patients received a 2-month intensive program of balance training. Assessments were performed at baseline, after the rehabilitation period (T1), and two more months after (T2). Posturographic measures were used as primary endpoint; secondary measures of outcome included the number of falls and several clinical scales for balance and quality of life. Results Both groups improved at the end of the rehabilitation period and we did not find significant between-group differences in any of the principal posturographic measures with the exception of higher sway area and limit of stability on the instrumental functional reach test during visual deprivation at T1 in the Equistasi group. As for the secondary outcome, we found an overall better outcome in patients enrolled in the Equistasi group: 1) significant improvement at T1 on Berg Balance Scale (+45.0%, p = .026), Activities-specific Balance Confidence (+83.7, p = .004), Falls Efficacy Scale (−33.3%, p = .026) and PDQ-39 (−48.8%, p = .004); 2) sustained improvement at T2 in terms of UPDRS-III, Berg Balance Scales, Time Up and Go and PDQ-39; 3) significant and sustained reduction of the falls rate. Conclusions This pilot trial shows that a physiotherapy program for training balance in association with focal mechanical vibration exerted by a wearable proprioceptive stabilizer might be superior than rehabilitation alone in improving patients’ balance. Trial Registration EudraCT 2013-003020-36 and ClinicalTrials.gov (number not assigned) PMID:25401967
Siu, Ka-Chun; Rajaram, Shireen S; Padilla, Carolina
2015-01-01
Increasing evidence underscores the health benefits of Tai Chi (TC), although there is limited evidence of benefits among racial and ethnic minorities. This study investigated the impact of psychosocial status on balance among 23 Latino seniors after a twice-a-week, 12-week TC exercise program. Functional status was measured at baseline, immediately after, and three months following the TC exercise program, using the Timed Up and Go Test and Tinetti Falls Efficacy Scale. Psychosocial status was measured at baseline by the Center for Epidemiologic Studies Depression Scale and Norbeck Social Support Questionnaire. Both measures of functional status improved and were sustained after three months of TC. Greater improvement was significantly related to a higher level of baseline social support. More depressed seniors reported less fear of falling after TC. Depression and social support are important moderators of functional improvement after TC among Latino seniors.
NASA Astrophysics Data System (ADS)
Li, Ziru; Zhang, Xusheng
2009-08-01
To explore the assessing technique which could objectively reflect the characteristics of Chinese medicine in the prevention of cardiovascular and cerebrovascular diseases, four balance features of infrared thermal images (ITI) corresponding to the up and down, left and right, proximal and distal balance of blood circulation of human body were studied. First, the ITI features of the middle-aged and elderly people with lipid abnormality history were compared with those of the healthy youth. It was found that the balance state of the youth was significantly better than that of the middle-aged and elderly, P<=0.01 for all the balance features. For the youth, the balance state of females was better than that of the males. But this sexual difference disappeared for the middle-aged and elderly group. Second, a double-blind randomized trial was carried out to study the influences of Shengyi capsule, a Chinese medicine health food with the function of helping to decrease serum lipid, on the balance features. The subjects were middle-aged and elderly people with lipid abnormality history. Shengyi capsule was taken by the trial group while Xuezhikang capsule (with lovastatin as the main effective component) by the control group for 108 days. The balance features of ITI showed that Shengyi was significantly better than Xuezhikang in improving the whole body balance of blood circulation (including the up and down, left and right, proximal and distal balance). The relative efficacy rate was 81.0% for the trial group and 33.3% for the control group, there was significant difference between the two groups (P=0.002). Shengyi could effectively decrease the low density lipoprotein cholesterol (LDL-C) but the effect of Xuezhikang in decreasing total cholesterol (TC) and LDL-C was better than Shengyi. Though the lipid-lowering effect of Shengyi was not as good as Xuezhikang, ITI reflected the obvious advantage of Shengyi in improving the whole body balance of blood circulation which indicated that helping to decrease serum lipid is only part of the health function of Shengyi. The physiology and pathology basis of the influences of Shengyi on the four balance features and its relationship with the clinical outcome deserves further study. So the prospect of infrared thermal imaging is indicated as the suitable evaluation technique which could objectively reflect the whole balance regulation advantage of Chinese medicinal compounds.
Bunn, Lisa M; Marsden, Jonathan F; Giunti, Paola; Day, Brian L
2015-02-01
To investigate the feasibility of a randomized controlled trial of a home-based balance intervention for people with cerebellar ataxia. A randomized controlled trial design. Intervention and assessment took place in the home environment. A total of 12 people with spinocerebellar ataxia type 6 were randomized into a therapy or control group. Both groups received identical assessments at baseline, four and eight weeks. Therapy group participants undertook balance exercises in front of optokinetic stimuli during weeks 4-8, while control group participants received no intervention. Test-retest reliability was analysed from outcome measures collected twice at baseline and four weeks later. Feasibility issues were evaluated using daily diaries and end trial exit interviews. The home-based training intervention with opto-kinetic stimuli was feasible for people with pure ataxia, with one drop-out. Test-retest reliability is strong (intraclass correlation coefficient >0.7) for selected outcome measures evaluating balance at impairment and activity levels. Some measures reveal trends towards improvement for those in the therapy group. Sample size estimations indicate that Bal-SARA scores could detect a clinically significant change of 0.8 points in this functional balance score if 80 people per group were analysed in future trials. Home-based targeted training of functional balance for people with pure cerebellar ataxia is feasible and the outcome measures employed are reliable. © The Author(s) 2014.
Bower, Kelly J; Clark, Ross A; McGinley, Jennifer L; Martin, Clarissa L; Miller, Kimberly J
2014-09-01
To investigate the feasibility and potential efficacy of the Nintendo Wii™ for balance rehabilitation after stroke. Phase II, single-blind, randomized controlled trial. Inpatient rehabilitation facility. Thirty adults (mean age 63.6 (14.7) years) undergoing inpatient rehabilitation who were less than three months post-stroke and able to stand unsupported. Participants were allocated to a Balance Group, using the 'Wii Fit Plus' in standing, or Upper Limb Group, using the 'Wii Sports/Sports Resort' in sitting. Both groups undertook three 45 minute sessions per week over two to four weeks in addition to standard care. The primary focus was feasibility, addressed by recruitment, retention, adherence, acceptability and safety. Efficacy was evaluated by balance, mobility and upper limb outcomes. Twenty-one percent of individuals screened were recruited and 86% (n = 30) of eligible people agreed to participate. Study retention and session adherence was 90% and > 99%, respectively, at two weeks; dropping to 70% and 87% at four weeks due to early discharge. All participants reported enjoying the sessions and most felt they were beneficial. No major adverse events occurred. Wii use by the Balance Group was associated with trends for improved balance, with significantly greater improvement in outcomes including the Step Test and Wii Balance Board-derived centre of pressure scores. The Upper Limb Group had larger, non-significant changes in arm function. A Wii-based approach appears feasible and promising for post-stroke balance rehabilitation. A larger randomized controlled trial is recommended to further investigate efficacy. © The Author(s) 2014.
Miller, Carol A; Williams, Jennifer E; Durham, Katey L; Hom, Selena C; Smith, Julie L
2017-10-01
Many individuals with lower limb loss report concern with walking ability after completing structured traditional rehabilitation. The purpose of this study was to explore the impact of a supervised community-based exercise program on balance, balance confidence, and gait in individuals with lower limb amputation. Repeated measures. The supervised exercise program was offered biweekly for 6 weeks. The GAITRite System by CIR Systems, Inc., the Figure-of-8 Walk Test, and Activity-specific Balance Confidence Scale were used to measure clinical outcomes pre- and post-intervention. In total, 16 participants with lower limb amputation (mean age: 50.8 years) completed the study. A multivariate, repeated measures analysis of variance indicated a statistically significant effect of training across six clinical outcome measures ( F(6, 10) = 4.514, p = .018). Moderate effect sizes were found for the Figure-of-8 Walk Test ( η 2 = .586), Activity-specific Balance Confidence Scale ( η 2 = .504), and gait velocity at comfortable walking speed ( η 2 = .574). The average increase in gait speed was clinically meaningful at .14 m/s. The supervised community-based exercise program implemented in this study was designed to address specific functional needs for individuals with lower limb loss. Each participant experienced clinically meaningful improvements in balance, balance confidence, and walking ability. Clinical relevance The provision of a supervised community-based exercise program, after traditional rehabilitation, provides opportunity to offer a continuum of care that may enhance prosthetic functional ability and active participation in the community for individuals with lower limb amputation.
Del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C
2014-01-01
Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance.
del-Ama, Antonio J.; Gil-Agudo, Ángel; Pons, José L.; Moreno, Juan C.
2014-01-01
Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance. PMID:24860478
Mourcou, Quentin; Fleury, Anthony; Diot, Bruno; Franco, Céline; Vuillerme, Nicolas
2015-01-01
Assessment of joint functional and proprioceptive abilities is essential for balance, posture, and motor control rehabilitation. Joint functional ability refers to the capacity of movement of the joint. It may be evaluated thereby measuring the joint range of motion (ROM). Proprioception can be defined as the perception of the position and of the movement of various body parts in space. Its role is essential in sensorimotor control for movement acuity, joint stability, coordination, and balance. Its clinical evaluation is commonly based on the assessment of the joint position sense (JPS). Both ROM and JPS measurements require estimating angles through goniometer, scoliometer, laser-pointer, and bubble or digital inclinometer. With the arrival of Smartphones, these costly clinical tools tend to be replaced. Beyond evaluation, maintaining and/or improving joint functional and proprioceptive abilities by training with physical therapy is important for long-term management. This review aims to report Smartphone applications used for measuring and improving functional and proprioceptive abilities. It identifies that Smartphone applications are reliable for clinical measurements and are mainly used to assess ROM and JPS. However, there is lack of studies on Smartphone applications which can be used in an autonomous way to provide physical therapy exercises at home. PMID:26583101
NASA Astrophysics Data System (ADS)
Seo, Y.; Choi, N.-J.; Schmidt, A. R.
2013-05-01
This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute to direct runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.
NASA Astrophysics Data System (ADS)
Seo, Y.; Choi, N.-J.; Schmidt, A. R.
2013-09-01
This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute directly to the runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.
