Flash memory management system and method utilizing multiple block list windows
NASA Technical Reports Server (NTRS)
Chow, James (Inventor); Gender, Thomas K. (Inventor)
2005-01-01
The present invention provides a flash memory management system and method with increased performance. The flash memory management system provides the ability to efficiently manage and allocate flash memory use in a way that improves reliability and longevity, while maintaining good performance levels. The flash memory management system includes a free block mechanism, a disk maintenance mechanism, and a bad block detection mechanism. The free block mechanism provides efficient sorting of free blocks to facilitate selecting low use blocks for writing. The disk maintenance mechanism provides for the ability to efficiently clean flash memory blocks during processor idle times. The bad block detection mechanism provides the ability to better detect when a block of flash memory is likely to go bad. The flash status mechanism stores information in fast access memory that describes the content and status of the data in the flash disk. The new bank detection mechanism provides the ability to automatically detect when new banks of flash memory are added to the system. Together, these mechanisms provide a flash memory management system that can improve the operational efficiency of systems that utilize flash memory.
Energy-aware Thread and Data Management in Heterogeneous Multi-core, Multi-memory Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Chun-Yi
By 2004, microprocessor design focused on multicore scaling—increasing the number of cores per die in each generation—as the primary strategy for improving performance. These multicore processors typically equip multiple memory subsystems to improve data throughput. In addition, these systems employ heterogeneous processors such as GPUs and heterogeneous memories like non-volatile memory to improve performance, capacity, and energy efficiency. With the increasing volume of hardware resources and system complexity caused by heterogeneity, future systems will require intelligent ways to manage hardware resources. Early research to improve performance and energy efficiency on heterogeneous, multi-core, multi-memory systems focused on tuning a single primitivemore » or at best a few primitives in the systems. The key limitation of past efforts is their lack of a holistic approach to resource management that balances the tradeoff between performance and energy consumption. In addition, the shift from simple, homogeneous systems to these heterogeneous, multicore, multi-memory systems requires in-depth understanding of efficient resource management for scalable execution, including new models that capture the interchange between performance and energy, smarter resource management strategies, and novel low-level performance/energy tuning primitives and runtime systems. Tuning an application to control available resources efficiently has become a daunting challenge; managing resources in automation is still a dark art since the tradeoffs among programming, energy, and performance remain insufficiently understood. In this dissertation, I have developed theories, models, and resource management techniques to enable energy-efficient execution of parallel applications through thread and data management in these heterogeneous multi-core, multi-memory systems. I study the effect of dynamic concurrent throttling on the performance and energy of multi-core, non-uniform memory access (NUMA) systems. I use critical path analysis to quantify memory contention in the NUMA memory system and determine thread mappings. In addition, I implement a runtime system that combines concurrent throttling and a novel thread mapping algorithm to manage thread resources and improve energy efficient execution in multi-core, NUMA systems.« less
Levy, Scott; Ferreira, Kurt B.; Bridges, Patrick G.; ...
2014-12-09
Building the next-generation of extreme-scale distributed systems will require overcoming several challenges related to system resilience. As the number of processors in these systems grow, the failure rate increases proportionally. One of the most common sources of failure in large-scale systems is memory. In this paper, we propose a novel runtime for transparently exploiting memory content similarity to improve system resilience by reducing the rate at which memory errors lead to node failure. We evaluate the viability of this approach by examining memory snapshots collected from eight high-performance computing (HPC) applications and two important HPC operating systems. Based on themore » characteristics of the similarity uncovered, we conclude that our proposed approach shows promise for addressing system resilience in large-scale systems.« less
Fast Initialization of Bubble-Memory Systems
NASA Technical Reports Server (NTRS)
Looney, K. T.; Nichols, C. D.; Hayes, P. J.
1986-01-01
Improved scheme several orders of magnitude faster than normal initialization scheme. State-of-the-art commercial bubble-memory device used. Hardware interface designed connects controlling microprocessor to bubblememory circuitry. System software written to exercise various functions of bubble-memory system in comparison made between normal and fast techniques. Future implementations of approach utilize E2PROM (electrically-erasable programable read-only memory) to provide greater system flexibility. Fastinitialization technique applicable to all bubble-memory devices.
A behavioral rehabilitation intervention for amnestic Mild Cognitive Impairment
Greenaway, Melanie C.; Hanna, Sherrie M.; Lepore, Susan W.; Smith, Glenn E.
2010-01-01
Individuals with amnestic Mild Cognitive Impairment (MCI) currently have few treatment options for combating their memory loss. The Memory Support System (MSS) is a calendar and organization system with accompanying 6-week curriculum designed for individuals with progressive memory impairment. Ability to learn the MSS and its utility were assessed in 20 participants. Participants were significantly more likely to successfully use the calendar system after training. Ninety-five percent were compliant with the MSS at training completion, and 89% continued to be compliant at follow-up. Outcome measures revealed a medium effect size for improvement in functional ability. Subjects further reported improved independence, self-confidence, and mood. This initial examination of the MSS suggests that with appropriate training, individuals with amnestic MCI can and will use a memory notebook system to help compensate for memory loss. These results are encouraging that the MSS may help with the symptoms of memory decline in MCI. PMID:18955724
ERIC Educational Resources Information Center
Ullman, Michael T.; Lovelett, Jarrett T.
2018-01-01
The declarative/procedural (DP) model posits that the learning, storage, and use of language critically depend on two learning and memory systems in the brain: declarative memory and procedural memory. Thus, on the basis of independent research on the memory systems, the model can generate specific and often novel predictions for language. Till…
A comparison of the Cray-2 performance before and after the installation of memory pseudo-banking
NASA Technical Reports Server (NTRS)
Schmickley, Ronald D.; Bailey, David H.
1987-01-01
A suite of 13 large Fortran benchmark codes were run on a Cray-2 configured with memory pseudo-banking circuits, and floating point operation rates were measured for each under a variety of system load configurations. These were compared with similar flop measurements taken on the same system before installation of the pseudo-banking. A useful memory access efficiency parameter was defined and calculated for both sets of performance rates, allowing a crude quantitative measure of the improvement in efficiency due to pseudo-banking. Programs were categorized as either highly scalar (S) or highly vectorized (V) and either memory-intensive or register-intensive, giving 4 categories: S-memory, S-register, V-memory, and V-register. Using flop rates as a simple quantifier of these 4 categories, a scatter plot of efficiency gain vs Mflops roughly illustrates the improvement in floating point processing speed due to pseudo-banking. On the Cray-2 system tested this improvement ranged from 1 percent for S-memory codes to about 12 percent for V-memory codes. No significant gains were made for V-register codes, which was to be expected.
Investigation of fast initialization of spacecraft bubble memory systems
NASA Technical Reports Server (NTRS)
Looney, K. T.; Nichols, C. D.; Hayes, P. J.
1984-01-01
Bubble domain technology offers significant improvement in reliability and functionality for spacecraft onboard memory applications. In considering potential memory systems organizations, minimization of power in high capacity bubble memory systems necessitates the activation of only the desired portions of the memory. In power strobing arbitrary memory segments, a capability of fast turn on is required. Bubble device architectures, which provide redundant loop coding in the bubble devices, limit the initialization speed. Alternate initialization techniques are investigated to overcome this design limitation. An initialization technique using a small amount of external storage is demonstrated.
Intranasal insulin improves memory in humans.
Benedict, Christian; Hallschmid, Manfred; Hatke, Astrid; Schultes, Bernd; Fehm, Horst L; Born, Jan; Kern, Werner
2004-11-01
Previous studies have suggested an acutely improving effect of insulin on memory function. To study changes in memory associated with a prolonged increase in brain insulin activity in humans, here we used the intranasal route of insulin administration known to provide direct access of the substance to the cerebrospinal fluid compartment. Based on previous results indicating a prevalence of insulin receptors in limbic and hippocampal regions as well as improvements in memory with systemic insulin administration, we expected that intranasal administration of insulin improves primarily hippocampus dependent declaration memory function. Also, improvements in mood were expected. We investigated the effects of 8 weeks of intranasal administration of insulin (human regular insulin 4 x 40 IU/d) on declarative memory (immediate and delayed recall of word lists), attention (Stroop test), and mood in 38 healthy subjects (24 males) in a double blind, between-subject comparison. Blood glucose and plasma insulin levels did not differ between the placebo and insulin conditions. Delayed recall of words significantly improved after 8 weeks of intranasal insulin administration (words recalled, Placebo 2.92 +/- 1.00, Insulin 6.20 +/- 1.03, p < 0.05). Moreover, subjects after insulin reported signs of enhanced mood, such as reduced anger (p < 0.02) and enhanced self-confidence (p < 0.03). Results indicate a direct action of prolonged intranasal administration of insulin on brain functions, improving memory and mood in the absence of systemic side effects. These findings could be of relevance for the treatment of patients with memory disorders like in Alzheimer's disease.
Reber, Paul J
2013-08-01
Memory systems research has typically described the different types of long-term memory in the brain as either declarative versus non-declarative or implicit versus explicit. These descriptions reflect the difference between declarative, conscious, and explicit memory that is dependent on the medial temporal lobe (MTL) memory system, and all other expressions of learning and memory. The other type of memory is generally defined by an absence: either the lack of dependence on the MTL memory system (nondeclarative) or the lack of conscious awareness of the information acquired (implicit). However, definition by absence is inherently underspecified and leaves open questions of how this type of memory operates, its neural basis, and how it differs from explicit, declarative memory. Drawing on a variety of studies of implicit learning that have attempted to identify the neural correlates of implicit learning using functional neuroimaging and neuropsychology, a theory of implicit memory is presented that describes it as a form of general plasticity within processing networks that adaptively improve function via experience. Under this model, implicit memory will not appear as a single, coherent, alternative memory system but will instead be manifested as a principle of improvement from experience based on widespread mechanisms of cortical plasticity. The implications of this characterization for understanding the role of implicit learning in complex cognitive processes and the effects of interactions between types of memory will be discussed for examples within and outside the psychology laboratory. Copyright © 2013 Elsevier Ltd. All rights reserved.
Improved specificity of hippocampal memory trace labeling.
Cazzulino, Alejandro S; Martinez, Randy; Tomm, Nicole K; Denny, Christine A
2016-06-01
Recent studies have focused on the identification and manipulation of memory traces in rodent models. The two main mouse models utilized are either a CreER(T2) /loxP tamoxifen (TAM)- or a tetracycline transactivator/tetracycline-response element doxycycline-inducible system. These systems, however, could be improved to label a more specific population of activated neurons corresponding to behavior. Here, we sought to identify an improved selective estrogen receptor (ER) modulator (SERM) in which we could label an individual memory trace in ArcCreER(T2) mice. We found that 4-hydroxytamoxifen (4-OHT) is a selective SERM in the ArcCreER(T2) × Rosa26-CAG-stop(flox) -channelrhodospin (ChR2)-enhanced yellow fluorescent protein (eYFP) mice. The half-life of 4-OHT is shorter than TAM, allowing for more specificity of memory trace labeling. Furthermore, 4-OHT allowed for context-specific labeling in the dentate gyrus and CA3. In summary, we believe that 4-OHT improves the specificity of memory trace labeling and will allow for refined memory trace studies in the future. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
BLACKCOMB2: Hardware-software co-design for non-volatile memory in exascale systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudge, Trevor
This work was part of a larger project, Blackcomb2, centered at Oak Ridge National Labs (Jeff Vetter PI) to investigate the opportunities for replacing or supplementing DRAM main memory with nonvolatile memory (NVmemory) in Exascale memory systems. The goal was to reduce the energy consumed by in future supercomputer memory systems and to improve their resiliency. Building on the accomplishments of the original Blackcomb Project, funded in 2010, the goal for Blackcomb2 was to identify, evaluate, and optimize the most promising emerging memory technologies, architecture hardware and software technologies, which are essential to provide the necessary memory capacity, performance, resilience,more » and energy efficiency in Exascale systems. Capacity and energy are the key drivers.« less
Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan
2014-01-01
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system. PMID:24828010
Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan
2014-01-01
As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.
Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui
2014-01-01
The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.
Working-memory training improves developmental dyslexia in Chinese children.
Luo, Yan; Wang, Jing; Wu, Hanrong; Zhu, Dongmei; Zhang, Yu
2013-02-15
Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memory training. In the present study, thirty dyslexic children aged 8-11 years were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.
An English Vocabulary Learning System Based on Fuzzy Theory and Memory Cycle
NASA Astrophysics Data System (ADS)
Wang, Tzone I.; Chiu, Ti Kai; Huang, Liang Jun; Fu, Ru Xuan; Hsieh, Tung-Cheng
This paper proposes an English Vocabulary Learning System based on the Fuzzy Theory and the Memory Cycle Theory to help a learner to memorize vocabularies easily. By using fuzzy inferences and personal memory cycles, it is possible to find an article that best suits a learner. After reading an article, a quiz is provided for the learner to improve his/her memory of the vocabulary in the article. Early researches use just explicit response (ex. quiz exam) to update memory cycles of newly learned vocabulary; apart from that approach, this paper proposes a methodology that also modify implicitly the memory cycles of learned word. By intensive reading of articles recommended by our approach, a learner learns new words quickly and reviews learned words implicitly as well, and by which the vocabulary ability of the learner improves efficiently.
Explicit Pre-Training Instruction Does Not Improve Implicit Perceptual-Motor Sequence Learning
ERIC Educational Resources Information Center
Sanchez, Daniel J.; Reber, Paul J.
2013-01-01
Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key…
Subthalamic stimulation differentially modulates declarative and nondeclarative memory.
Hälbig, Thomas D; Gruber, Doreen; Kopp, Ute A; Scherer, Peter; Schneider, Gerd-Helge; Trottenberg, Thomas; Arnold, Guy; Kupsch, Andreas
2004-03-01
Declarative memory has been reported to rely on the medial temporal lobe system, whereas non-declarative memory depends on basal ganglia structures. We investigated the functional role of the subthalamic nucleus (STN), a structure closely connected with the basal ganglia for both types of memory. Via deep brain high frequency stimulation (DBS) we manipulated neural activity of the STN in humans. We found that DBS-STN differentially modulated memory performance: declarative memory was impaired, whereas non-declarative memory was improved in the presence of STN-DBS indicating a specific role of the STN in the activation of memory systems. Copyright 2004 Lippincott Williams & Wilkins
Kohara, Yumi; Kawaguchi, Shinichiro; Kuwahara, Rika; Uchida, Yutaro; Oku, Yushi; Yamashita, Kimihiro
2015-03-01
Cognitive dysfunction due to higher blood glucose level has been reported previously. Genistein (GEN) is a phytoestrogen that we hypothesized might lead to improved memory, despite elevated blood glucose levels at the time of memory consolidation. To investigate this hypothesis, we compared the effects of orally administered GEN on the central nervous system in normal versus glucose-loaded adult male rats. A battery of behavioral assessments was carried out. In the MAZE test, which measured spatial learning and memory, the time of normal rats was shortened by GEN treatment compared to the vehicle group, but only in the early stages of testing. In the glucose-loaded group, GEN treatment improved performance as mazes were advanced. In the open-field test, GEN treatment delayed habituation to the new environment in normal rats, and increased the exploratory behaviors of glucose-loaded rats. There were no significant differences observed for emotionality or fear-motivated learning and memory. Together, these results indicate that GEN treatment improved spatial learning and memory only in the early stages of testing in the normal state, but improved spatial learning and memory when glucose levels increased during memory consolidation. Copyright © 2014 Elsevier Inc. All rights reserved.
Shehzad, Danish; Bozkuş, Zeki
2016-01-01
Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models.
Bozkuş, Zeki
2016-01-01
Increase in complexity of neuronal network models escalated the efforts to make NEURON simulation environment efficient. The computational neuroscientists divided the equations into subnets amongst multiple processors for achieving better hardware performance. On parallel machines for neuronal networks, interprocessor spikes exchange consumes large section of overall simulation time. In NEURON for communication between processors Message Passing Interface (MPI) is used. MPI_Allgather collective is exercised for spikes exchange after each interval across distributed memory systems. The increase in number of processors though results in achieving concurrency and better performance but it inversely affects MPI_Allgather which increases communication time between processors. This necessitates improving communication methodology to decrease the spikes exchange time over distributed memory systems. This work has improved MPI_Allgather method using Remote Memory Access (RMA) by moving two-sided communication to one-sided communication, and use of recursive doubling mechanism facilitates achieving efficient communication between the processors in precise steps. This approach enhanced communication concurrency and has improved overall runtime making NEURON more efficient for simulation of large neuronal network models. PMID:27413363
2018-01-01
Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system. PMID:29736181
Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall.
Hampson, Robert E; Song, Dong; Robinson, Brian S; Fetterhoff, Dustin; Dakos, Alexander S; Roeder, Brent M; She, Xiwei; Wicks, Robert T; Witcher, Mark R; Couture, Daniel E; Laxton, Adrian W; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J; Whitlow, Christopher T; Marmarelis, Vasilis Z; Berger, Theodore W; Deadwyler, Sam A
2018-06-01
We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient's own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.
Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall
NASA Astrophysics Data System (ADS)
Hampson, Robert E.; Song, Dong; Robinson, Brian S.; Fetterhoff, Dustin; Dakos, Alexander S.; Roeder, Brent M.; She, Xiwei; Wicks, Robert T.; Witcher, Mark R.; Couture, Daniel E.; Laxton, Adrian W.; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J.; Whitlow, Christopher T.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.
2018-06-01
Objective. We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient’s own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. Approach. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. Significance. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.
Stochastic memory: getting memory out of noise
NASA Astrophysics Data System (ADS)
Stotland, Alexander; di Ventra, Massimiliano
2011-03-01
Memory circuit elements, namely memristors, memcapacitors and meminductors, can store information without the need of a power source. These systems are generally defined in terms of deterministic equations of motion for the state variables that are responsible for memory. However, in real systems noise sources can never be eliminated completely. One would then expect noise to be detrimental for memory. Here, we show that under specific conditions on the noise intensity memory can actually be enhanced. We illustrate this phenomenon using a physical model of a memristor in which the addition of white noise into the state variable equation improves the memory and helps the operation of the system. We discuss under which conditions this effect can be realized experimentally, discuss its implications on existing memory systems discussed in the literature, and also analyze the effects of colored noise. Work supported in part by NSF.
Greenaway, M C; Duncan, N L; Smith, G E
2013-04-01
Individuals with amnestic mild cognitive impairment (MCI) have few empirically based treatment options for combating their memory loss. This study sought to examine the efficacy of a calendar/notebook rehabilitation intervention, the memory support system (MSS), for individuals with amnestic MCI. Forty individuals with single domain amnestic MCI and their program partners were randomized to receive the MSS, either with training or without (controls). Measures of adherence, activities of daily living, and emotional impact were completed at the first and last intervention sessions and again at 8 weeks and 6 months post intervention. Training in use of a notebook/calendar system significantly improved adherence over those who received the calendars but no training. Functional ability and memory self-efficacy significantly improved for those who received MSS training. Change in functional ability remained significantly better in the intervention group than in the control group out to 8-week follow-up. Care partners in the intervention group demonstrated improved mood by 8-week and 6-month follow-ups, whereas control care partners reported worse caregiver burden by 6-month follow-up. Memory support system training resulted in improvement in activities of daily living and sense of memory self-efficacy for individuals with MCI. Although activities of daily living benefits were maintained out to 8 weeks post intervention, future inclusion of booster sessions may help extend the therapeutic effect out even further. Improved mood of care partners of trained individuals and worsening sense of caregiver burden over time for partners of untrained individuals further support the efficacy of the MSS for MCI. Copyright © 2012 John Wiley & Sons, Ltd.
Age effects on explicit and implicit memory
Ward, Emma V.; Berry, Christopher J.; Shanks, David R.
2013-01-01
It is well-documented that explicit memory (e.g., recognition) declines with age. In contrast, many argue that implicit memory (e.g., priming) is preserved in healthy aging. For example, priming on tasks such as perceptual identification is often not statistically different in groups of young and older adults. Such observations are commonly taken as evidence for distinct explicit and implicit learning/memory systems. In this article we discuss several lines of evidence that challenge this view. We describe how patterns of differential age-related decline may arise from differences in the ways in which the two forms of memory are commonly measured, and review recent research suggesting that under improved measurement methods, implicit memory is not age-invariant. Formal computational models are of considerable utility in revealing the nature of underlying systems. We report the results of applying single and multiple-systems models to data on age effects in implicit and explicit memory. Model comparison clearly favors the single-system view. Implications for the memory systems debate are discussed. PMID:24065942
The ILLIAC IV memory system: Current status and future possibilities
NASA Technical Reports Server (NTRS)
Stevenson, D. K.
1978-01-01
The future needs of researchers who will use the Illiac were examined and the requirements they will place on the memory system were evaluated. Various alternatives to replacing critical memory components were considered with regard to cost, risk, system impact, software requirements, and implementation schedules. The current system, its performance and status, and the limitations it places on possible enhancements are discussed as well as the planned enhancements to the Illiac processor. After a brief technology survey, different implementations are presented for each system memory component. Three different memory systems are proposed to meet the identified needs of the Illiac user community. These three alternatives differ considerably with respect to storage capacity and accessing capabilities, but they all offer significant improvements over the current system. The proposed systems and their relative merits are analyzed.
Collective input/output under memory constraints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yin; Chen, Yong; Zhuang, Yu
2014-12-18
Compared with current high-performance computing (HPC) systems, exascale systems are expected to have much less memory per node, which can significantly reduce necessary collective input/output (I/O) performance. In this study, we introduce a memory-conscious collective I/O strategy that takes into account memory capacity and bandwidth constraints. The new strategy restricts aggregation data traffic within disjointed subgroups, coordinates I/O accesses in intranode and internode layers, and determines I/O aggregators at run time considering memory consumption among processes. We have prototyped the design and evaluated it with commonly used benchmarks to verify its potential. The evaluation results demonstrate that this strategy holdsmore » promise in mitigating the memory pressure, alleviating the contention for memory bandwidth, and improving the I/O performance for projected extreme-scale systems. Given the importance of supporting increasingly data-intensive workloads and projected memory constraints on increasingly larger scale HPC systems, this new memory-conscious collective I/O can have a significant positive impact on scientific discovery productivity.« less
Memory-Modulation: Self-Improvement or Self-Depletion?
Lavazza, Andrea
2018-01-01
Autobiographical memory is fundamental to the process of self-construction. Therefore, the possibility of modifying autobiographical memories, in particular with memory-modulation and memory-erasing, is a very important topic both from the theoretical and from the practical point of view. The aim of this paper is to illustrate the state of the art of some of the most promising areas of memory-modulation and memory-erasing, considering how they can affect the self and the overall balance of the "self and autobiographical memory" system. Indeed, different conceptualizations of the self and of personal identity in relation to autobiographical memory are what makes memory-modulation and memory-erasing more or less desirable. Because of the current limitations (both practical and ethical) to interventions on memory, I can only sketch some hypotheses. However, it can be argued that the choice to mitigate painful memories (or edit memories for other reasons) is somehow problematic, from an ethical point of view, according to some of the theories of the self and personal identity in relation to autobiographical memory, in particular for the so-called narrative theories of personal identity, chosen here as the main case of study. Other conceptualizations of the "self and autobiographical memory" system, namely the constructivist theories, do not have this sort of critical concerns. However, many theories rely on normative (and not empirical) conceptions of the self: for them, the actions aimed at mitigating or removing specific (negative) memories can be seen either as an improvement or as a depletion or impairment of the self.
A shared resource between declarative memory and motor memory.
Keisler, Aysha; Shadmehr, Reza
2010-11-03
The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and nondeclarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/nondeclarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system.
A shared resource between declarative memory and motor memory
Keisler, Aysha; Shadmehr, Reza
2010-01-01
The neural systems that support motor adaptation in humans are thought to be distinct from those that support the declarative system. Yet, during motor adaptation changes in motor commands are supported by a fast adaptive process that has important properties (rapid learning, fast decay) that are usually associated with the declarative system. The fast process can be contrasted to a slow adaptive process that also supports motor memory, but learns gradually and shows resistance to forgetting. Here we show that after people stop performing a motor task, the fast motor memory can be disrupted by a task that engages declarative memory, but the slow motor memory is immune from this interference. Furthermore, we find that the fast/declarative component plays a major role in the consolidation of the slow motor memory. Because of the competitive nature of declarative and non-declarative memory during consolidation, impairment of the fast/declarative component leads to improvements in the slow/non-declarative component. Therefore, the fast process that supports formation of motor memory is not only neurally distinct from the slow process, but it shares critical resources with the declarative memory system. PMID:21048140
Brain Training Draws Questions about Benefits
ERIC Educational Resources Information Center
Sparks, Sarah D.
2012-01-01
While programs to improve students' working memory are among the hottest new education interventions, new studies are calling into question whether exercises to improve this foundational skill can actually translate into greater intelligence, problem-solving ability, or academic achievement. Working memory is the system the mind uses to hold…
Rapid effects of estrogens on short-term memory: Possible mechanisms.
Paletta, Pietro; Sheppard, Paul A S; Matta, Richard; Ervin, Kelsy S J; Choleris, Elena
2018-06-01
Estrogens affect learning and memory through rapid and delayed mechanisms. Here we review studies on rapid effects on short-term memory. Estradiol rapidly improves social and object recognition memory, spatial memory, and social learning when administered systemically. The dorsal hippocampus mediates estrogen rapid facilitation of object, social and spatial short-term memory. The medial amygdala mediates rapid facilitation of social recognition. The three estrogen receptors, α (ERα), β (ERβ) and the G-protein coupled estrogen receptor (GPER) appear to play different roles depending on the task and brain region. Both ERα and GPER agonists rapidly facilitate short-term social and object recognition and spatial memory when administered systemically or into the dorsal hippocampus and facilitate social recognition in the medial amygdala. Conversely, only GPER can facilitate social learning after systemic treatment and an ERβ agonist only rapidly improved short-term spatial memory when given systemically or into the hippocampus, but also facilitates social recognition in the medial amygdala. Investigations into the mechanisms behind estrogens' rapid effects on short term memory showed an involvement of the extracellular signal-regulated kinase (ERK) and the phosphoinositide 3-kinase (PI3K) kinase pathways. Recent evidence also showed that estrogens interact with the neuropeptide oxytocin in rapidly facilitating social recognition. Estrogens can increase the production and/or release of oxytocin and other neurotransmitters, such as dopamine and acetylcholine. Therefore, it is possible that estrogens' rapid effects on short-term memory may occur through the regulation of various neurotransmitters, although more research is need on these interactions as well as the mechanisms of estrogens' actions on short-term memory. Copyright © 2018 Elsevier Inc. All rights reserved.
Enhancing S4 with Guidance from the Features of Other Behavior Modeling Systems
2010-11-01
recommendations for updating S4 into a more realistic system for modeling human cognition. We focus on three areas of cognition: perception , memory, and...Research Integration Tool (IMPRINT) .........................6 4. Improving the Cognitive Mechanisms of S4 7 4.1 Perception , Memory and Decision...Making in S4 ...........................................................7 4.2 Possible Improvements for Perception in S4
Techniques for Improving Spelling Performance.
ERIC Educational Resources Information Center
Saylor, Paul
Improving spelling performance of college students is a question of insuring that the correct information is in long-term memory and readily retrievable. Any system of spelling instruction should recognize the capacity limits of the sensory register and short-term memory; provide for identification of and concentration on the distinctive features…
Erfanparast, Amir; Tamaddonfard, Esmaeal; Nemati, Shaghayegh
2017-03-01
In the present study, we investigated the effects of microinjection of vitamin B 12 into the hippocampus on the orofacial pain and memory impairments induced by scopolamine and orofacial pain. In ketamine-xylazine anesthetized rats, the right and left sides of the dorsal hippocampus (CA1) were implanted with two guide cannulas. Orofacial pain was induced by subcutaneous injection of formalin (1.5%, 50μl) into the right vibrissa pad, and the durations of face rubbing were recorded at 3-min blocks for 45min. Morris water maze (MWM) was used for evaluation of learning and memory. Finally, locomotor activity was assessed using an open-field test. Vitamin B 12 attenuated both phases of formalin-induced orofacial pain. Prior administration of naloxone and naloxonazine, but not naltrindole and nor-binaltorphimine, prevented this effect. Vitamin B 12 and physostigmine decreased latency time as well as traveled distance in Morris water maze. In addition, these chemicals improved scopolamine-induced memory impairment. The memory impairment induced by orofacial pain was improved by vitamin B 12 and physostigmine used alone. Naloxone prevented, whereas physostigmine enhanced the memory improving effect of vitamin B 12 in the pain-induced memory impairment. All the above-mentioned chemicals did not alter locomotor activity. The results of the present study showed that at the level of the dorsal hippocampus, vitamin B 12 modulated orofacial pain through a mu-opioid receptor mechanism. In addition, vitamin B 12 contributed to hippocampal cholinergic system in processing of memory. Moreover, cholinergic and opioid systems may be involved in improving effect of vitamin B 12 on pain-induced memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.
Jurado-Berbel, Patricia; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Portell-Cortés, Isabel
2010-02-11
The present work examined whether post-training systemic epinephrine (EPI) is able to modulate short-term (3h) and long-term (24 h and 48 h) memory of standard object recognition, as well as long-term (24 h) memory of separate "what" (object identity) and "where" (object location) components of object recognition. Although object recognition training is associated to low arousal levels, all the animals received habituation to the training box in order to further reduce emotional arousal. Post-training EPI improved long-term (24 h and 48 h), but not short-term (3 h), memory in the standard object recognition task, as well as 24 h memory for both object identity and object location. These data indicate that post-training epinephrine: (1) facilitates long-term memory for standard object recognition; (2) exerts separate facilitatory effects on "what" (object identity) and "where" (object location) components of object recognition; and (3) is capable of improving memory for a low arousing task even in highly habituated rats.
Improved memory for reward cues following acute buprenorphine administration in humans.
Syal, Supriya; Ipser, Jonathan; Terburg, David; Solms, Mark; Panksepp, Jaak; Malcolm-Smith, Susan; Bos, Peter A; Montoya, Estrella R; Stein, Dan J; van Honk, Jack
2015-03-01
In rodents, there is abundant evidence for the involvement of the opioid system in the processing of reward cues, but this system has remained understudied in humans. In humans, the happy facial expression is a pivotal reward cue. Happy facial expressions activate the brain's reward system and are disregarded by subjects scoring high on depressive mood who are low in reward drive. We investigated whether a single 0.2mg administration of the mixed mu-opioid agonist/kappa-antagonist, buprenorphine, would influence short-term memory for happy, angry or fearful expressions relative to neutral faces. Healthy human subjects (n38) participated in a randomized placebo-controlled within-subject design, and performed an emotional face relocation task after administration of buprenorphine and placebo. We show that, compared to placebo, buprenorphine administration results in a significant improvement of memory for happy faces. Our data demonstrate that acute manipulation of the opioid system by buprenorphine increases short-term memory for social reward cues. Copyright © 2015. Published by Elsevier Ltd.
Processing-in-Memory Enabled Graphics Processors for 3D Rendering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Chenhao; Song, Shuaiwen; Wang, Jing
2017-02-06
The performance of 3D rendering of Graphics Processing Unit that convents 3D vector stream into 2D frame with 3D image effects significantly impact users’ gaming experience on modern computer systems. Due to the high texture throughput in 3D rendering, main memory bandwidth becomes a critical obstacle for improving the overall rendering performance. 3D stacked memory systems such as Hybrid Memory Cube (HMC) provide opportunities to significantly overcome the memory wall by directly connecting logic controllers to DRAM dies. Based on the observation that texel fetches significantly impact off-chip memory traffic, we propose two architectural designs to enable Processing-In-Memory based GPUmore » for efficient 3D rendering.« less
RTSJ Memory Areas and Their Affects on the Performance of a Flight-Like Attitude Control System
NASA Technical Reports Server (NTRS)
Niessner, Albert F.; Benowitz, Edward G.
2003-01-01
The two most important factors in improving performance in any software system, but especially a real-time, embedded system, are knowing which components are the low performers and knowing what can be done to improve their performance. The word performance with respect to a real-time, embedded system does not necessarily mean fast execution, which is the common definition when discussing non real-time systems. It also includes meeting all of the specified execution dead-lines and executing at the correct time without sacrificing non real-time performance. Using a Java prototype of an existing control system used on Deep Space 1[1], the effects from adding memory areas are measured and evaluated with respect to improving performance.
Holographic Associative Memory System Using A Thresholding Microchannel Spatial Light Modulator
NASA Astrophysics Data System (ADS)
Song, Q. W.; Yu, Francis T.
1989-05-01
Experimental implementation of a holographic optical associative memory system using a thresholding microchannel spatial light modulator (MSLM) is presented. The first part of the system is basically a joint transform correlator, in which a liquid crystal light valve is used as a square-law converter for the inner product of the addressing and input memories. The MSLM is used as an active element to recall the associated data. If the device is properly thresholded, the system is capable of improving the quality of the output image.
Statistical prediction with Kanerva's sparse distributed memory
NASA Technical Reports Server (NTRS)
Rogers, David
1989-01-01
A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near- or over-capacity, where the associative-memory behavior of the model breaks down, the processing performed by the model can be interpreted as that of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint of sparse distributed memory and for which the standard formulation of SDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with genetic algorithms, and a method for improving the capacity of SDM even when used as an associative memory.
Memory-Modulation: Self-Improvement or Self-Depletion?
Lavazza, Andrea
2018-01-01
Autobiographical memory is fundamental to the process of self-construction. Therefore, the possibility of modifying autobiographical memories, in particular with memory-modulation and memory-erasing, is a very important topic both from the theoretical and from the practical point of view. The aim of this paper is to illustrate the state of the art of some of the most promising areas of memory-modulation and memory-erasing, considering how they can affect the self and the overall balance of the “self and autobiographical memory” system. Indeed, different conceptualizations of the self and of personal identity in relation to autobiographical memory are what makes memory-modulation and memory-erasing more or less desirable. Because of the current limitations (both practical and ethical) to interventions on memory, I can only sketch some hypotheses. However, it can be argued that the choice to mitigate painful memories (or edit memories for other reasons) is somehow problematic, from an ethical point of view, according to some of the theories of the self and personal identity in relation to autobiographical memory, in particular for the so-called narrative theories of personal identity, chosen here as the main case of study. Other conceptualizations of the “self and autobiographical memory” system, namely the constructivist theories, do not have this sort of critical concerns. However, many theories rely on normative (and not empirical) conceptions of the self: for them, the actions aimed at mitigating or removing specific (negative) memories can be seen either as an improvement or as a depletion or impairment of the self. PMID:29674992
Greenaway, M. C.; Duncan, N. L.; Smith, G. E.
2013-01-01
Objective Individuals with amnestic Mild Cognitive Impairment (MCI) have few empirically-based treatment options for combating their memory loss. This study sought to examine the efficacy of a calendar/notebook rehabilitation intervention, the Memory Support System (MSS), for individuals with amnestic MCI. Methods Forty individuals with single domain amnestic MCI and their program partners were randomized to receive the MSS, either with training or without (controls). Measures of adherence, activities of daily living, and emotional impact were completed at the first and last intervention session and again at 8-weeks and 6 months post intervention. Results Training in use of a notebook/calendar system significantly improved adherence over those who received the calendars but no training. Functional ability and memory self efficacy significantly improved for those who received MSS training. Change in functional ability remained significantly better in the intervention group than in the control group out to 8 week follow up. Care partners in the intervention group demonstrated improved mood by 8 week and 6 month follow-up, while control care partners reported worse caregiver burden by 6 month follow up. Conclusions MSS training resulted in improvement in ADLs and sense of memory self efficacy for individuals with MCI. While ADL benefits were maintained out to 8 weeks post intervention, future inclusion of booster sessions may help extend the therapeutic effect out even further. Improved mood of care partners of trained individuals and worsening sense of caregiver burden over time for partners of untrained individuals further supports the efficacy of the MSS for MCI. PMID:22678947
Cost aware cache replacement policy in shared last-level cache for hybrid memory based fog computing
NASA Astrophysics Data System (ADS)
Jia, Gangyong; Han, Guangjie; Wang, Hao; Wang, Feng
2018-04-01
Fog computing requires a large main memory capacity to decrease latency and increase the Quality of Service (QoS). However, dynamic random access memory (DRAM), the commonly used random access memory, cannot be included into a fog computing system due to its high consumption of power. In recent years, non-volatile memories (NVM) such as Phase-Change Memory (PCM) and Spin-transfer torque RAM (STT-RAM) with their low power consumption have emerged to replace DRAM. Moreover, the currently proposed hybrid main memory, consisting of both DRAM and NVM, have shown promising advantages in terms of scalability and power consumption. However, the drawbacks of NVM, such as long read/write latency give rise to potential problems leading to asymmetric cache misses in the hybrid main memory. Current last level cache (LLC) policies are based on the unified miss cost, and result in poor performance in LLC and add to the cost of using NVM. In order to minimize the cache miss cost in the hybrid main memory, we propose a cost aware cache replacement policy (CACRP) that reduces the number of cache misses from NVM and improves the cache performance for a hybrid memory system. Experimental results show that our CACRP behaves better in LLC performance, improving performance up to 43.6% (15.5% on average) compared to LRU.
Cache write generate for parallel image processing on shared memory architectures.
Wittenbrink, C M; Somani, A K; Chen, C H
1996-01-01
We investigate cache write generate, our cache mode invention. We demonstrate that for parallel image processing applications, the new mode improves main memory bandwidth, CPU efficiency, cache hits, and cache latency. We use register level simulations validated by the UW-Proteus system. Many memory, cache, and processor configurations are evaluated.
The Cognitive Neuroscience of Human Memory Since H.M
Squire, Larry R.; Wixted, John T.
2011-01-01
Work with patient H.M., beginning in the 1950s, established key principles about the organization of memory that inspired decades of experimental work. Since H.M., the study of human memory and its disorders has continued to yield new insights and to improve understanding of the structure and organization of memory. Here we review this work with emphasis on the neuroanatomy of medial temporal lobe and diencephalic structures important for memory, multiple memory systems, visual perception, immediate memory, memory consolidation, the locus of long-term memory storage, the concepts of recollection and familiarity, and the question of how different medial temporal lobe structures may contribute differently to memory functions. PMID:21456960
Short-term memory to long-term memory transition in a nanoscale memristor.
Chang, Ting; Jo, Sung-Hyun; Lu, Wei
2011-09-27
"Memory" is an essential building block in learning and decision-making in biological systems. Unlike modern semiconductor memory devices, needless to say, human memory is by no means eternal. Yet, forgetfulness is not always a disadvantage since it releases memory storage for more important or more frequently accessed pieces of information and is thought to be necessary for individuals to adapt to new environments. Eventually, only memories that are of significance are transformed from short-term memory into long-term memory through repeated stimulation. In this study, we show experimentally that the retention loss in a nanoscale memristor device bears striking resemblance to memory loss in biological systems. By stimulating the memristor with repeated voltage pulses, we observe an effect analogous to memory transition in biological systems with much improved retention time accompanied by additional structural changes in the memristor. We verify that not only the shape or the total number of stimuli is influential, but also the time interval between stimulation pulses (i.e., the stimulation rate) plays a crucial role in determining the effectiveness of the transition. The memory enhancement and transition of the memristor device was explained from the microscopic picture of impurity redistribution and can be qualitatively described by the same equations governing biological memories. © 2011 American Chemical Society
Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza
2017-11-01
The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.
Research about Memory Detection Based on the Embedded Platform
NASA Astrophysics Data System (ADS)
Sun, Hao; Chu, Jian
As is known to us all, the resources of memory detection of the embedded systems are very limited. Taking the Linux-based embedded arm as platform, this article puts forward two efficient memory detection technologies according to the characteristics of the embedded software. Especially for the programs which need specific libraries, the article puts forwards portable memory detection methods to help program designers to reduce human errors,improve programming quality and therefore make better use of the valuable embedded memory resource.
Genes and signaling pathways involved in memory enhancement in mutant mice
2014-01-01
Mutant mice have been used successfully as a tool for investigating the mechanisms of memory at multiple levels, from genes to behavior. In most cases, manipulating a gene expressed in the brain impairs cognitive functions such as memory and their underlying cellular mechanisms, including synaptic plasticity. However, a remarkable number of mutations have been shown to enhance memory in mice. Understanding how to improve a system provides valuable insights into how the system works under normal conditions, because this involves understanding what the crucial components are. Therefore, more can be learned about the basic mechanisms of memory by studying mutant mice with enhanced memory. This review will summarize the genes and signaling pathways that are altered in the mutants with enhanced memory, as well as their roles in synaptic plasticity. Finally, I will discuss how knowledge of memory-enhancing mechanisms could be used to develop treatments for cognitive disorders associated with impaired plasticity. PMID:24894914
Moriguchi, Shigeki; Tagashira, Hideaki; Sasaki, Yuzuru; Yeh, Jay Z; Sakagami, Hiroyuki; Narahashi, Toshio; Fukunaga, Kohji
2014-03-01
Because the cholinergic system is down-regulated in the brain of Alzheimer's disease patients, cognitive deficits in Alzheimer's disease patients are significantly improved by rivastigmine treatment. To address the mechanism underlying rivastigmine-induced memory improvements, we chronically treated olfactory bulbectomized (OBX) mice with rivastigmine. The chronic rivastigmine treatments for 12-13 days starting at 10 days after OBX operation significantly improved memory-related behaviors assessed by Y-maze task, novel object recognition task, passive avoidance task, and Barnes maze task, whereas the single rivastigmine treatment failed to improve the memory. Consistent with the improved memory-related behaviors, long-term potentiation in the hippocampal CA1 region was markedly restored by rivastigmine treatments. In immunoblotting analyses, the reductions of calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and calcium/calmodulin-dependent protein kinase IV (CaMKIV) phosphorylation in the CA1 region in OBX mice were significantly restored by rivastigmine treatments. In addition, phosphorylation of AMPAR subunit glutamate receptor 1 (GluA1) (Ser-831) and cAMP-responsive element-binding protein (Ser-133) as downstream targets of CaMKII and CaMKIV, respectively, in the CA1 region was also significantly restored by chronic rivastigmine treatments. Finally, we confirmed that rivastigmine-induced improvements of memory-related behaviors and long-term potentiation were not obtained in CaMKIIα(+/-) mice. On the other hand, CaMKIV(-/-) mice did not exhibit the cognitive impairments. Taken together, the stimulation of CaMKII activity in the hippocampus is essential for rivastigmine-induced memory improvement in OBX mice. © 2013 International Society for Neurochemistry.
North by Northwestern: initial experience with PACS at Northwestern Memorial Hospital
NASA Astrophysics Data System (ADS)
Channin, David S.; Hawkins, Rodney C.; Enzmann, Dieter R.
2000-05-01
This paper describes the initial phases and configuration of the Picture Archive and Communication System (PACS) deployed at Northwestern Memorial Hospital. The primary goals of the project were to improve service to patients, improve service to referring physicians, and improve the process of radiology. Secondary goals were to enhance the academic mission, and modernize institutional information systems. The system consists of a large number of heterogeneous imaging modalities sending imaging studies via DICOM to a GE medical Systems PathSpeed PACS. The radiology department workflow is briefly described. The system is currently storing approximately 140,000 studies and over 5 million images, growing by approximately 600 studies and 25,000 images per day. Data reflecting use of the short term and long term storage is provided.
Schaffer, Yael; Geva, Ronny
2016-01-01
Given the primary role of memory in children's learning and well-being, the aim of this review was to examine the outcomes of memory remediation interventions in children with neurological deficits as a function of the affected memory system and intervention method. Fifty-seven studies that evaluated the outcome of memory interventions in children were identified. Thirty-four studies met the inclusion criteria, and were included in a systematic review. Diverse rehabilitation methods for improving explicit and implicit memory in children were reviewed. The analysis indicates that teaching restoration strategies may improve, and result in the generalisation of, semantic memory and working memory performance in children older than 7 years with mild to moderate memory deficits. Factors such as longer protocols, emotional support, and personal feedback contribute to intervention efficacy. In addition, the use of compensation aids seems to be highly effective in prospective memory tasks. Finally, the review unveiled a lack of studies with young children and the absence of group interventions. These findings point to the importance of future evidence-based intervention protocols in these areas.
Choudhary, Dnyanraj; Bhattacharyya, Sauvik; Bose, Sekhar
2017-11-02
Cognitive decline is often associated with the aging process. Ashwagandha (Withania somnifera (L.) Dunal) has long been used in the traditional Ayurvedic system of medicine to enhance memory and improve cognition. This pilot study was designed to evaluate the efficacy and safety of ashwagandha (Withania somnifera (L.) Dunal) in improving memory and cognitive functioning in adults with mild cognitive impairment (MCI). A prospective, randomized, double-blind, placebo-controlled study was conducted in 50 adults. Subjects were treated with either ashwagandha-root extract (300 mg twice daily) or placebo for eight weeks. After eight weeks of study, the ashwagandha treatment group demonstrated significant improvements compared with the placebo group in both immediate and general memory, as evidenced by Wechsler Memory Scale III subtest scores for logical memory I (p = 0.007), verbal paired associates I (p = 0.042), faces I (p = 0.020), family pictures I (p = 0.006), logical memory II (p = 0.006), verbal paired associates II (p = 0.031), faces II (p = 0.014), and family pictures II (p = 0.006). The treatment group also demonstrated significantly greater improvement in executive function, sustained attention, and information-processing speed as indicated by scores on the Eriksen Flanker task (p = 0.002), Wisconsin Card Sort test (p = 0.014), Trail-Making test part A (p = 0.006), and the Mackworth Clock test (p = 0.009). Ashwagandha may be effective in enhancing both immediate and general memory in people with MCI as well as improving executive function, attention, and information processing speed.
ERIC Educational Resources Information Center
King, Stanley O., II; Williams, Cedric L.
2009-01-01
Exposure to novel contexts produce heightened states of arousal and biochemical changes in the brain to consolidate memory. However, processes permitting simple exposure to unfamiliar contexts to elevate sympathetic output and to improve memory are poorly understood. This shortcoming was addressed by examining how novelty-induced changes in…
Fontán-Lozano, Angela; Romero-Granados, Rocío; Troncoso, Julieta; Múnera, Alejandro; Delgado-García, José María; Carrión, Angel M
2008-10-01
Histone deacetylases (HDAC) are enzymes that maintain chromatin in a condensate state, related with absence of transcription. We have studied the role of HDAC on learning and memory processes. Both eyeblink classical conditioning (EBCC) and object recognition memory (ORM) induced an increase in histone H3 acetylation (Ac-H3). Systemic treatment with HDAC inhibitors improved cognitive processes in EBCC and in ORM tests. Immunohistochemistry and gene expression analyses indicated that administration of HDAC inhibitors decreased the stimulation threshold for Ac-H3, and gene expression to reach the levels required for learning and memory. Finally, we evaluated the effect of systemic administration of HDAC inhibitors to mice models of neurodegeneration and aging. HDAC inhibitors reversed learning and consolidation deficits in ORM in these models. These results point out HDAC inhibitors as candidate agents for the palliative treatment of learning and memory impairments in aging and in neurodegenerative disorders.
Nedaei, Seyed Ershad; Rezayof, Ameneh; Pourmotabbed, Ali; Nasehi, Mohammad; Zarrindast, Mohammad-Reza
2016-09-15
The current study was designed to examine the involvement of cannabinoid CB1 receptors in the basolateral amygdala (BLA) in scopolamine-induced memory impairment in adult male Wistar rats. The animals were bilaterally implanted with the cannulas in the BLA and submitted to a step-through type passive avoidance task to measure the memory formation. The results showed that intraperitoneal (i.p.) administration of different doses of scopolamine (0.5-1.5mg/kg) immediately after the training phase (post-training) impaired memory consolidation. Bilateral microinjection of the cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA; 1-4ng/rat), into the BLA significantly improved scopolamine-induced memory consolidation impairment. On the other hand, co-administration of AM251, a cannabinoid CB1 receptor antagonist (0.25-1ng/rat, intra-BLA), with an ineffective dose of scopolamine (0.5mg/kg, i.p.), significantly impaired memory consolidation and mimicked the response of a higher dose of scopolamine. It is important to note that post-training intra-BLA microinjections of the same doses of ACPA or AM251 alone had no effect on memory consolidation. Moreover, the blockade of the BLA CB1 receptors by 0.3ng/rat of AM251 prevented ACPA-induced improvement of the scopolamine response. In view of the known actions of the drugs used, the present data pointed to the involvement of the BLA CB1 receptors in scopolamine-induced memory consolidation impairment. Furthermore, it seems that a functional interaction between the BLA endocannabinoid and cholinergic muscarinic systems may be critical for memory formation. Copyright © 2016. Published by Elsevier B.V.
Developmental Dissociation Between the Maturation of Procedural Memory and Declarative Memory
Finn, Amy S.; Kalra, Priya B.; Goetz, Calvin; Leonard, Julia A.; Sheridan, Margaret A.; Gabrieli, John D. E.
2015-01-01
Declarative memory and procedural memory are known to be two fundamentally different kinds of memory that are dissociable in their psychological characteristics and measurement (explicit versus implicit) and in the neural systems that subserve each kind of memory. Declarative memory abilities are known to improve from childhood through young adulthood, but the developmental maturation of procedural memory is largely unknown. We compared 10-year-old children and young adults on measures of declarative memory, working memory capacity, and four measures of procedural memory that have been strongly dissociated from declarative memory (mirror tracing, rotary pursuit, probabilistic classification, and artificial grammar). Children had lesser declarative memory ability and lesser working memory capacity than the adults, but exhibited learning equivalent to adults on all four measures of procedural memory. Declarative and procedural memory are, therefore, developmentally dissociable, with procedural memory being adult-like by age 10 and declarative memory continuing to mature into young adulthood. PMID:26560675
Kunisawa, Kazuo; Kido, Kiwamu; Nakashima, Natsuki; Matsukura, Takuya; Nabeshima, Toshitaka; Hiramatsu, Masayuki
2017-02-05
GABA mediated neuronal system regulates hippocampus-dependent memory and stress responses by controlling plasticity and neuronal excitability. Here, we demonstrate that betaine ameliorates water-immersion restraint stress (WIRS)-induced memory impairments. This improvement was inhibited by a betaine/GABA transporter-1 (GABA transporter-2: GAT2) inhibitor, NNC 05-2090. In this study, we investigated whether memory amelioration by betaine was mediated by the GABAergic neuronal system. Adult male mice were co-administered betaine and GABA receptor antagonists after WIRS. We also examined whether memory impairment after WIRS was attenuated by GABA receptor agonists. The memory functions were evaluated using a novel object recognition test 3-6 days after WIRS and/or the step-down type passive avoidance test at 7-8 days. The co-administration of the GABA A receptor antagonist bicuculline (1mg/kg) or the GABA B receptor antagonist phaclofen (10mg/kg) 1h after WIRS suppressed the memory-improving effects induced by betaine. Additionally, the administration of the GABA A receptor agonist muscimol (1mg/kg) or the GABA B receptor agonist baclofen (10mg/kg) 1h after WIRS attenuated memory impairments. These results were similar to the data observed with betaine. The treatment with betaine after WIRS significantly decreased the expression of GABA transaminase, and this effect was partially blocked by NNC 05-2090 in the hippocampus. WIRS caused a transient increase in hippocampal GABA levels and the changes after WIRS were not affected by betaine treatment in an in vivo microdialysis study. These results suggest that the beneficial effects of betaine may be mediated in part by changing the GABAergic neuronal system. Copyright © 2016 Elsevier B.V. All rights reserved.
Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning
Sanchez, Daniel J.; Reber, Paul J.
2012-01-01
Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key question is whether this observation reflects parallel intact memory systems or an integrated representation of memory in healthy participants. Learning of complex tasks in which both explicit instruction and practice is used depends on both kinds of memory, and how these systems interact will be an important component of the learning process. Theories that posit an integrated, or single, memory system for both types of memory predict that explicit instruction should contribute directly to strengthening task knowledge. In contrast, if the two types of memory are independent and acquired in parallel, explicit knowledge should have no direct impact and may serve in a “scaffolding” role in complex learning. Using an implicit perceptual-motor sequence learning task, the effect of explicit pre-training instruction on skill learning and performance was assessed. Explicit pre-training instruction led to robust explicit knowledge, but sequence learning did not benefit from the contribution of pre-training sequence memorization. The lack of an instruction benefit suggests that during skill learning, implicit and explicit memory operate independently. While healthy participants will generally accrue parallel implicit and explicit knowledge in complex tasks, these types of information appear to be separately represented in the human brain consistent with multiple memory systems theory. PMID:23280147
Neuro-Cognitive Intervention for Working Memory: Preliminary Results and Future Directions.
Bree, Kathleen D; Beljan, Paul
2016-01-01
Definitions of working memory identify it as a function of the executive function system in which an individual maintains two or more pieces of information in mind and uses that information simultaneously for some purpose. In academics, working memory is necessary for a variety of functions, including attending to the information one's teacher presents and then using that information simultaneously for problem solving. Research indicates difficulties with working memory are observed in children with mathematics learning disorder (MLD) and reading disorders (RD). To improve working memory and other executive function difficulties, and as an alternative to medication treatments for attention and executive function disorders, the Motor Cognition(2)® (MC(2)®)program was developed. Preliminary research on this program indicates statistically significant improvements in working memory, mathematics, and nonsense word decoding for reading. Further research on the MC(2)® program and its impact on working memory, as well as other areas of executive functioning, is warranted.
Silver, Henry; Mandiuk, Nina; Einoch, Reef; Susser, Ehud; Danovich, Lena; Bilker, Warren; Youdim, Moussa; Weinreb, Orly
2015-05-01
Verbal memory impairment in schizophrenia is associated with abnormalities in gamma-aminobutyric acid (GABA)-ergic and brain-derived neurotrophic factor (BDNF) systems. Recent evidence from animal and clinical studies that adding fluvoxamine to antipsychotics alters the expression of transcripts encoding for the GABA-A receptor and BDNF led us to postulate that fluvoxamine augmentation may improve memory in schizophrenia. To test this, we examined the effect of add-on fluvoxamine on verbal memory and other cognitive functions and related it to the expression of mRNA coding for the GABA-A receptor and BDNF in peripheral mononuclear cells (PMC) of schizophrenic patients. Twenty-nine patients completed a 6-week study in which fluvoxamine (100 mg/day) was added to ongoing antipsychotic treatment. Verbal memory, abstraction working memory, object and face recognition, and psychomotor speed and clinical symptoms were assessed at baseline and after 3 and 6 weeks of treatment. Blood samples were taken at baseline and weeks 1, 3, and 6 and PMC was assayed for the GABA-A beta3 receptor and BDNF mRNA by quantitative real-time reverse transcription-PCR. Associative and logical verbal memory improved significantly and showed a significant correlation with changes in PMC BDNF and GABA-A beta3 receptor mRNA, which increased during treatment. Abstraction and object recognition improved, but this did not correlate with PMC measures. Negative and positive symptoms improved significantly; the latter showed significant correlations with changes in PMC measures. Addition of fluvoxamine to antipsychotics improves verbal memory. It is postulated that the mechanism involves enhanced GABA-A receptor/BDNF-dependent synaptic plasticity in the hippocampus.
Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation
Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph; Stickgold, Robert
2010-01-01
Summary It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects (n=99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. PMID:20417102
RTSJ memory areas and their affects on the performance of a flight-like attitude control system
NASA Technical Reports Server (NTRS)
Niessner, Albert F.; Benowitz, Edward G.
2003-01-01
The two most important factors in improving performance in any software system, but especially a real-time, embeded system, are knowing which components are the low performers, and knowing what can be done to improve their performance.
Valizadegan, Farhad; Oryan, Shahrbanoo; Nasehi, Mohammad; Zarrindast, Mohammad Reza
2013-05-01
The amygdala is the key brain structure for anxiety and emotional memory storage. We examined the involvement of β-adrenoreceptors in the basolateral amygdala (BLA) and their interaction with morphine in modulating these behaviors. The elevated plus-maze has been employed for investigating anxiety and memory. Male Wistar rats were used for this test. We injected morphine (4, 5, and 6 mg/kg) intraperitoneally, while salbutamol (albuterol) (1, 2, and 4 μg/rat) and propranolol (1, 2, and 4 μg/rat) were injected into the BLA. Open- arms time percentage (%OAT), open- arms entry percentage (%OAE), and locomotor activity were determined by this behavioral test. Retention was tested 24 hours later. Intraperitoneal injection of morphine (6 mg/kg) had an anxiolytic-like effect and improvement of memory. The highest dose of salbutamol decreased the anxiety parameters in test session and improved the memory in retest session. Coadministration of salbutamol and ineffective dose of morphine presenting anxiolytic response. In this case, the memory was improved. Intra-BLA administration of propranolol (4 μg/rat) decreased %OAT in the test session, while had no effect on memory formation. Coadministration of propranolol and morphine (6 mg/kg) showed an increase in %OAT. There was not any significant change in the above- mentioned parameter in the retest session. Coadministration of morphine and propranolol with the effective dose of salbutamol showed that propranolol could reverse anxiolytic-like effect. We found that opioidergic and β-adrenergic systems have the same effects on anxiety and memory in the BLA; but these effects are independent of each other.
Developmental dissociation between the maturation of procedural memory and declarative memory.
Finn, Amy S; Kalra, Priya B; Goetz, Calvin; Leonard, Julia A; Sheridan, Margaret A; Gabrieli, John D E
2016-02-01
Declarative memory and procedural memory are known to be two fundamentally different kinds of memory that are dissociable in their psychological characteristics and measurement (explicit vs. implicit) and in the neural systems that subserve each kind of memory. Declarative memory abilities are known to improve from childhood through young adulthood, but the developmental maturation of procedural memory is largely unknown. We compared 10-year-old children and young adults on measures of declarative memory and working memory capacity and on four measures of procedural memory that have been strongly dissociated from declarative memory (mirror tracing, rotary pursuit, probabilistic classification, and artificial grammar). Children had lesser declarative memory ability and lesser working memory capacity than adults, but children exhibited learning equivalent to adults on all four measures of procedural memory. Therefore, declarative memory and procedural memory are developmentally dissociable, with procedural memory being adult-like by age 10years and declarative memory continuing to mature into young adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.
Living Design Memory: Framework, Implementation, Lessons Learned.
ERIC Educational Resources Information Center
Terveen, Loren G.; And Others
1995-01-01
Discusses large-scale software development and describes the development of the Designer Assistant to improve software development effectiveness. Highlights include the knowledge management problem; related work, including artificial intelligence and expert systems, software process modeling research, and other approaches to organizational memory;…
NASA Technical Reports Server (NTRS)
Chung, Ming-Ying; Ciardo, Gianfranco; Siminiceanu, Radu I.
2007-01-01
The Saturation algorithm for symbolic state-space generation, has been a recent break-through in the exhaustive veri cation of complex systems, in particular globally-asyn- chronous/locally-synchronous systems. The algorithm uses a very compact Multiway Decision Diagram (MDD) encoding for states and the fastest symbolic exploration algo- rithm to date. The distributed version of Saturation uses the overall memory available on a network of workstations (NOW) to efficiently spread the memory load during the highly irregular exploration. A crucial factor in limiting the memory consumption during the symbolic state-space generation is the ability to perform garbage collection to free up the memory occupied by dead nodes. However, garbage collection over a NOW requires a nontrivial communication overhead. In addition, operation cache policies become critical while analyzing large-scale systems using the symbolic approach. In this technical report, we develop a garbage collection scheme and several operation cache policies to help on solving extremely complex systems. Experiments show that our schemes improve the performance of the original distributed implementation, SmArTNow, in terms of time and memory efficiency.
Arafa, Nadia M S; Ali, Elham H A; Hassan, Mohamed Kamel
2017-11-01
Canagliflozin (CAN) is a sodium-glucose co-transporter 2 (SGLT2) inhibitor indicated to improve glycemic control in adults with type 2 diabetes mellitus. There is a little information about its effect on the cholinergic system that proposed mechanism for memory improvement occurring by SGLT2 drugs. This study aimed to estimate the effect of CAN as compared to galantamine (GAL) treatments for two weeks on scopolamine hydrobromide (SCO)-induced memory dysfunction in experimental rats. Animals divided into six groups; control (CON), CAN, GAL, SCO, SCO + CAN and SCO + GAL. Results indicated significant decrease in body weights of the CAN groups as compared to control values. Moreover, in the SCO + CAN and SCO + GAL the number of arm entry and number of correct alternation in Y maze task increased and showed improvement in the water maze task, acetylcholinesterase (AChE) activities decreased significantly, while monoamines levels significantly increased compared with the SCO group values. Results also recorded acetylcholine M1 receptor (M1 mAChR) in SCO + CAN or SCO + GAL groups in comparison with the SCO group. The study suggested that canagliflozin might improve memory dysfunction induced by scopolamine hydrobromide via cholinergic and monoamines system. Copyright © 2017 Elsevier B.V. All rights reserved.
Design, fabrication, testing and delivery of a feasibility model laminated ferrite memory
NASA Technical Reports Server (NTRS)
Heckler, H. C.
1973-01-01
The effect of using multiword addressing with laminated ferrite arrays was made. Both a reduction in the number of components, and a reduction in power consumption was obtained for memory capacities between one million bits and one million words. An investigation into the effect of variations in the processing steps resulted in a number of process modifications that improved the quality of the arrays. A feasibility model laminated ferrite memory system was constructed by modifying a commercial plated wire memory system to operate with laminated ferrite arrays. To provide flexibility for the testing of the laminated ferrite memory, an exerciser has been constructed to automatically control the loading and recirculation of arbitrary size checkerboard patterns of one's and zero's and to display the patterns of stored information on a CRT screen.
A Survey of Techniques for Modeling and Improving Reliability of Computing Systems
Mittal, Sparsh; Vetter, Jeffrey S.
2015-04-24
Recent trends of aggressive technology scaling have greatly exacerbated the occurrences and impact of faults in computing systems. This has made `reliability' a first-order design constraint. To address the challenges of reliability, several techniques have been proposed. In this study, we provide a survey of architectural techniques for improving resilience of computing systems. We especially focus on techniques proposed for microarchitectural components, such as processor registers, functional units, cache and main memory etc. In addition, we discuss techniques proposed for non-volatile memory, GPUs and 3D-stacked processors. To underscore the similarities and differences of the techniques, we classify them based onmore » their key characteristics. We also review the metrics proposed to quantify vulnerability of processor structures. Finally, we believe that this survey will help researchers, system-architects and processor designers in gaining insights into the techniques for improving reliability of computing systems.« less
A Survey of Techniques for Modeling and Improving Reliability of Computing Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Vetter, Jeffrey S.
Recent trends of aggressive technology scaling have greatly exacerbated the occurrences and impact of faults in computing systems. This has made `reliability' a first-order design constraint. To address the challenges of reliability, several techniques have been proposed. In this study, we provide a survey of architectural techniques for improving resilience of computing systems. We especially focus on techniques proposed for microarchitectural components, such as processor registers, functional units, cache and main memory etc. In addition, we discuss techniques proposed for non-volatile memory, GPUs and 3D-stacked processors. To underscore the similarities and differences of the techniques, we classify them based onmore » their key characteristics. We also review the metrics proposed to quantify vulnerability of processor structures. Finally, we believe that this survey will help researchers, system-architects and processor designers in gaining insights into the techniques for improving reliability of computing systems.« less
Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro
2013-11-01
Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Hippocampal-neocortical functional reorganization underlies children's cognitive development
Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C.; Menon, Vinod
2014-01-01
The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development – the transition from procedure-based to memory-based problem solving strategies – are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal fMRI in children, ages 7 to 9, revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Critically, longitudinal improvements in retrieval strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval strategy use continued to improve through adolescence into adulthood, and was associated with decreased activation but more stable inter-problem representations in the hippocampus. Our findings provide novel insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving, and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development. PMID:25129076
Hippocampal-neocortical functional reorganization underlies children's cognitive development.
