Science.gov

Sample records for improving plant availability

  1. Improved outage management techniques for better plant availability

    SciTech Connect

    Bemer, J.P.

    1989-01-01

    To maintain high availability of nuclear generating units is one of the most important management objectives. The duration of outages-whether planned or unplanned-is the main parameter impacting on plant availability, but the planned outages, and essentially the refueling outages, are the most important in this respect, and they also have a heavy impact on the economics of plant operation. The following factors influence the duration of the outages: (1) modifications; (2) preventive maintenance operations; and (3) corrective maintenance operations of generic faults. In this paper, the authors examine how the outage management organization of Electricite de France (EdF) plants is tending to optimize the solutions to the above-mentioned points.

  2. Nitric Oxide Improves Internal Iron Availability in Plants1

    PubMed Central

    Graziano, Magdalena; Beligni, María Verónica; Lamattina, Lorenzo

    2002-01-01

    Iron deficiency impairs chlorophyll biosynthesis and chloroplast development. In leaves, most of the iron must cross several biological membranes to reach the chloroplast. The components involved in the complex internal iron transport are largely unknown. Nitric oxide (NO), a bioactive free radical, can react with transition metals to form metal-nitrosyl complexes. Sodium nitroprusside, an NO donor, completely prevented leaf interveinal chlorosis in maize (Zea mays) plants growing with an iron concentration as low as 10 μm Fe-EDTA in the nutrient solution. S-Nitroso-N-acetylpenicillamine, another NO donor, as well as gaseous NO supply in a translucent chamber were also able to revert the iron deficiency symptoms. A specific NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, blocked the effect of the NO donors. The effect of NO treatment on the photosynthetic apparatus of iron-deficient plants was also studied. Electron micrographs of mesophyll cells from iron-deficient maize plants revealed plastids with few photosynthetic lamellae and rudimentary grana. In contrast, in NO-treated maize plants, mesophyll chloroplast appeared completely developed. NO treatment did not increase iron content in plant organs, when expressed in a fresh matter basis, suggesting that root iron uptake was not enhanced. NO scavengers 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and methylene blue promoted interveinal chlorosis in iron-replete maize plants (growing in 250 μm Fe-EDTA). Even though results support a role for endogenous NO in iron nutrition, experiments did not establish an essential role. NO was also able to revert the chlorotic phenotype of the iron-inefficient maize mutants yellow stripe1 and yellow stripe3, both impaired in the iron uptake mechanisms. All together, these results support a biological action of NO on the availability and/or delivery of metabolically active iron within the plant. PMID:12481068

  3. Guide for prioritizing power plant productivity improvement projects: handbook of availability improvement methodology

    SciTech Connect

    Not Available

    1981-09-15

    As part of its program to help improve electrical power plant productivity, the Department of Energy (DOE) has developed a methodology for evaluating productivity improvement projects. This handbook presents a simplified version of this methodology called the Availability Improvement Methodology (AIM), which provides a systematic approach for prioritizing plant improvement projects. Also included in this handbook is a description of data taking requirements necessary to support the AIM methodology, benefit/cost analysis, and root cause analysis for tracing persistent power plant problems. In applying the AIM methodology, utility engineers should be mindful that replacement power costs are frequently greater for forced outages than for planned outages. Equivalent availability includes both. A cost-effective ranking of alternative plant improvement projects must discern between those projects which will reduce forced outages and those which might reduce planned outages. As is the case with any analytical procedure, engineering judgement must be exercised with respect to results of purely mathematical calculations.

  4. Feasibility studies to improve plant availability and reduce total installed cost in IGCC plants

    SciTech Connect

    Sullivan, Kevin; Anasti, William; Fang, Yichuan; Subramanyan, Karthik; Leininger, Tom; Zemsky, Christine

    2015-03-30

    The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6 – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.

  5. Geocomposite with Superabsorbent as an Element Improving Water Availability for Plants on Slopes

    NASA Astrophysics Data System (ADS)

    Pawlowski, A.; Lejcus, K.; Garlikowski, D.; Orzeszyna, H.

    2009-04-01

    Water availability for plants on a slope is usually worse, then on a plane surface. Exposure on sun radiation makes these conditions even more difficult. The key problem is how to supply plants with water. Frequently watering is good but expensive solution. To avoid often repeating of such action and/or to use as much as possible water from precipitation, it has to be retained in soil. One of the ways to increase soil water retention is superabsorbents (SAP), called often hydrogel addition to the soil. They can absorb 300 - 1000 times more water, then theirs own weight. This water can be later taken by roots system. Addition to the soil small amount of dry superabsorbent, which, after absorbing water, forms gel can affect stability of the slope top layer, diminishing soil strength parameters. Part of the strength lose can be recompensed by reinforcing action of better developed roots system, which, according to the tests are increasing soil shear strength. However because it is a living system still rest some uncertainty about its functioning over many vegetation seasons. From engineering point of view, these strength parameters are very difficult for precise calculation, control and determination of long term behaviour. Important factor of superabsorbent influence on soil shear parameters is its dosage and, as a result, final volume and properties after water absorption. If the volume of superabsorbent is not greater then available pore volume of soil, this influence is not decisive. By bigger dosage, when volume of superabsorbent with retained water is much greater then pore space volume. The soil form a suspension in hydrogel and in laboratory condition one can observe sedimentation of soil fraction at the early stage of saturation. After longer time gel's density is already high enough to support grains of soils and stop sedimentation process. By highly permeable soils, which are sometimes used in embankment construction, eg. for buttress, gel, just after

  6. Decreasing water availability across the globe improves the effectiveness of protective ant-plant mutualisms: a meta-analysis.

    PubMed

    Leal, Laura C; Peixoto, Paulo E C

    2016-10-28

    Abiotic conditions can increase the costs of services and/or the benefits of rewards provided by mutualistic partners. Consequently, in some situations, the outcome of mutualisms can move from beneficial to detrimental for at least one partner. In the case of protective mutualisms between ant bodyguards and plants bearing extrafloral nectaries (EFNs), plants from arid environments face a trade-off between EFN production and maintenance and water and carbon economy. This trade-off may increase EFN costs and decrease their value as a defensive strategy to plants in such environments. Despite this, the presence of EFNs is an ubiquitous trait in plants from arid environments, suggesting that they provide greater benefits to plants in these environments to compensate for their higher costs. We used a meta-analysis to investigate if such benefits do increase with decreasing water availability and the possible underlying causes (such as ant behaviour or ant diversity). As predicted, ant effect on EFN plants performance increased as mean annual precipitation decreased. We also found that the frequency of dominant ants on EFN plants increased in drier areas. Due to the more aggressive behaviour of dominant ants, we suggest that they represent an important factor shaping the adaptive value of EFNs to plants in arid environments.

  7. Genomic DNA extraction from medicinal plants available in Malaysia using a TriOmic(TM) improved extraction kit.

    PubMed

    Mohd-Hairul, A R; Sade, A B; Yiap, B C; Raha, A R

    2011-11-08

    DNA extraction was carried out on 32 medicinal plant samples available in Malaysia using the TriOmic(TM) extraction kit. Amounts of 0.1 g flowers or young leaves were ground with liquid nitrogen, lysed at 65°C in RY1(plus) buffer and followed by RNAse treatment. Then, RY2 buffer was added to the samples and mixed completely by vortexing before removal of cell debris by centrifugation. Supernatants were transferred to fresh microcentrifuge tubes and 0.1 volume RY3 buffer was added to each of the transferred supernatant. The mixtures were applied to spin columns followed by a centrifugation step to remove buffers and other residues. Washing step was carried out twice by applying 70% ethanol to the spin columns. Genomic DNA of the samples was recovered by applying 50 μL TE buffer to the membrane of each spin column, followed by a centrifugation step at room temperature. A modification of the TriOmic(TM) extraction procedure was carried out by adding chloroform:isoamyl alcohol (24:1) steps in the extraction procedure. The genomic DNA extracted from most of the 32 samples showed an increase of total yield when chloroform:isoamyl alcohol (24:1) steps were applied in the TriOmicTM extraction procedure. This preliminary study is very important for molecular studies of medicinal plants available in Malaysia since the DNA extraction can be completed in a shorter period of time (within 1 h) compared to manual extraction, which entails applying phenol, chloroform and ethanol precipitation, and requires 1-2 days to complete.

  8. International Atomic Energy Agency specialists meeting on experience in ageing, maintenance, and modernization of instrumentation and control systems for improving nuclear power plant availability

    SciTech Connect

    Not Available

    1993-10-01

    This report presents the proceedings of the Specialist`s Meeting on Experience in Aging, Maintenance and Modernization of Instrumentation and Control Systems for Improving Nuclear Power Plant Availability that was held at the Ramada Inn in Rockville, Maryland on May 5--7, 1993. The Meeting was presented in cooperation with the Electric Power Research Institute, Oak Ridge National Laboratory and the International Atomic Energy Agency. There were approximately 65 participants from 13 countries at the Meeting. Individual reports have been cataloged separately.

  9. Methodology for Scaling Fusion Power Plant Availability

    SciTech Connect

    Lester M. Waganer

    2011-01-04

    Normally in the U.S. fusion power plant conceptual design studies, the development of the plant availability and the plant capital and operating costs makes the implicit assumption that the plant is a 10th of a kind fusion power plant. This is in keeping with the DOE guidelines published in the 1970s, the PNL report1, "Fusion Reactor Design Studies - Standard Accounts for Cost Estimates. This assumption specifically defines the level of the industry and technology maturity and eliminates the need to define the necessary research and development efforts and costs to construct a one of a kind or the first of a kind power plant. It also assumes all the "teething" problems have been solved and the plant can operate in the manner intended. The plant availability analysis assumes all maintenance actions have been refined and optimized by the operation of the prior nine or so plants. The actions are defined to be as quick and efficient as possible. This study will present a methodology to enable estimation of the availability of the one of a kind (one OAK) plant or first of a kind (1st OAK) plant. To clarify, one of the OAK facilities might be the pilot plant or the demo plant that is prototypical of the next generation power plant, but it is not a full-scale fusion power plant with all fully validated "mature" subsystems. The first OAK facility is truly the first commercial plant of a common design that represents the next generation plant design. However, its subsystems, maintenance equipment and procedures will continue to be refined to achieve the goals for the 10th OAK power plant.

  10. Role of ethylene in responses of plants to nitrogen availability

    PubMed Central

    Khan, M. I. R.; Trivellini, Alice; Fatma, Mehar; Masood, Asim; Francini, Alessandra; Iqbal, Noushina; Ferrante, Antonio; Khan, Nafees A.

    2015-01-01

    Ethylene is a plant hormone involved in several physiological processes and regulates the plant development during the whole life. Stressful conditions usually activate ethylene biosynthesis and signaling in plants. The availability of nutrients, shortage or excess, influences plant metabolism and ethylene plays an important role in plant adaptation under suboptimal conditions. Among the plant nutrients, the nitrogen (N) is one the most important mineral element required for plant growth and development. The availability of N significantly influences plant metabolism, including ethylene biology. The interaction between ethylene and N affects several physiological processes such as leaf gas exchanges, roots architecture, leaf, fruits, and flowers development. Low plant N use efficiency (NUE) leads to N loss and N deprivation, which affect ethylene biosynthesis and tissues sensitivity, inducing cell damage and ultimately lysis. Plants may respond differently to N availability balancing ethylene production through its signaling network. This review discusses the recent advances in the interaction between N availability and ethylene at whole plant and different organ levels, and explores how N availability induces ethylene biology and plant responses. Exogenously applied ethylene seems to cope the stress conditions and improves plant physiological performance. This can be explained considering the expression of ethylene biosynthesis and signaling genes under different N availability. A greater understanding of the regulation of N by means of ethylene modulation may help to increase NUE and directly influence crop productivity under conditions of limited N availability, leading to positive effects on the environment. Moreover, efforts should be focused on the effect of N deficiency or excess in fruit trees, where ethylene can have detrimental effects especially during postharvest. PMID:26579172

  11. Lotus japonicus plants of the Gifu B-129 ecotype subjected to alkaline stress improve their Fe(2+) bio-availability through inoculation with Pantoea eucalypti M91.

    PubMed

    Campestre, María Paula; Castagno, Luis Nazareno; Estrella, María Julia; Ruiz, Oscar Adolfo

    2016-03-15

    Inoculation assays with Pantoea eucalypti M91 were performed on Lotus japonicus ecotype Gifu. Under alkaline conditions, this ecotype is characterized by the development of interveinal chlorosis of the apical leaves due to low mobilization of Fe(2+). Inoculation with P. eucalypti M91, a plant growth-promoting bacterial strain capable of producing pyoverdine-like and pyochelin-like siderophores under alkaline growth conditions, alters the root, resulting in a herringbone pattern of root branching. Additional features include improvement in Fe(2+) transport to the shoots, acidification of the hydroponic solution of the plant cultures, and an accompanying increase in the efficiency of the PSII parameters. In addition, there was an increase in the expression of the FRO1 and IRT1 genes, accompanied by a significant increase in FRO activity. Results showed that P. eucalypti M91 has a beneficial effect on the Fe acquisition machinery of Strategy I, as described for non-graminaceous monocots and dicots, suggesting its potential as an inoculant for legume crops cultivated in alkaline soils.

  12. Plant Available Nutrients, Barrow, Alaska, Ver. 1

    DOE Data Explorer

    Sloan, Victoria; Liebig, Jenny; Curtis, Bryan; Hahn, Melanie; Iversen, Colleen; Siegrist, Julie

    2014-02-19

    This dataset consists of measurements of plant available nutrients made using Plant Root Simulator probes (Western Ag Innovations Inc.) during 2012 and 2013. In 2012, Ca, Mg, K, P, Fe, Mn, Cu, Zn, B, S, Pb, Al, Cd, NO3-N and NH4-N were measured during spring, summer and winter in the centers, edges and troughs of four polygons in each of four areas of contrasting moisture regime and polygon type. In 2013, probes were installed in centers, edges and troughs of four polygons in each of two areas (high-centered and low-centered polygons) at two-week intervals and at 3 soil depths to capture fine-scale season dynamics of NO3-N and NH4-N. PRS probes are ion exchange resin membranes held in plastic supports that are inserted into soil to measure ion supply in situ. The anion and cation exchange with the membrane is intended to mimic plant uptake and thus provide a relevant measure of soil nutrient bioavailability. Measurements are made per area of probe membrane and cannot be converted to concentrations or related to soil volume.

  13. Regional Availability of Plants for Prairie Restoration

    DTIC Science & Technology

    2007-04-01

    limited on Corps land, a ERDC TN-EMRRP-SI-31 April 2007 6 recent study (Cully et al. 2003) indicated that small fragments of tallgrass prairie ...replicated a 110-acre prairie planted with an array of grasses and wildflowers to show visitors how the prairie in this area appeared historically. Despite...its limited size, a variety of native grasses and prairie wildflowers provide year-round color and give visitors a glimpse at the beauty the prairie

  14. Improved modeling of GPS selective availability

    NASA Technical Reports Server (NTRS)

    Braasch, Michael S.; Fink, Annmarie; Duffus, Keith

    1994-01-01

    Selective Availability (SA) represents the dominant error source for stand-alone users of the Global Positioning System (GPS). Even for DGPS, SA mandates the update rate required for a desired level of accuracy in realtime applications. As was witnessed in the recent literature, the ability to model this error source is crucial to the proper evaluation of GPS-based systems. A variety of SA models were proposed to date; however, each has its own shortcomings. Most of these models were based on limited data sets or data which were corrupted by additional error sources. A comprehensive treatment of the problem is presented. The phenomenon of SA is discussed and a technique is presented whereby both clock and orbit components of SA are identifiable. Extensive SA data sets collected from Block 2 satellites are presented. System Identification theory then is used to derive a robust model of SA from the data. This theory also allows for the statistical analysis of SA. The stationarity of SA over time and across different satellites is analyzed and its impact on the modeling problem is discussed.

  15. Plant nutrient availability from mixtures of fly ashes and biosolids

    SciTech Connect

    Schumann, A.W.; Summer, M.E.

    1999-10-01

    Nutrient imbalances, both deficiencies and excesses, are one reason for the poor acceptance of waste materials as fertilizer substitutes. Two greenhouse experiments were established using 24 different fly ashes with sewage sludge and poultry manure to estimate nutrient availability and imbalances to maize (Zea mays L.). The maximum maize growth attained with fly ash amendment of 80 Mg ha{sup {minus}1} was significantly less (50%) than a fertilized control treatment. The additional growth improvements obtained from mixtures with sewage sludge or poultry manure ranged from 30 to 49% and 30 to 71%, respectively. Organic materials applied alone achieved only 54 and 62% of the maximum potential, while growth on poultry manure mixtures was up to 94% of the best performing fertilized treatment. Results of foliage and soil analyses suggest that P and K were the main nutrient deficiencies, while B phytotoxicity and an imbalance in the K/Ca/Mg ratio also were likely causes of plant growth reduction. Fly ashes did not contribute significant P or K to correct soil and plant deficiencies, but more often exacerbated the imbalances by precipitation or adsorption of soil P. Sewage sludge mixed at 26% and poultry manure at 13% (DM) with fly ash had negligible effect on availability of phytotoxic fly ash B, but were good sources of P (both) and K (poultry manure). Good agreement between plant nutrition in pot experiments and previous laboratory extraction studies implies that chemical analysis, efficient formulation and optimized application rates may overcome nutrient limitations for use of wastes as fertilizer substitutes.