Lenke, L G; Engsberg, J R; Ross, S A; Reitenbach, A; Blanke, K; Bridwell, K H
2001-07-15
Prospective evaluation of gait and spinal-pelvic balance parameters in patients with adolescent idiopathic scoliosis undergoing a spinal fusion. To evaluate changes in gait and three-dimensional alignment and balance of the spine relative to the pelvis as a consequence of spinal fusion. Preoperative and postoperative spinal radiographs have been the major forms of outcome analysis of adolescent idiopathic scoliosis fusions. The use of optoelectronic analysis for posture and gait has gained acceptance recently. However, there is a paucity of data quantifying, comparing, and correlating structural and functional changes in patients undergoing scoliosis fusion surgery including upright posture and gait. Thirty patients with adolescent idiopathic scoliosis undergoing an instrumented spinal fusion were prospectively evaluated. Coronal and sagittal vertical alignment was evaluated on radiographs (CVA-R, SVA-R), during upright posture (CVA-P and SVA-P), and during gait (CVA-G, SVA-G). Transverse plane alignment was evaluated by the acromion-pelvis angle during gait. Gait speed was significantly decreased (P < 0.05) between preoperative (129 +/- 16 cm/sec) and 2-year postoperative (119 +/- 16 cm/sec) testing sessions. Decreasing gait speed was the result of significantly reduced cadence and decreased stride length. There were no significant differences for lower extremity kinematics over the entire gait cycle. Spinal-pelvic balance parameters showed significant improvement in mean CVA-R, CVA-G (P < 0.05), then unchanged CVA-P at 2 years postoperation. CVA-P was relatively unchanged while the mean CVA-G also showed significant improvement from preoperation (2.2 +/- 2.4 cm) to 2 years postoperation (1.3 +/- 1.3 cm)(P < 0.05). The mean SVA-R, SVA-P, and SVA-G were unchanged at 2 years postoperation (P > 0.05). The acromion-pelvis angle during gait at maximum shoulder rotation was statistically improved at 1 year (P = 0.002) and 2 years (P = 0.001) after surgery. Importantly, CVA-P correlated with CVA-G, and SVA-P correlated with SVA-G to the P < 0.05 level. Patients with adolescent idiopathic scoliosis undergoing spinal fusion show slightly decreased gait speed at 2 years postoperation without any change in lower extremity kinematics. Spinal-pelvic balance parameters are improved in the coronal plane and unchanged in the sagittal plane radiographically and during standing posture and gait. Transverse plane parameters also are improved at maximum shoulder rotation during gait.
Whole body vibration for older persons: an open randomized, multicentre, parallel, clinical trial
2011-01-01
Background Institutionalized older persons have a poor functional capacity. Including physical exercise in their routine activities decreases their frailty and improves their quality of life. Whole-body vibration (WBV) training is a type of exercise that seems beneficial in frail older persons to improve their functional mobility, but the evidence is inconclusive. This trial will compare the results of exercise with WBV and exercise without WBV in improving body balance, muscle performance and fall prevention in institutionalized older persons. Methods/Design An open, multicentre and parallel randomized clinical trial with blinded assessment. 160 nursing home residents aged over 65 years and of both sexes will be identified to participate in the study. Participants will be centrally randomised and allocated to interventions (vibration or exercise group) by telephone. The vibration group will perform static/dynamic exercises (balance and resistance training) on a vibratory platform (Frequency: 30-35 Hz; Amplitude: 2-4 mm) over a six-week training period (3 sessions/week). The exercise group will perform the same exercise protocol but without a vibration stimuli platform. The primary outcome measure is the static/dynamic body balance. Secondary outcomes are muscle strength and, number of new falls. Follow-up measurements will be collected at 6 weeks and at 6 months after randomization. Efficacy will be analysed on an intention-to-treat (ITT) basis and 'per protocol'. The effects of the intervention will be evaluated using the "t" test, Mann-Witney test, or Chi-square test, depending on the type of outcome. The final analysis will be performed 6 weeks and 6 months after randomization. Discussion This study will help to clarify whether WBV training improves body balance, gait mobility and muscle strength in frail older persons living in nursing homes. As far as we know, this will be the first study to evaluate the efficacy of WBV for the prevention of falls. Trial Registration ClinicalTrials.gov: NCT01375790 PMID:22192313
Lefaivre, Shannon C; Almeida, Quincy J
2015-02-01
Impaired sensory processing in Parkinson's disease (PD) has been argued to contribute to balance deficits. Exercises aimed at improving sensory feedback and body awareness have the potential to ameliorate balance deficits in PD. Recently, PD SAFEx™, a sensory and attention focused rehabilitation program, has been shown to improve motor deficits in PD, although balance control has never been evaluated. The objective of this study was to measure the effects of PD SAFEx™ on balance control in PD. Twenty-one participants with mild to moderate idiopathic PD completed 12 weeks of PD SAFEx™ training (three times/week) in a group setting. Prior to training, participants completed a pre-assessment evaluating balance in accordance with an objective, computerized test of balance (modified clinical test of sensory integration and balance (m-CTSIB) and postural stability testing (PST)) protocols. The m-CTSIB was our primary outcome measure, which allowed assessment of balance in both eyes open and closed conditions, thus enabling evaluation of specific sensory contributions to balance improvement. At post-test, a significant interaction between time of assessment and vision condition (p=.014) demonstrated that all participants significantly improved balance control, specifically when eyes were closed. Balance control did not change from pre to post with eyes open. These results provide evidence that PD SAFEx™ is effective at improving the ability to utilize proprioceptive information, resulting in improved balance control in the absence of vision. Enhancing the ability to utilize proprioception for individuals with PD is an important intermediary to improving balance deficits. Copyright © 2015. Published by Elsevier B.V.
Flynn, Sheryl; Palma, Phyllis; Bender, Anneke
2007-12-01
Many Americans live with physical functional limitations stemming from stroke. These functional limitations can be reduced by task-specific training that is repetitive, motivating, and augmented with feedback. Virtual reality (VR) is reported to offer an engaging environment that is repetitive, safe, motivating, and gives task-specific feedback. The purpose of this case report was to explore the use of a low-cost VR device [Sony PlayStation 2 (PS2) EyeToy] for an individual in the chronic phase of stroke recovery. An individual two years poststroke with residual sensorimotor deficits completed 20 one-hour sessions using the PS2 EyeToy. The game's task requirements included target-based motion, dynamic balance, and motor planning. The feasibility of using the gaming platform was explored and a broad selection of outcomes was used to assess change in performance. Device use was feasible. Clinically relevant improvements were found on the Dynamic Gait Index and trends toward improvement on the Fugl-Meyer Assessment, Berg Balance Scale, UE Functional Index, Motor Activity Log, and Beck Depression Inventory. A low-cost VR system was easily used in the home. In the future it may be used to improve sensory/motor recovery following stroke as an adjunct to standard care physical therapy.
Pluchino, Alessandra; Lee, Sae Yong; Asfour, Shihab; Roos, Bernard A; Signorile, Joseph F
2012-07-01
To compare the impacts of Tai Chi, a standard balance exercise program, and a video game balance board program on postural control and perceived falls risk. Randomized controlled trial. Research laboratory. Independent seniors (N=40; 72.5±8.40) began the training, 27 completed. Tai Chi, a standard balance exercise program, and a video game balance board program. The following were used as measures: Timed Up & Go, One-Leg Stance, functional reach, Tinetti Performance Oriented Mobility Assessment, force plate center of pressure (COP) and time to boundary, dynamic posturography (DP), Falls Risk for Older People-Community Setting, and Falls Efficacy Scale. No significant differences were seen between groups for any outcome measures at baseline, nor were significant time or group × time differences for any field test or questionnaire. No group × time differences were seen for any COP measures; however, significant time differences were seen for total COP, 3 of 4 anterior/posterior displacement and both velocity, and 1 displacement and 1 velocity medial/lateral measure across time for the entire sample. For DP, significant improvements in the overall score (dynamic movement analysis score), and in 2 of the 3 linear and angular measures were seen for the sample. The video game balance board program, which can be performed at home, was as effective as Tai Chi and the standard balance exercise program in improving postural control and balance dictated by the force plate postural sway and DP measures. This finding may have implications for exercise adherence because the at-home nature of the intervention eliminates many obstacles to exercise training. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Kalron, Alon; Rosenblum, Uri; Frid, Lior; Achiron, Anat
2017-03-01
Evaluate the effects of a Pilates exercise programme on walking and balance in people with multiple sclerosis and compare this exercise approach to conventional physical therapy sessions. Randomized controlled trial. Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Israel. Forty-five people with multiple sclerosis, 29 females, mean age (SD) was 43.2 (11.6) years; mean Expanded Disability Status Scale (S.D) was 4.3 (1.3). Participants received 12 weekly training sessions of either Pilates ( n=22) or standardized physical therapy ( n=23) in an outpatient basis. Spatio-temporal parameters of walking and posturography parameters during static stance. Functional tests included the Time Up and Go Test, 2 and 6-minute walk test, Functional Reach Test, Berg Balance Scale and the Four Square Step Test. In addition, the following self-report forms included the Multiple Sclerosis Walking Scale and Modified Fatigue Impact Scale. At the termination, both groups had significantly increased their walking speed ( P=0.021) and mean step length ( P=0.023). According to the 2-minute and 6-minute walking tests, both groups at the end of the intervention program had increased their walking speed. Mean (SD) increase in the Pilates and physical therapy groups were 39.1 (78.3) and 25.3 (67.2) meters, respectively. There was no effect of group X time in all instrumented and clinical balance and gait measures. Pilates is a possible treatment option for people with multiple sclerosis in order to improve their walking and balance capabilities. However, this approach does not have any significant advantage over standardized physical therapy.
Pilot study of a targeted dance class for physical rehabilitation in children with cerebral palsy.
López-Ortiz, Citlali; Egan, Tara; Gaebler-Spira, Deborah J
2016-01-01
This pilot study evaluates the effects of a targeted dance class utilizing classical ballet principles for rehabilitation of children with cerebral palsy on balance and upper extremity control. Twelve children with cerebral palsy (ages 7-15 years) with Gross Motor Function Classification scores II-IV participated in this study and were assigned to either a control group or targeted dance class group. Targeted dance class group participated in 1-h classes three times per week in a 4-week period. The Pediatric Balance Scale and the Quality of Upper Extremity Skills Test were administered before, after, and 1 month after the targeted dance class. Improvements in the Pediatric Balance Scale were present in the targeted dance class group in before versus after and before versus 1 month follow-up comparisons (p-value = 0.0088 and p-value = 0.019, respectively). The Pediatric Balance Scale changes were not significant in the control group. The Quality of Upper Extremity Skills Test did not reach statistical differences in either group. Classical ballet as an art form involves physical training, musical accompaniment, social interactions, and emotional expression that could serve as adjunct to traditional physical therapy. This pilot study demonstrated improvements in balance control. A larger study with a more homogeneous sample is warranted.
Ricci, Natalia Aquaroni; Aratani, Mayra Cristina; Caovilla, Heloísa Helena; Ganança, Fernando Freitas
2016-04-01
The aim of this study was to compare the effects of vestibular rehabilitation protocols on balance control in elderly with dizziness. This is a randomized clinical trial with 3-mo follow-up period. The sample was composed of 82 older individuals with chronic dizziness from vestibular disorders. The control group was treated according to the Conventional Cawthorne & Cooksey protocol (n = 40), and the experimental group was submitted to a Multimodal Cawthorne & Cooksey protocol (n = 42). Measures included Dynamic Gait Index, fall history, hand grip strength, Time Up-and-Go Test, sit-to-stand test, multidirectional reach, and static balance tests. With the exception of history of falls, Forward Functional Reach, Unipedal Right and Left Leg Eyes Closed, and Sensorial Romberg Eyes Open, all outcomes improved after treatments. Such results persisted at follow-up period, with the exception of the Tandem Eyes Open and the Timed Up-and-Go manual. The between-group differences for Sensorial Romberg Eyes Closed (4.27 secs) and Unipedal Left Leg Eyes Open (4.08 secs) were significant after treatment, favoring the Multimodal protocol. Both protocols resulted in improvement on elderly's balance control, which was maintained during a short-term period. The multimodal protocol presented better performance on specific static balance tests.