Qin, Shaozheng; Cho, Soohyun; Chen, Tianwen; Rosenberg-Lee, Miriam; Geary, David C; Menon, Vinod
2014-09-01
The importance of the hippocampal system for rapid learning and memory is well recognized, but its contributions to a cardinal feature of children's cognitive development-the transition from procedure-based to memory-based problem-solving strategies-are unknown. Here we show that the hippocampal system is pivotal to this strategic transition. Longitudinal functional magnetic resonance imaging (fMRI) in 7-9-year-old children revealed that the transition from use of counting to memory-based retrieval parallels increased hippocampal and decreased prefrontal-parietal engagement during arithmetic problem solving. Longitudinal improvements in retrieval-strategy use were predicted by increased hippocampal-neocortical functional connectivity. Beyond childhood, retrieval-strategy use continued to improve through adolescence into adulthood and was associated with decreased activation but more stable interproblem representations in the hippocampus. Our findings provide insights into the dynamic role of the hippocampus in the maturation of memory-based problem solving and establish a critical link between hippocampal-neocortical reorganization and children's cognitive development.
Enhancements to the IBM version of COSMIC/NASTRAN
NASA Technical Reports Server (NTRS)
Brown, W. Keith
1989-01-01
Major improvements were made to the IBM version of COSMIC/NASTRAN by RPK Corporation under contract to IBM Corporation. These improvements will become part of COSMIC's IBM version and will be available in the second quarter of 1989. The first improvement is the inclusion of code to take advantage of IBM's new Vector Facility (VF) on its 3090 machines. The remaining improvements are modifications that will benefit all users as a result of the extended addressing capability provided by the MVS/XA operating system. These improvements include the availability of an in-memory data base that potentially eliminates the need for I/O to the PRIxx disk files. Another improvement is the elimination of multiple load modules that have to be loaded for every link switch within NASTRAN. The last improvement allows for NASTRAN to execute above the 16 mega-byte line. This improvement allows for NASTRAN to have access to 2 giga-bytes of memory for open core and the in-memory data base.
Keshavarzian, Elnaz; Ghasemzadeh, Zahra; Rezayof, Ameneh
2018-05-18
Stress seems to be an important risk factor in the beginning and continuing stages of cigarette tobacco smoking in humans. Considering that both of nicotine administration and stress exposure affect cognitive functions including memory formation, the aim of the present study was 1) to evaluate the effect of subcutaneous (s.c.) administration of nicotine on memory formation under stress and 2) to assess the possible role of the basolateral amygdala (BLA) dopamine D1 and D2 receptors in the effect of nicotine on stress-induced memory retrieval impairment. Adult male wistar rats were bilaterally implanted in the BLA. A step-through type passive avoidance task was used to measure memory retrieval. To induce acute stress, the animals were placed on an elevated platform. The results showed that pre-test exposure to 20 and 30 min stress, but not 10 min, impaired memory retrieval. Nicotine administration (0.05 mg/kg, s.c.) improved stress-induced memory retrieval impairment. The activation of the BLA dopamine receptors via bilateral microinjection of apomorphine (0.025-0.4 μg/rat), a non-selective dopamine receptor agonist, potentiated the effect of nicotine on stress-induced memory retrieval impairment. Interestingly, intra-BLA microinjection of SCH23390 (a selective dopamine D1 receptor antagonist; 0.02-0.5 μg/rat) or sulpiride (a selective dopamine D2 receptor antagonist; 0.02-0.5 μg/rat) dose-dependently inhibited nicotine-induced improvement of the stress amnesic effect. Taken together, it can be concluded that stress-induced impairment of memory retrieval can be improved by nicotine administration. Moreover, the dopaminergic neurotransmission in the BLA through D1 and D2 receptors mediates the improving effect of nicotine on stress-induced memory retrieval impairment. Copyright © 2018 Elsevier Inc. All rights reserved.
Wesnes, Keith A; Aarsland, Dag; Ballard, Clive; Londos, Elisabet
2015-01-01
In both dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), attentional dysfunction is a core clinical feature together with disrupted episodic memory. This study evaluated the cognitive effects of memantine in DLB and PDD using automated tests of attention and episodic memory. A randomised double-blind, placebo-controlled, 24-week three centre trial of memantine (20 mg/day) was conducted in which tests of attention (simple and choice reaction time) and word recognition (immediate and delayed) from the CDR System were administered prior to dosing and again at 12 and 24 weeks. Although other results from this study have been published, the data from the CDR System tests were not included and are presented here for the first time. Data were available for 51 patients (21 DLB and 30 PDD). In both populations, memantine produced statistically significant medium to large effect sized improvements to choice reaction time, immediate and delayed word recognition. These are the first substantial improvements on cognitive tests of attention and episodic recognition memory identified with memantine in either DLB or PDD. Copyright © 2014 John Wiley & Sons, Ltd.
Lee, Tih-Shih; Goh, Siau Juinn Alexa; Quek, Shin Yi; Phillips, Rachel; Guan, Cuntai; Cheung, Yin Bun; Feng, Lei; Teng, Stephanie Sze Wei; Wang, Chuan Chu; Chin, Zheng Yang; Zhang, Haihong; Ng, Tze Pin; Lee, Jimmy; Keefe, Richard; Krishnan, K Ranga Rama
2013-01-01
Cognitive decline in aging is a pressing issue associated with significant healthcare costs and deterioration in quality of life. Previously, we reported the successful use of a novel brain-computer interface (BCI) training system in improving symptoms of attention deficit hyperactivity disorder. Here, we examine the feasibility of the BCI system with a new game that incorporates memory training in improving memory and attention in a pilot sample of healthy elderly. This study investigates the safety, usability and acceptability of our BCI system to elderly, and obtains an efficacy estimate to warrant a phase III trial. Thirty-one healthy elderly were randomized into intervention (n = 15) and waitlist control arms (n = 16). Intervention consisted of an 8-week training comprising 24 half-hour sessions. A usability and acceptability questionnaire was administered at the end of training. Safety was investigated by querying users about adverse events after every session. Efficacy of the system was measured by the change of total score from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) before and after training. Feedback on the usability and acceptability questionnaire was positive. No adverse events were reported for all participants across all sessions. Though the median difference in the RBANS change scores between arms was not statistically significant, an effect size of 0.6SD was obtained, which reflects potential clinical utility according to Simon's randomized phase II trial design. Pooled data from both arms also showed that the median change in total scores pre and post-training was statistically significant (Mdn = 4.0; p<0.001). Specifically, there were significant improvements in immediate memory (p = 0.038), visuospatial/constructional (p = 0.014), attention (p = 0.039), and delayed memory (p<0.001) scores. Our BCI-based system shows promise in improving memory and attention in healthy elderly, and appears to be safe, user-friendly and acceptable to senior users. Given the efficacy signal, a phase III trial is warranted. ClinicalTrials.gov NCT01661894.
Improved memory loading techniques for the TSRV display system
NASA Technical Reports Server (NTRS)
Easley, W. C.; Lynn, W. A.; Mcluer, D. G.
1986-01-01
A recent upgrade of the TSRV research flight system at NASA Langley Research Center retained the original monochrome display system. However, the display memory loading equipment was replaced requiring design and development of new methods of performing this task. This paper describes the new techniques developed to load memory in the display system. An outdated paper tape method for loading the BOOTSTRAP control program was replaced by EPROM storage of the characters contained on the tape. Rather than move a tape past an optical reader, a counter was implemented which steps sequentially through EPROM addresses and presents the same data to the loader circuitry. A cumbersome cassette tape method for loading the applications software was replaced with a floppy disk method using a microprocessor terminal installed as part of the upgrade. The cassette memory image was transferred to disk and a specific software loader was written for the terminal which duplicates the function of the cassette loader.
Memory availability and referential access
Johns, Clinton L.; Gordon, Peter C.; Long, Debra L.; Swaab, Tamara Y.
2013-01-01
Most theories of coreference specify linguistic factors that modulate antecedent accessibility in memory; however, whether non-linguistic factors also affect coreferential access is unknown. Here we examined the impact of a non-linguistic generation task (letter transposition) on the repeated-name penalty, a processing difficulty observed when coreferential repeated names refer to syntactically prominent (and thus more accessible) antecedents. In Experiment 1, generation improved online (event-related potentials) and offline (recognition memory) accessibility of names in word lists. In Experiment 2, we manipulated generation and syntactic prominence of antecedent names in sentences; both improved online and offline accessibility, but only syntactic prominence elicited a repeated-name penalty. Our results have three important implications: first, the form of a referential expression interacts with an antecedent’s status in the discourse model during coreference; second, availability in memory and referential accessibility are separable; and finally, theories of coreference must better integrate known properties of the human memory system. PMID:24443621
Multifaceted Prospective Memory Intervention to Improve Medication Adherence.
Insel, Kathie C; Einstein, Gilles O; Morrow, Daniel G; Koerner, Kari M; Hepworth, Joseph T
2016-03-01
To test whether a multifaceted prospective memory intervention improved adherence to antihypertensive medications and to assess whether executive function and working memory processes moderated the intervention effects. Two-group longitudinal randomized control trial. Community. Individuals aged 65 and older without signs of dementia or symptoms of severe depression who were self-managing prescribed medication. After 4 weeks of initial adherence monitoring using a medication event monitoring system, individuals with 90% or less adherence were randomly assigned to groups. The prospective memory intervention was designed to provide strategies that switch older adults from relying on executive function and working memory processes (that show effects of cognitive aging) to mostly automatic associative processes (that are relatively spared with normal aging) for remembering to take medications. Strategies included establishing a routine, establishing cues strongly associated with medication taking actions, performing the action immediately upon thinking about it, using a medication organizer, and imagining medication taking to enhance encoding and improve cuing. There was significant improvement in adherence in the intervention group (57% at baseline to 78% after the intervention), but most of these gains were lost after 5 months. The control condition started at 68% and was stable during the intervention, but dropped to 62%. Executive function and working memory moderated the intervention effect, with the intervention producing greater benefit for those with lower executive function and working memory. The intervention improved adherence, but the benefits were not sustained. Further research is needed to determine how to sustain the substantial initial benefits. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.
Blackcomb: Hardware-Software Co-design for Non-Volatile Memory in Exascale Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, Robert
Summary of technical results of Blackcomb Memory Devices We explored various different memory technologies (STTRAM, PCRAM, FeRAM, and ReRAM). The progress can be classified into three categories, below. Modeling and Tool Releases Various modeling tools have been developed over the last decade to help in the design of SRAM or DRAM-based memory hierarchies. To explore new design opportunities that NVM technologies can bring to the designers, we have developed similar high-level models for NVM, including PCRAMsim [Dong 2009], NVSim [Dong 2012], and NVMain [Poremba 2012]. NVSim is a circuit-level model for NVM performance, energy, and area estimation, which supports variousmore » NVM technologies, including STT-RAM, PCRAM, ReRAM, and legacy NAND Flash. NVSim is successfully validated against industrial NVM prototypes, and it is expected to help boost architecture-level NVM-related studies. On the other side, NVMain is a cycle accurate main memory simulator designed to simulate emerging nonvolatile memories at the architectural level. We have released these models as open source tools and provided contiguous support to them. We also proposed PS3-RAM, which is a fast, portable and scalable statistical STT-RAM reliability analysis model [Wen 2012]. Design Space Exploration and Optimization With the support of these models, we explore different device/circuit optimization techniques. For example, in [Niu 2012a] we studied the power reduction technique for the application of ECC scheme in ReRAM designs and proposed to use ECC code to relax the BER (Bit Error Rate) requirement of a single memory to improve the write energy consumption and latency for both 1T1R and cross-point ReRAM designs. In [Xu 2011], we proposed a methodology to design STT-RAM for different optimization goals such as read performance, write performance and write energy by leveraging the trade-off between write current and write time of MTJ. We also studied the tradeoffs in building a reliable crosspoint ReRAM array [Niu 2012b]. We have conducted an in depth analysis of the circuit and system level design implications of multi-layer cross-point Resistive RAM (MLCReRAM) from performance, power and reliability perspectives [Xu 2013]. The objective of this study is to understand the design trade-offs of this technology with respect to the MLC Phase Change Memory (MLCPCM).Our MLC ReRAM design at the circuit and system levels indicates that different resistance allocation schemes, programming strategies, peripheral designs, and material selections profoundly affect the area, latency, power, and reliability of MLC ReRAM. Based on this analysis, we conduct two case studies: first we compare MLC ReRAM design against MLC phase-change memory (PCM) and multi-layer cross-point ReRAM design, and point out why multi-level ReRAM is appealing; second we further explore the design space for MLC ReRAM. Architecture and Application We explored hybrid checkpointing using phase-change memory for future exascale systems [Dong 2011] and showed that the use of nonvolatile memory for local checkpointing significantly increases the number of faults covered by local checkpoints and reduces the probability of a global failure in the middle of a global checkpoint to less than 1%. We also proposed a technique called i2WAP to mitigate the write variations in NVM-based last-level cache for the improvement of the NVM lifetime [Wang 2013]. Our wear leveling technique attempts to work around the limitations of write endurance by arranging data access so that write operations can be distributed evenly across all the storage cells. During our intensive research on fault-tolerant NVM design, we found that ECC cannot effectively tolerate hard errors from limited write endurance and process imperfection. Therefore, we devised a novel Point and Discard (PAD) architecture in in [ 2012] as a hard-error-tolerant architecture for ReRAM-based Last Level Caches. PAD improves the lifetime of ReRAM caches by 1.6X-440X under different process variations without performance overhead in the system's early life. We have investigated the applicability of NVM for persistent memory design [Zhao 2013]. New byte addressable NVM enables fast persistent memory that allows in-memory persistent data objects to be updated with much higher throughput. Despite the significant improvement, the performance of these designs is only 50% of the native system with no persistence support, due to the logging or copy-on-write mechanisms used to update the persistent memory. A challenge in this approach is therefore how to efficiently enable atomic, consistent, and durable updates to ensure data persistence that survives application and/or system failures. We have designed a persistent memory system, called Klin, that can provide performance as close as that of the native system. The Klin design adopts a non-volatile cache and a non-volatile main memory for constructing a multi-versioned durable memory system, enabling atomic updates without logging or copy-on-write. Our evaluation shows that the proposed Kiln mechanism can achieve up to 2X of performance improvement to NVRAM-based persistent memory employing write-ahead logging. In addition, our design has numerous practical advantages: a simple and intuitive abstract interface, microarchitecture-level optimizations, fast recovery from failures, and no redundant writes to slow non-volatile storage media. The work was published in MICRO 2013 and received Best Paper Honorable Mentioned Award.« less
Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue
Rojas, Julio C.; Bruchey, Aleksandra K.; Gonzalez-Lima, F.
2011-01-01
This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blue’s action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment. PMID:22067440
Analysis of memory use for improved design and compile-time allocation of local memory
NASA Technical Reports Server (NTRS)
Mcniven, Geoffrey D.; Davidson, Edward S.
1986-01-01
Trace analysis techniques are used to study memory referencing behavior for the purpose of designing local memories and determining how to allocate them for data and instructions. In an attempt to assess the inherent behavior of the source code, the trace analysis system described here reduced the effects of the compiler and host architecture on the trace by using a technical called flattening. The variables in the trace, their associated single-assignment values, and references are histogrammed on the basis of various parameters describing memory referencing behavior. Bounds are developed specifying the amount of memory space required to store all live values in a particular histogram class. The reduction achieved in main memory traffic by allocating local memory is specified for each class.
Ellenbogen, Jeffrey M; Hulbert, Justin C; Stickgold, Robert; Dinges, David F; Thompson-Schill, Sharon L
2006-07-11
Mounting behavioral evidence in humans supports the claim that sleep leads to improvements in recently acquired, nondeclarative memories. Examples include motor-sequence learning; visual-discrimination learning; and perceptual learning of a synthetic language. In contrast, there are limited human data supporting a benefit of sleep for declarative (hippocampus-mediated) memory in humans (for review, see). This is particularly surprising given that animal models (e.g.,) and neuroimaging studies (e.g.,) predict that sleep facilitates hippocampus-based memory consolidation. We hypothesized that we could unmask the benefits of sleep by challenging the declarative memory system with competing information (interference). This is the first study to demonstrate that sleep protects declarative memories from subsequent associative interference, and it has important implications for understanding the neurobiology of memory consolidation.
Improved associative recall of binary data in volume holographic memories
NASA Astrophysics Data System (ADS)
Betzos, George A.; Laisné, Alexandre; Mitkas, Pericles A.
1999-11-01
A new technique is presented that improves the results of associative recall in a volume holographic memory system. A background is added to the normal search argument to increase the amount of optical power that is used to reconstruct the reference beams in the crystal. This is combined with post-processing of the captured image of the reference beams. The use of both the background and post-processing greatly improves the results by allowing associative recall using small arguments. In addition, the number of false hits is reduced and misses are virtually eliminated.
Kuwajima, Mariko; Sawaguchi, Toshiyuki
2010-10-01
General fluid intelligence (gF) is a major component of intellect in both adults and children. Whereas its neural substrates have been studied relatively thoroughly in adults, those are poorly understood in children, particularly preschoolers. Here, we hypothesized that gF and visuospatial working memory share a common neural system within the lateral prefrontal cortex (LPFC) during the preschool years (4-6 years). At the behavioral level, we found that gF positively and significantly correlated with abilities (especially accuracy) in visuospatial working memory. Optical topography revealed that the LPFC of preschoolers was activated and deactivated during the visuospatial working memory task and the gF task. We found that the spatio-temporal features of neural activity in the LPFC were similar for both the visuospatial working memory task and the gF task. Further, 2 months of training for the visuospatial working memory task significantly increased gF in the preschoolers. These findings suggest that a common neural system in the LPFC is recruited to improve the visuospatial working memory and gF in preschoolers. Efficient recruitment of this neural system may be important for good performance in these functions in preschoolers, and behavioral training using this system would help to increase gF at these ages.
Squire, Larry R.; Genzel, Lisa; Wixted, John T.; Morris, Richard G.
2015-01-01
Conscious memory for a new experience is initially dependent on information stored in both the hippocampus and neocortex. Systems consolidation is the process by which the hippocampus guides the reorganization of the information stored in the neocortex such that it eventually becomes independent of the hippocampus. Early evidence for systems consolidation was provided by studies of retrograde amnesia, which found that damage to the hippocampus-impaired memories formed in the recent past, but typically spared memories formed in the more remote past. Systems consolidation has been found to occur for both episodic and semantic memories and for both spatial and nonspatial memories, although empirical inconsistencies and theoretical disagreements remain about these issues. Recent work has begun to characterize the neural mechanisms that underlie the dialogue between the hippocampus and neocortex (e.g., “neural replay,” which occurs during sharp wave ripple activity). New work has also identified variables, such as the amount of preexisting knowledge, that affect the rate of consolidation. The increasing use of molecular genetic tools (e.g., optogenetics) can be expected to further improve understanding of the neural mechanisms underlying consolidation. PMID:26238360
Interference effects between memory systems in the acquisition of a skill.
Gagné, Marie-Hélène; Cohen, Henri
2016-10-01
There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.
Study on advanced information processing system
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Liu, Jyh-Charn
1992-01-01
Issues related to the reliability of a redundant system with large main memory are addressed. In particular, the Fault-Tolerant Processor (FTP) for Advanced Launch System (ALS) is used as a basis for our presentation. When the system is free of latent faults, the probability of system crash due to nearly-coincident channel faults is shown to be insignificant even when the outputs of computing channels are infrequently voted on. In particular, using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs--with a low hardware overhead--can be used to reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, we have developed two schemes, called Scheme 1 and Scheme 2, to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter.
Study on fault-tolerant processors for advanced launch system
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Liu, Jyh-Charn
1990-01-01
Issues related to the reliability of a redundant system with large main memory are addressed. The Fault-Tolerant Processor (FTP) for the Advanced Launch System (ALS) is used as a basis for the presentation. When the system is free of latent faults, the probability of system crash due to multiple channel faults is shown to be insignificant even when voting on the outputs of computing channels is infrequent. Using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing redundancy or the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by those CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs (with a very low hardware overhead) can be used to dramatically reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, two different schemes were developed to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter.
Dere, Ekrem; De Souza-Silva, Maria A; Topic, Bianca; Spieler, Richard E; Haas, Helmut L; Huston, Joseph P
2003-01-01
The brain's histaminergic system has been implicated in hippocampal synaptic plasticity, learning, and memory, as well as brain reward and reinforcement. Our past pharmacological and lesion studies indicated that the brain's histamine system exerts inhibitory effects on the brain's reinforcement respective reward system reciprocal to mesolimbic dopamine systems, thereby modulating learning and memory performance. Given the close functional relationship between brain reinforcement and memory processes, the total disruption of brain histamine synthesis via genetic disruption of its synthesizing enzyme, histidine decarboxylase (HDC), in the mouse might have differential effects on learning dependent on the task-inherent reinforcement contingencies. Here, we investigated the effects of an HDC gene disruption in the mouse in a nonreinforced object exploration task and a negatively reinforced water-maze task as well as on neo- and ventro-striatal dopamine systems known to be involved in brain reward and reinforcement. Histidine decarboxylase knockout (HDC-KO) mice had higher dihydrophenylacetic acid concentrations and a higher dihydrophenylacetic acid/dopamine ratio in the neostriatum. In the ventral striatum, dihydrophenylacetic acid/dopamine and 3-methoxytyramine/dopamine ratios were higher in HDC-KO mice. Furthermore, the HDC-KO mice showed improved water-maze performance during both hidden and cued platform tasks, but deficient object discrimination based on temporal relationships. Our data imply that disruption of brain histamine synthesis can have both memory promoting and suppressive effects via distinct and independent mechanisms and further indicate that these opposed effects are related to the task-inherent reinforcement contingencies.
Evaluating Non-In-Place Update Techniques for Flash-Based Transaction Processing Systems
NASA Astrophysics Data System (ADS)
Wang, Yongkun; Goda, Kazuo; Kitsuregawa, Masaru
Recently, flash memory is emerging as the storage device. With price sliding fast, the cost per capacity is approaching to that of SATA disk drives. So far flash memory has been widely deployed in consumer electronics even partly in mobile computing environments. For enterprise systems, the deployment has been studied by many researchers and developers. In terms of the access performance characteristics, flash memory is quite different from disk drives. Without the mechanical components, flash memory has very high random read performance, whereas it has a limited random write performance because of the erase-before-write design. The random write performance of flash memory is comparable with or even worse than that of disk drives. Due to such a performance asymmetry, naive deployment to enterprise systems may not exploit the potential performance of flash memory at full blast. This paper studies the effectiveness of using non-in-place-update (NIPU) techniques through the IO path of flash-based transaction processing systems. Our deliberate experiments using both open-source DBMS and commercial DBMS validated the potential benefits; x3.0 to x6.6 performance improvement was confirmed by incorporating non-in-place-update techniques into file system without any modification of applications or storage devices.
Acoustic resonance at the dawn of life: musical fundamentals of the psychoanalytic relationship.
Pickering, Judith
2015-11-01
This paper uses a case vignette to show how musical elements of speech are a crucial source of information regarding the patient's emotional states and associated memory systems that are activated at a given moment in the analytic field. There are specific psychoacoustic markers associated with different memory systems which indicate whether a patient is immersed in a state of creative intersubjective relatedness related to autobiographical memory, or has been triggered into a traumatic memory system. When a patient feels immersed in an atmosphere of intersubjective mutuality, dialogue features a rhythmical and tuneful form of speech featuring improvized reciprocal imitation, theme and variation. When the patient is catapulted into a traumatic memory system, speech becomes monotone and disjointed. Awareness of such acoustic features of the traumatic memory system helps to alert the analyst that such a shift has taken place informing appropriate responses and interventions. Communicative musicality (Malloch & Trevarthen 2009) originates in the earliest non-verbal vocal communication between infant and care-giver, states of primary intersubjectivity. Such musicality continues to be the primary vehicle for transmitting emotional meaning and for integrating right and left hemispheres. This enables communication that expresses emotional significance, personal value as well as conceptual reasoning. © 2015, The Society of Analytical Psychology.
The endocannabinoid system and associative learning and memory in zebrafish.
Ruhl, Tim; Moesbauer, Kirstin; Oellers, Nadine; von der Emde, Gerhard
2015-09-01
In zebrafish the medial pallium of the dorsal telencephalon represents an amygdala homolog structure, which is crucially involved in emotional associative learning and memory. Similar to the mammalian amygdala, the medial pallium contains a high density of endocannabinoid receptor CB1. To elucidate the role of the zebrafish endocannabinoid system in associative learning, we tested the influence of acute and chronic administration of receptor agonists (THC, WIN55,212-2) and antagonists (Rimonabant, AM-281) on two different learning paradigms. In an appetitively motivated two-alternative choice paradigm, animals learned to associate a certain color with a food reward. In a second set-up, a fish shuttle-box, animals associated the onset of a light stimulus with the occurrence of a subsequent electric shock (avoidance conditioning). Once fish successfully had learned to solve these behavioral tasks, acute receptor activation or inactivation had no effect on memory retrieval, suggesting that established associative memories were stable and not alterable by the endocannabinoid system. In both learning tasks, chronic treatment with receptor antagonists improved acquisition learning, and additionally facilitated reversal learning during color discrimination. In contrast, chronic CB1 activation prevented aversively motivated acquisition learning, while different effects were found on appetitively motivated acquisition learning. While THC significantly improved behavioral performance, WIN55,212-2 significantly impaired color association. Our findings suggest that the zebrafish endocannabinoid system can modulate associative learning and memory. Stimulation of the CB1 receptor might play a more specific role in acquisition and storage of aversive learning and memory, while CB1 blocking induces general enhancement of cognitive functions. Copyright © 2015 Elsevier B.V. All rights reserved.
Can verbal working memory training improve reading?
Banales, Erin; Kohnen, Saskia; McArthur, Genevieve
2015-01-01
The aim of the current study was to determine whether poor verbal working memory is associated with poor word reading accuracy because the former causes the latter, or the latter causes the former. To this end, we tested whether (a) verbal working memory training improves poor verbal working memory or poor word reading accuracy, and whether (b) reading training improves poor reading accuracy or verbal working memory in a case series of four children with poor word reading accuracy and verbal working memory. Each child completed 8 weeks of verbal working memory training and 8 weeks of reading training. Verbal working memory training improved verbal working memory in two of the four children, but did not improve their reading accuracy. Similarly, reading training improved word reading accuracy in all children, but did not improve their verbal working memory. These results suggest that the causal links between verbal working memory and reading accuracy may not be as direct as has been assumed.
Impact of memory bottleneck on the performance of graphics processing units
NASA Astrophysics Data System (ADS)
Son, Dong Oh; Choi, Hong Jun; Kim, Jong Myon; Kim, Cheol Hong
2015-12-01
Recent graphics processing units (GPUs) can process general-purpose applications as well as graphics applications with the help of various user-friendly application programming interfaces (APIs) supported by GPU vendors. Unfortunately, utilizing the hardware resource in the GPU efficiently is a challenging problem, since the GPU architecture is totally different to the traditional CPU architecture. To solve this problem, many studies have focused on the techniques for improving the system performance using GPUs. In this work, we analyze the GPU performance varying GPU parameters such as the number of cores and clock frequency. According to our simulations, the GPU performance can be improved by 125.8% and 16.2% on average as the number of cores and clock frequency increase, respectively. However, the performance is saturated when memory bottleneck problems incur due to huge data requests to the memory. The performance of GPUs can be improved as the memory bottleneck is reduced by changing GPU parameters dynamically.
How does a specific learning and memory system in the mammalian brain gain control of behavior?
McDonald, Robert J; Hong, Nancy S
2013-11-01
This review addresses a fundamental, yet poorly understood set of issues in systems neuroscience. The issues revolve around conceptualizations of the organization of learning and memory in the mammalian brain. One intriguing, and somewhat popular, conceptualization is the idea that there are multiple learning and memory systems in the mammalian brain and they interact in different ways to influence and/or control behavior. This approach has generated interesting empirical and theoretical work supporting this view. One issue that needs to be addressed is how these systems influence or gain control of voluntary behavior. To address this issue, we clearly specify what we mean by a learning and memory system. We then review two types of processes that might influence which memory system gains control of behavior. One set of processes are external factors that can affect which system controls behavior in a given situation including task parameters like the kind of information available to the subject, types of training experience, and amount of training. The second set of processes are brain mechanisms that might influence what memory system controls behavior in a given situation including executive functions mediated by the prefrontal cortex; switching mechanisms mediated by ascending neurotransmitter systems, the unique role of the hippocampus during learning. The issue of trait differences in control of different learning and memory systems will also be considered in which trait differences in learning and memory function are thought to potentially emerge from differences in level of prefrontal influence, differences in plasticity processes, differences in ascending neurotransmitter control, differential access to effector systems like motivational and motor systems. Finally, we present scenarios in which different mechanisms might interact. This review was conceived to become a jumping off point for new work directed at understanding these issues. The outcome of this work, in combination with other approaches, might improve understanding of the mechanisms of volition in human and non-human animals. Copyright © 2013 Wiley Periodicals, Inc.
Chip architecture - A revolution brewing
NASA Astrophysics Data System (ADS)
Guterl, F.
1983-07-01
Techniques being explored by microchip designers and manufacturers to both speed up memory access and instruction execution while protecting memory are discussed. Attention is given to hardwiring control logic, pipelining for parallel processing, devising orthogonal instruction sets for interchangeable instruction fields, and the development of hardware for implementation of virtual memory and multiuser systems to provide memory management and protection. The inclusion of microcode in mainframes eliminated logic circuits that control timing and gating of the CPU. However, improvements in memory architecture have reduced access time to below that needed for instruction execution. Hardwiring the functions as a virtual memory enhances memory protection. Parallelism involves a redundant architecture, which allows identical operations to be performed simultaneously, and can be directed with microcode to avoid abortion of intermediate instructions once on set of instructions has been completed.
Computational efficiency improvements for image colorization
NASA Astrophysics Data System (ADS)
Yu, Chao; Sharma, Gaurav; Aly, Hussein
2013-03-01
We propose an efficient algorithm for colorization of greyscale images. As in prior work, colorization is posed as an optimization problem: a user specifies the color for a few scribbles drawn on the greyscale image and the color image is obtained by propagating color information from the scribbles to surrounding regions, while maximizing the local smoothness of colors. In this formulation, colorization is obtained by solving a large sparse linear system, which normally requires substantial computation and memory resources. Our algorithm improves the computational performance through three innovations over prior colorization implementations. First, the linear system is solved iteratively without explicitly constructing the sparse matrix, which significantly reduces the required memory. Second, we formulate each iteration in terms of integral images obtained by dynamic programming, reducing repetitive computation. Third, we use a coarseto- fine framework, where a lower resolution subsampled image is first colorized and this low resolution color image is upsampled to initialize the colorization process for the fine level. The improvements we develop provide significant speedup and memory savings compared to the conventional approach of solving the linear system directly using off-the-shelf sparse solvers, and allow us to colorize images with typical sizes encountered in realistic applications on typical commodity computing platforms.
Huang, Min; Liu, Zhaoqing; Qiao, Liyan
2014-10-10
While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme.
Huang, Min; Liu, Zhaoqing; Qiao, Liyan
2014-01-01
While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme. PMID:25310473
HEC Applications on Columbia Project
NASA Technical Reports Server (NTRS)
Taft, Jim
2004-01-01
NASA's Columbia system consists of a cluster of twenty 512 processor SGI Altix systems. Each of these systems is 3 TFLOP/s in peak performance - approximately the same as the entire compute capability at NAS just one year ago. Each 512p system is a single system image machine with one Linunx O5, one high performance file system, and one globally shared memory. The NAS Terascale Applications Group (TAG) is chartered to assist in scaling NASA's mission critical codes to at least 512p in order to significantly improve emergency response during flight operations, as well as provide significant improvements in the codes. and rate of scientific discovery across the scientifc disciplines within NASA's Missions. Recent accomplishments are 4x improvements to codes in the ocean modeling community, 10x performance improvements in a number of computational fluid dynamics codes used in aero-vehicle design, and 5x improvements in a number of space science codes dealing in extreme physics. The TAG group will continue its scaling work to 2048p and beyond (10240 cpus) as the Columbia system becomes fully operational and the upgrades to the SGI NUMAlink memory fabric are in place. The NUMlink uprades dramatically improve system scalability for a single application. These upgrades will allow a number of codes to execute faster at higher fidelity than ever before on any other system, thus increasing the rate of scientific discovery even further
A Computerized Interactive Vocabulary Development System for Advanced Learners.
ERIC Educational Resources Information Center
Kukulska-Hulme, Agnes
1988-01-01
Argues that the process of recording newly encountered vocabulary items in a typical language learning situation can be improved through a computerized system of vocabulary storage based on database management software that improves the discovery and recording of meaning, subsequent retrieval of items for productive use, and memory retention.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Lingda; Hayes, Ari; Song, Shuaiwen
Modern GPUs employ cache to improve memory system efficiency. However, large amount of cache space is underutilized due to irregular memory accesses and poor spatial locality which exhibited commonly in GPU applications. Our experiments show that using smaller cache lines could improve cache space utilization, but it also frequently suffers from significant performance loss by introducing large amount of extra cache requests. In this work, we propose a novel cache design named tag-split cache (TSC) that enables fine-grained cache storage to address the problem of cache space underutilization while keeping memory request number unchanged. TSC divides tag into two partsmore » to reduce storage overhead, and it supports multiple cache line replacement in one cycle.« less
Tabassum, Saiqa; Haider, Saida
2018-02-10
Stressful and emotionally arousing experiences are remembered, and previous reports show that repeated exposure to stressful condition enhances emotional learning. However, the usefulness of the repeated exposure depends on the intensity and duration. Although repeated training as a strategy to improve memory performance is receiving increased attention from researchers, repeated training may induce stressful effects that have not yet been considered. The present study investigated whether exposure to repetitive learning trials with limited or extensive durations in a passive avoidance task (PAT) would be beneficial or harmful to emotional memory performance in rats. Rats were exposed to repetitive learning trials for two different durations in the limited exposure (exposure to four repetitive trials) and extensive exposure groups (exposure to 16 repetitive trials) in a single day to compare the impact of both conditions on rat emotional memory performance. Alterations in corticosterone content and associated oxidative and neurochemical systems were assessed to explore the underlying mechanism responsible for changes in emotional memory. Following extensive exposure, a negative impact on emotional memory was observed compared with the limited exposure group. A lack of any further improvement in memory function following extensive training exposure was supported by increased corticosterone levels, decreased 5-hydroxytryptamine (5-HT) levels and abnormal oxidative stress levels, which may induce negative effects on memory consolidation. It is suggested that limited exposure to repetitive learning trials is more useful for studying improvement in emotional memory, whereas extensive exposure may produce chronic stress-like condition that can be detrimental and responsible for compromised memory performance. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Effects of medicinal plants on Alzheimer's disease and memory deficits
Akram, Muhammad; Nawaz, Allah
2017-01-01
Alzheimer's disease is an age-related neurodegenerative disorder characterized by memory deficits. Various studies have been carried out to find therapeutic approaches for Alzheimer's disease. However, the proper treatment option is still not available. There is no cure for Alzheimer's disease, but symptomatic treatment may improve the memory and other dementia related problems. Traditional medicine is practiced worldwide as memory enhancer since ancient times. Natural therapy including herbs and medicinal plants has been used in the treatment of memory deficits such as dementia, amnesia, as well as Alzheimer's disease since a long time. Medicinal plants have been used in different systems of medicine, particularly Unani system of medicines and exhibited their powerful roles in the management and cure of memory disorders. Most of herbs and plants have been chemically evaluated and their efficacy has also been proven in clinical trials. However, the underlying mechanisms of actions are still on the way. In this paper, we have reviewed the role of different medicinal plants that play an important role in the treatment of Alzheimer's disease and memory deficits using conventional herbal therapy. PMID:28553349
Aberg, Kristoffer C; Müller, Julia; Schwartz, Sophie
2017-01-01
Anticipation and delivery of rewards improves memory formation, but little effort has been made to disentangle their respective contributions to memory enhancement. Moreover, it has been suggested that the effects of reward on memory are mediated by dopaminergic influences on hippocampal plasticity. Yet, evidence linking memory improvements to actual reward computations reflected in the activity of the dopaminergic system, i.e., prediction errors and expected values, is scarce and inconclusive. For example, different previous studies reported that the magnitude of prediction errors during a reinforcement learning task was a positive, negative, or non-significant predictor of successfully encoding simultaneously presented images. Individual sensitivities to reward and punishment have been found to influence the activation of the dopaminergic reward system and could therefore help explain these seemingly discrepant results. Here, we used a novel associative memory task combined with computational modeling and showed independent effects of reward-delivery and reward-anticipation on memory. Strikingly, the computational approach revealed positive influences from both reward delivery, as mediated by prediction error magnitude, and reward anticipation, as mediated by magnitude of expected value, even in the absence of behavioral effects when analyzed using standard methods, i.e., by collapsing memory performance across trials within conditions. We additionally measured trait estimates of reward and punishment sensitivity and found that individuals with increased reward (vs. punishment) sensitivity had better memory for associations encoded during positive (vs. negative) prediction errors when tested after 20 min, but a negative trend when tested after 24 h. In conclusion, modeling trial-by-trial fluctuations in the magnitude of reward, as we did here for prediction errors and expected value computations, provides a comprehensive and biologically plausible description of the dynamic interplay between reward, dopamine, and associative memory formation. Our results also underline the importance of considering individual traits when assessing reward-related influences on memory.
Richey, J. Elizabeth; Phillips, Jeffrey S.; Schunn, Christian D.; Schneider, Walter
2014-01-01
Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data [1], but less work has tested this relationship through experimental manipulation [2]. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants’ performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks [3], [4]. Participants’ improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning. PMID:25188356
Grizzell, J Alex; Patel, Sagar; Barreto, George E; Echeverria, Valentina
2017-08-01
Alzheimer's disease (AD) is associated with the progressive aggregation of hyperphosphorylated forms of the microtubule associated protein Tau in the central nervous system. Cotinine, the main metabolite of nicotine, reduced working memory deficits, synaptic loss, and amyloid β peptide aggregation into oligomers and plaques as well as inhibited the cerebral Tau kinase, glycogen synthase 3β (GSK3β) in the transgenic (Tg)6799 (5XFAD) mice. In this study, the effect of cotinine on visual recognition memory and cortical Tau phosphorylation at the GSK3β sites Serine (Ser)-396/Ser-404 and phospho-CREB were investigated in the Tg6799 and non-transgenic (NT) littermate mice. Tg mice showed short-term visual recognition memory impairment in the novel object recognition test, and higher levels of Tau phosphorylation when compared to NT mice. Cotinine significantly improved visual recognition memory performance increased CREB phosphorylation and reduced cortical Tau phosphorylation. Potential mechanisms underlying theses beneficial effects are discussed. Copyright © 2017. Published by Elsevier Inc.
Interpixel crosstalk cancellation on holographic memory
NASA Astrophysics Data System (ADS)
Ishii, Toshiki; Fujimura, Ryushi
2017-09-01
In holographic memory systems, there have been no practical techniques to minimize interpixel crosstalk thus far. We developed an interpixel crosstalk cancellation technique using a checkerboard phase pattern with a phase difference of π/2, which can decrease the size of the spatial filter along the Fourier plane with the signal-to-noise ratio (SNR) kept high. This interpixel crosstalk cancellation technique is simple because it requires only one phase plate in the signal beam path. We verified the effect of such a cancellation technique by simulation. The improvement of SNR is maximized to 6.5 dB when the filter size specified in the Nyquist areal ratio is approximately 1.05 in ideal optical systems with no other fixed noise. The proposed technique can improve SNR by 0.85 in an assumed monocular architecture at an actual noise intensity. This improvement of SNR is very useful for realizing high-density recording or enhancing system robustness.
Experience and information loss in auditory and visual memory.
Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K
2017-07-01
Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.
Enhancing cognition with video games: a multiple game training study.
Oei, Adam C; Patterson, Michael D
2013-01-01
Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects.
Ferreira, L B T; Oliveira, S L B; Raya, J; Esumi, L A; Hipolide, D C
2017-07-28
Sleep deprivation impairs performance in emotional memory tasks, however this effect on memory is not completely understood. Possible mechanisms may involve an alteration in neurotransmission systems, as shown by the fact that many drugs that modulate neural pathways can prevent memory impairment by sleep loss. Gastrin releasing peptide (GRP) is a neuropeptide that emerged as a regulatory molecule of emotional memory through the modulation of other neurotransmission systems. Thus, the present study addressed the effect of intraperitoneal (IP) administration of bombesin (BB) (2.5, 5.0 and 10.0μg/kg), a GRP agonist, on the performance of Wistar rats in a multiple trail inhibitory avoidance (MTIA) task, after sleep deprivation, using the modified multiple platforms method (MMPM). Sleep deprived animals exhibited acquisition and retention impairment that was not prevented by BB injection. In addition, non-sleep deprived animals treated with BB before and after the training session, but not before the test, have shown a retention deficit. In summary, BB did not improve the memory impairment by sleep loss and, under normal conditions, produced a memory consolidation deficit. Copyright © 2017 Elsevier B.V. All rights reserved.
Kalenzaga, Sandrine; Sperduti, Marco; Anssens, Adèle; Martinelli, Penelope; Devauchelle, Anne-Dominique; Gallarda, Thierry; Delhommeau, Marion; Lion, Stéphanie; Amado, Isabelle; Krebs, Marie-Odile; Oppenheim, Catherine; Piolino, Pascale
2014-01-01
Self-referential processing relies mainly on the medial prefrontal cortex (MPFC) and enhances memory encoding (i.e., Self-Reference Effect, SRE) as it improves the accuracy and richness of remembering in both young and older adults. However, studies on age-related changes in the neural correlates of the SRE on the subjective (i.e., autonoetic consciousness) and the objective (i.e., source memory) qualitative features of episodic memory are lacking. In the present fMRI study, we compared the effects of a self-related (semantic autobiographical memory task) and a non self-related (general semantic memory task) encoding condition on subsequent episodic memory retrieval. We investigated encoding-related activity during each condition in two groups of 19 younger and 16 older adults. Behaviorally, the SRE improved subjective memory performance in both groups but objective memory only in young adults. At the neural level, a direct comparison between self-related and non self-related conditions revealed that SRE mainly activated the cortical midline system, especially the MPFC, in both groups. Additionally, in older adults and regardless of the condition, greater activity was found in a fronto-parietal network. Overall, correlations were noted between source memory performance and activity in the MPFC (irrespective of age) and visual areas (mediated by age). Thus, the present findings expand evidence of the role of the MPFC in self-referential processing in the context of source memory benefit in both young and older adults using incidental encoding via semantic autobiographical memory. However, our finding suggests that its role is less effective in aging.
Kalenzaga, Sandrine; Sperduti, Marco; Anssens, Adèle; Martinelli, Penelope; Devauchelle, Anne-Dominique; Gallarda, Thierry; Delhommeau, Marion; Lion, Stéphanie; Amado, Isabelle; Krebs, Marie-Odile; Oppenheim, Catherine; Piolino, Pascale
2015-01-01
Self-referential processing relies mainly on the medial prefrontal cortex (MPFC) and enhances memory encoding (i.e., Self-Reference Effect, SRE) as it improves the accuracy and richness of remembering in both young and older adults. However, studies on age-related changes in the neural correlates of the SRE on the subjective (i.e., autonoetic consciousness) and the objective (i.e., source memory) qualitative features of episodic memory are lacking. In the present fMRI study, we compared the effects of a self-related (semantic autobiographical memory task) and a non self-related (general semantic memory task) encoding condition on subsequent episodic memory retrieval. We investigated encoding-related activity during each condition in two groups of 19 younger and 16 older adults. Behaviorally, the SRE improved subjective memory performance in both groups but objective memory only in young adults. At the neural level, a direct comparison between self-related and non self-related conditions revealed that SRE mainly activated the cortical midline system, especially the MPFC, in both groups. Additionally, in older adults and regardless of the condition, greater activity was found in a fronto-parietal network. Overall, correlations were noted between source memory performance and activity in the MPFC (irrespective of age) and visual areas (mediated by age). Thus, the present findings expand evidence of the role of the MPFC in self-referential processing in the context of source memory benefit in both young and older adults using incidental encoding via semantic autobiographical memory. However, our finding suggests that its role is less effective in aging. PMID:25628546
Hernández-Hernández, Elizabeth Monserrat; Caporal Hernandez, Karen; Vázquez-Roque, Rubén Antonio; Díaz, Alfonso; de la Cruz, Fidel; Florán, Benjamin; Flores, Gonzalo
2018-08-01
Aging is a stage of life where cognitive and motor functions are impaired. This is because oxidative and inflammatory processes exacerbate neurodegeneration, which affects dendritic morphology and neuronal communication of limbic regions with memory loss. Recently, the use of trophic substances has been proposed to prevent neuronal deterioration. The neuropeptide-12 (N-PEP-12) has been evaluated in elderly patients with dementia, showing improvements in cognitive tasks due to acts as a neurotrophic factor. In the present work, we evaluated the effect of N-PEP-12 on motor activity and recognition memory, as well as its effects on dendritic morphology and the immunoreactivity of GFAP, Synaptophysin (SYP), and BDNF in neurons of the prefrontal cortex (PFC), dorsal hippocampus (DH) and nucleus accumbens (NAcc) of aged rats. The results show that N-PEP-12 improved the recognition memory, but the motor activity was not modified compared to the control animals. N-PEP-12 increases the density of dendritic spines and the total dendritic length in neurons of the PFC (layers 3 and 5) and in DH (CA1 and CA3). Interestingly NAcc neurons showed a reduction in the number of dendritic spines. In the N-PEP-12 animals, when evaluating the immunoreactivity for SYP and BDNF, there was an increase in the three brain regions, while the mark for GFAP decreased significantly. Our results suggest that N-PEP-12 promotes neuronal plasticity in the limbic system of aged animals, which contributes to improving recognition memory. In this sense, N-PEP-12 can be considered as a pharmacological alternative to prevent or delay brain aging and control senile dementias. © 2018 Wiley Periodicals, Inc.
Central insulin administration improves odor-cued reactivation of spatial memory in young men.
Brünner, Yvonne F; Kofoet, Anja; Benedict, Christian; Freiherr, Jessica
2015-01-01
Insulin receptors are ubiquitously found in the human brain, comprising the olfactory bulb, essential for odor processing, and the hippocampus, important for spatial memory processing. The present study aimed at examining if intranasal insulin, which is known to transiently increase brain insulin levels in humans, would improve odor-cued reactivation of spatial memory in young men. We applied a double-blind, placebo-controlled, counterbalanced within-subject design. The study was conducted at the research unit of a university hospital. Interventions/Participants/Main Outcome Measures: Following intranasal administration of either insulin (40 I.U.) or placebo, male subjects (n = 18) were exposed to eight odors. During each odor exposure, a green-colored field was presented on a 17-in. computer screen. During immediate recall (comprising 3 runs), the participants were re-exposed to each odor cue, and were asked to select the corresponding field (with visual feedback after each response). The delayed recall was scheduled ∼10 min later (without feedback). To test if insulin's putative effect on odor-place memory would be domain-specific, participants also performed a separate place and odor recognition task. Intranasal insulin improved the delayed but not immediate odor-cued recall of spatial memory. This effect was independent of odor type and in the absence of systemic side effects (eg, fasting plasma glucose levels remained unaltered). Place and odor recognition were unaffected by the insulin treatment. These findings suggest that acute intranasal insulin improves odor-cued reactivation of spatial memory in young men.
Feld, Gordon B; Wilhem, Ines; Benedict, Christian; Rüdel, Benjamin; Klameth, Corinna; Born, Jan; Hallschmid, Manfred
2016-05-01
The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18-30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a new finger sequence before retrieving the original memories. Insulin increased growth hormone concentrations in the first night-half and EEG delta power during the second 90 min of non-rapid-eye-movement sleep. Insulin treatment impaired the acquisition of new contents in both the declarative and procedural memory systems on the next day, whereas retrieval of original memories was unchanged. Results indicate that sleep-associated memory consolidation is not a primary mediator of insulin's acute memory-improving effect, but that the peptide acts on mechanisms that diminish the subsequent encoding of novel information. Thus, by inhibiting processes of active forgetting during sleep, central nervous insulin might reduce the interfering influence of encoding new information.
Fejős, Márta; Molnár, Kolos; Karger-Kocsis, József
2013-01-01
Triple-shape memory epoxy (EP)/polycaprolactone (PCL) systems (PCL content: 23 wt %) with different structures (PCL nanoweb embedded in EP matrix and EP/PCL with co-continuous phase structure) were produced. To set the two temporary shapes, the glass transition temperature (Tg) of the EP and the melting temperature (Tm) of PCL served during the shape memory cycle. An attempt was made to reinforce the PCL nanoweb by graphene nanoplatelets prior to infiltrating the nanoweb with EP through vacuum assisted resin transfer molding. Morphology was analyzed by scanning electron microscopy and Raman spectrometry. Triple-shape memory characteristics were determined by dynamic mechanical analysis in tension mode. Graphene was supposed to act also as spacer between the nanofibers, improving the quality of impregnation with EP. The EP phase related shape memory properties were similar for all systems, while those belonging to PCL phase depended on the structure. Shape fixity of PCL was better without than with graphene reinforcement. The best shape memory performance was shown by the EP/PCL with co-continuous structure. Based on Raman spectrometry results, the characteristic dimension of the related co-continuous network was below 900 nm. PMID:28788342
Android Protection Mechanism: A Signed Code Security Mechanism for Smartphone Applications
2011-03-01
status registers, exceptions, endian support, unaligned access support, synchronization primitives , the Jazelle Extension, and saturated integer...supports comprehensive non-blocking shared-memory synchronization primitives that scale for multiple-processor system designs. This is an improvement... synchronization . Memory semaphores can be loaded and altered without interruption because the load and store operations are atomic. Processor
Design and application of shape memory actuators
NASA Astrophysics Data System (ADS)
Mertmann, M.; Vergani, G.
2008-05-01
The use of shape memory alloys in actuators allows the development of robust, simple and lightweight elements for application in a multitude of different industries. Over the years, the intermetallic compound Nickel-Titanium (NiTi or Nitinol) together with its ternary and quaternary derivates has gained general acceptance as a standard alloy. Even though as many as 99% of all shape memory actuator applications make use of Nitinol there are certain properties of this alloy system which require further research in order to find improvements and new markets: • Lack of higher transformation temperatures in the available alloys in order to open the field of automotive applications (Mf temperature > 80 °C) • Non-linearity in the electrical resistivity in order to improve the controllability of the actuator, • Wide hysteresis in the temperature-vs.-strain behaviour, which has a signi-ficant effect on both, the dynamics of the actuator and its controllability. Hence, there is a constant strive in the field towards an improvement of the related properties. However, these improvements are not always just alloy composition related. There is also a tremendous potential in the thermomechanical treatment of the material and in the design of the actuator. Significant improvement steps are already possible if the usage of the existent materials is optimized for the projected application and if the actuator system is designed in the most efficient way. This paper provides an overview about existent designs, applications and alloys for use in actuators, as well as examples of new shape memory actuator application with improved performance. It also gives an overview about general design rules and reflects about the strengths of the material and the related opportunities for its application.
Improved importance sampling technique for efficient simulation of digital communication systems
NASA Technical Reports Server (NTRS)
Lu, Dingqing; Yao, Kung
1988-01-01
A new, improved importance sampling (IIS) approach to simulation is considered. Some basic concepts of IS are introduced, and detailed evolutions of simulation estimation variances for Monte Carlo (MC) and IS simulations are given. The general results obtained from these evolutions are applied to the specific previously known conventional importance sampling (CIS) technique and the new IIS technique. The derivation for a linear system with no signal random memory is considered in some detail. For the CIS technique, the optimum input scaling parameter is found, while for the IIS technique, the optimum translation parameter is found. The results are generalized to a linear system with memory and signals. Specific numerical and simulation results are given which show the advantages of CIS over MC and IIS over CIS for simulations of digital communications systems.
Memory-assisted quantum key distribution resilient against multiple-excitation effects
NASA Astrophysics Data System (ADS)
Lo Piparo, Nicolò; Sinclair, Neil; Razavi, Mohsen
2018-01-01
Memory-assisted measurement-device-independent quantum key distribution (MA-MDI-QKD) has recently been proposed as a technique to improve the rate-versus-distance behavior of QKD systems by using existing, or nearly-achievable, quantum technologies. The promise is that MA-MDI-QKD would require less demanding quantum memories than the ones needed for probabilistic quantum repeaters. Nevertheless, early investigations suggest that, in order to beat the conventional memory-less QKD schemes, the quantum memories used in the MA-MDI-QKD protocols must have high bandwidth-storage products and short interaction times. Among different types of quantum memories, ensemble-based memories offer some of the required specifications, but they typically suffer from multiple excitation effects. To avoid the latter issue, in this paper, we propose two new variants of MA-MDI-QKD both relying on single-photon sources for entangling purposes. One is based on known techniques for entanglement distribution in quantum repeaters. This scheme turns out to offer no advantage even if one uses ideal single-photon sources. By finding the root cause of the problem, we then propose another setup, which can outperform single memory-less setups even if we allow for some imperfections in our single-photon sources. For such a scheme, we compare the key rate for different types of ensemble-based memories and show that certain classes of atomic ensembles can improve the rate-versus-distance behavior.
The Uncertainty Principle in the Presence of Quantum Memory
NASA Astrophysics Data System (ADS)
Renes, Joseph M.; Berta, Mario; Christandl, Matthias; Colbeck, Roger; Renner, Renato
2010-03-01
One consequence of Heisenberg's uncertainty principle is that no observer can predict the outcomes of two incompatible measurements performed on a system to arbitrary precision. However, this implication is invalid if the the observer possesses a quantum memory, a distinct possibility in light of recent technological advances. Entanglement between the system and the memory is responsible for the breakdown of the uncertainty principle, as illustrated by the EPR paradox. In this work we present an improved uncertainty principle which takes this entanglement into account. By quantifying uncertainty using entropy, we show that the sum of the entropies associated with incompatible measurements must exceed a quantity which depends on the degree of incompatibility and the amount of entanglement between system and memory. Apart from its foundational significance, the uncertainty principle motivated the first proposals for quantum cryptography, though the possibility of an eavesdropper having a quantum memory rules out using the original version to argue that these proposals are secure. The uncertainty relation introduced here alleviates this problem and paves the way for its widespread use in quantum cryptography.
SU-E-J-60: Efficient Monte Carlo Dose Calculation On CPU-GPU Heterogeneous Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, K; Chen, D. Z; Hu, X. S
Purpose: It is well-known that the performance of GPU-based Monte Carlo dose calculation implementations is bounded by memory bandwidth. One major cause of this bottleneck is the random memory writing patterns in dose deposition, which leads to several memory efficiency issues on GPU such as un-coalesced writing and atomic operations. We propose a new method to alleviate such issues on CPU-GPU heterogeneous systems, which achieves overall performance improvement for Monte Carlo dose calculation. Methods: Dose deposition is to accumulate dose into the voxels of a dose volume along the trajectories of radiation rays. Our idea is to partition this proceduremore » into the following three steps, which are fine-tuned for CPU or GPU: (1) each GPU thread writes dose results with location information to a buffer on GPU memory, which achieves fully-coalesced and atomic-free memory transactions; (2) the dose results in the buffer are transferred to CPU memory; (3) the dose volume is constructed from the dose buffer on CPU. We organize the processing of all radiation rays into streams. Since the steps within a stream use different hardware resources (i.e., GPU, DMA, CPU), we can overlap the execution of these steps for different streams by pipelining. Results: We evaluated our method using a Monte Carlo Convolution Superposition (MCCS) program and tested our implementation for various clinical cases on a heterogeneous system containing an Intel i7 quad-core CPU and an NVIDIA TITAN GPU. Comparing with a straightforward MCCS implementation on the same system (using both CPU and GPU for radiation ray tracing), our method gained 2-5X speedup without losing dose calculation accuracy. Conclusion: The results show that our new method improves the effective memory bandwidth and overall performance for MCCS on the CPU-GPU systems. Our proposed method can also be applied to accelerate other Monte Carlo dose calculation approaches. This research was supported in part by NSF under Grants CCF-1217906, and also in part by a research contract from the Sandia National Laboratories.« less
PIMS: Memristor-Based Processing-in-Memory-and-Storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Jeanine
Continued progress in computing has augmented the quest for higher performance with a new quest for higher energy efficiency. This has led to the re-emergence of Processing-In-Memory (PIM) ar- chitectures that offer higher density and performance with some boost in energy efficiency. Past PIM work either integrated a standard CPU with a conventional DRAM to improve the CPU- memory link, or used a bit-level processor with Single Instruction Multiple Data (SIMD) control, but neither matched the energy consumption of the memory to the computation. We originally proposed to develop a new architecture derived from PIM that more effectively addressed energymore » efficiency for high performance scientific, data analytics, and neuromorphic applications. We also originally planned to implement a von Neumann architecture with arithmetic/logic units (ALUs) that matched the power consumption of an advanced storage array to maximize energy efficiency. Implementing this architecture in storage was our original idea, since by augmenting storage (in- stead of memory), the system could address both in-memory computation and applications that accessed larger data sets directly from storage, hence Processing-in-Memory-and-Storage (PIMS). However, as our research matured, we discovered several things that changed our original direc- tion, the most important being that a PIM that implements a standard von Neumann-type archi- tecture results in significant energy efficiency improvement, but only about a O(10) performance improvement. In addition to this, the emergence of new memory technologies moved us to propos- ing a non-von Neumann architecture, called Superstrider, implemented not in storage, but in a new DRAM technology called High Bandwidth Memory (HBM). HBM is a stacked DRAM tech- nology that includes a logic layer where an architecture such as Superstrider could potentially be implemented.« less
Effect of virtual memory on efficient solution of two model problems
NASA Technical Reports Server (NTRS)
Lambiotte, J. J., Jr.
1977-01-01
Computers with virtual memory architecture allow programs to be written as if they were small enough to be contained in memory. Two types of problems are investigated to show that this luxury can lead to quite an inefficient performance if the programmer does not interact strongly with the characteristics of the operating system when developing the program. The two problems considered are the simultaneous solutions of a large linear system of equations by Gaussian elimination and a model three-dimensional finite-difference problem. The Control Data STAR-100 computer runs are made to demonstrate the inefficiencies of programming the problems in the manner one would naturally do if the problems were indeed, small enough to be contained in memory. Program redesigns are presented which achieve large improvements in performance through changes in the computational procedure and the data base arrangement.
Evolution of cellular automata with memory: The Density Classification Task.
Stone, Christopher; Bull, Larry
2009-08-01
The Density Classification Task is a well known test problem for two-state discrete dynamical systems. For many years researchers have used a variety of evolutionary computation approaches to evolve solutions to this problem. In this paper, we investigate the evolvability of solutions when the underlying Cellular Automaton is augmented with a type of memory based on the Least Mean Square algorithm. To obtain high performance solutions using a simple non-hybrid genetic algorithm, we design a novel representation based on the ternary representation used for Learning Classifier Systems. The new representation is found able to produce superior performance to the bit string traditionally used for representing Cellular automata. Moreover, memory is shown to improve evolvability of solutions and appropriate memory settings are able to be evolved as a component part of these solutions.
How Does Knowledge Promote Memory? The Distinctiveness Theory of Skilled Memory
ERIC Educational Resources Information Center
Rawson, Katherine A.; Van Overschelde, James P.
2008-01-01
The robust effects of knowledge on memory for domain-relevant information reported in previous research have largely been attributed to improved organizational processing. The present research proposes the distinctiveness theory of skilled memory, which states that knowledge improves memory not only through improved organizational processing but…
Rudebeck, Sarah R.; Bor, Daniel; Ormond, Angharad; O’Reilly, Jill X.; Lee, Andy C. H.
2012-01-01
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants’ episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary. PMID:23209740
Rudebeck, Sarah R; Bor, Daniel; Ormond, Angharad; O'Reilly, Jill X; Lee, Andy C H
2012-01-01
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants' episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary.
Han, Ren-Wen; Zhang, Rui-San; Xu, Hong-Jiao; Chang, Min; Peng, Ya-Li; Wang, Rui
2013-07-01
Neuropeptide S (NPS), the endogenous ligand of NPSR, has been shown to promote arousal and anxiolytic-like effects. According to the predominant distribution of NPSR in brain tissues associated with learning and memory, NPS has been reported to modulate cognitive function in rodents. Here, we investigated the role of NPS in memory formation, and determined whether NPS could mitigate memory impairment induced by selective N-methyl-D-aspartate receptor antagonist MK801, muscarinic cholinergic receptor antagonist scopolamine or Aβ₁₋₄₂ in mice, using novel object and object location recognition tasks. Intracerebroventricular (i.c.v.) injection of 1 nmol NPS 5 min after training not only facilitated object recognition memory formation, but also prolonged memory retention in both tasks. The improvement of object recognition memory induced by NPS could be blocked by the selective NPSR antagonist SHA 68, indicating pharmacological specificity. Then, we found that i.c.v. injection of NPS reversed memory disruption induced by MK801, scopolamine or Aβ₁₋₄₂ in both tasks. In summary, our results indicate that NPS facilitates memory formation and prolongs the retention of memory through activation of the NPSR, and mitigates amnesia induced by blockage of glutamatergic or cholinergic system or by Aβ₁₋₄₂, suggesting that NPS/NPSR system may be a new target for enhancing memory and treating amnesia. Copyright © 2013 Elsevier Ltd. All rights reserved.
Final Project Report: Data Locality Enhancement of Dynamic Simulations for Exascale Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Xipeng
The goal of this project is to develop a set of techniques and software tools to enhance the matching between memory accesses in dynamic simulations and the prominent features of modern and future manycore systems, alleviating the memory performance issues for exascale computing. In the first three years, the PI and his group have achieves some significant progress towards the goal, producing a set of novel techniques for improving the memory performance and data locality in manycore systems, yielding 18 conference and workshop papers and 4 journal papers and graduating 6 Ph.Ds. This report summarizes the research results of thismore » project through that period.« less
Bobkova, N V; Poltavtseva, R A; Samokhin, A N; Sukhikh, G T
2013-11-01
Transplantation of human mesenchymal multipotent stromal cells improved spatial memory in bulbectomized mice with Alzheimer-type neurodegeneration. The positive effect was observed in 1 month after intracerebral transplantation and in 3 months after systemic injection of mesenchymal multipotent stromal cells. No cases of malignant transformation were noted. These findings indicate prospects of using mesenchymal multipotent stromal cells for the therapy of Alzheimer disease and the possibility of their systemic administration for attaining the therapeutic effect.
Reservoir Computing Beyond Memory-Nonlinearity Trade-off.