  16. Synergy between pathogen release and resource availability in plant invasion

    PubMed Central

    Blumenthal, Dana; Mitchell, Charles E.; Pyšek, Petr; Jarošík, Vojtěch

    2009-01-01

    Why do some exotic plant species become invasive? Two common hypotheses, increased resource availability and enemy release, may more effectively explain invasion if they favor the same species, and therefore act in concert. This would be expected if plant species adapted to high levels of available resources in their native range are particularly susceptible to enemies, and therefore benefit most from a paucity of enemies in their new range. We tested this possibility by examining how resource adaptations influence pathogen richness and release among 243 European plant species naturalized in the United States. Plant species adapted to higher resource availability hosted more pathogen species in their native range. Plants from mesic environments hosted more fungi than plants from xeric environments, and plants from nitrogen-rich environments hosted more viruses than plants from nitrogen-poor environments. Furthermore, plants classified as competitors hosted more than 4 times as many fungi and viruses as did stress tolerators. Patterns of enemy release mirrored those of pathogen richness: competitors and species from mesic and nitrogen-rich environments were released from many pathogen species, while stress tolerators and species from xeric and nitrogen-poor environments were released from relatively few pathogen species. These results suggest that enemy release contributes most to invasion by fast-growing species adapted to resource-rich environments. Consequently, enemy release and increases in resource availability may act synergistically to favor exotic over native species. PMID:19416888

  17. Compounds and methods for improving plant performance

    DOEpatents

    Unkefer, Pat J.; Knight, Thomas Joseph

    2016-09-20

    The invention is directed to methods and compositions for increasing a growth characteristic of a plant, increasing nutrient use efficiency of a plant, or improving a plant's ability to overcome stress comprising applying a composition comprising ketosuccinamate, a derivative thereof, or a salt thereof, to the plant or to a propagation material of the plant.

  18. Resource availability controls fungal diversity across a plant diversity gradient

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.; Blackwood, C.B.; Curtis, C.D.; Tilman, D.

    2006-01-01

    Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales. ?? 2006 Blackwell Publishing Ltd/CNRS.

  19. Linking phosphorus availability with photo-oxidative stress in plants.

    PubMed

    Hernández, Iker; Munné-Bosch, Sergi

    2015-05-01

    Plants have evolved a plethora of mechanisms to circumvent the potential damaging effects of living under low phosphorus availability in the soil. These mechanisms include different levels of organization, from root-shoot signalling at the whole-plant level to specific biochemical responses at the subcellular level, such as reductions in photosynthesis and the consequent activation of photo- and antioxidant mechanisms in chloroplasts. Some recent studies clearly indicate that severe phosphorus deficiency can lead to alterations in the photosynthetic apparatus, including reductions in CO2 assimilation rates, a down-regulation of photosynthesis-related genes and photoinhibition at the photosystem II level, thus causing potential photo-oxidative stress. Photo-oxidative stress is characterized by an increased production of reactive oxygen species in chloroplasts, which at low concentrations can serve a signalling, protective role, but when present at high concentrations can cause damage to lipids, proteins and nucleic acids, thus leading to irreversible injuries. We discuss here the mechanisms that phosphate-starved plants have evolved to withstand photo-oxidative stress, including changes at the subcellular level (e.g. activation of photo- and antioxidant protection mechanisms in chloroplasts), cellular and tissular levels (e.g. activation of photorespiration and anthocyanin accumulation) and whole-plant level (alterations in source-sink relationships modulated by hormones). Of particular importance is the current evidence demonstrating that phosphate-starved plants activate simultaneous responses at multiple levels, from transcriptional changes to root-shoot signalling, to prevent oxidative damage. In this review, we summarize current knowledge about the occurrence of photo-oxidative stress in phosphate-starved plants and highlight the mechanisms these plants have evolved to prevent oxidative damage under phosphorus limitation at the subcellular, cellular and whole-plant

  20. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity.

    PubMed

    Muller, Jonathon N; Loh, Susan; Braggion, Ligia; Cameron, Stephen; Firn, Jennifer L

    2014-01-01

    Buildings structures and surfaces are explicitly being used to grow plants, and these "urban plantings" are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant "ecological values" by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly-likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.

  1. Plant response to nutrient availability across variable bedrock geologies

    USGS Publications Warehouse

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  2. Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants.

    PubMed

    Pii, Youry; Penn, Alexander; Terzano, Roberto; Crecchio, Carmine; Mimmo, Tanja; Cesco, Stefano

    2015-02-01

    Iron (Fe) is a very important element for plants, since it is involved in many biochemical processes and, often, for the low solubility of the natural Fe sources in soil, plants suffer from Fe - deficiency, especially when grown on calcareous soils. Among the numerous plant growth-promoting rhizobacteria (PGPR) that colonize the rhizosphere of agronomically important crops, Azospirillum brasilense has been shown to exert strong stimulating activities on plants, by inducing alterations of the root architecture and an improvement of mineral nutrition, which could result from an enhancement of ion uptake mechanisms as well as by increased bioavailability of nutrients. Some studies have also established that A. brasilense can act as biocontrol agent, by preventing the growth and/or virulence of phytopathogens, most likely through the production of microbial siderophores that sequester Fe from the soil. Despite microbial siderophores complexed with Fe could be an easily accessible Fe source for plants, the possible involvement of A. brasilense in improving Fe nutrition in plants suffering from the micronutrient deficiency has not been investigated yet. Within the present research, the characterization of the physiological and biochemical effects induced by Fe starvation and PGPR inoculation in cucumber plants (Cucumis sativus L. cv. Chinese Long) was carried out. The analyses of root exudates released by hydroponically grown plants highlighted that cucumber plants respond differently depending on the nutritional status. In addition, following the cultivation period on calcareous soil, also the root exudates found in the extracts suggested a peculiar behaviour of plants as a function of the treatment. Interestingly, the presence of the inoculum in soil allowed a faster recovery of cucumber plants from Fe-deficiency symptoms, i.e. increase in the chlorophyll content, in the biomass and in the Fe content of leaves. These observations might suggest a feasible application of

  3. Diverse urban plantings managed with sufficient resource availability can increase plant productivity and arthropod diversity

    PubMed Central

    Muller, Jonathon N.; Loh, Susan; Braggion, Ligia; Cameron, Stephen; Firn, Jennifer L.

    2014-01-01

    Buildings structures and surfaces are explicitly being used to grow plants, and these “urban plantings” are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant “ecological values” by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly—likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context. PMID:25400642

  4. Precursor Report of Data Needs and Recommended Practices for PV Plant Availability Operations and Maintenance Reporting.

    SciTech Connect

    Hill, Roger R.; Klise, Geoffrey Taylor; Balfour, John R.

    2015-01-01

    Characterizing the factors that affect reliability of a photovoltaic (PV) power plant is an important aspect of optimal asset management. This document describes the many factors that affect operation and maintenance (O&M) of a PV plant, identifies the data necessary to quantify those factors, and describes how data might be used by O&M service providers and others in the PV industry. This document lays out data needs from perspectives of reliability, availability, and key performance indicators and is intended to be a precursor for standardizing terminology and data reporting, which will improve data sharing, analysis, and ultimately PV plant performance.

  5. PV System 'Availability' as a Reliability Metric -- Improving Standards, Contract Language and Performance Models

    SciTech Connect

    Klise, Geoffrey T.; Hill, Roger; Walker, Andy; Dobos, Aron; Freeman, Janine

    2016-11-21

    The use of the term 'availability' to describe a photovoltaic (PV) system and power plant has been fraught with confusion for many years. A term that is meant to describe equipment operational status is often omitted, misapplied or inaccurately combined with PV performance metrics due to attempts to measure performance and reliability through the lens of traditional power plant language. This paper discusses three areas where current research in standards, contract language and performance modeling is improving the way availability is used with regards to photovoltaic systems and power plants.

  6. Evaluation of plant biomass resources available for replacement of fossil oil

    PubMed Central

    Henry, Robert J

    2010-01-01

    The potential of plants to replace fossil oil was evaluated by considering the scale of production required, the area of land needed and the types of plants available. High yielding crops (50 tonnes/ha) that have a high conversion efficiency (75%) would require a global land footprint of around 100 million ha to replace current (2008) oil consumption. Lower yielding or less convertible plants would require a larger land footprint. Domestication of new species as dedicated energy crops may be necessary. A systematic analysis of higher plants and their current and potential uses is presented. Plant biotechnology provides tools to improve the prospects of replacing oil with plant-derived biomass by increasing the amount of biomass produced per unit area of land and improving the composition of the biomass to increase the efficiency of conversion to biofuel and biomaterials. Options for the production of high value coproducts and the expression of processing aids such as enzymes in the plant may add further value to plants as bioenergy resources. PMID:20070873

  7. Cost and availability of gadolinium for nuclear fuel reprocessing plants

    SciTech Connect

    Klepper, O.H.

    1985-06-01

    Gadolinium is currently planned for use as a soluble neutron poison in nuclear fuel reprocessing plants to prevent criticality of solutions of spent fuel. Gadolinium is relatively rare and expensive. The present study was undertaken therefore to estimate whether this material is likely to be available in quantities sufficient for fuel reprocessing and at reasonable prices. It was found that gadolinium, one of 16 rare earth elements, appears in the marketplace as a by-product and that its present supply is a function of the production rate of other more prevalent rare earths. The potential demand for gadolinium in a fuel reprocessing facility serving a future fast reactor industry amounts to only a small fraction of the supply. At the present rate of consumption, domestic supplies of rare earths containing gadolinium are adequate to meet national needs (including fuel reprocessing) for over 100 years. With access to foreign sources, US demands can be met well beyond the 21st century. It is concluded therefore that the supply of gadolinium will quite likely be more than adequate for reprocessing spent fuel for the early generation of fast reactors. The current price of 99.99% pure gadolinium oxide lies in the range $50/lb to $65/lb (1984 dollars). By the year 2020, in time for reprocessing spent fuel from an early generation of large fast reactors, the corresponding values are expected to lie in the $60/lb to $75/lb (1984 dollars) price range. This increase is modest and its economic impact on nuclear fuel reprocessing would be minor. The economic potential for recovering gadolinium from the wastes of nuclear fuel reprocessing plants (which use gadolinium neutron poison) was also investigated. The cost of recycled gadolinium was estimated at over twelve times the cost of fresh gadolinium, and thus recycle using current recovery technology is not economical. 15 refs., 4 figs., 11 tabs.

  8. Estimating plant available water content from remotely sensed evapotranspiration

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I. J. M.; Warren, G.; Doody, T.

    2012-04-01

    Plant available water content (PAWC) is an emergent soil property that is a critical variable in hydrological modelling. PAWC determines the active soil water storage and, in water-limited environments, is the main cause of different ecohydrological behaviour between (deep-rooted) perennial vegetation and (shallow-rooted) seasonal vegetation. Conventionally, PAWC is estimated for a combination of soil and vegetation from three variables: maximum rooting depth and the volumetric water content at field capacity and permanent wilting point, respectively. Without elaborate local field observation, large uncertainties in PAWC occur due to the assumptions associated with each of the three variables. We developed an alternative, observation-based method to estimate PAWC from precipitation observations and CSIRO MODIS Reflectance-based Evapotranspiration (CMRSET) estimates. Processing steps include (1) removing residual systematic bias in the CMRSET estimates, (2) making spatially appropriate assumptions about local water inputs and surface runoff losses, (3) using mean seasonal patterns in precipitation and CMRSET to estimate the seasonal pattern in soil water storage changes, (4) from these, calculating the mean seasonal storage range, which can be treated as an estimate of PAWC. We evaluate the resulting PAWC estimates against those determined in field experiments for 180 sites across Australia. We show that the method produces better estimates of PAWC than conventional techniques. In addition, the method provides detailed information with full continental coverage at moderate resolution (250 m) scale. The resulting maps can be used to identify likely groundwater dependent ecosystems and to derive PAWC distributions for each combination of soil and vegetation type.

  9. Improving antivenom availability and accessibility: science, technology, and beyond.

    PubMed

    Gutiérrez, José María

    2012-09-15

    Snakebite envenomings constitute a serious and neglected public health problem. Despite the fact that effective treatment exists, i.e. administration of animal-derived antivenoms, the availability and accessibility of these life-saving immunobiologicals is deficitary in various parts of the world, particularly in sub-Saharan Africa and some regions of Asia. This article discusses some of the problems that need to be circumvented in order to improve the availability and accessibility of antivenoms. The conglomerate of antivenom manufacturers is highly heterogeneous in terms of technological base, qualification of staff, implementation of Good Manufacturing Practices (GMPs), and volume of production. Therefore, improvements in antivenom quality and availability should be based on strategies tailored to the situation of each region or country; in this context, three different scenarios are discussed. Accessibility of antivenoms demands concerted efforts at multiple levels, including raising the awareness of public health authorities on the relevance of the problem, implementing innovative antivenom purchasing schemes, strengthening national distribution channels on the basis of robust epidemiological information, improving the cold chain and the provision of health services in remote rural settings, supporting the correct use of antivenoms, and promoting the involvement of local community organizations in various aspects of prevention and management. These tasks should be envisaged in terms of synergistic, interprogrammatic and intersectorial interventions, with the participation of many players.

  10. Improving stroke outcome: the benefits of increasing availability of technology.

    PubMed Central

    Heller, R. F.; Langhorne, P.; James, E.

    2000-01-01

    INTRODUCTION: A decision analysis was performed to explore the potential benefits of interventions to improve the outcome of patients admitted to hospital with a stroke, in the context of the technology available in different parts of the world. METHODS: The outcome of death or dependency was used with a six-month end-point. RESULTS: Four settings were identified that would depend on the resources available. The proportion of stroke patients who were dead or dependent at six months was 61.5% with no intervention at all. Setting 4, with the only intervention being the delayed introduction of aspirin, produced a 0.5% absolute improvement in outcome (death or dependency), and the addition of an organized stroke unit (Setting 3) produced the largest incremental improvement, of 2.7%. Extra interventions associated with non-urgent computed tomography and thus the ability to avoid anticoagulation or aspirin for those with a haemorrhagic stroke (Setting 2), and immediate computed tomography scanning to allow the use of thrombolytics in non-haemorrhagic stroke (Setting 1), produced only small incremental benefits of 0.4% in each case. DISCUSSION: To reduce the burden of illness due to stroke, efforts at primary prevention are essential and likely to have a greater impact than even the best interventions after the event. In the absence of good primary prevention, whatever is possible must be done to reduce the sequelae of stroke. This analysis provides a rational basis for beginning the development of clinical guidelines applicable to the economic setting of the patient. PMID:11143194

  11. Measurement of plant-available zinc in British Columbia orchard soils

    SciTech Connect

    Neilsen, D.; Hoyt, P.B.; MacKenzie, A.F.

    1987-01-01

    Zinc availability in 20 southern British Columbia orchard soils was examined in the greenhouse. Zinc concentration, uptake and yield in navy beans (Phaseolus vulgaris) were measured and compared with soil Zn extracted by MgCl/sub 2/ at three concentrations (1.0 M, 0.50 and 0.25 M), DTPA, 0.10 M HCl and 0.05 M HCl + 0.0125 M H/sub 2/SO/sub 4/. Adding Zn at the rate of 10 mg/kg did not increase yields. Available Zn varied greatly as measured by the soil tests and by plant Zn concentration and uptake. These availability indices, except for plant Zn concentration, varied directly with Bray-P1 extractable P and organic matter content. Plant Zn uptake and concentration and MgCl/sub 2/ extractable Zn also varied inversely with pH. Zinc extracted by MgCl/sub 2/ was more closely related to plant Zn concentration and uptake than Zn extracted by the other three extractants. Furthermore, extraction of Zn with 0.25 M MgCl/sub 2/ instead of with 1.0 M MgCl/sub 2/ decreased analytical difficulties with atomic absorption spectrophotometry and also resulted in improved relationships with plant Zn concentration. Comparisons between Zn and Mn extracted by MgCl/sub 2/ solutions ranging from 1.0 M to 0.01 M in strength and at different soil:extractant ratios indicated that 0.25 M MgCl/sub 2/ extracted less specifically adsorbed Zn than 1.0 M MgCl/sub 2/ which resulted in the improved relationship with plant Zn.

  12. Foliage Plants for Improving Indoor Air Quality

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1988-01-01

    NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.

  13. Role of RNA interference in plant improvement

    NASA Astrophysics Data System (ADS)

    Jagtap, Umesh Balkrishna; Gurav, Ranjit Gajanan; Bapat, Vishwas Anant

    2011-06-01

    Research to alter crops for their better performance involving modern technology is underway in numerous plants, and achievements in transgenic plants are impacting crop improvements in unparalleled ways. Striking progress has been made using genetic engineering technology over the past two decades in manipulating genes from diverse and exotic sources, and inserting them into crop plants for inducing desirable characteristics. RNA interference (RNAi) has recently been identified as a natural mechanism for regulation of gene expression in all higher organisms from plants to humans and promises greater accuracy and precision to plant improvement. The expression of any gene can be down-regulated in a highly explicit manner exclusive of affecting the expression of any other gene by using RNAi technologies. Additional research in this field has been focused on a number of other areas including microRNAs, hairpin RNA, and promoter methylation. Manipulating new RNAi pathways, which generate small RNA molecules to amend gene expression in crops, can produce new quality traits and having better potentiality of protection against abiotic and biotic stresses. Nutritional improvement, change in morphology, or enhanced secondary metabolite synthesis are some of the other advantages of RNAi technology. In addition to its roles in regulating gene expression, RNAi is also used as a natural defense mechanism against molecular parasites such as jumping genes and viral genetic elements that affect genome stability. Even though much advancement has been made on the field of RNAi over the preceding few years, the full prospective of RNAi for crop improvement remains to be fully realized. The intricacy of RNAi pathway, the molecular machineries, and how it relates to plant development are still to be explained.

  14. The plant availability of auto-cast platinum group elements.

    PubMed

    Hooda, P S; Miller, A; Edwards, A C

    2008-04-01

    The introduction of automobile catalysts has raised environmental concern, as this pollution control technology is also an emission source for platinum group elements (PGE). The main aim of this study was to assess soil and grass PGE concentrations in soils adjacent to five road networks. The soil and grass samples were collected from four distances at each site; they were 0, 1, 2 and 5 m from the road edges. The maximum soil Pt, Rh and Pd concentrations were measured at the road perimeters. Pd concentrations were much higher than Pt or Rh, possibly due to differences in its use, emission and/or soil chemistry. Rh and Pt soil concentrations accounted for 66 and 34% (P < 0.01) of the variability observed, respectively, in their plant concentrations. Grass Pd concentrations had no relationship with its total soil concentrations.