Exercise training improves vascular mitochondrial function
Park, Song-Young; Rossman, Matthew J.; Gifford, Jayson R.; Bharath, Leena P.; Bauersachs, Johann; Richardson, Russell S.; Abel, E. Dale; Symons, J. David
2016-01-01
Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1, isocitrate dehydrogenase (Idh) 2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser1177), and suppressed reactive oxygen species generation (all P < 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function. PMID:26825520
Jacobi-Polishook, Talia; Shorer, Zamir; Melzer, Itshak
2009-05-15
To investigate the effects of Methylphenidate (MPH) on postural stability in attention deficit hyperactivity disorder (ADHD) children in single and dual task conditions. A randomized controlled double-blind study analyzing postural stability in 24 ADHD children before and after MPH vs. placebo treatments, in three task conditions: (1) Single task, standing still; (2) dual task, standing still performing a memory-attention demanding task; (3) standing still listening to music. MPH resulted in a significant improvement in postural stability during the dual task condition and while listening to music, with no equivalent improvement in placebo controls. MPH improves postural stability in ADHD, especially when an additional task is performed. This is probably due to enhanced attention abilities, thus contributing to improved balance control during performance of tasks that require attention. MPH remains to be studied as a potential drug treatment to improve balance control and physical functioning in other clinical populations.
The contributions of balance to gait capacity and motor function in chronic stroke.
Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong
2016-06-01
[Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability.
The contributions of balance to gait capacity and motor function in chronic stroke
Lee, Kyoung Bo; Lim, Seong Hoon; Kim, Young Dong; Yang, Byung Il; Kim, Kyung Hoon; Lee, Kang Sung; Kim, Eun Ja; Hwang, Byong Yong
2016-01-01
[Purpose] The aim of this study was to identify the contributions of balance to gait and motor function in chronic stroke. [Subjects and Methods] Twenty-three outpatients participated in a cross-sectional assessment. Gait ability was assessed using the functional ambulation category, self-paced 10-m walking speed, and fastest 10-m walking speed. Standing balance and trunk control measures included the Berg Balance Scale and the Trunk Impairment Scale. Univariate and multivariate regression analyses were performed. [Results] Balance was the best predictor of the FAC, self-paced walking speed, and fastest walking speed, accounting for 57% to 61% of the variances. Additionally, the total score of TIS was the only predictor of the motor function of the lower limbs and the dynamic balance of TIS was a predictor of the motor function of the upper limbs, accounting for 41% and 29% of the variance, respectively. [Conclusion] This study demonstrated the relative contribution of standing balance and trunk balance to gait ability and motor function. They show that balance has a high power of explanation of gait ability and that trunk balance is a determinant of motor function rather than gait ability. PMID:27390395
de Souza Santos, César Augusto; Dantas, Estélio Enrique Martin; Moreira, Maria Helena Rodrigues
2011-01-01
The objective of this study was to evaluate the effect of physical activity from the "Menopause in Form" program on physical aptitude, functional capacity, corporal balance and QoL among elderly women. In addition, correlations among these variables were examined. The present work was a longitudinal study that was quasi-experimental and correlational. A total of 323 elderly women (age: 69.0±5.53 years) participated in this study. Subjects were non-institutionalized, post-menopausal individuals residing at the Elderly Care Center in Belém Municipality (Pará, Brazil) and practiced one activity (i.e., dancing or walking) over a 10-month period. The assessment protocols used were the following: the Fullerton functional fitness test battery (physical aptitude); the activities of daily living (ADL) indices (functional capacity); the Tinetti-scale (corporal balance); and the WHOQOL-OLD questionnaire (QoL). The adopted significance level was p<0.05. Results from the Wilcoxon test demonstrated significant differences for the post-test assessment of functional capacity (Δ%=5.63%; p=0.0001) and general QoL (Δ%=9.19%; p=0.001). These results suggest that the physical activities employed during the "Menopause in Form" program resulted in significant improvements in the functional capacity and QoL of post-menopausal elderly women. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Galazky, Imke; Kaufmann, Jörn; Lorenzl, Stefan; Ebersbach, Georg; Gandor, Florin; Zaehle, Tino; Specht, Sylke; Stallforth, Sabine; Sobieray, Uwe; Wirkus, Edyta; Casjens, Franziska; Heinze, Hans-Jochen; Kupsch, Andreas; Voges, Jürgen
2018-05-01
The pedunculopontine nucleus has been suggested as a potential deep brain stimulation target for axial symptoms such as gait and balance impairment in idiopathic Parkinson's disease as well as atypical Parkinsonian disorders. Seven consecutive patients with progressive supranuclear palsy received bilateral pedunculopontine nucleus deep brain stimulation. Inclusion criteria comprised of the clinical diagnosis of progressive supranuclear palsy, a levodopa-resistant gait and balance disorder, age <75 years, and absence of dementia or major psychiatric co-morbidities. Effects of stimulation frequencies at 8, 20, 60 and 130 Hz on motor scores and gait were assessed. Motor scores were followed up for two years postoperatively. Activities of daily living, frequency of falls, health-related quality of life, cognition and mood at 12 months were compared to baseline parameters. Surgical and stimulation related adverse events were assessed. Bilateral pedunculopontine nucleus deep brain stimulation at 8 Hz significantly improved axial motor symptoms and cyclic gait parameters, while high frequency stimulation did not ameliorate gait and balance but improved hypokinesia. This improvement however did not translate into clinically relevant benefits. Frequency of falls was not reduced. Activities of daily living, quality of life and frontal cognitive functions declined, while mood remained unchanged. Bilateral pedunculopontine nucleus deep brain stimulation in progressive supranuclear palsy generates frequency-dependent effects with improvement of cyclic gait parameters at low frequency and amelioration of hypokinesia at high frequency stimulation. However, these effects do not translate into a clinically important improvement. Copyright © 2018. Published by Elsevier Ltd.
Hollands, Kristen L; Pelton, Trudy A; Wimperis, Andrew; Whitham, Diane; Tan, Wei; Jowett, Sue; Sackley, Catherine M; Wing, Alan M; Tyson, Sarah F; Mathias, Jonathan; Hensman, Marianne; van Vliet, Paulette M
2015-01-01
Given the importance of vision in the control of walking and evidence indicating varied practice of walking improves mobility outcomes, this study sought to examine the feasibility and preliminary efficacy of varied walking practice in response to visual cues, for the rehabilitation of walking following stroke. This 3 arm parallel, multi-centre, assessor blind, randomised control trial was conducted within outpatient neurorehabilitation services. Community dwelling stroke survivors with walking speed <0.8m/s, lower limb paresis and no severe visual impairments. Over-ground visual cue training (O-VCT), Treadmill based visual cue training (T-VCT), and Usual care (UC) delivered by physiotherapists twice weekly for 8 weeks. Participants were randomised using computer generated random permutated balanced blocks of randomly varying size. Recruitment, retention, adherence, adverse events and mobility and balance were measured before randomisation, post-intervention and at four weeks follow-up. Fifty-six participants participated (18 T-VCT, 19 O-VCT, 19 UC). Thirty-four completed treatment and follow-up assessments. Of the participants that completed, adherence was good with 16 treatments provided over (median of) 8.4, 7.5 and 9 weeks for T-VCT, O-VCT and UC respectively. No adverse events were reported. Post-treatment improvements in walking speed, symmetry, balance and functional mobility were seen in all treatment arms. Outpatient based treadmill and over-ground walking adaptability practice using visual cues are feasible and may improve mobility and balance. Future studies should continue a carefully phased approach using identified methods to improve retention. Clinicaltrials.gov NCT01600391.
García-Pinillos, Felipe; Laredo-Aguilera, José A; Muñoz-Jiménez, Marcos; Latorre-Román, Pedro A
2017-03-13
This study aimed to analyse the effect of 12-week low-volume HIIT-based concurrent training programme on body composition, upper- and lower-body muscle strength, mobility and balance in older adults, as well as to compare it with a low- moderate-intensity continuous training. 90 active older adults were randomly assigned to experimental (EG, n=47), and control (CG, n=43) groups. Body composition and physical functioning were assessed before (pre-test) and after (post-test) a 12-week intervention. A 2-way repeated measures ANOVA was used to test for an interaction between training programme and groups. The time x group interaction revealed no significant between-group differences at pre-test (p≥0.05). The group x time interaction showed significant improvements for the EG in body composition parameters (p<0.05) and physical functioning (muscle strength: p<0.001; mobility: p<0.001; and balance: p<0.05); while the CG remained unchanged (p≥0.05). This HIIT-based concurrent training programme led to greater improvements in body composition, muscle strength, mobility and balance in healthy older people than a regular low- moderate-intensity continuous training, despite the reduction in overall training volume.
Bulguroglu, I; Guclu-Gunduz, A; Yazici, G; Ozkul, C; Irkec, C; Nazliel, B; Batur-Caglayan, H Z
2017-01-01
Pilates is an exercise method which increases strength and endurance of core muscles and improves flexibility, dynamic postural control and balance. To analyze and compare the effects of Mat and Reformer Pilates methods in Patients with Multiple Sclerosis (MS). Thirty-eight patients with MS were included in the study. Participants were randomly divided into 3 groups as Mat Pilates, Reformer Pilates and control groups. The subjects in the Pilates groups did Mat or Reformer Pilates for 8 weeks, 2 days a week. The control group did breathing and relaxation exercises at home. Balance, functional mobility, core stability, fatigue severity and quality of life were evaluated. Balance, functional mobility, core stability, fatigue severity and quality of life improved after Pilates in Mat and Reformer Pilates groups (p < 0.05). On the other hand, we could not find any changing in the control group (p > 0.05). When the gain obtained in the Pilates groups is compared, it has been observed that progress has been more in trunk flexor muscle strength in the Reformer Pilates group (p < 0.05) and that the gain has been similar in the other parameters (p > 0.05). As a result, patients with MS have seen similar benefits in Reformer Pilates and Mat Pilates methods.