Inubushi, Masanobu; Yoshimura, Kazuyuki
2017-08-31
Reservoir computing is a brain-inspired machine learning framework that employs a signal-driven dynamical system, in particular harnessing common-signal-induced synchronization which is a widely observed nonlinear phenomenon. Basic understanding of a working principle in reservoir computing can be expected to shed light on how information is stored and processed in nonlinear dynamical systems, potentially leading to progress in a broad range of nonlinear sciences. As a first step toward this goal, from the viewpoint of nonlinear physics and information theory, we study the memory-nonlinearity trade-off uncovered by Dambre et al. (2012). Focusing on a variational equation, we clarify a dynamical mechanism behind the trade-off, which illustrates why nonlinear dynamics degrades memory stored in dynamical system in general. Moreover, based on the trade-off, we propose a mixture reservoir endowed with both linear and nonlinear dynamics and show that it improves the performance of information processing. Interestingly, for some tasks, significant improvements are observed by adding a few linear dynamics to the nonlinear dynamical system. By employing the echo state network model, the effect of the mixture reservoir is numerically verified for a simple function approximation task and for more complex tasks.
NASA Astrophysics Data System (ADS)
Fang, Juan; Hao, Xiaoting; Fan, Qingwen; Chang, Zeqing; Song, Shuying
2017-05-01
In the Heterogeneous multi-core architecture, CPU and GPU processor are integrated on the same chip, which poses a new challenge to the last-level cache management. In this architecture, the CPU application and the GPU application execute concurrently, accessing the last-level cache. CPU and GPU have different memory access characteristics, so that they have differences in the sensitivity of last-level cache (LLC) capacity. For many CPU applications, a reduced share of the LLC could lead to significant performance degradation. On the contrary, GPU applications can tolerate increase in memory access latency when there is sufficient thread-level parallelism. Taking into account the GPU program memory latency tolerance characteristics, this paper presents a method that let GPU applications can access to memory directly, leaving lots of LLC space for CPU applications, in improving the performance of CPU applications and does not affect the performance of GPU applications. When the CPU application is cache sensitive, and the GPU application is insensitive to the cache, the overall performance of the system is improved significantly.
No Evidence for Memory Decontextualization across One Night of Sleep
Jurewicz, Katarzyna; Cordi, Maren Jasmin; Staudigl, Tobias; Rasch, Björn
2016-01-01
Sleep after learning strengthens memory consolidation. According to the active system consolidation hypothesis, sleep supports the integration of newly acquired memories into cortical knowledge networks, presumably accompanied by a process of decontextualization of the memory trace (i.e., a gradual loss of memory for the learning context). However, the availability of contextual information generally facilitates memory recall and studies on the interaction of sleep and context on memory retrieval have revealed inconsistent results. Here, we do not find any evidence for a role of sleep in the decontextualization of newly learned declarative memories. In two separate studies, 104 healthy young adults incidentally learned words associated with a context. After a 12 h retention interval filled with either sleep or wakefulness, recall (Experiment 1) or recognition (Experiment 2) was tested with the same or different context. Overall, memory retrieval was significantly improved when the learning context was reinstated, as compared to a different context. However, this context effect of memory was not modulated by sleep vs. wakefulness. These findings argue against a decontextualization of memories, at least across a single night of sleep. PMID:26858622
Enabling MPEG-2 video playback in embedded systems through improved data cache efficiency
NASA Astrophysics Data System (ADS)
Soderquist, Peter; Leeser, Miriam E.
1999-01-01
Digital video decoding, enabled by the MPEG-2 Video standard, is an important future application for embedded systems, particularly PDAs and other information appliances. Many such system require portability and wireless communication capabilities, and thus face severe limitations in size and power consumption. This places a premium on integration and efficiency, and favors software solutions for video functionality over specialized hardware. The processors in most embedded system currently lack the computational power needed to perform video decoding, but a related and equally important problem is the required data bandwidth, and the need to cost-effectively insure adequate data supply. MPEG data sets are very large, and generate significant amounts of excess memory traffic for standard data caches, up to 100 times the amount required for decoding. Meanwhile, cost and power limitations restrict cache sizes in embedded systems. Some systems, including many media processors, eliminate caches in favor of memories under direct, painstaking software control in the manner of digital signal processors. Yet MPEG data has locality which caches can exploit if properly optimized, providing fast, flexible, and automatic data supply. We propose a set of enhancements which target the specific needs of the heterogeneous types within the MPEG decoder working set. These optimizations significantly improve the efficiency of small caches, reducing cache-memory traffic by almost 70 percent, and can make an enhanced 4 KB cache perform better than a standard 1 MB cache. This performance improvement can enable high-resolution, full frame rate video playback in cheaper, smaller system than woudl otherwise be possible.
Working memory training to improve speech perception in noise across languages
Ingvalson, Erin M.; Dhar, Sumitrajit; Wong, Patrick C. M.; Liu, Hanjun
2015-01-01
Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners. PMID:26093435
Working memory training to improve speech perception in noise across languages.
Ingvalson, Erin M; Dhar, Sumitrajit; Wong, Patrick C M; Liu, Hanjun
2015-06-01
Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners.
NASA Astrophysics Data System (ADS)
Natsui, Masanori; Hanyu, Takahiro
2018-04-01
In realizing a nonvolatile microcontroller unit (MCU) for sensor nodes in Internet-of-Things (IoT) applications, it is important to solve the data-transfer bottleneck between the central processing unit (CPU) and the nonvolatile memory constituting the MCU. As one circuit-oriented approach to solving this problem, we propose a memory access minimization technique for magnetoresistive-random-access-memory (MRAM)-embedded nonvolatile MCUs. In addition to multiplexing and prefetching of memory access, the proposed technique realizes efficient instruction fetch by eliminating redundant memory access while considering the code length of the instruction to be fetched and the transition of the memory address to be accessed. As a result, the performance of the MCU can be improved while relaxing the performance requirement for the embedded MRAM, and compact and low-power implementation can be performed as compared with the conventional cache-based one. Through the evaluation using a system consisting of a general purpose 32-bit CPU and embedded MRAM, it is demonstrated that the proposed technique increases the peak efficiency of the system up to 3.71 times, while a 2.29-fold area reduction is achieved compared with the cache-based one.
Non-Markovianity-assisted high-fidelity Deutsch-Jozsa algorithm in diamond
NASA Astrophysics Data System (ADS)
Dong, Yang; Zheng, Yu; Li, Shen; Li, Cong-Cong; Chen, Xiang-Dong; Guo, Guang-Can; Sun, Fang-Wen
2018-01-01
The memory effects in non-Markovian quantum dynamics can induce the revival of quantum coherence, which is believed to provide important physical resources for quantum information processing (QIP). However, no real quantum algorithms have been demonstrated with the help of such memory effects. Here, we experimentally implemented a non-Markovianity-assisted high-fidelity refined Deutsch-Jozsa algorithm (RDJA) with a solid spin in diamond. The memory effects can induce pronounced non-monotonic variations in the RDJA results, which were confirmed to follow a non-Markovian quantum process by measuring the non-Markovianity of the spin system. By applying the memory effects as physical resources with the assistance of dynamical decoupling, the probability of success of RDJA was elevated above 97% in the open quantum system. This study not only demonstrates that the non-Markovianity is an important physical resource but also presents a feasible way to employ this physical resource. It will stimulate the application of the memory effects in non-Markovian quantum dynamics to improve the performance of practical QIP.
Simmonds, Daniel J; Hallquist, Michael N; Luna, Beatriz
2017-08-15
Working memory (WM), the ability to hold information on-line to guide planned behavior, improves through adolescence in parallel with continued maturation of critical brain systems supporting cognitive control. Initial developmental neuroimaging studies with one or two timepoints have provided important though varied results limiting our understanding of which and how neural systems change during this transition into mature WM. In this study, we leverage functional magnetic resonance imaging (fMRI) longitudinal data spanning up to 9 years in 129 normally developing individuals to identify which systems demonstrate growth changes that accompany improvements in WM performance. We used a memory guided saccade task that allowed us to probe encoding, pure maintenance, and retrieval neural processes of WM. Consistent with prior research, we found that WM performance continued to improve into the early 20's. fMRI region of interest (ROI) analyses revealed developmental (1) increases in sensorimotor-related (encoding/retrieval) activity in visual cortex from childhood through early adulthood that were associated with WM accuracy and (2) decreases in sustained (maintenance) activity in executive regions from childhood through mid-adolescence that were associated with response latency in childhood and early adolescence. Together these results provide compelling evidence that underlying the maturation of WM is a transition from reliance on executive systems to specialized regions related to the domain of mnemonic requirements of the task leading to optimal performance. Copyright © 2017. Published by Elsevier Inc.
Tánczos, Tímea; Zádori, Dénes; Jakab, Katalin; Hnyilicza, Zsuzsanna; Klivényi, Péter; Keresztes, László; Engelhardt, József; Németh, Dezső; Vécsei, László
2014-01-01
Lightning-related injuries most often involve impairment of the functions of the central and peripheral nervous systems, usually including cognitive dysfunctions. We evaluated the cognitive deficit of a patient who had survived a lightning strike and measured the improvement after her cognitive training. This therapeutic method appears to be a powerful tool in the neurorehabilitation treatment. The aim of this case study was to prove the beneficial effects of cognitive training as part of the neurorehabilitation after a lightning strike. Six neuropsychological functions were examined in order to test the cognitive status of the patient before and after the 2-month cognitive training: phonological short-term memory (digit span test and word repetitions test), visuo-spatial short-term memory (Corsi Block Tapping Test), working memory (backward digit span test and listening span test), executive functions (letter and semantic fluencies), language functions (non-word repetition test, Pléh-Palotás-Lörik (PPL) test and sentence repetition test) and episodic memory (Rivermead Behavioral Memory Test and Mini Mental State Examination). We also utilized these tests in aged-matched healthy individuals so as to be able to characterize the domains of the observed improvements more precisely. The patient exhibited a considerable improvement in the backward digit span, semantic fluency, non-word repetition, PPL, sentence repetition and Rivermead Behavioral Memory tests. The cognitive training played an important role in the neurorehabilitation treatment of this lightning injury patient. It considerably improved her quality of life through the functional recovery.
Alkozei, Anna; Smith, Ryan; Dailey, Natalie S; Bajaj, Sahil; Killgore, William D S
2017-01-01
Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light) exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition) using an abbreviated version of the California Verbal Learning Test (CVLT-II). At delayed recall, individuals who received blue light (n = 12) during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18), while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.
Huh, Eugene; Lim, Soonmin; Kim, Hyo Geun; Ha, Sang Keun; Park, Ho-Young; Huh, Youngbuhm; Oh, Myung Sook
2018-01-24
Ginger, which has been widely used for dietary condiment, has been reported to improve memory dysfunction in an animal model of Alzheimer's disease (AD). Recently, a few trials have been carried out to enhance the effects of ginger by improving the bioavailability of its relevant components via fermentation. Some reports have suggested that the fermented ginger has the ability to affect the AD in vitro systems; however, its anti-amnesic effects on an in vivo model still remain to be investigated. In the present study, we aimed to investigate the neuroprotective effects of ginger fermented with Schizosaccharomyces pombe (FG) in the in vivo models of AD. The neuroprotective effects were investigated by employing behavioral, western blotting, and immunohistochemical assays. The administration of FG improved recognition memory, impaired by scopolamine injection, than that of non-fermented ginger. In addition, FG ameliorated memory impairment in amyloid beta 1-42 (Aβ 1-42 ) plaque-injected mice via protecting neuronal cells in the CA3 area of the mouse hippocampus. Moreover, FG reinstated the pre- and postsynaptic protein levels decreased by Aβ 1-42 plaque-toxicity. Overall, these data suggest that FG attenuates memory impairment in Aβ 1-42 plaque-induced AD mice through inhibition of neuronal cell loss and synaptic disruption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Seyong; Vetter, Jeffrey S
Computer architecture experts expect that non-volatile memory (NVM) hierarchies will play a more significant role in future systems including mobile, enterprise, and HPC architectures. With this expectation in mind, we present NVL-C: a novel programming system that facilitates the efficient and correct programming of NVM main memory systems. The NVL-C programming abstraction extends C with a small set of intuitive language features that target NVM main memory, and can be combined directly with traditional C memory model features for DRAM. We have designed these new features to enable compiler analyses and run-time checks that can improve performance and guard againstmore » a number of subtle programming errors, which, when left uncorrected, can corrupt NVM-stored data. Moreover, to enable recovery of data across application or system failures, these NVL-C features include a flexible directive for specifying NVM transactions. So that our implementation might be extended to other compiler front ends and languages, the majority of our compiler analyses are implemented in an extended version of LLVM's intermediate representation (LLVM IR). We evaluate NVL-C on a number of applications to show its flexibility, performance, and correctness.« less
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-10-15
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-01-01
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996
Memory consolidation in humans: new evidence and opportunities
Maguire, Eleanor A
2014-01-01
We are endlessly fascinated by memory; we desire to improve it and fear its loss. While it has long been recognized that brain regions such as the hippocampus are vital for supporting memories of our past experiences (autobiographical memories), we still lack fundamental knowledge about the mechanisms involved. This is because the study of specific neural signatures of autobiographical memories in vivo in humans presents a significant challenge. However, recent developments in high-resolution structural and functional magnetic resonance imaging coupled with advanced analytical methods now permit access to the neural substrates of memory representations that has hitherto been precluded in humans. Here, I describe how the application of ‘decoding’ techniques to brain-imaging data is beginning to disclose how individual autobiographical memory representations evolve over time, deepening our understanding of systems-level consolidation. In particular, this prompts new questions about the roles of the hippocampus and ventromedial prefrontal cortex and offers new opportunities to interrogate the elusive memory trace that has for so long confounded neuroscientists. PMID:24414174
Spachtholz, Philipp; Kuhbandner, Christof; Pekrun, Reinhard
2014-08-01
Research has shown that negative affect reduces working memory capacity. Commonly, this effect has been attributed to an allocation of resources to task-irrelevant thoughts, suggesting that negative affect has detrimental consequences for working memory performance. However, rather than simply being a detrimental effect, the affect-induced capacity reduction may reflect a trading of capacity for precision of stored representations. To test this hypothesis, we induced neutral or negative affect and concurrently measured the number and precision of representations stored in sensory and working memory. Compared with neutral affect, negative affect reduced the capacity of both sensory and working memory. However, in both memory systems, this decrease in capacity was accompanied by an increase in precision. These findings demonstrate that observers unintentionally trade capacity for precision as a function of affective state and indicate that negative affect can be beneficial for the quality of memories. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; Gholami, Khalid El
2014-01-01
Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant. PMID:25248069
Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Shi, Hongling; El Gholami, Khalid
2014-09-22
Operating system (OS) technology is significant for the proliferation of the wireless sensor network (WSN). With an outstanding OS; the constrained WSN resources (processor; memory and energy) can be utilized efficiently. Moreover; the user application development can be served soundly. In this article; a new hybrid; real-time; memory-efficient; energy-efficient; user-friendly and fault-tolerant WSN OS MIROS is designed and implemented. MIROS implements the hybrid scheduler and the dynamic memory allocator. Real-time scheduling can thus be achieved with low memory consumption. In addition; it implements a mid-layer software EMIDE (Efficient Mid-layer Software for User-Friendly Application Development Environment) to decouple the WSN application from the low-level system. The application programming process can consequently be simplified and the application reprogramming performance improved. Moreover; it combines both the software and the multi-core hardware techniques to conserve the energy resources; improve the node reliability; as well as achieve a new debugging method. To evaluate the performance of MIROS; it is compared with the other WSN OSes (TinyOS; Contiki; SOS; openWSN and mantisOS) from different OS concerns. The final evaluation results prove that MIROS is suitable to be used even on the tight resource-constrained WSN nodes. It can support the real-time WSN applications. Furthermore; it is energy efficient; user friendly and fault tolerant.
ICE System: Interruptible control expert system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Vezina, James M.
1990-01-01
The Interruptible Control Expert (ICE) System is based on an architecture designed to provide a strong foundation for real-time production rule expert systems. Three principles are adopted to guide the development of ICE. A practical delivery platform must be provided, no specialized hardware can be used to solve deficiencies in the software design. Knowledge of the environment and the rule-base is exploited to improve the performance of a delivered system. The third principle of ICE is to respond to the most critical event, at the expense of the more trivial tasks. Minimal time is spent on classifying the potential importance of environmental events with the majority of the time used for finding the responses. A feature of the system, derived from all three principles, is the lack of working memory. By using a priori information, a fixed amount of memory can be specified for the hardware platform. The absence of working memory removes the dangers of garbage collection during the continuous operation of the controller.
Analysis and Synthesis of Memory-Based Fuzzy Sliding Mode Controllers.
Zhang, Jinhui; Lin, Yujuan; Feng, Gang
2015-12-01
This paper addresses the sliding mode control problem for a class of Takagi-Sugeno fuzzy systems with matched uncertainties. Different from the conventional memoryless sliding surface, a memory-based sliding surface is proposed which consists of not only the current state but also the delayed state. Both robust and adaptive fuzzy sliding mode controllers are designed based on the proposed memory-based sliding surface. It is shown that the sliding surface can be reached and the closed-loop control system is asymptotically stable. Furthermore, to reduce the chattering, some continuous sliding mode controllers are also presented. Finally, the ball and beam system is used to illustrate the advantages and effectiveness of the proposed approaches. It can be seen that, with the proposed control approaches, not only can the stability be guaranteed, but also its transient performance can be improved significantly.
Development of a shape memory alloy actuator for a robotic eye prosthesis
NASA Astrophysics Data System (ADS)
Bunton, T. B. Wolfe; Faulkner, M. G.; Wolfaardt, J.
2005-08-01
The quality of life of patients who wear an orbital prosthesis would be vastly improved if their prostheses were also able to execute vertical and horizontal motion. This requires appropriate actuation and control systems to create an intelligent prosthesis. A method of actuation that meets the demanding design criteria is currently not available. The present work considers an activation system that follows a design philosophy of biomimicry, simplicity and space optimization. While several methods of actuation were considered, shape memory alloys were chosen for their high power density, high actuation forces and high displacements. The behaviour of specific shape memory alloys as an actuator was investigated to determine the force obtained, the transformation temperatures and details of the material processing. In addition, a large-scale prototype was constructed to validate the response of the proposed system.
NASA Astrophysics Data System (ADS)
Laird, John E.
2009-05-01
Our long-term goal is to develop autonomous robotic systems that have the cognitive abilities of humans, including communication, coordination, adapting to novel situations, and learning through experience. Our approach rests on the recent integration of the Soar cognitive architecture with both virtual and physical robotic systems. Soar has been used to develop a wide variety of knowledge-rich agents for complex virtual environments, including distributed training environments and interactive computer games. For development and testing in robotic virtual environments, Soar interfaces to a variety of robotic simulators and a simple mobile robot. We have recently made significant extensions to Soar that add new memories and new non-symbolic reasoning to Soar's original symbolic processing, which should significantly improve Soar abilities for control of robots. These extensions include episodic memory, semantic memory, reinforcement learning, and mental imagery. Episodic memory and semantic memory support the learning and recalling of prior events and situations as well as facts about the world. Reinforcement learning provides the ability of the system to tune its procedural knowledge - knowledge about how to do things. Mental imagery supports the use of diagrammatic and visual representations that are critical to support spatial reasoning. We speculate on the future of unmanned systems and the need for cognitive robotics to support dynamic instruction and taskability.
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L.; Page, Terry L.; Bhuva, Bharat; Broadie, Kendal
2016-01-01
Background Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. New Method The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. Results The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24 hours) are comparable to traditional manual experiments, while minimizing experimenter involvement. Comparison with Existing Methods The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ~$500US, making it affordable to a wide range of investigators. Conclusions This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. PMID:26703418
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L; Page, Terry L; Bhuva, Bharat; Broadie, Kendal
2016-03-01
Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24h) are comparable to traditional manual experiments, while minimizing experimenter involvement. The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ∼$500US, making it affordable to a wide range of investigators. This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bradley, D. B.; Irwin, J. D.
1974-01-01
A computer simulation model for a multiprocessor computer is developed that is useful for studying the problem of matching multiprocessor's memory space, memory bandwidth and numbers and speeds of processors with aggregate job set characteristics. The model assumes an input work load of a set of recurrent jobs. The model includes a feedback scheduler/allocator which attempts to improve system performance through higher memory bandwidth utilization by matching individual job requirements for space and bandwidth with space availability and estimates of bandwidth availability at the times of memory allocation. The simulation model includes provisions for specifying precedence relations among the jobs in a job set, and provisions for specifying precedence execution of TMR (Triple Modular Redundant and SIMPLEX (non redundant) jobs.
Resistor-logic demultiplexers for nanoelectronics based on constant-weight codes.
Kuekes, Philip J; Robinett, Warren; Roth, Ron M; Seroussi, Gadiel; Snider, Gregory S; Stanley Williams, R
2006-02-28
The voltage margin of a resistor-logic demultiplexer can be improved significantly by basing its connection pattern on a constant-weight code. Each distinct code determines a unique demultiplexer, and therefore a large family of circuits is defined. We consider using these demultiplexers for building nanoscale crossbar memories, and determine the voltage margin of the memory system based on a particular code. We determine a purely code-theoretic criterion for selecting codes that will yield memories with large voltage margins, which is to minimize the ratio of the maximum to the minimum Hamming distance between distinct codewords. For the specific example of a 64 × 64 crossbar, we discuss what codes provide optimal performance for a memory.
Enhancing Cognition with Video Games: A Multiple Game Training Study
Oei, Adam C.; Patterson, Michael D.
2013-01-01
Background Previous evidence points to a causal link between playing action video games and enhanced cognition and perception. However, benefits of playing other video games are under-investigated. We examined whether playing non-action games also improves cognition. Hence, we compared transfer effects of an action and other non-action types that required different cognitive demands. Methodology/Principal Findings We instructed 5 groups of non-gamer participants to play one game each on a mobile device (iPhone/iPod Touch) for one hour a day/five days a week over four weeks (20 hours). Games included action, spatial memory, match-3, hidden- object, and an agent-based life simulation. Participants performed four behavioral tasks before and after video game training to assess for transfer effects. Tasks included an attentional blink task, a spatial memory and visual search dual task, a visual filter memory task to assess for multiple object tracking and cognitive control, as well as a complex verbal span task. Action game playing eliminated attentional blink and improved cognitive control and multiple-object tracking. Match-3, spatial memory and hidden object games improved visual search performance while the latter two also improved spatial working memory. Complex verbal span improved after match-3 and action game training. Conclusion/Significance Cognitive improvements were not limited to action game training alone and different games enhanced different aspects of cognition. We conclude that training specific cognitive abilities frequently in a video game improves performance in tasks that share common underlying demands. Overall, these results suggest that many video game-related cognitive improvements may not be due to training of general broad cognitive systems such as executive attentional control, but instead due to frequent utilization of specific cognitive processes during game play. Thus, many video game training related improvements to cognition may be attributed to near-transfer effects. PMID:23516504
Jang, Sung Ho; Kim, Seong Ho; Seo, Jeong Pyo
2018-01-01
We reported on a patient with mild traumatic brain injury (TBI) who showed recovery of an injured cingulum concurrent with improvement of short-term memory, which was demonstrated on follow-up diffusion tensor tractography (DTT). A 55-year-old male patient suffered head trauma resulting from falling from approximately 2 m while working at a construction site. The patient showed mild memory impairment (especially short-term memory impairment) at 3 months after onset: Memory Assessment Scale (global memory: 95 (37%ile), short-term memory: 75 (5%ile), verbal memory: 80 (9%ile) and visual memory: 112 (79%ile)). By contrast, at 2 years after onset, his mild memory impairment had improved to a normal state: Memory Assessment Scale (global memory: 104 (61%ile), short-term memory: 95 (37%ile), verbal memory: 101 (53%ile) and visual memory: 106 (66%ile)). On 3-month DTT, discontinuation of the right anterior cingulum was observed over the genu of the corpus callosum, while on 2-year DTT, the discontinued right anterior cingulum was elongated to the right basal forebrain. In conclusion, recovery of an injured cingulum concurrent with improvement of short-term memory was demonstrated in a patient with mild TBI.
Low-Complexity Discriminative Feature Selection From EEG Before and After Short-Term Memory Task.
Behzadfar, Neda; Firoozabadi, S Mohammad P; Badie, Kambiz
2016-10-01
A reliable and unobtrusive quantification of changes in cortical activity during short-term memory task can be used to evaluate the efficacy of interfaces and to provide real-time user-state information. In this article, we investigate changes in electroencephalogram signals in short-term memory with respect to the baseline activity. The electroencephalogram signals have been analyzed using 9 linear and nonlinear/dynamic measures. We applied statistical Wilcoxon examination and Davis-Bouldian criterion to select optimal discriminative features. The results show that among the features, the permutation entropy significantly increased in frontal lobe and the occipital second lower alpha band activity decreased during memory task. These 2 features reflect the same mental task; however, their correlation with memory task varies in different intervals. In conclusion, it is suggested that the combination of the 2 features would improve the performance of memory based neurofeedback systems. © EEG and Clinical Neuroscience Society (ECNS) 2016.
Gold, Paul E.; Korol, Donna L.
2012-01-01
This article reviews some of the neuroendocrine bases by which emotional events regulate brain mechanisms of learning and memory. In laboratory rodents, there is extensive evidence that epinephrine influences memory processing through an inverted-U relationship, at which moderate levels enhance and high levels impair memory. These effects are, in large part, mediated by increases in blood glucose levels subsequent to epinephrine release, which then provide support for the brain processes engaged by learning and memory. These brain processes include augmentation of neurotransmitter release and of energy metabolism, the latter apparently including a key role for astrocytic glycogen. In addition to up- and down-regulation of learning and memory in general, physiological concomitants of emotion and arousal can also switch the neural system that controls learning at a particular time, at once improving some attributes of learning and impairing others in a manner that results in a change in the strategy used to solve a problem. PMID:23264764
The Effects of Working Memory on Brain-Computer Interface Performance
Sprague, Samantha A.; McBee, Matthew; Sellers, Eric W.
2015-01-01
Objective The purpose of the present study is to evaluate the relationship between working memory and BCI performance. Methods Participants took part in two separate sessions. The first session consisted of three computerized tasks. The LSWM was used to measure working memory, the TPVT was used to measure general intelligence, and the DCCS was used to measure executive function, specifically cognitive flexibility. The second session consisted of a P300-based BCI copy-spelling task. Results The results indicate that both working memory and general intelligence are significant predictors of BCI performance. Conclusions This suggests that working memory training could be used to improve performance on a BCI task. Significance Working memory training may help to reduce a portion of the individual differences that exist in BCI performance allowing for a wider range of users to successfully operate the BCI system as well as increase the BCI performance of current users. PMID:26620822
Music-related reward responses predict episodic memory performance.
Ferreri, Laura; Rodriguez-Fornells, Antoni
2017-12-01
Music represents a special type of reward involving the recruitment of the mesolimbic dopaminergic system. According to recent theories on episodic memory formation, as dopamine strengthens the synaptic potentiation produced by learning, stimuli triggering dopamine release could result in long-term memory improvements. Here, we behaviourally test whether music-related reward responses could modulate episodic memory performance. Thirty participants rated (in terms of arousal, familiarity, emotional valence, and reward) and encoded unfamiliar classical music excerpts. Twenty-four hours later, their episodic memory was tested (old/new recognition and remember/know paradigm). Results revealed an influence of music-related reward responses on memory: excerpts rated as more rewarding were significantly better recognized and remembered. Furthermore, inter-individual differences in the ability to experience musical reward, measured through the Barcelona Music Reward Questionnaire, positively predicted memory performance. Taken together, these findings shed new light on the relationship between music, reward and memory, showing for the first time that music-driven reward responses are directly implicated in higher cognitive functions and can account for individual differences in memory performance.
Ko, Yong-Hyun; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon
2018-05-05
Daidzein is one of the major isoflavfones found in soy food and plants. Following ingestion, daidzein is readily converted to hydroxylated metabolites in the human body. 6,7,4'-Trihydroxyisoflavone (THIF), one of the metabolites of daidzein, has several pharmacological activities, including anti-cancer and anti-obesity properties. However, no reports exist on the effects of 6,7,4'-THIF for cognitive function in mice. The present study aimed to investigate the effects of 6,7,4'-THIF against scopolamine-induced learning and memory impairments using the Y-maze and passive avoidance test. A single administration of 6,7,4'-THIF significantly improved scopolamine-induced cognitive dysfunction in these in vivo tests. Moreover, treatment with 6,7,4'-THIF alone enhanced learning and memory performance in the same behavioral tests. Molecular studies showed that 6,7,4'-THIF significantly inhibited acetylcholinesterase and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus of scopolamine-induced mice. In addition, immunohistochemistry and Western blot results revealed that 6,7,4'-THIF significantly increased brain-derived neurotrophic factor (BDNF) and phosphor cAMP response element binding (CREB) in the hippocampus of mice. Taken together, these findings suggest that 6,7,4'-THIF improves cognitive dysfunction induced by scopolamine and enhances learning and memory by activation of the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Copyright © 2018 Elsevier B.V. All rights reserved.
Improving Outcome of Psychosocial Treatments by Enhancing Memory and Learning
Harvey, Allison G.; Lee, Jason; Williams, Joseph; Hollon, Steven D.; Walker, Matthew P.; Thompson, Monique A.; Smith, Rita
2014-01-01
Mental disorders are prevalent and lead to significant impairment. Progress toward establishing treatments has been good. However, effect sizes are small to moderate, gains may not persist, and many patients derive no benefit. Our goal is to highlight the potential for empirically-supported psychosocial treatments to be improved by incorporating insights from cognitive psychology and research on education. Our central question is: If it were possible to improve memory for content of sessions of psychosocial treatments, would outcome substantially improve? This question arises from five lines of evidence: (a) mental illness is often characterized by memory impairment, (b) memory impairment is modifiable, (c) psychosocial treatments often involve the activation of emotion, (d) emotion can bias memory and (e) memory for psychosocial treatment sessions is poor. Insights from scientific knowledge on learning and memory are leveraged to derive strategies for a transdiagnostic and transtreatment cognitive support intervention. These strategies can be applied within and between sessions and to interventions delivered via computer, the internet and text message. Additional novel pathways to improving memory include improving sleep, engaging in exercise and imagery. Given that memory processes change across the lifespan, services to children and older adults may benefit from cognitive support. PMID:25544856
Ghofrani, Saeed; Joghataei, Mohammad-Taghi; Mohseni, Simin; Baluchnejadmojarad, Tourandokht; Bagheri, Maryam; Khamse, Safoura; Roghani, Mehrdad
2015-10-05
Alzheimer's disease (AD) is one of the prevalent neurological disorders of the central nervous system hallmarked by increased beta-amyloid (Aβ) deposition and ensuing learning and memory deficit. In the present study, the beneficial effect of naringenin on improvement of learning and memory was evaluated in an Alzheimer's disease rat model. The Aβ-injected rats showed a lower alternation score in Y-maze task, impairment of retention and recall capability in passive avoidance test, and lower correct choices and higher errors in radial arm maze (RAM) task as compared to sham group in addition to enhanced oxidative stress and apoptosis. Naringenin, but not a combination of naringenin and fulvestrant (an estrogenic receptor antagonist) significantly improved the performance of Aβ-injected rats in passive avoidance and RAM tasks. Naringenin pretreatment of Aβ-injected rats also lowered hippocampal malondialdehyde (MDA) with no significant effect on nitrite and superoxide dismutase (SOD) activity in addition to lowering apoptosis. These results suggest naringenin pretreatment attenuates Aβ-induced impairment of learning and memory through mitigation of lipid peroxidation and apoptosis and its beneficial effect is somewhat mediated via estrogenic pathway. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebis, Joseph; Oliker, Leonid; Shalf, John
The disparity between microprocessor clock frequencies and memory latency is a primary reason why many demanding applications run well below peak achievable performance. Software controlled scratchpad memories, such as the Cell local store, attempt to ameliorate this discrepancy by enabling precise control over memory movement; however, scratchpad technology confronts the programmer and compiler with an unfamiliar and difficult programming model. In this work, we present the Virtual Vector Architecture (ViVA), which combines the memory semantics of vector computers with a software-controlled scratchpad memory in order to provide a more effective and practical approach to latency hiding. ViVA requires minimal changesmore » to the core design and could thus be easily integrated with conventional processor cores. To validate our approach, we implemented ViVA on the Mambo cycle-accurate full system simulator, which was carefully calibrated to match the performance on our underlying PowerPC Apple G5 architecture. Results show that ViVA is able to deliver significant performance benefits over scalar techniques for a variety of memory access patterns as well as two important memory-bound compact kernels, corner turn and sparse matrix-vector multiplication -- achieving 2x-13x improvement compared the scalar version. Overall, our preliminary ViVA exploration points to a promising approach for improving application performance on leading microprocessors with minimal design and complexity costs, in a power efficient manner.« less
Kruk-Slomka, Marta; Biala, Grażyna
2016-03-15
The endocannabinoid system, through the cannabinoid type 1 (CB1) and 2 (CB2) receptors modulates many physiological functions, including different aspects of memory-related processes. The aim of the present experiments was to explore the role of the endocannabinoid system, through CB1 receptors in the different stages of short-term (acquisition, retention and retrieval) and long-term (acquisition, consolidation and retrieval) memory-related responses, using the inhibitory avoidance (IA) test in mice. Our results revealed that an acute injection of oleamide (10 and 20mg/kg), a CB1 receptor agonist, impairs the short-term or/and long-term acquisition, retention/consolidation, retrieval memory and learning processes in the IA test in mice. In turn, in this test an acute injection of AM 251 (1 and 3mg/kg), a CB1 receptor antagonist, improves the short-term or/and long-term memory stages, described above. Moreover, this memory impairment induced by effective dose of oleamide (20mg/kg) is reversed by non-effective dose of AM 251 (0.25mg/kg) in the IA task, which proves the selectivity of oleamide to CB1 receptors and confirms that the CB1 receptor-related mechanism is one of the possible mechanisms, responsible for memory and learning responses. Obtained results provide clear evidence that the endocannabinoid system, through CB1 receptors, participates in the different stages of short- and long-term memory-related behavior. This knowledge may open in the future new possibilities for the development of CB-based therapies, especially for memory impairment human disorders. Copyright © 2015 Elsevier B.V. All rights reserved.
Nasehi, Mohammad; Ghadimi, Fatemeh; Khakpai, Fatemeh; Zarrindast, Mohammad-Reza
2017-09-01
This study set to assess the involvement of dorsal hippocampus (CA1) serotonergic system on harmane induced memory acquisition deficit. We used one trial step-down inhibitory avoidancetask to evaluate memory retention and then, open field test to evaluate locomotor activity in adult male NMRI mice. The results showed that pre-training intra-peritoneal (i.p.) administration of harmane (12mg/kg) induced impairment of memory acquisition. Pre-training intra-CA1 administration of 5-HT1B/1D receptor agonist (CP94253; 0.5 and 5ng/mouse) and 5-HT2A/2B/2C receptor agonist (α-methyl 5-HT; 50ng/mouse) impaired memory acquisition. Furthermore, intra-CA1 administration of 5-HT1B/1D receptor antagonist (GR127935; 0.5ng/mouse) and 5-HT2 receptor antagonist (cinancerine; 5ng/mouse) improved memory acquisition. In addition, pre-training intra-CA1 injection of sub-threshold dose of CP94253 (0.05ng/mouse) and α-methyl 5-HT (5ng/mouse) potentiated impairment of memory acquisition induced by harmane (12mg/kg, i.p.). On the other hand, pre-training intra-CA1 infusion of sub-threshold dose of GR127935 (0.05ng/mouse) and cinancerine (0.5ng/mouse) with the administration of harmane (12mg/kg, i.p.) weakened impairment of memory acquisition. Moreover, all above doses of drugs did not change locomotor activity. The present findings suggest that there is an interaction between harmane and the CA1 serotonergic system in modulation of memory acquisition. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Glucose effects on long-term memory performance: duration and domain specificity.
Owen, Lauren; Finnegan, Yvonne; Hu, Henglong; Scholey, Andrew B; Sünram-Lea, Sandra I
2010-08-01
Previous research has suggested that long-term verbal declarative memory is particularly sensitive to enhancement by glucose loading; however, investigation of glucose effects on certain memory domains has hitherto been neglected. Therefore, domain specificity of glucose effects merits further elucidation. The aim of the present research was to provide a more comprehensive investigation of the possible effects of glucose administration on different aspects of memory by 1) contrasting the effect of glucose administration on different memory domains (implicit/explicit memory; verbal/non-verbal memory, and recognition/familiarity processes), 2) investigating whether potential effects on memory domains differ depending on the dose of glucose administered (25 g versus 60 g), 3) exploring the duration of the glucose facilitation effect (assessment of memory performance 35 min and 1 week after encoding). A double-blind between-subjects design was used to test the effects of administration of 25 and 60 g glucose on memory performance. Implicit memory was improved following administration of 60 g of glucose. Glucose supplementation failed to improve face recognition performance but significantly improved performance of word recall and recognition following administration of 60 g of glucose. However, effects were not maintained 1 week following encoding. Improved implicit memory performance following glucose administration has not been reported before. Furthermore, the current data tentatively suggest that level of processing may determine the required glucose dosage to demonstrate memory improvement and that higher dosages may be able to exert effects on memory pertaining to both hippocampal and non-hippocampal brain regions.
Does learning to read shape verbal working memory?
Demoulin, Catherine; Kolinsky, Régine
2016-06-01
Many experimental studies have investigated the relationship between the acquisition of reading and working memory in a unidirectional way, attempting to determine to what extent individual differences in working memory can predict reading achievement. In contrast, very little attention has been dedicated to the converse possibility that learning to read shapes the development of verbal memory processes. In this paper, we present available evidence that advocates a more prominent role for reading acquisition on verbal working memory and then discuss the potential mechanisms of such literacy effects. First, the early decoding activities might bolster the development of subvocal rehearsal, which, in turn, would enhance serial order performance in immediate memory tasks. In addition, learning to read and write in an alphabetical system allows the emergence of phonemic awareness and finely tuned phonological representations, as well as of orthographic representations. This could improve the quality, strength, and precision of lexical representations, and hence offer better support for the temporary encoding of memory items and/or for their retrieval.
The effects of working memory on brain-computer interface performance.
Sprague, Samantha A; McBee, Matthew T; Sellers, Eric W
2016-02-01
The purpose of the present study is to evaluate the relationship between working memory and BCI performance. Participants took part in two separate sessions. The first session consisted of three computerized tasks. The List Sorting Working Memory Task was used to measure working memory, the Picture Vocabulary Test was used to measure general intelligence, and the Dimensional Change Card Sort Test was used to measure executive function, specifically cognitive flexibility. The second session consisted of a P300-based BCI copy-spelling task. The results indicate that both working memory and general intelligence are significant predictors of BCI performance. This suggests that working memory training could be used to improve performance on a BCI task. Working memory training may help to reduce a portion of the individual differences that exist in BCI performance allowing for a wider range of users to successfully operate the BCI system as well as increase the BCI performance of current users. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Closed-Loop Targeted Memory Reactivation during Sleep Improves Spatial Navigation.
Shimizu, Renee E; Connolly, Patrick M; Cellini, Nicola; Armstrong, Diana M; Hernandez, Lexus T; Estrada, Rolando; Aguilar, Mario; Weisend, Michael P; Mednick, Sara C; Simons, Stephen B
2018-01-01
Sounds associated with newly learned information that are replayed during non-rapid eye movement (NREM) sleep can improve recall in simple tasks. The mechanism for this improvement is presumed to be reactivation of the newly learned memory during sleep when consolidation takes place. We have developed an EEG-based closed-loop system to precisely deliver sensory stimulation at the time of down-state to up-state transitions during NREM sleep. Here, we demonstrate that applying this technology to participants performing a realistic navigation task in virtual reality results in a significant improvement in navigation efficiency after sleep that is accompanied by increases in the spectral power especially in the fast (12-15 Hz) sleep spindle band. Our results show promise for the application of sleep-based interventions to drive improvement in real-world tasks.
Understanding original antigenic sin in influenza with a dynamical system.
Pan, Keyao
2011-01-01
Original antigenic sin is the phenomenon in which prior exposure to an antigen leads to a subsequent suboptimal immune response to a related antigen. Immune memory normally allows for an improved and rapid response to antigens previously seen and is the mechanism by which vaccination works. I here develop a dynamical system model of the mechanism of original antigenic sin in influenza, clarifying and explaining the detailed spin-glass treatment of original antigenic sin. The dynamical system describes the viral load, the quantities of healthy and infected epithelial cells, the concentrations of naïve and memory antibodies, and the affinities of naïve and memory antibodies. I give explicit correspondences between the microscopic variables of the spin-glass model and those of the present dynamical system model. The dynamical system model reproduces the phenomenon of original antigenic sin and describes how a competition between different types of B cells compromises the overall effect of immune response. I illustrate the competition between the naïve and the memory antibodies as a function of the antigenic distance between the initial and subsequent antigens. The suboptimal immune response caused by original antigenic sin is observed when the host is exposed to an antigen which has intermediate antigenic distance to a second antigen previously recognized by the host's immune system.
Memory improvement via slow-oscillatory stimulation during sleep in older adults.
Westerberg, Carmen E; Florczak, Susan M; Weintraub, Sandra; Mesulam, M-Marsel; Marshall, Lisa; Zee, Phyllis C; Paller, Ken A
2015-09-01
We examined the intriguing but controversial idea that disrupted sleep-dependent consolidation contributes to age-related memory decline. Slow-wave activity during sleep may help strengthen neural connections and provide memories with long-term stability, in which case decreased slow-wave activity in older adults could contribute to their weaker memories. One prediction from this account is that age-related memory deficits should be reduced by artificially enhancing slow-wave activity. In young adults, applying transcranial current oscillating at a slow frequency (0.75 Hz) during sleep improves memory. Here, we tested whether this procedure can improve memory in older adults. In 2 sessions separated by 1 week, we applied either slow-oscillatory stimulation or sham stimulation during an afternoon nap in a double-blind, crossover design. Memory tests were administered before and after sleep. A larger improvement in word-pair recall and higher slow-wave activity was observed with slow-oscillatory stimulation than with sham stimulation. This is the first demonstration that this procedure can improve memory in older adults, suggesting that declarative memory performance in older adults is partly dependent on slow-wave activity during sleep. Copyright © 2015 Elsevier Inc. All rights reserved.
Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats
Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel
2016-01-01
The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685
High altitude memory impairment is due to neuronal apoptosis in hippocampus, cortex and striatum.
Maiti, Panchanan; Singh, Shashi B; Mallick, Birendranath; Muthuraju, Sangu; Ilavazhagan, Govindasami
2008-12-01
Cognitive and neuropsychological functions have been impaired at high altitude and the effects depend on altitude and duration of stay. However, the neurobiological mechanism of this impairment is poorly understood especially exposure to different duration. Aim of the present study was to investigate the changes of behavior, biochemistry and morphology after exposure to different duration of hypobaric hypoxia. The rats were exposed continuously to a simulated high altitude of 6100m for 3, 7, 14 and 21 days in an animal decompression chamber. Spatial reference memory was tested by Morris water maze. The oxidative stress markers like free radicals, NO, lipid peroxidation, LDH activity and antioxidant systems like GSH, GSSG, GPx, GR, SOD were estimated from cortex, hippocampus and striatum. The morphological changes, neurodegeneration, DNA fragmentation and mode of cell death have also been studied. It was observed that the spatial reference memory was significantly affected after exposure to hypobaric hypoxia. Increased oxidative stress markers along with decreased effectiveness of antioxidant system were also observed in hypoxia-exposed animals. Further pyknotic, shrunken, tangle-like neurons were observed in all these regions after hypoxia and neurodegeneration, DNA fragmentation and apoptosis were also observed in all the three regions. But after 21 days of exposure, the spatial memory was improved along with improvement of antioxidant activities. Our result suggests that the apoptotic death may be involved in HA-induced memory impairment and after 7 days of exposure the effect was more pronounced but after 21 days of exposure recovery was observed.
Improved Writing-Conductor Designs For Magnetic Memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.
1994-01-01
Writing currents reduced to practical levels. Improved conceptual designs for writing conductors in micromagnet/Hall-effect random-access integrated-circuit memory reduces electrical current needed to magnetize micromagnet in each memory cell. Basic concept of micromagnet/Hall-effect random-access memory presented in "Magnetic Analog Random-Access Memory" (NPO-17999).
Sleep-Effects on Implicit and Explicit Memory in Repeated Visual Search
Assumpcao, Leonardo; Gais, Steffen
2013-01-01
In repeated visual search tasks, facilitation of reaction times (RTs) due to repetition of the spatial arrangement of items occurs independently of RT facilitation due to improvements in general task performance. Whereas the latter represents typical procedural learning, the former is a kind of implicit memory that depends on the medial temporal lobe (MTL) memory system and is impaired in patients with amnesia. A third type of memory that develops during visual search is the observers’ explicit knowledge of repeated displays. Here, we used a visual search task to investigate whether procedural memory, implicit contextual cueing, and explicit knowledge of repeated configurations, which all arise independently from the same set of stimuli, are influenced by sleep. Observers participated in two experimental sessions, separated by either a nap or a controlled rest period. In each of the two sessions, they performed a visual search task in combination with an explicit recognition task. We found that (1) across sessions, MTL-independent procedural learning was more pronounced for the nap than rest group. This confirms earlier findings, albeit from different motor and perceptual tasks, showing that procedural memory can benefit from sleep. (2) Likewise, the sleep group compared with the rest group showed enhanced context-dependent configural learning in the second session. This is a novel finding, indicating that the MTL-dependent, implicit memory underlying contextual cueing is also sleep-dependent. (3) By contrast, sleep and wake groups displayed equivalent improvements in explicit recognition memory in the second session. Overall, the current study shows that sleep affects MTL-dependent as well as MTL-independent memory, but it affects different, albeit simultaneously acquired, forms of MTL-dependent memory differentially. PMID:23936363
Ho, Yim-Chi; Cheung, Mei-Chun; Chan, Agnes S
2003-07-01
The hypothesis that music training can improve verbal memory was tested in children. The results showed that children with music training demonstrated better verbal but not visual memory than did their counterparts without such training. When these children were followed up after a year, those who had begun or continued music training demonstrated significant verbal memory improvement. Students who discontinued the training did not show any improvement. Contrary to the differences in verbal memory between the groups, their changes in visual memory were not significantly different. Consistent with previous findings for adults (A. S. Chan, Y. Ho, & M. Cheung, 1998), the results suggest that music training systematically affects memory processing in accordance with possible neuroanatomical modifications in the left temporal lobe.
Ginani, G E; Tufik, S; Bueno, O F A; Pradella-Hallinan, M; Rusted, J; Pompéia, S
2011-11-01
The cholinergic system is involved in the modulation of both bottom-up and top-down attentional control. Top-down attention engages multiple executive control processes, but few studies have investigated whether all or selective elements of executive functions are modulated by the cholinergic system. To investigate the acute effects of the pro-cholinergic donepezil in young, healthy volunteers on distinct components of executive functions we conducted a double-blind, placebo-controlled, independent-groups design study including 42 young healthy male participants who were randomly assigned to one of three oral treatments: glucose (placebo), donepezil 5 mg or donepezil 7.5 mg. The test battery included measures of different executive components (shifting, updating, inhibition, dual-task performance, planning, access to long-term memory), tasks that evaluated arousal/vigilance/visuomotor performance, as well as functioning of working memory subsidiary systems. Donepezil improved sustained attention, reaction times, dual-task performance and the executive component of digit span. The positive effects in these executive tasks did not correlate with arousal/visuomotor/vigilance measures. Among the various executive domains investigated donepezil selectively increased dual-task performance in a manner that could not be ascribed to improvement in arousal/vigilance/visuomotor performance nor working memory slave systems. Other executive tasks that rely heavily on visuospatial processing may also be modulated by the cholinergic system.
Caffeine Enhances Memory Performance in Young Adults during Their Non-optimal Time of Day
Sherman, Stephanie M.; Buckley, Timothy P.; Baena, Elsa; Ryan, Lee
2016-01-01
Many college students struggle to perform well on exams in the early morning. Although students drink caffeinated beverages to feel more awake, it is unclear whether these actually improve performance. After consuming coffee (caffeinated or decaffeinated), college-age adults completed implicit and explicit memory tasks in the early morning and late afternoon (Experiment 1). During the morning, participants ingesting caffeine demonstrated a striking improvement in explicit memory, but not implicit memory. Caffeine did not alter memory performance in the afternoon. In Experiment 2, participants engaged in cardiovascular exercise in order to examine whether increases in physiological arousal similarly improved memory. Despite clear increases in physiological arousal, exercise did not improve memory performance compared to a stretching control condition. These results suggest that caffeine has a specific benefit for memory during students’ non-optimal time of day – early morning. These findings have real-world implications for students taking morning exams. PMID:27895607
Working Memory Training Does Not Improve Intelligence in Healthy Young Adults
ERIC Educational Resources Information Center
Chooi, Weng-Tink; Thompson, Lee A.
2012-01-01
Jaeggi and her colleagues claimed that they were able to improve fluid intelligence by training working memory. Subjects who trained their working memory on a dual n-back task for a period of time showed significant improvements in working memory span tasks and fluid intelligence tests such as the Raven's Progressive Matrices and the Bochumer…
Improving Outcome for Mental Disorders by Enhancing Memory for Treatment
Harvey, Allison G.; Lee, Jason; Smith, Rita L.; Gumport, Nicole B.; Hollon, Steven D.; Rabe-Hesketh, Sophia; Hein, Kerrie; Dolsen, Michael R.; Hamen, Kristen; Kanady, Jennifer C.; Thompson, Monique A.; Abrons, Deidre
2017-01-01
Summary Patients exhibit poor memory for treatment. A novel Memory Support Intervention, derived from basic science in cognitive psychology and education, is tested with the goal of improving patient memory for treatment and treatment outcome. Adults with major depressive disorder (MDD) were randomized to 14 sessions of cognitive therapy (CT)+Memory Support (n = 25) or CT-as-usual (CTMS; n = 23). Outcomes were assessed at baseline, post-treatment and 6 months later. Memory support was greater in CT+Memory Support compared to the CT-as-usual. Compared to CT-as-usual, small to medium effect sizes were observed for recall of treatment points at post-treatment. There was no difference between the treatment arms on depression severity (primary outcome). However, the odds of meeting criteria for ‘response’ and ‘remission’ were higher in CT+Memory Support compared with CT-as-usual. CT+Memory Support also showed an advantage on functional impairment. While some decline was observed, the advantage of CT+Memory Support was evident through 6-month follow-up. Patients with less than 16 years of education experience greater benefits from memory support than those with 16 or more years of education. Memory support can be manipulated, may improve patient memory for treatment and may be associated with an improved outcome. PMID:27089159
Lagasse, Fabrice; Moreno, Celine; Preat, Thomas; Mery, Frederic
2012-01-01
Memory is a complex and dynamic process that is composed of different phases. Its evolution under natural selection probably depends on a balance between fitness benefits and costs. In Drosophila, two separate forms of consolidated memory phases can be generated experimentally: anaesthesia-resistant memory (ARM) and long-term memory (LTM). In recent years, several studies have focused on the differences between these long-lasting memory types and have found that, at the functional level, ARM and LTM are antagonistic. How this functional relationship will affect their evolutionary dynamics remains unknown. We selected for flies with either improved ARM or improved LTM over several generations, and found that flies selected specifically for improvement of one consolidated memory phase show reduced performance in the other memory phase. We also found that improved LTM was linked to decreased longevity in male flies but not in females. Conversely, males with improved ARM had increased longevity. We found no correlation between either improved ARM or LTM and other phenotypic traits. This is, to our knowledge, the first evidence of a symmetrical evolutionary trade-off between two memory phases for the same learning task. Such trade-offs may have an important impact on the evolution of cognitive capacities. On a neural level, these results support the hypothesis that mechanisms underlying these forms of consolidated memory are, to some degree, antagonistic. PMID:22859595
Wezenberg, E; Verkes, R J; Sabbe, B G C; Ruigt, G S F; Hulstijn, W
2005-09-01
The central cholinergic system is implicated in cognitive functioning. The dysfunction of this system is expressed in many diseases like Alzheimer's disease, dementia of Lewy body, Parkinson's disease and vascular dementia. In recent animal studies, it was found that selective cholinergic modulation affects visuospatial processes even more than memory function. In the current study, we tried to replicate those findings. In order to investigate the acute effects of cholinergic drugs on memory and visuospatial functions, a selective anticholinergic drug, biperiden, was compared to a selective acetylcholinesterase-inhibiting drug, rivastigmine, in healthy elderly subjects. A double-blind, placebo-controlled, randomised, cross-over study was performed in 16 healthy, elderly volunteers (eight men, eight women; mean age 66.1, SD 4.46 years). All subjects received biperiden (2 mg), rivastigmine (3 mg) and placebo with an interval of 7 days between them. Testing took place 1 h after drug intake (which was around Tmax for both drugs). Subjects were presented with tests for episodic memory (wordlist and picture memory), working memory tasks (N-back, symbol recall) and motor learning (maze task, pursuit rotor). Visuospatial abilities were assessed by tests with high visual scanning components (tangled lines and Symbol Digit Substitution Test). Episodic memory was impaired by biperiden. Rivastigmine impaired recognition parts of the episodic memory performance. Working memory was non-significantly impaired by biperiden and not affected by rivastigmine. Motor learning as well as visuospatial processes were impaired by biperiden and improved by rivastigmine. These results implicate acetylcholine as a modulator not only of memory but also of visuospatial abilities.
Do transactive memory and participative teamwork improve nurses' quality of work life?
Brunault, Paul; Fouquereau, Evelyne; Colombat, Philippe; Gillet, Nicolas; El-Hage, Wissam; Camus, Vincent; Gaillard, Philippe
2014-03-01
Improvement in nurses' quality of work life (QWL) has become a major issue in health care organizations. We hypothesized that the level of transactive memory (defined as the way groups collectively encode, store, and retrieve knowledge) and participative teamwork (an organizational model of care based on vocational training, a specific service's care project, and regular interdisciplinary staffing) positively affect nurses' QWL. This cross-sectional study enrolled 84 ward-based psychiatric nurses. We assessed transactive memory, participative teamwork, perceived organizational justice, perceived organizational support, and QWL using psychometrically reliable and valid scales. Participative teamwork and transactive memory were positively associated with nurses' QWL. Perceived organizational support and organizational justice fully mediated the relationship between participative teamwork and QWL, but not between transactive memory and QWL. Improved transactive memory could directly improve nurses' QWL. Improved participative teamwork could improve nurses' QWL through better perceived organizational support and perceived organizational justice.
Resistance exercise improves hippocampus-dependent memory
Cassilhas, R.C.; Lee, K.S.; Venâncio, D.P.; Oliveira, M.G.M.; Tufik, S.; de Mello, M.T.
2012-01-01
It has been demonstrated that resistance exercise improves cognitive functions in humans. Thus, an animal model that mimics this phenomenon can be an important tool for studying the underlying neurophysiological mechanisms. Here, we tested if an animal model for resistance exercise was able to improve the performance in a hippocampus-dependent memory task. In addition, we also evaluated the level of insulin-like growth factor 1/insulin growth factor receptor (IGF-1/IGF-1R), which plays pleiotropic roles in the nervous system. Adult male Wistar rats were divided into three groups (N = 10 for each group): control, SHAM, and resistance exercise (RES). The RES group was submitted to 8 weeks of progressive resistance exercise in a vertical ladder apparatus, while the SHAM group was left in the same apparatus without exercising. Analysis of a cross-sectional area of the flexor digitorum longus muscle indicated that this training period was sufficient to cause muscle fiber hypertrophy. In a step-through passive avoidance task (PA), the RES group presented a longer latency than the other groups on the test day. We also observed an increase of 43 and 94% for systemic and hippocampal IGF-1 concentration, respectively, in the RES group compared to the others. A positive correlation was established between PA performance and systemic IGF-1 (r = 0.46, P < 0.05). Taken together, our data indicate that resistance exercise improves the hippocampus-dependent memory task with a concomitant increase of IGF-1 level in the rat model. This model can be further explored to better understand the effects of resistance exercise on brain functions. PMID:22930413
Leshikar, Eric D.; Leach, Ryan C.; McCurdy, Matthew P.; ...
2017-10-19
Prior work demonstrates that application of transcranial direct current stimulation (tDCS) improves memory. In this study, we investigated tDCS effects on face-name associative memory using both recall and recognition tests. Participants encoded face-name pairs under either active (1.5 mA) or sham (.1 mA) stimulation applied to the scalp adjacent to the left dorsolateral prefrontal cortex (dlPFC), an area known to support associative memory. Participants’ memory was then tested after study (day one) and then again after a 24-h delay (day two), to assess both immediate and delayed stimulation effects on memory. Results indicated that active relative to sham stimulation ledmore » to substantially improved recall (more than 50%) at both day one and day two. Recognition memory performance did not differ between stimulation groups at either time point. These results suggest that stimulation at encoding improves memory performance by enhancing memory for details that enable a rich recollective experience, but that these improvements are evident only under some testing conditions, especially those that rely on recollection. Altogether, stimulation of the dlPFC could have led to recall improvement through enhanced encoding from stimulation or from carryover effects of stimulation that influenced retrieval processes, or both.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leshikar, Eric D.; Leach, Ryan C.; McCurdy, Matthew P.
Prior work demonstrates that application of transcranial direct current stimulation (tDCS) improves memory. In this study, we investigated tDCS effects on face-name associative memory using both recall and recognition tests. Participants encoded face-name pairs under either active (1.5 mA) or sham (.1 mA) stimulation applied to the scalp adjacent to the left dorsolateral prefrontal cortex (dlPFC), an area known to support associative memory. Participants’ memory was then tested after study (day one) and then again after a 24-h delay (day two), to assess both immediate and delayed stimulation effects on memory. Results indicated that active relative to sham stimulation ledmore » to substantially improved recall (more than 50%) at both day one and day two. Recognition memory performance did not differ between stimulation groups at either time point. These results suggest that stimulation at encoding improves memory performance by enhancing memory for details that enable a rich recollective experience, but that these improvements are evident only under some testing conditions, especially those that rely on recollection. Altogether, stimulation of the dlPFC could have led to recall improvement through enhanced encoding from stimulation or from carryover effects of stimulation that influenced retrieval processes, or both.« less
Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne
2017-01-01
Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults (Mage = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults. PMID:28119597
Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne
2016-01-01
Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults ( M age = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults.
Spearmint Extract Improves Working Memory in Men and Women with Age-Associated Memory Impairment.
Herrlinger, Kelli A; Nieman, Kristin M; Sanoshy, Kristen D; Fonseca, Brenda A; Lasrado, Joanne A; Schild, Arianne L; Maki, Kevin C; Wesnes, Keith A; Ceddia, Michael A
2018-01-01
The purpose of this study was to investigate the effects of supplementation with a spearmint (Mentha spicata L.) extract, high in polyphenols including rosmarinic acid, on cognitive performance, sleep, and mood in individuals with age-associated memory impairment (AAMI). Subjects with AAMI (N = 90; 67% female; age = 59.4 ± 0.6 years) were randomly assigned (n = 30/group) to consume 900, 600, or 0 mg/day (two capsules, once daily) spearmint extract for 90 days, in this double-blind, placebo-controlled trial. Assessments were completed for cognition (days 0, 45, and 90), sleep (days 0 and 90), and mood (days 0 and 90) by using the Cognitive Drug Research (CDR) System ™ , Leeds Sleep Evaluation Questionnaire (LSEQ), and Profile of Mood States (POMS ™ ), respectively. Quality of working memory and spatial working memory accuracy improved after supplementation with 900 mg/day spearmint extract by 15% (p = 0.0469) and 9% (p = 0.0456), respectively, versus placebo. Subjects consuming 900 mg/day spearmint extract reported improvement in their ability to fall asleep, relative to subjects consuming placebo (p = 0.0046). Overall treatment effects were evident for vigor-activity (p = 0.0399), total mood disturbance (p = 0.0374), and alertness and behavior following wakefulness (p = 0.0415), with trends observed for improvements after spearmint supplementation relative to placebo. These results suggest that the distinct spearmint extract may be a beneficial nutritional intervention for cognitive health in older subjects with AAMI.
Emmerdinger, Kathrin J.; Kuhbandner, Christof
2018-01-01
Numerous studies have shown that retrieving contents from memory in a test improves long-term retention for those contents, even when compared to restudying (i.e., the “testing effect”). The beneficial effect of retrieval practice has been demonstrated for many different types of memory representations; however, one particularly important memory system has not been addressed in previous testing effect research: autobiographical memory. The aim of the present study was to examine the effect of retrieving memories for personally experienced events on long-term memory for those events. In an initial elicitation session, participants described memories for personally experienced events in response to a variety of cue words. In a retrieval practice/restudy session the following day, they repeatedly practiced retrieval for half of their memories by recalling and writing down the previously described events; the other half of memories was restudied by rereading and copying the event descriptions. Long-term retention of all previously collected memories was assessed at two different retention intervals (2 weeks and 13 weeks). In the retrieval practice session, a hypermnesic effect emerged, with memory performance increasing across the practice cycles. Long-term memory performance significantly dropped from the 2-weeks to the 13-weeks retention interval, but no significant difference in memory performance was observed between previously repeatedly retrieved and previously repeatedly restudied memories. Thus, in autobiographical memory, retrieval practice seems to be no more beneficial for long-term retention than repeated re-exposure. PMID:29881365
Emmerdinger, Kathrin J; Kuhbandner, Christof
2018-01-01
Numerous studies have shown that retrieving contents from memory in a test improves long-term retention for those contents, even when compared to restudying (i.e., the "testing effect"). The beneficial effect of retrieval practice has been demonstrated for many different types of memory representations; however, one particularly important memory system has not been addressed in previous testing effect research: autobiographical memory. The aim of the present study was to examine the effect of retrieving memories for personally experienced events on long-term memory for those events. In an initial elicitation session, participants described memories for personally experienced events in response to a variety of cue words. In a retrieval practice/restudy session the following day, they repeatedly practiced retrieval for half of their memories by recalling and writing down the previously described events; the other half of memories was restudied by rereading and copying the event descriptions. Long-term retention of all previously collected memories was assessed at two different retention intervals (2 weeks and 13 weeks). In the retrieval practice session, a hypermnesic effect emerged, with memory performance increasing across the practice cycles. Long-term memory performance significantly dropped from the 2-weeks to the 13-weeks retention interval, but no significant difference in memory performance was observed between previously repeatedly retrieved and previously repeatedly restudied memories. Thus, in autobiographical memory, retrieval practice seems to be no more beneficial for long-term retention than repeated re-exposure.
2008-03-01
solution-gelation (sol- gel) technique, to form hybrids of these materials with high-Tg open-cell foams so as to enhance shape memory characteristics , and...did not demonstrate the shape memory properties of the original Morthane thermoplastic due to the suppression of crystallinity following sol-gel...method. The utilization of photolatent bases to allow for improved reaction control and the combination of this system with Basotect™ open-cell foam in
Zhang, Lei; Zhao, Qi; Chen, Chun-Hai; Qin, Qi-Zhong; Zhou, Zhou; Yu, Zheng-Ping
2014-09-01
This study aimed to investigate the protective effect of rutin against trimethyltin-induced spatial learning and memory impairment in mice. This study focused on the role of synaptophysin, growth-associated protein 43 and the action of the dopaminergic system in mechanisms associated with rutin protection and trimethyltin-induced spatial learning and memory impairment. Cognitive learning and memory was measured by Morris Water Maze. The expression of synaptophysin and growth-associated protein 43 in hippocampus was analyzed by western blot. The concentrations of dopamine, homovanillic acid, and dihyroxyphenylacetic acid in hippocampus were detected using reversed phase high-performance liquid chromatography with electrochemical detection. Trimethyltin-induced spatial learning impairment showed a dose-dependent mode. Synaptophysin but not growth-associated protein 43 was decreased in the hippocampus after trimethyltin administration. The concentration of dopamine decreased, while homovanillic acid increased in the hippocampus after trimethyltin administration. Mice pretreated with 20 mg/kg of rutin for 7 consecutive days exhibited improved water maze performance. Moreover, rutin pretreatment reversed the decrease of synaptophysin expression and dopamine alteration. These results suggest that rutin may protect against spatial memory impairment induced by trimethyltin. Synaptophysin and the dopaminergic system may be involved in trimethyltin-induced neuronal damage in hippocampus.