  15. Optimal Plant Carbon Allocation Implies a Biological Control on Nitrogen Availability

    NASA Astrophysics Data System (ADS)

    Prentice, I. C.; Stocker, B. D.

    2015-12-01

    The degree to which nitrogen availability limits the terrestrial C sink under rising CO2 is a key uncertainty in carbon cycle and climate change projections. Results from ecosystem manipulation studies and meta-analyses suggest that plant C allocation to roots adjusts dynamically under varying degrees of nitrogen availability and other soil fertility parameters. In addition, the ratio of biomass production to GPP appears to decline under nutrient scarcity. This reflects increasing plant C exudation into the soil (Cex) with decreasing nutrient availability. Cex is consumed by an array of soil organisms and may imply an improvement of nutrient availability to the plant. Thus, N availability is under biological control, but incurs a C cost. In spite of clear observational support, this concept is left unaccounted for in Earth system models. We develop a model for the coupled cycles of C and N in terrestrial ecosystems to explore optimal plant C allocation under rising CO2 and its implications for the ecosystem C balance. The model follows a balanced growth approach, accounting for the trade-offs between leaf versus root growth and Cex in balancing C fixation and N uptake. We assume that Cex is proportional to root mass, and that the ratio of N uptake (Nup) to Cex is proportional to inorganic N concentration in the soil solution. We further assume that Cex is consumed by N2-fixing processes if the ratio of Nup:Cex falls below the inverse of the C cost of N2-fixation. Our analysis thereby accounts for the feedbacks between ecosystem C and N cycling and stoichiometry. We address the question of how the plant C economy will adjust under rising atmospheric CO2 and what this implies for the ecosystem C balance and the degree of N limitation.

  16. Kriging as a Means of Improving WAAS Availability

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence; Blanch, Juan; Pandya, Nitin

    2010-01-01

    The Wide Area Augmentation System (WAAS), an augmentation of the Global Positioning System (GPS), provides safe and reliable use of GPS signals for airline navigation over much of North America. Currently the largest source of positioning error in the system is signal delay caused by the ionosphere. To allow the user to take account of such error, WAAS computes and broadcasts ionospheric vertical delays at a set of regularly-spaced grid points. In addition, WAAS computes and broadcasts a safety-critical integrity bound at each ionospheric grid point (IGP) called the Grid Ionospheric Vertical Error (GIVE). GIVEs are constructed to be sufficiently large to protect the user against positioning error due to the presence of ionospheric irregularity. In the initial operating capability (IOC) of WAAS, the vertical delay estimate at each IGP is determined from a planar fit of neighboring slant delay measurements, projected to vertical using an obliquity factor specified by the standard thin-shell model of the ionosphere. In WAAS Follow-On (WFO) Release 3, however, the vertical delay will be estimated by an established, geo-statistical technique known as kriging. Compared to the planar fit model, the kriging model is found, in general, to match better the observed random structure of the vertical delay. This paper presents the kriging methodology that will be used to estimate the vertical delay and its uncertainty at each IGP, and it assesses the subsequent improvement in WAAS availability enabled by kriging.

  17. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    SciTech Connect

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  18. Auxins as one of the factors of plant growth improvement by plant growth promoting rhizobacteria.

    PubMed

    Ahmed, Ambreen; Hasnain, Shahida

    2014-01-01

    Plant growth promoting rhizobacteria (PGPR) promote plant growth by various mechanisms such as phytohormone production, enhanced water and nutrient uptake, improved nitrogen availability in the soil, production of ACC-deaminase for ethylene breakdown, phosphate solubilization, siderophore production etc. Microbial auxin production is the major factor not only responsible for strengthening the plant-microbe relationship but it also promotes plant growth and development in a positive manner. Thus, bacterial auxin production potential can be exploited for plant growth improvement that may be effective in reducing the hazardous effects of chemical fertilizers on the ecosystem used to obtain higher yields. The present review gives a better understanding of various factors and mechanisms involved in auxin production by PGPR that may be helpful in proper exploitation of these natural resources in a beneficial way.

  19. Effects of permafrost thaw on nitrogen availability and plant nitrogen acquisition in Interior Alaska

    NASA Astrophysics Data System (ADS)

    Finger, R.; Euskirchen, E. S.; Turetsky, M.

    2013-12-01

    progressive N limitations, resulting in the dominance of plants with higher NUE. This likely has implications for plant litter quality, and could inhibit decomposition processes. We are collecting additional data to compare species-level NUE and nutrient resorption efficiency. We also will measure δ15N of aboveground plant organs, roots, soil, and pore water to explore sources of plant N, which we expect will influenced rooting depth as permafrost thaws as well as differences in mycorrhizal associations along our thaw gradient. Because thawing permafrost soils are anticipated to mobilize large amounts of N from soils, our results will improve our understanding of how permafrost thaw influences vegetation and soil N pools, soil N availability, and plant nutrition.

  20. Does Accelerated Soil Organic Matter Decomposition in the Presence of Plants Increase Plant N Availability?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant roots can increase microbial activity and soil organic matter (SOM) decomposition via rhizosphere priming effects. It is virtually unknown how differences in the priming effect among plant species and soil type affect N mineralization and plant uptake. In a greenhouse experiment, we tested whe...

  1. Efficiency improvement of thermal coal power plants

    SciTech Connect

    Hourfar, D.

    1996-12-31

    The discussion concerning an increase of the natural greenhouse effect by anthropogenic changes in the composition of the atmosphere has increased over the past years. The greenhouse effect has become an issue of worldwide debate. Carbon dioxide is the most serious emission of the greenhouse gases. Fossil-fired power plants have in the recent past been responsible for almost 30 % of the total CO{sub 2} emissions in Germany. Against this background the paper will describe the present development of CO{sub 2} emissions from power stations and present actual and future opportunities for CO{sub 2} reduction. The significance attached to hard coal as one of today`s prime sources of energy with the largest reserves worldwide, and, consequently, its importance for use in power generation, is certain to increase in the years to come. The further development of conventional power plant technology, therefore, is vital, and must be carried out on the basis of proven operational experience. The main incentive behind the development work completed so far has been, and continues to be, the achievement of cost reductions and environmental benefits in the generation of electricity by increasing plant efficiency, and this means that, in both the short and the long term, power plants with improved conventional technology will be used for environmentally acceptable coal-fired power generation.

  2. Maturing Weapon Systems for Improved Availability at Lower Costs

    DTIC Science & Technology

    1994-01-01

    1916 35537 NS-d~94-4M6 RAND is a nonprofit institution that seeks to improve public: policy throqgh research and analysis. RAND~’publcations do not...necessarily reflect the opinions or policies of its research sponsors. Published 1994 by RAMD 170 Main Steet, P.O. Box 2138, Santa Monica, CA 9M47-218 TO...performance and of savings in support costs. The research reported here was conducted under a project entitled An Evolving Action Planfor Implmenting Weapon

  3. Improving the efficacy of plant polyphenols.

    PubMed

    Biasutto, Lucia; Mattarei, Andrea; Sassi, Nicola; Azzolini, Michele; Romio, Matteo; Paradisi, Cristina; Zoratti, Mario

    2014-01-01

    Plant polyphenols exhibit potentially useful effects in a wide variety of pathophysiological settings. They interact with proteins such as signalling kinases, transcription factors and ion channels, and modulate redox processes, such as those taking place in mitochondria. Biomedical applications of these natural compounds are however severely hindered by their low bioavailability, rapid metabolism, and often by unfavourable physico-chemical properties, e.g. a generally low water solubility. Derivatives are under development with the aim of improving their bioavailability and/or bioefficacy. Various strategies can be adopted. An increase in circulating blood levels of non-metabolized natural compound may be attainable through prodrugs. In the ideal prodrug, phenolic hydroxyls are protected by capping groups which a) help or at least do not hinder permeation of epithelia; b) prevent conjugative modifications during absorption and first-pass through the liver; c) are eliminated with opportune kinetics to regenerate the parent compound. Moreover, prodrugs may be designed with the goals of modulating physical properties of the parent compound, and/or changing its distribution in the body. A more specific action may be achieved by concentrating the compounds at specific sites of action. An example of the second approach is represented by mitochondria-targeted redox-active polyphenol derivatives, designed to intervene on radical processes in these organelles and as a tool either to protect cells from oxidative insults or to precipitate their death. Mitochondrial targeting can be achieved through conjugation with a triphenylphosphonium lipophilic cation. Quercetin and resveratrol were chosen as model polyphenols for these proof-of-concept studies. Data available at the moment show that both quercetin and resveratrol mitochondria-targeted derivatives are pro-oxidant and cytotoxic in vitro, selectively killing fast-growing and tumoural cells when supplied in the low

  4. Improving plant bioaccumulation science through consistent reporting of experimental data.

    PubMed

    Fantke, Peter; Arnot, Jon A; Doucette, William J

    2016-10-01

    Experimental data and models for plant bioaccumulation of organic contaminants play a crucial role for assessing the potential human and ecological risks associated with chemical use. Plants are receptor organisms and direct or indirect vectors for chemical exposures to all other organisms. As new experimental data are generated they are used to improve our understanding of plant-chemical interactions that in turn allows for the development of better scientific knowledge and conceptual and predictive models. The interrelationship between experimental data and model development is an ongoing, never-ending process needed to advance our ability to provide reliable quality information that can be used in various contexts including regulatory risk assessment. However, relatively few standard experimental protocols for generating plant bioaccumulation data are currently available and because of inconsistent data collection and reporting requirements, the information generated is often less useful than it could be for direct applications in chemical assessments and for model development and refinement. We review existing testing guidelines, common data reporting practices, and provide recommendations for revising testing guidelines and reporting requirements to improve bioaccumulation knowledge and models. This analysis provides a list of experimental parameters that will help to develop high quality datasets and support modeling tools for assessing bioaccumulation of organic chemicals in plants and ultimately addressing uncertainty in ecological and human health risk assessments.

  5. Recycling potential of secondary phosphorus resources as assessed by integrating substance flow analysis and plant-availability.

    PubMed

    Hamilton, Helen A; Brod, Eva; Hanserud, Ola; Müller, Daniel B; Brattebø, Helge; Haraldsen, Trond K

    2017-01-01

    The plant-availability of phosphorus (P) plays a central role in the ability of secondary P resources to replace mineral fertilizer. This is because secondary P plant-availability varies, often with large fractions of residual P that has no immediate fertilization effect. Therefore, if low quality secondary P fertilizers are applied, they will accumulate in soils that, in the long run, may increase the risk of P runoff and eutrophication. Substance flow analyses (SFA), used to identify potentials for improved P management, have not considered this well-known quality barrier. We, therefore, argue that traditional SFA over-estimates the fertilizer potential of secondary P resources. Using Norway as a case, we present a plant-availability extended SFA methodology that integrates SFA and the concept of relative agronomic efficiency. To account for the plant-available soil P stock and long-term soil interactions, we adjust the Norwegian P fertilization demand based on soil P values. We found that, while the method has uncertainties particularly for long-term estimations, it more realistically estimates secondary P fertilizer potentials and is adaptable to other countries. For Norway, we found the overall secondary P fertilizer potential reduced by 6-55% when considering plant-availability. The most important secondary resource was manure, which had the highest P plant-availability and quantities large enough (10.9kt plant-available P/yr) to meet Norway's entire P fertilization demand (5.8kt plant-available P/yr). However, barriers related to its transportability need to be overcome to efficiently use this resource. Fish sludge was also an important product, with 6.1kt plant-available P/yr but with uncertain plant-availability data. We argue that high quality secondary P resources can theoretically meet Norway's P fertilization demand and, therefore, make Norway mineral P independent. However, it is important that their use is carefully regulated based on plant-availability

  6. 78 FR 66892 - BASF Plant Science LP; Availability of Plant Pest Risk Assessment and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... Engineered for Herbicide Resistance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... designated as event BPS-CV127-9, which has been genetically engineered for resistance to herbicides in the... (Glycine max) designated as event BPS-CV127-9, which has been genetically engineered for resistance...

  7. Native plants fare better against an introduced competitor with native microbes and lower nitrogen availability.

    PubMed

    Gaya Shivega, W; Aldrich-Wolfe, Laura

    2017-01-24

    While the soil environment is generally acknowledged as playing a role in plant competition, the relative importance of soil resources and soil microbes in determining outcomes of competition between native and exotic plants has rarely been tested. Resilience of plant communities to invasion by exotic species may depend on the extent to which native and exotic plant performance are mediated by abiotic and biotic components of the soil. We used a greenhouse experiment to compare performance of two native prairie plant species and one exotic species, when grown in intraspecific competition and when each native was grown in interspecific competition with the exotic species, in the presence and absence of a native prairie soil community, and when nitrogen availability was elevated or was maintained at native prairie levels. We found that elevated nitrogen availability was beneficial to the exotic species and had no effect on or was detrimental to the native plant species, that the native microbial community was beneficial to the native plant species and either had no effect or was detrimental to the exotic species, and that intraspecific competition was stronger than interspecific competition for the exotic plant species and vice-versa for the natives. Our results demonstrate that soil nitrogen availability and the soil microbial community can mediate the strength of competition between native and exotic plant species. We found no evidence for native microbes enhancing the performance of the exotic plant species. Instead, loss of the native soil microbial community appears to reinforce the negative effects of elevated N on native plant communities and its benefits to exotic invasive species. Resilience of plant communities to invasion by exotic plant species is facilitated by the presence of an intact native soil microbial community and weakened by anthropogenic inputs of nitrogen.

  8. Effects of nitrogen source and water availability on stem carbohydrates and cellulosic bioethanol traits of alfalfa plants.

    PubMed

    Fiasconaro, M Laura; Gogorcena, Yolanda; Muñoz, Fernando; Andueza, Donato; Sánchez-Díaz, Manuel; Antolín, M Carmen

    2012-08-01

    Symbiotic association of legumes with rhizobia frequently results in higher photosynthesis and soluble carbohydrates in comparison with nitrate-fed plants, which might improve its potential for biomass conversion into bioethanol. A greenhouse experiment was conducted to examine the effects of nitrogen source and water availability on stem characteristics and on relationships between carbohydrates, phenolic metabolism activity and cell wall composition in alfalfa (Medicago sativa L. cv. Aragón). The experiment included three treatments: (1) plants fed with ammonium nitrate (AN); (2) plants inoculated with rhizobia (R); and (3) plants inoculated with rhizobia and amended with sewage sludge (RS). Two levels of irrigation were imposed: (1) well-watered and (2) drought stress. Under well-watered conditions, nitrogen-fixing plants have increased photosynthesis and stem fermentable carbohydrate concentrations, which result in higher potential for biomass conversion to bioethanol than in AN plants. The latter had higher lignin due to enhanced activities of phenolic metabolism-related enzymes. Under drought conditions, the potential for bioethanol conversion decreased to a similar level in all treatments. Drought-stressed nitrogen-fixing plants have high concentrations of fermentable carbohydrates and cell wall cellulose, but ammonium nitrate-fed plants produced higher plant and stem biomass, which might compensate the decreasing stem carbohydrates and cellulose concentrations.

  9. Method to improve drought tolerance in plants

    DOEpatents

    Schroeder, Julian I.; Kwak, June Myoung

    2003-10-21

    A method to increase drought resistance in plants is provided. The method comprises inhibiting or disabling inward-rectifying K.sup.+ (K.sup.+.sub.in) channels in the stomatal guard cells of the plant.

  10. Plant-hummingbird interactions and temporal nectar availability in a restinga from Brazil.

    PubMed

    Fonseca, Lorena C N; Vizentin-Bugoni, Jeferson; Rech, André R; Alves, Maria Alice S

    2015-01-01

    Hummingbirds are the most important and specialized group of pollinating birds in the Neotropics and their interactions with plants are key components to many communities. In the present study we identified the assemblage of plants visited by hummingbirds and investigated the temporal availability of floral resources in an area of restinga, sandy plain coastal vegetation associated with the Atlantic forest, in Southeastern Brazil. We recorded flower and nectar features, flowering phenology and interactions between plants and hummingbirds and estimated the amount of calories produced per hectare from June 2005 to August 2006. Ten plant species were visited by two hummingbirds, Amazilia fimbriata and Eupetomena macroura. Resource availability was highly variable among plant species and over time. Nectar volume and concentration per flower were similar to other Neotropical hummingbird-visited plant assemblages. The estimated nectar resource availability between months varied from 0.85 to 5.97 Kcal per hectare/day, demanding an area between one and 6.8 ha to support a single hummingbird. Our study reports an unusual tropical setting where almost all interactions between hummingbirds and plants were performed by a single hummingbird species, A. fimbriata. Hence, the variable nectar availability is probably influencing hummingbird movements, its foraging area, and consequently plant pollination.

  11. The economic valuation of improved process plant decision support technology.

    PubMed

    White, Douglas C

    2007-06-01

    How can investments that would potentially improve a manufacturing plant's decision process be economically justified? What is the value of "better information," "more flexibility," or "improved integration" and the technologies that provide these effects? Technology investments such as improved process modelling, new real time historians and other databases, "smart" instrumentation, better data analysis and visualization software, and/or improved user interfaces often include these benefits as part of their valuation. How are these "soft" benefits to be converted to a quantitative economic return? Quantification is important if rational management decisions are to be made about the correct amount of money to invest in the technologies, and which technologies to choose among the many available ones. Modelling the plant operational decision cycle-detect, analyse, forecast, choose and implement--provides a basis for this economic quantification. In this paper a new economic model is proposed for estimation of the value of decision support investments based on their effect upon the uncertainty in forecasting plant financial performance. This model leads to quantitative benefit estimates that have a realistic financial basis. An example is presented demonstrating the application of the method.