Sherman, Christy A.; Mist, Scott D.; Carson, James W.; Bennett, Robert M.; Li, Fuzhong
2017-01-01
Previous researchers have found that 10-form Tai chi yields symptomatic benefit in patients with fibromyalgia (FM). The purpose of this study was to further investigate earlier findings and add a focus on functional mobility. We conducted a parallel-group randomized controlled trial FM-modified 8-form Yang-style Tai chi program compared to an education control. Participants met in small groups twice weekly for 90 min over 12 weeks. The primary endpoint was symptom reduction and improvement in self-report physical function, as measured by the Fibromyalgia Impact Questionnaire (FIQ), from baseline to 12 weeks. Secondary endpoints included pain severity and interference (Brief Pain Inventory (BPI), sleep (Pittsburg sleep Inventory), self-efficacy, and functional mobility. Of the 101 randomly assigned subjects (mean age 54 years, 93 % female), those in the Tai chi condition compared with the education condition demonstrated clinically and statistically significant improvements in FIQ scores (16.5 vs. 3.1, p=0.0002), BPI pain severity (1.2 vs. 0.4, p=0.0008), BPI pain interference (2.1 vs. 0.6, p=0.0000), sleep (2.0 vs. −0.03, p=0.0003), and self-efficacy for pain control (9.2 vs. −1.5, p=0.0001). Functional mobility variables including timed get up and go (−.9 vs. −.3, p=0.0001), static balance (7.5 vs. −0.3, p= 0.0001), and dynamic balance (1.6 vs. 0.3, p=0.0001) were significantly improved with Tai chi compared with education control. No adverse events were noted. Twelve weeks of Tai chi, practice twice weekly, provided worthwhile improvement in common FM symptoms including pain and physical function including mobility. Tai chi appears to be a safe and an acceptable exercise modality that may be useful as adjunctive therapy in the management of FM patients. (ClinicalTrials.gov Identifier, NCT01311427) PMID:22581278
Jones, Kim D; Sherman, Christy A; Mist, Scott D; Carson, James W; Bennett, Robert M; Li, Fuzhong
2012-08-01
Previous researchers have found that 10-form Tai chi yields symptomatic benefit in patients with fibromyalgia (FM). The purpose of this study was to further investigate earlier findings and add a focus on functional mobility. We conducted a parallel-group randomized controlled trial FM-modified 8-form Yang-style Tai chi program compared to an education control. Participants met in small groups twice weekly for 90 min over 12 weeks. The primary endpoint was symptom reduction and improvement in self-report physical function, as measured by the Fibromyalgia Impact Questionnaire (FIQ), from baseline to 12 weeks. Secondary endpoints included pain severity and interference (Brief Pain Inventory (BPI), sleep (Pittsburg sleep Inventory), self-efficacy, and functional mobility. Of the 101 randomly assigned subjects (mean age 54 years, 93 % female), those in the Tai chi condition compared with the education condition demonstrated clinically and statistically significant improvements in FIQ scores (16.5 vs. 3.1, p = 0.0002), BPI pain severity (1.2 vs. 0.4, p = 0.0008), BPI pain interference (2.1 vs. 0.6, p = 0.0000), sleep (2.0 vs. -0.03, p = 0.0003), and self-efficacy for pain control (9.2 vs. -1.5, p = 0.0001). Functional mobility variables including timed get up and go (-.9 vs. -.3, p = 0.0001), static balance (7.5 vs. -0.3, p 0.0001), and dynamic balance (1.6 vs. 0.3, p = 0.0001) were significantly improved with Tai chi compared with education control. No adverse events were noted. Twelve weeks of Tai chi, practice twice weekly, provided worthwhile improvement in common FM symptoms including pain and physical function including mobility. Tai chi appears to be a safe and an acceptable exercise modality that may be useful as adjunctive therapy in the management of FM patients. (ClinicalTrials.gov Identifier, NCT01311427).
Study of travelling wave solutions for some special-type nonlinear evolution equations
NASA Astrophysics Data System (ADS)
Song, Junquan; Hu, Lan; Shen, Shoufeng; Ma, Wen-Xiu
2018-07-01
The tanh-function expansion method has been improved and used to construct travelling wave solutions of the form U={\\sum }j=0n{a}j{\\tanh }jξ for some special-type nonlinear evolution equations, which have a variety of physical applications. The positive integer n can be determined by balancing the highest order linear term with the nonlinear term in the evolution equations. We improve the tanh-function expansion method with n = 0 by introducing a new transform U=-W\\prime (ξ )/{W}2. A nonlinear wave equation with source terms, and mKdV-type equations, are considered in order to show the effectiveness of the improved scheme. We also propose the tanh-function expansion method of implicit function form, and apply it to a Harry Dym-type equation as an example.
Efficacy of an extravascular lung water-driven negative fluid balance protocol.
Díaz-Rubia, L; Ramos-Sáez, S; Vázquez-Guillamet, R; Guerrero-López, F; Pino-Sánchez, F; García-Delgado, M; Gómez-Jiménez, F J; Fernández-Mondéjar, E
2015-01-01
To analyze the efficacy of negative fluid balance in hypoxemic patients with an elevated extravascular lung water index (EVLWI). A retrospective observational study was made. Intensive Care Unit of Virgen de las Nieves Hospital (Spain). Forty-four patients participated in the study. We analyzed our database of hypoxemic patients covering a period of 11 consecutive months. We included all hemodynamically stable and hypoxemic patients with EVLWI>9ml/kg. The protocol dictates a negative fluid balance between 500 and 1500ml/day. We analyzed the impact of this negative fluid balance strategy upon pulmonary, hemodynamic, and renal function. Demographic data, severity scores, clinical, hemodynamic, pulmonary, metabolic and renal function data. Thirty-three patients achieved negative fluid balance (NFB group) and 11 had a positive fluid balance (PFB group). In the former group, PaO2/FiO2 improved from 145 (IQR 106, 200) to 210mmHg (IQR 164, 248) (p<0.001), and EVLWI decreased from 14 (11, 18) to 10ml/kg (8, 14) (p<0.001). In the PFB group, EVLWI also decreased from 11 (10, 14) to 10ml/kg (8, 14) at the end of the protocol (p=0.004). For these patients there were no changes in oxygenation, with a PaO2/FiO2 of 216mmHg (IQR 137, 260) at the beginning versus 205mmHg (IQR 99,257) at the end of the study (p=0.08). Three out of four hypoxic patients with elevated EVLWI tolerated the NFB protocol. In these subjects, the improvement of various analyzed physiological parameters was greater and faster than in those unable to complete the protocol. Patients who did not tolerate the protocol were usually in more severe condition, though a larger sample would be needed to detect specific characteristics of this group. Copyright © 2014 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.
Zhang, Li; Weng, Changshui; Liu, Miao; Wang, Qiuhua; Liu, Liming; He, Yao
2014-01-01
To study the effects of whole-body vibration exercises on the mobility function, balance and general health status, and its feasibility as an intervention in frail elderly patients. Pilot randomized controlled trial. Forty-four frail older persons (85.27 ± 3.63 years) meeting the Fried Frailty Criteria. All eligible subjects were randomly assigned to the experimental group, who received a whole-body vibration exercise alone (vibration amplitude: 1-3 mm; frequency: 6-26 Hz; 4-5 bouts × 60 seconds; 3-5 times weekly), or a control group, who received usual care and exercises for eight weeks. The Timed Up and Go Test, 30-second chair stand test, lower extremities muscle strength, balance function, balance confidence and General Health Status were assessed at the beginning of the study, after four weeks and eight weeks of the intervention. Whole-body vibration exercise reduced the time of the Timed Up and Go Test (40.47 ± 15.94 s to 21.34 ± 4.42 s), improved the bilateral knees extensor strength (6.96 ± 1.70 kg to 11.26 ± 2.08 kg), the posture stability (surface area ellipse: 404.58 ± 177.05 to 255.95 ± 107.28) and General Health Status (Short-form Health Survey score: 24.51 ± 10.69 and 49.63 ± 9.85 to 45.03 ± 11.15 and 65.23 ± 9.39, respectively). The repeated-measures ANOVA showed that there were significant differences in the Timed Up and Go Test, 30-second chair stand test, bilateral knees extensor strength, activities-specific balance confidence score and general health status between the two groups (P < 0.05). No side-effects were observed during the training. Whole-body vibration exercise is a safe and effective method that can improve the mobility, knee extensor strength, balance and the general health status in the frail elderly.
Alfieri, Fábio Marcon; Riberto, Marcelo; Gatz, Lucila Silveira; Ribeiro, Carla Paschoal Corsi; Lopes, José Augusto Fernandes; Santarém, José Maria; Battistella, Linamara Rizzo
2010-01-01
It is well documented that aging impairs balance and functional mobility. The objective of this study was to compare the efficacy of multisensory versus strength exercises on these parameters. We performed a simple blinded randomized controlled trial with 46 community-dwelling elderly allocated to strength ([GST], N = 23, 70.2-years-old ± 4.8 years) or multisensory ([GMS], N = 23, 68.8-years-old ± 5.9 years) exercises twice a week for 12 weeks. Subjects were evaluated by blinded raters using the timed ‘up and go’ test (TUG), the Guralnik test battery, and a force platform. By the end of the treatment, the GMS group showed a significant improvement in TUG (9.1 ± 1.9 seconds (s) to 8.0 ± 1.0 s, P = 0.002); Guralnik test battery (10.6 ± 1.2 to 11.3 ± 0.8 P = 0.009); lateromedial (6.1 ± 11.7 cm to 3.1 ± 1.6 cm, P = 0.02) and anteroposterior displacement (4.7 ± 4.2 cm to 3.4 ± 1.0 cm, P = 0.03), which were not observed in the GST group. These results reproduce previous findings in the literature and mean that the stimulus to sensibility results in better achievements for the control of balance and dynamic activities. Multisensory exercises were shown to be more efficacious than strength exercises to improve functional mobility. PMID:20711437
Okonkwo, Uchenna Prosper; Ibeneme, Sam Chidi; Ihegihu, Ebere Yvonne; Egwuonwu, Afamefuna Victor; Ezema, Charles Ikechukwu; Maruf, Fatai Adesina
2018-05-02
Stroke results in varying levels of physical disabilities that may adversely impact balance with increased tendency to falls. This may intensify with cognitive impairments (CI), and impede functional recovery. Therefore, task-specific balance training (TSBT), which presents versatile task-specific training options that matches varied individual needs, was explored as a beneficial rehabilitation regime for stroke survivors with and without CI. It was hypothesized that there will be no significant difference in the balance control measures in stroke survivors with and without CI after a 12-month TSBT. To determine if TSBT will have comparable beneficial effects on the balance control status of sub-acute ischemic stroke survivors with CI and without CI. One hundred of 143 available sub-acute first ever ischemic stroke survivors were recruited using convenience sampling technique in a quasi-experimental study. They were later assigned into the cognitive impaired group (CIG) and non-cognitive impaired group (NCIG), respectively, based on the baseline presence or absence of CI, after screening with the mini-mental examination (MMSE) tool. With the help of four trained research assistants, TSBT was applied to each group, thrice times a week, 60 mins per session, for 12 months. Their balance was measured as Bergs Balance scores (BBS) at baseline, 4th, 8th, and 12th month intervals. Data were analyzed statistically using Kruskal Wallis test, and repeated measure ANOVA, at p < 0.05. There was significant improvement across time points in the balance control of CIG with large effect size of 0.69 after 12 months of TSBT. There was also significant improvement across time points in the balance control of NCIG with large effect size of 0.544 after 12 months of TSBT. There was no significant difference between the improvement in CIG and NCIG after 8th and 12th months of TSBT. Within the groups, a 12-month TSBT intervention significantly improved balance control, respectively, but with broader effects in the CIG than NCIG. Importantly, though between-group comparison at baseline revealed significantly impaired balance control in the CIG than NCIG, these differences were not significant at the 8th month and non-existent at the 12th month of TSBT intervention. These results underscore the robustness of TSBT to evenly address specific balance deficits of stroke survivors with and without CI within a long-term rehabilitation plan as was hypothesized.
Gschwind, Yves J; Kressig, Reto W; Lacroix, Andre; Muehlbauer, Thomas; Pfenninger, Barbara; Granacher, Urs
2013-10-09
With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale - International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version ('3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.