Kim, Hyun-Bum; Lee, Seok; Hwang, Eun-Sang; Maeng, Sungho; Park, Ji-Ho
2017-10-21
Due to the improvement of medical level, life expectancy increased. But the increased incidence of cognitive disorders is an emerging social problem. Current drugs for dementia treatment can only delay the progress rather than cure. p-Coumaric acid is a phenylpropanoic acid derived from aromatic amino acids and known as a precursor for flavonoids such as resveratrol and naringenin. It was shown to reduce oxidative stress, inhibit genotoxicity and exert neuroprotection. Based on these findings, we evaluated whether p-coumaric acid can protect scopolamine induced learning and memory impairment by measuring LTP in organotypic hippocampal slice and cognitive behaviors in rats. p-Coumaric acid dose-dependently increased the total activity of fEPSP after high frequency stimulation and attenuated scopolamine-induced blockade of fEPSP in the hippocampal CA1 area. In addition, while scopolamine shortened the step-through latency in the passive avoidance test and prolonged the latency as well as reduced the latency in the target quadrant in the Morris water maze test, co-treatment of p-coumaric acid improved avoidance memory and long-term retention of spatial memory in behavioral tests. Since p-coumaric acid improved electrophysiological and cognitive functional deterioration by scopolamine, it may have regulatory effects on central cholinergic synapses and is expected to improve cognitive problems caused by abnormality of the cholinergic nervous system. Copyright © 2017 Elsevier Inc. All rights reserved.
Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut
2018-04-26
To show the effectiveness of a combined recognition and working memory training on everyday memory performance in patients suffering from organic memory disorders. In this double-blind, randomized controlled Study 36 patients with organic memory impairments, mainly attributable to stroke, were assigned to either the experimental or the active control group. In the experimental group a working memory training was combined with a recollection training based on the repetition-lag procedure. Patients in the active control group received the memory therapy usually provided in the rehabilitation center. Both groups received nine hours of therapy. Prior (T0) and subsequent (T1) to the therapy, patients were evaluated on an everyday memory test (EMT) as well as on a neuropsychological test battery. Based on factor analysis of the neuropsychological test scores at T0 we calculated composite scores for working memory, verbal learning and word fluency. After treatment, the intervention group showed a significantly greater improvement for WM performance compared with the active control group. More importantly, performance on the EMT also improved significantly in patients receiving the recollection and working memory training compared with patients with standard memory training. Our results show that combining working memory and recollection training significantly improves performance on everyday memory tasks, demonstrating far transfer effects. The present study argues in favor of a process-based approach for treating memory impairments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Dopaminergic influences on formation of a motor memory.
Flöel, Agnes; Breitenstein, Caterina; Hummel, Friedhelm; Celnik, Pablo; Gingert, Christian; Sawaki, Lumy; Knecht, Stefan; Cohen, Leonardo G
2005-07-01
The ability of the central nervous system to form motor memories, a process contributing to motor learning and skill acquisition, decreases with age. Dopaminergic activity, one of the mechanisms implicated in memory formation, experiences a similar decline with aging. It is possible that restoring dopaminergic function in elderly adults could lead to improved formation of motor memories with training. We studied the influence of a single oral dose of levodopa (100mg) administered preceding training on the ability to encode an elementary motor memory in the primary motor cortex of elderly and young healthy volunteers in a randomized, double-blind, placebo-controlled design. Attention to the task and motor training kinematics were comparable across age groups and sessions. In young subjects, encoding a motor memory under placebo was more prominent than in older subjects, and the encoding process was accelerated by intake of levodopa. In the elderly group, diminished motor memory encoding under placebo was enhanced by intake of levodopa to levels present in younger subjects. Therefore, upregulation of dopaminergic activity accelerated memory formation in young subjects and restored the ability to form a motor memory in elderly subjects; possible mechanisms underlying the beneficial effects of dopaminergic agents on motor learning in neurorehabilitation.
Koh, Ming Teng; Rosenzweig-Lipson, Sharon; Gallagher, Michela
2013-01-01
A condition of excess activity in the hippocampal formation is observed in the aging brain and in conditions that confer additional risk during aging for Alzheimer's disease. Compounds that act as positive allosteric modulators at GABA(A) α5 receptors might be useful in targeting this condition because GABA(A) α5 receptors mediate tonic inhibition of principal neurons in the affected network. While agents to improve cognitive function in the past focused on inverse agonists, which are negative allosteric modulators at GABA(A) α5 receptors, research supporting that approach used only young animals and predated current evidence for excessive hippocampal activity in age-related conditions of cognitive impairment. Here, we used two compounds, Compound 44 [6,6-dimethyl-3-(3-hydroxypropyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one] and Compound 6 [methyl 3,5-diphenylpyridazine-4-carboxylate], with functional activity as potentiators of γ-aminobutyric acid at GABA(A) α5 receptors, to test their ability to improve hippocampal-dependent memory in aged rats with identified cognitive impairment. Improvement was obtained in aged rats across protocols differing in motivational and performance demands and across varying retention intervals. Significant memory improvement occurred after either intracereboventricular infusion with Compound 44 (100 μg) in a water maze task or systemic administration with Compound 6 (3 mg/kg) in a radial arm maze task. Furthermore, systemic administration improved behavioral performance at dosing shown to provide drug exposure in the brain and in vivo receptor occupancy in the hippocampus. These data suggest a novel approach to improve neural network function in clinical conditions of excess hippocampal activity. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.
Nobiletin improves emotional and novelty recognition memory but not spatial referential memory.
Kang, Jiyun; Shin, Jung-Won; Kim, Yoo-Rim; Swanberg, Kelley M; Kim, Yooseung; Bae, Jae Ryong; Kim, Young Ki; Lee, Jinwon; Kim, Soo-Yeon; Sohn, Nak-Won; Maeng, Sungho
2017-01-01
How to maintain and enhance cognitive functions for both aged and young populations is a highly interesting subject. But candidate memory-enhancing reagents are tested almost exclusively on lesioned or aged animals. Also, there is insufficient information on the type of memory these reagents can improve. Working memory, located in the prefrontal cortex, manages short-term sensory information, but, by gaining significant relevance, this information is converted to long-term memory by hippocampal formation and/or amygdala, followed by tagging with space-time or emotional cues, respectively. Nobiletin is a product of citrus peel known for cognitive-enhancing effects in various pharmacological and neurodegenerative disease models, yet, it is not well studied in non-lesioned animals and the type of memory that nobiletin can improve remains unclear. In this study, 8-week-old male mice were tested using behavioral measurements for working, spatial referential, emotional and visual recognition memory after daily administration of nobiletin. While nobiletin did not induce any change of spontaneous activity in the open field test, freezing by fear conditioning and novel object recognition increased. However, the effectiveness of spatial navigation in the Y-maze and Morris water maze was not improved. These results mean that nobiletin can specifically improve memories of emotionally salient information associated with fear and novelty, but not of spatial information without emotional saliency. Accordingly, the use of nobiletin on normal subjects as a memory enhancer would be more effective on emotional types but may have limited value for the improvement of episodic memories.
McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja
2014-05-01
Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.
Skirrow, Caroline; Cross, J. Helen; Harrison, Sue; Cormack, Francesca; Harkness, William; Coleman, Rosie; Meierotto, Ellen; Gaiottino, Johanna; Vargha-Khadem, Faraneh
2015-01-01
The temporal lobes play a prominent role in declarative memory function, including episodic memory (memory for events) and semantic memory (memory for facts and concepts). Surgical resection for medication-resistant and well-localized temporal lobe epilepsy has good prognosis for seizure freedom, but is linked to memory difficulties in adults, especially when the removal is on the left side. Children may benefit most from surgery, because brain plasticity may facilitate post-surgical reorganization, and seizure cessation may promote cognitive development. However, the long-term impact of this intervention in children is not known. We examined memory function in 53 children (25 males, 28 females) who were evaluated for epilepsy surgery: 42 underwent unilateral temporal lobe resections (25 left, 17 right, mean age at surgery 13.8 years), 11 were treated only pharmacologically. Average follow-up was 9 years (range 5–15). Post-surgical change in visual and verbal episodic memory, and semantic memory at follow-up were examined. Pre- and post-surgical T1-weighted MRI brain scans were analysed to extract hippocampal and resection volumes, and evaluate post-surgical temporal lobe integrity. Language lateralization indices were derived from functional magnetic resonance imaging. There were no significant pre- to postoperative decrements in memory associated with surgery. In contrast, gains in verbal episodic memory were seen after right temporal lobe surgery, and visual episodic memory improved after left temporal lobe surgery, indicating a functional release in the unoperated temporal lobe after seizure reduction or cessation. Pre- to post-surgical change in memory function was not associated with any indices of brain structure derived from MRI. However, better verbal memory at follow-up was linked to greater post-surgical residual hippocampal volumes, most robustly in left surgical participants. Better semantic memory at follow-up was associated with smaller resection volumes and greater temporal pole integrity after left temporal surgery. Results were independent of post-surgical intellectual function and language lateralization. Our findings indicate post-surgical, hemisphere-dependent material-specific improvement in memory functions in the intact temporal lobe. However, outcome was linked to the anatomical integrity of the temporal lobe memory system, indicating that compensatory mechanisms are constrained by the amount of tissue which remains in the operated temporal lobe. Careful tailoring of resections for children undergoing epilepsy surgery may enhance long-term memory outcome. PMID:25392199
Galloway, Claire R; Lebois, Evan P; Shagarabi, Shezza L; Hernandez, Norma A; Manns, Joseph R
2014-01-01
Acetylcholine signaling through muscarinic receptors has been shown to benefit memory performance in some conditions, but pan-muscarinic activation also frequently leads to peripheral side effects. Drug therapies that selectively target M1 or M4 muscarinic receptors could potentially improve memory while minimizing side effects mediated by the other muscarinic receptor subtypes. The ability of three recently developed drugs that selectively activate M1 or M4 receptors to improve recognition memory was tested by giving Long-Evans rats subcutaneous injections of three different doses of the M1 agonist VU0364572, the M1 positive allosteric modulator BQCA or the M4 positive allosteric modulator VU0152100 before performing an object recognition memory task. VU0364572 at 0.1 mg/kg, BQCA at 1.0 mg/kg and VU0152100 at 3.0 and 30.0 mg/kg improved the memory performance of rats that performed poorly at baseline, yet the improvements in memory performance were the most statistically robust for VU0152100 at 3.0 mg/kg. The results suggested that selective M1 and M4 receptor activation each improved memory but that the likelihood of obtaining behavioral efficacy at a given dose might vary between subjects even in healthy groups depending on baseline performance. These results also highlighted the potential of drug therapies that selectively target M1 or M4 receptors to improve memory performance in individuals with impaired memory.
A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement
Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong
2016-01-01
Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates. PMID:26763827
A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement.
Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong
2016-01-01
Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.
NASA Technical Reports Server (NTRS)
Lee, L.-N.
1977-01-01
Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively modest coding complexity, it is proposed to concatenate a byte-oriented unit-memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real-time minimal-byte-error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.
NASA Technical Reports Server (NTRS)
Lee, L. N.
1976-01-01
Concatenated coding systems utilizing a convolutional code as the inner code and a Reed-Solomon code as the outer code are considered. In order to obtain very reliable communications over a very noisy channel with relatively small coding complexity, it is proposed to concatenate a byte oriented unit memory convolutional code with an RS outer code whose symbol size is one byte. It is further proposed to utilize a real time minimal byte error probability decoding algorithm, together with feedback from the outer decoder, in the decoder for the inner convolutional code. The performance of the proposed concatenated coding system is studied, and the improvement over conventional concatenated systems due to each additional feature is isolated.
On improving linear solver performance: a block variant of GMRES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, A H; Dennis, J M; Jessup, E R
2004-05-10
The increasing gap between processor performance and memory access time warrants the re-examination of data movement in iterative linear solver algorithms. For this reason, we explore and establish the feasibility of modifying a standard iterative linear solver algorithm in a manner that reduces the movement of data through memory. In particular, we present an alternative to the restarted GMRES algorithm for solving a single right-hand side linear system Ax = b based on solving the block linear system AX = B. Algorithm performance, i.e. time to solution, is improved by using the matrix A in operations on groups of vectors.more » Experimental results demonstrate the importance of implementation choices on data movement as well as the effectiveness of the new method on a variety of problems from different application areas.« less
Can corrective feedback improve recognition memory?
Kantner, Justin; Lindsay, D Stephen
2010-06-01
An understanding of the effects of corrective feedback on recognition memory can inform both recognition theory and memory training programs, but few published studies have investigated the issue. Although the evidence to date suggests that feedback does not improve recognition accuracy, few studies have directly examined its effect on sensitivity, and fewer have created conditions that facilitate a feedback advantage by encouraging controlled processing at test. In Experiment 1, null effects of feedback were observed following both deep and shallow encoding of categorized study lists. In Experiment 2, feedback robustly influenced response bias by allowing participants to discern highly uneven base rates of old and new items, but sensitivity remained unaffected. In Experiment 3, a false-memory procedure, feedback failed to attenuate false recognition of critical lures. In Experiment 4, participants were unable to use feedback to learn a simple category rule separating old items from new items, despite the fact that feedback was of substantial benefit in a nearly identical categorization task. The recognition system, despite a documented ability to utilize controlled strategic or inferential decision-making processes, appears largely impenetrable to a benefit of corrective feedback.
Efficient ICCG on a shared memory multiprocessor
NASA Technical Reports Server (NTRS)
Hammond, Steven W.; Schreiber, Robert
1989-01-01
Different approaches are discussed for exploiting parallelism in the ICCG (Incomplete Cholesky Conjugate Gradient) method for solving large sparse symmetric positive definite systems of equations on a shared memory parallel computer. Techniques for efficiently solving triangular systems and computing sparse matrix-vector products are explored. Three methods for scheduling the tasks in solving triangular systems are implemented on the Sequent Balance 21000. Sample problems that are representative of a large class of problems solved using iterative methods are used. We show that a static analysis to determine data dependences in the triangular solve can greatly improve its parallel efficiency. We also show that ignoring symmetry and storing the whole matrix can reduce solution time substantially.
Chu, J.C.
1958-09-23
An improved electrostatic memory system is de scribed fer a digital computer wherein a plarality of storage tubes are adapted to operate in either of two possible modes. According to the present irvention, duplicate storage tubes are provided fur each denominational order of the several binary digits. A single discriminator system is provided between corresponding duplicate tubes to determine the character of the infurmation stored in each. If either tube produces the selected type signal, corresponding to binazy "1" in the preferred embodiment, a "1" is regenerated in both tubes. In one mode of operation each bit of information is stored in two corresponding tubes, while in the other mode of operation each bit is stored in only one tube in the conventional manner.
A multiarchitecture parallel-processing development environment
NASA Technical Reports Server (NTRS)
Townsend, Scott; Blech, Richard; Cole, Gary
1993-01-01
A description is given of the hardware and software of a multiprocessor test bed - the second generation Hypercluster system. The Hypercluster architecture consists of a standard hypercube distributed-memory topology, with multiprocessor shared-memory nodes. By using standard, off-the-shelf hardware, the system can be upgraded to use rapidly improving computer technology. The Hypercluster's multiarchitecture nature makes it suitable for researching parallel algorithms in computational field simulation applications (e.g., computational fluid dynamics). The dedicated test-bed environment of the Hypercluster and its custom-built software allows experiments with various parallel-processing concepts such as message passing algorithms, debugging tools, and computational 'steering'. Such research would be difficult, if not impossible, to achieve on shared, commercial systems.
Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut
2015-01-01
Objectives. Memory training in combination with practice in semantic structuring and word fluency has been shown to improve memory performance. This study investigated the efficacy of a working memory training combined with exercises in semantic structuring and word fluency and examined whether training effects generalize to other cognitive tasks. Methods. In this double-blind randomized control study, 36 patients with memory impairments following brain damage were allocated to either the experimental or the active control condition, with both groups receiving 9 hours of therapy. The experimental group received a computer-based working memory training and exercises in word fluency and semantic structuring. The control group received the standard memory therapy provided in the rehabilitation center. Patients were tested on a neuropsychological test battery before and after therapy, resulting in composite scores for working memory; immediate, delayed, and prospective memory; word fluency; and attention. Results. The experimental group improved significantly in working memory and word fluency. The training effects also generalized to prospective memory tasks. No specific effect on episodic memory could be demonstrated. Conclusion. Combined treatment of working memory training with exercises in semantic structuring is an effective method for cognitive rehabilitation of organic memory impairment. © The Author(s) 2014.
Cultural differences in rated typicality and perceived causes of memory changes in adulthood.
Bottiroli, Sara; Cavallini, Elena; Fastame, Maria Chiara; Hertzog, Christopher
2013-01-01
This study examined cultural differences in stereotypes and attributions regarding aging and memory. Two subcultures belonging to the same country, Italy, were compared on general beliefs about memory. Sardinians live longer than other areas of Italy, which is a publically shared fact that informs stereotypes about that subculture. An innovative instrument evaluating simultaneously aging stereotypes and attributions about memory and memory change in adulthood was administered to 52 Sardinian participants and 52 Milanese individuals divided into three age groups: young (20-30), young-old (60-70), and old-old (71-85) adults. Both Milanese and Sardinians reported that memory decline across the life span is more typical than a pattern of stability or improvement. However, Sardinians viewed stability and improvement in memory as more typical than did the Milanese. Interestingly, cultural differences emerged in attributions about memory improvement. Although all Sardinian age groups rated nutrition and heredity as relevant causes in determining the memory decline, Sardinians' rated typicality of life-span memory improvement correlated strongly with causal attributions to a wide number of factors, including nutrition and heredity. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Memory boosts turn taking in evolutionary dilemma games.
Wang, Tao; Chen, Zhigang; Yang, Lei; Zou, You; Luo, Juan
2015-05-01
Spontaneous turn taking phenomenon can be observed in many self-organized systems, and the mechanism is unclear. This paper tries to model it by evolutionary dilemma games with memory mechanism. Prisoner's dilemma, Snowdrift (including Leader and Hero) and Stag-hunt games are unified on an extended S-T plane. Agents play game with all the others and make decision by the last game histories. The experiments find that when agents remember last 2-step histories or more, a kind of cooperative turn taking (CAD) bursts at the area of Snowdrift game with restriction of S + T > 2R and S ≠ T, while the consistent strategy (DorC) gathers on the line of S + T > 2R and S = T. We also find that the system's fitness ratio greatly improved with 2-step memory. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Memory feedback PID control for exponential synchronisation of chaotic Lur'e systems
NASA Astrophysics Data System (ADS)
Zhang, Ruimei; Zeng, Deqiang; Zhong, Shouming; Shi, Kaibo
2017-09-01
This paper studies the problem of exponential synchronisation of chaotic Lur'e systems (CLSs) via memory feedback proportional-integral-derivative (PID) control scheme. First, a novel augmented Lyapunov-Krasovskii functional (LKF) is constructed, which can make full use of the information on time delay and activation function. Second, improved synchronisation criteria are obtained by using new integral inequalities, which can provide much tighter bounds than what the existing integral inequalities can produce. In comparison with existing results, in which only proportional control or proportional derivative (PD) control is used, less conservative results are derived for CLSs by PID control. Third, the desired memory feedback controllers are designed in terms of the solution to linear matrix inequalities. Finally, numerical simulations of Chua's circuit and neural network are provided to show the effectiveness and advantages of the proposed results.
Impact of workstations on criticality analyses at ABB combustion engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarko, L.B.; Freeman, R.S.; O'Donnell, P.F.
1993-01-01
During 1991, ABB Combustion Engineering (ABB C-E) made the transition from a CDC Cyber 990 mainframe for nuclear criticality safety analyses to Hewlett Packard (HP)/Apollo workstations. The primary motivation for this change was improved economics of the workstation and maintaining state-of-the-art technology. The Cyber 990 utilized the NOS operating system with a 60-bit word size. The CPU memory size was limited to 131 100 words of directly addressable memory with an extended 250000 words available. The Apollo workstation environment at ABB consists of HP/Apollo-9000/400 series desktop units used by most application engineers, networked with HP/Apollo DN10000 platforms that use 32-bitmore » word size and function as the computer servers and network administrative CPUS, providing a virtual memory system.« less
Hiscox, Lucy; Leonavičiūtė, Erika; Humby, Trevor
2014-08-01
Dyslexia is associated with difficulties in language-specific skills such as spelling, writing and reading; the difficulty in acquiring literacy skills is not a result of low intelligence or the absence of learning opportunity, but these issues will persist throughout life and could affect long-term education. Writing is a complex process involving many different functions, integrated by the working memory system; people with dyslexia have a working memory deficit, which means that concentration on writing quality may be detrimental to understanding. We confirm impaired working memory in a sample of university students with (compensated) dyslexia, and using a within-subject design with three test conditions, we show that these participants demonstrated better understanding of a piece of text if they had used automatic spelling correction software during a dictation/transcription task. We hypothesize that the use of the autocorrecting software reduced demand on working memory, by allowing word writing to be more automatic, thus enabling better processing and understanding of the content of the transcriptions and improved recall. Long-term and regular use of autocorrecting assistive software should be beneficial for people with and without dyslexia and may improve confidence, written work, academic achievement and self-esteem, which are all affected in dyslexia. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Liu, Yan; Fan, Xi; Chen, Houpeng; Wang, Yueqing; Liu, Bo; Song, Zhitang; Feng, Songlin
2017-08-01
In this brief, multilevel data storage for phase-change memory (PCM) has attracted more attention in the memory market to implement high capacity memory system and reduce cost-per-bit. In this work, we present a universal programing method of SET stair-case current pulse in PCM cells, which can exploit the optimum programing scheme to achieve 2-bit/ 4state resistance-level with equal logarithm interval. SET stair-case waveform can be optimized by TCAD real time simulation to realize multilevel data storage efficiently in an arbitrary phase change material. Experimental results from 1 k-bit PCM test-chip have validated the proposed multilevel programing scheme. This multilevel programming scheme has improved the information storage density, robustness of resistance-level, energy efficient and avoiding process complexity.
Herrera-Guzmán, Ixchel; Gudayol-Ferré, Esteve; Herrera-Guzmán, Daniel; Guàrdia-Olmos, Joan; Hinojosa-Calvo, Erika; Herrera-Abarca, Jorge E
2009-06-01
Patients with major depressive disorder (MDD) usually suffer from altered cognitive functions of episodic memory, working memory, mental processing speed and motor response. Diverse studies suggest that different antidepressant agents may improve cognitive functions in patients with MDD. The aim of this work is to study the effects of serotonergic reuptake inhibitors (SSRIs) and serotonergic-noradrenergic reuptake inhibitors (SNRIs) treatments to improve the performance on memory tasks and mental processing speed in MDD. Seventy-three subjects meeting criteria for major depressive disorder were assessed with the Hamilton depression rating scale and a neuropsychological battery. The subjects were medicated with escitalopram (n=36) or duloxetine (n=37) for 24 weeks. At the end of the trial, the subjects were assessed again with the same neuropsychological battery used prior to the treatment. Both treatments improved importantly the episodic memory and to a lesser extent, working memory, mental processing speed and motor performance. Our results suggest that cognition is partially independent from improvement in clinical symptoms. Both groups achieved remission rates in the HAM-D-17 after 24 weeks of treatment, but SNRI was superior to SSRI at improving episodic and working memory. Our work indicates that the superiority of SNRI over the SSRI at episodic memory improvement is clinically relevant.
Molz, Patrícia; Schröder, Nadja
2017-01-01
The aging process comprises a series of organic alterations, affecting multiple systems, including the nervous system. Aging has been considered the main risk factor for the advance of neurodegenerative diseases, many of which are accompanied by cognitive impairment. Aged individuals show cognitive decline, which has been associated with oxidative stress, as well as mitochondrial, and consequently energetic failure. Lipoic acid (LA), a natural compound present in food and used as a dietary supplement, has been considered a promising agent for the treatment and/or prevention of neurodegenerative disorders. In spite of a number of preclinical studies showing beneficial effects of LA in memory functioning, and pointing to its neuroprotective potential effect, to date only a few studies have examined its effects in humans. Investigations performed in animal models of memory loss associated to aging and neurodegenerative disorders have shown that LA improves memory in a variety of behavioral paradigms. Moreover, cell and molecular mechanisms underlying LA effects have also been investigated. Accordingly, LA displays antioxidant, antiapoptotic, and anti-inflammatory properties in both in vivo and in vitro studies. In addition, it has been shown that LA reverses age-associated loss of neurotransmitters and their receptors, which can underlie its effects on cognitive functions. The present review article aimed at summarizing and discussing the main studies investigating the effects of LA on cognition as well as its cell and molecular effects, in order to improve the understanding of the therapeutic potential of LA on memory loss during aging and in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with LA.
Molz, Patrícia; Schröder, Nadja
2017-01-01
The aging process comprises a series of organic alterations, affecting multiple systems, including the nervous system. Aging has been considered the main risk factor for the advance of neurodegenerative diseases, many of which are accompanied by cognitive impairment. Aged individuals show cognitive decline, which has been associated with oxidative stress, as well as mitochondrial, and consequently energetic failure. Lipoic acid (LA), a natural compound present in food and used as a dietary supplement, has been considered a promising agent for the treatment and/or prevention of neurodegenerative disorders. In spite of a number of preclinical studies showing beneficial effects of LA in memory functioning, and pointing to its neuroprotective potential effect, to date only a few studies have examined its effects in humans. Investigations performed in animal models of memory loss associated to aging and neurodegenerative disorders have shown that LA improves memory in a variety of behavioral paradigms. Moreover, cell and molecular mechanisms underlying LA effects have also been investigated. Accordingly, LA displays antioxidant, antiapoptotic, and anti-inflammatory properties in both in vivo and in vitro studies. In addition, it has been shown that LA reverses age-associated loss of neurotransmitters and their receptors, which can underlie its effects on cognitive functions. The present review article aimed at summarizing and discussing the main studies investigating the effects of LA on cognition as well as its cell and molecular effects, in order to improve the understanding of the therapeutic potential of LA on memory loss during aging and in patients suffering from neurodegenerative disorders, supporting the development of clinical trials with LA. PMID:29311912
Preserved and Impaired Emotional Memory in Alzheimer’s Disease
Klein-Koerkamp, Yanica; Baciu, Monica; Hot, Pascal
2012-01-01
Patients with early atrophy of both limbic structures involved in memory and emotion processing in Alzheimer’s disease (AD) provide a unique clinical population for investigating how emotion is able to modulate retention processes. This review focuses on the emotional enhancement effect (EEE), defined as the improvement of memory for emotional events compared with neutral ones. The assessment of the EEE for different memory systems in AD suggests that the EEE could be preserved under specific retrieval instructions. The first part of this review examines these data in light of compelling evidence that the amygdala can modulate processes of hippocampus-dependent memory. We argue that the EEE could be a useful paradigm to reduce impairment in episodic memory tasks. In the second part, we discuss theoretical consequences of the findings in favor of an EEE, according to which a compensatory mechanism in patients with AD solicits greater amygdala functioning or additional networks, even when amygdala atrophy is present. These considerations emphasize the relevance of investigating patients with AD to understand the relationship between emotion and memory processes. PMID:23049516
Olsen, Rosanna K; Sebanayagam, Vinoja; Lee, Yunjo; Moscovitch, Morris; Grady, Cheryl L; Rosenbaum, R Shayna; Ryan, Jennifer D
2016-12-01
There is consistent agreement regarding the positive relationship between cumulative eye movement sampling and subsequent recognition, but the role of the hippocampus in this sampling behavior is currently unknown. It is also unclear whether the eye movement repetition effect, i.e., fewer fixations to repeated, compared to novel, stimuli, depends on explicit recognition and/or an intact hippocampal system. We investigated the relationship between cumulative sampling, the eye movement repetition effect, subsequent memory, and the hippocampal system. Eye movements were monitored in a developmental amnesic case (H.C.), whose hippocampal system is compromised, and in a group of typically developing participants while they studied single faces across multiple blocks. The faces were studied from the same viewpoint or different viewpoints and were subsequently tested with the same or different viewpoint. Our previous work suggested that hippocampal representations support explicit recognition for information that changes viewpoint across repetitions (Olsen et al., 2015). Here, examination of eye movements during encoding indicated that greater cumulative sampling was associated with better memory among controls. Increased sampling, however, was not associated with better explicit memory in H.C., suggesting that increased sampling only improves memory when the hippocampal system is intact. The magnitude of the repetition effect was not correlated with cumulative sampling, nor was it related reliably to subsequent recognition. These findings indicate that eye movements collect information that can be used to strengthen memory representations that are later available for conscious remembering, whereas eye movement repetition effects reflect a processing change due to experience that does not necessarily reflect a memory representation that is available for conscious appraisal. Lastly, H.C. demonstrated a repetition effect for fixed viewpoint faces but not for variable viewpoint faces, which suggests that repetition effects are differentially supported by neocortical and hippocampal systems, depending upon the representational nature of the underlying memory trace. Copyright © 2016 Elsevier Ltd. All rights reserved.
Advanced Health Management System for the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Davidson, Matt; Stephens, John; Rodela, Chris
2006-01-01
Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.
NASA Astrophysics Data System (ADS)
Marinella, M.
In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.
"Brain-specific" nutrients: a memory cure?
McDaniel, Mark A; Maier, Steven F; Einstein, Gilles O
2003-01-01
We review the experimental evaluations of several widely marketed nonprescription compounds claimed to be memory enhancers and treatments for age-related memory decline. We generally limit our review to double-blind placebo-controlled studies. The compounds examined are phosphatidylserine (PS), phosphatidylcholine (PC), citicoline, piracetam, vinpocetine, acetyl-L-carnitine (ALC), and antioxidants (particularly vitamin E). In animals, PS has been shown to attenuate many neuronal effects of aging, and to restore normal memory on a variety of tasks. Preliminary findings with humans, though, are limited. For older adults with probable Alzheimer's disease, a single study failed to demonstrate positive effects of PS on memory performance. For older adults with moderate cognitive impairment, PS has produced consistently modest increases in recall of word lists. Positive effects have not been as consistently reported for other memory tests. There is one report of consistent benefits across a number of memory tests for a subset of normal adults who performed more poorly than their peers at baseline. The choline compounds PC and citicoline are thought to promote synthesis and transmission of neurotransmitters important to memory. PC has not proven effective for improving memory in patients with probable Alzheimer's disease. The issue remains open for older adults without serious degenerative neural disease. Research on citicoline is practically nonexistent, but one study reported a robust improvement in story recall for a small sample of normally aging older adults who scored lower than their peers in baseline testing. Animal studies suggest that piracetam may improve neuronal efficiency, facilitate activity in neurotransmitter systems, and combat the age-related decrease in receptors on the neuronal membrane. However, for patients with probable Alzheimer's disease, as well as for adults with age-associated memory impairment, there is no clear-cut support for a mnemonic benefit of piracetam. Vinpocetine increases blood circulation and metabolism in the brain. Animal studies have shown that vinpocetine can reduce the loss of neurons due to decreased blood flow. In three studies of older adults with memory problems associated with poor brain circulation or dementia-related disease, vinpocetine produced significantly more improvement than a placebo in performance on global cognitive tests reflecting attention, concentration, and memory. Effects on episodic memory per se have been tested minimally, if at all. ALC participates in cellular energy production, a process especially important in neurons, and in removal of toxic accumulation of fatty acids. Animal studies show that ALC reverses the age-related decline in the number of neuron membrane receptors. Studies of patients with probable Alzheimer's disease have reported nominal advantages over a range of memory tests for ALC-treated patients relative to placebo groups. Significant differences have been reported rarely, however. Whether ALC would have mnemonic benefits for aging adults without brain disease is untested as far as we know. Antioxidants help neutralize tissue-damaging free radicals, which become more prevalent as organisms age. It is hypothesized that increasing antioxidant levels in the organism might retard or reverse the damaging effects of free radicals on neurons. Thus far, however, studies have found that vitamin E does not significantly slow down memory decline for Alzheimer's patients and does not produce significant memory benefits among early Parkinson's patients. Neither did a combination of vitamins E and C significantly improve college students' performance on several cognitive tasks. In sum, for most of the "brain-specific" nutrients we review, some mildly suggestive effects have been found in preliminary controlled studies using standard psychometric memory assessments or more general tests designed to reveal cognitive impairment. We suggest that future evaluations of the possible memory benefits of these supplements might fruitfully focus on memory processes rather than on memory tests per se.
System and method for memory allocation in a multiclass memory system
Loh, Gabriel; Meswani, Mitesh; Ignatowski, Michael; Nutter, Mark
2016-06-28
A system for memory allocation in a multiclass memory system includes a processor coupleable to a plurality of memories sharing a unified memory address space, and a library store to store a library of software functions. The processor identifies a type of a data structure in response to a memory allocation function call to the library for allocating memory to the data structure. Using the library, the processor allocates portions of the data structure among multiple memories of the multiclass memory system based on the type of the data structure.
Methods for operating parallel computing systems employing sequenced communications
Benner, R.E.; Gustafson, J.L.; Montry, G.R.
1999-08-10
A parallel computing system and method are disclosed having improved performance where a program is concurrently run on a plurality of nodes for reducing total processing time, each node having a processor, a memory, and a predetermined number of communication channels connected to the node and independently connected directly to other nodes. The present invention improves performance of the parallel computing system by providing a system which can provide efficient communication between the processors and between the system and input and output devices. A method is also disclosed which can locate defective nodes with the computing system. 15 figs.
Methods for operating parallel computing systems employing sequenced communications
Benner, Robert E.; Gustafson, John L.; Montry, Gary R.
1999-01-01
A parallel computing system and method having improved performance where a program is concurrently run on a plurality of nodes for reducing total processing time, each node having a processor, a memory, and a predetermined number of communication channels connected to the node and independently connected directly to other nodes. The present invention improves performance of performance of the parallel computing system by providing a system which can provide efficient communication between the processors and between the system and input and output devices. A method is also disclosed which can locate defective nodes with the computing system.
Aasvik, Julie K; Woodhouse, Astrid; Stiles, Tore C; Jacobsen, Henrik B; Landmark, Tormod; Glette, Mari; Borchgrevink, Petter C; Landrø, Nils I
2016-01-01
Introduction: The current study examined if adaptive working memory training (Cogmed QM) has the potential to improve inhibitory control, working memory capacity, and perceptions of memory functioning in a group of patients currently on sick leave due to symptoms of pain, insomnia, fatigue, depression and anxiety. Participants who were referred to a vocational rehabilitation center volunteered to take part in the study. Methods: Participants were randomly assigned to either a training condition ( N = 25) or a control condition ( N = 29). Participants in the training condition received working memory training in addition to the clinical intervention offered as part of the rehabilitation program, while participants in the control condition received treatment as usual i.e., the rehabilitation program only. Inhibitory control was measured by The Stop Signal Task, working memory was assessed by the Spatial Working Memory Test, while perceptions of memory functioning were assessed by The Everyday Memory Questionnaire-Revised. Results: Participants in the training group showed a significant improvement on the post-tests of inhibitory control when compared with the comparison group ( p = 0.025). The groups did not differ on the post-tests of working memory. Both groups reported less memory problems at post-testing, but there was no sizeable difference between the two groups. Conclusions: Results indicate that working memory training does not improve general working memory capacity per se . Nor does it seem to give any added effects in terms of targeting and improving self-perceived memory functioning. Results do, however, provide evidence to suggest that inhibitory control is accessible and susceptible to modification by adaptive working memory training.
Memory color of natural familiar objects: effects of surface texture and 3-D shape.
Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C
2013-06-28
Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.
Improving Children's Working Memory and Classroom Performance
ERIC Educational Resources Information Center
St Clair-Thompson, Helen; Stevens, Ruth; Hunt, Alexandra; Bolder, Emma
2010-01-01
Previous research has demonstrated close relationships between working memory and children's scholastic attainment. The aim of the present study was to explore a method of improving working memory, using memory strategy training. Two hundred and fifty-four children aged five to eight years were tested on measures of the phonological loop,…
Event Segmentation Improves Event Memory up to One Month Later
ERIC Educational Resources Information Center
Flores, Shaney; Bailey, Heather R.; Eisenberg, Michelle L.; Zacks, Jeffrey M.
2017-01-01
When people observe everyday activity, they spontaneously parse it into discrete meaningful events. Individuals who segment activity in a more normative fashion show better subsequent memory for the events. If segmenting events effectively leads to better memory, does asking people to attend to segmentation improve subsequent memory? To answer…
Holographic memory system based on projection recording of computer-generated 1D Fourier holograms.
Betin, A Yu; Bobrinev, V I; Donchenko, S S; Odinokov, S B; Evtikhiev, N N; Starikov, R S; Starikov, S N; Zlokazov, E Yu
2014-10-01
Utilization of computer generation of holographic structures significantly simplifies the optical scheme that is used to record the microholograms in a holographic memory record system. Also digital holographic synthesis allows to account the nonlinear errors of the record system to improve the microholograms quality. The multiplexed record of holograms is a widespread technique to increase the data record density. In this article we represent the holographic memory system based on digital synthesis of amplitude one-dimensional (1D) Fourier transform holograms and the multiplexed record of these holograms onto the holographic carrier using optical projection scheme. 1D Fourier transform holograms are very sensitive to orientation of the anamorphic optical element (cylindrical lens) that is required for encoded data object reconstruction. The multiplex record of several holograms with different orientation in an optical projection scheme allowed reconstruction of the data object from each hologram by rotating the cylindrical lens on the corresponding angle. Also, we discuss two optical schemes for the recorded holograms readout: a full-page readout system and line-by-line readout system. We consider the benefits of both systems and present the results of experimental modeling of 1D Fourier holograms nonmultiplex and multiplex record and reconstruction.
Roberts, Gehan; Quach, Jon; Gold, Lisa; Anderson, Peter; Rickards, Field; Mensah, Fiona; Ainley, John; Gathercole, Susan; Wake, Melissa
2011-06-20
Low academic achievement is common and is associated with adverse outcomes such as grade repetition, behavioural disorders and unemployment. The ability to accurately identify these children and intervene before they experience academic failure would be a major advance over the current 'wait to fail' model. Recent research suggests that a possible modifiable factor for low academic achievement is working memory, the ability to temporarily store and manipulate information in a 'mental workspace'. Children with working memory difficulties are at high risk of academic failure. It has recently been demonstrated that working memory can be improved with adaptive training tasks that encourage improvements in working memory capacity. Our trial will determine whether the intervention is efficacious as a selective prevention strategy for young children at risk of academic difficulties and is cost-effective. This randomised controlled trial aims to recruit 440 children with low working memory after a school-based screening of 2880 children in Grade one. We will approach caregivers of all children from 48 participating primary schools in metropolitan Melbourne for consent. Children with low working memory will be randomised to usual care or the intervention. The intervention will consist of 25 computerised working memory training sessions, which take approximately 35 minutes each to complete. Follow-up of children will be conducted at 6, 12 and 24 months post-randomisation through child face-to-face assessment, parent and teacher surveys and data from government authorities. The primary outcome is academic achievement at 12 and 24 months, and other outcomes include child behaviour, attention, health-related quality of life, working memory, and health and educational service utilisation. A successful start to formal learning in school sets the stage for future academic, psychological and economic well-being. If this preventive intervention can be shown to be efficacious, then we will have the potential to prevent academic underachievement in large numbers of at-risk children, to offer a ready-to-use intervention to the Australian school system and to build international research partnerships along the health-education interface, in order to carry our further studies of effectiveness and generalisability.
NASA Astrophysics Data System (ADS)
Hasan, T.; Kang, Y.-S.; Kim, Y.-J.; Park, S.-J.; Jang, S.-Y.; Hu, K.-Y.; Koop, E. J.; Hinnen, P. C.; Voncken, M. M. A. J.
2016-03-01
Advancement of the next generation technology nodes and emerging memory devices demand tighter lithographic focus control. Although the leveling performance of the latest-generation scanners is state of the art, challenges remain at the wafer edge due to large process variations. There are several customer configurable leveling control options available in ASML scanners, some of which are application specific in their scope of leveling improvement. In this paper, we assess the usability of leveling non-correctable error models to identify yield limiting edge dies. We introduce a novel dies-inspec based holistic methodology for leveling optimization to guide tool users in selecting an optimal configuration of leveling options. Significant focus gain, and consequently yield gain, can be achieved with this integrated approach. The Samsung site in Hwaseong observed an improved edge focus performance in a production of a mid-end memory product layer running on an ASML NXT 1960 system. 50% improvement in focus and a 1.5%p gain in edge yield were measured with the optimized configurations.
Johnson, Lance A.; Zuloaga, Kristen L.; Kugelman, Tara L.; Mader, Kevin S.; Morré, Jeff T.; Zuloaga, Damian G.; Weber, Sydney; Marzulla, Tessa; Mulford, Amelia; Button, Dana; Lindner, Jonathan R.; Alkayed, Nabil J.; Stevens, Jan F.; Raber, Jacob
2015-01-01
Obesity, metabolic syndrome (MetS) and type 2 diabetes (T2D) are associated with decreased cognitive function. While weight loss and T2D remission result in improvements in metabolism and vascular function, it is less clear if these benefits extend to cognitive performance. Here, we highlight the malleable nature of MetS-associated cognitive dysfunction using a mouse model of high fat diet (HFD)-induced MetS. While learning and memory was generally unaffected in mice with type 1 diabetes (T1D), multiple cognitive impairments were associated with MetS, including deficits in novel object recognition, cued fear memory, and spatial learning and memory. However, a brief reduction in dietary fat content in chronic HFD-fed mice led to a complete rescue of cognitive function. Cerebral blood volume (CBV), a measure of vascular perfusion, was decreased during MetS, was associated with long term memory, and recovered following the intervention. Finally, repeated infusion of plasma collected from age-matched, low fat diet-fed mice improved memory in HFD mice, and was associated with a distinct metabolic profile. Thus, the cognitive dysfunction accompanying MetS appears to be amenable to treatment, related to cerebrovascular function, and mitigated by systemic factors. PMID:26870815
The effects of huperzine A and IDRA 21 on visual recognition memory in young macaques
Malkova, Ludise; Kozikowski, Alan P.; Gale, Karen
2011-01-01
Nootropic agents or cognitive enhancers are purported to improve mental functions such as cognition, memory, or attention. The aim of our study was to determine the effects of two possible cognitive enhancers, huperzine A and IDRA 21, in normal young adult monkeys performing a visual memory task of varying degrees of difficulty. Huperzine A is a reversible acetylcholinesterase (AChE) inhibitor, its administration results in regionally specific increases in acetylcholine levels in the brain. In human clinical trials, Huperzine A resulted in cognitive improvement in patients with mild to moderate form of Alzheimer's disease (AD) showing its potential as a palliative agent in the treatment of AD. IDRA 21 is a positive allosteric modulator of glutamate AMPA receptors. It increases excitatory synaptic strength by attenuating rapid desensitization of AMPA receptors and may thus have beneficial therapeutic effects to ameliorate memory deficits in patients with cognitive impairments, including AD. The present study evaluated the effects of the two drugs in normal, intact, young adult monkeys to determine whether they can result in cognitive enhancement in a system that is presumably functioning optimally. Six young pigtail macaques (Macaca nemestrina) were trained on delayed non-matching-to-sample task, a measure of visual recognition memory, up to criterion of 90% correct responses on each of the four delays (10s, 30s, 60s, and 90s). They were then tested on two versions of the task: Task 1 included the four delays intermixed within a session and the monkeys performed it with the accuracy of 90%. Task 2 included, in each of 24 trials, a list of six objects presented in succession. Two objects from the list were then presented for choice paired with novel objects and following two of the four delays intermixed within a session. This task with a higher mnemonic demand yielded an average performance of 64% correct. Oral administration of huperzine A did not significantly affect the monkeys' performance on either task. However, a significant negative correlation was found between the baseline performance on each delay and the change in performance under huperzine A, suggesting that under conditions in which the subjects were performing poorly (55 – 69%), the drug resulted in improved performance, whereas no improvement was obtained when the baseline was close to 90%. In fact, when the subjects were performing very well, huperzine A tended to reduce the performance accuracy, indicating that in a system that functions optimally, the increased availability of acetylcholine does not improve performance or memory, especially when the animals are close to the maximum performance. In contrast, oral administration of IDRA 21 significantly improved performance on Task 2, especially on the longest delay. This finding supports the potential use of this drug in treatment of cognitive and memory disorders. PMID:21185313
Moriguchi, Shigeki; Tanaka, Tomoya; Tagashira, Hideaki; Narahashi, Toshio; Fukunaga, Kohji
2013-04-01
Alzheimer's disease (AD) shows degeneration of the cholinergic system in the medial septum, thereby eliciting down-regulation of the olfactory function in patients. We have previously reported that olfactory bulbectomized (OBX) mice show hippocampus-dependent memory impairment as assessed by memory-related behavioral tasks and hippocampal long-term potentiation (LTP). In the present study, we focused whether novel pyrrolidone nootropic drug sunifiram improves both memory impairment and depression observed in OBX mice. OBX mice were administered once a day for 7-12 days with sunifiram (0.01-1.0mg/kg p.o.) from 10 days after operation with or without gavestinel (10mg/kg i.p.), which is glycine-binding site inhibitor of N-methyl-d-aspartate receptor (NMDAR). The spatial reference memory assessed by Y-maze and short-term memory assessed by novel object recognition task were significantly improved by sunifiram treatment in OBX mice. Sunifiram also restored hippocampal LTP injured in OBX mice without treatment with gavestinel. By contrast, sunifiram treatment did not ameliorate the depressive behaviors assessed by tail suspension task in OBX mice. Notably, sunifiram treatment restored CaMKIIα (Thr-286) autophosphorylation and GluR1 (Ser-831) phosphorylation in the hippocampal CA1 region from OBX mice to the levels of control mice. Likewise, sunifiram treatment improved PKCα (Ser-657) autophosphorylation and NR1 (Ser-896) phosphorylation to the control levels. Stimulation of CaMKII and PKC autophosphorylation by sunifiram was significantly inhibited by pre-treatment with gavestinel. However, sunifiram treatment did not affect the phosphorylation of CaMKIV (Thr-196) and ERK. Taken together, sunifiram ameliorates OBX-induced deficits of memory-related behaviors and impaired LTP in the hippocampal CA1 region via stimulation of glycine-binding site of NMDAR. Copyright © 2013 Elsevier B.V. All rights reserved.
Leavitt, V M; Cirnigliaro, C; Cohen, A; Farag, A; Brooks, M; Wecht, J M; Wylie, G R; Chiaravalloti, N D; DeLuca, J; Sumowski, J F
2014-01-01
Multiple sclerosis leads to prominent hippocampal atrophy, which is linked to memory deficits. Indeed, 50% of multiple sclerosis patients suffer memory impairment, with negative consequences for quality of life. There are currently no effective memory treatments for multiple sclerosis either pharmacological or behavioral. Aerobic exercise improves memory and promotes hippocampal neurogenesis in nonhuman animals. Here, we investigate the benefits of aerobic exercise in memory-impaired multiple sclerosis patients. Pilot data were collected from two ambulatory, memory-impaired multiple sclerosis participants randomized to non-aerobic (stretching) and aerobic (stationary cycling) conditions. The following baseline/follow-up measurements were taken: high-resolution MRI (neuroanatomical volumes), fMRI (functional connectivity), and memory assessment. Intervention was 30-minute sessions 3 times per week for 3 months. Aerobic exercise resulted in 16.5% increase in hippocampal volume and 53.7% increase in memory, as well as increased hippocampal resting-state functional connectivity. Improvements were specific, with no comparable changes in overall cerebral gray matter (+2.4%), non-hippocampal deep gray matter structures (thalamus, caudate: -4.0%), or in non-memory cognitive functioning (executive functions, processing speed, working memory: changes ranged from -11% to +4%). Non-aerobic exercise resulted in relatively no change in hippocampal volume (2.8%) or memory (0.0%), and no changes in hippocampal functional connectivity. This is the first evidence for aerobic exercise to increase hippocampal volume and connectivity and improve memory in multiple sclerosis. Aerobic exercise represents a cost-effective, widely available, natural, and self-administered treatment with no adverse side effects that may be the first effective memory treatment for multiple sclerosis patients.
When Delays Improve Memory: Stabilizing Memory in Children May Require Time.
Darby, Kevin P; Sloutsky, Vladimir M
2015-12-01
Memory is critical for learning, cognition, and cognitive development. Recent work has suggested that preschool-age children are vulnerable to catastrophic levels of memory interference, in which new learning dramatically attenuates memory for previously acquired knowledge. In the work reported here, we investigated the effects of consolidation on children's memory by introducing a 48-hr delay between learning and testing. In Experiment 1, the delay improved children's memory and eliminated interference. Results of Experiment 2 suggest that the benefit of this delay is limited to situations in which children are given enough information to form complex memory structures. These findings have important implications for understanding consolidation processes and memory development. © The Author(s) 2015.
NASA Technical Reports Server (NTRS)
Vo, Dinh Phuoc; Soler, Christian; Aussenac, N.; Macchion, D.
1993-01-01
The Assembly, Integration, Test, and Validation (AIT/AIV) of the Ariane4 Vehicle Equipment Bay was held at Matra Marconi Space (MMS) site of Toulouse for several years. For this activity, incident interpretation necessitates a great deal of different knowledge. When complex faults occur, particularly those appearing during overall control tests, experts of various domains (EGSE, software, on-board equipment) have to join for investigation sessions. Thus, an assistance tool for the identification of faulty equipment will improve the efficiency of diagnosis and the overall productivity of test activities. As a solution, the Aramiihs laboratory proposed considering the opportunity of a knowledge based system intended to assist the tester in diagnosis. This knowledge based system is, in fact, a short-term achievement of a long-term goal which is the capitalization of corporate memory in the Ariane4 test domain. Aramiihs is a research unit where engineers from MMS and researchers from the IRIT-CNRS cooperate on problems concerning new types of man-system interaction.
Pillet, Benoit; Morvan, Yannick; Todd, Aurelia; Franck, Nicolas; Duboc, Chloé; Grosz, Aimé; Launay, Corinne; Demily, Caroline; Gaillard, Raphaël; Krebs, Marie-Odile; Amado, Isabelle
2015-01-01
Cognitive deficits in schizophrenia mainly affect memory, attention and executive functions. Cognitive remediation is a technique derived from neuropsychology, which aims to improve or compensate for these deficits. Working memory, verbal learning, and executive functions are crucial factors for functional outcome. Our purpose was to assess the impact of the cognitive remediation therapy (CRT) program on cognitive difficulties in patients with schizophrenia, especially on working memory, verbal memory, and cognitive flexibility. We collected data from clinical and neuropsychological assessments in 24 patients suffering from schizophrenia (Diagnostic and Statistical Manual of mental Disorders-Fourth Edition, DSM-IV) who followed a 3-month (CRT) program. Verbal and visuo-spatial working memory, verbal memory, and cognitive flexibility were assessed before and after CRT. The Wilcoxon test showed significant improvements on the backward digit span, on the visual working memory span, on verbal memory and on flexibility. Cognitive improvement was substantial when baseline performance was low, independently from clinical benefit. CRT is effective on crucial cognitive domains and provides a huge benefit for patients having low baseline performance. Such cognitive amelioration appears highly promising for improving the outcome in cognitively impaired patients.
Relaxing decision criteria does not improve recognition memory in amnesic patients.
Reber, P J; Squire, L R
1999-05-01
An important question about the organization of memory is whether information available in non-declarative memory can contribute to performance on tasks of declarative memory. Dorfman, Kihlstrom, Cork, and Misiaszek (1995) described a circumstance in which the phenomenon of priming might benefit recognition memory performance. They reported that patients receiving electroconvulsive therapy improved their recognition performance when they were encouraged to relax their criteria for endorsing test items as familiar. It was suggested that priming improved recognition by making information available about the familiarity of test items. In three experiments, we sought unsuccessfully to reproduce this phenomenon in amnesic patients. In Experiment 3, we reproduced the methods and procedure used by Dorfman et al. but still found no evidence for improved recognition memory following the manipulation of decision criteria. Although negative findings have their own limitations, our findings suggest that the phenomenon reported by Dorfman et al. does not generalize well. Our results agree with several recent findings that suggest that priming is independent of recognition memory and does not contribute to recognition memory scores.
Melby-Lervåg, Monica; Redick, Thomas S.; Hulme, Charles
2016-01-01
It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of “real-world” cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. PMID:27474138
Working memory capacity and the spacing effect in cued recall.
Delaney, Peter F; Godbole, Namrata R; Holden, Latasha R; Chang, Yoojin
2018-07-01
Spacing repetitions typically improves memory (the spacing effect). In three cued recall experiments, we explored the relationship between working memory capacity and the spacing effect. People with higher working memory capacity are more accurate on memory tasks that require retrieval relative to people with lower working memory capacity. The experiments used different retention intervals and lags between repetitions, but were otherwise similar. Working memory capacity and spacing of repetitions both improved memory in most of conditions, but they did not interact, suggesting additive effects. The results are consistent with the ACT-R model's predictions, and with a study-phase recognition process underpinning the spacing effect in cued recall.
Phase-image-based content-addressable holographic data storage
NASA Astrophysics Data System (ADS)
John, Renu; Joseph, Joby; Singh, Kehar
2004-03-01
We propose and demonstrate the use of phase images for content-addressable holographic data storage. Use of binary phase-based data pages with 0 and π phase changes, produces uniform spectral distribution at the Fourier plane. The absence of strong DC component at the Fourier plane and more intensity of higher order spatial frequencies facilitate better recording of higher spatial frequencies, and improves the discrimination capability of the content-addressable memory. This improves the results of the associative recall in a holographic memory system, and can give low number of false hits even for small search arguments. The phase-modulated pixels also provide an opportunity of subtraction among data pixels leading to better discrimination between similar data pages.
Method for simultaneous overlapped communications between neighboring processors in a multiple
Benner, Robert E.; Gustafson, John L.; Montry, Gary R.
1991-01-01
A parallel computing system and method having improved performance where a program is concurrently run on a plurality of nodes for reducing total processing time, each node having a processor, a memory, and a predetermined number of communication channels connected to the node and independently connected directly to other nodes. The present invention improves performance of performance of the parallel computing system by providing a system which can provide efficient communication between the processors and between the system and input and output devices. A method is also disclosed which can locate defective nodes with the computing system.
Sulforaphane alleviates scopolamine-induced memory impairment in mice.
Lee, Siyoung; Kim, Jisung; Seo, Sang Gwon; Choi, Bo-Ryoung; Han, Jung-Soo; Lee, Ki Won; Kim, Jiyoung
2014-07-01
Sulforaphane, an organosulfur compound present in cruciferous vegetables, has been shown to exert neuroprotective effects in experimental in vitro and in vivo models of neurodegeneration. To determine whether sulforaphane can preserve cognitive function, we examined its effects on scopolamine-induced memory impairment in mice using the Morris water maze test. Sulforaphane (10 or 50mg/kg) was administered to C57BL/6 mice by oral gavage for 14 days (days 1-14), and memory impairment was induced by intraperitoneal injection of scopolamine (1mg/kg) for 7 days (days 8-14). Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity in the hippocampus and frontal cortex, as indicated by a decreased acetylcholine (ACh) level and an increased acetylcholinesterase (AChE) activity. Sulforaphane significantly attenuated the scopolamine-induced memory impairment and improved cholinergic system reactivity, as indicated by an increased ACh level, decreased AChE activity, and increased choline acetyltransferase (ChAT) expression in the hippocampus and frontal cortex. These effects of sulforaphane on cholinergic system reactivity were confirmed in vitro. Sulforaphane (10 or 20μM) increased the ACh level, decreased the AChE activity, and increased ChAT expression in scopolamine-treated primary cortical neurons. These observations suggest that sulforaphane might exert a significant neuroprotective effect on cholinergic deficit and cognitive impairment. Copyright © 2014. Published by Elsevier Ltd.
Enhancing memory self-efficacy during menopause through a group memory strategies program.
Unkenstein, Anne E; Bei, Bei; Bryant, Christina A
2017-05-01
Anxiety about memory during menopause can affect quality of life. We aimed to improve memory self-efficacy during menopause using a group memory strategies program. The program was run five times for a total of 32 peri- and postmenopausal women, age between 47 and 60 years, recruited from hospital menopause and gynecology clinics. The 4-week intervention consisted of weekly 2-hour sessions, and covered how memory works, memory changes related to ageing, health and lifestyle factors, and specific memory strategies. Memory contentment (CT), reported frequency of forgetting (FF), use of memory strategies, psychological distress, and attitude toward menopause were measured. A double-baseline design was applied, with outcomes measured on two baseline occasions (1-month prior [T1] and in the first session [T2]), immediately postintervention (T3), and 3-month postintervention (T4). To describe changes in each variable between time points paired sample t tests were conducted. Mixed-effects models comparing the means of random slopes from T2 to T3 with those from T1 to T2 were conducted for each variable to test for treatment effects. Examination of the naturalistic changes in outcome measures from T1 to T2 revealed no significant changes (all Ps > 0.05). CT, reported FF, and use of memory strategies improved significantly more from T2 to T3, than from T1 to T2 (all Ps < 0.05). Neither attitude toward menopause nor psychological distress improved significantly more postintervention than during the double-baseline (all Ps > 0.05). Improvements in reported CT and FF were maintained after 3 months. The use of group interventions to improve memory self-efficacy during menopause warrants continued evaluation.
Eyre, Harris A; Acevedo, Bianca; Yang, Hongyu; Siddarth, Prabha; Van Dyk, Kathleen; Ercoli, Linda; Leaver, Amber M; Cyr, Natalie St; Narr, Katherine; Baune, Bernhard T; Khalsa, Dharma S; Lavretsky, Helen
2016-01-01
No study has explored the effect of yoga on cognitive decline and resting-state functional connectivity. This study explored the relationship between performance on memory tests and resting-state functional connectivity before and after a yoga intervention versus active control for subjects with mild cognitive impairment (MCI). Participants ( ≥ 55 y) with MCI were randomized to receive a yoga intervention or active "gold-standard" control (i.e., memory enhancement training (MET)) for 12 weeks. Resting-state functional magnetic resonance imaging was used to map correlations between brain networks and memory performance changes over time. Default mode networks (DMN), language and superior parietal networks were chosen as networks of interest to analyze the association with changes in verbal and visuospatial memory performance. Fourteen yoga and 11 MET participants completed the study. The yoga group demonstrated a statistically significant improvement in depression and visuospatial memory. We observed improved verbal memory performance correlated with increased connectivity between the DMN and frontal medial cortex, pregenual anterior cingulate cortex, right middle frontal cortex, posterior cingulate cortex, and left lateral occipital cortex. Improved verbal memory performance positively correlated with increased connectivity between the language processing network and the left inferior frontal gyrus. Improved visuospatial memory performance correlated inversely with connectivity between the superior parietal network and the medial parietal cortex. Yoga may be as effective as MET in improving functional connectivity in relation to verbal memory performance. These findings should be confirmed in larger prospective studies.
Beracochea, Daniel; Krazem, Ali; Henkouss, Nadia; Haccard, Guillaume; Roller, Marc; Fromentin, Emilie
2016-08-01
The number of Americans older than 65 years old is projected to more than double in the next 40 years. Cognitive changes associated to aging can affect an adult's day-to-day functioning. Among these cognitive changes, reasoning, episodic memory, working memory, and processing speed decline gradually over time. Early memory changes include a decline in both working and episodic memory. The aim of the present study was to determine whether chronic (up to 75 days) daily administration of wild blueberry extract or a wild blueberry full spectrum powder would help prevent memory failure associated with aging in tasks involving various forms of memory. Both blueberry ingredients were used in a study comparing young mice (6 months old) to aged mice (18 months old). At this age, mice exhibit memory decline due to aging, which is exacerbated first by a loss in working and contextual (episodic-like) memory. Contextual memory (episodic-like memory) was evaluated using the contextual serial discrimination test. Working and spatial memory were evaluated using the Morris-Water maze test and the sequential alternation test. Statistical analysis was performed using an ANOVA with the Bonferroni post-hoc test. Supplementation with wild blueberry full spectrum powder and wild blueberry extract resulted in significant improvement of contextual memory, while untreated aged mice experienced a decline in such memory. Only the wild blueberry full spectrum powder significantly contributed to an improvement of spatial and working memory versus untreated aged mice. These improvements of cognitive performance may be related to brain oxidative status, acetylcholinesterase activity, neuroprotection, or attenuation of immunoreactivity. Georg Thieme Verlag KG Stuttgart · New York.
Khalil, Amr Farid; Iwasaki, Masaki; Nishio, Yoshiyuki; Jin, Kazutaka; Nakasato, Nobukazu; Tominaga, Teiji
2016-11-15
Post-operative memory changes after temporal lobe surgery have been established mainly by group analysis of cognitive outcome. This study investigated individual patient-based memory outcome in surgically-treated patients with mesial temporal lobe epilepsy (TLE). This study included 84 consecutive patients with intractable TLE caused by unilateral hippocampal sclerosis (HS) who underwent epilepsy surgery (47 females, 41 left [Lt] TLE). Memory functions were evaluated with the Wechsler Memory Scale-Revised before and at 1 year after surgery. Pre-operative memory function was classified into three patterns: verbal dominant memory impairment (Verb-D), visual dominant impairment (Vis-D), and no material-specific impairment. Post-operative changes in verbal and visual memory indices were classified into meaningful improvement, worsening, or no significant changes. Pre-operative patterns and post-operative changes in verbal and visual memory function were compared between the Lt and right (Rt) TLE groups. Pre-operatively, Verb-D was the most common type of impairment in both the Lt and Rt TLE groups (65.9 and 48.8%), and verbal memory indices were lower than visual memory indices, especially in the Lt compared with Rt TLE group. Vis-D was observed only in 11.6% of Rt and 7.3% of Lt TLE patients. Post-operatively, meaningful improvement of memory indices was observed in 23.3-36.6% of the patients, and the memory improvement was equivalent between Lt and Rt TLE groups and between verbal and visual materials. In conclusion, Verb-D is most commonly observed in patients with both the Lt and Rt TLE associated with HS. Hippocampectomy can improve memory indices in such patients regardless of the side of surgery and the function impaired.