  12. Current understanding on ethylene signaling in plants: the influence of nutrient availability.

    PubMed

    Iqbal, Noushina; Trivellini, Alice; Masood, Asim; Ferrante, Antonio; Khan, Nafees A

    2013-12-01

    The plant hormone ethylene is involved in many physiological processes, including plant growth, development and senescence. Ethylene also plays a pivotal role in plant response or adaptation under biotic and abiotic stress conditions. In plants, ethylene production often enhances the tolerance to sub-optimal environmental conditions. This role is particularly important from both ecological and agricultural point of views. Among the abiotic stresses, the role of ethylene in plants under nutrient stress conditions has not been completely investigated. In literature few reports are available on the interaction among ethylene and macro- or micro-nutrients. However, the published works clearly demonstrated that several mineral nutrients largely affect ethylene biosynthesis and perception with a strong influence on plant physiology. The aim of this review is to revisit the old findings and recent advances of knowledge regarding the sub-optimal nutrient conditions on the effect of ethylene biosynthesis and perception in plants. The effect of deficiency or excess of the single macronutrient or micronutrient on the ethylene pathway and plant responses are reviewed and discussed. The synergistic and antagonist effect of the different mineral nutrients on ethylene plant responses is critically analyzed. Moreover, this review highlights the status of information between nutritional stresses and plant response, emphasizing the topics that should be further investigated.

  13. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture

    PubMed Central

    Kiba, Takatoshi; Krapp, Anne

    2016-01-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. PMID:27025887

  14. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture.

    PubMed

    Kiba, Takatoshi; Krapp, Anne

    2016-04-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability.

  15. A critical test of the two prevailing theories of plant response to nutrient availability.

    PubMed

    Rubio, Gerardo; Zhu, Jinming; Lynch, Jonathan P

    2003-01-01

    Whereas the "law of the minimum" (LM) states that plant growth is limited by a single resource at any one time, the "multiple limitation hypothesis" (MLH) proposes that optimum plant behavior results from balancing resource costs and benefits so that all resources limit plant growth simultaneously. We tested the hypothesis that neither the LM nor the MLH account for plant responses to all mineral nutrients. Fronds of the aquatic plant Lemna minor were grown in nutrient solutions with increasing levels of four nutrients: nitrogen, phosphorus, potassium, and magnesium. Neither LM or MLH adequately predicted plant responses to all of these nutrients: 23 of the 60 responses analyzed were classified as belonging to the LM; 20 cases were classified as undefined; and 17 cases as MLH. The type of response strongly depended on the specific pair of nutrients considered. The validity of the MLH model would depend on the accompanying resource limiting plant growth and on the severity of the stress. We propose that a "nutrient-specific" analysis, considering the biology of each mineral nutrient rather than grouping plant resources as a whole, is more appropriate than general models in understanding plant responses to nutrient availability.

  16. Pollination syndromes in a Caatinga plant community in northeastern Brazil: seasonal availability of floral resources in different plant growth habits.

    PubMed

    Quirino, Z G M; Machado, I C

    2014-02-01

    To describe plant phenological patterns and correlate functioning for the quantity and quality of resources available for the pollinator, it is crucial to understand the temporal dynamics of biological communities. In this way, the pollination syndromes of 46 species with different growth habits (trees, shrubs, herbs, and vines) were examined in an area of Caatinga vegetation, northeastern Brazil (7° 28' 45″ S and 36° 54' 18″ W), during two years. Flowering was monitored monthly in all the species, over two years (from January 2003 to December 2004). Pollination syndromes were characterised based on floral traits such as size, colour, morphology, symmetry, floral resources, as well as on direct visual observation of floral visitors on focal plants and published information. We observed differences among the plant growth habits with respect to floral traits, types of resources offered, and floral syndromes. The flowering periods of the species varied among floral syndrome groups. The majority of the melittophilous species flowered during the rainy season in the two study years, while the species of the other pollination syndroms flowered at the end of the dry season. An asynchrony of flowering was noted among the chiropterophilous species, while the phalenophilous group concentrated during the rainy season. The overall availability of floral resources was different during the rainy and the dry seasons, and also it varied among plants with different growth habits. The availability of oil-flowers coincided with the period of low nectar availability. We observed a relationship between the temporal distribution of the pollination syndromes and the availability of floral resources among each growth habits in this tropical ecosystem. Resource allocation in seasonal environments, such as the Caatinga, can function as a strategy for maintaining pollinators, facilitating therefore the reproductive success of plant species. The availability of floral resources during

  17. Metal/metalloid fixation by litter during decomposition affected by silicon availability during plant growth.

    PubMed

    Schaller, Jörg

    2013-03-01

    Organic matter is known to accumulate high amounts of metals/metalloids, enhanced during the process of decomposition by heterotrophic biofilms (with high fixation capacity for metals/metalloids). The colonization by microbes and the decay rate of the organic matter depends on different litter properties. Main litter properties affecting the decomposition of organic matter such as the nutrient ratios and the content of cellulose, lignin and phenols are currently described to be changed by silicon availability. But less is known about the impact of silicon availability during plant growth on elemental fixation during decay. Hence, this research focuses on the impact of silicon availability during plant growth on fixation of 42 elements during litter decay, by controlling the litter properties. The results of this experiment are a significantly higher metal/metalloid accumulation during decomposition of plant litter grown under low silicon availability. This may be explained by the altered litter properties (mainly nutrient content) affecting the microbial decomposition of the litter, the microbial growth on the litter and possibly by the silicon double layer, which is evident in leaf litter with high silicon content and reduces the binding sites for metals/metalloids. Furthermore, this silicon double layer may also reduce the growing biofilm by reducing the availability of carbon compounds at the litter surface and has to be elucidated in further research. Hence, low silicon availability during plant growth enhances the metal/metalloid accumulation into plant litter during aquatic decomposition.

  18. Improvement of water treatment at thermal power plants

    NASA Astrophysics Data System (ADS)

    Larin, B. M.; Bushuev, E. N.; Larin, A. B.; Karpychev, E. A.; Zhadan, A. V.

    2015-04-01

    Prospective and existing technologies for water treatment at thermal power plants, including pretreatment, ion exchange, and membrane method are considered. The results obtained from laboratory investigations and industrial tests of the proposed technologies carried out at different thermal power plants are presented. The possibilities of improving the process and environmental indicators of water treatment plants are shown.

  19. Improving Nutritional Quality of Plant Proteins Through Genetic Engineering

    PubMed Central

    Le, Dung Tien; Chu, Ha Duc; Le, Ngoc Quynh

    2016-01-01

    Humans and animals are unable to synthesize essential amino acids such as branch chain amino acids methionine (Met), lysine (Lys) and tryptophan (Trp). Therefore, these amino acids need to be supplied through the diets. Several essential amino acids are deficient or completely lacking among crops used for human food and animal feed. For example, soybean is deficient in Met; Lys and Trp are lacking in maize. In this mini review, we will first summarize the roles of essential amino acids in animal nutrition. Next, we will address the question: “What are the amino acids deficient in various plants and their biosynthesis pathways?” And: “What approaches are being used to improve the availability of essential amino acids in plants?” The potential targets for metabolic engineering will also be discussed, including what has already been done and what remains to be tested. PMID:27252589

  20. Plant Foliar Response to Soil Nutrient Availability Across Contrasting Geologic Settings

    NASA Astrophysics Data System (ADS)

    Castle, S. C.; Neff, J. C.

    2007-12-01

    Rock derived mineral nutrients such as P, Ca, Mg, Mn, and K play a significant, but poorly understood role in the structure and function of temperate forest ecosystems. Though these nutrients are not necessarily limiting to plant growth, they are essential to plant physiological functioning. In this study, we test the hypothesis that foliar nutrients are a proxy for soil nutrient availability across sites of different underlying geologies. Specifically, we focus on the plant nutrient-use strategies of rock derived nutrients (P and K) and how they relate to soil nutrient status. In order to assess the responses of plant species to nutrient availability, we monitored above ground net primary productivity (current annual increment + litterfall), plant chemistry, and soil nutrients for a period of 24 months. This research was completed in the San Juan Mountain region of southern Colorado, where there is a high local diversity of bedrock geochemistry. Within this region, two small sub-alpine basins were chosen; a sedimentary basin composed of Mesozoic cyclic limestone, sandstone & shale and a volcanic basin composed of Tertiary rhyolite. Across these basins, geology played a significant role in explaining the variability of rock derived nutrient availability. Initial results suggest that differences in bedrock geochemistry have little influence on the aboveground net primary production (ANPP) of plants or on the chemistry of foliar materials. This inflexibility of foliar chemistry to variations in nutrient availability suggests that genetic and physiologic controls play a strong role in determining the chemical content of plant materials. An alternative hypothesis is that deposition of eolian mineral dust into subalpine systems could play a role in offsetting the reliance of vegetation on deeper bedrock derived nutrient sources. An investigation is currently underway to assess the contribution of eolian dust derived nutrients to plant nutrition using Sr as a geochemical

  1. Allometry and development in herbaceous plants: functional responses of meristem allocation to light and nutrient availability.

    PubMed

    Bonser, Stephen P; Aarssen, Lonnie W

    2003-03-01

    We examined the relationship between meristem allocation and plant size for four annual plant species: Arabidopsis thaliana, Arenaria serphyllifolia, Brassica rapa, and Chaenorrhinum minus. Gradients of light and nutrient availability were used to obtain a range of plant sizes for each of these species. Relative allocation to reproductive, inactive, and growth meristems were used to measure reproductive effort, apical dominance, and branching intensity, respectively. We measured allocation to each of these three meristem fates at weekly intervals throughout development and at final developmental stage. At all developmental stages reproductive effort and branching intensity tended to increase with increasing plant size (i.e., due to increasing resource availability) and apical dominance tended to decrease with increasing plant size. We interpret these responses as a strategy for plants to maximize fitness across a range of environments. In addition, significant differences in meristem response among species may be important in defining the range of habitats in which a species can exist and may help explain patterns of species competition and coexistence in habitats with variable resource availability.

  2. Improving pumping system efficiency at coal plants

    SciTech Connect

    Livoti, W.C.; McCandless, S.; Poltorak, R.

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  3. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants

    PubMed Central

    An, Yuyan; Qi, Lin; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion (O2⋅¯) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance. PMID:26789407

  4. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants.

    PubMed

    An, Yuyan; Qi, Lin; Wang, Liangju

    2016-01-01

    5-aminolevulinic acid (ALA), a natural and environmentally friendly plant growth regulator, can improve plant tolerance to various environmental stresses. However, whether ALA can improve plant waterlogging tolerance is unknown. Here, we investigated the effects of ALA pretreatment on the waterlogging-induced damage of fig (Ficus carica Linn.) plants, which often suffer from waterlogging stress. ALA pretreatment significantly alleviated stress-induced morphological damage, increased leaf relative water content (RWC), and reduced leaf superoxide anion ([Formula: see text]) production rate and malonaldehyde (MDA) content in fig leaves, indicating ALA mitigates waterlogging stress of fig plants. We further demonstrated that ALA pretreatment largely promoted leaf chlorophyll content, photosynthetic electron transfer ability, and photosynthetic performance index, indicating ALA significantly improves plant photosynthetic efficiency under waterlogging stress. Moreover, ALA pretreatment significantly increased activities of leaf superoxide dismutase (SOD) and peroxidase (POD), root vigor, and activities of root alcohol dehydrogenase (ADH), and lactate dehydrogenase (LDH), indicating ALA also significantly improves antioxidant ability and root function of fig plants under waterlogging stress. Taken together, ALA pretreatment improves waterlogging tolerance of fig plants significantly, and the promoted root respiration, leaf photosynthesis, and antioxidant ability may contribute greatly to this improvement. Our data firstly shows that ALA can improve plant waterlogging tolerance.

  5. Compositions and methods for improved plant feedstock

    SciTech Connect

    Shen, Hui; Chen, Fang; Dixon, Richard A

    2014-12-02

    The invention provides methods for modifying lignin content and composition in plants and achieving associated benefits therefrom involving altered expression of newly discovered MYB4 transcription factors. Nucleic acid constructs for modifying MYB4 transcription factor expression are described. By over-expressing the identified MYB4 transcription factors, for example, an accompanying decrease in lignin content may be achieved. Plants are provided by the invention comprising such modifications, as are methods for their preparation and use.

  6. Comparison of extractants for plant-available zinc, cadmium, nickel, and copper in contaminated soils

    SciTech Connect

    Haq, A.U.; Bates, T.E.; Soon, Y.K.

    1980-07-01

    The objective of this study was to find a suitable extractant(s) for plant-available metals in metal contaminated soils. Swiss chard (Beta vulgaris L. Fordhook Giant) was grown in greenhouse pots on 46 Ontario soils varying in degree of contamination with metals. The soils had been contaminated with metals to varying degrees over a period of years. After 40 days, the plants were harvested and Zn, Cd, Ni, and Cu concentrations were measured. Each soil was extracted with nine different extractants: aqua regia, 0.01M EDTA, 0.005M DTPA, 0.02M NTA, 0.5N CH/sub 3/COOH, 1N CH/sub 3/COONH/sub 4/, 0.6N HCl + 0.05N AlCl/sub 3/, (COOH)/sub 2/ + (COONH/sub 4/)/sub 2/, and H/sub 2/O. Zinc, cadmium, nickel, and copper concentrations in Swiss chard were correlated with the amounts of soil Zn, Cd, Ni, and Cu removed by each extractant. Of the nine soil extractants, CH/sub 3/COONH/sub 4/ was the best predictor of plant-available Zn if only extractable Zn and soil pH were included as independent variables in a regression equation. Acetic acid was the best extractant for prediction of both plant-available Cd and Ni when soil pH was included in the equation. Attempts to find a suitable soil extractant for plant-available Cu were unsuccessful.

  7. Improved Economics of Nuclear Plant Life Management

    SciTech Connect

    Bond, Leonard J.; Doctor, Steven R.; Jarrell, Donald B.; Bond, Joseph W D.

    2007-07-31

    The adoption of new on-line monitoring, diagnostic and eventually prognostics technologies has the potential to impact the economics of the existing nuclear power plant fleet, new plants and future advanced designs. To move from periodic inspection to on-line monitoring for condition based maintenance and eventually prognostics will require advances in sensors, better understanding of what and how to measure within the plant; enhanced data interrogation, communication and integration; new predictive models for damage/aging evolution; system integration for real world deployments; quantification of uncertainties in what are inherently ill-posed problems and integration of enhanced condition based maintenance/prognostics philosophies into new plant designs, operation and O&M approaches. The move to digital systems in petrochemical, process and fossil fuel power plants is enabling major advances to occur in the instrumentation, controls and monitoring systems and approaches employed. The adoption within the nuclear power community of advanced on-line monitoring and advanced diagnostics has the potential for the reduction in costly periodic surveillance that requires plant shut-down , more accurate cost-benefit analysis, “just-in-time” maintenance, pre-staging of maintenance tasks, move towards true “operation without failures” and a jump start on advanced technologies for new plant concepts, such as those under the International Gen IV Program. There are significant opportunities to adopt condition-based maintenance when upgrades are implemented at existing facilities. The economic benefit from a predictive maintenance program based upon advanced on-line monitoring and advanced diagnostics can be demonstrated from a cost/benefit analysis. An analysis of the 104 US legacy systems has indicated potential savings at over $1B per year when applied to all key equipment; a summary of the supporting analysis is provided in this paper.

  8. Use of the BCR sequential extraction procedure for the study of metal availability to plants.

    PubMed

    Li, Junhui; Lu, Ying; Shim, Hojae; Deng, Xianglian; Lian, Jin; Jia, Zhenglei; Li, Jianhua

    2010-02-01

    To investigate the mobility and availability of metals from soil to plant, concentrations of zinc (Zn), copper (Cu), lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As) in topsoils and plants (lettuce, scallion, celery, tomato, carambola, wampee and longan) collected from the area around a petrochemical complex in Guangzhou, China, were analyzed. The modified European Community Bureau of Reference (BCR) three-step sequential extraction procedure was applied to determine the concentration of metal fractions in soils. The results showed that the distribution of Zn, Cu, Pb and Cd in four fractions varied greatly among the soil samples, and 18.8% of vegetable and fruit samples for Cd and 5.8% for Pb exceeded the maximum permissible levels in food of China. Soil-to-plant transfer coefficients were in the order of Cd>Zn>Cu>Hg>As>Pb, suggesting Cd being the most mobile and available to plants among the metals studied. Principal component analysis indicated that metal fractions and soil physicochemical properties (pH, organic matter, cation exchange capacity, clay content and electrical conductivity) affected metal uptake by plants. Furthermore, atmospheric deposition may be another important factor for the accumulation of metals in plants.

  9. Elevated concentrations of trace elements in soil do not necessarily reflect metals available to plants.

    PubMed

    Antonious, George F; Silitonga, Maifan R; Tsegaye, Teferi D; Unrine, Jason M; Coolong, Timothy; Snyder, John C

    2013-01-01

    Bioaccumulation and entry of trace elements from soil into the food chain have made trace-elements major environmental pollutants. The main objective of this investigation was to study the impact of mixing native agricultural soil with municipal sewage sludge (SS) or SS mixed with yard waste (SS+YW) compost on total concentration of trace elements in soil, metals available to plants, and mobility of metals from soil into peppers and melon fruits. Regardless of soil treatment, the average concentrations of Ni, Cd, Pb, Cr, Cu, Zn, and Mo in melon fruits were 5.2, 0.7, 3.9, 0.9, 34.3, 96.1, and 3.5μg g(-1), respectively. Overall concentrations of Ni, Cd, Pb, and Zn in melon fruits were significantly greater (P < 0.05) than pepper fruits. No significant differences were found in Cr, Cu, and Mo concentrations between pepper and melon fruits at harvest time. Total metal concentrations and metal ions in soil available to melon and pepper plants were also determined. Total concentration of each metal in the soil was significantly greater than concentration of metal ions available to plants. Elevated Ni and Mo bioaccumulation factor (BAF > 1) of melon fruits of plants grown in SS+YW mixed soil is a characteristic that would be less favorable when plants grown on sites having high concentrations of these metals.