Cannell, John; Jovic, Emelyn; Rathjen, Amy; Lane, Kylie; Tyson, Anna M; Callisaya, Michele L; Smith, Stuart T; Ahuja, Kiran DK; Bird, Marie-Louise
2017-01-01
Objective: To compare the efficacy of novel interactive, motion capture-rehabilitation software to usual care stroke rehabilitation on physical function. Design: Randomized controlled clinical trial. Setting: Two subacute hospital rehabilitation units in Australia. Participants: In all, 73 people less than six months after stroke with reduced mobility and clinician determined capacity to improve. Interventions: Both groups received functional retraining and individualized programs for up to an hour, on weekdays for 8–40 sessions (dose matched). For the intervention group, this individualized program used motivating virtual reality rehabilitation and novel gesture controlled interactive motion capture software. For usual care, the individualized program was delivered in a group class on one unit and by rehabilitation assistant 1:1 on the other. Main measures: Primary outcome was standing balance (functional reach). Secondary outcomes were lateral reach, step test, sitting balance, arm function, and walking. Results: Participants (mean 22 days post-stroke) attended mean 14 sessions. Both groups improved (mean (95% confidence interval)) on primary outcome functional reach (usual care 3.3 (0.6 to 5.9), intervention 4.1 (−3.0 to 5.0) cm) with no difference between groups (P = 0.69) on this or any secondary measures. No differences between the rehabilitation units were seen except in lateral reach (less affected side) (P = 0.04). No adverse events were recorded during therapy. Conclusion: Interactive, motion capture rehabilitation for inpatients post stroke produced functional improvements that were similar to those achieved by usual care stroke rehabilitation, safely delivered by either a physical therapist or a rehabilitation assistant. PMID:28719977
Social partnered dance for people with serious and persistent mental illness: a pilot study.
Hackney, Madeleine E; Earhart, Gammon M
2010-01-01
Individuals with serious mental illness (SMI) often experience isolation and poor health, but normalized social opportunities aid recovery. This study aimed to determine social dance's feasibility and effects on mood, functional mobility, and balance confidence in 12 people with SMI. Participants danced once per week in 1-hour lessons for 10 weeks. Before and after lessons, participants were evaluated for gait velocity and with one-leg stance, Timed Up and Go, and 6-minute walk tests. Participants self-completed Beck Depression II and Beck Anxiety Inventories and the Activities-specific Balance Confidence Scale. Posttesting included an exit questionnaire assessing participant experiences. Participants significantly improved on the Timed Up and Go, (p = 0.012, effect size = 0.68), and demonstrated nonsignificant improvements in anxiety, depression, and balance confidence (effect sizes of 0.41, 0.54, and 0.64, respectively). Participants reported enjoying classes, and interest to continue. Social dance is feasible and may benefit mobility for those with SMI.
Use of hippotherapy in gait training for hemiparetic post-stroke.
Beinotti, Fernanda; Correia, Nilzete; Christofoletti, Gustavo; Borges, Guilherme
2010-12-01
To evaluate the hippotherapy influence on gait training in post-stroke hemiparetic individuals. The study was constituted of 20 individuals divided into two groups. Group A performed the conventional treatment while group B the conventional treatment along with hippotherapy during 16 weeks. The patients were evaluated by using the Functional Ambulation Category Scale, Fugl-Meyer Scale, only the lower limbs and balance sub items, Berg Balance Scale, and functional assessment of gait (cadence) in the beginning and end of the treatment. Significant improvements were observed in the experimental group including motor impairment in lower limbs (p=0.004), balance, over time (p=0.007) but a significant trend between groups (p=0.056). The gait independence, cadence and speed were not significantly in both groups (p=0.93, 0.69 and 0.44). Hippotherapy associated with conventional physical therapy demonstrates a positive influence in gait training, besides bringing the patients' gait standard closer to normality than the control group.
Pereira, Catarina; Rosado, Hugo; Cruz-Ferreira, Ana; Marmeleira, José
2018-05-01
Nursing home institutionalization tends to exacerbate loss of functioning. Examine the feasibility and the effect of a psychomotor intervention-a multimodal exercise program promoting simultaneous cognitive and motor stimulation-on the executive (planning ability and selective attention) and physical function of nursing home residents. Seventeen participants engaged in a 10-week multimodal exercise program and 17 maintained usual activities. Exercise group improved planning ability (25-32%), selective attention (19-67%), and physical function [aerobic endurance, lower body strength, agility, balance, gait, and mobility (19-41%)], corresponding to an effect size ranging from 0.29 (small) to 1.11 (high), p < 0.05. The multimodal exercise program was feasible and well tolerated. The program improved executive and physical functions of the nursing home residents, reverting the usual loss of both cognitive and motor functioning in older adult institutionalized. Multimodal exercise programs may help to maintain or improve nursing home residents' functioning.
Biofeedback-Based, Videogame Balance Training in Autism.
Travers, Brittany G; Mason, Andrea H; Mrotek, Leigh Ann; Ellertson, Anthony; Dean, Douglas C; Engel, Courtney; Gomez, Andres; Dadalko, Olga I; McLaughlin, Kristine
2018-01-01
The present study examined the effects of a visual-based biofeedback training on improving balance challenges in autism spectrum disorder (ASD). Twenty-nine youth with ASD (7-17 years) completed an intensive 6-week biofeedback-based videogame balance training. Participants exhibited training-related balance improvements that significantly accounted for postural-sway improvements outside of training. Participants perceived the training as beneficial and enjoyable. Significant moderators of training included milder stereotyped and ritualistic behaviors and better starting balance. Neither IQ nor BMI moderated training. These results suggest that biofeedback-based balance training is associated with balance improvements in youth with ASD, most robustly in those with less severe repetitive behaviors and better starting balance. The training was perceived as motivating, further suggesting its efficacy and likelihood of use.
A Geriatric Day Hospital: Who Improves the Most?
ERIC Educational Resources Information Center
Desrosiers, Johanne; Hebert, Rejean; Payette, Helene; Roy, Pierre-Michel; Tousignant, Michel; Cote, Sylvie; Trottier, Lise
2004-01-01
This study compared the changes in some bio-psychosocial variables (functional independence, nutritional risk, pain, balance and walking, grip strength, general well-being, psychiatric profile, perception of social support, leisure satisfaction, and caregivers' feeling of burden) in four categories of clients during their program at a geriatric…
Subramaniam, Savitha; Bhatt, Tanvi
2017-02-01
The purpose of our study was to investigate the effects of Yoga on reducing cognitive-motor interference (CMI) for maintaining balance control during varied balance tasks. Yoga (N=10) and age-similar non-practitioners (N=10) performed three balance tasks including the Limits of Stability test (LOS - Intentional balance), Motor Control test (MCT - Reactive balance), and Sensory Organization Test (SOT -condition 6: inducing both somatosensory and visual conflicts) under single-task (ST) and dual-task (DT, addition of a cognitive working memory task) conditions. The motor performance was assessed by recording the response time (RT) and movement velocity (MV) of the center of pressure (CoP) on LOS test, weight symmetry (WS) of CoP on the MCT test and equilibrium (EQ) of CoP on the SOT test. Cognitive performance was recorded as the number of correct responses enumerated in sitting (ST) and under DT conditions. The Motor cost (MC) and cognitive cost (CC) were computed using the formula ([ST-DT]/ST)*100 for all the variables. Greater cost indicates lower performance under DT versus ST condition. The Yoga group showed a significantly lesser MC for both MCT and SOT tests (p<0.05) in comparison to their counterparts. The CC were significantly lower on LOS and MCT test for the Yoga group (p<0.05). Results suggest that Yoga practice can significantly reduce CMI by improving allocation and utilization of attentional resources for both balance control and executive cognitive functioning; thus resulting in better performance under DT conditions. Copyright © 2016. Published by Elsevier Ltd.
Osugi, Tomohiro; Iwamoto, Jun; Yamazaki, Michio; Takakuwa, Masayuki
2014-01-01
A randomized controlled trial was conducted to clarify the beneficial effect of whole body vibration (WBV) exercise plus squat training on body balance, muscle power, and walking ability in the elderly with knee osteoarthritis and/or spondylosis. Of 35 ambulatory patients (14 men and 21 women) who were recruited at our outpatient clinic, 28 (80.0%, 12 men and 16 women) participated in the trial. The subjects (mean age 72.4 years) were randomly divided into two groups (n=14 in each group), ie, a WBV exercise alone group and a WBV exercise plus squat training group. A 4-minute WBV exercise (frequency 20 Hz) was performed 2 days per week in both groups; squat training (20 times per minute) was added during the 4-minute WBV training session in the WBV exercise plus squat training group. The duration of the trial was 6 months. The exercise and training program was safe and well tolerated. WBV exercise alone improved indices of body balance and walking velocity from baseline values. However, WBV exercise plus squat training was more effective for improving tandem gait step number and chair-rising time compared with WBV exercise alone. These results suggest the benefit and safety of WBV exercise plus squat training for improving physical function in terms of body balance and muscle power in the elderly.
NASA Astrophysics Data System (ADS)
Wu, Guocan; Zheng, Xiaogu; Dan, Bo
2016-04-01
The shallow soil moisture observations are assimilated into Common Land Model (CoLM) to estimate the soil moisture in different layers. The forecast error is inflated to improve the analysis state accuracy and the water balance constraint is adopted to reduce the water budget residual in the assimilation procedure. The experiment results illustrate that the adaptive forecast error inflation can reduce the analysis error, while the proper inflation layer can be selected based on the -2log-likelihood function of the innovation statistic. The water balance constraint can result in reducing water budget residual substantially, at a low cost of assimilation accuracy loss. The assimilation scheme can be potentially applied to assimilate the remote sensing data.
A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison
NASA Technical Reports Server (NTRS)
Kreshock, Andrew R.; Thornburgh, Robert P.; Wilbur, Matthew L.
2017-01-01
This paper presents the results from an ongoing effort to produce improved correlation between analytical hub force and moment prediction and those measured during wind-tunnel testing on the Aeroelastic Rotor Experimental System (ARES), a conventional rotor testbed commonly used at the Langley Transonic Dynamics Tunnel (TDT). A frequency-dependent transformation between loads at the rotor hub and outputs of the testbed balance is produced from frequency response functions measured during vibration testing of the system. The resulting transformation is used as a dynamic calibration of the balance to transform hub loads predicted by comprehensive analysis into predicted balance outputs. In addition to detailing the transformation process, this paper also presents a set of wind-tunnel test cases, with comparisons between the measured balance outputs and transformed predictions from the comprehensive analysis code CAMRAD II. The modal response of the testbed is discussed and compared to a detailed finite-element model. Results reveal that the modal response of the testbed exhibits a number of characteristics that make accurate dynamic balance predictions challenging, even with the use of the balance transformation.
Muir-Hunter, Susan W; Clark, Jennifer; McLean, Stephanie; Pedlow, Sam; Van Hemmen, Alysia; Montero Odasso, Manuel; Overend, Tom
2014-01-01
The mechanisms linking cognition, balance function, and fall risk among older adults are not fully understood. An evaluation of the effect of cognition on balance tests commonly used in clinical practice to assess community-dwelling older adults could enhance the identification of at-risk individuals. The study aimed to determine (1) the association between cognition and clinical tests of balance and (2) the relationship between executive function (EF) and balance under single- and dual-task testing. Participants (24 women, mean age of 76.18 [SD 16.45] years) completed six clinical balance tests, four cognitive tests, and two measures of physical function. Poor balance function was associated with poor performance on cognitive testing of EF. In addition, the association with EF was strongest under the dual-task timed up-and-go (TUG) test and the Fullerton Advanced Balance Scale. Measures of global cognition were associated only with the dual-task performance of the TUG. Postural sway measured with the Standing Balance Test, under single- or dual-task test conditions, was not associated with cognition. Decreased EF was associated with worse performance on functional measures of balance. The relationship between EF and balance was more pronounced with dual-task testing using a complex cognitive task combined with the TUG.