Ferreri, Laura; Bigand, Emmanuel; Perrey, Stephane; Muthalib, Makii; Bard, Patrick; Bugaiska, Aurélia
2014-01-01
Several neuroimaging studies of cognitive aging revealed deficits in episodic memory abilities as a result of prefrontal cortex (PFC) limitations. Improving episodic memory performance despite PFC deficits is thus a critical issue in aging research. Listening to music stimulates cognitive performance in several non-purely musical activities (e.g., language and memory). Thus, music could represent a rich and helpful source during verbal encoding and therefore help subsequent retrieval. Furthermore, such benefit could be reflected in less demand of PFC, which is known to be crucial for encoding processes. This study aimed to investigate whether music may improve episodic memory in older adults while decreasing the PFC activity. Sixteen healthy older adults (μ = 64.5 years) encoded lists of words presented with or without a musical background while their dorsolateral prefrontal cortex (DLPFC) activity was monitored using a eight-channel continuous-wave near-infrared spectroscopy (NIRS) system (Oxymon Mk III, Artinis, The Netherlands). Behavioral results indicated a better source-memory performance for words encoded with music compared to words encoded with silence (p < 0.05). Functional NIRS data revealed bilateral decrease of oxyhemoglobin values in the music encoding condition compared to the silence condition (p < 0.05), suggesting that music modulates the activity of the DLPFC during encoding in a less-demanding direction. Taken together, our results indicate that music can help older adults in memory performances by decreasing their PFC activity. These findings open new perspectives about music as tool for episodic memory rehabilitation on special populations with memory deficits due to frontal lobe damage such as Alzheimer's patients.
Ferreri, Laura; Bigand, Emmanuel; Perrey, Stephane; Muthalib, Makii; Bard, Patrick; Bugaiska, Aurélia
2014-01-01
Several neuroimaging studies of cognitive aging revealed deficits in episodic memory abilities as a result of prefrontal cortex (PFC) limitations. Improving episodic memory performance despite PFC deficits is thus a critical issue in aging research. Listening to music stimulates cognitive performance in several non-purely musical activities (e.g., language and memory). Thus, music could represent a rich and helpful source during verbal encoding and therefore help subsequent retrieval. Furthermore, such benefit could be reflected in less demand of PFC, which is known to be crucial for encoding processes. This study aimed to investigate whether music may improve episodic memory in older adults while decreasing the PFC activity. Sixteen healthy older adults (μ = 64.5 years) encoded lists of words presented with or without a musical background while their dorsolateral prefrontal cortex (DLPFC) activity was monitored using a eight-channel continuous-wave near-infrared spectroscopy (NIRS) system (Oxymon Mk III, Artinis, The Netherlands). Behavioral results indicated a better source-memory performance for words encoded with music compared to words encoded with silence (p < 0.05). Functional NIRS data revealed bilateral decrease of oxyhemoglobin values in the music encoding condition compared to the silence condition (p < 0.05), suggesting that music modulates the activity of the DLPFC during encoding in a less-demanding direction. Taken together, our results indicate that music can help older adults in memory performances by decreasing their PFC activity. These findings open new perspectives about music as tool for episodic memory rehabilitation on special populations with memory deficits due to frontal lobe damage such as Alzheimer’s patients. PMID:24860481
Resummed memory kernels in generalized system-bath master equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mavros, Michael G.; Van Voorhis, Troy, E-mail: tvan@mit.edu
2014-08-07
Generalized master equations provide a concise formalism for studying reduced population dynamics. Usually, these master equations require a perturbative expansion of the memory kernels governing the dynamics; in order to prevent divergences, these expansions must be resummed. Resummation techniques of perturbation series are ubiquitous in physics, but they have not been readily studied for the time-dependent memory kernels used in generalized master equations. In this paper, we present a comparison of different resummation techniques for such memory kernels up to fourth order. We study specifically the spin-boson Hamiltonian as a model system bath Hamiltonian, treating the diabatic coupling between themore » two states as a perturbation. A novel derivation of the fourth-order memory kernel for the spin-boson problem is presented; then, the second- and fourth-order kernels are evaluated numerically for a variety of spin-boson parameter regimes. We find that resumming the kernels through fourth order using a Padé approximant results in divergent populations in the strong electronic coupling regime due to a singularity introduced by the nature of the resummation, and thus recommend a non-divergent exponential resummation (the “Landau-Zener resummation” of previous work). The inclusion of fourth-order effects in a Landau-Zener-resummed kernel is shown to improve both the dephasing rate and the obedience of detailed balance over simpler prescriptions like the non-interacting blip approximation, showing a relatively quick convergence on the exact answer. The results suggest that including higher-order contributions to the memory kernel of a generalized master equation and performing an appropriate resummation can provide a numerically-exact solution to system-bath dynamics for a general spectral density, opening the way to a new class of methods for treating system-bath dynamics.« less
Effects of cues to event segmentation on subsequent memory.
Gold, David A; Zacks, Jeffrey M; Flores, Shaney
2017-01-01
To remember everyday activity it is important to encode it effectively, and one important component of everyday activity is that it consists of events. People who segment activity into events more adaptively have better subsequent memory for that activity, and event boundaries are remembered better than event middles. The current study asked whether intervening to improve segmentation by cuing effective event boundaries would enhance subsequent memory for events. We selected a set of movies that had previously been segmented by a large sample of observers and edited them to provide visual and auditory cues to encourage segmentation. For each movie, cues were placed either at event boundaries or event middles, or the movie was left unedited. To further support the encoding of our everyday event movies, we also included post-viewing summaries of the movies. We hypothesized that cuing at event boundaries would improve memory, and that this might reduce age differences in memory. For both younger and older adults, we found that cuing event boundaries improved memory-particularly for the boundaries that were cued. Cuing event middles also improved memory, though to a lesser degree; this suggests that imposing a segmental structure on activity may facilitate memory encoding, even when segmentation is not optimal. These results provide evidence that structural cuing can improve memory for everyday events in younger and older adults.
Burdea, Grigore; Polistico, Kevin; Krishnamoorthy, Amalan; House, Gregory; Rethage, Dario; Hundal, Jasdeep; Damiani, Frank; Pollack, Simcha
2015-01-01
To describe the development of BrightBrainer™ integrative cognitive rehabilitation system and determine clinical feasibility with nursing home-bound dementia patients. BrightBrainer cognitive rehabilitation simulations were first played uni-manually, then bimanually. Participants sat in front of a laptop and interacted through a game controller that measured hand movements in 3D, as well as flexion of both index fingers. Interactive serious games were designed to improve basic and complex attention (concentration, short-term memory, dual tasking), memory recall, executive functioning and emotional well-being. Individual simulations adapted automatically to each participant's level of motor functioning. The system underwent feasibility trials spanning 16 sessions over 8 weeks. Participants were evaluated pre- and post-intervention, using standardized neuropsychological measures. Computerized measures of movement repetitions and task performance were stored on a remote server. Group analysis for 10 participants showed statistically significant improvement in decision making (p < 0.01), with trend improvements in depression (p < 0.056). Improvements were also seen in processing speed (p < 0.13) and auditory attention (p < 0.17); however, these were not statistically significant (partly attributable to the modest sample size). Eight of nine neuropsychological tests showed changes in the improvement direction indicating an effective rehabilitation (p < 0.01). BrightBrainer technology was well tolerated with mean satisfaction ratings of 4.9/5.0 across participants. Preliminary findings demonstrate utility within an advanced dementia population, suggesting that it will be beneficial to evaluate BrightBrainer through controlled clinical trials and to investigate its application in other clinical populations. Implications for Rehabilitation It is possible to improve cognitive function in older low-functioning patients. Integrative rehabilitation through games combining cognitive (memory, focusing, executive function) and physical (bimanual whole arm movement, grasping, task sequencing) elements is enjoyable for this population. The severity of depression in these elderly can be reduced through virtual reality bimanual games. The number of upper extremity active repetitions performed in the process of solving cognitive problems with the BrightBrainer™ system is 600. This number is 18 times (1875%) larger than those observed by other researchers in conventional physical or occupational rehabilitation sessions.
ERIC Educational Resources Information Center
Akkerman, Sven; Blokland, Arjan; Prickaerts, Jos
2016-01-01
In previous studies, we have shown that acetylcholinesterase inhibitors and phosphodiesterase inhibitors (PDE-Is) are able to improve object memory by enhancing acquisition processes. On the other hand, only PDE-Is improve consolidation processes. Here we show that the cholinesterase inhibitor donepezil also improves memory performance when…
Javadi-Paydar, Mehrak; Zakeri, Marjan; Norouzi, Abbas; Rastegar, Hossein; Mirazi, Naser; Dehpour, Ahmad Reza
2012-01-06
Granisetron, a serotonin 5-HT(3) receptor antagonist, widely used as an antiemetic drug following chemotherapy, has been found to improve learning and memory. In this study, effects of granisetron on spatial recognition memory and fear memory and the involvement of nitric oxide (NO) have been determined in a Y-maze and passive avoidance test. Granisetron (3, 10mg/kg, intraperitoneally) was administered to scopolamine-induced memory-impaired mice prior to acquisition, consolidation and retrieval phases, either in the presence or in the absence of a non-specific NO synthase inhibitor, l-NAME (3, 10mg/kg, intraperitoneally); a specific inducible NO synthase (iNOS) inhibitor, aminoguanidine (100mg/kg); and a NO precursor, l-arginine (750 mg/kg). It is demonstrated that granisetron improved memory acquisition in a dose-dependent manner, but it was ineffective on consolidation and retrieval phases of memory. The beneficial effect of granisetron (10mg/kg) on memory acquisition was significantly reversed by l-NAME (10mg/kg) and aminoguanidine (100mg/kg); however, l-arginine (750 mg/kg) did not potentiate the effect of sub-effective dose of granisetron (3mg/kg) in memory acquisition phase. It is concluded that nitric oxide is probably involved in improvement of memory acquisition by granisetron in both spatial recognition memory and fear memory. This article is part of a Special Issue entitled The Cognitive Neuroscience. Copyright © 2011 Elsevier B.V. All rights reserved.
Haider, Saida; Khaliq, Saima; Haleem, Darakhshan J
2007-01-01
Increasing evidence shows that serotonin (5-hydroxytryptamine - 5-HT) plays a modulatory role in memory functions. 5-HT transmission has been implicated in learning and memory. Both 5-HT depletion and specific 5-HT agonists lower memory performance. Hippocampus is thought to be the key region involved in long-term memory. It is the major limbic target of the brainstem serotonergic neurons that modulate learning. In the present study, we examined the effects of increased hippocampal 5-HT metabolism following tryptophan (TRP) administration on short-term memory (STM) and long-term memory (LTM) in rats. Learning acquisition (LA) and memory consolidation (MC) in rats was also evaluated. TRP at 50 mg/kg and 100 mg/kg body weight was used. Assessment of memory in rats was done using the water maze test (WM) after 6 weeks of daily administration of TRP. The results showed that administration of TRP enhanced both STM and LTM. However, the effect on STM was significant only at the higher dose. Rats administered the higher dose of TRP also exhibited a significant enhancement in LA. A significant effect on MC was also observed in tryptophan-treated rats. The results suggest that serotonergic system in the hippocampus is important in LA and MC in rats.
Relaxation-Induced Memory Effect of LiFePO4 Electrodes in Li-Ion Batteries.
Jia, Jianfeng; Tan, Chuhao; Liu, Mengchuang; Li, De; Chen, Yong
2017-07-26
In Li-ion batteries, memory effect has been found in several commercial two-phase materials as a voltage bump and a step in the (dis)charging plateau, which delays the two-phase transition and influences the estimation of the state of charge. Although memory effect has been first discovered in olivine LiFePO 4 , the origination and dependence are still not clear and are critical for regulating the memory effect of LiFePO 4 . Herein, LiFePO 4 has been synthesized by a home-built spray drying instrument, of which the memory effect has been investigated in Li-ion batteries. For as-synthesized LiFePO 4 , the memory effect is significantly dependent on the relaxation time after phase transition. Besides, the voltage bump of memory effect is actually a delayed voltage overshooting that is overlaid at the edge of stepped (dis)charging plateau. Furthermore, we studied the kinetics of LiFePO 4 electrode with electrochemical impedance spectroscopy (EIS), which shows that the memory effect is related to the electrochemical kinetics. Thereby, the underlying mechanism has been revealed in memory effect, which would guide us to optimize two-phase electrode materials and improve Li-ion battery management systems.
Stroboscopic visual training improves information encoding in short-term memory.
Appelbaum, L Gregory; Cain, Matthew S; Schroeder, Julia E; Darling, Elise F; Mitroff, Stephen R
2012-11-01
The visual system has developed to transform an undifferentiated and continuous flow of information into discrete and manageable representations, and this ability rests primarily on the uninterrupted nature of the input. Here we explore the impact of altering how visual information is accumulated over time by assessing how intermittent vision influences memory retention. Previous work has shown that intermittent, or stroboscopic, visual training (i.e., practicing while only experiencing snapshots of vision) can enhance visual-motor control and visual cognition, yet many questions remain unanswered about the mechanisms that are altered. In the present study, we used a partial-report memory paradigm to assess the possible changes in visual memory following training under stroboscopic conditions. In Experiment 1, the memory task was completed before and immediately after a training phase, wherein participants engaged in physical activities (e.g., playing catch) while wearing either specialized stroboscopic eyewear or transparent control eyewear. In Experiment 2, an additional group of participants underwent the same stroboscopic protocol but were delayed 24 h between training and assessment, so as to measure retention. In comparison to the control group, both stroboscopic groups (immediate and delayed retest) revealed enhanced retention of information in short-term memory, leading to better recall at longer stimulus-to-cue delays (640-2,560 ms). These results demonstrate that training under stroboscopic conditions has the capacity to enhance some aspects of visual memory, that these faculties generalize beyond the specific tasks that were trained, and that trained improvements can be maintained for at least a day.
Frenkel, L; Freudenthal, R; Romano, A; Nahmod, V E; Maldonado, H; Delorenzi, A
2002-01-01
One of the essential requirements even in the most ancient life forms is to be able to preserve body fluid medium. In line with such requirement, animals need to perform different behaviors to cope with water shortages. As angiotensin II (ANGII) is involved on a widespread range of functions in vertebrates, including memory modulation, an integrative role, in response to an environmental water shortage, has been envisioned. Previous work on the semi-terrestrial and brackish-water crab Chasmagnathus granulatus showed that endogenous ANGII enhanced an associative long-term memory and, in addition, that high salinity environment induces both an increase of brain ANGII levels and memory improvement. Here, we show that in the crab Chasmagnathus air exposure transiently increases blood sodium concentration, significantly increases brain ANGII immunoreactivity, and has a facilitatory effect on memory that is abolished by a non-selective ANGII receptor antagonist, saralasin. Furthermore, Rel/NF-kappaB, a transcription factor activated by ANGII in mammals and during memory consolidation in Chasmagnathus brain, is induced in the crab's brain by air exposure. Moreover, nuclear brain NF-kappaB is activated by ANGII, and this effect is reversed by saralasin. Our results constitute the first demonstration in an invertebrate that cognitive functions are modulated by an environmental stimulus through a neuropeptide and give evolutionary support to the role of angiotensins in memory processes. Moreover, these results suggest that angiotensinergic system is preserved across evolution not only in its structure and molecular mechanisms, but also in its capability of coordinating specific adaptative responses.
Multicore Architecture-aware Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasa, Avinash
Modern high performance systems are becoming increasingly complex and powerful due to advancements in processor and memory architecture. In order to keep up with this increasing complexity, applications have to be augmented with certain capabilities to fully exploit such systems. These may be at the application level, such as static or dynamic adaptations or at the system level, like having strategies in place to override some of the default operating system polices, the main objective being to improve computational performance of the application. The current work proposes two such capabilites with respect to multi-threaded scientific applications, in particular a largemore » scale physics application computing ab-initio nuclear structure. The first involves using a middleware tool to invoke dynamic adaptations in the application, so as to be able to adjust to the changing computational resource availability at run-time. The second involves a strategy for effective placement of data in main memory, to optimize memory access latencies and bandwidth. These capabilties when included were found to have a significant impact on the application performance, resulting in average speedups of as much as two to four times.« less
Vaughn, Kalif E; Rawson, Katherine A
2011-09-01
Previous research has shown that increasing the criterion level (i.e., the number of times an item must be correctly retrieved during practice) improves subsequent memory, but which specific components of memory does increased criterion level enhance? In two experiments, we examined the extent to which the criterion level affects associative memory, target memory, and cue memory. Participants studied Lithuanian-English word pairs via cued recall with restudy until items were correctly recalled one to five times. In Experiment 1, participants took one of four recall tests and one of three recognition tests after a 2-day delay. In Experiment 2, participants took only recognition tests after a 1-week delay. In both experiments, increasing the criterion level enhanced associative memory, as indicated by enhanced performance on forward and backward cued-recall tests and on tests of associative recognition. An increased criterion level also improved target memory, as indicated by enhanced free recall and recognition of targets, and improved cue memory, as indicated by enhanced free recall and recognition of cues.
Florida hospital saves 5.3 M dollars by adopting principles of lean manufacturing.
2005-01-01
Florida hospital saves 5.3M dollars by adopting principles of lean manufacturing. Surgery cancellations have been slashed from 13% of cases to less than 3%, while emergency department admissions have increased by 20%. Those are just two of the results of a quality improvement project at Lee Memorial Health System in Fort Myers, FL, that focused on using the principles of lean manufacturing to improve patient flow in the five-hospital system
Prospective memory training in older adults and its relevance for successful aging.
Hering, Alexandra; Rendell, Peter G; Rose, Nathan S; Schnitzspahn, Katharina M; Kliegel, Matthias
2014-11-01
In research on cognitive plasticity, two training approaches have been established: (1) training of strategies to improve performance in a given task (e.g., encoding strategies to improve episodic memory performance) and (2) training of basic cognitive processes (e.g., working memory, inhibition) that underlie a range of more complex cognitive tasks (e.g., planning) to improve both the training target and the complex transfer tasks. Strategy training aims to compensate or circumvent limitations in underlying processes, while process training attempts to augment or to restore these processes. Although research on both approaches has produced some promising findings, results are still heterogeneous and the impact of most training regimes for everyday life is unknown. We, therefore, discuss recent proposals of training regimes aiming to improve prospective memory (i.e., forming and realizing delayed intentions) as this type of complex cognition is highly relevant for independent living. Furthermore, prospective memory is associated with working memory and executive functions and age-related decline is widely reported. We review initial evidence suggesting that both training regimes (i.e., strategy and/or process training) can successfully be applied to improve prospective memory. Conceptual and methodological implications of the findings for research on age-related prospective memory and for training research in general are discussed.
A phenomenological memristor model for short-term/long-term memory
NASA Astrophysics Data System (ADS)
Chen, Ling; Li, Chuandong; Huang, Tingwen; Ahmad, Hafiz Gulfam; Chen, Yiran
2014-08-01
Memristor is considered to be a natural electrical synapse because of its distinct memory property and nanoscale. In recent years, more and more similar behaviors are observed between memristors and biological synapse, e.g., short-term memory (STM) and long-term memory (LTM). The traditional mathematical models are unable to capture the new emerging behaviors. In this article, an updated phenomenological model based on the model of the Hewlett-Packard (HP) Labs has been proposed to capture such new behaviors. The new dynamical memristor model with an improved ion diffusion term can emulate the synapse behavior with forgetting effect, and exhibit the transformation between the STM and the LTM. Further, this model can be used in building new type of neural networks with forgetting ability like biological systems, and it is verified by our experiment with Hopfield neural network.
Implementing a bubble memory hierarchy system
NASA Technical Reports Server (NTRS)
Segura, R.; Nichols, C. D.
1979-01-01
This paper reports on implementation of a magnetic bubble memory in a two-level hierarchial system. The hierarchy used a major-minor loop device and RAM under microprocessor control. Dynamic memory addressing, dual bus primary memory, and hardware data modification detection are incorporated in the system to minimize access time. It is the objective of the system to incorporate the advantages of bipolar memory with that of bubble domain memory to provide a smart, optimal memory system which is easy to interface and independent of user's system.
An improved car-following model considering headway changes with memory
NASA Astrophysics Data System (ADS)
Yu, Shaowei; Shi, Zhongke
2015-03-01
To describe car-following behaviors in complex situations better, increase roadway traffic mobility and minimize cars' fuel consumptions, the linkage between headway changes with memory and car-following behaviors was explored with the field car-following data by using the gray correlation analysis method, and then an improved car-following model considering headway changes with memory on a single lane was proposed based on the full velocity difference model. Some numerical simulations were carried out by employing the improved car-following model to explore how headway changes with memory affected each car's velocity, acceleration, headway and fuel consumptions. The research results show that headway changes with memory have significant effects on car-following behaviors and fuel consumptions and that considering headway changes with memory in designing the adaptive cruise control strategy can improve the traffic flow stability and minimize cars' fuel consumptions.
Nonlinear analysis of an improved continuum model considering headway change with memory
NASA Astrophysics Data System (ADS)
Cheng, Rongjun; Wang, Jufeng; Ge, Hongxia; Li, Zhipeng
2018-01-01
Considering the effect of headway changes with memory, an improved continuum model of traffic flow is proposed in this paper. By means of linear stability theory, the new model’s linear stability with the effect of headway changes with memory is obtained. Through nonlinear analysis, the KdV-Burgers equation is derived to describe the propagating behavior of traffic density wave near the neutral stability line. Numerical simulation is carried out to study the improved traffic flow model, which explores how the headway changes with memory affected each car’s velocity, density and energy consumption. Numerical results show that when considering the effects of headway changes with memory, the traffic jams can be suppressed efficiently. Furthermore, research results demonstrate that the effect of headway changes with memory can avoid the disadvantage of historical information, which will improve the stability of traffic flow and minimize car energy consumption.
Bråthen, Anne Cecilie Sjøli; Rohani, Darius A.; Grydeland, Håkon; Fjell, Anders M.; Walhovd, Kristine B.
2017-01-01
Abstract Age differences in human brain plasticity are assumed, but have not been systematically investigated. In this longitudinal study, we investigated changes in white matter (WM) microstructure in response to memory training relative to passive and active control conditions in 183 young and older adults. We hypothesized that (i) only the training group would show improved memory performance and microstructural alterations, (ii) the young adults would show larger memory improvement and a higher degree of microstructural alterations as compared to the older adults, and (iii) changes in memory performance would relate to microstructural alterations. The results showed that memory improvement was specific to the training group, and that both the young and older participants improved their performance. The young group improved their memory to a larger extent compared to the older group. In the older sample, the training group showed less age‐related decline in WM microstructure compared to the control groups, in areas overlapping the corpus callosum, the cortico‐spinal tract, the cingulum bundle, the superior longitudinal fasciculus, and the anterior thalamic radiation. Less microstructural decline was related to a higher degree of memory improvement. Despite individual adaptation securing sufficient task difficulty, no training‐related group differences in microstructure were found in the young adults. The observed divergence of behavioral and microstructural responses to memory training with age is discussed within a supply‐demand framework. The results demonstrate that plasticity is preserved into older age, and that microstructural alterations may be part of a neurobiological substrate for behavioral improvements in older adults. Hum Brain Mapp 38:5666–5680, 2017. © 2018 The Authors Human Brain Mapping Published byWiley Periodicals, Inc. PMID:28782901
An adaptive learning control system for aircraft
NASA Technical Reports Server (NTRS)
Mekel, R.; Nachmias, S.
1978-01-01
A learning control system and its utilization as a flight control system for F-8 Digital Fly-By-Wire (DFBW) research aircraft is studied. The system has the ability to adjust a gain schedule to account for changing plant characteristics and to improve its performance and the plant's performance in the course of its own operation. Three subsystems are detailed: (1) the information acquisition subsystem which identifies the plant's parameters at a given operating condition; (2) the learning algorithm subsystem which relates the identified parameters to predetermined analytical expressions describing the behavior of the parameters over a range of operating conditions; and (3) the memory and control process subsystem which consists of the collection of updated coefficients (memory) and the derived control laws. Simulation experiments indicate that the learning control system is effective in compensating for parameter variations caused by changes in flight conditions.
Towards Scalable 1024 Processor Shared Memory Systems
NASA Technical Reports Server (NTRS)
Ciotti, Robert B.; Thigpen, William W. (Technical Monitor)
2001-01-01
Over the past 3 years, NASA Ames has been involved in a cooperative effort with SGI to develop the largest single system image systems available. Currently a 1024 Origin3OOO is under development, with first boot expected later in the summer of 2001. This paper discusses some early results with a 512p Origin3OOO system and some arcane IRIX system calls that can dramatically improve scaling performance.
Caycedo's Sophrology and Lozanov's Suggestology: Mirror Images of a System.
ERIC Educational Resources Information Center
Bancroft, W. Jane
In the 1960's, two medical doctors, Georgi Lozanov and Alfonso Caycedo, discovered independently that certain yogic techniques of physical and mental relaxation could be used to produce not only analgesia but also improved memory and concentration. Systems originally used in medicine and psycho-therapy were applied to education, in particular to…
Thermodynamic framework for information in nanoscale systems with memory
NASA Astrophysics Data System (ADS)
Arias-Gonzalez, J. Ricardo
2017-11-01
Information is represented by linear strings of symbols with memory that carry errors as a result of their stochastic nature. Proofreading and edition are assumed to improve certainty although such processes may not be effective. Here, we develop a thermodynamic theory for material chains made up of nanoscopic subunits with symbolic meaning in the presence of memory. This framework is based on the characterization of single sequences of symbols constructed under a protocol and is used to derive the behavior of ensembles of sequences similarly constructed. We then analyze the role of proofreading and edition in the presence of memory finding conditions to make revision an effective process, namely, to decrease the entropy of the chain. Finally, we apply our formalism to DNA replication and RNA transcription finding that Watson and Crick hybridization energies with which nucleotides are branched to the template strand during the copying process are optimal to regulate the fidelity in proofreading. These results are important in applications of information theory to a variety of solid-state physical systems and other biomolecular processes.
Elastic memory composites (EMC) for deployable industrial and commercial applications
NASA Astrophysics Data System (ADS)
Arzberger, Steven C.; Tupper, Michael L.; Lake, Mark S.; Barrett, Rory; Mallick, Kaushik; Hazelton, Craig; Francis, William; Keller, Phillip N.; Campbell, Douglas; Feucht, Sara; Codell, Dana; Wintergerst, Joe; Adams, Larry; Mallioux, Joe; Denis, Rob; White, Karen; Long, Mark; Munshi, Naseem A.; Gall, Ken
2005-05-01
The use of smart materials and multifunctional components has the potential to provide enhanced performance, improved economics, and reduced safety concerns for applications ranging from outer space to subterranean. Elastic Memory Composite (EMC) materials, based on shape memory polymers and used to produce multifunctional components and structures, are being developed and qualified for commercial use as deployable components and structures. EMC materials are similar to traditional fiber-reinforced composites except for the use of a thermoset shape memory resin that enables much higher packaging strains than traditional composites without damage to the fibers or the resin. This unique capability is being exploited in the development of very efficient EMC structural components for deployable spacecraft systems as well as capability enhancing components for use in other industries. The present paper is intended primarily to describe the transition of EMC materials as smart structure technologies into viable industrial and commercial products. Specifically, the paper discusses: 1) TEMBO EMC materials for deployable space/aerospace systems, 2) TEMBO EMC resins for terrestrial applications, 3) future generation EMC materials.
Thermodynamic framework for information in nanoscale systems with memory.
Arias-Gonzalez, J Ricardo
2017-11-28
Information is represented by linear strings of symbols with memory that carry errors as a result of their stochastic nature. Proofreading and edition are assumed to improve certainty although such processes may not be effective. Here, we develop a thermodynamic theory for material chains made up of nanoscopic subunits with symbolic meaning in the presence of memory. This framework is based on the characterization of single sequences of symbols constructed under a protocol and is used to derive the behavior of ensembles of sequences similarly constructed. We then analyze the role of proofreading and edition in the presence of memory finding conditions to make revision an effective process, namely, to decrease the entropy of the chain. Finally, we apply our formalism to DNA replication and RNA transcription finding that Watson and Crick hybridization energies with which nucleotides are branched to the template strand during the copying process are optimal to regulate the fidelity in proofreading. These results are important in applications of information theory to a variety of solid-state physical systems and other biomolecular processes.
Effect of nitrogen on iron-manganese-based shape memory alloys
NASA Astrophysics Data System (ADS)
Ariapour, Azita
Shape memory effect is due to a reversible martensitic transformation. The major drawback in case of Fe-Mn-based shape memory alloys is their inferior shape memory effect compared to Ni-Ti and Cu-based shape memory alloys and their low strength and corrosion resistance compared to steel alloys. It is known that by increasing the alloy strength the shape memory effect can be improved. Nitrogen in solid solution can increase the strength of steels to a greater extent than other major alloying elements. However, its effect on shape memory effect of Fe-Mn-based alloys is ambiguous. In this work first we investigated the effect of nitrogen addition in solid solution on both shape memory effect (SME) and strength of a Fe-Mn-Cr-Ni-Si shape memory alloy (SMA). It was found that interstitial nitrogen suppressed the shape memory effect in these alloys. As an example addition of 0.24 wt % nitrogen in solid solution to the alloy system suppressed the SME by ˜80% and increased the strength by 20%. A reduction of martensitic phase formation was found to be the dominant factor in suppression of the SME. This was related, experimentally and theoretically to stacking fault energy of the alloy as well as the driving force and friction force during the transformation. The second approach was doping the alloy with both 0.36 wt% of nitrogen and 0.36 wt% of niobium. Niobium has great affinity for nitrogen and thus NbN dispersed particles can be produced in the alloy following hot rolling. Then particles prevent growth of the alloy and increase the strength of the alloy due to reduced grain size, and precipitation hardening. The improvement of SME in this alloy compared to the interstitial containing alloys was due to the large removal of the nitrogen from solid solution. In case of all the alloys studied in this work, the presence of nitrogen in solid solution improved the corrosion resistance of the alloy. This suggests that nitrogen can replace nickel in the alloy. One of the proposed applications for high strength Fe-Mn-based alloys is as tendon rods in prestressed concrete. The advantage of M alloys in this application is the possibility of producing curved structural prestressed concrete.
Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne
2011-09-01
Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.
The Memory Fitness Program: Cognitive Effects of a Healthy Aging Intervention
Miller, Karen J.; Siddarth, Prabha; Gaines, Jean M.; Parrish, John M.; Ercoli, Linda M.; Marx, Katherine; Ronch, Judah; Pilgram, Barbara; Burke, Kasey; Barczak, Nancy; Babcock, Bridget; Small, Gary W.
2014-01-01
Context Age-related memory decline affects a large proportion of older adults. Cognitive training, physical exercise, and other lifestyle habits may help to minimize self-perception of memory loss and a decline in objective memory performance. Objective The purpose of this study was to determine whether a 6-week educational program on memory training, physical activity, stress reduction, and healthy diet led to improved memory performance in older adults. Design A convenience sample of 115 participants (mean age: 80.9 [SD: 6.0 years]) was recruited from two continuing care retirement communities. The intervention consisted of 60-minute classes held twice weekly with 15–20 participants per class. Testing of both objective and subjective cognitive performance occurred at baseline, preintervention, and postintervention. Objective cognitive measures evaluated changes in five domains: immediate verbal memory, delayed verbal memory, retention of verbal information, memory recognition, and verbal fluency. A standardized metamemory instrument assessed four domains of memory self-awareness: frequency and severity of forgetting, retrospective functioning, and mnemonics use. Results The intervention program resulted in significant improvements on objective measures of memory, including recognition of word pairs (t[114] = 3.62, p < 0.001) and retention of verbal information from list learning (t[114] = 2.98, p < 0.01). No improvement was found for verbal fluency. Regarding subjective memory measures, the retrospective functioning score increased significantly following the intervention (t[114] = 4.54, p < 0.0001), indicating perception of a better memory. Conclusions These findings indicate that a 6-week healthy lifestyle program can improve both encoding and recalling of new verbal information, as well as self-perception of memory ability in older adults residing in continuing care retirement communities. PMID:21765343
Memory outcome 2 years after anterior temporal lobectomy in patients with drug-resistant epilepsy.
Grammaldo, Liliana G; Di Gennaro, Giancarlo; Giampà, Teresa; De Risi, Marco; Meldolesi, Giulio N; Mascia, Addolorata; Sparano, Antonio; Esposito, Vincenzo; Quarato, Pier Paolo; Picardi, Angelo
2009-03-01
Memory decline is often observed after anterior temporal lobectomy (ATL), particularly in patients with dominant hemisphere resections. However, the follow-up length has been 1 year or less in most studies. Our aims were to examine postoperative memory changes over a longer period and to identify baseline demographic and clinical predictors of memory outcome. We administered material-specific memory tests at baseline, and 1 and 2 years after surgery to 82 consecutive right-handed patients (52% males) who underwent ATL for drug-resistant temporal lobe epilepsy (TLE) (35 left, 47 right) after a non-invasive presurgical protocol. Repeated measures multivariate analysis of variance (RM-MANOVA) was used to examine the relationship between changes in memory tests scores over time and side of TLE and pathology. Also, standardized residual change scores were calculated for each memory test and entered in multiple linear regression models aimed at identifying baseline predictors of better memory outcome. RM-MANOVA revealed a significant change in memory test scores over time, with an interaction between time and side of surgery, as 2 years after surgery patients with RTLE were improved while patients with LTLE were not worse as compared with baseline. Pathology was not associated with changes in memory scores. In multiple regression analysis, significant associations were found between right TLE and greater improvement in verbal memory, younger age and greater improvement in visuospatial memory, and male gender and greater improvement in both verbal and visuospatial memory. Our results suggest that the long-term memory outcome of TLE patients undergoing ATL without invasive presurgical assessment may be good in most cases not only for right-sided but also for left-sided resections.
A review of visual memory capacity: Beyond individual items and towards structured representations
Brady, Timothy F.; Konkle, Talia; Alvarez, George A.
2012-01-01
Traditional memory research has focused on identifying separate memory systems and exploring different stages of memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing their function, but has been less informative about the nature of stored memory representations. Recent research on visual memory has shifted towards a representation-based emphasis, focusing on the contents of memory, and attempting to determine the format and structure of remembered information. The main thesis of this review will be that one cannot fully understand memory systems or memory processes without also determining the nature of memory representations. Nowhere is this connection more obvious than in research that attempts to measure the capacity of visual memory. We will review research on the capacity of visual working memory and visual long-term memory, highlighting recent work that emphasizes the contents of memory. This focus impacts not only how we estimate the capacity of the system - going beyond quantifying how many items can be remembered, and moving towards structured representations - but how we model memory systems and memory processes. PMID:21617025
Thorajak, Piyaporn; Pannangrong, Wanassanun; Umka Welbat, Jariya; Chaijaroonkhanarak, Wunnee; Sripanidkulchai, Kittisak; Sripanidkulchai, Bungorn
2017-01-01
Alzheimer’s disease (AD) has been linked to the degeneration of central cholinergic and glutamatergic transmission, which correlates with progressive memory loss and the accumulation of amyloid-β (Aβ). It has been claimed that aged garlic extract (AGE) has a beneficial effect in preventing neurodegeneration in AD. Therefore, the objective of this study was to investigate the effects of AGE on Aβ-induced cognitive dysfunction with a biochemical basis in the cholinergic, glutamatergic, and GABAergic systems in rats. Adult male Wistar rats were orally administered three doses of AGE (125, 250, and 500 mg/kg) daily for 65 days. At day 56, they were injected with 1 μL of aggregated Aβ (1–42) into each lateral ventricle, bilaterally. After six days of Aβ injection, the rats’ working and reference memory was tested using a radial arm maze. The rats were then euthanized to investigate any changes to the cholinergic neurons, vesicular glutamate transporter 1 and 2 proteins (VGLUT1 and VGLUT2), and glutamate decarboxylase (GAD) in the hippocampus. The results showed that AGE significantly improved the working memory and tended to improve the reference memory in cognitively-impaired rats. In addition, AGE significantly ameliorated the loss of cholinergic neurons and increased the VGLUT1 and GAD levels in the hippocampus of rat brains with Aβ-induced toxicity. In contrast, the VGLUT2 protein levels did not change in any of the treated groups. We concluded that AGE was able to attenuate the impairment of working memory via the modification of cholinergic neurons, VGLUT1, and GAD in the hippocampus of Aβ-induced rats. PMID:28671572
A review of shape memory material’s applications in the offshore oil and gas industry
NASA Astrophysics Data System (ADS)
Patil, Devendra; Song, Gangbing
2017-09-01
The continuously increasing demand for oil and gas and the depleting number of new large reservoir discoveries have made it necessary for the oil and gas industry to investigate and design new, improved technologies that unlock new sources of energy and squeeze more from existing resources. Shape memory materials (SMM), with their remarkable properties such as the shape memory effect (SME), corrosion resistance, and superelasticity have shown great potential to meet these demands by significantly improving the functionality and durability of offshore systems. Shape memory alloy (SMA) and shape memory polymer (SMP) are two types of most commonly used SMM’s and are ideally suited for use over a range of robust engineering applications found within the oil and gas industry, such as deepwater actuators, valves, underwater connectors, seals, self-torqueing fasteners and sand management. The potential high strain and high force output of the SME of SMA can be harnessed to create a lightweight, solid state alternative to conventional hydraulic, pneumatic or motor based actuator systems. The phase transformation property enables the SMA to withstand erosive stresses, which is useful for minimizing the effect of erosion often experienced by downhole devices. The superelasticity of the SMA provides good energy dissipation, and can overcome the various defects and limitations suffered by conventional passive damping methods. The higher strain recovery during SME makes SMP ideal for developments of packers and sand management in downhole. The increasing number of SMM related research papers and patents from oil and gas industry indicate the growing research interest of the industry to implement SMM in offshore applications. This paper reviews the recent developments and applications of SMM in the offshore oil and gas industry.
Working memory training improves visual short-term memory capacity.
Schwarb, Hillary; Nail, Jayde; Schumacher, Eric H
2016-01-01
Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1-2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87-185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297-314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46-60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity-a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622-628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.
Harvey, Allison G; Dong, Lu; Lee, Jason Y; Gumport, Nicole B; Hollon, Steven D; Rabe-Hesketh, Sophia; Hein, Kerrie; Haman, Kirsten; McNamara, Mary E; Weaver, Claire; Martinez, Armando; Notsu, Haruka; Zieve, Garret; Armstrong, Courtney C
2017-11-14
The Memory Support Intervention was developed in response to evidence showing that: (1) patient memory for treatment is poor, (2) poor memory for treatment is associated with poorer adherence and poorer outcome, (3) the impact of memory impairment can be minimized by the use of memory support strategies and (4) improved memory for treatment improves outcome. The aim of this study protocol is to conduct a confirmatory efficacy trial to test whether the Memory Support Intervention improves illness course and functional outcomes. As a "platform" for the next step in investigating this approach, we focus on major depressive disorder (MDD) and cognitive therapy (CT). Adults with MDD (n = 178, including 20% for potential attrition) will be randomly allocated to CT + Memory Support or CT-as-usual and will be assessed at baseline, post treatment and at 6 and 12 months' follow-up (6FU and 12FU). We will compare the effects of CT + Memory Support vs. CT-as-usual to determine if the new intervention improves the course of illness and reduces functional impairment (aim 1). We will determine if patient memory for treatment mediates the relationship between treatment condition and outcome (aim 2). We will evaluate if previously reported poor treatment response subgroups moderate target engagement (aim 3). The Memory Support Intervention has been developed to be "transdiagnostic" (relevant to a broad range of mental disorders) and "pantreatment" (relevant to a broad range of types of treatment). This study protocol describes a "next step" in the treatment development process by testing the Memory Support Intervention for major depressive disorder (MDD) and cognitive therapy (CT). If the results are promising, future directions will test the applicability to other kinds of interventions and disorders and in other settings. ClinicalTrials.gov, ID: NCT01790919 . Registered on 6 October 2016.
DOMe: A deduplication optimization method for the NewSQL database backups
Wang, Longxiang; Zhu, Zhengdong; Zhang, Xingjun; Wang, Yinfeng
2017-01-01
Reducing duplicated data of database backups is an important application scenario for data deduplication technology. NewSQL is an emerging database system and is now being used more and more widely. NewSQL systems need to improve data reliability by periodically backing up in-memory data, resulting in a lot of duplicated data. The traditional deduplication method is not optimized for the NewSQL server system and cannot take full advantage of hardware resources to optimize deduplication performance. A recent research pointed out that the future NewSQL server will have thousands of CPU cores, large DRAM and huge NVRAM. Therefore, how to utilize these hardware resources to optimize the performance of data deduplication is an important issue. To solve this problem, we propose a deduplication optimization method (DOMe) for NewSQL system backup. To take advantage of the large number of CPU cores in the NewSQL server to optimize deduplication performance, DOMe parallelizes the deduplication method based on the fork-join framework. The fingerprint index, which is the key data structure in the deduplication process, is implemented as pure in-memory hash table, which makes full use of the large DRAM in NewSQL system, eliminating the performance bottleneck problem of fingerprint index existing in traditional deduplication method. The H-store is used as a typical NewSQL database system to implement DOMe method. DOMe is experimentally analyzed by two representative backup data. The experimental results show that: 1) DOMe can reduce the duplicated NewSQL backup data. 2) DOMe significantly improves deduplication performance by parallelizing CDC algorithms. In the case of the theoretical speedup ratio of the server is 20.8, the speedup ratio of DOMe can achieve up to 18; 3) DOMe improved the deduplication throughput by 1.5 times through the pure in-memory index optimization method. PMID:29049307
Mendelsohn, Daniel; Riedel, Wim J; Sambeth, Anke
2009-06-01
The serotonergic system is implicated in the regulation of mood and cognition. Acute tryptophan depletion (ATD) is an experimental procedure for lowering central serotonin levels. Here, the effects of ATD on psychomotor processing, declarative memory, working memory, executive functions and attention are discussed. The most robust finding is that ATD impairs the consolidation of episodic memory for verbal information. Semantic memory appears to be unaffected by ATD although a limited variety of tasks examined effects in this domain. Similarly, evidence suggests ATD does not influence verbal, spatial and affective working memory. Most studies investigating effects on executive functions have produced non-specific or negative findings. In terms of attention, ATD either does not affect or may improve focused attention and ATD likely does not impact sustained and divided attention or attentional set-shifting. Although ATD is known to affect mood in certain vulnerable populations, the effects of ATD on cognition in non-vulnerable participants are independent of mood changes. Suggestions for future directions and implications for psychiatric illnesses are discussed.
NASA Astrophysics Data System (ADS)
Gupta, Neha; Parihar, Priyanka; Neema, Vaibhav
2018-04-01
Researchers have proposed many circuit techniques to reduce leakage power dissipation in memory cells. If we want to reduce the overall power in the memory system, we have to work on the input circuitry of memory architecture i.e. row and column decoder. In this research work, low leakage power with a high speed row and column decoder for memory array application is designed and four new techniques are proposed. In this work, the comparison of cluster DECODER, body bias DECODER, source bias DECODER, and source coupling DECODER are designed and analyzed for memory array application. Simulation is performed for the comparative analysis of different DECODER design parameters at 180 nm GPDK technology file using the CADENCE tool. Simulation results show that the proposed source bias DECODER circuit technique decreases the leakage current by 99.92% and static energy by 99.92% at a supply voltage of 1.2 V. The proposed circuit also improves dynamic power dissipation by 5.69%, dynamic PDP/EDP 65.03% and delay 57.25% at 1.2 V supply voltage.
The effects of cholesterol on learning and memory.
Schreurs, Bernard G
2010-07-01
Cholesterol is vital to normal brain function including learning and memory but that involvement is as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol influences learning tasks from water maze to fear conditioning even though cholesterol does not cross the blood brain barrier. Excess cholesterol has many consequences including peripheral pathology that can signal brain via cholesterol metabolites, pro-inflammatory mediators and antioxidant processes. Manipulations of cholesterol within the central nervous system through genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning and memory but often in animals already otherwise compromised. The human literature is no less complex. Cholesterol reduction using statins improves memory in some cases but not others. There is also controversy over statin use to alleviate memory problems in Alzheimer's disease. Correlations of cholesterol and cognitive function are mixed and association studies find some genetic polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with a number of seemingly contradictory results and many complexities. Nevertheless, understanding cholesterol effects on learning and memory is too important to ignore.
Regulation of Memory Formation by the Transcription Factor XBP1.
Martínez, Gabriela; Vidal, René L; Mardones, Pablo; Serrano, Felipe G; Ardiles, Alvaro O; Wirth, Craig; Valdés, Pamela; Thielen, Peter; Schneider, Bernard L; Kerr, Bredford; Valdés, Jose L; Palacios, Adrian G; Inestrosa, Nibaldo C; Glimcher, Laurie H; Hetz, Claudio
2016-02-16
Contextual memory formation relies on the induction of new genes in the hippocampus. A polymorphism in the promoter of the transcription factor XBP1 was identified as a risk factor for Alzheimer's disease and bipolar disorders. XBP1 is a major regulator of the unfolded protein response (UPR), mediating adaptation to endoplasmic reticulum (ER) stress. Using a phenotypic screen, we uncovered an unexpected function of XBP1 in cognition and behavior. Mice lacking XBP1 in the nervous system showed specific impairment of contextual memory formation and long-term potentiation (LTP), whereas neuronal XBP1s overexpression improved performance in memory tasks. Gene expression analysis revealed that XBP1 regulates a group of memory-related genes, highlighting brain-derived neurotrophic factor (BDNF), a key component in memory consolidation. Overexpression of BDNF in the hippocampus reversed the XBP1-deficient phenotype. Our study revealed an unanticipated function of XBP1 in cognitive processes that is apparently unrelated to its role in ER stress. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Melby-Lervåg, Monica; Redick, Thomas S; Hulme, Charles
2016-07-01
It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of "real-world" cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. © The Author(s) 2016.
Hancock, Peter A
2015-01-01
It has been claimed that dreams are the royal road to the unconscious mind. The present work argues that dreams and associated brain states such as memory, attention, flow, and perhaps even consciousness itself arise from diverse conflicts over control of time in the brain. Dreams are the brain's offline efforts to distill projections of the future, while memory represents the vestiges of the past successes and survived failures of those and other conscious projections. Memory thus acts to inform and improve the prediction of possible future states through the use of conscious prospects (planning) and unconscious prospective memory (dreams). When successful, these prospects result in states of flow for conscious planning and déjà vu for its unconscious comparator. In consequence, and contrary to normal expectation, memory is overwhelmingly oriented to deal with the future. Consciousness is the comparable process operating in the present moment. Thus past, present, and future are homeomorphic with the parts of memory (episodic and autobiographical) that recall a personal past, consciousness, and the differing dimensions of prospective memory to plan for future circumstances, respectively. Dreaming (i.e., unconscious prospective memory), has the luxury to run multiple "what if" simulations of many possible futures, essentially offline. I explicate these propositions and their relations to allied constructs such as déjà vu and flow. More generally, I propose that what appear to us as a range of normal psychological experiences are actually manifestations of an ongoing pathological battle for control within the brain. The landscape of this conflict is time. I suggest that there are at least 3 general systems bidding for this control, and in the process of evolution, each system has individually conferred a sequentially increasing survival advantage, but only at the expense of a still incomplete functional integration. Through juxtaposition of these respective brain systems, I endeavor to resolve some fundamental paradoxes and conundrums expressed in the basic psychological and behavioral processes of sleep, consciousness, and memory. The implication of this conceptual framework for the overall conception of time is then briefly adumbrated.
Eyre, Harris A.; Acevedo, Bianca; Yang, Hongyu; Siddarth, Prabha; Van Dyk, Kathleen; Ercoli, Linda; Leaver, Amber M.; Cyr, Natalie St.; Narr, Katherine; Baune, Bernhard T.; Khalsa, Dharma S.; Lavretsky, Helen
2016-01-01
Background: No study has explored the effect of yoga on cognitive decline and resting-state functional connectivity. Objectives: This study explored the relationship between performance on memory tests and resting-state functional connectivity before and after a yoga intervention versus active control for subjects with mild cognitive impairment (MCI). Methods: Participants ( ≥ 55 y) with MCI were randomized to receive a yoga intervention or active “gold-standard” control (i.e., memory enhancement training (MET)) for 12 weeks. Resting-state functional magnetic resonance imaging was used to map correlations between brain networks and memory performance changes over time. Default mode networks (DMN), language and superior parietal networks were chosen as networks of interest to analyze the association with changes in verbal and visuospatial memory performance. Results: Fourteen yoga and 11 MET participants completed the study. The yoga group demonstrated a statistically significant improvement in depression and visuospatial memory. We observed improved verbal memory performance correlated with increased connectivity between the DMN and frontal medial cortex, pregenual anterior cingulate cortex, right middle frontal cortex, posterior cingulate cortex, and left lateral occipital cortex. Improved verbal memory performance positively correlated with increased connectivity between the language processing network and the left inferior frontal gyrus. Improved visuospatial memory performance correlated inversely with connectivity between the superior parietal network and the medial parietal cortex. Conclusion:Yoga may be as effective as MET in improving functional connectivity in relation to verbal memory performance. These findings should be confirmed in larger prospective studies. PMID:27060939
Repeated recall as an intervention to improve memory performance in heart failure patients.
Viveiros, Jennifer; Sethares, Kristen; Shapiro, Amy
2017-12-01
Up to 50% of heart failure patients demonstrate aspects of cognitive impairment, including memory deficit. Novel interventions are needed to address memory deficit among heart failure patients. The goal of this study was to evaluate the testing effect as an intervention to improve memory performance in heart failure patients. This was a randomized controlled clinical trial ( N=84) comparing the memory performance of heart failure patients with and without mild cognitive impairment after a repeated testing intervention. Memory performance was measured by verbal word pair associates recall scores, between attention control and experimental subjects. Patients had a mean age of 71.7 ± 13.3 years and similar baseline memory (immediate p=.79 and delayed p=.47). Overall, there were no significant differences in memory between experimental and control subjects, respectively (67.2±18.87 vs. 61.9±22.3, verbal word pair associates, t = -1.179, p=.24). In the final hierarchical regression model, age ( p=.018) and education ( p=.006) were significant predictors of memory performance, with the intervention approaching significance ( p=.079). Although not statistically significant, the intervention group reported better memory. Age and education continue to be significant contributors to memory performance in the heart failure population. Continued development of interventions to improve memory performance in heart failure patients is indicated.
A Hybrid Task Graph Scheduler for High Performance Image Processing Workflows.
Blattner, Timothy; Keyrouz, Walid; Bhattacharyya, Shuvra S; Halem, Milton; Brady, Mary
2017-12-01
Designing applications for scalability is key to improving their performance in hybrid and cluster computing. Scheduling code to utilize parallelism is difficult, particularly when dealing with data dependencies, memory management, data motion, and processor occupancy. The Hybrid Task Graph Scheduler (HTGS) improves programmer productivity when implementing hybrid workflows for multi-core and multi-GPU systems. The Hybrid Task Graph Scheduler (HTGS) is an abstract execution model, framework, and API that increases programmer productivity when implementing hybrid workflows for such systems. HTGS manages dependencies between tasks, represents CPU and GPU memories independently, overlaps computations with disk I/O and memory transfers, keeps multiple GPUs occupied, and uses all available compute resources. Through these abstractions, data motion and memory are explicit; this makes data locality decisions more accessible. To demonstrate the HTGS application program interface (API), we present implementations of two example algorithms: (1) a matrix multiplication that shows how easily task graphs can be used; and (2) a hybrid implementation of microscopy image stitching that reduces code size by ≈ 43% compared to a manually coded hybrid workflow implementation and showcases the minimal overhead of task graphs in HTGS. Both of the HTGS-based implementations show good performance. In image stitching the HTGS implementation achieves similar performance to the hybrid workflow implementation. Matrix multiplication with HTGS achieves 1.3× and 1.8× speedup over the multi-threaded OpenBLAS library for 16k × 16k and 32k × 32k size matrices, respectively.
NASA Astrophysics Data System (ADS)
He, Q.; Huang, W. M.; Hong, M. H.; Wu, M. J.; Fu, Y. Q.; Chong, T. C.; Chellet, F.; Du, H. J.
2004-10-01
NiTi shape memory thin films are potentially desirable for micro-electro-mechanical system (MEMS) actuators, because they have a much higher work output per volume and also a significantly improved response speed due to a larger surface-to-volume ratio. A new technique using a temperature controllable atomic force microscope (AFM) is presented in order to find the transformation temperatures of NiTi shape memory thin films of micrometer size, since traditional techniques, such as differential scanning calorimetry (DSC) and the curvature method, have difficulty in dealing with samples of such a scale as this. This technique is based on the surface relief phenomenon in shape memory alloys upon thermal cycling. The reliability of this technique is investigated and compared with the DSC result in terms of the transformation fraction (xgr). It appears that the new technique is nondestructive, in situ and capable of characterizing sputtering deposited very small NiTi shape memory thin films.
Frick, K M; Gorman, L K; Markowska, A L
1996-10-01
Age-related spatial memory deficits are correlated with septohippocampal cholinergic system degeneration. The present study examined the effect of intraseptal infusions of the cholinergic agonist, oxotremorine, on spatial reference memory in middle-aged rats using place discrimination in the water maze, and on cholinergic activity using choline acetyltransferase (ChAT) activity. Oxotremorine mildly improved the rate of place discrimination acquisition of middle-aged rats during initial sessions only, but did not affect asymptotic levels of performance achieved. Of the brain regions assayed, ChAT activity increased with age in the temporal cortex and dorsal CA2/3 region of the hippocampus. Oxotremorine significantly decreased ChAT activity in the dorsal hippocampus. In contrast to our previous results in aged rats indicating a more robust effect of oxotremorine on spatial working memory, the present results suggest a modest effect of intraseptal oxotremorine on the acquisition of a spatial reference memory task.
Nocturnal sleep enhances working memory training in Parkinson's disease but not Lewy body dementia
Trotti, Lynn Marie; Wilson, Anthony G.; Greer, Sophia A.; Bliwise, Donald L.
2012-01-01
Working memory is essential to higher order cognition (e.g. fluid intelligence) and to performance of daily activities. Though working memory capacity was traditionally thought to be inflexible, recent studies report that working memory capacity can be trained and that offline processes occurring during sleep may facilitate improvements in working memory performance. We utilized a 48-h in-laboratory protocol consisting of repeated digit span forward (short-term attention measure) and digit span backward (working memory measure) tests and overnight polysomnography to investigate the specific sleep-dependent processes that may facilitate working memory performance improvements in the synucleinopathies. We found that digit span backward performance improved following a nocturnal sleep interval in patients with Parkinson's disease on dopaminergic medication, but not in those not taking dopaminergic medication and not in patients with dementia with Lewy bodies. Furthermore, the improvements in patients with Parkinson's disease on dopaminergic medication were positively correlated with the amount of slow-wave sleep that patients obtained between training sessions and negatively correlated with severity of nocturnal oxygen desaturation. The translational implication is that working memory capacity is potentially modifiable in patients with Parkinson's disease but that sleep disturbances may first need to be corrected. PMID:22907117
Soczynska, Joanna K; Ravindran, Lakshmi N; Styra, Rima; McIntyre, Roger S; Cyriac, Anna; Manierka, Marena S; Kennedy, Sidney H
2014-12-15
Decrements in cognitive function are a common feature of Major Depressive Disorder (MDD), and whether distinct classes of antidepressants differentially affect memory in these individuals has not been sufficiently evaluated. In this study we sought to determine the effect of escitalopram and bupropion XL on memory and psychosocial function. Forty-one individuals (18-50 years) with MDD were enrolled in an 8-week, double-blind, double-dummy, randomized controlled comparative trial of bupropion XL and escitalopram. Thirty-six participants completed pre and post memory assessments. Verbal, non-verbal and working memory were evaluated with a comprehensive neuropsychological battery. Psychosocial function was assessed with the Sheehan Disability Scale and Endicott Work Productivity Scale. Escitalopram and bupropion XL significantly improved immediate as well as delayed verbal and nonverbal memory, global function (all p≤0.001), and work productivity (p=0.045), with no significant between-group differences. Improvement in immediate verbal memory exerted a direct influence on improvement in global function (p=0.006). Treatment with either escitalopram or bupropion XL was associated with improvement in memory and psychosocial function in adults with MDD. Copyright © 2014. Published by Elsevier Ireland Ltd.
Nocturnal sleep enhances working memory training in Parkinson's disease but not Lewy body dementia.
Scullin, Michael K; Trotti, Lynn Marie; Wilson, Anthony G; Greer, Sophia A; Bliwise, Donald L
2012-09-01
Working memory is essential to higher order cognition (e.g. fluid intelligence) and to performance of daily activities. Though working memory capacity was traditionally thought to be inflexible, recent studies report that working memory capacity can be trained and that offline processes occurring during sleep may facilitate improvements in working memory performance. We utilized a 48-h in-laboratory protocol consisting of repeated digit span forward (short-term attention measure) and digit span backward (working memory measure) tests and overnight polysomnography to investigate the specific sleep-dependent processes that may facilitate working memory performance improvements in the synucleinopathies. We found that digit span backward performance improved following a nocturnal sleep interval in patients with Parkinson's disease on dopaminergic medication, but not in those not taking dopaminergic medication and not in patients with dementia with Lewy bodies. Furthermore, the improvements in patients with Parkinson's disease on dopaminergic medication were positively correlated with the amount of slow-wave sleep that patients obtained between training sessions and negatively correlated with severity of nocturnal oxygen desaturation. The translational implication is that working memory capacity is potentially modifiable in patients with Parkinson's disease but that sleep disturbances may first need to be corrected.
Working Memory Training Improves Dual-Task Performance on Motor Tasks.
Kimura, Takehide; Kaneko, Fuminari; Nagahata, Keita; Shibata, Eriko; Aoki, Nobuhiro
2017-01-01
The authors investigated whether working memory training improves motor-motor dual-task performance consisted of upper and lower limb tasks. The upper limb task was a simple reaction task and the lower limb task was an isometric knee extension task. 45 participants (age = 21.8 ± 1.6 years) were classified into a working memory training group (WM-TRG), dual-task training group, or control group. The training duration was 2 weeks (15 min, 4 times/week). Our results indicated that working memory capacity increased significantly only in the WM-TRG. Dual-task performance improved in the WM-TRG and dual-task training group. Our study provides the novel insight that working memory training improves dual-task performance without specific training on the target motor task.
Attention restores discrete items to visual short-term memory.
Murray, Alexandra M; Nobre, Anna C; Clark, Ian A; Cravo, André M; Stokes, Mark G
2013-04-01
When a memory is forgotten, is it lost forever? Our study shows that selective attention can restore forgotten items to visual short-term memory (VSTM). In our two experiments, all stimuli presented in a memory array were designed to be equally task relevant during encoding. During the retention interval, however, participants were sometimes given a cue predicting which of the memory items would be probed at the end of the delay. This shift in task relevance improved recall for that item. We found that this type of cuing improved recall for items that otherwise would have been irretrievable, providing critical evidence that attention can restore forgotten information to VSTM. Psychophysical modeling of memory performance has confirmed that restoration of information in VSTM increases the probability that the cued item is available for recall but does not improve the representational quality of the memory. We further suggest that attention can restore discrete items to VSTM.
Working memory training improves emotion regulation ability: Evidence from HRV.
Xiu, Lichao; Zhou, Renlai; Jiang, Yihan
2016-03-01
Emotion regulation during social situations plays a pivotal role in health and interpersonal functioning. In this study, we propose a working memory training approach to improve emotion regulation ability. This training promotes an updating function that is a crucial modulated process for emotion regulation. In the present study, the participants in the training group completed a running memory task over 20 days of training. Their working memory capability and high-frequency heart rate variability (HF-HRV) data on pretest and posttest were assessed and analyzed. Compared with the control group, the training group's reaction time in the 2-back working memory task was reduced significantly. In addition, the HF-HRV in the emotion regulation condition was increased after the 20-day training, which indicates that the working memory training effect could transfer to emotion regulation. In other words, working memory training improved emotion regulation ability. Copyright © 2015 Elsevier Inc. All rights reserved.
Rubus coreanus Miquel ameliorates scopolamine-induced memory impairments in ICR mice.
Choi, Mi-Ran; Lee, Min Young; Hong, Ji Eun; Kim, Jeong Eun; Lee, Jae-Yong; Kim, Tae Hwan; Chun, Jang Woo; Shin, Hyun Kyung; Kim, Eun Ji
2014-10-01
The present study investigated the effect of Rubus coreanus Miquel (RCM) on scopolamine-induced memory impairments in ICR mice. Mice were orally administrated RCM for 4 weeks and scopolamine was intraperitoneally injected into mice to induce memory impairment. RCM improved the scopolamine-induced memory impairment in mice. The increase of acetylcholinesterase activity caused by scopolamine was significantly attenuated by RCM treatment. RCM increased the levels of acetylcholine in the brain and serum of mice. The expression of choline acetyltransferase, phospho-cyclic AMP response element-binding protein, and phospho-extracellular signal-regulated kinase was significantly increased within the brain of mice treated with RCM. The brain antioxidant enzyme activity decreased by scopolamine was increased by RCM. These results demonstrate that RCM exerts a memory-enhancing effect via the improvement of cholinergic function and the potentiated antioxidant activity in memory-impaired mice. The results suggest that RCM may be a useful agent for improving memory impairment.
Owens, Max; Koster, Ernst H W; Derakshan, Nazanin
2013-03-01
Impaired filtering of irrelevant information from working memory is thought to underlie reduced working memory capacity for relevant information in dysphoria. The current study investigated whether training-related gains in working memory performance on the adaptive dual n-back task could result in improved inhibitory function. Efficacy of training was monitored in a change detection paradigm allowing measurement of a sustained event-related potential asymmetry sensitive to working memory capacity and the efficient filtering of irrelevant information. Dysphoric participants in the training group showed training-related gains in working memory that were accompanied by gains in working memory capacity and filtering efficiency compared to an active control group. Results provide important initial evidence that behavioral performance and neural function in dysphoria can be improved by facilitating greater attentional control. Copyright © 2013 Society for Psychophysiological Research.
[Memory assessment by means of virtual reality: its present and future].
Diaz-Orueta, Unai; Climent, Gema; Cardas-Ibanez, Jaione; Alonso, Laura; Olmo-Osa, Juan; Tirapu-Ustarroz, Javier
2016-01-16
The human memory is a complex cognitive system whose close relationship with executive functions implies that, in many occasions, a mnemonic deficit comprises difficulties to operate with correctly stored contents. Traditional memory tests, more focused in the information storage than in its processing, may be poorly sensitive both to subjects' daily life functioning and to changes originated by rehabilitation programs. In memory assessment, there is plenty evidence with regards to the need of improving it by means of tests which offer a higher ecological validity, with information that may be presented in various sensorial modalities and produced in a simultaneous way. Virtual reality reproduces three-dimensional environments with which the patient interacts in a dynamic way, with a sense of immersion in the environment similar to the presence and exposure to a real environment, and in which presentation of such stimuli, distractors and other variables may be systematically controlled. The current review aims to go deeply into the trajectory of neuropsychological assessment of memory based in virtual reality environments, making a tour through existing tests designed for assessing learning, prospective, episodic and spatial memory, as well as the most recent attempts to perform a comprehensive evaluation of all memory components.
Method and apparatus for faulty memory utilization
Cher, Chen-Yong; Andrade Costa, Carlos H.; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.
2016-04-19
A method for faulty memory utilization in a memory system includes: obtaining information regarding memory health status of at least one memory page in the memory system; determining an error tolerance of the memory page when the information regarding memory health status indicates that a failure is predicted to occur in an area of the memory system affecting the memory page; initiating a migration of data stored in the memory page when it is determined that the data stored in the memory page is non-error-tolerant; notifying at least one application regarding a predicted operating system failure and/or a predicted application failure when it is determined that data stored in the memory page is non-error-tolerant and cannot be migrated; and notifying at least one application regarding the memory failure predicted to occur when it is determined that data stored in the memory page is error-tolerant.