  10. Role of soil adsorption and microbial degradation on dissipation of mesotrione in plant available soil water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mesotrione is a carotenoid biosynthesis-inhibiting herbicide labeled for pre-emergence and post emergent weed control in corn production. Understanding the factors that influence the dissipation of mesotrione in soil and in the plant available water (PAW) is important for both the environmental fat...

  11. 78 FR 45169 - GENECTIVE SA; Availability of Plant Pest Risk Assessment, Environmental Assessment, Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... Nonregulated Status of Maize Genetically Engineered for Herbicide Resistance AGENCY: Animal and Plant Health... genetically engineered for resistance to the herbicide glyphosate. We are also making available for public....) designated as event VCO-01981-5, which has been genetically engineered for resistance to the...

  12. 76 FR 37771 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Assessment, and Environmental Assessment for Determination of Nonregulated Status for Soybean Genetically... seeking a determination of nonregulated status for soybean designated as MON 87705, which has been... genetically engineered soybean is likely to pose a plant pest risk. We are making available for public...

  13. Hydrogen Cyanide in the Rhizosphere: Not Suppressing Plant Pathogens, but Rather Regulating Availability of Phosphate.

    PubMed

    Rijavec, Tomaž; Lapanje, Aleš

    2016-01-01

    Plant growth promoting rhizobacteria produce chemical compounds with different benefits for the plant. Among them, HCN is recognized as a biocontrol agent, based on its ascribed toxicity against plant pathogens. Based on several past studies questioning the validity of this hypothesis, we have re-addressed the issue by designing a new set of in vitro experiments, to test if HCN-producing rhizobacteria could inhibit the growth of phytopathogens. The level of HCN produced by the rhizobacteria in vitro does not correlate with the observed biocontrol effects, thus disproving the biocontrol hypothesis. We developed a new concept, in which HCN does not act as a biocontrol agent, but rather is involved in geochemical processes in the substrate (e.g., chelation of metals), indirectly increasing the availability of phosphate. Since this scenario can be important for the pioneer plants living in oligotrophic alpine environments, we inoculated HCN producing bacteria into sterile mineral sand together with germinating plants and showed that the growth of the pioneer plant French sorrel was increased on granite-based substrate. No such effect could be observed for maize, where plantlets depend on the nutrients stored in the endosperm. To support our concept, we used KCN and mineral sand and showed that mineral mobilization and phosphate release could be caused by cyanide in vitro. We propose that in oligotrophic alpine environments, and possibly elsewhere, the main contribution of HCN is in the sequestration of metals and the consequential indirect increase of nutrient availability, which is beneficial for the rhizobacteria and their plant hosts.

  14. Hydrogen Cyanide in the Rhizosphere: Not Suppressing Plant Pathogens, but Rather Regulating Availability of Phosphate

    PubMed Central

    Rijavec, Tomaž; Lapanje, Aleš

    2016-01-01

    Plant growth promoting rhizobacteria produce chemical compounds with different benefits for the plant. Among them, HCN is recognized as a biocontrol agent, based on its ascribed toxicity against plant pathogens. Based on several past studies questioning the validity of this hypothesis, we have re-addressed the issue by designing a new set of in vitro experiments, to test if HCN-producing rhizobacteria could inhibit the growth of phytopathogens. The level of HCN produced by the rhizobacteria in vitro does not correlate with the observed biocontrol effects, thus disproving the biocontrol hypothesis. We developed a new concept, in which HCN does not act as a biocontrol agent, but rather is involved in geochemical processes in the substrate (e.g., chelation of metals), indirectly increasing the availability of phosphate. Since this scenario can be important for the pioneer plants living in oligotrophic alpine environments, we inoculated HCN producing bacteria into sterile mineral sand together with germinating plants and showed that the growth of the pioneer plant French sorrel was increased on granite-based substrate. No such effect could be observed for maize, where plantlets depend on the nutrients stored in the endosperm. To support our concept, we used KCN and mineral sand and showed that mineral mobilization and phosphate release could be caused by cyanide in vitro. We propose that in oligotrophic alpine environments, and possibly elsewhere, the main contribution of HCN is in the sequestration of metals and the consequential indirect increase of nutrient availability, which is beneficial for the rhizobacteria and their plant hosts. PMID:27917154

  15. Computer control improves ethylene plant operation

    SciTech Connect

    Whitehead, B.D.; Parnis, M.

    1987-11-01

    ICIA Australia ordered a turnkey 250,000-tpy ethylene plant to be built at the Botany site, Sydney, Australia. Following a feasibility study, an additional order was placed for a process computer system for advanced process control and optimization. This article gives a broad outline of the process computer tasks, how the tasks were implemented, what problems were met, what lessons were learned and what results were achieved.

  16. Guide for the assessment of the availability of gasification-combined-cycle power plants

    NASA Astrophysics Data System (ADS)

    Neely, M.

    1982-01-01

    A guide that can be used for predicting the reliability and availability of coal gasification-combined-cycle (GCC) electric power generation units, as well as other electric power generation unit types is given. A prediction of plant effectiveness, a measure that can be directly related to availability, equivalent availability, forced-outage rate, and other performance measures is given. A seven-step availability assessment methodology that uses the concepts of unit states and state capabilities (the power output capability associated with each state) to produce predictions of a unit's effectiveness, availability, equivalent availability, critical components, and other measures of interest is given. As an illustration, the method is used to prepare an assessment of an 1150-megawatt baseload GCC plant that employs seven gas turbines, one steam turbine, and six oxygen-blown (Texaco) gasifiers. A complete data base of failure rates and mean downtimes for the GCC plant components and a documented computer program used for this analysis are also included.

  17. Enhancing Potentially Plant-Available Lead Concentrations in Contaminated Residential Soils Using a Biodegradable Chelating Agent

    NASA Astrophysics Data System (ADS)

    Andra, S.; Datta, R.; Sarkar, D.; Saminathan, S.

    2007-12-01

    Chelation of heavy metals is an important factor in enhancing metal solubility and, hence, metal availability to plants to promote phytoremediation. In the present study, we compared the effects of application of a biodegradable chelating agent, namely, ethylenediaminedisuccinic acid (EDDS) on enhancing plant available form of lead (Pb) in Pb-based paint contaminated residential soils compared to that of a more commonly used, but non-biodegradable chelate, i.e., ethylenediaminetetraacetic acid (EDTA). Development of a successful phytoremediation model for metals such as Pb depends on a thorough understanding of the physical and chemical properties of the soil, along with the optimization of a chelate treatment to mobilize Pb from `unavailable' pools to potentially plant available fraction. In this context, we set out to perform batch incubation experiments to investigate the effectiveness of the two aforementioned chelates in enhancing plant available Pb at four different concentrations (0, 5, 10 and 15 mM/kg soil) and three treatment durations (0, 10 and 30 days). We selected 12 contaminated residential soils from two major metropolitan areas (San Antonio, TX and Baltimore, MD) with varying soil physico-chemical properties - the soils from San Antonio were primarily alkaline and those from Baltimore were typically acidic. Total soil Pb concentrations ranged between 256 mg/kg and 4,182 mg/kg. Our results show that both chelates increased the solubility of Pb, otherwise occluded in the complex soil matrix. For both EDTA and EDDS, the exchangeable concentrations of soil Pb also increased with increase in chelate concentration and incubation time. The most effective treatment was 15 mM chelate kg-1 soil incubated for 30 days, which caused many fold increase in potentially plant available Pb (a combination of the soluble and exchangeable fractions) relative to the unamended controls. Step wise multiple linear regression analysis using chelate-extractable Pb and soil

  18. Herbivore effects on above- and belowground plant production and soil nitrogen availability in the Trans-Himalayan shrub-steppes.

    PubMed

    Bagchi, Sumanta; Ritchie, Mark E

    2010-12-01

    Large mammalian herbivores may have positive, neutral, or negative effects on annual net aboveground plant production (NAP) in different ecosystems, depending on their indirect effects on availability of key nutrients such as soil N. In comparison, less is known about the corresponding influence of grazers, and nutrient dynamics, over annual net belowground plant production (NBP). In natural multi-species plant communities, it remains uncertain how grazing influences relative allocation in the above- and belowground compartments in relation to its effects on plant nutrients. We evaluated grazer impacts on NAP, NBP, and relative investment in the above- and belowground compartments, alongside their indirect effects on soil N availability in the multiple-use Trans-Himalayan grazing ecosystem with native grazers and livestock. Data show that a prevailing grazing intensity of 51% increases NAP (+61%), but reduces NBP (-35%). Grazing also reduced C:N ratio in shoots (-16%) and litter (-50%), but not in roots, and these changes coincided with increased plant-available inorganic soil N (+23%). Areas used by livestock and native grazers showed qualitatively similar responses since NAP was promoted, and NBP was reduced, in both cases. The preferential investment in the aboveground fraction, at the expense of the belowground fraction, was correlated positively with grazing intensity and with improvement in litter quality. These results are consistent with hypothesized herbivore-mediated positive feedbacks between soil nutrients and relative investment in above- and belowground compartments. Since potentially overlapping mechanisms, such as N mineralization rate, plant N uptake, compositional turnover, and soil microbial activity, may contribute towards these feedbacks, further studies may be able to discern their respective contributions.

  19. Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability

    USGS Publications Warehouse

    DeAngelis, Donald L.; Ju, Shu; Liu, Rongsong; Bryant, John P.; Gourley, Stephen A.

    2012-01-01

    We use modeling to determine the optimal relative plant carbon allocations between foliage, fine roots, anti-herbivore defense, and reproduction to maximize reproductive output. The model treats these plant components and the herbivore compartment as variables. Herbivory is assumed to be purely folivory. Key external factors include nutrient availability, degree of shading, and intensity of herbivory. Three alternative functional responses are used for herbivory, two of which are variations on donor-dependent herbivore (models 1a and 1b) and one of which is a Lotka–Volterra type of interaction (model 2). All three were modified to include the negative effect of chemical defenses on the herbivore. Analysis showed that, for all three models, two stable equilibria could occur, which differs from most common functional responses when no plant defense component is included. Optimal strategies of carbon allocation were defined as the maximum biomass of reproductive propagules produced per unit time, and found to vary with changes in external factors. Increased intensity of herbivory always led to an increase in the fractional allocation of carbon to defense. Decreases in available limiting nutrient generally led to increasing importance of defense. Decreases in available light had little effect on defense but led to increased allocation to foliage. Decreases in limiting nutrient and available light led to decreases in allocation to reproduction in models 1a and 1b but not model 2. Increases in allocation to plant defense were usually accompanied by shifts in carbon allocation away from fine roots, possibly because higher plant defense reduced the loss of nutrients to herbivory.

  20. Interactive effects of plant-available soil silicon and herbivory on competition between two grass species

    PubMed Central

    Garbuzov, Mihail; Reidinger, Stefan; Hartley, Susan E.

    2011-01-01

    Background and Aims The herbivore defence system of true grasses (Poaceae) is predominantly based on silicon that is taken up from the soil and deposited in the leaves in the form of abrasive phytoliths. Silicon uptake mechanisms can be both passive and active, with the latter suggesting that there is an energetic cost to silicon uptake. This study assessed the effects of plant-available soil silicon and herbivory on the competitive interactions between the grasses Poa annua, a species that has previously been reported to accumulate only small amounts of silicon, and Lolium perenne, a high silicon accumulator. Methods Plants were grown in mono- and mixed cultures under greenhouse conditions. Plant-available soil silicon levels were manipulated by adding silicon to the soil in the form of sodium silicate. Subsets of mixed culture pots were exposed to above-ground herbivory by desert locusts (Schistocerca gregaria). Key Results In the absence of herbivory, silicon addition increased biomass of P. annua but decreased biomass of L. perenne. Silicon addition increased foliar silicon concentrations of both grass species >4-fold. Under low soil-silicon availability the herbivores removed more leaf biomass from L. perenne than from P. annua, whereas under high silicon availability the reverse was true. Consequently, herbivory shifted the competitive balance between the two grass species, with the outcome depending on the availability of soil silicon. Conclusions It is concluded that a complex interplay between herbivore abundance, growth–defence trade-offs and the availability of soil silicon in the grasses' local environment affects the outcome of inter-specific competition, and so has the potential to impact on plant community structure. PMID:21868406

  1. Reduced peroxisomal citrate synthase activity increases substrate availability for polyhydroxyalkanoate biosynthesis in plant peroxisomes.

    PubMed

    Tilbrook, Kimberley; Poirier, Yves; Gebbie, Leigh; Schenk, Peer M; McQualter, Richard B; Brumbley, Stevens M

    2014-10-01

    Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers used as renewable, biodegradable plastics. PHA production in plants may be a way to reduce industrial PHA production costs. We recently demonstrated a promising level of peroxisomal PHA production in the high biomass crop species sugarcane. However, further production strategies are needed to boost PHA accumulation closer to commercial targets. Through exogenous fatty acid feeding of Arabidopsis thaliana plants that contain peroxisome-targeted PhaA, PhaB and PhaC enzymes from Cupriavidus necator, we show here that the availability of substrates derived from the β-oxidation cycle limits peroxisomal polyhydroxybutyrate (PHB) biosynthesis. Knockdown of peroxisomal citrate synthase activity using artificial microRNA increased PHB production levels approximately threefold. This work demonstrates that reduction of peroxisomal citrate synthase activity may be a valid metabolic engineering strategy for increasing PHA production in other plant species.

  2. OAK RIDGE NATIONAL LABORATORY SPALLATION NEUTRON SOURCE ELECTRICAL SYSTEMS AVAILABILITY AND IMPROVEMENTS

    SciTech Connect

    Cutler, Roy I; Peplov, Vladimir V; Wezensky, Mark W; Norris, Kevin Paul; Barnett, William E; Hicks, Jim; Weaver, Joey T; Moss, John; Rust, Kenneth R; Mize, Jeffery J; Anderson, David E

    2011-01-01

    SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for AC electrical systems, DC and pulsed power supplies and klystron modulators.

  3. Impact of hydrochar application on soil nutrient dynamics and plant availability

    NASA Astrophysics Data System (ADS)

    Bargmann, I.; Greef, J. M.; Kücke, M.

    2012-04-01

    In order to investigate potentials for the use of HTC-products (hydrochar) in agriculture, the influence of soil application of different hydrochars on soil nutrient dynamics as well as on plant growth and plant nutrient uptake was determined. Hydrochars were produced from sugar beet pulps and brewer's grains by carbonization at 190°C for 4 respectively 12 hours each. Incubation experiments with two soil types showed an increase of soil pH by 0.5 to 2.5 pH units, depending on the amount of hydrochar added and the process conditions (i.e. addition of calcium carbonate during production). The application of HTC to soil decreased the plant available nitrogen to almost zero in the first week after HTC-addition, followed by a slow re-release of nitrate in the following weeks. A similar immobilization of soluble phosphate was observed for one soil type, although to a lower extent. The plant availability of phosphorus in hydrochars and biochars is subject of current trials. Furthermore it is actually investigated to what extend the N immobilization is related to soil microbial activity. Germination tests with barley showed toxic effects of hydrochar application on germination, both by direct contact of grains with HTC as well as by release of gaseous compounds from HTC. Effects differ significantly for different parent materials and pretreatments (washing, drying, storage). The influence of HTC-addition to soil on plant growth and nutrient uptake was investigated in pot experiments with various crop species (barley, phaseolus bean, leek), comparing HTC from different parent materials and process parameters such as carbonization time. With increasing addition of HTC, the N availability was decreased and N contents in the plant were significantly lower compared with the untreated control. The plant growth response was different for each tested crop. On barley, leaf tip necroses were observed, but not on phaseolus. Biomass yield of barley and beans was generally increased

  4. Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation.

    PubMed

    Zheng, Hao; Wang, Xiao; Chen, Lei; Wang, Zhenyu; Xia, Yang; Zhang, Yipeng; Wang, Hefang; Luo, Xianxiang; Xing, Baoshan

    2017-03-27

    Soil health is essential and irreplaceable for plant growth and global food production, which has been threatened by climate change and soil degradation. Degraded coastal soils are urgently required to reclaim using new sustainable technologies. Interest in applying biochar to improve soil health and promote crop yield has rapidly increased because of its multiple benefits. However, effects of biochar addition on the saline-sodic coastal soil health and halophyte growth were poorly understood. Response of two halophytes, Sesbania (Sesbania cannabina) and Seashore mallow (Kosteletzkya virginica), to the individual or co-application of biochar and inorganic fertilizer into a coastal soil was investigated using a 52-day pot experiment. The biochar alone or co-application stimulated the plant growth (germination, root development, biomass), primarily attributed to the enhanced nutrients availability from the biochar-improved soil health. Additionally, the promoted microbial activities and bacterial community shift towards the beneficial taxa (e.g., Pseudomonas and Bacillus) in the rhizosphere also contributed to the enhanced plant growth and biomass. Our findings showed the promising significance because biochar added at an optimal level (≤5%) could be a feasible option to reclaim the degraded coastal soil, enhance plant growth and production, and increase soil health and food security.

  5. Compressed Air System Optimization Project Improves Production at a Metal Forging Plant (Modern Forge, TN, Plant)

    SciTech Connect

    2000-12-01

    In 1995, Modern Forge of Tennessee implemented a compressed air system improvement project at its Piney Flats, Tennessee, forging plant. Due to the project’s implementation, the plant was able to operate with fewer compressors and improve its product quality, thus allowing it to increase productivity. The project also resulted in considerable energy and maintenance savings.