Use of botulinum toxin in stroke patients with severe upper limb spasticity.
Bhakta, B B; Cozens, J A; Bamford, J M; Chamberlain, M A
1996-07-01
Spasticity can contribute to poor recovery of upper limb function after stroke. This is a preliminary evaluation of the impact of botulinum toxin treatment on disability caused by upper limb spasticity after stroke. Seventeen patients with severe spasticity and a non-functioning arm were treated with intramuscular botulinum A neurotoxin (median age at treatment 54.5 years; median time between onset of stroke and treatment 1.5 years). Baseline and assessments two weeks after treatment were compared to assess efficacy. The duration of improvement in disability was documented. Outcome measures used were; passive range of movement at the shoulder, elbow, wrist, and fingers; modified Ashworth scale to assess spasticity of biceps and forearm finger flexors; an eight point scale to assess the degree of difficulty experienced by the patient or carer for each functional problem defined before treatment; the presence of upper limb pain. The biceps, forearm finger flexors, and flexor carpiulnaris were treated with intramuscular botulinum toxin. Up to a total dose of 400-1000 mouse units (MU) of Dysport (Speywood) or 100-200 MU of BOTOX (Allergan) was used in each patient. Functional problems reported by the patients before treatment were difficulty with cleaning the palm, cutting fingernails, putting the arm through a sleeve, standing and walking balance, putting on gloves, and rolling over in bed. Hand hygiene improved in 14 of 17 patients; difficulty with sleeves improved in four of 16; standing and walking balance improved in one of four; shoulder pain improved in six of nine; wrist pain improved in five of six. Passive range of movement at shoulder, elbow, and wrist improved after treatment. Benefit was noted within two weeks and lasted one to 11 months. No adverse effects occurred. This preliminary study suggests that intramuscular botulinum toxin is a safe and effective treatment for reducing disability in patients with severe upper limb spasticity.
The effectiveness of Pilates on balance and falls in community dwelling older adults.
Josephs, Sharon; Pratt, Mary Lee; Calk Meadows, Emily; Thurmond, Stephanie; Wagner, Amy
2016-10-01
The purpose of this study was to determine whether Pilates is more effective than traditional strength and balance exercises for improving balance measures, balance confidence and reducing falls in community dwelling older adults with fall risk. Thirty-one participants with fall risk were randomly assigned to the Pilates group (PG) or the traditional exercise group (TG). Both groups participated in 12 weeks of exercise, 2 times/week for 1 h. There was significant improvement in the Fullerton Advanced Balance Scale for both the PG (mean difference = 6.31, p < .05) and the TG (mean difference = 7.45, p = .01). The PG also showed significant improvement in the Activities-Specific Balance Confidence Scale (mean difference = 10.57, p = .008). Both Pilates and traditional balance programs are effective at improving balance measures in community dwelling older adults with fall risk, with the Pilates group showing improved balance confidence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tai chi for health benefits in patients with multiple sclerosis: A systematic review
Wang, Huiru; Xiao, ZhongJun; Fang, Qun; Zhang, Mark; Li, Ting; Du, Geng; Liu, Yang
2017-01-01
The aim of this systematic review was to evaluate the existing evidence on the effectiveness and safety of Tai chi, which is critical to provide guidelines for clinicians to improve symptomatic management in patients with multiple sclerosis (MS). After performing electronic and manual searches of many sources, ten relevant peer-reviewed studies that met the inclusion criteria were retrieved. The existing evidence supports the effectiveness of Tai chi on improving quality of life (QOL) and functional balance in MS patients. A small number of these studies also reported the positive effect of Tai chi on flexibility, leg strength, gait, and pain. The effect of Tai chi on fatigue is inconsistent across studies. Although the findings demonstrate beneficial effects on improving outcome measures, especially for functional balance and QOL improvements, a conclusive claim should be made carefully for reasons such as methodological flaws, small sample size, lack of specific-disease instruments, unclear description of Tai chi protocol, unreported safety of Tai chi, and insufficient follow-up as documented by the existing literature. Future research should recruit a larger number of participants and utilize the experimental design with a long-term follow-up to ascertain the benefits of Tai chi for MS patients. PMID:28182629
Cross talk between primary human renal tubular cells and endothelial cells in cocultures.
Tasnim, Farah; Zink, Daniele
2012-04-15
Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.
Delli Pizzi, Stefano; Bellomo, Rosa Grazia; Carmignano, Simona Maria; Ancona, Emilio; Franciotti, Raffaella; Supplizi, Marco; Barassi, Giovanni; Onofrj, Marco; Bonanni, Laura; Saggini, Raoul
2017-01-01
Abstract Rehabilitation interventions represent an alternative strategy to pharmacological treatment in order to slow or reverse some functional aspects of disability in Parkinson's disease (PD). To date, the neurophysiological mechanisms underlying rehabilitation-mediated improvement in PD patients are still poorly understood. Interestingly, growing evidence has highlighted a key role of the glutamate in neurogenesis and brain plasticity. The brain levels of glutamate, and of its precursor glutamine, can be detected in vivo and noninvasively as “Glx” by means of proton magnetic resonance spectroscopy (1H-MRS). In the present pilot study, 7 PD patients with frequent falls and axial dystonia underwent 8-week rehabilitative protocol focused on sensorimotor improvement. Clinical evaluation and Glx quantification were performed before and after rehabilitation. The Glx assessment was focused on the basal ganglia in agreement with their key role in the motor functions. We found that the rehabilitation program improves the static and dynamic balance in PD patients, promoting a better global motor performance. Moreover, we observed that the levels of Glx within the left basal ganglia were higher after rehabilitation as compared with baseline. Thus, we posit that our sensorimotor rehabilitative protocol could stimulate the glutamate metabolism in basal ganglia and, in turn, neuroplasticity processes. We also hypothesize that these mechanisms could prepare the ground to restore the functional interaction among brain areas deputed to motor controls, which are affected in PD. PMID:29390267
Mulligan, Edward P; Cook, Patrick G
2013-10-01
A specific training program emphasizing the neuromuscular recruitment of the plantar intrinsic foot muscles, colloquially referred to as "short foot" exercise (SFE) training, has been suggested as a means to dynamically support the medial longitudinal arch (MLA) during functional tasks. A single-group repeated measures pre- and post-intervention study design was utilized to determine if a 4-week intrinsic foot muscle training program would impact the amount of navicular drop (ND), increase the arch height index (AHI), improve performance during a unilateral functional reaching maneuver, or the qualitative assessment of the ability to hold the arch position in single limb stance position in an asymptomatic cohort. 21 asymptomatic subjects (42 feet) completed the 4-week SFE training program. Subject ND decreased by a mean of 1.8 mm at 4 weeks and 2.2 mm at 8 weeks (p < 0.05). AHI increased from 28 to 29% (p < 0.05). Intrinsic foot muscle performance during a static unilateral balancing activity improved from a grade of fair to good (p < 0.001) and subjects experienced a significant improvement during a functional balance and reach task in all directions with the exception of an anterior reach (p < 0.05). This study offers preliminary evidence to suggest that SFE training may have value in statically and dynamically supporting the MLA. Further research regarding the value of this exercise intervention in foot posture type or pathology specific patient populations is warranted. Copyright © 2013 Elsevier Ltd. All rights reserved.
Perez-Cruzado, David; Cuesta-Vargas, Antonio I; Vera-Garcia, Elisa; Mayoral-Cleries, Fermín
2017-01-01
Physical fitness is a crucial variable in people with severe mental illness as these people could be more independent and improve their job opportunities. The present study compared the physical fitness of physically active and inactive people with severe mental illness. Physical fitness was evaluated in sixty-two people with severe mental illness using 11 physical tests that include strength, flexibility, balance and aerobic condition. Significant differences were found between both groups in muscle strength (handgrip test) and balance (single leg balance test and functional reach) with better performance in the group of physically active people. The results of the present study suggest that physical fitness (strength and balance) is higher in people with severe mental illness who practise regular physical activity that those who are inactive people. Physical active people may have a reduced risk of falls and fractures due to their higher levels of physical fitness.
Cho, Hwi-young; In, Tae Sung; Cho, Ki Hun; Song, Chang Ho
2013-03-01
Spasticity management is pivotal for achieving functional recovery of stroke patients. The purpose of this study was to investigate the effects of a single trial of transcutaneous electrical nerve stimulation (TENS) on spasticity and balance in chronic stroke patients. Forty-two chronic stroke patients were randomly allocated into the TENS (n = 22) or the placebo-TENS (n = 20) group. TENS stimulation was applied to the gastrocnemius for 60 min at 100 Hz, 200 µs with 2 to 3 times the sensory threshold (the minimal threshold in detecting electrical stimulation for subjects) after received physical therapy for 30 min. In the placebo-TENS group, electrodes were placed but no electrical stimulation was administered. For measuring spasticity, the resistance encountered during passive muscle stretching of ankle joint was assessed using the Modified Ashworth Scale, and the Hand held dynamometer was used to assess the resistive force caused by spasticity. Balance ability was measured using a force platform that measures postural sway generated by postural imbalance. The TENS group showed a significantly greater reduction in spasticity of the gastrocnemius, compared to the placebo-TENS group (p < 0.05). TENS resulted in greater balance ability improvements, especially during the eyes closed condition (p < 0.05). However, these effects returned to baseline values within one day. This study shows that TENS provides an immediately effective means of reducing spasticity and of improving balance in chronic stroke patients. The present data may be useful to establish the standard parameters for TENS application in the clinical setting of stroke.
Fraix, Marcel; Gordon, Ashlynn; Graham, Victoria; Hurwitz, Eric; Seffinger, Michael A
2013-05-01
Dizziness is the third most common complaint among outpatients and the most common complaint in patients aged 75 years or older. It can be incapacitating for patients, affecting both productivity and quality of life. To evaluate the effect of osteopathic manipulative treatment (OMT) for spinal somatic dysfunction in patients with dizziness lasting longer than 3 months. A prospective clinical cohort study that took place in 2011. Department of Physical Therapy laboratory at the Western University of Health Sciences College of Osteopathic Medicine in Pomona, California. Sixteen participants (2 male, 14 female; mean [range] age, 49 [13-75] years) with dizziness lasting at least 3 months (mean duration of symptoms, 84 months) and spinal somatic dysfunction, but no history of known stroke or brain disease, were recruited from the local community and evaluated for postural balance control before, immediately after, and 1 week after OMT. Four osteopathic physicians board certified in neuromusculoskeletal medicine/osteopathic manipulative medicine provided OMT, including muscle energy; high-velocity, low-amplitude; counterstrain; myofascial release; balanced ligamentous release; and cranial OMT techniques. Outcomes were assessed with the SMART Balance Master (NeuroCom), a validated instrument that provides graphic and quantitative analyses of sway and balance, and the Dizziness Handicap Inventory (DHI), a self-assessment inventory designed to assess precipitating physical factors associated with dizziness and functional and emotional consequences of vestibular disease. Paired t tests, performed to assess changes in mean composite scores for all challenge tests, revealed that balance was significantly improved both immediately and 1 week after OMT (both P<.001), with no significant difference between immediate and 1-week post-OMT scores (P=.20). The DHI scores, both total and subscale, improved significantly after OMT (P<.001), and changes in composite and DHI scores were correlated with each other (P=.047). Osteopathic manipulative treatment for spinal somatic dysfunction improved balance in patients with dizziness lasting at least 3 months.