Pailian, Hrag; Libertus, Melissa E; Feigenson, Lisa; Halberda, Justin
2016-08-01
Research in adults has aimed to characterize constraints on the capacity of Visual Working Memory (VWM), in part because of the system's broader impacts throughout cognition. However, less is known about how VWM develops in childhood. Existing work has reached conflicting conclusions as to whether VWM storage capacity increases after infancy, and if so, when and by how much. One challenge is that previous studies did not control for developmental changes in attention and executive processing, which also may undergo improvement. We investigated the development of VWM storage capacity in children from 3 to 8 years of age, and in adults, while controlling for developmental change in exogenous and endogenous attention and executive control. Our results reveal that, when controlling for improvements in these abilities, VWM storage capacity increases across development and approaches adult-like levels between ages 6 and 8 years. More generally, this work highlights the value of estimating working memory, attention, perception, and decision-making components together.
ASIC-based architecture for the real-time computation of 2D convolution with large kernel size
NASA Astrophysics Data System (ADS)
Shao, Rui; Zhong, Sheng; Yan, Luxin
2015-12-01
Bidimensional convolution is a low-level processing algorithm of interest in many areas, but its high computational cost constrains the size of the kernels, especially in real-time embedded systems. This paper presents a hardware architecture for the ASIC-based implementation of 2-D convolution with medium-large kernels. Aiming to improve the efficiency of storage resources on-chip, reducing off-chip bandwidth of these two issues, proposed construction of a data cache reuse. Multi-block SPRAM to cross cached images and the on-chip ping-pong operation takes full advantage of the data convolution calculation reuse, design a new ASIC data scheduling scheme and overall architecture. Experimental results show that the structure can achieve 40× 32 size of template real-time convolution operations, and improve the utilization of on-chip memory bandwidth and on-chip memory resources, the experimental results show that the structure satisfies the conditions to maximize data throughput output , reducing the need for off-chip memory bandwidth.
New data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer
NASA Astrophysics Data System (ADS)
Tamii, A.; Sakaguchi, H.; Takeda, H.; Yosoi, M.; Akimune, H.; Fujiwara, M.; Ogata, H.; Tanaka, M.; Togawa, H.
1996-10-01
This paper describes a new data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer at the Research Center for Nuclear Physics (RCNP) in Osaka, Japan. Data are acquired by a Creative Electronic Systems (CES) Starburst, which is a CAMAC auxiliary crate controller equipped with a Digital Equipment Corporation (DEC) J11 microprocessor. The data on the Starburst are transferred to a VME single-board computer. A VME reflective memory module broadcasts the data to other systems through a fiber-optic link. A data transfer rate of 2.0 Mbytes/s between VME modules has been achieved by reflective memories. This rate includes the overhead of buffer management. The overall transfer rate, however, is limited by the performance of the Starburst to about 160 Kbytes/s at maximum. In order to further improve the system performance, we developed a new readout module called the Rapid Data Transfer Module (RDTM). RDTM's transfer data from LeCroy PCOS III's or 4298's, and FERA/FERET's directly to CES 8170 High Speed Memories (HSM) in VME crates, the data transfer rate of the RDTM from PCOS III's to the HSM is about 4 Mbytes/s.
Improving older adults' memory performance using prior task success.
Geraci, Lisa; Miller, Tyler M
2013-06-01
Holding negative aging stereotypes can lead older adults to perform poorly on memory tests. We attempted to improve older adults' memory performance by giving them task experience that would counter their negative performance expectations. Before participating in a memory experiment, younger and older adults were given a cognitive task that they could either successfully complete, not successfully complete, or they were given no prior task. For older adults, recall was significantly higher and self-reported anxiety was significantly lower for the prior task success group relative to the other groups. There was no effect of prior task experience on younger adults' memory performance. Results suggest that older adults' memory can be improved with a single successful prior task experience. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Bartsch, Lea M; Singmann, Henrik; Oberauer, Klaus
2018-03-19
Refreshing and elaboration are cognitive processes assumed to underlie verbal working-memory maintenance and assumed to support long-term memory formation. Whereas refreshing refers to the attentional focussing on representations, elaboration refers to linking representations in working memory into existing semantic networks. We measured the impact of instructed refreshing and elaboration on working and long-term memory separately, and investigated to what extent both processes are distinct in their contributions to working as well as long-term memory. Compared with a no-processing baseline, immediate memory was improved by repeating the items, but not by refreshing them. There was no credible effect of elaboration on working memory, except when items were repeated at the same time. Long-term memory benefited from elaboration, but not from refreshing the words. The results replicate the long-term memory benefit for elaboration, but do not support its beneficial role for working memory. Further, refreshing preserves immediate memory, but does not improve it beyond the level achieved without any processing.
Green, Chloe T; Long, Debra L; Green, David; Iosif, Ana-Maria; Dixon, J Faye; Miller, Meghan R; Fassbender, Catherine; Schweitzer, Julie B
2012-07-01
Computerized working memory and executive function training programs designed to target specific impairments in executive functioning are becoming increasingly available, yet how well these programs generalize to improve functional deficits in disorders, such as attention-deficit/hyperactivity disorder (ADHD), beyond the training context is not well-established. The aim of this study was to examine the extent to which working memory (WM) training in children with ADHD would diminish a core dysfunctional behavior associated with the disorder, "off-task" behavior during academic task performance. The effect of computerized WM training (adaptive) was compared to a placebo condition (nonadaptive) in a randomized, double-blind, placebo-controlled design in 26 children (18 males; age, 7 to 14 years old) diagnosed with ADHD. Participants completed the training in approximately 25 sessions. The Restricted Academic Situations Task (RAST) observational system was used to assess aspects of off-task behavior during the completion of an academic task. Traditional measures of ADHD symptoms (Conners' Parent Rating Scale) and WM ability (standardized WM tests) were also collected. WM training led to significant reductions in off-task ADHD-associated behavior on the RAST system and improvement on WM tests. There were no significant differences between groups in improvement on parent rating scales. Findings lend insight into the generalizability of the effects of WM training and the relation between deficits in WM and off-task behavioral components of ADHD. These preliminary data suggest WM training may provide a mechanism for indirectly altering academic performance in children with ADHD.
Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.
Wang, Xiao-Qin; Wang, Gong-Wu
2016-03-15
Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.
Hessen, Erik; Nordlund, Arto; Stålhammar, Jacob; Eckerström, Marie; Bjerke, Maria; Eckerström, Carl; Göthlin, Mattias; Fladby, Tormod; Reinvang, Ivar; Wallin, Anders
2015-01-01
There is a need to find very early markers for pre-clinical Alzheimer's disease as interventions early in the disease process are thought to be most effective. The present study aimed to address the potential relation between cerebrospinal fluid (CSF) biomarkers and reduced cognitive function in a relatively young cohort of memory clinic patients with subjective cognitive decline. 122 patients (mean age 63 years) with subjective cognitive decline were recruited from two university memory clinics and followed for two years. The main finding was that the subgroup with objective memory decline during the study period had significantly higher T-tau at baseline than the group with improved memory. Baseline CSF variables showed a trend toward more pathological values in the patients with memory decline compared to those who improved or remained stable. The baseline memory score of those who declined was significantly better than the baseline score of those who improved over two years. The general trend for the whole group was improved memory and executive test scores. There were no differences in cognitive scores based on CSF quartiles at baseline, nor were there differences in cognitive outcome for patients with early amnestic mild cognitive impairment versus average cognitive function at baseline. The main finding that T-tau rather than amyloid-β was associated with memory decline do not support the prevailing opinion about the chain of events assumed to take place in Alzheimer's disease. In addition, memory decline was not associated with poor baseline memory score. Thus, a memory cut-off indicating low baseline memory would not would have identified the declining group.
Michalak, Agnieszka; Biala, Grazyna
2017-01-15
Long-term potentiation (LTP) and long-term depression (LTD) depend on specific postsynaptic Ca 2+ /calmodulin concentration. LTP results from Ca 2+ influx through the activated NMDA receptors or voltage-gated calcium channels (VGCCs) and is linked with activation of protein kinases including mitogen-activated protein kinase (MAPK). Weaker synaptic stimulation, as a result of low Ca 2+ influx, leads to activation of Ca 2+ /calmodulin-dependent phosphatase (calcineurin - CaN) and triggers LTD. Interestingly, both memory formation and drug addiction share similar neuroplastic changes. Nicotine, which is one of the most common addictive drugs, manifests its memory effects through nicotinic acetylcholine receptors (nAChRs). Because nAChRs may also gate Ca 2+ , it is suggested that calcium signaling pathways are involved in nicotine-induced memory effects. Within the scope of the study was to evaluate the importance of calcium homeostasis and protein kinase/phosphatase balance in nicotine-induced short- and long-term memory effects. To assess memory function in mice passive avoidance test was used. The presented results confirm that acute nicotine (0.1mg/kg) improves short- and long-term memory. Pretreatment with L-type VGCC blockers (amlodipine, nicardipine verapamil) increased nicotine-induced memory improvement in the context of short- and long-term memory. Pretreatment with FK-506 (a potent CaN inhibitor) enhanced short- but not long-term memory effects of nicotine, while SL-327 (a selective MAPK/ERK kinase inhibitor) attenuated both nicotine-induced short- and long-term memory improvement. Acute nicotine enhances both types of memory via L-type VGCC blockade and via ERK1/2 activation. Only short- but not long-term memory enhancement induced by nicotine is dependent on CaN inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.
A Time and Place for Everything: Developmental Differences in the Building Blocks of Episodic Memory
Lee, Joshua K.; Wendelken, J. Carter; Bunge, Silvia A.; Ghetti, Simona
2015-01-01
This research investigated whether episodic memory development can be explained by improvements in relational binding processes, involved in forming novel associations between events and the context in which they occurred. Memory for item-space, item-time, and item-item relations was assessed in an ethnically diverse sample of 151 children aged 7 to 11 years and 28 young adults. Item-space memory reached adult performance by 9½ years, whereas item-time and item-item memory improved into adulthood. In path analysis, item-space, but not item-time best explained item-item memory. Across age groups, relational binding related to source memory and performance on standardized memory assessments. In conclusion, relational binding development depends on relation type, but relational binding overall supports episodic memory development. PMID:26493950
Working Memory Systems in the Rat.
Bratch, Alexander; Kann, Spencer; Cain, Joshua A; Wu, Jie-En; Rivera-Reyes, Nilda; Dalecki, Stefan; Arman, Diana; Dunn, Austin; Cooper, Shiloh; Corbin, Hannah E; Doyle, Amanda R; Pizzo, Matthew J; Smith, Alexandra E; Crystal, Jonathon D
2016-02-08
A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shen, J; Zhang, G; Yao, L; Zhao, X
2015-03-19
Working memory refers to the ability to temporarily store and manipulate information that is necessary for complex cognition activities. Previous studies have demonstrated that working memory capacity can be improved by behavioral training, and brain activities in the frontal and parietal cortices and the connections between these regions are also altered by training. Our recent neurofeedback training has proven that the regulation of the left dorsal lateral prefrontal cortex (DLPFC) activity using real-time functional magnetic resonance imaging (rtfMRI) can improve working memory performance. However, how working memory training promotes interaction between brain regions and whether this promotion correlates with performance improvement remain unclear. In this study, we employed structural equation modeling (SEM) to calculate the interactions between the regions within the working memory network during neurofeedback training. The results revealed that the direct effect of the frontoparietal connection in the left hemisphere was enhanced by the rtfMRI training. Specifically, the increase in the path from the left DLPFC to the left inferior parietal lobule (IPL) was positively correlated with improved performance in verbal working memory. These findings demonstrate the important role of the frontoparietal connection in working memory training and suggest that increases in frontoparietal connectivity might be a key factor associated with behavioral improvement. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Synthesis and characterization of shape memory poly (epsilon-caprolactone) polyurethane-ureas
NASA Astrophysics Data System (ADS)
Ren, Hongfeng
Shape memory polymers (SMPs) have attracted significant interest in recent times because of their potential applications in a number of areas, such as medical devices and textiles. However, there are some major drawbacks of SMPs, such as their relatively low moduli resulting in small recovery stresses, and their long response times compared with shape memory alloys (SMAs). A suitable recovery stress which comes from the elastic recovery stress generated in the deformation process is critical in some medical devices. To address some of these shortcomings, the work in this dissertation mainly focuses on the design and synthesis of linear shape memory polymers with higher recovery stress. A series of segmented poly (epsilon-caprolactone) polyurethane-ureas (PCLUUs) were prepared from poly (epsilon-caprolactone) (PCL) diol, different dissociates and chain extenders. NMR and FT-IR were used to identify the structure of the synthesized shape memory polyurethane-ureas. Parameters such as soft segment content (molecular weight and content), chain extender and the rigidity of the main chain were investigated to understand the structure-property relationships of the shape memory polymer systems through DSC, DMA, physical property test, etc. Cyclic thermal mechanic tests were applied to measure the shape memory properties which showed that the recovery stress can be improved above 200% simply by modifying the chain extender. Meanwhile, the synthesis process was optimized to be similar to that of Spandex /LYCRA®. Continuous fibers form shape memory polyurethane-ureas were made from a wet spinning process, which indicated excellent spinnability of the polymer solution. Small angle neutron scattering (SANS) was used to study the morphology of the hard segment at different temperatures and stretch rates and found that the monodisperse rigid cylinder model fit the SANS data quite well. From the cylinder model, the radius of the cylinder increased with increasing hard segment content. The SANS results revealed phase separation of hard and soft segments into nano scale domains. The overall objectives of this dissertation were: ■ To improve the recovery stress of linear shape memory polymers. ■ To study the morphology and structure property relationships of shape memory polymers. Chapter 1 reviews the literature on SMAs and SMPs, especially on linear SMPs. Chapter 2 is devoted to SMPUUs with the aliphatic amine 1, 4-Butanediamine (BDA) as chain extender. Chapter 3 reports the effects of different aliphatic diamines as the chain extenders. Chapter 4 covers the results for shape memory polyurethane-ureas with aromatic diamine 4, 4’-Methylenedianiline (MDA) as the chain extender. The effect of different diisocyanates is covered in Chapter 5. Chapter 6-7 show some synthesized polymer systems with unimproved recovery stress or even no shape memory properties. The overall conclusions of this work are reported in Chapter 8.
Yamazaki, Yudai; Sato, Daisuke; Yamashiro, Koya; Tsubaki, Atsuhiro; Yamaguchi, Yui; Takehara, Nana; Maruyama, Atsuo
2017-01-01
Acute aerobic exercise at a mild intensity improves cognitive function. However, the response to exercise exhibits inter-individual differences, and the mechanisms underlying these differences remain unclear. The objective of this study was to determine potential factors in the brain that underlie differential responses to exercise in terms of cognitive improvement using functional near-infrared spectroscopy. Fourteen healthy subjects participated in these experiments. Participants performed a low intensity cycling exercise at 30% maximal oxygen uptake (VO 2peak ) for 10 min and performed a spatial memory task before and after exercising (5 and 30 min). The spatial memory task comprised two levels of difficulty (low: 1-dot EXERCISE, high: 3-dot EXERCISE). Cortical oxy-hemoglobin (O 2 Hb) levels were recorded using near-infrared spectroscopy during both the exercise and the spatial memory task phases. Regions of interests included the dorsolateral prefrontal cortex (DLPFC), ventrolateral prefrontal cortex (VLPFC), and frontopolar area (FPA). The participants were divided into two groups depending on whether they were responders (improved task reaction time) or non-responders (no improvement). Subsequently, we analyzed the group characteristics and differences in the change in O 2 Hb levels during exercise and spatial working memory tasks. Acute mild exercise significantly improved mean reaction times in the 1-dot memory task but not in the 3-dot task across the participants. In the 1-dot EXERCISE, 10 subjects were responders and four subjects were non-responders, whereas in the 3-dot EXERCISE, seven subjects were non-responders. In responders, during exercise, we found higher O 2 Hb levels in the right VLPFC response for the 1-dot memory task. Acute mild exercise caused inter-individual differences in spatial memory improvement, which were associated with changes in O 2 Hb activity in the prefrontal area during the exercise phase but not during the actual spatial memory task. Therefore, individuals who respond with higher reactivity to mild intensity exercise in the VLPFC might obtain larger spatial working memory improvements following exercise than non-responders.
Working Memory Underpins Cognitive Development, Learning, and Education
Cowan, Nelson
2014-01-01
Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem-solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then I explore the nature of cognitive developmental improvements in working memory, the role of working memory in learning, and some potential implications of working memory and its development for the education of children and adults. The use of working memory is quite ubiquitous in human thought, but the best way to improve education using what we know about working memory is still controversial. I hope to provide some directions for research and educational practice. PMID:25346585
Huang, Chi-Hsien; Lin, Chih-Ting; Wang, Jer-Chyi; Chou, Chien; Ye, Yu-Ren; Cheng, Bing-Ming; Lai, Chao-Sung
2012-11-30
A plasma system with a complementary filter to shield samples from damage during tetrafluoromethane (CF(4)) plasma treatment was proposed in order to incorporate fluorine atoms into gadolinium oxide nanocrystals (Gd(2)O(3)-NCs) for flash memory applications. X-ray photoelectron spectroscopy confirmed that fluorine atoms were successfully introduced into the Gd(2)O(3)-NCs despite the use of a filter in the plasma-enhanced chemical vapour deposition system to shield against several potentially damaging species. The number of incorporated fluorine atoms can be controlled by varying the treatment time. The optimized memory window of the resulting flash memory devices was twice that of devices treated by a filterless system because more fluorine atoms were incorporated into the Gd(2)O(3)-NCs film with very little damage. This enlarged the bandgap energy from 5.48 to 6.83 eV, as observed by ultraviolet absorption measurements. This bandgap expansion can provide a large built-in electric field that allows more charges to be stored in the Gd(2)O(3)-NCs. The maximum improvement in the retention characteristic was >60%. Because plasma damage during treatment is minimal, maximum fluorination can be achieved. The concept of simply adding a filter to a plasma system to prevent plasma damage exhibits great promise for functionalization or modification of nanomaterials for advanced nanoelectronics while introducing minimal defects.
Performance model-directed data sieving for high-performance I/O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yong; Lu, Yin; Amritkar, Prathamesh
2014-09-10
Many scientific computing applications and engineering simulations exhibit noncontiguous I/O access patterns. Data sieving is an important technique to improve the performance of noncontiguous I/O accesses by combining small and noncontiguous requests into a large and contiguous request. It has been proven effective even though more data are potentially accessed than demanded. In this study, we propose a new data sieving approach namely performance model-directed data sieving, or PMD data sieving in short. It improves the existing data sieving approach from two aspects: (1) dynamically determines when it is beneficial to perform data sieving; and (2) dynamically determines how tomore » perform data sieving if beneficial. It improves the performance of the existing data sieving approach considerably and reduces the memory consumption as verified by both theoretical analysis and experimental results. Given the importance of supporting noncontiguous accesses effectively and reducing the memory pressure in a large-scale system, the proposed PMD data sieving approach in this research holds a great promise and will have an impact on high-performance I/O systems.« less
Conscious and Unconscious Memory Systems
Squire, Larry R.; Dede, Adam J.O.
2015-01-01
The idea that memory is not a single mental faculty has a long and interesting history but became a topic of experimental and biologic inquiry only in the mid-20th century. It is now clear that there are different kinds of memory, which are supported by different brain systems. One major distinction can be drawn between working memory and long-term memory. Long-term memory can be separated into declarative (explicit) memory and a collection of nondeclarative (implicit) forms of memory that include habits, skills, priming, and simple forms of conditioning. These memory systems depend variously on the hippocampus and related structures in the parahippocampal gyrus, as well as on the amygdala, the striatum, cerebellum, and the neocortex. This work recounts the discovery of declarative and nondeclarative memory and then describes the nature of declarative memory, working memory, nondeclarative memory, and the relationship between memory systems. PMID:25731765
Balconi, M; Cobelli, C
2015-02-26
The present research explored the cortical correlates of emotional memories in response to words and pictures. Subjects' performance (Accuracy Index, AI; response times, RTs; RTs/AI) was considered when a repetitive Transcranial Magnetic Stimulation (rTMS) was applied on the left dorsolateral prefrontal cortex (LDLPFC). Specifically, the role of LDLPFC was tested by performing a memory task, in which old (previously encoded targets) and new (previously not encoded distractors) emotional pictures/words had to be recognized. Valence (positive vs. negative) and arousing power (high vs. low) of stimuli were also modulated. Moreover, subjective evaluation of emotional stimuli in terms of valence/arousal was explored. We found significant performance improving (higher AI, reduced RTs, improved general performance) in response to rTMS. This "better recognition effect" was only related to specific emotional features, that is positive high arousal pictures or words. Moreover no significant differences were found between stimulus categories. A direct relationship was also observed between subjective evaluation of emotional cues and memory performance when rTMS was applied to LDLPFC. Supported by valence and approach model of emotions, we supposed that a left lateralized prefrontal system may induce a better recognition of positive high arousal words, and that evaluation of emotional cue is related to prefrontal activation, affecting the recognition memories of emotions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Kohara, Yumi; Kuwahara, Rika; Kawaguchi, Shinichiro; Jojima, Takeshi; Yamashita, Kimihiro
2014-05-10
This study investigated the effects of perinatal genistein (GEN) exposure on the central nervous system of rat offspring. Pregnant dams orally received GEN (1 or 10 mg/kg/day) or vehicle (1 ml/kg/day) from gestation day 10 to postnatal day 14. In order to assess the effects of GEN on rat offspring, we used a battery of behavioral tests, including the open-field, elevated plus-maze, MAZE and step-through passive avoidance tests. MAZE test is an appetite-motivation test, and we used this mainly for assessing spatial learning and memory. In the MAZE test, GEN groups exhibited shorter latency from start to goal than the vehicle-treated group in both sexes. On the other hand, performances in the step-through passive avoidance test were non-monotonically inhibited by GEN in both sexes, and a significant difference was observed in low dose of the GEN-treated group compared to the vehicle-treated group in female rats. Furthermore, we found that perinatal exposure to GEN did not significantly alter locomotor activity or emotionality as assessed by the open-field and elevated-plus maze tests. These results suggest that perinatal exposure to GEN improved spatial learning and memory of rat offspring, but impaired their passive avoidance learning and memory. Copyright © 2014 Elsevier Inc. All rights reserved.
Data Movement Dominates: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, Bruce L.
Over the past three years in this project, what we have observed is that the primary reason for data movement in large-scale systems is that the per-node capacity is not large enough—i.e., one of the solutions to the data-movement problem (certainly not the only solution that is required, but a significant one nonetheless) is to increase per-node capacity so that inter-node traffic is reduced. This unfortunately is not as simple as it sounds. Today’s main memory systems for datacenters, enterprise computing systems, and supercomputers, fail to provide high per-socket capacity [Dirik & Jacob 2009; Cooper-Balis et al. 2012], except atmore » extremely high price points (factors of 10–100x the cost/bit of consumer main-memory systems) [Stokes 2008]. The reason is that our choice of technology for today’s main memory systems—i.e., DRAM, which we have used as a main-memory technology since the 1970s [Jacob et al. 2007]—can no longer keep up with our needs for density and price per bit. Main memory systems have always been built from the cheapest, densest, lowest-power memory technology available, and DRAM is no longer the cheapest, the densest, nor the lowest-power storage technology out there. It is now time for DRAM to go the way that SRAM went: move out of the way for a cheaper, slower, denser storage technology, and become a cache instead. This inflection point has happened before, in the context of SRAM yielding to DRAM. There was once a time that SRAM was the storage technology of choice for all main memories [Tomasulo 1967; Thornton 1970; Kidder 1981]. However, once DRAM hit volume production in the 1970s and 80s, it supplanted SRAM as a main memory technology because it was cheaper, and it was denser. It also happened to be lower power, but that was not the primary consideration of the day. At the time, it was recognized that DRAM was much slower than SRAM, but it was only at the supercomputer level (For instance the Cray X-MP in the 1980s and its follow-on, the Cray Y-MP, in the 1990s) that could one afford to build ever- larger main memories out of SRAM—the reasoning for moving to DRAM was that an appropriately designed memory hierarchy, built of DRAM as main memory and SRAM as a cache, would approach the performance of SRAM, at the price-per-bit of DRAM [Mashey 1999]. Today it is quite clear that, were one to build an entire multi-gigabyte main memory out of SRAM instead of DRAM, one could improve the performance of almost any computer system by up to an order of magnitude—but this option is not even considered, because to build that system would be prohibitively expensive. It is now time to revisit the same design choice in the context of modern technologies and modern systems. For reasons both technical and economic, we can no longer afford to build ever-larger main memory systems out of DRAM. Flash memory, on the other hand, is significantly cheaper and denser than DRAM and therefore should take its place. While it is true that flash is significantly slower than DRAM, one can afford to build much larger main memories out of flash than out of DRAM, and we show that an appropriately designed memory hierarchy, built of flash as main memory and DRAM as a cache, will approach the performance of DRAM, at the price-per-bit of flash. In our studies as part of this project, we have investigated Non-Volatile Main Memory (NVMM), a new main-memory architecture for large-scale computing systems, one that is specifically designed to address the weaknesses described previously. In particular, it provides the following features: non-volatility: The bulk of the storage is comprised of NAND flash, and in this organization DRAM is used only as a cache, not as main memory. Furthermore, the flash is journaled, which means that operations such as checkpoint/restore are already built into the system. 1+ terabytes of storage per socket: SSDs and DRAM DIMMs have roughly the same form factor (several square inches of PCB surface area), and terabyte SSDs are now commonplace. performance approaching that of DRAM: DRAM is used as a cache to the flash system. price-per-bit approaching that of NAND: Flash is currently well under $0.50 per gigabyte; DDR3 SDRAM is currently just over $10 per gigabyte [Newegg 2014]. Even today, one can build an easily affordable main memory system with a terabyte or more of NAND storage per CPU socket (which would be extremely expensive were one to use DRAM), and our cycle- accurate, full-system experiments show that this can be done at a performance point that lies within a factor of two of DRAM.« less
Guo, Xia; Ohsawa, Chie; Suzuki, Akiko; Sekiyama, Kaoru
2018-01-01
Previous studies have reported that music training not only improves children's musical skills, but also enhances their cognitive functions. However, there is a disagreement about what domain(s) might be affected. Moreover, effects of short-term (
Guo, Xia; Ohsawa, Chie; Suzuki, Akiko; Sekiyama, Kaoru
2017-01-01
Previous studies have reported that music training not only improves children's musical skills, but also enhances their cognitive functions. However, there is a disagreement about what domain(s) might be affected. Moreover, effects of short-term (
Multi-petascale highly efficient parallel supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time andmore » supports DMA functionality allowing for parallel processing message-passing.« less
Artificial Intelligence Support for Computational Chemistry
NASA Astrophysics Data System (ADS)
Duch, Wlodzislaw
Possible forms of artificial intelligence (AI) support for quantum chemistry are discussed. Questions addressed include: what kind of support is desirable, what kind of support is feasible, what can we expect in the coming years. Advantages and disadvantages of current AI techniques are presented and it is argued that at present the memory-based systems are the most effective for large scale applications. Such systems may be used to predict the accuracy of calculations and to select the least expensive methods and basis sets belonging to the same accuracy class. Advantages of the Feature Space Mapping as an improvement on the memory based systems are outlined and some results obtained in classification problems given. Relevance of such classification systems to computational chemistry is illustrated with two examples showing similarity of results obtained by different methods that take electron correlation into account.
Zhang, Rui-San; He, Zhen; Jin, Wei-Dong; Wang, Rui
2016-10-01
The cannabinoid system plays an important role in memory processes, many studies have indicated that cannabinoid receptor ligands have ability to modulate memory in rodents. A nonapeptide hemopressin (Hp) derived from rat brain, acts as a peptide antagonist or selective inverse peptide agonist of cannabinoid 1 (CB1) receptor. N-terminally extended forms of Hp isolated from mouse brain, (m)RVD-hemopressin(α) (RVD) and (m)VD-hemopressin(α) (VD) also bind CB1 receptor, however, as peptide agonists. Here, we investigated the roles of Hp, RVD, and VD on memory in mice using novel object recognition (NOR) and object location recognition (OLR) tasks. In normal young mice, intracerebroventricular (i.c.v.) infusion of Hp before training not only improved memory formation, but also prolonged memory retention in the tasks, these effects could be inhibited by RVD or VD at the same dose and intraperitoneal (i.p.) injection of a small molecule agonist of CB1 receptor WIN55, 212-2 15min before administration of Hp inhibited the memory-improving effect of Hp. In addition, under the same experimental conditions, i.c.v. RVD or VD displayed memory-impairing effects, which could be prevented by Hp (i.c.v.) or AM251 (i.p.), a small molecule antagonist of CB1 receptor. Infusion of amyloid-β (1-42) (Aβ1-42) 14days before training resulted in impairment of memory in mice which could be used as animal model of Alzheimer's disease (AD). In these mice, RVD or VD (i.c.v.) reversed the memory impairment induced by Aβ1-42, and the effects of RVD and VD could be suppressed by Hp (i.c.v.) or AM251 (2mg/kg, i.p.). Separate administration of Hp had no effect in Aβ1-42-treated mice. The above results suggested that Hp, RVD and VD, as CB1 receptor peptide ligands, may be potential drugs to treatment of the memory deficit-involving disease, just as AD. Copyright © 2016 Elsevier Inc. All rights reserved.
Cambon, Karine; Hansen, Stine M; Venero, Cesar; Herrero, A Isabel; Skibo, Galina; Berezin, Vladimir; Bock, Elisabeth; Sandi, Carmen
2004-04-28
The neural cell adhesion molecule (NCAM) plays a critical role in development and plasticity of the nervous system and is involved in the mechanisms of learning and memory. Here, we show that intracerebroventricular administration of the FG loop (FGL), a synthetic 15 amino acid peptide corresponding to the binding site of NCAM for the fibroblast growth factor receptor 1 (FGFR1), immediately after training rats in fear conditioning or water maze learning, induced a long-lasting improvement of memory. In primary cultures of hippocampal neurons, FGL enhanced the presynaptic function through activation of FGFR1 and promoted synapse formation. These results provide the first evidence for a memory-facilitating effect resulting from a treatment that mimics NCAM function. They suggest that increased efficacy of synaptic transmission and formation of new synapses probably mediate the cognition-enhancing properties displayed by the peptide.
Automatic Generation of Directive-Based Parallel Programs for Shared Memory Parallel Systems
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Yan, Jerry; Frumkin, Michael
2000-01-01
The shared-memory programming model is a very effective way to achieve parallelism on shared memory parallel computers. As great progress was made in hardware and software technologies, performance of parallel programs with compiler directives has demonstrated large improvement. The introduction of OpenMP directives, the industrial standard for shared-memory programming, has minimized the issue of portability. Due to its ease of programming and its good performance, the technique has become very popular. In this study, we have extended CAPTools, a computer-aided parallelization toolkit, to automatically generate directive-based, OpenMP, parallel programs. We outline techniques used in the implementation of the tool and present test results on the NAS parallel benchmarks and ARC3D, a CFD application. This work demonstrates the great potential of using computer-aided tools to quickly port parallel programs and also achieve good performance.
Berardi, Andrea; Schelling, Gustav; Campolongo, Patrizia
2016-09-01
Post-Traumatic Stress Disorder (PTSD) is a psychiatric chronic disease developing in individuals after the experience of an intense and life-threatening traumatic event. The post-traumatic symptomatology encompasses alterations in memory processes, mood, anxiety and arousal. There is now consensus in considering the disease as an aberrant adaptation to traumatic stress. Pharmacological research, aimed at the discovery of new potential effective treatments, has lately directed its attention towards the "so-called" cognitive enhancers. This class of substances, by modulating cognitive processes involved in the development and/or persistence of the post-traumatic symptomatology, could be of great help in improving the outcome of psychotherapies and patients' prognosis. In this perspective, drugs acting on the endocannabinoid system are receiving great attention due to their dual ability to modulate memory processes on one hand, and to reduce anxiety and depression on the other. The purpose of the present review is to offer a thorough overview of both animal and human studies investigating the effects of cannabinoids on memory processes. First, we will briefly describe the characteristics of the endocannabinoid system and the most commonly used animal models of learning and memory. Then, studies investigating cannabinoid modulatory influences on memory consolidation, retrieval and extinction will be separately presented, and the potential benefits associated with each approach will be discussed. In the final section, we will review literature data reporting beneficial effects of cannabinoid drugs in PTSD patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessing Spatial Learning and Memory in Rodents
Vorhees, Charles V.; Williams, Michael T.
2014-01-01
Maneuvering safely through the environment is central to survival of almost all species. The ability to do this depends on learning and remembering locations. This capacity is encoded in the brain by two systems: one using cues outside the organism (distal cues), allocentric navigation, and one using self-movement, internal cues and nearby proximal cues, egocentric navigation. Allocentric navigation involves the hippocampus, entorhinal cortex, and surrounding structures; in humans this system encodes allocentric, semantic, and episodic memory. This form of memory is assessed in laboratory animals in many ways, but the dominant form of assessment is the Morris water maze (MWM). Egocentric navigation involves the dorsal striatum and connected structures; in humans this system encodes routes and integrated paths and, when overlearned, becomes procedural memory. In this article, several allocentric assessment methods for rodents are reviewed and compared with the MWM. MWM advantages (little training required, no food deprivation, ease of testing, rapid and reliable learning, insensitivity to differences in body weight and appetite, absence of nonperformers, control methods for proximal cue learning, and performance effects) and disadvantages (concern about stress, perhaps not as sensitive for working memory) are discussed. Evidence-based design improvements and testing methods are reviewed for both rats and mice. Experimental factors that apply generally to spatial navigation and to MWM specifically are considered. It is concluded that, on balance, the MWM has more advantages than disadvantages and compares favorably with other allocentric navigation tasks. PMID:25225309
Liy-Salmeron, Gustavo; Meneses, Alfredo
2007-05-25
It was previously reported that brain areas containing serotonin (5-hydroxytryptamine, 5-HT) receptors mediate memory consolidation as well as short (STM)- and long-term memory (LTM). Here the effects of systemic and intrahippocampal administration of 5-HT agonists and antagonists on an autoshaping learning task were explored, which requires hippocampal translation and transduction as well as 5-HT receptors expression. As previously reported ketamine (glutamatergic antagonist) and two well-known amnesic drugs, scopolamine (cholinergic antagonist) and dizocilpine (NMDA antagonist) impaired STM but not LTM; dizocilpine even improved the latter. Since ketamine produces hallucinations and impairs memory in humans, we address the question if well-known antipsychotic haloperidol and clozapine might affect STM deficit. Indeed, systemic administration of clozapine
RIZWAN, SAIMA; IDREES, AYESHA; ASHRAF, MUHAMMAD; AHMED, TOUQEER
2016-01-01
Neurodegenerative disorders such as Alzheimers disease (AD) are multifaceted and there are currently a limited number of therapeutic strategies available to treat them. Aspirin is known to act on multiple therapeutic targets and is a successful anti-inflammatory agent in various tissues. The present study aimed to ascertain the performance of aspirin when employed as a therapeutic agent to treat neurodegeneration on novel targets, including opioid system genes, in an AlCl3-induced neurotoxicity mouse model. The effects of two doses of aspirin (5 and 20 mg/kg aspirin for 12 days) were investigated in an AlCl3-induced neurotoxicity mouse model (150 mg/kg AlCl3 for 12 days). Neurological improvements were assessed through different behavioral tests and the effects of aspirin on opioid system gene expression levels were assessed by reverse transcription-polymerase chain reaction. Both doses resulted in improvements in cognitive behavior. A 5 mg/kg dose of aspirin was revealed to be effective for spatial memory improvement (7.14±0.84 sec), whilst a 20 mg/kg dose was superior for improving extinction learning (7.63±4.04%). Aspirin (5 mg/kg) also significantly improved contextual memory (48.05±10.6%) when compared with the AlCl3-treated group (1.49±0.62%; P<0.001). Aspirin was also observed to significantly decrease δ-opioid receptor expression in the cortex (1.09±0.08 and 1.27±0.08, respectively) at both doses (5 and 20 mg/kg) when compared with the AlCl3-treated group (3.69±1.43; P<0.05). Furthermore, aspirin at 5 mg/kg significantly reduced expression of prodynorphin in the cortex (0.57±0.20) when compared with the AlCl3-treated group (1.95±0.84; P<0.05). Notably, the effect of aspirin was significant in the cortex but not in the hippocampus. In summary, aspirin was effective in ameliorating the AD-like symptoms via the modulation of opioid systems. However, additional studies are required to determine the long term effects of aspirin on such conditions. PMID:27168835
Zekveld, Adriana A; Kramer, Sophia E; Kessens, Judith M; Vlaming, Marcel S M G; Houtgast, Tammo
2009-04-01
The aim of the current study was to examine whether partly incorrect subtitles that are automatically generated by an Automatic Speech Recognition (ASR) system, improve speech comprehension by listeners with hearing impairment. In an earlier study (Zekveld et al. 2008), we showed that speech comprehension in noise by young listeners with normal hearing improves when presenting partly incorrect, automatically generated subtitles. The current study focused on the effects of age, hearing loss, visual working memory capacity, and linguistic skills on the benefit obtained from automatically generated subtitles during listening to speech in noise. In order to investigate the effects of age and hearing loss, three groups of participants were included: 22 young persons with normal hearing (YNH, mean age = 21 years), 22 middle-aged adults with normal hearing (MA-NH, mean age = 55 years) and 30 middle-aged adults with hearing impairment (MA-HI, mean age = 57 years). The benefit from automatic subtitling was measured by Speech Reception Threshold (SRT) tests (Plomp & Mimpen, 1979). Both unimodal auditory and bimodal audiovisual SRT tests were performed. In the audiovisual tests, the subtitles were presented simultaneously with the speech, whereas in the auditory test, only speech was presented. The difference between the auditory and audiovisual SRT was defined as the audiovisual benefit. Participants additionally rated the listening effort. We examined the influences of ASR accuracy level and text delay on the audiovisual benefit and the listening effort using a repeated measures General Linear Model analysis. In a correlation analysis, we evaluated the relationships between age, auditory SRT, visual working memory capacity and the audiovisual benefit and listening effort. The automatically generated subtitles improved speech comprehension in noise for all ASR accuracies and delays covered by the current study. Higher ASR accuracy levels resulted in more benefit obtained from the subtitles. Speech comprehension improved even for relatively low ASR accuracy levels; for example, participants obtained about 2 dB SNR audiovisual benefit for ASR accuracies around 74%. Delaying the presentation of the text reduced the benefit and increased the listening effort. Participants with relatively low unimodal speech comprehension obtained greater benefit from the subtitles than participants with better unimodal speech comprehension. We observed an age-related decline in the working-memory capacity of the listeners with normal hearing. A higher age and a lower working memory capacity were associated with increased effort required to use the subtitles to improve speech comprehension. Participants were able to use partly incorrect and delayed subtitles to increase their comprehension of speech in noise, regardless of age and hearing loss. This supports the further development and evaluation of an assistive listening system that displays automatically recognized speech to aid speech comprehension by listeners with hearing impairment.
The Influence of Similarity on Visual Working Memory Representations
Lin, Po-Han; Luck, Steven J.
2007-01-01
In verbal memory, similarity between items in memory often leads to interference and impaired memory performance. The present study sought to determine whether analogous interference effects would be observed in visual working memory by varying the similarity of the to-be-remembered objects in a color change-detection task. Instead of leading to interference and impaired performance, increased similarity among the items being held in memory led to improved performance. Moreover, when two similar colors were presented along with one dissimilar color, memory performance was better for the similar colors than for the dissimilar color. Similarity produced better performance even when the objects were presented sequentially and even when memory for the first item in the sequence was tested. These findings show that similarity does not lead to interference between representations in visual working memory. Instead, similarity may lead to improved task performance, possibly due to increased stability or precision of the memory representations during maintenance. PMID:19430536
Lyketsos, Constantine G.; Pendergrass, Jo Cara; Lozano, Andres M.
2012-01-01
Recent studies have identified an association between memory deficits and defects of the integrated neuronal cortical areas known collectively as the default mode network. It is conceivable that the amyloid deposition or other molecular abnormalities seen in patients with Alzheimer’s disease may interfere with this network and disrupt neuronal circuits beyond the localized brain areas. Therefore, Alzheimer’s disease may be both a degenerative disease and a broader system-level disorder affecting integrated neuronal pathways involved in memory. In this paper, we describe the rationale and provide some evidence to support the study of deep brain stimulation of the hippocampal fornix as a novel treatment to improve neuronal circuitry within these integrated networks and thereby sustain memory function in early Alzheimer’s disease. PMID:23346514
NASA Astrophysics Data System (ADS)
Akimov, D. A.; Fedotov, Andrei B.; Koroteev, Nikolai I.; Magnitskii, S. A.; Naumov, A. N.; Sidorov-Biryukov, Dmitri A.; Sokoluk, N. T.; Zheltikov, Alexei M.
1998-04-01
The possibilities of optimizing data writing and reading in devices of 3D optical memory using photochromic materials are discussed. We quantitatively analyze linear and nonlinear optical properties of induline spiropyran molecules, which allows us to estimate the efficiency of using such materials for implementing 3D optical-memory devices. It is demonstrated that, with an appropriate choice of polarization vectors of laser beams, one can considerably improve the efficiency of two-photon writing in photochromic materials. The problem of reading the data stored in a photochromic material is analyzed. The possibilities of data reading methods with the use of fluorescence and four-photon techniques are compared.
Sumiyoshi, Tomiki; Roy, A; Kim, C-H; Jayathilake, K; Lee, M A; Sumiyoshi, C; Meltzer, H Y
2004-12-01
Cognitive dysfunction in schizophrenia has been demonstrated to be dependent, in part, on dopaminergic activity. Clozapine has been found to improve some domains of cognition, including verbal memory, in patients with schizophrenia. This study tested the hypothesis that plasma homovanillic acid (pHVA) levels, a peripheral measure of central dopaminergic activity, would predict the change in memory performance in patients with schizophrenia treated with clozapine. Twenty-seven male patients with schizophrenia received clozapine treatment for 6 weeks. Verbal list learning (VLL)-Delayed Recall (VLL-DR), a test of secondary verbal memory, was administered before and after clozapine treatment. Blood samples to measure pHVA levels were collected at baseline. Baseline pHVA levels were negatively correlated with change in performance on VLL-DR; the lower baseline pHVA level was associated with greater improvement in performance on VLL-DR during treatment with clozapine. Baseline pHVA levels in subjects who showed improvement in verbal memory during clozapine treatment ( n=13) were significantly lower than those in subjects whose memory performance did not improve ( n=14). The results of this study indicate that baseline pHVA levels predict the ability of clozapine to improve memory performance in patients with schizophrenia.
Acquisition and improvement of human motor skills: Learning through observation and practice
NASA Technical Reports Server (NTRS)
Iba, Wayne
1991-01-01
Skilled movement is an integral part of the human existence. A better understanding of motor skills and their development is a prerequisite to the construction of truly flexible intelligent agents. We present MAEANDER, a computational model of human motor behavior, that uniformly addresses both the acquisition of skills through observation and the improvement of skills through practice. MAEANDER consists of a sensory-effector interface, a memory of movements, and a set of performance and learning mechanisms that let it recognize and generate motor skills. The system initially acquires such skills by observing movements performed by another agent and constructing a concept hierarchy. Given a stored motor skill in memory, MAEANDER will cause an effector to behave appropriately. All learning involves changing the hierarchical memory of skill concepts to more closely correspond to either observed experience or to desired behaviors. We evaluated MAEANDER empirically with respect to how well it acquires and improves both artificial movement types and handwritten script letters from the alphabet. We also evaluate MAEANDER as a psychological model by comparing its behavior to robust phenomena in humans and by considering the richness of the predictions it makes.
Betancourt, Laura M; Yang, Wei; Brodsky, Nancy L; Gallagher, Paul R; Malmud, Elsa K; Giannetta, Joan M; Farah, Martha J; Hurt, Hallam
2011-01-01
Preclinical studies of gestational cocaine exposure (GCE) show evidence of changes in brain function at the anatomical, physiological, and behavioral levels, to include effects on developing dopaminergic systems. In contrast, human studies have produced less consistent results, with most showing small effects or no effects on developmental outcomes. Important changes in brain structure and function occur through adolescence, therefore it is possible that prenatal cocaine exposure has latent effects on neurocognitive (NC) outcome that do not manifest until adolescence or young adulthood. We examined NC function using a set of 5 tasks designed to tap 4 different systems: inhibitory control, working memory, receptive language, and incidental memory. For each NC task, data were collected longitudinally at ages 12, 14.5 and 17 years and examined using generalized estimating equations. One hundred and nine children completed at least two of the three evaluations. Covariates included in the final model were assessment number, gender, participant age at first assessment, caregiver depression, and two composites from the Home Observation for Measurement of the Environment (HOME), Environmental Stimulation and Parental Nurturance. We found no cocaine effects on inhibitory control, working memory, or receptive language (p=0.18). GCE effects were observed on incidental face memory task (p=0.055), and GCE by assessment number interaction effects were seen on the incidental word memory task (p=0.031). Participant performance on inhibitory control, working memory, and receptive language tasks improved over time. HOME Environmental Stimulation composite was associated with better receptive language functioning. With a larger sample size smaller differences between groups may have been detected. This report shows no evidence of latent effects of GCE on inhibitory control, working memory, or receptive language. GCE effects were observed on the incidental face memory task, and GCE by assessment number interaction effects was seen on the incidental word memory task. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chuang, Ernest; Sissom, Brad; Harris, Rod; Malang, Keith; Bergman, Chris; Hill, Adrian; Bell, Bernard; Curtis, Kevin
2008-07-01
Development prototype systems for holographic read-only-memory (ROM) are demonstrated, capable of high density recording at 406.7 nm wavelength with 0.71 numerical aperture optics. A phase-conjugate Fourier transform lens is developed for improved capacity and tolerances and incorporated into a fully functional compact reader about 1 cm in height. The capacity target for the first generation is 4 Gbytes in a 42×35 mm2 media card. Two-step mastering, replication, and playback are demonstrated for digital audio stored in 125 holograms.
Impaired hippocampus-dependent and -independent learning in IL-6 deficient mice.
Baier, Paul Christian; May, Ulrike; Scheller, Jürgen; Rose-John, Stefan; Schiffelholz, Thomas
2009-06-08
Interleukin-6 (IL-6) is a cytokine that, in addition to its essential role in the function of the immune system, is present in the central nervous system (CNS). In particular, pathologically increased CNS IL-6 has been linked to impairments in memory performance. Thus, the aim of our present study was to investigate hippocampus-dependent and -independent memory, in combination with exploratory and anxiety related behaviour in IL-6 knock-out (IL-6KO) mice. The experiments were performed with 9 male IL-6KO and 9 age matched male wild-type (CTRL) mice. Hippocampus-dependent learning was assessed with the Morris water maze (MWM), hippocampus-independent learning with the novel object recognition memory test (NORM). The test-battery for additional behavioural assessments included open field (OF), elevated plus maze (EPM) and forced swim test (FST). IL-6KO mice showed impaired memory processes in the NORM as well in the MWM test. This could not be explained by reduced general activity or increased baseline anxiety. But, there was evidence for a higher susceptibility for stress and reduced exploratory behaviour in IL-6KO mice. In conclusion, absent CNS IL-6 does not lead to an improvement in memory function, but instead to an impairment. As "too little and too much spoils everything", our findings do not contradict the hypothesis of an involvement of IL-6 in memory processes. However, it remains unclear if impairments of memory are a specific result of disturbed IL-6 signalling, or rather an epiphenomenon associated with reduced exploratory behaviour and stress resistance.
Configurable memory system and method for providing atomic counting operations in a memory device
Bellofatto, Ralph E.; Gara, Alan G.; Giampapa, Mark E.; Ohmacht, Martin
2010-09-14
A memory system and method for providing atomic memory-based counter operations to operating systems and applications that make most efficient use of counter-backing memory and virtual and physical address space, while simplifying operating system memory management, and enabling the counter-backing memory to be used for purposes other than counter-backing storage when desired. The encoding and address decoding enabled by the invention provides all this functionality through a combination of software and hardware.
Jiang, J H; He, Z; Peng, Y L; Jin, W D; Wang, Z; Han, R W; Chang, M; Wang, R
2015-09-01
Kisspeptin (KP), the endogenous ligand of GPR54, is a recently discovered neuropeptide shown to be involved in regulating reproductive system, anxiety-related behavior, locomotion, food intake, and suppression of metastasis across a range of cancers. KP is transcribed within the hippocampus, and GPR54 has been found in the amygdala and hippocampus, suggesting that KP might be involved in mediating learning and memory. However, the role of KP in cognition was largely unclear. Here, we investigated the role of KP-13, one of the endogenous active isoforms, in memory processes, and determined whether KP-13 could mitigate memory impairment induced by Aβ1-42 in mice, using novel object recognition (NOR) and object location recognition (OLR) tasks. Intracerebroventricular (i.c.v.) infusion of KP-13 (2μg) immediately after training not only facilitated memory formation, but also prolonged memory retention in both tasks. The memory-improving effects of KP-13 could be blocked by the GPR54 receptor antagonist, kisspeptin-234 (234), and GnRH receptors antagonist, Cetrorelix, suggesting pharmacological specificity. Then the memory-enhancing effects were also presented after infusion of KP-13 into the hippocampus. Moreover, we found that i.c.v. injection of KP-13 was able to reverse the memory impairment induced by Aβ1-42, which was inhibited by 234. To sum up, the results of our work indicate that KP-13 could facilitate memory formation and prolong memory retention through activation of the GPR54 and GnRH receptors, and suppress memory-impairing effect of Aβ1-42 through activation of the GPR54, suggesting that KP-13 may be a potential drug for enhancing memory and treating Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Fear Extinction Memory Consolidation Requires Potentiation of Pontine-Wave Activity during REM Sleep
Datta, Subimal; O'Malley, Matthew W .
2013-01-01
Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction. PMID:23467372
The MNESIS model: Memory systems and processes, identity and future thinking.
Eustache, Francis; Viard, Armelle; Desgranges, Béatrice
2016-07-01
The Memory NEo-Structural Inter-Systemic model (MNESIS; Eustache and Desgranges, Neuropsychology Review, 2008) is a macromodel based on neuropsychological data which presents an interactive construction of memory systems and processes. Largely inspired by Tulving's SPI model, MNESIS puts the emphasis on the existence of different memory systems in humans and their reciprocal relations, adding new aspects, such as the episodic buffer proposed by Baddeley. The more integrative comprehension of brain dynamics offered by neuroimaging has contributed to rethinking the existence of memory systems. In the present article, we will argue that understanding the concept of memory by dividing it into systems at the functional level is still valid, but needs to be considered in the light of brain imaging. Here, we reinstate the importance of this division in different memory systems and illustrate, with neuroimaging findings, the links that operate between memory systems in response to task demands that constrain the brain dynamics. During a cognitive task, these memory systems interact transiently to rapidly assemble representations and mobilize functions to propose a flexible and adaptative response. We will concentrate on two memory systems, episodic and semantic memory, and their links with autobiographical memory. More precisely, we will focus on interactions between episodic and semantic memory systems in support of 1) self-identity in healthy aging and in brain pathologies and 2) the concept of the prospective brain during future projection. In conclusion, this MNESIS global framework may help to get a general representation of human memory and its brain implementation with its specific components which are in constant interaction during cognitive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Shaowei; Zhao, Xiangmo; Xu, Zhigang; Zhang, Licheng
2016-11-01
To evaluate the effects of velocity difference changes with memory in the intelligent transportation environment on the dynamics and fuel consumptions of traffic flow, we first investigate the linkage between velocity difference changes with memory and car-following behaviors with the measured data in cities, and then propose an improved cooperative car-following model considering multiple velocity difference changes with memory in the cooperative adaptive cruise control strategy, finally carry out several numerical simulations under the periodic boundary condition and at signalized intersections to explore how velocity difference changes with memory affect car's velocity, velocity fluctuation, acceleration and fuel consumptions in the intelligent transportation environment. The results show that velocity difference changes with memory have obvious effects on car-following behaviors, that the improved cooperative car-following model can describe the phase transition of traffic flow and estimate the evolution of traffic congestion, that the stability and fuel economy of traffic flow simulated by the improved car-following model with velocity difference changes with memory is obviously superior to those without velocity difference changes, and that taking velocity difference changes with memory into account in designing the advanced adaptive cruise control strategy can significantly improve the stability and fuel economy of traffic flow.
Carpenter, Gail A; Gaddam, Sai Chaitanya
2010-04-01
Memories in Adaptive Resonance Theory (ART) networks are based on matched patterns that focus attention on those portions of bottom-up inputs that match active top-down expectations. While this learning strategy has proved successful for both brain models and applications, computational examples show that attention to early critical features may later distort memory representations during online fast learning. For supervised learning, biased ARTMAP (bARTMAP) solves the problem of over-emphasis on early critical features by directing attention away from previously attended features after the system makes a predictive error. Small-scale, hand-computed analog and binary examples illustrate key model dynamics. Two-dimensional simulation examples demonstrate the evolution of bARTMAP memories as they are learned online. Benchmark simulations show that featural biasing also improves performance on large-scale examples. One example, which predicts movie genres and is based, in part, on the Netflix Prize database, was developed for this project. Both first principles and consistent performance improvements on all simulation studies suggest that featural biasing should be incorporated by default in all ARTMAP systems. Benchmark datasets and bARTMAP code are available from the CNS Technology Lab Website: http://techlab.bu.edu/bART/. Copyright 2009 Elsevier Ltd. All rights reserved.
Doing better by getting worse: posthypnotic amnesia improves random number generation.
Terhune, Devin Blair; Brugger, Peter
2011-01-01
Although forgetting is often regarded as a deficit that we need to control to optimize cognitive functioning, it can have beneficial effects in a number of contexts. We examined whether disrupting memory for previous numerical responses would attenuate repetition avoidance (the tendency to avoid repeating the same number) during random number generation and thereby improve the randomness of responses. Low suggestible and low dissociative and high dissociative highly suggestible individuals completed a random number generation task in a control condition, following a posthypnotic amnesia suggestion to forget previous numerical responses, and in a second control condition following the cancellation of the suggestion. High dissociative highly suggestible participants displayed a selective increase in repetitions during posthypnotic amnesia, with equivalent repetition frequency to a random system, whereas the other two groups exhibited repetition avoidance across conditions. Our results demonstrate that temporarily disrupting memory for previous numerical responses improves random number generation.
Doing Better by Getting Worse: Posthypnotic Amnesia Improves Random Number Generation
Terhune, Devin Blair; Brugger, Peter
2011-01-01
Although forgetting is often regarded as a deficit that we need to control to optimize cognitive functioning, it can have beneficial effects in a number of contexts. We examined whether disrupting memory for previous numerical responses would attenuate repetition avoidance (the tendency to avoid repeating the same number) during random number generation and thereby improve the randomness of responses. Low suggestible and low dissociative and high dissociative highly suggestible individuals completed a random number generation task in a control condition, following a posthypnotic amnesia suggestion to forget previous numerical responses, and in a second control condition following the cancellation of the suggestion. High dissociative highly suggestible participants displayed a selective increase in repetitions during posthypnotic amnesia, with equivalent repetition frequency to a random system, whereas the other two groups exhibited repetition avoidance across conditions. Our results demonstrate that temporarily disrupting memory for previous numerical responses improves random number generation. PMID:22195022
Elliott, Madison; Parente, Frederick
2014-01-01
To examine the efficacy of cognitive rehabilitation strategies specifically designed to improve memory after traumatic brain injury (TBI) and stroke vs. memory improvement with the passage of time. A meta-analysis was performed on 26 studies of memory retraining and recovery that were published between the years of 1985 and 2013. Effect sizes (ESs) from each study were calculated and converted to Pearson's r and then analysed to assess the overall effect size and the relationship among the ESs, patient demographics and treatment interventions. RESULTS indicated a significant average ES (r = 0.51) in the treatment intervention conditions, as well as a significant average ES (r = 0.31) in the control conditions, in which participants did not receive any treatment. The largest ESs occurred in studies of stroke patients and studies concerning working memory rehabilitation. RESULTS showed that memory rehabilitation was an effective therapeutic intervention, especially for stroke patients and for working memory as a treatment domain. However, the results also indicated that significant memory improvement occurred spontaneously over time.
Magellan spacecraft and memory state tracking: Lessons learned, future thoughts
NASA Technical Reports Server (NTRS)
Bucher, Allen W.
1993-01-01
Numerous studies have been dedicated to improving the two main elements of Spacecraft Mission Operations: Command and Telemetry. As a result, not much attention has been given to other tasks that can become tedious, repetitive, and error prone. One such task is Spacecraft and Memory State Tracking, the process by which the status of critical spacecraft components, parameters, and the contents of on-board memory are managed on the ground to maintain knowledge of spacecraft and memory states for future testing, anomaly investigation, and on-board memory reconstruction. The task of Spacecraft and Memory State Tracking has traditionally been a manual task allocated to Mission Operations Procedures. During nominal Mission Operations this job is tedious and error prone. Because the task is not complex and can be accomplished manually, the worth of a sophisticated software tool is often questioned. However, in the event of an anomaly which alters spacecraft components autonomously or a memory anomaly such as a corrupt memory or flight software error, an accurate ground image that can be reconstructed quickly is a priceless commodity. This study explores the process of Spacecraft and Memory State Tracking used by the Magellan Spacecraft Team highlighting its strengths as well as identifying lessons learned during the primary and extended missions, two memory anomalies, and other hardships encountered due to incomplete knowledge of spacecraft states. Ideas for future state tracking tools that require minimal user interaction and are integrated into the Ground Data System will also be discussed.
Magellan spacecraft and memory state tracking: Lessons learned, future thoughts
NASA Astrophysics Data System (ADS)
Bucher, Allen W.
1993-03-01
Numerous studies have been dedicated to improving the two main elements of Spacecraft Mission Operations: Command and Telemetry. As a result, not much attention has been given to other tasks that can become tedious, repetitive, and error prone. One such task is Spacecraft and Memory State Tracking, the process by which the status of critical spacecraft components, parameters, and the contents of on-board memory are managed on the ground to maintain knowledge of spacecraft and memory states for future testing, anomaly investigation, and on-board memory reconstruction. The task of Spacecraft and Memory State Tracking has traditionally been a manual task allocated to Mission Operations Procedures. During nominal Mission Operations this job is tedious and error prone. Because the task is not complex and can be accomplished manually, the worth of a sophisticated software tool is often questioned. However, in the event of an anomaly which alters spacecraft components autonomously or a memory anomaly such as a corrupt memory or flight software error, an accurate ground image that can be reconstructed quickly is a priceless commodity. This study explores the process of Spacecraft and Memory State Tracking used by the Magellan Spacecraft Team highlighting its strengths as well as identifying lessons learned during the primary and extended missions, two memory anomalies, and other hardships encountered due to incomplete knowledge of spacecraft states. Ideas for future state tracking tools that require minimal user interaction and are integrated into the Ground Data System will also be discussed.
Menze, Esther T; Esmat, Ahmed; Tadros, Mariane G; Abdel-Naim, Ashraf B; Khalifa, Amani E
2015-01-01
Huntington's disease (HD) is a progressive neurodegenerative disorder. The pre-motor symptomatic stages of the disease are commonly characterized by cognitive problems including memory loss. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that produces selective lesions in the brain similar to that of HD and was proven to cause memory impairment in rodents. Phytoestrogens have well-established neuroprotective and memory enhancing effects with fewer side effects in comparison to estrogens. This study investigated the potential neuroprotective and memory enhancing effect of genistein (5, 10 and 20 mg/kg), a phytoestrogen, in ovariectomized rats challenged with 3-NPA (20 mg/kg). These potential effects were compared to those of 17β-estradiol (2.5 mg/kg). Systemic administration of 3-NPA for 4 consecutive days impaired locomotor activity, decreased retention latencies in the passive avoidance task, decreased striatal, cortical and hippocampal ATP levels, increased oxidative stress, acetylcholinesterase (AChE) activity, cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. Pretreatment with genistein and 17β-estradiol attenuated locomotor hypoactivity, increased retention latencies in the passive avoidance task, increased ATP levels, improved the oxidative stress profile, attenuated the increase in AChE activity and decreased the expression of COX-2 and iNOS. Overall, the higher genistein dose (20 mg/kg) was the most effective. In conclusion, this study suggests neuroprotective and memory enhancing effects for genistein in a rat model of HD. These effects might be attributed to its antioxidant, anti-inflammatory and cholinesterase inhibitory activities.
ERIC Educational Resources Information Center
Rovee-Collier, Carolyn; Cuevas, Kimberly
2009-01-01
How the memory of adults evolves from the memory abilities of infants is a central problem in cognitive development. The popular solution holds that the multiple memory systems of adults mature at different rates during infancy. The "early-maturing system" (implicit or nondeclarative memory) functions automatically from birth, whereas the…
Research on memory management in embedded systems
NASA Astrophysics Data System (ADS)
Huang, Xian-ying; Yang, Wu
2005-12-01
Memory is a scarce resource in embedded system due to cost and size. Thus, applications in embedded systems cannot use memory randomly, such as in desktop applications. However, data and code must be stored into memory for running. The purpose of this paper is to save memory in developing embedded applications and guarantee running under limited memory conditions. Embedded systems often have small memory and are required to run a long time. Thus, a purpose of this study is to construct an allocator that can allocate memory effectively and bear a long-time running situation, reduce memory fragmentation and memory exhaustion. Memory fragmentation and exhaustion are related to the algorithm memory allocated. Static memory allocation cannot produce fragmentation. In this paper it is attempted to find an effective allocation algorithm dynamically, which can reduce memory fragmentation. Data is the critical part that ensures an application can run regularly, which takes up a large amount of memory. The amount of data that can be stored in the same size of memory is relevant with the selected data structure. Skills for designing application data in mobile phone are explained and discussed also.
[Efficacy of frequency-neurofeedback and Cogmed JM-working memory training in children with ADHD].
van Dongen-Boomsma, M; Vollebregt, M A; Slaats-Willemse, D; Buitelaar, J K
2015-01-01
The need for and the interest in non-pharmacological treatments for children with ADHD are increasing. The treatments include electro-encephalogram (EEG) frequency-neurofeedback and Cogmed working memory training. To investigate the efficacy of frequency-neurofeedback and Cogmed working memory training in children with ADHD. Forty-one children with ADHD (aged 8-15 years) were assigned to frequency-neurofeedback or to placebo-neurofeedback in a randomized double-blind trial. We took measurements to find out whether frequency-neurofeedback had reduced the severity of the ADHD-symptoms, and/or had improved neurocognitive ability and global clinical functioning. Fifty-one children with ADHD (aged 5-7 years) were assigned to the active Cogmed JM-working memory training or to the placebo working memory training in a randomised double-blind trial. We took measurements to find out whether Cogmed JM-working memory training had reduced the ADHD symptoms, and/or had improved neurocognitive ability, daily performance and global clinical functioning. The ADHD symptoms and global clinical functioning of the children in both neurofeedback groups improved. However, frequency-neurofeedback did nor produce any significantly better treatment results than did the placebo neurofeedback. At the neurocognitive level, frequency-neurofeedback did not yield any measurements that were significantly superior to those achieved with placebo feedback. Various outcome measurements improved in both groups with memory training. However, the active working memory training was not found to have produced significantly better results than the placebo training with regards to the ADHD symptoms, neurocognitive ability and daily and global functioning. Children from the active working memory training group showed improvements in trained working memory tasks but not on untrained tasks. Neither study produced any conclusive evidence for the efficacy of the investigated treatments in children with ADHD. However, both types of treatments can be further improved. Furthermore, the controlled designs may have restricted the embedding of the treatments. Because of possible improvements in the treatments in the future and because of the design restrictions affecting the treatments in their present form, it is still too early to draw any definitive conclusions about the validity and advantages of the two treatment methods.