  6. Comparative evaluation of oxidative stress status and manganese availability in plants growing on manganese mine.

    PubMed

    Boojar, Massod Mashhadi Akbar; Goodarzi, Faranak

    2008-11-01

    This study pioneered an approach that determined the effects of excess manganese (Mn) on three species; Datura stramonium, Alhagi camelthorn and Chenopodium ambrosioides. We investigated their levels of Mn, antioxidative enzymes and oxidative damage biomarkers in plants (zone 1) in and outside (zone 2) the Mn mine. The results showed that total and available Mn were at toxic levels for plants growing on zone 1. The Mn levels in each plant species were higher in leaves, stems and roots. Mn was only accumulated significantly in leaf vacuoles of A. camelthorn. Antioxidative enzyme activities of C. ambrosioides and/or D. stramonium in zone 1 were higher in leaves, stems and then in their roots. Malondialdehyde (MDA) and dityrosine levels were insignificantly higher in tissues of the studied plants in zone 1 with respect to zone 2. The roots of studied plants showed significantly higher levels of these biomarkers in comparison with their leaves in zone 1. Accordingly, antioxidative enzymatic response to Mn-stress in D. stramonium and C. ambrosioides and possibly accumulation of Mn in leaf vacuoles of A. camelthorn, protected them from oxidative damages and involved in their tolerance in Mn mine.

  7. 78 FR 24714 - Notice of Funds Availability Inviting Applications for the Federal-State Marketing Improvement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... Agricultural Marketing Service Notice of Funds Availability Inviting Applications for the Federal-State Marketing Improvement Program (FSMIP) AGENCY: Agricultural Marketing Service, USDA. ACTION: Notice. SUMMARY: The Agricultural Marketing Service (AMS) announces the availability of approximately $1 million...

  8. The influence of earthworms on the mobility of microelements in soil and their availability for plants

    NASA Astrophysics Data System (ADS)

    Bityutskii, N. P.; Kaidun, P. I.

    2008-12-01

    The influence of earthworms ( Aporrectodea caliginosa, Lumbricus rubellus, L. terrestris, and Eisenia fetida) on the mobility of microelements and their availability for plants was studied. The contents of water-soluble Fe and Mn compounds extracted from the coprolites were 5-10 times higher than that in the soil (enriched in calcium carbonate and dried) consumed by the earthworms. This digestion-induced effect became higher with the age of the coprolites (up to 9 days) and took place under their alkalization. In the excreta (surface + enteric) of earthworms, the Fe concentration exceeded those of Mn and Zn by many times. Iron and manganese were mostly concentrated (>80% and >60%, respectively) in the organic part of the excrements. In the tests with hydroponics, the excreta were found to be a source of iron compounds available for plants that were similar to Fe2(SO4)3 or Fe-citrate by their physiological effect in the case when the Fe concentration in the excretions was above 0.7 μM. However, the single application of excreta of different earthworm species into the CaCO3 enriched soil did not significantly affect the plant (cucumber) nutrition. The analysis of the transport of microelements with xylem sap showed that this fact appeared to be due to the absence of an Fe deficit in the cucumber plants because of their high capability for the absorption of weakly soluble iron compounds.

  9. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability.

    PubMed

    He, Mingzhu; Dijkstra, Feike A; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang

    2014-11-06

    In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0-10 cm), middle (10-40 cm) and deep soil layers (40-100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect.

  10. Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants

    PubMed Central

    Le Roy, Julien; Huss, Brigitte; Creach, Anne; Hawkins, Simon; Neutelings, Godfrey

    2016-01-01

    The phenylpropanoid pathway in plants is responsible for the biosynthesis of a huge amount of secondary metabolites derived from phenylalanine and tyrosine. Both flavonoids and lignins are synthesized at the end of this very diverse metabolic pathway, as well as many intermediate molecules whose precise biological functions remain largely unknown. The diversity of these molecules can be further increased under the action of UDP-glycosyltransferases (UGTs) leading to the production of glycosylated hydroxycinnamates and related aldehydes, alcohols and esters. Glycosylation can change phenylpropanoid solubility, stability and toxic potential, as well as influencing compartmentalization and biological activity. (De)-glycosylation therefore represents an extremely important regulation point in phenylpropanoid homeostasis. In this article we review recent knowledge on the enzymes involved in regulating phenylpropanoid glycosylation status and availability in different subcellular compartments. We also examine the potential link between monolignol glycosylation and lignification by exploring co-expression of lignin biosynthesis genes and phenolic (de)glycosylation genes. Of the different biological roles linked with their particular chemical properties, phenylpropanoids are often correlated with the plant's stress management strategies that are also regulated by glycosylation. UGTs can for instance influence the resistance of plants during infection by microorganisms and be involved in the mechanisms related to environmental changes. The impact of flavonoid glycosylation on the color of flowers, leaves, seeds and fruits will also be discussed. Altogether this paper underlies the fact that glycosylation and deglycosylation are powerful mechanisms allowing plants to regulate phenylpropanoid localisation, availability and biological activity. PMID:27303427

  11. Leaf nitrogen and phosphorus of temperate desert plants in response to climate and soil nutrient availability

    PubMed Central

    He, Mingzhu; Dijkstra, Feike A.; Zhang, Ke; Li, Xinrong; Tan, Huijuan; Gao, Yanhong; Li, Gang

    2014-01-01

    In desert ecosystems, plant growth and nutrient uptake are restricted by availability of soil nitrogen (N) and phosphorus (P). The effects of both climate and soil nutrient conditions on N and P concentrations among desert plant life forms (annual, perennial and shrub) remain unclear. We assessed leaf N and P levels of 54 desert plants and measured the corresponding soil N and P in shallow (0–10 cm), middle (10–40 cm) and deep soil layers (40–100 cm), at 52 sites in a temperate desert of northwest China. Leaf P and N:P ratios varied markedly among life forms. Leaf P was higher in annuals and perennials than in shrubs. Leaf N and P showed a negative relationship with mean annual temperature (MAT) and no relationship with mean annual precipitation (MAP), but a positive relationship with soil P. Leaf P of shrubs was positively related to soil P in the deep soil. Our study indicated that leaf N and P across the three life forms were influenced by soil P. Deep-rooted plants may enhance the availability of P in the surface soil facilitating growth of shallow-rooted life forms in this N and P limited system, but further research is warranted on this aspect. PMID:25373739

  12. Foundational and translational research opportunities to improve plant health.

    PubMed

    Michelmore, Richard W; Coaker, Gitta; Bart, Rebecca; Beattie, Gwyn A; Bent, Andrew; Bruce, Toby; Cameron, Duncan; Dangl, Jeff; Dinesh-Kumar, Savithramma; Edwards, Robert; Eves-van den Akker, Sebastian; Gassmann, Walter; Greenberg, Jean; Harrison, Richard; He, Ping; Harvey, Jagger; Huffaker, Alisa; Hulbert, Scot; Innes, Roger; Jones, Jonathan D; Kaloshian, Isgouhi; Kamoun, Sophien; Katagiri, Fumiaki; Leach, Jan E; Ma, Wenbo; McDowell, John M; Medford, June; Meyers, Blake; Nelson, Rebecca; Oliver, Richard Peter; Qi, Yiping; Saunders, Diane; Shaw, Michael; Subudhi, Prasanta; Torrance, Leslie; Tyler, Brett M; Walsh, John

    2017-04-11

    This whitepaper reports the deliberations of a workshop focused on biotic challenges to plant health held in Washington, D.C. in September 2016. Ensuring health of food plants is critical to maintaining the quality and productivity of crops and for sustenance of the rapidly growing human population. There is a close linkage between food security and societal stability; however, global food security is threatened by the vulnerability of our agricultural systems to numerous pests, pathogens, weeds, and environmental stresses. These threats are aggravated by climate change, the globalization of agriculture, and an over-reliance on non-sustainable inputs. New analytical and computational technologies are providing unprecedented resolution at a variety of molecular, cellular, organismal, and population scales for crop plants as well as pathogens, pests, beneficial microbes, and weeds. It is now possible to both characterize useful or deleterious variation as well as precisely manipulate it. Data-driven, informed decisions based on knowledge of the variation of biotic challenges and of natural and synthetic variation in crop plants will enable deployment of durable interventions throughout the world. These should be integral, dynamic components of agricultural strategies for sustainable agriculture. Specific findings: ● Genetic improvement of crops is the most reliable, least expensive management strategy when suitable genetic variation is available. Nonetheless, some interventions have not proved durable due to the evolution and global dispersal of virulent pathogens and pests as well as herbicide-resistant weeds. ● Additional strategies are becoming essential as multiple fungicides, nematicides, and herbicides become ineffective due to the evolution of resistance and/or are phased out due to registration withdrawals. ● Strategies are needed that maximize the evolutionary hurdles for pathogens, pests, and weeds to overcome control measures. Interventions need to

  13. RETRAN analyses for improving plant procedures and operator training

    SciTech Connect

    Broughton, T.G.; Trikouros, N.G.

    1983-05-01

    The technical quality of procedures governing integrated nuclear power plant operation is influenced by knowledge of system, component, and operator interactions. This knowledge includes, in part, operating plant data and realistic simulations of plant operation. This same information can be used to develop training materials for teaching plant dynamic response to plant operators and engineering staffs. Realistic simulations of plant performance have been used to supplement existing plant data or to provide data where none existed. The simulations may cover events with durations in hours and may be required to consider unique plant conditions including actual core physics conditions, valve leakage, and auxiliary steam loads. In addition, it should be possible for the simulation to account for operator interaction and to provide the information operators would have available through plant instrumentation. Simulations using the RETRAN computer code have been used in the development of procedures and training materials. Procedure applications have included development and validation of general control philosophy and establishment of specific test conditions and setpoints. Training applications include development of materials for teaching general plant response, specific plant response during tests, and analysis of plant performance.

  14. Abattoir Wastewater Irrigation Increases the Availability of Nutrients and Influences on Plant Growth and Development.

    PubMed

    Matheyarasu, Raghupathi; Bolan, Nanthi S; Naidu, Ravi

    This study evaluated the effects of abattoir wastewater irrigation on plant growth and development. The soils used in this study were collected from Primo Smallgoods Abattoir (Port Wakefield, South Australia) at different sites such as currently irrigated (CI), currently not irrigated (CNI) and soil outside the irrigation area as control (CTRL). A completely randomised block design was employed for the plant growth experiment, where four crops (Pennisetum purpureum, Medicago sativa, Sinapis alba and Helianthus annuus) were grown separately on three different soils (CI, CNI and CTRL) in plastic pots. Two types of water (tap water and wastewater) and two loadings were applied throughout the planting period based on the field capacity (FC 100 and 150 %). The overall dry matter yield was compared between the soils and treatments. Under wastewater irrigation, among the four species grown in the CI soil, P. purpureum (171 g) and H. annuus (151 g) showed high biomass yields, followed by S. alba (115 g) and M. sativa (31 g). The plants grown under tap water showed about 70 % lower yields compared to the abattoir wastewater irrigation (AWW). Similar trends in the biomass yields were observed for CNI and CTRL soils under the two water treatments, with the biomass yields in the following order CI > CNI > CTRL soils. The results confirm the beneficial effects of AWW at the greenhouse level. However, a proper cropping pattern and wastewater irrigation management plan is essential to utilise the nutrients available in the wastewater-irrigated land treatment sites. The increase in fertility is evident from the effects of wastewater on biomass growth and also the abundance of nutrients accumulated in plants. A mass balance calculation on the applied, residual and the plant-accumulated nutrients over a few cropping periods will help us in understanding the nutrient cycling processes involved in the abattoir-irrigated land treatment sites, which will serve as an effective tool

  15. Specialist Insect Herbivore and Light Availability Do Not Interact in the Evolution of an Invasive Plant

    PubMed Central

    Zhang, Ziyan; He, Kate S.; Li, Bo

    2015-01-01

    Release from specialist insect herbivores may allow invasive plants to evolve traits associated with decreased resistance and increased competitive ability. Given that there may be genetic trade-off between resistance and tolerance, invasive plants could also become more tolerant to herbivores. Although it is widely acknowledged that light availability affects tolerance to herbivores, little information is available for whether the effect of light availability on tolerance differ between the introduced and native populations. We conducted a common garden experiment in the introduced range of Alternanthera philoxeroides using ten invasive US and ten native Argentinean populations at two levels of light availability and in the presence or absence of a specialist stem-boring insect Agasicles hygrophila. Plant biomass (total and storage root biomass), two allocation traits (root/shoot ratio and branch intensity, branches biomass/main stem biomass) and two functional traits (specific stem length and specific leaf area), which are potentially associated with herbivore resistance and light capture, were measured. Overall, we found that A. philoxeroides from introduced ranges had comparable biomass and tolerance to specialist herbivores, lower branch intensity, lower specific stem length and specific leaf area. Moreover, introduced populations displayed higher shade tolerance of storage root biomass and lower plastic response to shading in specific stem length. Finally, light availability had no significant effect on evolution of tolerance to specialist herbivores of A. philoxeroides. Our results suggest that post-introduction evolution might have occurred in A. philoxeroides. While light availability did not influence the evolution of tolerance to specialist herbivores, increased shade tolerance and release from specialist insects might have contributed to the successful invasion of A. philoxeroides. PMID:26407176

  16. Root-zone plant available water estimation using the SMOS-derived soil water index

    NASA Astrophysics Data System (ADS)

    González-Zamora, Ángel; Sánchez, Nilda; Martínez-Fernández, José; Wagner, Wolfgang

    2016-10-01

    Currently, there are several space missions capable of measuring surface soil moisture, owing to the relevance of this variable in meteorology, hydrology and agriculture. However, the Plant Available Water (PAW), which in some fields of application could be more important than the soil moisture itself, cannot be directly measured by remote sensing. Considering the root zone as the first 50 cm of the soil, in this study, the PAW at 25 cm and 50 cm and integrated between 0 and 50 cm of soil depth was estimated using the surface soil moisture provided by the Soil Moisture Ocean Salinity (SMOS) mission. For this purpose, the Soil Water Index (SWI) has been used as a proxy of the root-zone soil moisture, involving the selection of an optimal T (Topt), which can be interpreted as a characteristic soil water travel time. In this research, several tests using the correlation coefficient (R), the Nash-Sutcliffe score (NS), several error estimators and bias as predictor metrics were applied to obtain the Topt, making a comprehensive study of the T parameter. After analyzing the results, some differences were found between the Topt obtained using R and NS as decision metrics, and that obtained using the errors and bias, but the SWI showed good results as an estimator of the root-zone soil moisture. This index showed good agreement, with an R between 0.60 and 0.88. The method was tested from January 2010 to December 2014, using the database of the Soil Moisture Measurements Stations Network of the University of Salamanca (REMEDHUS) in Spain. The PAW estimation showed good agreement with the in situ measurements, following closely the dry-downs and wetting-up events, with R ranging between 0.60 and 0.92, and error values lower than 0.05 m3m-3. A slight underestimation was observed for both the PAW and root-zone soil moisture at the different depths; this could be explained by the underestimation pattern observed with the SMOS L2 soil moisture product, in line with previous

  17. Reliability and availability analysis for robot subsystem in automotive assembly plant: a case study

    NASA Astrophysics Data System (ADS)

    Fudzin, A. F.; Majid, M. A. A.

    2015-12-01

    The automotive assembly plant in a manufacturing environment consists of conveying systems and robots. Robots with high reliability will ensure no interruption during production. This study is to analyze the individual robot reliability compared to reliability of robots subsystem in series configuration. Availability was computed based on individual robots breakdown data. Failures due to robots breakdown often occurred during the operations. Actual maintenance data for a period of seven years were used for the analysis. Incorporation of failures rate and mean time between failures yield the reliability computation with the assumption of constant failure rate. Result from the analysis based on 5000 operating hours indicated reliability of series configuration of robots in a subsystem decreased to 2.8% in comparison to 38% reliability of the individual robot with the lowest reliability. The calculated lowest availability of the robots is 99.41%. The robot with the lowest reliability and availability should be considered for replacement.

  18. Use of plants to evaluate the difference in available cadmium between soils

    SciTech Connect

    Kuboi, T.; Noguchi, A.

    1987-01-01

    A new method was proposed for assessing the difference in the capacity of soils to supply Cd to plants. The relation of tissue (tc) to soil (sc) Cd concentrations can be expressed as; log(tc) = ..cap alpha.. + ..beta.. log(sc), where ..cap alpha.. and ..beta.. are the regression coefficients. When the same plant is grown on another soil, the equation will change to; log(tc) = ..cap alpha..' + ..beta..' log(sc). Based on both equations, the relationship between sc' and sc becomes; log(sc') = (..cap alpha..-..cap alpha..)/..beta..' + (..beta../..beta..') log(sc). Set p = (..cap alpha..-..cap alpha..')/..beta..' and q = ..beta../..beta..', then the difference of Cd availability between two soils can be evaluated according to the values of p and q. The p and q values were determined among four treatments in which radish was grown on a sand soil and a silty loam soil at two pH levels. The values showed that the Cd present in the sand soil (pH 5.6) and the metal in the silty loam soil (pH 7.5) were the most and least available, respectively. It was therefore considered that the parameters p and q could be used as criteria for selecting an ideal extractant capable of removing the actually available Cd from soils.

  19. Hanford Waste Vitrification Plant technical background document for best available radionuclide control technology demonstration

    SciTech Connect

    Carpenter, A.B.; Skone, S.S.; Rodenhizer, D.G.; Marusich, M.V. )

    1990-10-01

    This report provides the background documentation to support applications for approval to construct and operate new radionuclide emission sources at the Hanford Waste Vitrification Plant (HWVP) near Richland, Washington. The HWVP is required to obtain permits under federal and state statutes for atmospheric discharges of radionuclides. Since these permits must be issued prior to construction of the facility, draft permit applications are being prepared, as well as documentation to support these permits. This report addresses the applicable requirements and demonstrates that the preferred design meets energy, environmental, and economic criteria for Best Available Radionuclide Control Technology (BARCT) at HWVP. 22 refs., 11 figs., 25 tabs.