Russo, Margherita; Dattola, Vincenzo; De Cola, Maria C; Logiudice, Anna L; Porcari, Bruno; Cannavò, Antonino; Sciarrone, Francesca; De Luca, Rosaria; Molonia, Francesco; Sessa, Edoardo; Bramanti, Placido; Calabrò, Rocco S
2018-06-01
Motor impairment is the most common symptom in multiple sclerosis (MS). Thus, a variety of new rehabilitative strategies, including robotic gait training, have been implemented, showing their effectiveness. The aim of our study was to investigate whether an intensive robotic gait training, preceding a traditional rehabilitative treatment, could be useful in improving and potentiating motor performance in MS patients. Forty-five patients, who fulfilled the inclusion criteria, were enrolled in this study and randomized into either the control group (CG) or the experimental group (EG). A complete clinical evaluation, including the Expanded Disability Severity Scale, the Functional Independence Measure, the Hamilton Rating Scale for Depression, the time up and go test (TUG), and the Tinetti balance scale, was performed at baseline (T0), after 6 week (T1), at the end of rehabilitative training (T2), and 1 month later (T3). A significant improvement was observed in the EG for all the outcome measures, whereas the CG showed an improvement only in TUG. In contrast, from T1 to T2, only CG significantly improved in all outcomes, whereas the EG had an improvement only regarding TUG. From T2 to T3, no significant differences in Functional Independence Measure scores emerged for both the groups, but a significant worsening in Tinetti balance scale and TUG was observed for the CG and in TUG for the EG. Our study provides evidence that robotic rehabilitationn coupled with two-dimensional virtual reality may be a valuable tool in promoting functional recovery in patients with MS.
Assessment of postural balance function.
Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz
2009-01-01
Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers.
Yau, Po Lai; Ross, Naima; Tirsi, Andrew; Arif, Arslan; Ozinci, Zeynep; Convit, Antonio
2017-06-01
To investigate in adolescents the relationships between retinal vessel diameter, physical fitness, insulin sensitivity, and systemic inflammation. We evaluated 157 adolescents, 112 with excessive weight and 45 lean, all without type 2 diabetes mellitus. All received detailed evaluations, including measurements of retinal vessel diameter, insulin sensitivity, levels of inflammation, and physical fitness. Overweight/obese adolescents had significantly narrower retinal arteriolar and wider venular diameters, significantly lower insulin sensitivity, and physical fitness. They also had decreased levels of anti-inflammatory and increased levels of proinflammatory markers as well as an overall higher inflammation balance score. Fitness was associated with larger retinal arteriolar and narrower venular diameters and these relationships were mediated by insulin sensitivity. We demonstrate that inflammation also mediates the relationship between fitness and retinal venular, but not arterial diameter; insulin sensitivity and inflammation balance score jointly mediate this relationship with little overlap in their effects. Increasing fitness and insulin sensitivity and reducing inflammation among adolescents carrying excess weight may improve microvascular integrity. Interventions to improve physical fitness and insulin function and reduce inflammation in adolescents, a group likely to benefit from such interventions, may reduce not only cardiovascular disease in middle age, but also improve cerebrovascular function later in life.
Phadke, Chetan P.; Ismail, Farooq; Boulias, Chris
2015-01-01
ABSTRACT Purpose: In this case report, we describe the type and duration of a physical therapy and botulinum toxin type A (BoNTA) intervention directed at lower limb spasticity and the gait and balance improvement in a patient post-stroke. Treatment of focal spasticity with BoNTA intramuscular injections combined with physical therapy is recommended by rehabilitation experts. However, the optimal type and duration of physical therapy intervention to optimize any functional gains that follow chemodenervation induced by BoNTA has not been established. Method: One individual with chronic stroke who received BoNTA injections for upper and lower extremity spasticity was included. Physical therapy intervention consisted of 45- to 60-min sessions twice weekly for 12 weeks, based on the Bobath–neurodevelopmental therapy approach, and an activity-based home program. Results: After BoNTA injections and physical therapy, the patient made clinically significant improvements in balance and gait speed and became more independent with his ambulation. Conclusions: This case report demonstrates that physical therapy after BoNTA injections can result in significant functional improvements for individuals with spasticity after chronic stroke that may not be possible with BoNTA injections alone. PMID:25931655
Zhang, Dan; Wei, Bin
2017-01-01
Currently, the uses of robotics are limited with respect to performance capabilities. Improving the performance of robotic mechanisms is and still will be the main research topic in the next decade. In this paper, design and integration for improving performance of robotic systems are achieved through three different approaches, i.e., structure synthesis design approach, dynamic balancing approach, and adaptive control approach. The purpose of robotic mechanism structure synthesis design is to propose certain mechanism that has better kinematic and dynamic performance as compared to the old ones. For the dynamic balancing design approach, it is normally accomplished based on employing counterweights or counter-rotations. The potential issue is that more weight and inertia will be included in the system. Here, reactionless based on the reconfiguration concept is put forward, which can address the mentioned problem. With the mechanism reconfiguration, the control system needs to be adapted thereafter. One way to address control system adaptation is by applying the “divide and conquer” methodology. It entails modularizing the functionalities: breaking up the control functions into small functional modules, and from those modules assembling the control system according to the changing needs of the mechanism. PMID:28075360
Typical balance exercises or exergames for balance improvement?
Gioftsidou, Asimenia; Vernadakis, Nikolaos; Malliou, Paraskevi; Batzios, Stavros; Sofokleous, Polina; Antoniou, Panagiotis; Kouli, Olga; Tsapralis, Kyriakos; Godolias, George
2013-01-01
Balance training is an effective intervention to improve static postural sway and balance. The purpose of the present study was to investigate the effectiveness of the Nintendo Wii Fit Plus exercises for improving balance ability in healthy collegiate students in comparison with a typical balance training program. Forty students were randomly divided into two groups, a traditional (T group) and a Nintendo Wii group (W group) performed an 8 week balance program. The "W group" used the interactive games as a training method, while the "T group" used an exercise program with mini trampoline and inflatable discs (BOSU). Pre and Post-training participants completed balance assessments. Two-way repeated measures analyses of variance (ANOVAs) were conducted to determine the effect of training program. Analysis of the data illustrated that both training program groups demonstrated an improvement in Total, Anterior-posterior and Medial Lateral Stability Index scores for both limbs. Only at the test performed in the balance board with anterior-posterior motion, the improvement in balance ability was greater in the "T group" than the "W group", when the assessment was performed post-training (p=0.023). Findings support the effectiveness of using the Nintendo Wii gaming console as a balance training intervention tool.
Aoyama, Yasuhiro; Uchida, Hiroyuki; Sugi, Yasuyuki; Kawakami, Akinobu; Fujii, Miki; Kiso, Kanae; Kono, Ryota; Takebayashi, Takashi; Hirao, Kazuki
2017-07-01
Information received subconsciously can influence exercise performance; however, it remains unclear whether subliminal or supraliminal reward is more effective in improving standing balance ability when priming stimuli are subconsciously delivered. The present study aimed to compare the effects of subliminal priming-plus-subliminal reward stimuli (experimental) with subliminal priming-plus-supraliminal reward stimuli (control) on standing balance ability. This was a single-blind (outcome assessor), parallel-group, randomized controlled trial involving healthy young adults recruited from a university in Japan. Assessments were conducted at baseline and immediately after intervention. The primary outcome was the functional reach test (FRT) measurement. The secondary outcome was one-leg standing time (OLST) with eyes closed. Of the 52 participants screened, 25 were randomly assigned to experimental and control groups each. Both interventions were effective for improving the FRT between the baseline and intervention; however, smaller improvements were observed in the experimental group. We found a large between-groups effect size immediately after the intervention for the FRT (d = -0.92). In contrast, there were no differences in improvements in OLST between the 2 groups (d = -0.06); furthermore, neither intervention was found to be effective for this parameter. We concluded that subliminal priming with conscious reward stimuli results in improvements in immediate-term forward reach ability, which is superior to that achieved by subliminal priming with subconscious reward stimuli.