Lactobacillus helveticus-fermented milk improves learning and memory in mice.
Ohsawa, Kazuhito; Uchida, Naoto; Ohki, Kohji; Nakamura, Yasunori; Yokogoshi, Hidehiko
2015-07-01
To investigate the effects of Calpis sour milk whey, a Lactobacillus helveticus-fermented milk product, on learning and memory. We evaluated improvement in scopolamine-induced memory impairment using the spontaneous alternation behaviour test, a measure of short-term memory. We also evaluated learning and working memory in mice using the novel object recognition test, which does not involve primary reinforcement (food or electric shocks). A total of 195 male ddY mice were used in the spontaneous alternation behaviour test and 60 in the novel object recognition test. Forced orally administered Calpis sour milk whey powder (200 and 2000 mg/kg) significantly improved scopolamine-induced cognitive impairments (P < 0.05 and P < 0.01, respectively) and object recognition memory (2000 mg/kg; P < 0.05). These results suggest that Calpis sour milk whey may be useful for the prevention of neurodegenerative disorders, such as Alzheimer's disease, and enhancing learning and memory in healthy human subjects; however, human clinical studies are necessary.
Intelligent Memory Module Overcomes Harsh Environments
NASA Technical Reports Server (NTRS)
2008-01-01
Solar cells, integrated circuits, and sensors are essential to manned and unmanned space flight and exploration, but such systems are highly susceptible to damage from radiation. Especially problematic, the Van Allen radiation belts encircle Earth in concentric radioactive tori at distances from about 6,300 to 38,000 km, though the inner radiation belt can dip as low as 700 km, posing a severe hazard to craft and humans leaving Earth s atmosphere. To avoid this radiation, the International Space Station and space shuttles orbit at altitudes between 275 and 460 km, below the belts range, and Apollo astronauts skirted the edge of the belts to minimize exposure, passing swiftly through thinner sections of the belts and thereby avoiding significant side effects. This radiation can, however, prove detrimental to improperly protected electronics on satellites that spend the majority of their service life in the harsh environment of the belts. Compact, high-performance electronics that can withstand extreme environmental and radiation stress are thus critical to future space missions. Increasing miniaturization of electronics addresses the need for lighter weight in launch payloads, as launch costs put weight at a premium. Likewise, improved memory technologies have reduced size, cost, mass, power demand, and system complexity, and improved high-bandwidth communication to meet the data volume needs of the next-generation high-resolution sensors. This very miniaturization, however, has exacerbated system susceptibility to radiation, as the charge of ions may meet or exceed that of circuitry, overwhelming the circuit and disrupting operation of a satellite. The Hubble Space Telescope, for example, must turn off its sensors when passing through intense radiation to maintain reliable operation. To address the need for improved data quality, additional capacity for raw and processed data, ever-increasing resolution, and radiation tolerance, NASA spurred the development of the Radiation Tolerant Intelligent Memory Stack (RTIMS).
Method for refreshing a non-volatile memory
Riekels, James E.; Schlesinger, Samuel
2008-11-04
A non-volatile memory and a method of refreshing a memory are described. The method includes allowing an external system to control refreshing operations within the memory. The memory may generate a refresh request signal and transmit the refresh request signal to the external system. When the external system finds an available time to process the refresh request, the external system acknowledges the refresh request and transmits a refresh acknowledge signal to the memory. The memory may also comprise a page register for reading and rewriting a data state back to the memory. The page register may comprise latches in lieu of supplemental non-volatile storage elements, thereby conserving real estate within the memory.
Rendeiro, Catarina; Foley, Andrew; Lau, Vera C.; Ring, Rebecca; Rodriguez-Mateos, Ana; Vauzour, David; Williams, Claire M.; Regan, Ciaran; Spencer, Jeremy P.E.
2014-01-01
The increase in incidence and prevalence of neurodegenerative diseases highlights the need for a more comprehensive understanding of how food components may affect neural systems. In particular, flavonoids have been recognized as promising agents capable of influencing different aspects of synaptic plasticity resulting in improvements in memory and learning in both animals and humans. Our previous studies highlight the efficacy of flavonoids in reversing memory impairments in aged rats, yet little is known about the effects of these compounds in healthy animals, particularly with respect to the molecular mechanisms by which flavonoids might alter the underlying synaptic modifications responsible for behavioral changes. We demonstrate that a 3-week intervention with two dietary doses of flavonoids (Dose I: 8.7 mg/day and Dose II: 17.4 mg/day) facilitates spatial memory acquisition and consolidation (24 recall) (p < 0.05) in young healthy rats. We show for the first time that these behavioral improvements are linked to increased levels in the polysialylated form of the neural adhesion molecule (PSA-NCAM) in the dentate gyrus (DG) of the hippocampus, which is known to be required for the establishment of durable memories. We observed parallel increases in hippocampal NMDA receptors containing the NR2B subunit for both 8.7 mg/day (p < 0.05) and 17.4 mg/day (p < 0.001) doses, suggesting an enhancement of glutamate signaling following flavonoid intervention. This is further strengthened by the simultaneous modulation of hippocampal ERK/CREB/BDNF signaling and the activation of the Akt/mTOR/Arc pathway, which are crucial in inducing changes in the strength of hippocampal synaptic connections that underlie learning. Collectively, the present data supports a new role for PSA-NCAM and NMDA-NR2B receptor on flavonoid-induced improvements in learning and memory, contributing further to the growing body of evidence suggesting beneficial effects of flavonoids in cognition and brain health. PMID:24333331
Vakhapova, Veronika; Cohen, Tzafra; Richter, Yael; Herzog, Yael; Kam, Yossi; Korczyn, Amos D
2014-01-01
The present study is an open-label extension (OLE) aimed at evaluating the effect of 100 mg/day of phosphatidylserine enriched with docosahexaenoic acid (PS-DHA) on cognitive performance in nondemented elderly individuals with memory complaints. From the participants who completed the core study, 122 continued with a 15-week OLE. Efficacy was assessed using a computerized tool and the Clinical Global Impression of Change (CGI-C) rating scale. A significant improvement in sustained attention and memory recognition was observed in the PS-DHA naïve group, while the PS-DHA continuers maintained their cognitive status. Additionally, a significant improvement in CGI-C was observed in the naïve group. The results demonstrate that consumption of 100 mg/day of PS-DHA might be associated with improving or maintaining cognitive status in elderly subjects with memory complaints.
Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers
Thompson, Clarissa A.; Opfer, John E.
2016-01-01
Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children’s representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy. PMID:26834688
Learning Linear Spatial-Numeric Associations Improves Accuracy of Memory for Numbers.
Thompson, Clarissa A; Opfer, John E
2016-01-01
Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children's representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1). Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status). To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2). As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy.
Motz, Benjamin A; de Leeuw, Joshua R; Carvalho, Paulo F; Liang, Kaley L; Goldstone, Robert L
2017-01-01
Despite widespread assertions that enthusiasm is an important quality of effective teaching, empirical research on the effect of enthusiasm on learning and memory is mixed and largely inconclusive. To help resolve these inconsistencies, we conducted a carefully-controlled laboratory experiment, investigating whether enthusiastic instructions for a memory task would improve recall accuracy. Scripted videos, either enthusiastic or neutral, were used to manipulate the delivery of task instructions. We also manipulated the sequence of learning items, replicating the spacing effect, a known cognitive technique for memory improvement. Although spaced study reliably improved test performance, we found no reliable effect of enthusiasm on memory performance across two experiments. We did, however, find that enthusiastic instructions caused participants to respond to more item prompts, leaving fewer test questions blank, an outcome typically associated with increased task motivation. We find no support for the popular claim that enthusiastic instruction will improve learning, although it may still improve engagement. This dissociation between motivation and learning is discussed, as well as its implications for education and future research on student learning.
de Leeuw, Joshua R.; Carvalho, Paulo F.; Liang, Kaley L.; Goldstone, Robert L.
2017-01-01
Despite widespread assertions that enthusiasm is an important quality of effective teaching, empirical research on the effect of enthusiasm on learning and memory is mixed and largely inconclusive. To help resolve these inconsistencies, we conducted a carefully-controlled laboratory experiment, investigating whether enthusiastic instructions for a memory task would improve recall accuracy. Scripted videos, either enthusiastic or neutral, were used to manipulate the delivery of task instructions. We also manipulated the sequence of learning items, replicating the spacing effect, a known cognitive technique for memory improvement. Although spaced study reliably improved test performance, we found no reliable effect of enthusiasm on memory performance across two experiments. We did, however, find that enthusiastic instructions caused participants to respond to more item prompts, leaving fewer test questions blank, an outcome typically associated with increased task motivation. We find no support for the popular claim that enthusiastic instruction will improve learning, although it may still improve engagement. This dissociation between motivation and learning is discussed, as well as its implications for education and future research on student learning. PMID:28732087
Theta-burst microstimulation in the human entorhinal area improves memory specificity.
Titiz, Ali S; Hill, Michael R H; Mankin, Emily A; M Aghajan, Zahra; Eliashiv, Dawn; Tchemodanov, Natalia; Maoz, Uri; Stern, John; Tran, Michelle E; Schuette, Peter; Behnke, Eric; Suthana, Nanthia A; Fried, Itzhak
2017-10-24
The hippocampus is critical for episodic memory, and synaptic changes induced by long-term potentiation (LTP) are thought to underlie memory formation. In rodents, hippocampal LTP may be induced through electrical stimulation of the perforant path. To test whether similar techniques could improve episodic memory in humans, we implemented a microstimulation technique that allowed delivery of low-current electrical stimulation via 100 μm -diameter microelectrodes. As thirteen neurosurgical patients performed a person recognition task, microstimulation was applied in a theta-burst pattern, shown to optimally induce LTP. Microstimulation in the right entorhinal area during learning significantly improved subsequent memory specificity for novel portraits; participants were able both to recognize previously-viewed photos and reject similar lures. These results suggest that microstimulation with physiologic level currents-a radical departure from commonly used deep brain stimulation protocols-is sufficient to modulate human behavior and provides an avenue for refined interrogation of the circuits involved in human memory.
Iqbal, Ghazala; Iqbal, Anila; Mahboob, Aamra; Farhat, Syeda M; Ahmed, Touqeer
Black pepper (Piper nigrum Linn.) has vital pharmacological properties with profound effects on central nervous system. Neurotoxic agents like Aluminum Chloride (AlCl3) cause the oxidative stress and result in improper processing of amyloid proteins leading to accumulation of amyloid β plaques. The study aimed to explore the neuroprotective potential of black pepper (BP) extract (12.5mg/kg/day) on memory enhancement and its effect on expression of amyloid precursor protein (APP) isoforms (APP770 and APP695) in AlCl3 induced neurotoxicity (250mg/kg) mouse model. The study included the isolation and identification of pure compound from BP (chavicine) which was found pharmacologically active. Morris water maze test, elevated plus maze, fear conditioning, context and cue dependent test and social preference tests were performed to investigate the learning and memory. Gene expression (APP isoforms) and in-vitro and ex-vivo DPPH free radical scavenging activity were performed to evaluate the role of BP. BP significantly improved memory in AlCl3 induced neurotoxicity mouse model along with effectively decreasing the expression of APP770 (amyloidogenic) isoform and improved level of APP695 (non-amyloidogenic) in hippocampus, amygdala and cortex. Fear extinction learning was considerably improved in BP treated group (7.83±2.03) than AlCl3 induced neurotoxicity group (39.75±4.25). In the hippocampus, BP significantly reduced the expression of APP770 (0.37±0.05) as compared to AlCl3 induced neurotoxicity group (0.72±0.06), and effectively increased (34.80±1.39) the percentage inhibition of DPPH free radicals as compared to AlCl3 induced neurotoxicity group (14±2.68). The study revealed that BP improves memory and chavicine is a lead compound producing pharmacological effects of BP.
Baskaran, Charumathi; Cunningham, Brooke; Plessow, Franziska; Singhal, Vibha; Woolley, Ryan; Ackerman, Kathryn E; Slattery, Meghan; Lee, Hang; Lawson, Elizabeth A; Eddy, Kamryn; Misra, Madhusmita
2017-05-01
Both estrogen and exercise may have cognition enhancing benefits; however, young oligomenorrheic/amenorrheic athletes (OA) with estrogen deficiency have not been evaluated for cognitive deficits. Our objective was to determine whether 6 months of estrogen replacement will impact cognitive domains in OA. We hypothesized that estrogen replacement would improve verbal memory and executive control in OA. We performed cognitive assessments at baseline and after 6 months in 48 OA (14-25 years) randomized to estrogen (EST+) (oral 30 µg ethinyl estradiol [n = 16] or transdermal 100 µg 17-β-estradiol patch [n = 13]) or no estrogen (EST-) (n = 19) in an ongoing clinical trial. Neurocognitive testing included California Verbal Learning Test-Second Edition (CVLT-II) (for verbal memory) and Delis-Kaplan Executive Function System Color-Word Interference Test (D-KEFS-CWIT) (executive control). On average, subjects (mean ± SEM age: 19.9 ± 3.1 years, body mass index: 20.6 ± 2.3 kg/m²) participated in 10.3 ± 5.9 hours per week of weight-bearing activities of their lower limbs. The EST+ group performed better for CVLT-II verbal memory scores for immediate recall over 6 months of therapy compared to EST- (P < .05) even after controlling for baseline scores and age. Changes in D-KEFS-CWIT scores over 6 months did not differ between the groups. However, the EST+ group had greater improvements in inhibition-switching completion time over 6 months compared with the EST- group after controlling for baseline scores and age (P = .01). OA show improvements in verbal memory and executive control following 6 months of estrogen replacement. These findings in athletes, who are in their prime of neurocognitive development, underscore the need for future studies exploring cognition in OA. ClinicalTrials.gov identifier: NCT00946192. © Copyright 2017 Physicians Postgraduate Press, Inc.
Ultranarrow Optical Inhomogeneous Linewidth in a Stoichiometric Rare-Earth Crystal.
Ahlefeldt, R L; Hush, M R; Sellars, M J
2016-12-16
We obtain a low optical inhomogeneous linewidth of 25 MHz in the stoichiometric rare-earth crystal EuCl_{3}·6H_{2}O by isotopically purifying the crystal in ^{35}Cl. With this linewidth, an important limit for stoichiometric rare-earth crystals is surpassed: the hyperfine structure of ^{153}Eu is spectrally resolved, allowing the whole population of ^{153}Eu^{3+} ions to be prepared in the same hyperfine state using hole-burning techniques. This material also has a very high optical density, and can have long coherence times when deuterated. This combination of properties offers new prospects for quantum information applications. We consider two of these: quantum memories and quantum many-body studies. We detail the improvements in the performance of current memory protocols possible in these high optical depth crystals, and describe how certain memory protocols, such as off-resonant Raman memories, can be implemented for the first time in a solid-state system. We explain how the strong excitation-induced interactions observed in this material resemble those seen in Rydberg systems, and describe how these interactions can lead to quantum many-body states that could be observed using standard optical spectroscopy techniques.
MCMAC-cVT: a novel on-line associative memory based CVT transmission control system.
Ang, K K; Quek, C; Wahab, A
2002-03-01
This paper describes a novel application of an associative memory called the Modified Cerebellar Articulation Controller (MCMAC) (Int. J. Artif. Intell. Engng, 10 (1996) 135) in a continuous variable transmission (CVT) control system. It allows the on-line tuning of the associative memory and produces an effective gain-schedule for the automatic selection of the CVT gear ratio. Various control algorithms are investigated to control the CVT gear ratio to maintain the engine speed within a narrow range of efficient operating speed independently of the vehicle velocity. Extensive simulation results are presented to evaluate the control performance of a direct digital PID control algorithm with auto-tuning (Trans. ASME, 64 (1942)) and anti-windup mechanism. In particular, these results are contrasted against the control performance produced using the MCMAC (Int. J. Artif. Intell. Engng, 10 (1996) 135) with momentum, neighborhood learning and Averaged Trapezoidal Output (MCMAC-ATO) as the neural control algorithm for controlling the CVT. Simulation results are presented that show the reduced control fluctuations and improved learning capability of the MCMAC-ATO without incurring greater memory requirement. In particular, MCMAC-ATO is able to learn and control the CVT simultaneously while still maintaining acceptable control performance.
A class Hierarchical, object-oriented approach to virtual memory management
NASA Technical Reports Server (NTRS)
Russo, Vincent F.; Campbell, Roy H.; Johnston, Gary M.
1989-01-01
The Choices family of operating systems exploits class hierarchies and object-oriented programming to facilitate the construction of customized operating systems for shared memory and networked multiprocessors. The software is being used in the Tapestry laboratory to study the performance of algorithms, mechanisms, and policies for parallel systems. Described here are the architectural design and class hierarchy of the Choices virtual memory management system. The software and hardware mechanisms and policies of a virtual memory system implement a memory hierarchy that exploits the trade-off between response times and storage capacities. In Choices, the notion of a memory hierarchy is captured by abstract classes. Concrete subclasses of those abstractions implement a virtual address space, segmentation, paging, physical memory management, secondary storage, and remote (that is, networked) storage. Captured in the notion of a memory hierarchy are classes that represent memory objects. These classes provide a storage mechanism that contains encapsulated data and have methods to read or write the memory object. Each of these classes provides specializations to represent the memory hierarchy.
A general model for memory interference in a multiprocessor system with memory hierarchy
NASA Technical Reports Server (NTRS)
Taha, Badie A.; Standley, Hilda M.
1989-01-01
The problem of memory interference in a multiprocessor system with a hierarchy of shared buses and memories is addressed. The behavior of the processors is represented by a sequence of memory requests with each followed by a determined amount of processing time. A statistical queuing network model for determining the extent of memory interference in multiprocessor systems with clusters of memory hierarchies is presented. The performance of the system is measured by the expected number of busy memory clusters. The results of the analytic model are compared with simulation results, and the correlation between them is found to be very high.
NASA Technical Reports Server (NTRS)
1975-01-01
Development and understanding of materials most suitable for use in compact magnetic and optical memory systems are discussed. Suppression of metal deterioration by hydrogen is studied. Improvement of mechanical properties of polymers is considered, emphasizing low temperature ductility and compatibility with high modulus fiber materials.
Improving prospective memory in persons with Parkinson disease: A randomized controlled trial
Foster, Erin R.; McDaniel, Mark A.; Rendell, Peter G.
2017-01-01
Background Prospective memory is essential for productive and independent living and necessary for compliance with prescribed health behaviors. Parkinson disease (PD) can cause prospective memory deficits that are associated with activity limitations and reduced quality of life. Forming implementation intentions is an encoding strategy that may improve prospective memory in this population. Objective To determine the effect of implementation intentions on prospective memory performance in PD. Methods This was a laboratory-based randomized controlled trial. Participants with mild to moderate PD without dementia (N = 62) performed a computerized prospective memory test (Virtual Week) under standard instructions. One week later they were randomly allocated to perform it again while using either implementation intentions or a rehearsal encoding strategy. Results Prospective memory performance was better with the use of both strategies relative to standard instructions. This effect was larger for tasks with event-based compared to time-based cues. In addition, implementation intentions resulted in a larger effect than rehearsal for the non-repeated tasks. Conclusions Strategies that support full encoding of prospective memory cues and actions can improve prospective memory performance among people with PD, particularly for tasks with cues that are readily available in the environment. Implementation intentions may be more effective than rehearsal for non-repeated tasks, but this finding warrants verification. Future work should address transfer of strategy use from the laboratory to everyday life. Targeted strategies to manage prospective memory impairment could improve function and quality of life and significantly impact clinical care for people with PD. (NCT01469741) PMID:28176547
Kim, Kamin; Ekstrom, Arne D; Tandon, Nitin
2016-10-01
Electrical stimulation of the brain is a unique tool to perturb endogenous neural signals, allowing us to evaluate the necessity of given neural processes to cognitive processing. An important issue, gaining increasing interest in the literature, is whether and how stimulation can be employed to selectively improve or disrupt declarative memory processes. Here, we provide a comprehensive review of both invasive and non-invasive stimulation studies aimed at modulating memory performance. The majority of past studies suggest that invasive stimulation of the hippocampus impairs memory performance; similarly, most non-invasive studies show that disrupting frontal or parietal regions also impairs memory performance, suggesting that these regions also play necessary roles in declarative memory. On the other hand, a handful of both invasive and non-invasive studies have also suggested modest improvements in memory performance following stimulation. These studies typically target brain regions connected to the hippocampus or other memory "hubs," which may affect endogenous activity in connected areas like the hippocampus, suggesting that to augment declarative memory, altering the broader endogenous memory network activity is critical. Together, studies reporting memory improvements/impairments are consistent with the idea that a network of distinct brain "hubs" may be crucial for successful memory encoding and retrieval rather than a single primary hub such as the hippocampus. Thus, it is important to consider neurostimulation from the network perspective, rather than from a purely localizationalist viewpoint. We conclude by proposing a novel approach to neurostimulation for declarative memory modulation that aims to facilitate interactions between multiple brain "nodes" underlying memory rather than considering individual brain regions in isolation. Copyright © 2016. Published by Elsevier Inc.
Cognitive and psychomotor effects of risperidone in schizophrenia and schizoaffective disorder.
Houthoofd, Sofie A M K; Morrens, Manuel; Sabbe, Bernard G C
2008-09-01
The aim of this review was to discuss data from double-blind, randomized controlled trials (RCTs) that have investigated the effects of oral and long-acting injectable risperidone on cognitive and psychomotor functioning in patients with schizophrenia or schizoaffective disorder. PubMed/MEDLINE and the Institute of Scientific Information Web of Science database were searched for relevant English-language double-blind RCTs published between March 2000 and July 2008, using the terms schizophrenia, schizoaffective disorder, cognition, risperidone, psychomotor, processing speed, attention, vigilance, working memory, verbal learning, visual learning, reasoning, problem solving, social cognition, MATRICS, and long-acting. Relevant studies included patients with schizophrenia or schizoaffective disorder. Cognitive domains were delineated at the Consensus Conferences of the National Institute of Mental Health-Measurement And Treatment Research to Improve Cognition in Schizophrenia (NIMH-MATRICS). The tests employed to assess each domain and psychomotor functioning, and the within-group and between-group comparisons of risperidone with haloperidol and other atypical antipsychotics, are presented. The results of individual tests were included when they were individually presented and interpretable for either drug; outcomes that were presented as cluster scores or factor structures were excluded. A total of 12 articles were included in this review. Results suggested that the use of oral risperidone appeared to be associated with within-group improvements on the cognitive domains of processing speed, attention/vigilance, verbal and visual learning and memory, and reasoning and problem solving in patients with schizophrenia or schizoaffective disorder. Risperidone and haloperidol seemed to generate similar beneficial effects (on the domains of processing speed, attention/vigilance, [verbal and nonverbal] working memory, and visual learning and memory, as well as psychomotor functioning), although the results for verbal fluency, verbal learning and memory, and reasoning and problem solving were not unanimous, and no comparative data on social cognition were available. Similar cognitive effects were found with risperidone, olanzapine, and quetiapine on the domains of verbal working memory and reasoning and problem solving, as well as verbal fluency. More research is needed on the domains in which study results were contradictory. For olanzapine versus risperidone, these were verbal and visual learning and memory and psychomotor functioning. No comparative data for olanzapine and risperidone were available for the social cognition domain. For quetiapine versus risperidone, the domains in which no unanimity was found were processing speed, attention/vigilance, nonverbal working memory, and verbal learning and memory. The limited available reports on risperidone versus clozapine suggest that: risperidone was associated with improved, and clozapine with worsened, performance on the nonverbal working memory domain; risperidone improved and clozapine did not improve reasoning and problem-solving performance; clozapine improved, and risperidone did not improve, social cognition performance. Use of long-acting injectable risperidone seemed to be associated with improved performance in the domains of attention/vigilance, verbal learning and memory, and reasoning and problem solving, as well as psychomotor functioning. The results for the nonverbal working memory domain were indeterminate, and no clear improvement was seen in the social cognition domain. The domains of processing speed, verbal working memory, and visual learning and memory, as well as verbal fluency, were not assessed. The results of this review of within-group comparisons of oral risperidone suggest that the agent appeared to be associated with improved functioning in the cognitive domains of processing speed, attention/vigilance, verbal and visual learning and memory, and reasoning and problem solving in patients with schizophrenia or schizoaffective disorder. Long-acting injectable risperidone seemed to be associated with improved functioning in the domains of attention/vigilance, verbal learning and memory, and reasoning and problem solving, as well as psychomotor functioning, in patients with schizophrenia or schizoaffective disorder.
Marçais, Antoine; Tomkowiak, Martine; Walzer, Thierry; Coupet, Charles-Antoine; Ravel-Chapuis, Aymeric; Marvel, Jacqueline
2006-10-01
Immunological memory is associated with the display of improved effector functions by cells of the adaptive immune system. The storage of untranslated mRNA coding for the CCL5 chemokine by CD8 memory cells is a new process supporting the immediate display of an effector function. Here, we show that, after induction during the primary response, high CCL5 mRNA levels are specifically preserved in CD8 T cells. We have investigated the mechanisms involved in the long-term maintenance of CCL5 mRNA levels by memory CD8 T cells. We demonstrate that the CCL5 mRNA half-life is increased in memory CD8 T cells and that these cells constitutively transcribe ccl5 gene. By inhibiting ccl5 transcription using IL-4, we demonstrate the essential role of transcription in the maintenance of CCL5 mRNA stores. Finally, we show that these stores are spontaneously reconstituted when the inhibitory signal is removed, indicating that the transcription of ccl5 is a default feature of memory CD8 T cells imprinted in their genetic program.
Yang, Yuan; Zhang, Meikui; Kang, Xiaoni; Jiang, Chen; Zhang, Huan; Wang, Pei; Li, Jingjing
2015-09-26
To investigate the effects of microglia/macrophages activation induced by intrastriatal thrombin injection on dentate gyrus neurogenesis and spatial memory ability in mice. The male C57BL/6 mice were divided into 4 groups of 10: sham, intracerebral hemorrhage (ICH), ICH + hirudin (thrombin inhibitor), and ICH + indometacin (Indo, an anti-inflammation drug). ICH model was created by intrastriatal thrombin (1U) injection. BrdU (50 mg/kg) was administrated on the same day after surgery for 6 consecutive days. Motor functions were evaluated with rotarod and beam walking tests. The spatial memory deficit was measured with Morris water maze (MWM). Cell quantification was performed for doublecortin (DCX, immature neuron), BrdU (S-phase proliferating cell population) and CD68 (activated microglia/macrophage) immune-reactive cells. Microglia/macrophages activation induced by intrastriatal thrombin injection reduced hippocampal neurogenesis and impaired spatial memory ability, but did not affect the motor function at 3 and 5 days post-injury. Both hirudin and indometacin reduced microglia/macrophages activation, enhanced hippocampal neurogenesis, and improved spatial memory ability in mice. Microglia/macrophages activation induced by intrastriatal thrombin injection might be responsible for the spatial memory deficit. Targeting both thrombin and inflammation systems in acute phase of ICH might be important in alleviating the significant spatial memory deficits.
Tualang Honey Attenuates Noise Stress-Induced Memory Deficits in Aged Rats
Azman, Khairunnuur Fairuz; Abdul Aziz, Che Badariah; Othman, Zahiruddin
2016-01-01
Ageing and stress exposure may lead to memory impairment while oxidative stress is thought to be one of the underlying mechanisms involved. This study aimed to investigate the potential protective effects of Tualang honey supplementation on memory performance in aged rats exposed to noise stress. Tualang honey supplementation was given orally, 200 mg/kg body weight for 28 days. Rats in the stress group were subjected to loud noise, 100 dB(A), 4 hours daily for 14 days. All rats were subjected to novel object recognition test for evaluation of memory performance. It was observed that the rats subjected to noise stress exhibited significantly lower memory performance and higher oxidative stress as evident by elevated malondialdehyde and protein carbonyl levels and reduction of antioxidant enzymes activities compared to the nonstressed rats. Tualang honey supplementation was able to improve memory performance, decrease oxidative stress levels, increase brain-derived neurotrophic factor (BDNF) concentration, decrease acetylcholinesterase activity, and enhance neuronal proliferation in the medial prefrontal cortex (mPFC) and hippocampus. In conclusion, Tualang honey protects against memory decline due to stress exposure and/or ageing via enhancement of mPFC and hippocampal morphology possibly secondary to reduction in brain oxidative stress and/or upregulation of BDNF concentration and cholinergic system. PMID:27119005
Hold-up power supply for flash memory
NASA Technical Reports Server (NTRS)
Ott, William E. (Inventor)
2004-01-01
A hold-up power supply for flash memory systems is provided. The hold-up power supply provides the flash memory with the power needed to temporarily operate when a power loss exists. This allows the flash memory system to complete any erasures and writes, and thus allows it to shut down gracefully. The hold-up power supply detects when a power loss on a power supply bus is occurring and supplies the power needed for the flash memory system to temporally operate. The hold-up power supply stores power in at least one capacitor. During normal operation, power from a high voltage supply bus is used to charge the storage capacitors. When a power supply loss is detected, the power supply bus is disconnected from the flash memory system. A hold-up controller controls the power flow from the storage capacitors to the flash memory system. The hold-up controller uses feedback to assure that the proper voltage is provided from the storage capacitors to the flash memory system. This power supplied by the storage capacitors allows the flash memory system to complete any erasures and writes, and thus allows the flash memory system to shut down gracefully.
Kantak, Shailesh S; Mummidisetty, Chaithanya K; Stinear, James W
2012-09-01
Implicit and explicit memory systems for motor skills compete with each other during and after motor practice. Primary motor cortex (M1) is known to be engaged during implicit motor learning, while dorsal premotor cortex (PMd) is critical for explicit learning. To elucidate the neural substrates underlying the interaction between implicit and explicit memory systems, adults underwent a randomized crossover experiment of anodal transcranial direct current stimulation (AtDCS) applied over M1, PMd or sham stimulation during implicit motor sequence (serial reaction time task, SRTT) practice. We hypothesized that M1-AtDCS during practice will enhance online performance and offline learning of the implicit motor sequence. In contrast, we also hypothesized that PMd-AtDCS will attenuate performance and retention of the implicit motor sequence. Implicit sequence performance was assessed at baseline, at the end of acquisition (EoA), and 24 h after practice (retention test, RET). M1-AtDCS during practice significantly improved practice performance and supported offline stabilization compared with Sham tDCS. Performance change from EoA to RET revealed that PMd-AtDCS during practice attenuated offline stabilization compared with M1-AtDCS and sham stimulation. The results support the role of M1 in implementing online performance gains and offline stabilization for implicit motor sequence learning. In contrast, enhancing the activity within explicit motor memory network nodes such as the PMd during practice may be detrimental to offline stabilization of the learned implicit motor sequence. These results support the notion of competition between implicit and explicit motor memory systems and identify underlying neural substrates that are engaged in this competition. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Umat, Cila; Mukari, Siti Z; Ezan, Nurul F; Din, Normah C
2011-08-01
To examine the changes in the short-term auditory memory following the use of frequency-modulated (FM) system in children with suspected auditory processing disorders (APDs), and also to compare the advantages of bilateral over unilateral FM fitting. This longitudinal study involved 53 children from Sekolah Kebangsaan Jalan Kuantan 2, Kuala Lumpur, Malaysia who fulfilled the inclusion criteria. The study was conducted from September 2007 to October 2008 in the Department of Audiology and Speech Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia. The children's age was between 7-10 years old, and they were assigned into 3 groups: 15 in the control group (not fitted with FM); 19 in the unilateral; and 19 in the bilateral FM-fitting group. Subjects wore the FM system during school time for 12 weeks. Their working memory (WM), best learning (BL), and retention of information (ROI) were measured using the Rey Auditory Verbal Learning Test at pre-fitting, post (after 12 weeks of FM usage), and at long term (one year after the usage of FM system ended). There were significant differences in the mean WM (p=0.001), BL (p=0.019), and ROI (p=0.005) scores at the different measurement times, in which the mean scores at long-term were consistently higher than at pre-fitting, despite similar performances at the baseline (p>0.05). There was no significant difference in performance between unilateral- and bilateral-fitting groups. The use of FM might give a long-term effect on improving selected short-term auditory memories of some children with suspected APDs. One may not need to use 2 FM receivers to receive advantages on auditory memory performance.
Retrieval practice enhances the accessibility but not the quality of memory.
Sutterer, David W; Awh, Edward
2016-06-01
Numerous studies have demonstrated that retrieval from long-term memory (LTM) can enhance subsequent memory performance, a phenomenon labeled the retrieval practice effect. However, the almost exclusive reliance on categorical stimuli in this literature leaves open a basic question about the nature of this improvement in memory performance. It has not yet been determined whether retrieval practice improves the probability of successful memory retrieval or the quality of the retrieved representation. To answer this question, we conducted three experiments using a mixture modeling approach (Zhang & Luck, 2008) that provides a measure of both the probability of recall and the quality of the recalled memories. Subjects attempted to memorize the color of 400 unique shapes. After every 10 images were presented, subjects either recalled the last 10 colors (the retrieval practice condition) by clicking on a color wheel with each shape as a retrieval cue or they participated in a control condition that involved no further presentations (Experiment 1) or restudy of the 10 shape/color associations (Experiments 2 and 3). Performance in a subsequent delayed recall test revealed a robust retrieval practice effect. Subjects recalled a significantly higher proportion of items that they had previously retrieved relative to items that were untested or that they had restudied. Interestingly, retrieval practice did not elicit any improvement in the precision of the retrieved memories. The same empirical pattern also was observed following delays of greater than 24 hours. Thus, retrieval practice increases the probability of successful memory retrieval but does not improve memory quality.
Giménez De Béjar, Verónica; Caballero Bleda, María; Popović, Natalija; Popović, Miroljub
2017-01-01
Our recent data have indicated that scopolamine, a non-selective muscarinic receptor antagonist, improves memory consolidation, in a passive avoidance task, tested in rats. It has been found that verapamil, a phenylalkylamine class of the L-type voltage-dependent calcium channel antagonist, inhibits [3H] N-methyl scopolamine binding to M1 muscarinic receptors. However, there are no data about the effect of verapamil on memory consolidation in the passive avoidance task, in rats. The purpose of the present study was to examine the effects of verapamil (0.5, 1.0, 2.5, 5.0, 10, or 20 mg/kg i.p.) as well as the interaction between scopolamine and verapamil on memory consolidation in the step-through passive avoidance task, in Wistar rats. Our results showed that verapamil (1.0 and 2.5 mg/kg) administered immediately after the acquisition task significantly increased the latency of the passive avoidance response, on the 48 h retested trial, improving memory consolidation. On the other hand, verapamil in a dose of 5 mg/kg, that per se does not affect memory consolidation, significantly reversed the memory consolidation improvement induced by scopolamine (1 mg/kg, i.p., administered immediately after verapamil treatment) but did not change the passive avoidance response in rats treated by an ineffective dose of scopolamine (30 mg/kg). In conclusion, the present data suggest that (1) the post-training administration of verapamil, dose-dependently, improves the passive avoidance response; (2) verapamil, in ineffective dose, abolished the improvement of memory consolidation effect of scopolamine; and (3) exists interaction between cholinergic muscarinic receptors and calcium homeostasis-related mechanisms in the consolidation of emotional memory. PMID:28878678
A 128K-bit CCD buffer memory system
NASA Technical Reports Server (NTRS)
Siemens, K. H.; Wallace, R. W.; Robinson, C. R.
1976-01-01
A prototype system was implemented to demonstrate that CCD's can be applied advantageously to the problem of low power digital storage and particularly to the problem of interfacing widely varying data rates. 8K-bit CCD shift register memories were used to construct a feasibility model 128K-bit buffer memory system. Peak power dissipation during a data transfer is less than 7 W., while idle power is approximately 5.4 W. The system features automatic data input synchronization with the recirculating CCD memory block start address. Descriptions are provided of both the buffer memory system and a custom tester that was used to exercise the memory. The testing procedures and testing results are discussed. Suggestions are provided for further development with regards to the utilization of advanced versions of CCD memory devices to both simplified and expanded memory system applications.
A Dynamical Model of Pitch Memory Provides an Improved Basis for Implied Harmony Estimation.
Kim, Ji Chul
2017-01-01
Tonal melody can imply vertical harmony through a sequence of tones. Current methods for automatic chord estimation commonly use chroma-based features extracted from audio signals. However, the implied harmony of unaccompanied melodies can be difficult to estimate on the basis of chroma content in the presence of frequent nonchord tones. Here we present a novel approach to automatic chord estimation based on the human perception of pitch sequences. We use cohesion and inhibition between pitches in auditory short-term memory to differentiate chord tones and nonchord tones in tonal melodies. We model short-term pitch memory as a gradient frequency neural network, which is a biologically realistic model of auditory neural processing. The model is a dynamical system consisting of a network of tonotopically tuned nonlinear oscillators driven by audio signals. The oscillators interact with each other through nonlinear resonance and lateral inhibition, and the pattern of oscillatory traces emerging from the interactions is taken as a measure of pitch salience. We test the model with a collection of unaccompanied tonal melodies to evaluate it as a feature extractor for chord estimation. We show that chord tones are selectively enhanced in the response of the model, thereby increasing the accuracy of implied harmony estimation. We also find that, like other existing features for chord estimation, the performance of the model can be improved by using segmented input signals. We discuss possible ways to expand the present model into a full chord estimation system within the dynamical systems framework.
Novel Television-Based Cognitive Training Improves Working Memory and Executive Function
Shatil, Evelyn; Mikulecká, Jaroslava; Bellotti, Francesco; Bureš, Vladimír
2014-01-01
The main study objective was to investigate the effect of interactive television-based cognitive training on cognitive performance of 119 healthy older adults, aged 60–87 years. Participants were randomly allocated to a cognitive training group or to an active control group in a single-blind controlled two-group design. Before and after training interactive television cognitive performance was assessed on well validated tests of fluid, higher-order ability, and system usability was evaluated. The participants in the cognitive training group completed a television-based cognitive training programme, while the participants in the active control group completed a TV-based programme of personally benefiting activities. Significant improvements were observed in well validated working memory and executive function tasks in the cognitive training but not in the control group. None of the groups showed statistically significant improvement in life satisfaction score. Participants' reports of “adequate” to “high” system usability testify to the successful development and implementation of the interactive television-based system and compliant cognitive training contents. The study demonstrates that cognitive training delivered by means of an interactive television system can generate genuine cognitive benefits in users and these are measurable using well-validated cognitive tests. Thus, older adults who cannot use or afford a computer can easily use digital interactive television to benefit from advanced software applications designed to train cognition. PMID:24992187
Wattanathorn, Jintanaporn; Sutalangka, Chatchada
2016-08-01
Based on pivotal roles of oxidative stress, dopaminergic and cholinergic systems on the pathophysiology of Parkinson's disease (PD), the searching for functional food for patients attacked with PD from Cyperus rotundus and Zingiber officinale, the substances possessing antioxidant activity, and the suppression effects on monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE) have been considered. In this study, we aimed to determine the effect of the combined extract of C. rotundus and Z. officinale (CP1) to improve motor and memory deficits, neurodegeneration, oxidative stress, and functions of both cholinergic and dopaminergic systems in the animal model of PD induced by 6-hydroxydopamine hydrochloride (6-OHDA). Male Wistar rats, weighing 180-220 g, were induced unilateral lesion at right substantia nigra by 6-OHDA and were orally given CP1 at doses of 100, 200, and 300 mg/kg body weight for 14 days after 6-OHDA injection. The results showed that the 6-OHDA rats treated with CP1 increased spatial memory, but decreased neurodegeneration, malondialdehyde level, and AChE activity in hippocampus. The decreased motor disorder and neurodegeneration in substantia nigra together with the enhanced catalase activity, but decreased MAO-B activity in striatum, were also observed. The memory enhancing effect of CP1 might occur through the improved oxidative stress and the enhanced cholinergic function, whereas the effect to improve motor disorder of CP1 might occur through the enhanced dopaminergic function in striatum by decreasing the degeneration of dopaminergic neurons and the suppression of MAO-B. Therefore, CP1 is the potential functional food against PD. However, further researches in clinical trial and drug interactions are essential.
Improved Reading Gate For Vertical-Bloch-Line Memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.
1994-01-01
Improved design for reading gate of vertical-Bloch-line magnetic-bubble memory increases reliability of discrimination between binary ones and zeros. Magnetic bubbles that signify binary "1" and "0" produced by applying sufficiently large chopping currents to memory stripes. Bubbles then propagated differentially in bubble sorter. Method of discriminating between ones and zeros more reliable.
System and method for programmable bank selection for banked memory subsystems
Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Hoenicke, Dirk; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan
2010-09-07
A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.
Working memory plasticity and aging.
Rhodes, Rebecca E; Katz, Benjamin
2017-02-01
The present research explores how the trajectory of learning on a working memory task changes throughout the life span, and whether gains in working memory performance are exclusively a question of initial working memory capacity (WMC) or whether age exerts an independent effect. In a large, cross-sectional study of younger, middle-aged, and older adults, we examined learning on a widely used working memory task-the dual n-back task-over 20 sessions of practice. We found that, while all age groups improved on the task, older adults demonstrated less improvement on the task, and also reached a lower asymptotic maximum performance than younger adults. After controlling for initial WMC, we found that age exerted independent effects on training gains and asymptotic performance; older adults tended to improve less and reached lower levels of performance than younger adults. The difference between younger and older adults' rates of learning depended in part on initial WMC. These results suggest that age-related effects on working memory include not only effects on capacity, but also plasticity and the ability to improve on a task. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Yang, Hui-Ling; Chan, Pi-Tuan; Chang, Pi-Chen; Chiu, Huei-Ling; Sheen Hsiao, Shu-Tai; Chu, Hsin; Chou, Kuei-Ru
2018-02-01
A better understanding of people with cognitive disorders improves performance on memory tasks through memory-focused interventions are needed. The purpose of this study was to assess the effect of memoryfocused interventions on cognitive disorders through a meta-analysis. Systematic review and meta-analysis. The online electronic databases PubMed, the Cochrane Library, Ovid-Medline, CINHAL, PsycINFO, Ageline, and Embase (up to May 2017) were used in this study. No language restriction was applied to the search. Objective memory (learning and memory function, immediate recall, delayed recall, and recognition) was the primary indicator and subjective memory performance, global cognitive function, and depression were the secondary indicators. The Hedges' g of change, subgroup analyses, and meta-regression were analyzed on the basis of the characteristics of people with cognitive disorders. A total of 27 studies (2177 participants, mean age=75.80) reporting RCTs were included in the meta-analysis. The results indicated a medium-to-large effect of memory-focused interventions on learning and memory function (Hedges' g=0.62) and subjective memory performance (Hedges' g=0.67), a small-to-medium effect on delayed recall and depression, and a small effect on immediate recall and global cognitive function (all p<0.05) compared with the control. Subgroup analysis and meta-regression indicated that the effects on learning and memory function were more profound in the format of memory training, individual training, shorter treatment duration, and more than eight treatment sessions, and the effect size indicated the MMSE score was the most crucial indicator (β=-0.06, p=0.04). This is first comprehensive meta-analysis of special memory domains in people with cognitive disorders. The results revealed that memory-focused interventions effectively improved memory-related performance in people with cognitive disorders. An appropriately designed intervention can effectively improve memory function, reduce disability progression, and improve mood state in people with cognitive disorders. Additional randomized controlled trials including measures of recognition, global cognitive function, and depression should be conducted and analyzed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Characterizing Effects of Nitric Oxide Sterilization on tert-Butyl Acrylate Shape Memory Polymers
NASA Astrophysics Data System (ADS)
Phillippi, Ben
As research into the potential uses of shape memory polymers (SMPs) as implantable medical devices continues to grow and expand, so does the need for an accurate and reliable sterilization mechanism. The ability of an SMP to precisely undergo a programmed shape change will define its ability to accomplish a therapeutic task. To ensure proper execution of the in vivo shape change, the sterilization process must not negatively affect the shape memory behavior of the material. To address this need, this thesis investigates the effectiveness of a benchtop nitric oxide (NOx) sterilization process and the extent to which the process affects the shape memory behavior of a well-studied tert-Butyl Acrylate (tBA) SMP. Quantifying the effects on shape memory behavior was performed using a two-tiered analysis. A two-tiered study design was used to determine if the sterilization process induced any premature shape recovery and to identify any effects that NOx has on the overall shape memory behavior of the foams. Determining the effectiveness of the NOx system--specially, whether the treated samples are more sterile/less contaminated than untreated--was also performed with a two-tiered analysis. In this case, the two-tiered analysis was employed to have a secondary check for contamination. To elaborate, all of the samples that were deemed not contaminated from the initial test were put through a second sterility test to check for contamination a second time. The results of these tests indicated the NOx system is an effective sterilization mechanism and the current protocol does not negatively impact the shape memory behavior of the tBA SMP. The samples held their compressed shape throughout the entirety of the sterilization process. Additionally, there were no observable impacts on the shape memory behavior induced by NOx. Lastly, the treated samples demonstrated lower contamination than the untreated. This thesis demonstrates the effectiveness of NOx as a laboratory scale sterilization mechanism for heat triggered shape memory polymers. The shape memory analysis indicated that the magnitude of the length changes induced by NOx is small enough that it does not make a statistically significant impact on the shape memory behavior of the foams. Additionally, there were no observable effects on the shape memory behavior induced by NOx. The results further indicated the NOx system is effective at sterilizing porous scaffolds, as none of the sterilized samples showed contamination. Testing methods proved to be effective because the initial sterility test was able to identify all of the contaminated samples and preliminary results indicated that NOx sterilization improves the sterility of the foams.
NASA Technical Reports Server (NTRS)
1974-01-01
Developments in the area of organic cis-trans isomerization systems for holographic memory applications are reported. The chemical research effort consisted of photochemical studies leading to the selection of a stilbene derivative and a polymer matrix system which have greatly improved refractive index differences between the cis and trans isomers as well as demonstrated efficiency of the photoisomerization process. In work on lithium niobate effects of sample stoichiometry and of read and write beam polarizations on recording efficiency were investigated. LiNbO3 was used for a study of angular sensitivity and of capability for simultaneous recording of extended objects without interference. The current status of LiNbO3 as a holographic recording material is summarized.
Reder, Lynne M.; Park, Heekyeong; Kieffaber, Paul D.
2009-01-01
There is a popular hypothesis that performance on implicit and explicit memory tasks reflects 2 distinct memory systems. Explicit memory is said to store those experiences that can be consciously recollected, and implicit memory is said to store experiences and affect subsequent behavior but to be unavailable to conscious awareness. Although this division based on awareness is a useful taxonomy for memory tasks, the authors review the evidence that the unconscious character of implicit memory does not necessitate that it be treated as a separate system of human memory. They also argue that some implicit and explicit memory tasks share the same memory representations and that the important distinction is whether the task (implicit or explicit) requires the formation of a new association. The authors review and critique dissociations from the behavioral, amnesia, and neuroimaging literatures that have been advanced in support of separate explicit and implicit memory systems by highlighting contradictory evidence and by illustrating how the data can be accounted for using a simple computational memory model that assumes the same memory representation for those disparate tasks. PMID:19210052
Effects of emotional arousal on memory binding in normal aging and Alzheimer's disease.
Nashiro, Kaoru; Mather, Mara
2011-01-01
Previous research suggests that associative memory declines in normal aging and is severely affected by Alzheimer's disease (AD); however, it is unclear whether and how this deficit can be minimized. The present study investigated whether emotional arousal improves associative memory in healthy younger and older adults and patients with probable AD. We examined the effect of arousal on memory for item-location associations. Arousal improved memory for item location similarly across the three groups, whereas valence had no effect in any groups. Overall, our results suggest that arousal has beneficial effects on associative memory in healthy older adults and patients with AD, as previously observed in younger adults.
Pan, Tony; Flick, Patrick; Jain, Chirag; Liu, Yongchao; Aluru, Srinivas
2017-10-09
Counting and indexing fixed length substrings, or k-mers, in biological sequences is a key step in many bioinformatics tasks including genome alignment and mapping, genome assembly, and error correction. While advances in next generation sequencing technologies have dramatically reduced the cost and improved latency and throughput, few bioinformatics tools can efficiently process the datasets at the current generation rate of 1.8 terabases every 3 days. We present Kmerind, a high performance parallel k-mer indexing library for distributed memory environments. The Kmerind library provides a set of simple and consistent APIs with sequential semantics and parallel implementations that are designed to be flexible and extensible. Kmerind's k-mer counter performs similarly or better than the best existing k-mer counting tools even on shared memory systems. In a distributed memory environment, Kmerind counts k-mers in a 120 GB sequence read dataset in less than 13 seconds on 1024 Xeon CPU cores, and fully indexes their positions in approximately 17 seconds. Querying for 1% of the k-mers in these indices can be completed in 0.23 seconds and 28 seconds, respectively. Kmerind is the first k-mer indexing library for distributed memory environments, and the first extensible library for general k-mer indexing and counting. Kmerind is available at https://github.com/ParBLiSS/kmerind.
New data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamii, A.; Sakaguchi, H.; Takeda, H.
1996-10-01
This paper describes a new data acquisition system for the focal plane polarimeter of the Grand Raiden spectrometer at the Research Center for Nuclear Physics (RCNP) in Osaka, Japan. Data are acquired by a Creative Electronic Systems (CES) Starburst, which is a CAMAC auxiliary crate controller equipped with a Digital Equipment Corporation (DEC) J11 microprocessor., The data on the Starburst are transferred to a VME single-board computer. A VME reflective memory module broadcasts the data to other systems through a fiber-optic link. A data transfer rate of 2.0 Mbytes/s between VME modules has been achieved by reflective memories. This ratemore » includes the overhead of buffer management. The overall transfer rate, however, is limited by the performance of the Starburst to about 160 Kbytes/s at maximum. In order to further improve the system performance, the authors developed a new readout module called the Rapid Data Transfer Module (RDTM). RDTM`s transfer data from LeCroy PCOS III`s or 4298`s, and FERA/FERET`s directly to CES 8170 High Speed Memories (HSM) in VME crates. The data transfer rate of the RDTM from PCOS III`s to the HSM is about 4 Mbytes/s.« less
Stress Effects on Multiple Memory System Interactions
Ness, Deborah; Calabrese, Pasquale
2016-01-01
Extensive behavioural, pharmacological, and neurological research reports stress effects on mammalian memory processes. While stress effects on memory quantity have been known for decades, the influence of stress on multiple memory systems and their distinct contributions to the learning process have only recently been described. In this paper, after summarizing the fundamental biological aspects of stress/emotional arousal and recapitulating functionally and anatomically distinct memory systems, we review recent animal and human studies exploring the effects of stress on multiple memory systems. Apart from discussing the interaction between distinct memory systems in stressful situations, we will also outline the fundamental role of the amygdala in mediating such stress effects. Additionally, based on the methods applied in the herein discussed studies, we will discuss how memory translates into behaviour. PMID:27034845
The Benefit of Attention-to-Memory Depends on the Interplay of Memory Capacity and Memory Load
Lim, Sung-Joo; Wöstmann, Malte; Geweke, Frederik; Obleser, Jonas
2018-01-01
Humans can be cued to attend to an item in memory, which facilitates and enhances the perceptual precision in recalling this item. Here, we demonstrate that this facilitating effect of attention-to-memory hinges on the overall degree of memory load. The benefit an individual draws from attention-to-memory depends on her overall working memory performance, measured as sensitivity (d′) in a retroactive cue (retro-cue) pitch discrimination task. While listeners maintained 2, 4, or 6 auditory syllables in memory, we provided valid or neutral retro-cues to direct listeners’ attention to one, to-be-probed syllable in memory. Participants’ overall memory performance (i.e., perceptual sensitivity d′) was relatively unaffected by the presence of valid retro-cues across memory loads. However, a more fine-grained analysis using psychophysical modeling shows that valid retro-cues elicited faster pitch-change judgments and improved perceptual precision. Importantly, as memory load increased, listeners’ overall working memory performance correlated with inter-individual differences in the degree to which precision improved (r = 0.39, p = 0.029). Under high load, individuals with low working memory profited least from attention-to-memory. Our results demonstrate that retrospective attention enhances perceptual precision of attended items in memory but listeners’ optimal use of informative cues depends on their overall memory abilities. PMID:29520246
Austin, John R
2003-10-01
Previous research on transactive memory has found a positive relationship between transactive memory system development and group performance in single project laboratory and ad hoc groups. Closely related research on shared mental models and expertise recognition supports these findings. In this study, the author examined the relationship between transactive memory systems and performance in mature, continuing groups. A group's transactive memory system, measured as a combination of knowledge stock, knowledge specialization, transactive memory consensus, and transactive memory accuracy, is positively related to group goal performance, external group evaluations, and internal group evaluations. The positive relationship with group performance was found to hold for both task and external relationship transactive memory systems.
Wang, Fen; Chen, Yuanlong; Liu, Meichun
2018-02-01
Stochastic memristor-based bidirectional associative memory (BAM) neural networks with time delays play an increasingly important role in the design and implementation of neural network systems. Under the framework of Filippov solutions, the issues of the pth moment exponential stability of stochastic memristor-based BAM neural networks are investigated. By using the stochastic stability theory, Itô's differential formula and Young inequality, the criteria are derived. Meanwhile, with Lyapunov approach and Cauchy-Schwarz inequality, we derive some sufficient conditions for the mean square exponential stability of the above systems. The obtained results improve and extend previous works on memristor-based or usual neural networks dynamical systems. Four numerical examples are provided to illustrate the effectiveness of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multiview fusion for activity recognition using deep neural networks
NASA Astrophysics Data System (ADS)
Kavi, Rahul; Kulathumani, Vinod; Rohit, Fnu; Kecojevic, Vlad
2016-07-01
Convolutional neural networks (ConvNets) coupled with long short term memory (LSTM) networks have been recently shown to be effective for video classification as they combine the automatic feature extraction capabilities of a neural network with additional memory in the temporal domain. This paper shows how multiview fusion can be applied to such a ConvNet LSTM architecture. Two different fusion techniques are presented. The system is first evaluated in the context of a driver activity recognition system using data collected in a multicamera driving simulator. These results show significant improvement in accuracy with multiview fusion and also show that deep learning performs better than a traditional approach using spatiotemporal features even without requiring any background subtraction. The system is also validated on another publicly available multiview action recognition dataset that has 12 action classes and 8 camera views.
Ji, Qingchun; Wang, Yingying; Guo, Wei; Zhou, Chenglin
2017-01-01
Working memory is critical for various cognitive processes and can be separated into two stages: short-term memory storage and manipulation processing. Although previous studies have demonstrated that increased physical activity (PA) improves working memory and that males outperform females on visuospatial working memory tasks, few studies have determined the contribution of the two underlying stages to the visuospatial working memory improvement associated with PA. Thus, the aims of the present study were to verify the relationship between physical activity and visuospatial working memory, determine whether one or both stages were affected by PA, and investigate any sex differences. A total of 56 undergraduate students were recruited for this study. Their scores on the International Physical Activity Questionnaire (IPAQ) were used to separate them into either a lower PA ( n = 26; IPAQ score ≤3,000 metabolic equivalent [MET]-min/week) or higher PA ( n = 30; IPAQ score >3,000 MET-min/week) group. Participants were required to complete three tasks: a visuospatial working memory task, a task that examines the short-term memory storage stage, and a mental rotation task that examines the active manipulation stage. Participants in the higher PA group maintained similar accuracy but displayed significantly faster reaction times (RT) than those in the lower PA group on the visuospatial working memory and manipulation tasks. By contrast, no difference was observed between groups on the short-term memory storage task. In addition, no effects of sex were detected. Our results confirm that PA was positively to visuospatial working memory and that this positive relationship was associated with more rapid cognitive processing during the manipulation stage, with little or no relationship between PA and the memory storage stage of visuospatial working memory.
Wheelan, Nicola; Webster, Scott P.; Kenyon, Christopher J.; Caughey, Sarah; Walker, Brian R.; Holmes, Megan C.; Seckl, Jonathan R.; Yau, Joyce L.W.
2015-01-01
High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. PMID:25497454
Wheelan, Nicola; Webster, Scott P; Kenyon, Christopher J; Caughey, Sarah; Walker, Brian R; Holmes, Megan C; Seckl, Jonathan R; Yau, Joyce L W
2015-04-01
High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kinsella, Glynda J; Ames, David; Storey, Elsdon; Ong, Ben; Pike, Kerryn E; Saling, Michael M; Clare, Linda; Mullaly, Elizabeth; Rand, Elizabeth
2016-01-01
Governments are promoting the importance of maintaining cognitive health into older age to minimize risk of cognitive decline and dementia. Older people with amnestic mild cognitive impairment (aMCI) are particularly vulnerable to memory challenges in daily activities and are seeking ways to maintain independent living. To evaluate the effectiveness of memory groups for improving memory strategies and memory ability of older people, especially those with aMCI. 113 healthy older adults (HOA) and 106 adults with aMCI were randomized to a six-week memory group or a waitlist control condition. Outcome was evaluated through knowledge and use of memory strategies, memory ability (self-report and neuropsychological tests), and wellbeing. Assessments included a six-month follow-up. Using intention to treat analyses, there were intervention effects for HOA and aMCI groups in strategy knowledge (HOA: η2= 0.20; aMCI: η2= 0.06), strategy use (HOA: η2= 0.18; aMCI: η2= 0.08), and wellbeing (HOA: η2= 0.11; aMCI: η2= 0.05). There were also intervention effects in the HOA group, but not the aMCI group, in self-reported memory ability (η2= 0.06) and prospective memory tests (η2= 0.02). By six-month follow-up, gains were found on most HOA outcomes. In the aMCI group gains were found in strategy use, and by this stage, gains in prospective memory were also found. Memory groups can engage older people in techniques for maintaining cognitive health and improve memory performance, but more modest benefits are seen for older adults with aMCI.
Dissociable effects of surprising rewards on learning and memory.
Rouhani, Nina; Norman, Kenneth A; Niv, Yael
2018-03-19
Reward-prediction errors track the extent to which rewards deviate from expectations, and aid in learning. How do such errors in prediction interact with memory for the rewarding episode? Existing findings point to both cooperative and competitive interactions between learning and memory mechanisms. Here, we investigated whether learning about rewards in a high-risk context, with frequent, large prediction errors, would give rise to higher fidelity memory traces for rewarding events than learning in a low-risk context. Experiment 1 showed that recognition was better for items associated with larger absolute prediction errors during reward learning. Larger prediction errors also led to higher rates of learning about rewards. Interestingly we did not find a relationship between learning rate for reward and recognition-memory accuracy for items, suggesting that these two effects of prediction errors were caused by separate underlying mechanisms. In Experiment 2, we replicated these results with a longer task that posed stronger memory demands and allowed for more learning. We also showed improved source and sequence memory for items within the high-risk context. In Experiment 3, we controlled for the difficulty of reward learning in the risk environments, again replicating the previous results. Moreover, this control revealed that the high-risk context enhanced item-recognition memory beyond the effect of prediction errors. In summary, our results show that prediction errors boost both episodic item memory and incremental reward learning, but the two effects are likely mediated by distinct underlying systems. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Slow oscillations orchestrating fast oscillations and memory consolidation.
Mölle, Matthias; Born, Jan
2011-01-01
Slow-wave sleep (SWS) facilitates the consolidation of hippocampus-dependent declarative memory. Based on the standard two-stage memory model, we propose that memory consolidation during SWS represents a process of system consolidation which is orchestrated by the neocortical <1Hz electroencephalogram (EEG) slow oscillation and involves the reactivation of newly encoded representations and their subsequent redistribution from temporary hippocampal to neocortical long-term storage sites. Indeed, experimental induction of slow oscillations during non-rapid eye movement (non-REM) sleep by slowly alternating transcranial current stimulation distinctly improves consolidation of declarative memory. The slow oscillations temporally group neuronal activity into up-states of strongly enhanced neuronal activity and down-states of neuronal silence. In a feed-forward efferent action, this grouping is induced not only in the neocortex but also in other structures relevant to consolidation, namely the thalamus generating 10-15Hz spindles, and the hippocampus generating sharp wave-ripples, with the latter well known to accompany a replay of newly encoded memories taking place in hippocampal circuitries. The feed-forward synchronizing effect of the slow oscillation enables the formation of spindle-ripple events where ripples and accompanying reactivated hippocampal memory information become nested into the single troughs of spindles. Spindle-ripple events thus enable reactivated memory-related hippocampal information to be fed back to neocortical networks in the excitable slow oscillation up-state where they can induce enduring plastic synaptic changes underlying the effective formation of long-term memories. Copyright © 2011 Elsevier B.V. All rights reserved.
Dissipative structure and global existence in critical space for Timoshenko system of memory type
NASA Astrophysics Data System (ADS)
Mori, Naofumi
2018-08-01
In this paper, we consider the initial value problem for the Timoshenko system with a memory term in one dimensional whole space. In the first place, we consider the linearized system: applying the energy method in the Fourier space, we derive the pointwise estimate of the solution in the Fourier space, which first gives the optimal decay estimate of the solution. Next, we give a characterization of the dissipative structure of the system by using the spectral analysis, which confirms our pointwise estimate is optimal. In the second place, we consider the nonlinear system: we show that the global-in-time existence and uniqueness result could be proved in the minimal regularity assumption in the critical Sobolev space H2. In the proof we don't need any time-weighted norm as recent works; we use just an energy method, which is improved to overcome the difficulties caused by regularity-loss property of Timoshenko system.
Schaal, Nora K; Pfeifer, Jasmin; Krause, Vanessa; Pollok, Bettina
2015-11-01
Brain imaging studies highlighted structural differences in congenital amusia, a life-long perceptual disorder that is associated with pitch perception and pitch memory deficits. A functional anomaly characterized by decreased low gamma oscillations (30-40 Hz range) in the right dorsolateral prefrontal cortex (DLPFC) during pitch memory has been revealed recently. Thus, the present study investigates whether applying transcranial alternating current stimulation (tACS) at 35 Hz to the right DLPFC would improve pitch memory. Nine amusics took part in two tACS sessions (either 35 Hz or 90 Hz) and completed a pitch and visual memory task before and during stimulation. 35 Hz stimulation facilitated pitch memory significantly. No modulation effects were found with 90 Hz stimulation or on the visual task. While amusics showed a selective impairment of pitch memory before stimulation, the performance during 35 Hz stimulation was not significantly different to healthy controls anymore. Taken together, the study shows that modulating the right DLPFC with 35 Hz tACS in congenital amusia selectively improves pitch memory performance supporting the hypothesis that decreased gamma oscillations within the DLPFC are causally involved in disturbed pitch memory and highlight the potential use of tACS to interact with cognitive processes. Copyright © 2015 Elsevier B.V. All rights reserved.