  20. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants

    PubMed Central

    Al-Wabel, Mohammad I.; Usman, Adel R.A.; El-Naggar, Ahmed H.; Aly, Anwar A.; Ibrahim, Hesham M.; Elmaghraby, Salem; Al-Omran, Abdulrasoul

    2014-01-01

    The objective of this study was to assess the use of Concarpus biochar as a soil amendment for reducing heavy metal accessibility and uptake by maize plants (Zea mays L.). The impacts of biochar rates (0.0, 1.0, 3.0, and 5.0% w/w) and two soil moisture levels (75% and 100% of field capacity, FC) on immobilization and availability of Fe, Mn, Zn, Cd, Cu and Pb to maize plants as well as its application effects on soil pH, EC, bulk density, and moisture content were evaluated using heavy metal-contaminated soil collected from mining area. The biochar addition significantly decreased the bulk density and increased moisture content of soil. Applying biochar significantly reduced NH4OAc- or AB-DTPA-extractable heavy metal concentrations of soils, indicating metal immobilization. Conocarpus biochar increased shoot dry biomass of maize plants by 54.5–102% at 75% FC and 133–266% at 100% FC. Moreover, applying biochar significantly reduced shoot heavy metal concentrations in maize plants (except for Fe at 75% FC) in response to increasing application rates, with a highest decrease of 51.3% and 60.5% for Mn, 28% and 21.2% for Zn, 60% and 29.5% for Cu, 53.2% and 47.2% for Cd at soil moisture levels of 75% FC and 100% FC, respectively. The results suggest that biochar may be effectively used as a soil amendment for heavy metal immobilization and in reducing its phytotoxicity. PMID:26150758

  1. Effects of two contrasting hemiparasitic plant species on biomass production and nitrogen availability.

    PubMed

    Demey, Andreas; Ameloot, Els; Staelens, Jeroen; De Schrijver, An; Verstraeten, Gorik; Boeckx, Pascal; Hermy, Martin; Verheyen, Kris

    2013-09-01

    Hemiparasitic plants can substantially change plant community structure; the drainage of host resources has a direct negative effect on host biomass and, as a consequence, promotes non-host biomass production (parasitism pathway); on the other hand, hemiparasitic litter inputs can enhance nutrient cycling which may have an indirect positive effect on both host and non-host biomass production (litter pathway). We evaluated the net effect of both pathways on total shoot biomass (with and without the hemiparasite) and shoot biomass of graminoids, forbs and ericaceous shrubs using a removal experiment in three sites infested with the annual Rhinanthus angustifolius, and three sites infested with the biennial Pedicularis sylvatica. We addressed the potential importance of litter effects by determination of litter quantity and quality, as well as modeling N release during decomposition. In the second year after removing the hemiparasites, total plant biomass at Rhinanthus sites was 24 % higher in weeded plots than in control plots, while weeding had no significant effect at Pedicularis sites. The increase in total biomass following Rhinanthus removal was mainly due to a higher biomass of graminoids. The amount of litter produced by Rhinanthus was only half of that produced by Pedicularis; N contents were similar. The amount of N in the litter was 9 and 30 % of the amount removed by mowing for Rhinanthus and Pedicularis sites, respectively. Within 2 months, about 45 % of the N in both hemiparasitic litter types was released by decomposition. Our results suggest that in addition to the suppression of host biomass due to parasitism, positive litter feedbacks on host and non-host biomass-via an increase in nutrient availability-also affect plant community structure. We propose that, depending on the particular hemiparasite and/or site conditions, these positive litter feedbacks on shoot biomass can compensate for the negative effect of parasitism.

  2. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants.

    PubMed

    Al-Wabel, Mohammad I; Usman, Adel R A; El-Naggar, Ahmed H; Aly, Anwar A; Ibrahim, Hesham M; Elmaghraby, Salem; Al-Omran, Abdulrasoul

    2015-07-01

    The objective of this study was to assess the use of Concarpus biochar as a soil amendment for reducing heavy metal accessibility and uptake by maize plants (Zea mays L.). The impacts of biochar rates (0.0, 1.0, 3.0, and 5.0% w/w) and two soil moisture levels (75% and 100% of field capacity, FC) on immobilization and availability of Fe, Mn, Zn, Cd, Cu and Pb to maize plants as well as its application effects on soil pH, EC, bulk density, and moisture content were evaluated using heavy metal-contaminated soil collected from mining area. The biochar addition significantly decreased the bulk density and increased moisture content of soil. Applying biochar significantly reduced NH4OAc- or AB-DTPA-extractable heavy metal concentrations of soils, indicating metal immobilization. Conocarpus biochar increased shoot dry biomass of maize plants by 54.5-102% at 75% FC and 133-266% at 100% FC. Moreover, applying biochar significantly reduced shoot heavy metal concentrations in maize plants (except for Fe at 75% FC) in response to increasing application rates, with a highest decrease of 51.3% and 60.5% for Mn, 28% and 21.2% for Zn, 60% and 29.5% for Cu, 53.2% and 47.2% for Cd at soil moisture levels of 75% FC and 100% FC, respectively. The results suggest that biochar may be effectively used as a soil amendment for heavy metal immobilization and in reducing its phytotoxicity.

  3. Plant roots use a patterning mechanism to position lateral root branches toward available water

    PubMed Central

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E.; Sturrock, Craig J.; Thompson, Mark C.; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L.; Vernoux, Teva; Mooney, Sacha J.; Bennett, Malcolm J.; Dinneny, José R.

    2014-01-01

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 and PIN-FORMED 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root. PMID:24927545

  4. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    PubMed

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  5. Nitrogen availability alters the expression of carnivory in the northern pitcher plant, Sarracenia purpurea.

    PubMed

    Ellison, Aaron M; Gotelli, Nicholas J

    2002-04-02

    Atmospheric transport and deposition of nutrients, especially nitrogen, is a global environmental problem with well-documented consequences for ecosystem dynamics. However, monitoring nitrogen deposition is relatively expensive, monitoring stations are widely spaced, and estimates and predicted impacts of nitrogen deposition are currently derived from spatial modeling and interpolation of limited data. Ombrotrophic ("rain-fed") bogs are nutrient-poor ecosystems that are especially sensitive to increasing nutrient input, and carnivorous plants, which are characteristic of these widespread ecosystem types, may be especially sensitive indicators of N deposition. Botanical carnivory is thought to have evolved in nutrient-poor and well-lit habitats such as bogs because the marginal benefits accruing from carnivory exceed the marginal photosynthetic costs associated with the maintenance of carnivorous organs. However, the production of carnivorous organs can be a phenotypically plastic trait. The northern pitcher plant, Sarracenia purpurea, produces leaves specialized for prey capture and nutrient uptake (pitchers) and leaves that are more efficient at photosynthesis (phyllodia). We hypothesized that relative allocation to these two types of leaves reflects ambient nitrogen availability. We manipulated nutrient availability to plants with leaf enrichment and whole-plot fertilization experiments. Increased nitrogen, but not phosphorus, reduced production of pitchers relative to phyllodia; this result provided empirical support for the cost-benefit model of the evolution of botanical carnivory. Because this phenotypic shift in leaf production occurs in ecological time, our results suggest that S. purpurea could be a reliable and inexpensive biological indicator of nitrogen deposition rates. This suggestion is supported by field observations across a geographic gradient of nitrogen deposition.

  6. Opportunities for improving phosphorus-use efficiency in crop plants.

    PubMed

    Veneklaas, Erik J; Lambers, Hans; Bragg, Jason; Finnegan, Patrick M; Lovelock, Catherine E; Plaxton, William C; Price, Charles A; Scheible, Wolf-Rüdiger; Shane, Michael W; White, Philip J; Raven, John A

    2012-07-01

    Limitation of grain crop productivity by phosphorus (P) is widespread and will probably increase in the future. Enhanced P efficiency can be achieved by improved uptake of phosphate from soil (P-acquisition efficiency) and by improved productivity per unit P taken up (P-use efficiency). This review focuses on improved P-use efficiency, which can be achieved by plants that have overall lower P concentrations, and by optimal distribution and redistribution of P in the plant allowing maximum growth and biomass allocation to harvestable plant parts. Significant decreases in plant P pools may be possible, for example, through reductions of superfluous ribosomal RNA and replacement of phospholipids by sulfolipids and galactolipids. Improvements in P distribution within the plant may be possible by increased remobilization from tissues that no longer need it (e.g. senescing leaves) and reduced partitioning of P to developing grains. Such changes would prolong and enhance the productive use of P in photosynthesis and have nutritional and environmental benefits. Research considering physiological, metabolic, molecular biological, genetic and phylogenetic aspects of P-use efficiency is urgently needed to allow significant progress to be made in our understanding of this complex trait.

  7. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil.

    PubMed

    Méndez, A; Gómez, A; Paz-Ferreiro, J; Gascó, G

    2012-11-01

    Pyrolytic conversion of sewage sludge into biochar could be a sustainable management option for Mediterranean agricultural soils. The aim of this work is to evaluate the effects of biochar from sewage sludge pyrolysis on soil properties; heavy metals solubility and bioavailability in a Mediterranean agricultural soil and compared with those of raw sewage sludge. Biochar (B) was prepared by pyrolysis of selected sewage sludge (SL) at 500°C. The pyrolysis process decreased the plant-available of Cu, Ni, Zn and Pb, the mobile forms of Cu, Ni, Zn, Cd and Pb and also the risk of leaching of Cu, Ni, Zn and Cd. A selected Mediterranean soil was amended with SL and B at two different rates in mass: 4% and 8%. The incubation experiment (200 d) was conducted in order to study carbon mineralization and trace metal solubility and bioavailability of these treatments. Both types of amendments increased soil respiration with respect to the control soil. The increase was lower in the case of B than when SL was directly added. Metals mobility was studied in soil after the incubation and it can be established that the risk of leaching of Cu, Ni and Zn were lower in the soil treated with biochar that in sewage sludge treatment. Biochar amended samples also reduced plant availability of Ni, Zn, Cd and Pb when compared to sewage sludge amended samples.

  8. The effects of natural enemies, competition, and host plant water availability on an aphid population.

    PubMed

    Morris, William F

    1992-06-01

    I used a factorial experiment repeated in two years to assess the relative effects of natural enemy attack, interspecific competition, and water availability to the host plant, and of interactions among these factors, on the population dynamics of the aphid Aphis varians feeding on fireweed (Epilobium angustifolium). The impact of a suite of coccinellid and syrphid predators emerged as the predominant factor affecting the success of aphid colonies: colonies protected from natural enemies grew in size at a rate of ten percent per day, were only one tenth as likely to go extinct, and produced over ten times more dispersing alates. In contrast, I found only minor effects of removing flea beetles, the most abundant herbivore with which A. varians colonies cohabit fireweed stems, and of supplementing water availability to fireweed host plants, in spite of a significant effect of watering frequency on aphid growth in the green-house. There was no evidence of significant two- or three-way interactions among factors. Hence, despite the potential complexity of the food web in which it is embedded, the dynamics of A. varians appears to be driven predominantly by a single factor, i.e. interactions with natural enemies.

  9. Maize somatic embryogenesis: recent features to improve plant regeneration.

    PubMed

    Garrocho-Villegas, Verónica; de Jesús-Olivera, María Teresa; Quintanar, Estela Sánchez

    2012-01-01

    Plant regeneration capacity is maintained through the life of a plant by the stem cell niche present in the meristems. Stem cells are capable of differentiating into any plant organ, allowing propagation of new plants by different techniques. Among them, somatic embryogenesis is a widely used technique characterized by a complex process that involves coordinated expression of genes, mediated by the influence of specific hormones, nutrients, stress, and/or environmental signals. This tool is particularly relevant in the propagation of genetically improved crops. The intrinsic embryogenic potential of the explant used as starting material for plant in vitro cultures varies depending on the genotype of each plant species. Particularly in maize, the regeneration capacity is lost during the course of tissue maturation, since embryogenic callus (E) is almost exclusively obtained from immature zygotic embryos. In this chapter, the latest advances in the literature for maize somatic embryogenesis process are reviewed. Further, a detailed procedure for maize plant regeneration from E callus is described. The callus obtained from immature zygotic embryos is capable to generate somatic embryos that germinate and develop into fertile normal plants.

  10. Soil nitrogen availability and plant genotype modify the nutrition strategies of M. truncatula and the associated rhizosphere microbial communities.

    PubMed

    Zancarini, Anouk; Mougel, Christophe; Voisin, Anne-Sophie; Prudent, Marion; Salon, Christophe; Munier-Jolain, Nathalie

    2012-01-01

    Plant and soil types are usually considered as the two main drivers of the rhizosphere microbial communities. The aim of this work was to study the effect of both N availability and plant genotype on the plant associated rhizosphere microbial communities, in relation to the nutritional strategies of the plant-microbe interactions, for six contrasted Medicago truncatula genotypes. The plants were provided with two different nutrient solutions varying in their nitrate concentrations (0 mM and 10 mM). First, the influence of both nitrogen availability and Medicago truncatula genotype on the genetic structure of the soil bacterial and fungal communities was determined by DNA fingerprint using Automated Ribosomal Intergenic Spacer Analysis (ARISA). Secondly, the different nutritional strategies of the plant-microbe interactions were evaluated using an ecophysiological framework. We observed that nitrogen availability affected rhizosphere bacterial communities only in presence of the plant. Furthermore, we showed that the influence of nitrogen availability on rhizosphere bacterial communities was dependent on the different genotypes of Medicago truncatula. Finally, the nutritional strategies of the plant varied greatly in response to a modification of nitrogen availability. A new conceptual framework was thus developed to study plant-microbe interactions. This framework led to the identification of three contrasted structural and functional adaptive responses of plant-microbe interactions to nitrogen availability.

  11. Plant Growth Environments with Programmable Relative Humidity and Homogeneous Nutrient Availability

    PubMed Central

    Lind, Kara R.; Lee, Nigel; Sizmur, Tom; Siemianowski, Oskar; Van Bruggen, Shawn; Ganapathysubramaniam, Baskar

    2016-01-01

    We describe the design, characterization, and use of “programmable”, sterile growth environments for individual (or small sets of) plants. The specific relative humidities and nutrient availability experienced by the plant is established (RH between 15% and 95%; nutrient concentration as desired) during the setup of the growth environment, which takes about 5 minutes and <1$ in disposable cost. These systems maintain these environmental parameters constant for at least 14 days with minimal intervention (one minute every two days). The design is composed entirely of off-the-shelf components (e.g., LEGO® bricks) and is characterized by (i) a separation of root and shoot environment (which is physiologically relevant and facilitates imposing specific conditions on the root system, e.g., darkness), (ii) the development of the root system on a flat surface, where the root enjoys constant contact with nutrient solution and air, (iii) a compatibility with root phenotyping. We demonstrate phenotyping by characterizing root systems of Brassica rapa plants growing in different relative humidities (55%, 75%, and 95%). While most phenotypes were found to be sensitive to these environmental changes, a phenotype tightly associated with root system topology–the size distribution of the areas encircled by roots–appeared to be remarkably and counterintuitively insensitive to humidity changes. These setups combine many of the advantages of hydroponics conditions (e.g., root phenotyping, complete control over nutrient composition, scalability) and soil conditions (e.g., aeration of roots, shading of roots), while being comparable in cost and setup time to Magenta® boxes. PMID:27304431

  12. Interacting TCP and NLP transcription factors control plant responses to nitrate availability.

    PubMed

    Guan, Peizhu; Ripoll, Juan-José; Wang, Renhou; Vuong, Lam; Bailey-Steinitz, Lindsay J; Ye, Dening; Crawford, Nigel M

    2017-02-28

    Plants have evolved adaptive strategies that involve transcriptional networks to cope with and survive environmental challenges. Key transcriptional regulators that mediate responses to environmental fluctuations in nitrate have been identified; however, little is known about how these regulators interact to orchestrate nitrogen (N) responses and cell-cycle regulation. Here we report that teosinte branched1/cycloidea/proliferating cell factor1-20 (TCP20) and NIN-like protein (NLP) transcription factors NLP6 and NLP7, which act as activators of nitrate assimilatory genes, bind to adjacent sites in the upstream promoter region of the nitrate reductase gene, NIA1, and physically interact under continuous nitrate and N-starvation conditions. Regions of these proteins necessary for these interactions were found to include the type I/II Phox and Bem1p (PB1) domains of NLP6&7, a protein-interaction module conserved in animals for nutrient signaling, and the histidine- and glutamine-rich domain of TCP20, which is conserved across plant species. Under N starvation, TCP20-NLP6&7 heterodimers accumulate in the nucleus, and this coincides with TCP20 and NLP6&7-dependent up-regulation of nitrate assimilation and signaling genes and down-regulation of the G2/M cell-cycle marker gene, CYCB1;1 TCP20 and NLP6&7 also support root meristem growth under N starvation. These findings provide insights into how plants coordinate responses to nitrate availability, linking nitrate assimilation and signaling with cell-cycle progression.

  13. Improving the safety of LWR power plants. Final report

    SciTech Connect

    Not Available

    1980-04-01

    This report documents the results of the Study to identify current, potential research issues and efforts for improving the safety of Light Water Reactor (LWR) power plants. This final report describes the work accomplished, the results obtained, the problem areas, and the recommended solutions. Specifically, for each of the issues identified in this report for improving the safety of LWR power plants, a description is provided in detail of the safety significance, the current status (including information sources, status of technical knowledge, problem solution and current activities), and the suggestions for further research and development. Further, the issues are ranked for action into high, medium, and low priority with respect to primarily (a) improved safety (e.g. potential reduction in public risk and occupational exposure), and secondly (b) reduction in safety-related costs (improving or maintaining level of safety with simpler systems or in a more cost-effective manner).

  14. Soil tests for predicting plant available phosphorus in newly reclaimed alkaline minespoil

    SciTech Connect

    Dancer, W.S.