Fiatarone Singh, Maria A; Bundy, Anita; Cumming, Robert G; Manollaras, Kate; O’Loughlin, Patricia; Black, Deborah
2012-01-01
Objectives To determine whether a lifestyle integrated approach to balance and strength training is effective in reducing the rate of falls in older, high risk people living at home. Design Three arm, randomised parallel trial; assessments at baseline and after six and 12 months. Randomisation done by computer generated random blocks, stratified by sex and fall history and concealed by an independent secure website. Setting Residents in metropolitan Sydney, Australia. Participants Participants aged 70 years or older who had two or more falls or one injurious fall in past 12 months, recruited from Veteran’s Affairs databases and general practice databases. Exclusion criteria were moderate to severe cognitive problems, inability to ambulate independently, neurological conditions that severely influenced gait and mobility, resident in a nursing home or hostel, or any unstable or terminal illness that would affect ability to do exercises. Interventions Three home based interventions: Lifestyle integrated Functional Exercise (LiFE) approach (n=107; taught principles of balance and strength training and integrated selected activities into everyday routines), structured programme (n=105; exercises for balance and lower limb strength, done three times a week), sham control programme (n=105; gentle exercise). LiFE and structured groups received five sessions with two booster visits and two phone calls; controls received three home visits and six phone calls. Assessments made at baseline and after six and 12 months. Main outcome measures Primary measure: rate of falls over 12 months, collected by self report. Secondary measures: static and dynamic balance; ankle, knee and hip strength; balance self efficacy; daily living activities; participation; habitual physical activity; quality of life; energy expenditure; body mass index; and fat free mass. Results After 12 months’ follow-up, we recorded 172, 193, and 224 falls in the LiFE, structured exercise, and control groups, respectively. The overall incidence of falls in the LiFE programme was 1.66 per person years, compared with 1.90 in the structured programme and 2.28 in the control group. We saw a significant reduction of 31% in the rate of falls for the LiFE programme compared with controls (incidence rate ratio 0.69 (95% confidence interval 0.48 to 0.99)); the corresponding difference between the structured group and controls was non-significant (0.81 (0.56 to 1.17)). Static balance on an eight level hierarchy scale, ankle strength, function, and participation were significantly better in the LiFE group than in controls. LiFE and structured groups had a significant and moderate improvement in dynamic balance, compared with controls. Conclusions The LiFE programme provides an alternative to traditional exercise to consider for fall prevention. Functional based exercise should be a focus for interventions to protect older, high risk people from falling and to improve and maintain functional capacity. Trial registration Australia and New Zealand Clinical Trials Registry 12606000025538. PMID:22872695
Clemson, Lindy; Fiatarone Singh, Maria A; Bundy, Anita; Cumming, Robert G; Manollaras, Kate; O'Loughlin, Patricia; Black, Deborah
2012-08-07
To determine whether a lifestyle integrated approach to balance and strength training is effective in reducing the rate of falls in older, high risk people living at home. Three arm, randomised parallel trial; assessments at baseline and after six and 12 months. Randomisation done by computer generated random blocks, stratified by sex and fall history and concealed by an independent secure website. Residents in metropolitan Sydney, Australia. Participants aged 70 years or older who had two or more falls or one injurious fall in past 12 months, recruited from Veteran's Affairs databases and general practice databases. Exclusion criteria were moderate to severe cognitive problems, inability to ambulate independently, neurological conditions that severely influenced gait and mobility, resident in a nursing home or hostel, or any unstable or terminal illness that would affect ability to do exercises. Three home based interventions: Lifestyle integrated Functional Exercise (LiFE) approach (n=107; taught principles of balance and strength training and integrated selected activities into everyday routines), structured programme (n=105; exercises for balance and lower limb strength, done three times a week), sham control programme (n=105; gentle exercise). LiFE and structured groups received five sessions with two booster visits and two phone calls; controls received three home visits and six phone calls. Assessments made at baseline and after six and 12 months. Primary measure: rate of falls over 12 months, collected by self report. Secondary measures: static and dynamic balance; ankle, knee and hip strength; balance self efficacy; daily living activities; participation; habitual physical activity; quality of life; energy expenditure; body mass index; and fat free mass. After 12 months' follow-up, we recorded 172, 193, and 224 falls in the LiFE, structured exercise, and control groups, respectively. The overall incidence of falls in the LiFE programme was 1.66 per person years, compared with 1.90 in the structured programme and 2.28 in the control group. We saw a significant reduction of 31% in the rate of falls for the LiFE programme compared with controls (incidence rate ratio 0.69 (95% confidence interval 0.48 to 0.99)); the corresponding difference between the structured group and controls was non-significant (0.81 (0.56 to 1.17)). Static balance on an eight level hierarchy scale, ankle strength, function, and participation were significantly better in the LiFE group than in controls. LiFE and structured groups had a significant and moderate improvement in dynamic balance, compared with controls. The LiFE programme provides an alternative to traditional exercise to consider for fall prevention. Functional based exercise should be a focus for interventions to protect older, high risk people from falling and to improve and maintain functional capacity. Australia and New Zealand Clinical Trials Registry 12606000025538.
A Virtual Reality-Cycling Training System for Lower Limb Balance Improvement.
Yin, Chieh; Hsueh, Ya-Hsin; Yeh, Chun-Yu; Lo, Hsin-Chang; Lan, Yi-Ting
2016-01-01
Stroke survivors might lose their walking and balancing abilities, but many studies pointed out that cycling is an effective means for lower limb rehabilitation. However, during cycle training, the unaffected limb tends to compensate for the affected one, which resulted in suboptimal rehabilitation. To address this issue, we present a Virtual Reality-Cycling Training System (VRCTS), which senses the cycling force and speed in real-time, analyzes the acquired data to produce feedback to patients with a controllable VR car in a VR rehabilitation program, and thus specifically trains the affected side. The aim of the study was to verify the functionality of the VRCTS and to verify the results from the ten stroke patients participants and to compare the result of Asymmetry Ratio Index (ARI) between the experimental group and the control group, after their training, by using the bilateral pedal force and force plate to determine any training effect. The results showed that after the VRCTS training in bilateral pedal force it had improved by 0.22 (p = 0.046) and in force plate the stand balance has also improved by 0.29 (p = 0.031); thus both methods show the significant difference.
Bae, Seahyun; Kim, Kyung-Yoon
2017-01-01
Stimulation through afferent sensory input is necessary to improve voluntary functional movement in stroke patients. Dual-afferent sensory input, which combines electromyography-triggered functional electric stimulation (ETFES) and action observation, was investigated to determine its effects on voluntary movements in stroke patients. This study was conducted on 18 patients with left hemiplegia diagnosed between 6 and 24 months prior. The 9 subjects in the dual-afferent sensory input (DASI) group underwent ETFES with action observation training for 4 weeks (20 min/d, 5 d/wk), while the 9 control group subjects underwent functional electric stimulation (FES) for the same duration. The outcome measures were the movement-related cortical potential (MRCP), H-reflex, electromyography (EMG), and balance. The control and DASI groups showed significant increases in MRCP, muscle activity, and balance, while H-reflex was significantly decreased. MRCP and balance showed significant differences between DASI and control groups. DASI stimulates voluntary movement in patients, causes rapid activation of the cerebral cortex, and reduces excessive excitation of spinal motor neurons. Therefore, DASI, which stimulates voluntary movement, has a greater effect on brain activation in stroke patients.
Mecagni, C; Smith, J P; Roberts, K E; O'Sullivan, S B
2000-10-01
This study investigated the relationship between balance measures and ankle range of motion (ROM) in community-dwelling elderly women with no health problems. Identification of modifiable factors associated with balance may enable clinicians to design treatments to help reduce the risk of falls in elderly people. The sample consisted of 34 women between the ages of 64 and 87 years (mean=74.7, SD=6.0). Goniometry was used to determine bilateral ankle active-assistive range of motion (AAROM) and passive range of motion. Balance capabilities were measured with the Functional Reach Test (FRT) and the Tinetti Performance-Oriented Mobility Assessment (POMA). Balance data for the FRT, POMA balance subtest, POMA gait subtest, and POMA total score were correlated with ankle ROM using the Pearson product moment correlation coefficient (PCC). Correlations between ROM and balance scores were found, ranging from.29 to.63. The POMA gait subtest and FRT resulted in higher correlations with ROM than did the POMA balance subtest (left total AAROM PCC=.63,.51, and.31). Correlations using composite ankle ROM scores were higher than individual motions. The strongest correlation existed between bilateral, total ankle AAROM and the POMA gait subtest scores (PCC=. 63) Correlations exist between ankle ROM and balance in community-dwelling elderly women. Additional research is needed to determine whether treatment directed at increasing ankle ROM can improve balance.
Effects of unstable surface training on measures of balance in older adults.
Schilling, Brian K; Falvo, Michael J; Karlage, Robyn E; Weiss, Lawrence W; Lohnes, Corey A; Chiu, Loren Zf
2009-07-01
The purpose of this investigation was to examine the effects of a 5-week, low-cost unstable surface balance training program in sexagenarians. Nineteen men and women (60-68 years; 83.7 +/- SD kg) were randomly assigned to a control or training group. The training group performed various balance activities on air-filled rubber disks for 5 weeks. Each thrice-weekly session was supervised, and progression was based on proficiency. While in an upright position, static balance (length of path [LOP] of the center of pressure) was assessed in both eyes-open and eyes-closed states for each leg separately as well as for both legs. Participants also performed the timed up-and-go (TUG) test and completed the Activity-specific Balance Confidence (ABC) questionnaire. A significant group x time effect for the ABC questionnaire was found (p = 0.04). Tukey post hoc analysis indicates that the balance training program increased self-perceived balance confidence (p < 0.01). No significant group x time interactions were noted for TUG or LOP. Because no objective measure of balance or function was changed, the increase in ABC may be spurious. Unstable surface training may not be effective in improving balance among persons for whom balance is not problematic. However, the large number of acute training variables in such a program leaves opportunity for further research in this paradigm.
USDA-ARS?s Scientific Manuscript database
Animals and humans show decrements in motor control, cognition, and brain function during normal aging, partly due to the long-term effects of oxidative stress and inflammation. Recent studies have identified a number of fruits and vegetables, whose phytochemical make-up contains potent antioxidant ...
Light, Colour & Air Quality: Important Elements of the Learning Environment?
ERIC Educational Resources Information Center
Hathaway, Warren E.
1987-01-01
Reviews and evaluates studies of the effects of light, color, and air quality on the learning environment. Concludes that studies suggest a role for light in establishing and maintaining physiological functions and balances and a need for improved air quality in airtight, energy efficient buildings. (JHZ)
Kelly, Neil A.; Ford, Matthew P.; Standaert, David G.; Watts, Ray L.; Bickel, C. Scott; Moellering, Douglas R.; Tuggle, S. Craig; Williams, Jeri Y.; Lieb, Laura; Windham, Samuel T.
2014-01-01
We conducted, in persons with Parkinson's disease (PD), a thorough assessment of neuromotor function and performance in conjunction with phenotypic analyses of skeletal muscle tissue, and further tested the adaptability of PD muscle to high-intensity exercise training. Fifteen participants with PD (Hoehn and Yahr stage 2–3) completed 16 wk of high-intensity exercise training designed to simultaneously challenge strength, power, endurance, balance, and mobility function. Skeletal muscle adaptations (P < 0.05) to exercise training in PD included myofiber hypertrophy (type I: +14%, type II: +36%), shift to less fatigable myofiber type profile, and increased mitochondrial complex activity in both subsarcolemmal and intermyofibrillar fractions (I: +45–56%, IV: +39–54%). These adaptations were accompanied by a host of functional and clinical improvements (P < 0.05): total body strength (+30–56%); leg power (+42%); single leg balance (+34%); sit-to-stand motor unit activation requirement (−30%); 6-min walk (+43 m), Parkinson's Disease Quality of Life Scale (PDQ-39, −7.8pts); Unified Parkinson's Disease Rating Scale (UPDRS) total (−5.7 pts) and motor (−2.7 pts); and fatigue severity (−17%). Additionally, PD subjects in the pretraining state were compared with a group of matched, non-PD controls (CON; did not exercise). A combined assessment of muscle tissue phenotype and neuromuscular function revealed a higher distribution and larger cross-sectional area of type I myofibers and greater type II myofiber size heterogeneity in PD vs. CON (P < 0.05). In conclusion, persons with moderately advanced PD adapt to high-intensity exercise training with favorable changes in skeletal muscle at the cellular and subcellular levels that are associated with improvements in motor function, physical capacity, and fatigue perception. PMID:24408997
Maillot, Pauline; Perrot, Alexandra; Hartley, Alan; Do, Manh-Cuong
2014-10-01
The purposes of this present research were, in the first study, to determine whether age impacts a measure of postural control (the braking force in walking) and, in a second study, to determine whether exergame training in physically-simulated sport activity would show transfer, increasing the braking force in walking and also improving balance assessed by clinical measures, functional fitness, and health-related quality of life in older adults. For the second study, the authors developed an active video game training program (using the Wii system) with a pretest-training-posttest design comparing an experimental group (24 1-hr sessions of training) with a control group. Participants completed a battery comprising balance (braking force in short and normal step conditions), functional fitness (Senior Fitness Test), and health-related quality of life (SF-36). Results show that 12 weeks of video game-based exercise program training improved the braking force in the normal step condition, along with the functional fitness of lower limb strength, cardiovascular endurance, and motor agility, as measured by the Senior Fitness Test. Only the global mental dimension of the SF-36 was sensitive to exergame practice. Exergames appear to be an effective way to train postural control in older adults. Because of the multimodal nature of the activity, exergames provide an effective tool for remediation of age-related problems.