Levin, Edward D; Hao, Ian; Burke, Dennis A; Cauley, Marty; Hall, Brandon J; Rezvani, Amir H
2014-10-01
Nicotine has been well characterized to improve memory and attention. Nicotine is the primary, but not only neuroactive compound in tobacco. Other tobacco constituents such as anabasine and anatabine also have agonist actions on nicotinic receptors. The current study investigated the effects of anabasine and anatabine on memory and attention. Adult female Sprague-Dawley rats were trained on a win-shift spatial working and reference memory task in the 16-arm radial maze or a visual signal detection operant task to test attention. Acute dose-effect functions of anabasine and anatabine over two orders of magnitude were evaluated for both tasks. In the radial-arm maze memory test, anabasine but not anatabine significantly reduced the memory impairment caused by the NMDA antagonist dizocilpine (MK-801). In the signal detection attentional task, anatabine but not anabasine significantly attenuated the attentional impairment caused by dizocilpine. These studies show that non-nicotine nicotinic agonists in tobacco, similar to nicotine, can significantly improve memory and attentional function. Both anabasine and anatabine produced cognitive improvement, but their effectiveness differed with regard to memory and attention. Follow-up studies with anabasine and anatabine are called for to determine their efficacy as therapeutics for memory and attentional dysfunction. © The Author(s) 2014.
Destination memory accuracy and confidence in younger and older adults.
Johnson, Tara L; Jefferson, Susan C
2018-01-01
Background/Study Context: Nascent research on destination memory-remembering to whom we tell particular information-suggested that older adults have deficits in destination memory and are more confident on inaccurate responses than younger adults. This study assessed the effects of age, attentional resources, and mental imagery on destination memory accuracy and confidence in younger and older adults. Using computer format, participants told facts to pictures of famous people in one of four conditions (control, self-focus, refocus, imagery). Older adults had lower destination memory accuracy than younger adults, driven by a higher level of false alarms. Whereas younger adults were more confident in accurate answers, older adults were more confident in inaccurate answers. Accuracy across participants was lowest when attention was directed internally but significantly improved when mental imagery was used. Importantly, the age-related differences in false alarms and high-confidence inaccurate answers disappeared when imagery was used. Older adults are more likely than younger adults to commit destination memory errors and are less accurate in related confidence judgments. Furthermore, the use of associative memory strategies may help improve destination memory across age groups, improve the accuracy of confidence judgments in older adults, and decrease age-related destination memory impairment, particularly in young-old adults.
Serotonin is critical for rewarded olfactory short-term memory in Drosophila.
Sitaraman, Divya; LaFerriere, Holly; Birman, Serge; Zars, Troy
2012-06-01
The biogenic amines dopamine, octopamine, and serotonin are critical in establishing normal memories. A common view for the amines in insect memory performance has emerged in which dopamine and octopamine are largely responsible for aversive and appetitive memories. Examination of the function of serotonin begins to challenge the notion of one amine type per memory because altering serotonin function also reduces aversive olfactory memory and place memory levels. Could the function of serotonin be restricted to the aversive domain, suggesting a more specific dopamine/serotonin system interaction? The function of the serotonergic system in appetitive olfactory memory was examined. By targeting the tetanus toxin light chain (TNT) and the human inwardly rectifying potassium channel (Kir2.1) to the serotonin neurons with two different GAL4 driver combinations, the serotonergic system was inhibited. Additional use of the GAL80(ts1) system to control expression of transgenes to the adult stage of the life cycle addressed a potential developmental role of serotonin in appetitive memory. Reduction in appetitive olfactory memory performance in flies with these transgenic manipulations, without altering control behaviors, showed that the serotonergic system is also required for normal appetitive memory. Thus, serotonin appears to have a more general role in Drosophila memory, and implies an interaction with both the dopaminergic and octopaminergic systems.
75 FR 57375 - Establishment of Class E Airspace; Toledo, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-21
... System (GPS) Standard Instrument Approach Procedure (SIAP) at Ed Carlson Memorial Field-South Lewis County Airport. This will improve the safety and management of Instrument Flight Rules (IFR) operations... is necessary for the safety and management of IFR operations. The FAA has determined this regulation...
75 FR 12974 - Establishment of Class E Airspace; Hailey, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... airspace at Hailey, ID, to accommodate aircraft using the Area Navigation (RNAV) Global Positioning System (GPS) Standard Instrument Approach Procedure (SIAP) at Friedman Memorial Airport. This will improve the safety of Instrument Flight Rules (IFR) operations at the airport. DATES: Effective Date: 0901 UTC, June...
Music training and working memory: an ERP study.
George, Elyse M; Coch, Donna
2011-04-01
While previous research has suggested that music training is associated with improvements in various cognitive and linguistic skills, the mechanisms mediating or underlying these associations are mostly unknown. Here, we addressed the hypothesis that previous music training is related to improved working memory. Using event-related potentials (ERPs) and a standardized test of working memory, we investigated both neural and behavioral aspects of working memory in college-aged, non-professional musicians and non-musicians. Behaviorally, musicians outperformed non-musicians on standardized subtests of visual, phonological, and executive memory. ERPs were recorded in standard auditory and visual oddball paradigms (participants responded to infrequent deviant stimuli embedded in lists of standard stimuli). Electrophysiologically, musicians demonstrated faster updating of working memory (shorter latency P300s) in both the auditory and visual domains and musicians allocated more neural resources to auditory stimuli (larger amplitude P300), showing increased sensitivity to the auditory standard/deviant difference and less effortful updating of auditory working memory. These findings demonstrate that long-term music training is related to improvements in working memory, in both the auditory and visual domains and in terms of both behavioral and ERP measures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gladwin, Thomas E; Peeters, Margot; Prins, Pier J M; Wiers, Reinout W
2018-01-01
Background Working memory capacity has been found to be impaired in adolescents with various psychological problems, such as addictive behaviors. Training of working memory capacity can lead to significant behavioral improvements, but it is usually long and tedious, taxing participants’ motivation to train. Objective This study aimed to evaluate whether adding game elements to the training could help improve adolescents’ motivation to train while improving cognition. Methods A total of 84 high school students were allocated to a working memory capacity training, a gamified working memory capacity training, or a placebo condition. Working memory capacity, motivation to train, and drinking habits were assessed before and after training. Results Self-reported evaluations did not show a self-reported preference for the game, but participants in the gamified working memory capacity training condition did train significantly longer. The game successfully increased motivation to train, but this effect faded over time. Working memory capacity increased equally in all conditions but did not lead to significantly lower drinking, which may be due to low drinking levels at baseline. Conclusions We recommend that future studies attempt to prolong this motivational effect, as it appeared to fade over time. PMID:29792294
Does overgeneral autobiographical memory result from poor memory for task instructions?
Yanes, Paula K; Roberts, John E; Carlos, Erica L
2008-10-01
Considerable previous research has shown that retrieval of overgeneral autobiographical memories (OGM) is elevated among individuals suffering from various emotional disorders and those with a history of trauma. Although previous theories suggest that OGM serves the function of regulating acute negative affect, it is also possible that OGM results from difficulties in keeping the instruction set for the Autobiographical Memory Test (AMT) in working memory, or what has been coined "secondary goal neglect" (Dalgleish, 2004). The present study tested whether OGM is associated with poor memory for the task's instruction set, and whether an instruction set reminder would improve memory specificity over repeated trials. Multilevel modelling data-analytic techniques demonstrated a significant relationship between poor recall of instruction set and probability of retrieving OGMs. Providing an instruction set reminder for the AMT relative to a control task's instruction set improved memory specificity immediately afterward.
Lee, Bombi; Sur, Bong-Jun; Kwon, Sunoh; Jung, Euntaek; Shim, Insop; Lee, Hyejung; Hahm, Dae-Hyun
2012-01-01
The purpose of this study was to examine whether acupuncture improves spatial cognitive impairment induced by repeated corticosterone (CORT) administration in rats. The effect of acupuncture on the acetylcholinergic system was also investigated in the hippocampus. Male rats were subcutaneously injected with CORT (5 mg/kg) once daily for 21 days. Acupuncture stimulation was performed at the HT7 (Sinmun) acupoint for 5 min before CORT injection. HT7 acupoint is located at the end of transverse crease of ulnar wrist of forepaw. In CORT-treated rats, reduced spatial cognitive function was associated with significant increases in plasma CORT level (+36%) and hippocampal CORT level (+204%) compared with saline-treated rats. Acupuncture stimulation improved the escape latency for finding the platform in the Morris water maze. Consistently, the acupuncture significantly alleviated memory-associated decreases in cholinergic immunoreactivity and mRNA expression of BDNF and CREB in the hippocampus. These findings demonstrate that stimulation of HT7 acupoint produced significant neuroprotective activity against the neuronal impairment and memory dysfunction. PMID:22216057
NASA Astrophysics Data System (ADS)
Guo, Dongwei; Wang, Zhe
2018-05-01
Convolutional neural networks (CNN) achieve great success in computer vision, it can learn hierarchical representation from raw pixels and has outstanding performance in various image recognition tasks [1]. However, CNN is easy to be fraudulent in terms of it is possible to produce images totally unrecognizable to human eyes that CNNs believe with near certainty are familiar objects. [2]. In this paper, an associative memory model based on multiple features is proposed. Within this model, feature extraction and classification are carried out by CNN, T-SNE and exponential bidirectional associative memory neural network (EBAM). The geometric features extracted from CNN and the digital features extracted from T-SNE are associated by EBAM. Thus we ensure the recognition of robustness by a comprehensive assessment of the two features. In our model, we can get only 8% error rate with fraudulent data. In systems that require a high safety factor or some key areas, strong robustness is extremely important, if we can ensure the image recognition robustness, network security will be greatly improved and the social production efficiency will be extremely enhanced.
Donepezil improved memory in multiple sclerosis in a randomized clinical trial.
Krupp, L B; Christodoulou, C; Melville, P; Scherl, W F; MacAllister, W S; Elkins, L E
2004-11-09
To determine the effect of donepezil in treating memory and cognitive dysfunction in multiple sclerosis (MS). This single-center double-blind placebo-controlled clinical trial evaluated 69 MS patients with cognitive impairment who were randomly assigned to receive a 24-week treatment course of either donepezil (10 mg daily) or placebo. Patients underwent neuropsychological assessment at baseline and after 24 weeks of treatment. The primary outcome was change in verbal learning and memory on the Selective Reminding Test (SRT). Secondary outcomes included other tests of cognitive function, patient-reported change in memory, and clinician-reported impression of cognitive change. Donepezil-treated patients showed significant improvement in memory performance on the SRT compared to placebo (p = 0.043). The benefit of donepezil remained significant after controlling for various covariates including age, Expanded Disability Status Scale, baseline SRT score, reading ability, MS subtype, and sex. Donepezil-treated patients did not show significant improvements on other cognitive tests, but were more than twice as likely to report memory improvement than those in the placebo group (p = 0.006). The clinician also reported cognitive improvement in almost twice as many donepezil vs placebo patients (p = 0.036). No serious adverse events related to study medication occurred, although more donepezil (34.3%) than placebo (8.8%) subjects reported unusual/abnormal dreams (p = 0.010). Donepezil improved memory in MS patients with initial cognitive impairment in a single center clinical trial. A larger multicenter investigation of donepezil in MS is warranted in order to more definitively assess the efficacy of this intervention.
When Kids Act Out: A Comparison of Embodied Methods to Improve Children's Memory for a Story
ERIC Educational Resources Information Center
Berenhaus, Molly; Oakhill, Jane; Rusted, Jennifer
2015-01-01
Over the last decade, embodied cognition, the idea that sensorimotor processes facilitate higher cognitive processes, has proven useful for improving children's memory for a story. In order to compare the benefits of two embodiment techniques, active experiencing (AE) and indexing, for children's memory for a story, we compared the immediate…
The effect of mild acute stress during memory consolidation on emotional recognition memory.
Corbett, Brittany; Weinberg, Lisa; Duarte, Audrey
2017-11-01
Stress during consolidation improves recognition memory performance. Generally, this memory benefit is greater for emotionally arousing stimuli than neutral stimuli. The strength of the stressor also plays a role in memory performance, with memory performance improving up to a moderate level of stress and thereafter worsening. As our daily stressors are generally minimal in strength, we chose to induce mild acute stress to determine its effect on memory performance. In the current study, we investigated if mild acute stress during consolidation improves memory performance for emotionally arousing images. To investigate this, we had participants encode highly arousing negative, minimally arousing negative, and neutral images. We induced stress using the Montreal Imaging Stress Task (MIST) in half of the participants and a control task to the other half of the participants directly after encoding (i.e. during consolidation) and tested recognition 48h later. We found no difference in memory performance between the stress and control group. We found a graded pattern among confidence, with responders in the stress group having the least amount of confidence in their hits and controls having the most. Across groups, we found highly arousing negative images were better remembered than minimally arousing negative or neutral images. Although stress did not affect memory accuracy, responders, as defined by cortisol reactivity, were less confident in their decisions. Our results suggest that the daily stressors humans experience, regardless of their emotional affect, do not have adverse effects on memory. Copyright © 2017 Elsevier Inc. All rights reserved.
Can Interactive Working Memory Training Improve Learning?
ERIC Educational Resources Information Center
Alloway, Tracy
2012-01-01
Background: Working memory is linked to learning outcomes and there is emerging evidence that training working memory can yield gains in working memory and fluid intelligence. Aims: The aim of the present study was to investigate whether interactive working memory training would transfer to acquired cognitive skills, such as vocabulary and…
Correcting Memory Improves Accuracy of Predicted Task Duration
ERIC Educational Resources Information Center
Roy, Michael M.; Mitten, Scott T.; Christenfeld, Nicholas J. S.
2008-01-01
People are often inaccurate in predicting task duration. The memory bias explanation holds that this error is due to people having incorrect memories of how long previous tasks have taken, and these biased memories cause biased predictions. Therefore, the authors examined the effect on increasing predictive accuracy of correcting memory through…
Improving Memory Span in Children with Down Syndrome
ERIC Educational Resources Information Center
Conners, F. A.; Rosenquist, C. J.; Arnett, L.; Moore, M. S.; Hume, L. E.
2008-01-01
Background: Down syndrome (DS) is characterized by impaired memory span, particularly auditory verbal memory span. Memory span is linked developmentally to several language capabilities, and may be a basic capacity that enables language learning. If children with DS had better memory span, they might benefit more from language intervention. The…
Effects of chewing gum on mood, learning, memory and performance of an intelligence test.
Smith, Andrew
2009-04-01
Recent research suggests that chewing gum may increase alertness and lead to changes in cognitive performance. The present study examined effects of chewing gum on these functions within the context of a single study. This study had four main aims. The first was to examine whether chewing gum improved learning and memory of information in a story. The second aim was to determine whether chewing gum improved test performance on a validated intellectual task (the Alice Heim task). A third aim was to determine whether chewing gum improved performance on short memory tasks (immediate and delayed recall of a list of words, delayed recognition memory, retrieval from semantic memory, and a working memory task). The final aim was to determine whether chewing gum improved mood (alertness, calm and hedonic tone). A cross-over design was used with gum and no-gum sessions being on consecutive weeks. In each week, volunteers attended for two sessions, two days apart. The first session assessed mood, immediate recall of information from a story and performance on short memory tasks. The second session assessed mood, delayed recall of information from a story and performance of an intelligence test (the Alice Heim test). There were no significant effects of chewing gum on any aspect of recall of the story. Chewing gum improved the accuracy of performing the Alice Heim test which confirms the benefits of gum on test performance seen in an earlier study. Chewing gum had no significant effect on the short memory tasks. Chewing gum increased alertness at the end of the test session in both parts of the study. This effect was in the region of a 10% increase and was highly significant (P < 0.001). The results of this study showed that chewing gum increases alertness. In contrast, no significant effects of chewing gum were observed in the memory tasks. Intellectual performance was improved in the gum condition. Overall, the results suggest further research on the alerting effects of chewing gum and possible improved test performance in these situations.
Roozendaal, Benno; McGaugh, James L.
2011-01-01
Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145
The effect of rearing environment on memory formation.
Rothwell, Cailin M; Spencer, Gaynor E; Lukowiak, Ken
2018-05-22
Lymnaea stagnalis is a well-studied model system for determining how changes in the environment influence associative learning and memory formation. For example, some wild strains of L. stagnalis , collected from separate geographic locations, show superior memory-forming abilities compared with others. Here, we studied memory formation in two laboratory-bred L. stagnalis strains, derived from the same original population in The Netherlands. The two strains were reared in two different laboratories at the University of Calgary (C-strain) and at Brock University (B-strain) for many years and we found that they differed in their memory-forming ability. Specifically, the C-strain required only two training sessions to form long-term memory (LTM) whereas the B-strain required four sessions to form LTM. Additionally, the LTM formed by the B-strain persisted for a shorter amount of time than the memory formed by the C-strain. Thus, despite being derived from the same original population, the C- and B-strains have developed different memory-forming abilities. Next, we raised the two strains from embryos away from home (i.e. in the other laboratory) over two generations and assessed their memory-forming abilities. The B-strain reared and maintained at the University of Calgary demonstrated improved memory-forming ability within a single generation, while the C-strain reared at Brock University retained their normal LTM-forming ability across two subsequent generations. This suggests that local environmental factors may contribute to the behavioural divergence observed between these two laboratory-bred strains. © 2018. Published by The Company of Biologists Ltd.
Teixeira, Camila Vieira Ligo; Gobbi, Lilian Teresa Bucken; Corazza, Danilla Icassatti; Stella, Florindo; Costa, José Luiz Riani; Gobbi, Sebastião
2012-01-01
Mild cognitive impairment (MCI) can be a stage of pre-dementia. There is no consensus about pharmacological treatment for this population, so it is important to structure non-pharmacological interventions for increasing their cognitive reserve. We intended to analyze the effects of non-pharmacological interventions in the cognitive functions in older people with MC, in form of a systemic review. Data sources were the Web of Science, Biological Abstracts, Medline, Pub Med, EBSCHost, Scirus and Google Scholar. All studies were longitudinal trials, with MCI sample, aged>60 years, community-dwelling, and having cognitive functions as dependent variable. Seven studies, from 91 previously selected ones, were identified according to the inclusion criteria. Six studies used cognitive intervention, improving memory and one study used physical activity as intervention, improving executive functions. The results show evidence that physical activity and cognitive exercise may improve memory and executive functions in older people with MCI. But yet, more controlled studies are needed to establish a protocol of recommendations regarding the systemization of exercise, necessary to produce benefits in the cognitive functioning in older people with MCI. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Computer-based cognitive retraining for adults with chronic acquired brain injury: a pilot study.
Li, Kitsum; Robertson, Julie; Ramos, Joshua; Gella, Stephanie
2013-10-01
This study evaluated the effectiveness of a computer-based cognitive retraining (CBCR) program on improving memory and attention deficits in individuals with a chronic acquired brain injury (ABI). Twelve adults with a chronic ABI demonstrating deficits in memory and attention were recruited from a convenience sample from the community. Using a quasi-experimental one-group pretest-posttest design, a significant improvement was found in both memory and attention scores postintervention using the cognitive screening tool. This study supported the effectiveness of CBCR programs in improving cognitive deficits in memory and attention in individuals with chronic ABI. Further research is recommended to validate these findings with a larger ABI population and to investigate transfer to improvement in occupational performance that supports daily living skills.
Context odor presentation during sleep enhances memory in honeybees.
Zwaka, Hanna; Bartels, Ruth; Gora, Jacob; Franck, Vivien; Culo, Ana; Götsch, Moritz; Menzel, Randolf
2015-11-02
Sleep plays an important role in stabilizing new memory traces after learning [1-3]. Here we investigate whether sleep's role in memory processing is similar in evolutionarily distant species and demonstrate that a context trigger during deep-sleep phases improves memory in invertebrates, as it does in humans. We show that in honeybees (Apis mellifera), exposure to an odor during deep sleep that has been present during learning improves memory performance the following day. Presentation of the context odor during wake phases or novel odors during sleep does not enhance memory. In humans, memory consolidation can be triggered by presentation of a context odor during slow-wave sleep that had been present during learning [3-5]. Our results reveal that deep-sleep phases in honeybees have the potential to prompt memory consolidation, just as they do in humans. This study provides strong evidence for a conserved role of sleep-and how it affects memory processes-from insects to mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Attention and material-specific memory in children with lateralized epilepsy.
Engle, Jennifer A; Smith, Mary Lou
2010-01-01
Epilepsy is frequently associated with attention and memory problems. In adults, lateralization of seizure focus impacts the type of memory affected (left-sided lesions primarily impact verbal memory, while right-sided lesions primarily impact visual memory), but the relationship between seizure focus and the nature of the memory impairment is less clear in children. The current study examines the correlation between parent-reported attention problems and material-specific memory (verbal or visual-spatial) in 65 children (ages 6-16) with medically intractable lateralized epilepsy. There were no significant differences in attention and memory between those with left-lateralized epilepsy (n=25) and those with right-lateralized epilepsy (n=40). However, in the left-lateralized group attention problems were significantly negatively correlated only with delayed visual memory (r=-.450, p<.05), while the right-lateralized group demonstrated the opposite pattern (attention problems significantly negatively correlated with delayed verbal memory; r=-.331, p<.05). These findings suggest that lateralization of seizure focus may in fact impact children's memory in a material-specific manner, while problems with attention may impact memory more globally. Therefore, interventions designed to improve attention in children with epilepsy may have utility in improving certain aspects of memory, but further suggest that in children with lateralized epilepsy, material-specific memory deficits may not resolve with such interventions.
Marquez, David X.; Wilson, Robert; Aguiñaga, Susan; Vásquez, Priscilla; Fogg, Louis; Yang, Zhi; Wilbur, JoEllen; Hughes, Susan; Spanbauer, Charles
2017-01-01
Disparities exist between Latinos and non-Latino whites in cognitive function. Dance is culturally appropriate and challenges individuals physically and cognitively, yet the impact of regular dancing on cognitive function in older Latinos has not been examined. A two-group pilot trial was employed among inactive, older Latinos. Participants (N = 57) participated in the BAILAMOS© dance program or a health education program. Cognitive test scores were converted to z-scores and measures of global cognition and specific domains (executive function, episodic memory, working memory) were derived. Results revealed a group × time interaction for episodic memory (p<0.05), such that the dance group showed greater improvement in episodic memory than the health education group. A main effect for time for global cognition (p<0.05) was also demonstrated, with participants in both groups improving. Structured Latin dance programs can positively influence episodic memory; and participation in structured programs may improve overall cognition among older Latinos. PMID:28095105
Marquez, David X; Wilson, Robert; Aguiñaga, Susan; Vásquez, Priscilla; Fogg, Louis; Yang, Zhi; Wilbur, JoEllen; Hughes, Susan; Spanbauer, Charles
2017-07-01
Disparities exist between Latinos and non-Latino Whites in cognitive function. Dance is culturally appropriate and challenges individuals physically and cognitively, yet the impact of regular dancing on cognitive function in older Latinos has not been examined. A two-group pilot trial was employed among inactive, older Latinos. Participants (N = 57) participated in the BAILAMOS © dance program or a health education program. Cognitive test scores were converted to z-scores and measures of global cognition and specific domains (executive function, episodic memory, working memory) were derived. Results revealed a group × time interaction for episodic memory (p < .05), such that the dance group showed greater improvement in episodic memory than the health education group. A main effect for time for global cognition (p < .05) was also demonstrated, with participants in both groups improving. Structured Latin dance programs can positively influence episodic memory, and participation in structured programs may improve overall cognition among older Latinos.
Non-volatile magnetic random access memory
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-Chuan (Inventor)
1994-01-01
Improvements are made in a non-volatile magnetic random access memory. Such a memory is comprised of an array of unit cells, each having a Hall-effect sensor and a thin-film magnetic element made of material having an in-plane, uniaxial anisotropy and in-plane, bipolar remanent magnetization states. The Hall-effect sensor is made more sensitive by using a 1 m thick molecular beam epitaxy grown InAs layer on a silicon substrate by employing a GaAs/AlGaAs/InAlAs superlattice buffering layer. One improvement avoids current shunting problems of matrix architecture. Another improvement reduces the required magnetizing current for the micromagnets. Another improvement relates to the use of GaAs technology wherein high electron-mobility GaAs MESFETs provide faster switching times. Still another improvement relates to a method for configuring the invention as a three-dimensional random access memory.
Cognitive improvement following repair of a basal encephalocele.
Tulloch, Isabel; Palmer, Siobhan; Scott, Richard; Lozsadi, Dora; Martin, Andrew J
2018-06-01
We report the case of a 55-year-old woman presenting with progressive memory impairment secondary to a transsphenoidal encephalocele involving her dominant medial temporal lobe. Her clinical deterioration was accompanied by radiological progression in the encephalocele's size and associated encephalomalacia. Through a temporal craniotomy, her encephalocele was resected and the defect closed. Baseline neuropsychological assessment indicated global cognitive impairment, but post-operatively, she reported improved memory and concentration. Standardized assessment reflected an improvement in perceptual skills and an associated improved recall of a complex figure. This is the first case report to date of a patient's memory improving following treatment of a basal encephalocele.
ERIC Educational Resources Information Center
Dunning, Darren L.; Holmes, Joni; Gathercole, Susan E.
2013-01-01
Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first…
Chen, Eric Y H; Hui, Christy L M
2012-08-01
Evidence suggests that HT1001™, a proprietary North American ginseng extract containing known levels of active ginsenosides, may improve cognitive function. Importantly, individuals with schizophrenia show marked deficits in working memory, which are believed to be predictive of functional outcome in this population. The present study aimed to characterize the effect of HT1001 on working memory in a group of stable individuals with schizophrenia. In a double-blind, placebo-controlled study design, a total of 64 individuals satisfying DSM-IV criteria for schizophrenia were randomly assigned to receive either HT100 or placebo for 4 weeks. Verbal working memory and visual working memory were assessed at baseline and again at the end of the treatment phase using the Letter-Number Span Test and Visual Pattern Test, respectively. Symptoms and medication side effects were also measured at baseline and post-treatment. Visual working memory was significantly improved in the HT1001 group, but not in the placebo group. Furthermore, extrapyramidal symptoms were significantly reduced after 4 weeks treatment with HT1001, whereas no difference in extrapyramidal effects was observed in the placebo group. These results provide a solid foundation for the further investigation of HT1001 as an adjunct therapy in schizophrenia, as an improvement in working memory and a reduction in medication-related side effects has considerable potential to improve functional outcome in this population. Copyright © 2011 John Wiley & Sons, Ltd.
Crystal that remembers: several ways to utilize nanocrystals in resistive switching memory
NASA Astrophysics Data System (ADS)
Banerjee, Writam; Liu, Qi; Long, Shibing; Lv, Hangbing; Liu, Ming
2017-08-01
The attractive usability of quantum phenomena in futuristic devices is possible by using zero-dimensional systems like nanocrystals (NCs). The performance of nonvolatile flash memory devices has greatly benefited from the use of NCs over recent decades. The quantum abilities of NCs have been used to improve the reliability of flash devices. Its appeal is extended to the design of emerging devices such as resistive random-access memory (RRAM), a technology where the use of silicon is optional. Here, we are going to review the recent progress in the design, characterization, and utilization of NCs in RRAM devices. We will first introduce the physical design of the RRAM devices using NCs and the improvement of electrical performance in NC-RRAM over conventional ones. In particular, special care has been taken to review the ways of development provided by the NCs in the RRAM devices. In a broad sense, the NCs can play a charge trapping role in the NC-RRAM structure or it can be responsible for the localization and improvement of the stability of the conductive filament or it can play a part in the formation of the conductive filament chain by the NC migration under applied bias. Finally, the scope of NCs in the RRAM devices has also been discussed.
Vinpocetine Improves Scopolamine Induced Learning and Memory Dysfunction in C57 BL/6J Mice.
Shang, Yu; Wang, Lei; Li, Yue; Gu, Pei-Fei
2016-09-01
Vinpocetine is an inhibitor of phosphodiesterase type 1 (PDE1), which has been used for treating stroke for over 40 years. However, according to current clinical dosage and treatment period, its direct effect on memory is unclear. In this study, we investigated whether vinpocetine could reverse the scopolamine (SCO)-induced cognitive deficits in animals. Behavioral experiments, including open field, Y-maze, and fear conditioning tests were used to determine the possible role of vinpocetine on scopolamine-induced memory dysfunction. In the open field and Y-maze tests, there were significant differences between the control (CON) group and SCO group. Vinpocetine (4 mg/kg) administration for consecutive 28 d significantly improved the scopolamine-induced memory dysfunction. In the fear conditioning test, vinpocetine (2, 4 mg/kg) administration had certain beneficial effect on emotional memory. Our results suggest that vinpocetine could improve cognitive function in memory deficient mice and high clinic dosage might be better.
Hou, Xiang; Cheng, Xue-Feng; Zhou, Jin; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei
2017-11-16
Recently, surface engineering of the indium tin oxide (ITO) electrode of sandwich-like organic electric memory devices was found to effectively improve their memory performances. However, there are few methods to modify the ITO substrates. In this paper, we have successfully prepared alkyltrichlorosilane self-assembled monolayers (SAMs) on ITO substrates, and resistive random access memory devices are fabricated on these surfaces. Compared to the unmodified ITO substrates, organic molecules (i.e., 2-((4-butylphenyl)amino)-4-((4-butylphenyl)iminio)-3-oxocyclobut-1-en-1-olate, SA-Bu) grown on these SAM-modified ITO substrates have rougher surface morphologies but a smaller mosaicity. The organic layer on the SAM-modified ITO further aged to eliminate the crystalline phase diversity. In consequence, the ternary memory yields are effectively improved to approximately 40-47 %. Our results suggest that the insertion of alkyltrichlorosilane self-assembled monolayers could be an efficient method to improve the performance of organic memory devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enamorado, Michel; Iborra, Salvador; Priego, Elena; Cueto, Francisco J.; Quintana, Juan A.; Martínez-Cano, Sarai; Mejías-Pérez, Ernesto; Esteban, Mariano; Melero, Ignacio; Hidalgo, Andrés; Sancho, David
2017-01-01
The goal of successful anti-tumoural immunity is the development of long-term protective immunity to prevent relapse. Infiltration of tumours with CD8+ T cells with a resident memory (Trm) phenotype correlates with improved survival. However, the interplay of circulating CD8+ T cells and Trm cells remains poorly explored in tumour immunity. Using different vaccination strategies that fine-tune the generation of Trm cells or circulating memory T cells, here we show that, while both subsets are sufficient for anti-tumour immunity, the presence of Trm cells improves anti-tumour efficacy. Transferred central memory T cells (Tcm) generate Trm cells following viral infection or tumour challenge. Anti-PD-1 treatment promotes infiltration of transferred Tcm cells within tumours, improving anti-tumour immunity. Moreover, Batf3-dependent dendritic cells are essential for reactivation of circulating memory anti-tumour response. Our findings show the plasticity, collaboration and requirements for reactivation of memory CD8+ T cells subsets needed for optimal tumour vaccination and immunotherapy. PMID:28714465
Szabó, Csilla; Kelemen, Oguz; Kéri, Szabolcs
2014-05-21
Posttraumatic stress disorder (PTSD) is characterized by hyperarousal, flashbacks, avoidance, and memory dysfunctions. Although psychotherapy improves the clinical symptoms, its effect on memory has not been explored. In addition, there is no information about gene expression changes related to hippocampal functions. We assessed PTSD patients (n=20) using the Wechsler Memory Scale-Revised (WAIS-R) and a paired associates learning (PAL) test, as well as changes in blood FK506 binding protein (FKBP5) mRNA expression before and after cognitive behavioral therapy (CBT). Results revealed that before CBT PTSD patients were impaired on WAIS-R delayed recall, attention/concentration, and PAL compared with trauma-exposed control subjects (n=20). These memory dysfunctions showed a significant improvement after CBT. Better performance on the PAL test correlated with enhanced blood FKBP5 mRNA expression. These results suggest that elevated FKBP5 expression during CBT is related to improved associative memory linked to the hippocampal formation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wan, Xiazi; Kobayashi, Hiroyuki; Aoki, Naokazu
2015-03-01
In a preceding study, we investigated the effects of image noise on the perception of image sharpness using white noise, and one- and two-dimensional single-frequency sinusoidal patterns as stimuli. This study extends our preceding study by evaluating natural color images, rather than black-and-white patterns. The results showed that the effect of noise in improving image sharpness perception is more evident in blurred images than in sharp images. This is consistent with the results of the preceding study. In another preceding study, we proposed "memory texture" to explain the preferred granularity of images, as a concept similar to "memory color" for preferred color reproduction. We observed individual differences in type of memory texture for each object, that is, white or 1/f noise. This study discusses the relationship between improvement of sharpness perception by adding noise, and the memory texture, following its individual differences. We found that memory texture is one of the elements that affect sharpness perception.
Regular rehearsal helps in consolidation of long term memory.
Parle, Milind; Singh, Nirmal; Vasudevan, Mani
2006-01-01
Memory, one of the most complex functions of the brain comprises of multiple components such as perception, registration, consolidation, storage, retrieval and decay. The present study was undertaken to evaluate the impact of different training sessions on the retention capacity of rats. The capacity of retention of learnt task was measured using exteroceptive behavioral models such as Hexagonal swimming pool apparatus, Hebb-Williams maze and Elevated plus-maze. A total of 150 rats divided into fifteen groups were employed in the present study. The animals were subjected to different training sessions during first three days. The ability to retain the learned task was tested after single, sub-acute, acute, sub-chronic and chronic exposure to above exteroceptive memory models in separate groups of animals. The memory score of all animals was recorded after 72 h, 192 h and 432 h of their last training trial. Rats of single exposure group did not show any effect on memory. Sub-acute training group animals showed improved memory up to 72 h only, where as in acute and sub-chronic training groups this memory improvement was extended up to 192 h. The rats, which were subjected to chronic exposures showed a significant improvement in retention capacity that lasted up to a period of eighteen days. These observations suggest that repeated rehearsals at regular intervals are probably necessary for consolidation of long-term memory. It was observed that sub-acute, acute and sub-chronic exposures, improved the retrieval ability of rats but this memory improving effect was short lived. Thus, rehearsal or training plays a crucial role in enhancing one's capacity of retaining the learnt information. Key PointsThe present study underlines the importance of regular rehearsals in enhancing one's capacity of retaining the learnt information. " Sub-acute, acute & sub-chronic rehearsals result in storing of information for a limited period of time.Quick decay of information or forgetting is a natural continuously active process designed to wipe out unnecessary and useless information.The capacities of grasping, understanding and memory are all crucial for career growth.Single exposure to a new environment is not sufficient enough to form a permanent memory trace in brain.
Charlton, Bruce G; Andras, Peter
2009-07-01
Long term memory (LTM) systems need to be adaptive such that they enhance an organism's reproductive fitness and self-reproducing in order to maintain their complexity of communications over time in the face of entropic loss of information. Traditional 'representation-consolidation' accounts conceptualize memory adaptiveness as due to memories being 'representations' of the environment, and the longevity of memories as due to 'consolidation' processes. The assumption is that memory representations are formed while an animal is awake and interacting with the environment, and these memories are consolidated mainly while the animal is asleep. So the traditional view of memory is 'instructionist' and assumes that information is transferred from the environment into the brain. By contrast, we see memories as arising endogenously within the brain's LTM system mainly during sleep, to create complex but probably maladaptive memories which are then simplified ('pruned') and selected during the awake period. When awake the LTM system is brought into a more intense interaction with past and present experience. Ours is therefore a 'selectionist' account of memory, and could be termed the Sleep Elaboration-Awake Pruning (or SEAP) theory. The SEAP theory explains the longevity of memories in the face of entropy by the tendency for memories to grow in complexity during sleep; and explains the adaptiveness of memory by selection for consistency with perceptions and previous memories during the awake state. Sleep is therefore that behavioural state during which most of the internal processing of the system of LTM occurs; and the reason sleep remains poorly understood is that its primary activity is the expansion of long term memories. By re-conceptualizing the relationship between memory, sleep and the environment; SEAP provides a radically new framework for memory research, with implications for the measurement of memory and the design of empirical investigations in clinical, psychopharmacological and creative domains. For example, it would be predicted that states of insufficient alertness such as delirium would produce errors of commission (memory distortion and false memories, as with psychotic delusions), while sleep deprivation would produce errors of memory omission (memory loss). Ultimately, the main argument in favour of SEAP is that long term memory must be a complex adaptive system, and complex systems arise, are selected and sustained according to the principles of systems theory; and therefore LTM cannot be functioning in the way assumed by 'representation-consolidation' theories.
Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.
Pan, Yi; Luo, Qianying; Cheng, Min
2016-08-01
Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.
A case of amnesia at an early age.
Brizzolara, Daniela; Casalini, Claudia; Montanaro, Domenico; Posteraro, Federico
2003-01-01
A dissociation between short- and long-term memory (LTM) and between the episodic and the semantic component of LTM is reported in a young girl who became amnesic at the age of 6 after an episode of acute encephalopathy resulting in bilateral frontal, insular, thalamic, ponto-mesencephalic, hippocampal and temporal lesions, as documented by MRI. The girl became amnesic a few months after starting school. A follow-up investigation showed that she was able to learn to read, write and acquire number facts and procedures and to improve her semantic knowledge. Our results show that the features of adult amnesia can also be found in children and that new semantic knowledge can be acquired in spite of an anterograde memory deficit. This dissociation does not agree with theories viewing long-term declarative memory as a unitary process mediated by the hippocampal system, but supports recent hypotheses that the acquisition of semantic knowledge is independent from episodic memory processes, and takes place through spared cortical regions subjacent to the hippocampi (Vargha-Khadem et al., 1997).
Technique for improving solid state mosaic images
NASA Technical Reports Server (NTRS)
Saboe, J. M.
1969-01-01
Method identifies and corrects mosaic image faults in solid state visual displays and opto-electronic presentation systems. Composite video signals containing faults due to defective sensing elements are corrected by a memory unit that contains the stored fault pattern and supplies the appropriate fault word to the blanking circuit.
LEARN: Playful Techniques To Accelerate Learning.
ERIC Educational Resources Information Center
Richards, Regina G.
The methods outlined in this guide offer teachers a variety of ways to stimulate interest, enhance concentration, increase understanding, and improve memory in their students. Chapter 1 discusses the LEARN (Learning Efficiently And Remembering Mnemonics) system, a set of strategies that help students use a variety of processing styles to a greater…
The influence of cannabinoids on learning and memory processes of the dorsal striatum.
Goodman, Jarid; Packard, Mark G
2015-11-01
Extensive evidence indicates that the mammalian endocannabinoid system plays an integral role in learning and memory. Our understanding of how cannabinoids influence memory comes predominantly from studies examining cognitive and emotional memory systems mediated by the hippocampus and amygdala, respectively. However, recent evidence suggests that cannabinoids also affect habit or stimulus-response (S-R) memory mediated by the dorsal striatum. Studies implementing a variety of maze tasks in rats indicate that systemic or intra-dorsolateral striatum infusions of cannabinoid receptor agonists or antagonists impair habit memory. In mice, cannabinoid 1 (CB1) receptor knockdown can enhance or impair habit formation, whereas Δ(9)THC tolerance enhances habit formation. Studies in human cannabis users also suggest an enhancement of S-R/habit memory. A tentative conclusion based on the available data is that acute disruption of the endocannabinoid system with either agonists or antagonists impairs, whereas chronic cannabinoid exposure enhances, dorsal striatum-dependent S-R/habit memory. CB1 receptors are required for multiple forms of striatal synaptic plasticity implicated in memory, including short-term and long-term depression. Interactions with the hippocampus-dependent memory system may also have a role in some of the observed effects of cannabinoids on habit memory. The impairing effect often observed with acute cannabinoid administration argues for cannabinoid-based treatments for human psychopathologies associated with a dysfunctional habit memory system (e.g. post-traumatic stress disorder and drug addiction/relapse). In addition, the enhancing effect of repeated cannabinoid exposure on habit memory suggests a novel neurobehavioral mechanism for marijuana addiction involving the dorsal striatum-dependent memory system. Copyright © 2015 Elsevier Inc. All rights reserved.
Memory Benchmarks for SMP-Based High Performance Parallel Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, A B; de Supinski, B; Mueller, F
2001-11-20
As the speed gap between CPU and main memory continues to grow, memory accesses increasingly dominates the performance of many applications. The problem is particularly acute for symmetric multiprocessor (SMP) systems, where the shared memory may be accessed concurrently by a group of threads running on separate CPUs. Unfortunately, several key issues governing memory system performance in current systems are not well understood. Complex interactions between the levels of the memory hierarchy, buses or switches, DRAM back-ends, system software, and application access patterns can make it difficult to pinpoint bottlenecks and determine appropriate optimizations, and the situation is even moremore » complex for SMP systems. To partially address this problem, we formulated a set of multi-threaded microbenchmarks for characterizing and measuring the performance of the underlying memory system in SMP-based high-performance computers. We report our use of these microbenchmarks on two important SMP-based machines. This paper has four primary contributions. First, we introduce a microbenchmark suite to systematically assess and compare the performance of different levels in SMP memory hierarchies. Second, we present a new tool based on hardware performance monitors to determine a wide array of memory system characteristics, such as cache sizes, quickly and easily; by using this tool, memory performance studies can be targeted to the full spectrum of performance regimes with many fewer data points than is otherwise required. Third, we present experimental results indicating that the performance of applications with large memory footprints remains largely constrained by memory. Fourth, we demonstrate that thread-level parallelism further degrades memory performance, even for the latest SMPs with hardware prefetching and switch-based memory interconnects.« less
Sparse distributed memory overview
NASA Technical Reports Server (NTRS)
Raugh, Mike
1990-01-01
The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.
Motivation and short-term memory in visual search: Attention's accelerator revisited.
Schneider, Daniel; Bonmassar, Claudia; Hickey, Clayton
2018-05-01
A cue indicating the possibility of cash reward will cause participants to perform memory-based visual search more efficiently. A recent study has suggested that this performance benefit might reflect the use of multiple memory systems: when needed, participants may maintain the to-be-remembered object in both long-term and short-term visual memory, with this redundancy benefitting target identification during search (Reinhart, McClenahan & Woodman, 2016). Here we test this compelling hypothesis. We had participants complete a memory-based visual search task involving a reward cue that either preceded presentation of the to-be-remembered target (pre-cue) or followed it (retro-cue). Following earlier work, we tracked memory representation using two components of the event-related potential (ERP): the contralateral delay activity (CDA), reflecting short-term visual memory, and the anterior P170, reflecting long-term storage. We additionally tracked attentional preparation and deployment in the contingent negative variation (CNV) and N2pc, respectively. Results show that only the reward pre-cue impacted our ERP indices of memory. However, both types of cue elicited a robust CNV, reflecting an influence on task preparation, both had equivalent impact on deployment of attention to the target, as indexed in the N2pc, and both had equivalent impact on visual search behavior. Reward prospect thus has an influence on memory-guided visual search, but this does not appear to be necessarily mediated by a change in the visual memory representations indexed by CDA. Our results demonstrate that the impact of motivation on search is not a simple product of improved memory for target templates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of iron and zinc deficiency on short term memory in children.
Umamaheswari, K; Bhaskaran, Mythily; Krishnamurthy, Gautham; Vasudevan, Hemamalini; Vasudevan, Kavita
2011-04-01
To evaluate the effect of iron and zinc deficiency on short term memory of children in the age group of 6-11 years and to assess the response to supplementation therapy. Interventional study. 100 children in the age group of 6-11 years (subdivided into 6-8 yr and 9-11 yr groups) from an urban corporation school. After collection of demographic data, the study children underwent hematological assessment which included serum iron, serum zinc, and hemoglobin estimation. Based on the results, they were divided into Iron deficient, Zinc deficient, and Combined deficiency groups. Verbal and nonverbal memory assessment was done in all the children. Iron (2mg/kg bodyweight in two divided doses) and zinc (5mg once-a-day) supplementation for a period of 3 months for children in the deficient group. All children with iron and zinc deficiency in both the age groups had memory deficits. Combined deficiency in 9-11 years group showed severe degree of affectation in verbal (P<0.01) and non-verbal memory (P<0.01), and improved after supplementation (P = 0.05 and P< 0.01, respectively). In 6-8 years group, only non-verbal form of memory (P =0.02) was affected, which improved after supplementation. Iron and zinc deficiency is associated with memory deficits in children. There is a marked improvement in memory after supplementation. Post supplementation IQ scores do not show significant improvement in deficient groups in 6-8 year olds.
Glucose improves object-location binding in visual-spatial working memory.
Stollery, Brian; Christian, Leonie
2016-02-01
There is evidence that glucose temporarily enhances cognition and that processes dependent on the hippocampus may be particularly sensitive. As the hippocampus plays a key role in binding processes, we examined the influence of glucose on memory for object-location bindings. This study aims to study how glucose modifies performance on an object-location memory task, a task that draws heavily on hippocampal function. Thirty-one participants received 30 g glucose or placebo in a single 1-h session. After seeing between 3 and 10 objects (words or shapes) at different locations in a 9 × 9 matrix, participants attempted to immediately reproduce the display on a blank 9 × 9 matrix. Blood glucose was measured before drink ingestion, mid-way through the session, and at the end of the session. Glucose significantly improves object-location binding (d = 1.08) and location memory (d = 0.83), but not object memory (d = 0.51). Increasing working memory load impairs object memory and object-location binding, and word-location binding is more successful than shape-location binding, but the glucose improvement is robust across all difficulty manipulations. Within the glucose group, higher levels of circulating glucose are correlated with better binding memory and remembering the locations of successfully recalled objects. The glucose improvements identified are consistent with a facilitative impact on hippocampal function. The findings are discussed in the context of the relationship between cognitive processes, hippocampal function, and the implications for glucose's mode of action.
Flight control system design factors for applying automated testing techniques
NASA Technical Reports Server (NTRS)
Sitz, Joel R.; Vernon, Todd H.
1990-01-01
The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 high alpha research vehicle (HARV) automated test systems are discussed. It is noted that operational experiences in developing and using these automated testing techniques have highlighted the need for incorporating target system features to improve testability. Improved target system testability can be accomplished with the addition of nonreal-time and real-time features. Online access to target system implementation details, unobtrusive real-time access to internal user-selectable variables, and proper software instrumentation are all desirable features of the target system. Also, test system and target system design issues must be addressed during the early stages of the target system development. Processing speeds of up to 20 million instructions/s and the development of high-bandwidth reflective memory systems have improved the ability to integrate the target system and test system for the application of automated testing techniques. It is concluded that new methods of designing testability into the target systems are required.
PCM-Based Durable Write Cache for Fast Disk I/O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhuo; Wang, Bin; Carpenter, Patrick
2012-01-01
Flash based solid-state devices (FSSDs) have been adopted within the memory hierarchy to improve the performance of hard disk drive (HDD) based storage system. However, with the fast development of storage-class memories, new storage technologies with better performance and higher write endurance than FSSDs are emerging, e.g., phase-change memory (PCM). Understanding how to leverage these state-of-the-art storage technologies for modern computing systems is important to solve challenging data intensive computing problems. In this paper, we propose to leverage PCM for a hybrid PCM-HDD storage architecture. We identify the limitations of traditional LRU caching algorithms for PCM-based caches, and develop amore » novel hash-based write caching scheme called HALO to improve random write performance of hard disks. To address the limited durability of PCM devices and solve the degraded spatial locality in traditional wear-leveling techniques, we further propose novel PCM management algorithms that provide effective wear-leveling while maximizing access parallelism. We have evaluated this PCM-based hybrid storage architecture using applications with a diverse set of I/O access patterns. Our experimental results demonstrate that the HALO caching scheme leads to an average reduction of 36.8% in execution time compared to the LRU caching scheme, and that the SFC wear leveling extends the lifetime of PCM by a factor of 21.6.« less
Improvement of Allocentric Spatial Memory Resolution in Children from 2 to 4 Years of Age
ERIC Educational Resources Information Center
Lambert, Farfalla Ribordy; Lavenex, Pierre; Lavenex, Pamela Banta
2015-01-01
Allocentric spatial memory, the memory for locations coded in relation to objects comprising our environment, is a fundamental component of episodic memory and is dependent on the integrity of the hippocampal formation in adulthood. Previous research from different laboratories reported that basic allocentric spatial memory abilities are reliably…
Goodman, Jarid; Marsh, Rachel; Peterson, Bradley S.; Packard, Mark G.
2014-01-01
Extensive evidence indicates that mammalian memory is organized into multiple brains systems, including a “cognitive” memory system that depends upon the hippocampus and a stimulus-response “habit” memory system that depends upon the dorsolateral striatum. Dorsal striatal-dependent habit memory may in part influence the development and expression of some human psychopathologies, particularly those characterized by strong habit-like behavioral features. The present review considers this hypothesis as it pertains to psychopathologies that typically emerge during childhood and adolescence. These disorders include Tourette syndrome, attention-deficit/hyperactivity disorder, obsessive-compulsive disorder, eating disorders, and autism spectrum disorders. Human and nonhuman animal research shows that the typical development of memory systems comprises the early maturation of striatal-dependent habit memory and the relatively late maturation of hippocampal-dependent cognitive memory. We speculate that the differing rates of development of these memory systems may in part contribute to the early emergence of habit-like symptoms in childhood and adolescence. In addition, abnormalities in hippocampal and striatal brain regions have been observed consistently in youth with these disorders, suggesting that the aberrant development of memory systems may also contribute to the emergence of habit-like symptoms as core pathological features of these illnesses. Considering these disorders within the context of multiple memory systems may help elucidate the pathogenesis of habit-like symptoms in childhood and adolescence, and lead to novel treatments that lessen the habit-like behavioral features of these disorders. PMID:24286520
ERIC Educational Resources Information Center
Wiest, Dudley J.; Wong, Eugene H.; Minero, Laura P.; Pumaccahua, Tessy T.
2014-01-01
Working memory has been well documented as a significant predictor of academic outcomes (e.g., reading and math achievement as well as general life outcomes). The purpose of this study was to investigate the effectiveness of computerized cognitive training to improve both working memory and encoding abilities in a school setting. Thirty students…
ERIC Educational Resources Information Center
Wright, Clare
2013-01-01
This article addresses the question of how far working memory may affect second language (L2) learners' improvement in spoken language during a period of immersion. Research is presented testing the hypothesis that individual differences in working memory (WM) capacity are associated with individual variation in improvements in oral production of…
NASA Astrophysics Data System (ADS)
Lai, Chen-Yen; Chien, Chih-Chun
2017-09-01
Dynamics of a system in general depends on its initial state and how the system is driven, but in many-body systems the memory is usually averaged out during evolution. Here, interacting quantum systems without external relaxations are shown to retain long-time memory effects in steady states. To identify memory effects, we first show quasi-steady-state currents form in finite, isolated Bose- and Fermi-Hubbard models driven by interaction imbalance and they become steady-state currents in the thermodynamic limit. By comparing the steady-state currents from different initial states or ramping rates of the imbalance, long-time memory effects can be quantified. While the memory effects of initial states are more ubiquitous, the memory effects of switching protocols are mostly visible in interaction-induced transport in lattices. Our simulations suggest that the systems enter a regime governed by a generalized Fick's law and memory effects lead to initial-state-dependent diffusion coefficients. We also identify conditions for enhancing memory effects and discuss possible experimental implications.
Non-volatile main memory management methods based on a file system.
Oikawa, Shuichi
2014-01-01
There are upcoming non-volatile (NV) memory technologies that provide byte addressability and high performance. PCM, MRAM, and STT-RAM are such examples. Such NV memory can be used as storage because of its data persistency without power supply while it can be used as main memory because of its high performance that matches up with DRAM. There are a number of researches that investigated its uses for main memory and storage. They were, however, conducted independently. This paper presents the methods that enables the integration of the main memory and file system management for NV memory. Such integration makes NV memory simultaneously utilized as both main memory and storage. The presented methods use a file system as their basis for the NV memory management. We implemented the proposed methods in the Linux kernel, and performed the evaluation on the QEMU system emulator. The evaluation results show that 1) the proposed methods can perform comparably to the existing DRAM memory allocator and significantly better than the page swapping, 2) their performance is affected by the internal data structures of a file system, and 3) the data structures appropriate for traditional hard disk drives do not always work effectively for byte addressable NV memory. We also performed the evaluation of the effects caused by the longer access latency of NV memory by cycle-accurate full-system simulation. The results show that the effect on page allocation cost is limited if the increase of latency is moderate.
Easton, Alexander; Eacott, Madeline J
2010-12-31
In recent years there has been significant debate about whether there is a single medial temporal lobe memory system or dissociable systems for episodic and other types of declarative memory. In addition there has been a similar debate over the dissociability of recollection and familiarity based processes in recognition memory. Here we present evidence from recent work using episodic memory tasks in animals that allows us to explore these issues in more depth. We review studies that demonstrate triple dissociations within the medial temporal lobe, with only the hippocampal system being necessary for episodic memory. Similarly we review behavioural evidence for a dissociation in a task of episodic memory in rats where animals with lesions of the fornix are only impaired at recollection of the episodic memory, not recognition within the same trial. This work, then, supports recent models of dissociable neural systems within the medial temporal lobe but also raises questions for future investigation about the interactions of these medial temporal lobe memory systems with other structures. Copyright © 2009 Elsevier B.V. All rights reserved.
Salis, Christos; Hwang, Faustina; Howard, David; Lallini, Nicole
2017-02-01
Although the roles of verbal short-term and working memory on spoken sentence comprehension skills in persons with aphasia have been debated for many years, the development of treatments to mitigate verbal short-term and working memory deficits as a way of improving spoken sentence comprehension is a new avenue in treatment research. In this article, we review and critically appraise this emerging evidence base. We also present new data from five persons with aphasia of a replication of a previously reported treatment that had resulted in some improvement of spoken sentence comprehension in a person with aphasia. The replicated treatment did not result in improvements in sentence comprehension. We forward recommendations for future research in this, admittedly weak at present, but important clinical research avenue that would help improve our understanding of the mechanisms of improvement of short-term and working memory training in relation to sentence comprehension. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Memory in Elementary School Children Is Improved by an Unrelated Novel Experience.
Ballarini, Fabricio; Martínez, María Cecilia; Díaz Perez, Magdalena; Moncada, Diego; Viola, Haydée
2013-01-01
Education is the most traditional means with formative effect on the human mind, learning and memory being its fundamental support. For this reason, it is essential to find different strategies to improve the studentś performance. Based on previous work, we hypothesized that a novel experience could exert an enhancing effect on learning and memory within the school environment. Here we show that novel experience improved the memory of literary or graphical activities when it is close to these learning sessions. We found memory improvements in groups of students who had experienced a novel science lesson 1 hour before or after the reading of a story, but not when these events were 4 hours apart. Such promoting effect on long-term memory (LTM) was also reproduced with another type of novelty (a music lesson) and also after another type of learning task (a visual memory). Interestingly, when the lesson was familiar, it failed to enhance the memory of the other task. Our results show that educationally relevant novel events experienced during normal school hours can improve LTM for tasks/activities learned during regular school lessons. This effect is restricted to a critical time window around learning and is particularly dependent on the novel nature of the associated experience. These findings provide a tool that could be easily transferred to the classroom by the incorporation of educationally novel events in the school schedule as an extrinsic adjuvant of other information acquired some time before or after it. This approach could be a helpful tool for the consolidation of certain types of topics that generally demand a great effort from the children.
Morgan, Annette; Stevens, John
2010-07-01
The objective of this study was to investigate the effectiveness of Bacopa monnieri Linn. for improvement of memory performance in healthy older persons. This was a randomized, double-blind, placebo-controlled trial. The trial took place in Lismore, NSW, Australia between February and July 2005. Ninety-eight (98) healthy participants over 55 years of age were recruited from the general population. Participants were randomized to receive an extract of Bacopa monnieri called BacoMind(TM) (Natural Remedies Pvt. Ltd.), 300 mg/day, or an identical placebo. Following screening, neuropsychologic and subjective memory assessments were performed at baseline and at 12 weeks. Audioverbal and visual memory performance were measured by the Rey Auditory Verbal Learning Test (AVLT), the Rey-Osterrieth Complex Figure Test (CFT), and the Reitan Trail Making Test (TMT). Subjective memory performance was measured by the Memory Complaint Questionnaire (MAC-Q). One hundred and thirty-six (136) subjects volunteered; 103 met entry criteria, 98 commenced, and 81 completed the trial. Bacopa significantly improved verbal learning, memory acquisition, and delayed recall as measured by the AVLT: trial a4 (p = 0.000), trial a5 (p = 0.016); trial a6 (p = 0.000); trial a7 (delayed recall) (p = 0.001); total learning (p = 0.011); and retroactive interference (p = 0.048). CFT, MAC-Q, and TMT scores improved but group differences were not significant. Bacopa versus placebo caused gastrointestinal tract (GIT) side-effects. Bacopa significantly improved memory acquisition and retention in healthy older Australians. This concurs with previous findings and traditional use. Bacopa caused GIT side-effects of increased stool frequency, abdominal cramps, and nausea.
Automatic humidification system to support the assessment of food drying processes
NASA Astrophysics Data System (ADS)
Ortiz Hernández, B. D.; Carreño Olejua, A. R.; Castellanos Olarte, J. M.
2016-07-01
This work shows the main features of an automatic humidification system to provide drying air that match environmental conditions of different climate zones. This conditioned air is then used to assess the drying process of different agro-industrial products at the Automation and Control for Agro-industrial Processes Laboratory of the Pontifical Bolivarian University of Bucaramanga, Colombia. The automatic system allows creating and improving control strategies to supply drying air under specified conditions of temperature and humidity. The development of automatic routines to control and acquire real time data was made possible by the use of robust control systems and suitable instrumentation. The signals are read and directed to a controller memory where they are scaled and transferred to a memory unit. Using the IP address is possible to access data to perform supervision tasks. One important characteristic of this automatic system is the Dynamic Data Exchange Server (DDE) to allow direct communication between the control unit and the computer used to build experimental curves.
Role of adult neurogenesis in hippocampal-cortical memory consolidation
2014-01-01
Acquired memory is initially dependent on the hippocampus (HPC) for permanent memory formation. This hippocampal dependency of memory recall progressively decays with time, a process that is associated with a gradual increase in dependency upon cortical structures. This process is commonly referred to as systems consolidation theory. In this paper, we first review how memory becomes hippocampal dependent to cortical dependent with an emphasis on the interactions that occur between the HPC and cortex during systems consolidation. We also review the mechanisms underlying the gradual decay of HPC dependency during systems consolidation from the perspective of memory erasures by adult hippocampal neurogenesis. Finally, we discuss the relationship between systems consolidation and memory precision. PMID:24552281
Fernández, Rodrigo S.; Bavassi, Luz; Kaczer, Laura; Forcato, Cecilia; Pedreira, María E.
2016-01-01
Following the presentation of a reminder, consolidated memories become reactivated followed by a process of re-stabilization, which is referred to as reconsolidation. The most common behavioral tool used to reveal this process is interference produced by new learning shortly after memory reactivation. Memory interference is defined as a decrease in memory retrieval, the effect is generated when new information impairs an acquired memory. In general, the target memory and the interference task used are the same. Here we investigated how different memory systems and/or their valence could produce memory reconsolidation interference. We showed that a reactivated neutral declarative memory could be interfered by new learning of a different neutral declarative memory. Then, we revealed that an aversive implicit memory could be interfered by the presentation of a reminder followed by a threatening social event. Finally, we showed that the reconsolidation of a neutral declarative memory is unaffected by the acquisition of an aversive implicit memory and conversely, this memory remains intact when the neutral declarative memory is used as interference. These results suggest that the interference of memory reconsolidation is effective when two task rely on the same memory system or both evoke negative valence. PMID:28066212
Fernández, Rodrigo S; Bavassi, Luz; Kaczer, Laura; Forcato, Cecilia; Pedreira, María E
2016-01-01
Following the presentation of a reminder, consolidated memories become reactivated followed by a process of re-stabilization, which is referred to as reconsolidation. The most common behavioral tool used to reveal this process is interference produced by new learning shortly after memory reactivation. Memory interference is defined as a decrease in memory retrieval, the effect is generated when new information impairs an acquired memory. In general, the target memory and the interference task used are the same. Here we investigated how different memory systems and/or their valence could produce memory reconsolidation interference. We showed that a reactivated neutral declarative memory could be interfered by new learning of a different neutral declarative memory. Then, we revealed that an aversive implicit memory could be interfered by the presentation of a reminder followed by a threatening social event. Finally, we showed that the reconsolidation of a neutral declarative memory is unaffected by the acquisition of an aversive implicit memory and conversely, this memory remains intact when the neutral declarative memory is used as interference. These results suggest that the interference of memory reconsolidation is effective when two task rely on the same memory system or both evoke negative valence.
Recollecting, recognizing, and other acts of remembering: an overview of human memory.
LaVoie, Donna J; Cobia, Derin J
2007-09-01
The question of whether memory is important to human existence is simple to answer: life without memory would be devoid of any meaning. The question of what memory is, however, is much more difficult to answer. The main purpose of this article is to provide an overview of memory function, by drawing distinctions between different memory systems, specifically declarative (ie, conscious) versus nondeclarative (ie, nonconscious) memory systems. To distinguish between these larger systems and their various components, we include discussion of deficits in memory that occur as a consequence of brain injury and normative aging processes. Included in these descriptions is discussion of the neuroanatomical correlates of each memory component described to illustrate the importance of particular brain regions to different aspects of memory function.
Burdea, Grigore; Polistico, Kevin; Krishnamoorthy, Amalan; House, Gregory; Rethage, Dario; Hundal, Jasdeep; Damiani, Frank; Pollack, Simcha
2014-01-01
Purpose To describe the development of BrightBrainer™ integrative cognitive rehabilitation system and determine clinical feasibility with nursing home-bound dementia patients. Method BrightBrainer cognitive rehabilitation simulations were first played uni-manually, then bimanually. Participants sat in front of a laptop and interacted through a game controller that measured hand movements in 3D, as well as flexion of both index fingers. Interactive serious games were designed to improve basic and complex attention (concentration, short-term memory, dual tasking), memory recall, executive functioning and emotional well-being. Individual simulations adapted automatically to each participant's level of motor functioning. The system underwent feasibility trials spanning 16 sessions over 8 weeks. Participants were evaluated pre- and post-intervention, using standardized neuropsychological measures. Computerized measures of movement repetitions and task performance were stored on a remote server. Results Group analysis for 10 participants showed statistically significant improvement in decision making (p<0.01), with trend improvements in depression (p<0.056). Improvements were also seen in processing speed (p<0.13) and auditory attention (p<0.17); however, these were not statistically significant (partly attributable to the modest sample size). Eight of nine neuropsychological tests showed changes in the improvement direction indicating an effective rehabilitation (p<0.01). BrightBrainer technology was well tolerated with mean satisfaction ratings of 4.9/5.0 across participants. Conclusions Preliminary findings demonstrate utility within an advanced dementia population, suggesting that it will be beneficial to evaluate BrightBrainer through controlled clinical trials and to investigate its application in other clinical populations. PMID:24679074
Guerra-Narbona, R; Delgado-García, J M; López-Ramos, J C
2013-06-15
The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.
Dual redundant core memory systems
NASA Technical Reports Server (NTRS)
Hull, F. E.
1972-01-01
Electronic memory system consisting of series redundant drive switch circuits, triple redundant majority voted memory timing functions, and two data registers to provide functional dual redundancy is described. Signal flow through the circuits is illustrated and equence of events which occur within the memory system is explained.