    1984-01-01

    Four selected soil tests (Olson's bicarbonate, Bray P-1, Bray P-2, and a modified Bray P-1 test) were compared over a four year period as methods for predicting plant available-P in a slightly alkaline (pH 7.25) minespoil from a west-central coal field in Illinois. Phosphorus recovery by hybrid corn, measured both greenhouse and field conditions, showed that the minespoil was extremely P deficient. Extractable Olson's bicarbonate P and standard Bray P-1 phosphorus were highly correlated with total-P recovery by corn, with respective coefficients of r=0.973 and r=0.957 in the greenhouse; and r=0.998 and r=0.983 respectively, under field conditions. Consistent Mitscherlich-Bray proportionality constants were calculated from corn grain yields under field conditions in three of four years, after adjustments for annual differences in plant population density. Minespoil was found to require about twice as much extractable-P (about 40 mg/kg Olson-bicarbonate or Bray P-1) as topsoil to support maximum corn productivity. It was estimated that more than 500 kg/ha fertilizer-P will be required to achieve maximum corn grain production in spoil.

  15. Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants

    PubMed Central

    Nongpiur, Ramsong Chantre; Singla-Pareek, Sneh Lata; Pareek, Ashwani

    2016-01-01

    Salinity is one of the major factors which reduces crop production worldwide. Plant responses to salinity are highly complex and involve a plethora of genes. Due to its multigenicity, it has been difficult to attain a complete understanding of how plants respond to salinity. Genomics has progressed tremendously over the past decade and has played a crucial role towards providing necessary knowledge for crop improvement. Through genomics, we have been able to identify and characterize the genes involved in salinity stress response, map out signaling pathways and ultimately utilize this information for improving the salinity tolerance of existing crops. The use of new tools, such as gene pyramiding, in genetic engineering and marker assisted breeding has tremendously enhanced our ability to generate stress tolerant crops. Genome editing technologies such as Zinc finger nucleases, TALENs and CRISPR/Cas9 also provide newer and faster avenues for plant biologists to generate precisely engineered crops. PMID:27499683

  16. Antibacterial activity of commercially available plant-derived essential oils against oral pathogenic bacteria.

    PubMed

    Bardají, D K R; Reis, E B; Medeiros, T C T; Lucarini, R; Crotti, A E M; Martins, C H G

    2016-01-01

    This work investigated the antibacterial activity of 15 commercially available plant-derived essential oils (EOs) against a panel of oral pathogens. The broth microdilution method afforded the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of the assayed EOs. The EO obtained from Cinnamomum zeylanicum (Lauraceae) (CZ-EO) displayed moderate activity against Fusobacterium nucleatum (MIC and MBC = 125 μg/mL), Actinomyces naeslundii (MIC and MBC = 125 μg/mL), Prevotella nigrescens (MIC and MBC = 125 μg/mL) and Streptococcus mutans (MIC = 200 μg/mL; MBC = 400 μg/mL). (Z)-isosafrole (85.3%) was the main chemical component of this oil. We did not detect cinnamaldehyde, previously described as the major constituent of CZ-EO, in specimens collected in other countries.

  17. Chromium fractionation and plant availability in tannery-sludge amended soil

    NASA Astrophysics Data System (ADS)

    Allué, Josep; Moya Garcés, Alba; Bech, Jaume; Barceló, Juan; Poschenrieder, Charlotte

    2013-04-01

    The leather industry represents an important economic sector in both developed and developing countries. Chromium tanning is the major process used to obtain high quality leather. Within the REACH regulation the use of Cr, especially CrVI, in the tanning process is under discussion in Europe. High Cr concentration in shoes and other Cr-tanned leather products can cause contact dermatitis in sensitive population. Moreover, the high Cr concentration is the major limiting factor for the use of tannery sludge as a source of organic matter in agricultural soils. Interest in Cr, however is not limited to its potential toxic effects. Chromium III is used as a dietary supplement because there are reports, but also controversy, about the positive effects of Cr III in glucose tolerance and type-2 diabetes. Adequate intake levels for Cr by the diet have been established between 25 and 35 µg/day for adult females and males, respectively. Sufficient supply of Cr III by the diet is preferable to the use of CrIII-salt based dietary supplements. The objective of the present work was to investigate whether Cr from tannery sludge-amended soil is available to Trigonella foenum-graecum plants, a plant used both as a spice and as a medicinal herb, because of its hypoglucemic effects. For this purpose clay loam soil (pH 7.8) was sieved (2mm) and thoroughly mixed with tannery sludge from a depuration station (Igualadina Depuració i Recuperació S.L., Igualada, Barcelona, Spain). The sludge had a Cr concentration of 6,034mg kg-1 and a 0.73 % of NH4-nitrogen. All the Cr was in the form of CrIII. Three treatments were disposed. Control soil receiving no sludge, a 60 mg kg-1 Cr treatment (10 g fresh sludge kg-1 soil) and a 120 mg kg-1 Cr treatment (20 g fresh sludge kg-1 soil). Control soil and the soil treated with 10g kg-1 sludge received NPK fertilizer in the form of ammonium sulfate, superfosfate, and KCl to rise the N,P, and K concentrations to similar levels to those achieved in the

  18. Effects of plant availability on population size and dynamics of an insect community: diamondback moth and two of its parasitoids.

    PubMed

    Soufbaf, M; Fathipour, Y; Karimzadeh, J; Zalucki, M P

    2014-08-01

    To understand the effect of plant availability/structure on the population size and dynamics of insects, a specialist herbivore in the presence of two of its parasitoids was studied in four replicated time-series experiments with high and low plant availabilities; under the latter condition, the herbivore suffered from some periods of resource limitation (starvation) and little plant-related structural refuges. Population dynamics of the parasitoid Cotesia vestalis was governed mainly by the delayed density-dependent process under both plant setups. The parasitoid, Diadegma semiclausum, under different plant availabilities and different coexistence situations (either +competitor or -competitor) showed dynamics patterns that were governed mainly by the delayed density process (significant lags at weeks 2-4). Both the competing parasitoids did not experience beneficial or costly interferences from each other in terms of their own population size when the plant resource was limited. Variation in the Plutella xylostella population under limited plant availability is higher than that under the other plant setup. For both parasitoids, under limited plant setup, the extinction risk was lower when parasitoids were engaged in competition, while under the unlimited plant setup, the mentioned risk was higher when parasitoids competed. In this situation, parasitoids suffered from two forces, competition and higher escaped hosts.

  19. Conservation and restoration of indigenous plants to improve community livelihoods: the Useful Plants Project

    NASA Astrophysics Data System (ADS)

    Ulian, Tiziana; Sacandé, Moctar; Mattana, Efisio

    2014-05-01

    Kew's Millennium Seed Bank partnership (MSBP) is one of the largest ex situ plant conservation initiatives, which is focused on saving plants in and from regions most at risk, particularly in drylands. Seeds are collected and stored in seed banks in the country of origin and duplicated in the Millennium Seed Bank in the UK. The MSBP also strengthens the capacity of local communities to successfully conserve and sustainably use indigenous plants, which are important for their wellbeing. Since 2007, high quality seed collections and research information have been gathered on ca. 700 useful indigenous plant species that were selected by communities in Botswana, Kenya, Mali, Mexico and South Africa through Project MGU - The Useful Plants Project. These communities range from various farmer's groups and organisations to traditional healers, organic cotton/crop producers and primary schools. The information on seed conservation and plant propagation was used to train communities and to propagate ca. 200 species that were then planted in local gardens, and as species reintroduced for reforestation programmes and enriching village forests. Experimental plots have also been established to further investigate the field performance (plant survival and growth rate) of indigenous species, using low cost procedures. In addition, the activities support revenue generation for local communities directly through the sustainable use of plant products or indirectly through wider environmental and cultural services. This project has confirmed the potential of biodiversity conservation to improve food security and human health, enhance community livelihoods and strengthen the resilience of land and people to the changing climate. This approach of using indigenous species and having local communities play a central role from the selection of species to their planting and establishment, supported by complementary research, may represent a model for other regions of the world, where

  20. Inhibition of Fungal Plant Pathogens by Synergistic Action of Chito-Oligosaccharides and Commercially Available Fungicides

    PubMed Central

    Rahman, Md. Hafizur; Shovan, Latifur Rahman; Hjeljord, Linda Gordon; Aam, Berit Bjugan; Eijsink, Vincent G. H.; Sørlie, Morten; Tronsmo, Arne

    2014-01-01

    Chitosan is a linear heteropolymer consisting of β 1,4-linked N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GlcN). We have compared the antifungal activity of chitosan with DPn (average degree of polymerization) 206 and FA (fraction of acetylation) 0.15 and of enzymatically produced chito-oligosaccharides (CHOS) of different DPn alone and in combination with commercially available synthetic fungicides, against Botrytis cinerea, the causative agent of gray mold in numerous fruit and vegetable crops. CHOS with DPn in the range of 15–40 had the greatest anti-fungal activity. The combination of CHOS and low dosages of synthetic fungicides showed synergistic effects on antifungal activity in both in vitro and in vivo assays. Our study shows that CHOS enhance the activity of commercially available fungicides. Thus, addition of CHOS, available as a nontoxic byproduct of the shellfish industry, may reduce the amounts of fungicides that are needed to control plant diseases. PMID:24770723

  1. 76 FR 27301 - Syngenta Biotechnology, Inc.; Availability of Petition, Plant Pest Risk Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... plants from lepidopteran insect damage. The petition has been submitted in accordance with our... engineered to express a Cry1Ab protein to protect cotton plants from lepidopteran insect damage, stating...

  2. 78 FR 67100 - Okanagan Specialty Fruits, Inc.; Availability of Plant Pest Risk Assessment and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ..., ``Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or... produced through genetic engineering that are plant pests or that there is reason to believe are...

  3. Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost?

    PubMed

    Bouis, Howarth E

    2003-05-01

    Can commonly-eaten food staple crops be developed that fortify their seeds with essential minerals and vitamins? Can farmers be induced to grow such varieties? If so, would this result in a marked improvement in human nutrition at a lower cost than existing nutrition interventions? An interdisciplinary international effort is underway to breed for mineral- and vitamin-dense varieties of rice, wheat, maize, beans and cassava for release to farmers in developing countries. The biofortification strategy seeks to take advantage of the consistent daily consumption of large amounts of food staples by all family members, including women and children as they are most at risk for micronutrient malnutrition. As a consequence of the predominance of food staples in the diets of the poor, this strategy implicitly targets low-income households. After the one-time investment is made to develop seeds that fortify themselves, recurrent costs are low and germplasm may be shared internationally. It is this multiplier aspect of plant breeding across time and distance that makes it so cost-effective. Once in place, the biofortified crop system is highly sustainable. Nutritionally-improved varieties will continue to be grown and consumed year after year, even if government attention and international funding for micronutrient issues fades. Biofortification provides a truly feasible means of reaching malnourished populations in relatively remote rural areas, delivering naturally-fortified foods to population groups with limited access to commercially-marketed fortified foods that are more readily available in urban areas. Biofortification and commercial fortification are, therefore, highly complementary. Breeding for higher trace mineral density in seeds will not incur a yield penalty. Mineral-packed seeds sell themselves to farmers because, as recent research has shown, these trace minerals are essential in helping plants resist disease and other environmental stresses. More seedlings

  4. Oviposition Response by Orius Insidiosus (Hemiptera: Anthocoridae) to Plant Quality and Prey Availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The predator Orius insidiosus consumes a mixed diet of prey, vascular sap, and plant-based foods through its life. Plant species identity affects the oviposition behavior of O. insidiosus in that it prefers plants where newly hatched nymphs perform best, in the absence of prey. Choice tests were ...

  5. 78 FR 13303 - Stine Seed Farm, Inc.; Availability of Plant Pest Risk Assessment, Environmental Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to... movement, or release into the environment) of organisms and products altered or produced through genetic engineering that are plant pests or that there is reason to believe are plant pests. Such...

  6. 76 FR 27303 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Products Altered or Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to... movement, or release into the environment) of organisms and products altered or produced through genetic engineering that are plant pests or that there is reason to believe are plant pests. Such...

  7. Root Traits and Phenotyping Strategies for Plant Improvement.

    PubMed

    Paez-Garcia, Ana; Motes, Christy M; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B; Monteros, Maria J

    2015-06-15

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.

  8. Root Traits and Phenotyping Strategies for Plant Improvement

    PubMed Central

    Paez-Garcia, Ana; Motes, Christy M.; Scheible, Wolf-Rüdiger; Chen, Rujin; Blancaflor, Elison B.; Monteros, Maria J.

    2015-01-01

    Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs. PMID:27135332

  9. Ways to Improve Russian Coal-Fired Power Plants

    SciTech Connect

    Tumanovskii, A. G. Olkhovsky, G. G.

    2015-07-15

    Coal is an important fuel for the electric power industry of Russia, especially in Ural and the eastern part of the country. It is fired in boilers of large (200 – 800 MW) condensing power units and in many cogeneration power plants with units rated at 50 – 180 MW. Many coal-fired power plants have been operated for more than 40 – 50 years. Though serviceable, their equipment is obsolete and does not comply with the current efficiency, environmental, staffing, and availability standards. It is urgent to retrofit and upgrade such power plants using advanced equipment, engineering and business ideas. Russian power-plant engineering companies have designed such advanced power units and their equipment such as boilers, turbines, auxiliaries, process and environmental control systems similar to those produced by the world’s leading manufacturers. Their performance and ways of implementation are discussed.

  10. Improving the environmental sustainability of a waste processing plant

    SciTech Connect

    Turner, Tom; Watson, Stuart

    2013-07-01

    This paper describes how the level of environmental sustainability at the Solid Waste Processing plant at Research Sites Restoration Ltd (RSRL) Harwell was measured and improved. It provides reasons to improve environmental performance in an organisation, states best practice on how improvement should be conducted, and gives first-hand experience on how changes were implemented. In this paper sustainability is defined as 'meeting the needs of the present without compromising the ability of future generations to meet their own needs'. A baseline for environmental sustainability was created, by looking at multiple attributes. From this, a matrix was created to show how the baseline environmental performance compared to best practice, and a gap analysis was performed. Results from this analysis showed areas for potential systematic improvement, and actions were created. Nearly all actions were implemented within one year, and environmental sustainability improved significantly. Most improvements cost no money to implement, and the few that did had to pass criteria in a business case. Results from a company-wide survey showed that the vast majority of employees felt that environmental issues were important, and that they were willing to help improve performance. Environmental awareness training was given to everyone in the department, and individuals were given measurable improvement targets. A focus group was set up and met regularly to agree improvements and monitor results. Environmental performance was publicised regularly to highlight successes and seek further engagement and improvement. Improvement ideas were encouraged and managed in a transparent way which showed clear prioritisation and accountability. The culture of environmental improvement changed visibly and results at the end of the first year showed that electricity consumption had reduced by 12.5%, and gas consumption had reduced by 7.3%. In less than two years over UK Pound 60,000 was saved on utility

  11. Biochar Improves Soil Aggregate Stability and Water Availability in a Mollisol after Three Years of Field Application

    PubMed Central

    Zhang, Yulan; Yang, Lijie; Yu, Chunxiao; Yin, Guanghua; Doane, Timothy A.; Wu, Zhijie; Zhu, Ping; Ma, Xingzhu

    2016-01-01

    A field experiment was carried out to evaluate the effect of organic amendments on soil organic carbon, total nitrogen, bulk density, aggregate stability, field capacity and plant available water in a representative Chinese Mollisol. Four treatments were as follows: no fertilization (CK), application of inorganic fertilizer (NPK), combined application of inorganic fertilizer with maize straw (NPK+S) and addition of biochar with inorganic fertilizer (NPK+B). Our results showed that after three consecutive years of application, the values of soil bulk density were significantly lower in both organic amendment-treated plots than in unamended (CK and NPK) plots. Compared with NPK, NPK+B more effectively increased the contents of soil organic carbon, improved the relative proportion of soil macro-aggregates and mean weight diameter, and enhanced field capacity as well as plant available water. Organic amendments had no obvious effect on soil C/N ratio or wilting coefficient. The results of linear regression indicated that the improvement in soil water retention could be attributed to the increases in soil organic carbon and aggregate stability. PMID:27191160

  12. Phytochemicals in plants: genomics-assisted plant improvement for nutritional and health benefits.

    PubMed

    Grusak, Michael A

    2002-10-01

    Plants are an important source of essential nutrients and health-beneficial components that are crucial for human life. Because the intake of these phytochemicals is not always adequate, the resources of plant biotechnology are being used to enhance the nutritional quality of our plant-based food supply. Various improvement strategies are feasible, depending on whether the phytochemical target is a major or minor constituent. Recent efforts in gene discovery and functional genomics are providing the necessary understanding to develop and evaluate different approaches to manipulate phytochemical composition.

  13. 78 FR 4297 - Improving Availability of Relevant Executive Branch Records to the National Instant Criminal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Documents#0;#0; ] Memorandum of January 16, 2013 Improving Availability of Relevant Executive Branch Records to the National Instant Criminal Background Check System Memorandum for the Heads of Executive... its requirements, the NIAA mandated that executive departments and agencies (agencies)...

  14. Current status of the availability, development, and use of host plant resistance to nematodes.

    PubMed

    Roberts, P A

    1992-06-01

    Host plant resistance (HPR) to nematodes has been identified in many major crops and related wild germplasm. Most HPR is to the more specialized, sedentary endoparasitic genera and species, e.g., Globodera, Heterodera, Meloidogyne, Nacobbus, Rotylenchulus, and Tylenchulus. Some HPR has been developed or identified also to certain migratory endoparasites (Aphelenchoides, Ditylenchus, Pratylenchus, Radopholus) in a few hosts. Commercial use of HPR remains limited, despite its benefits to crop production when deployed appropriately. Restricted use and availability of HPR result from problems associated with transfer of resistance into acceptable cultivars. Difficulties occur in gene transfer to acceptable cultivars because of incompatibility barriers to hybridization or linkage to undesirable traits, for example in cucurbitaceous and solanaceous crops and sugarbeet. Specificity of HPR to only one species, or one or few pathotypes, as it relates to resistance durability and nematode virulence, and HPR response to abiotic factors such as high soil temperature, also limit availability and utility. A scheme for HPR development is presented to emphasize nematology research and information requirements for expanding HPR use in nematode control programs, for example in common bean, sugarbeet, and tomato. Nonbiological factors that influence HPR usage are discussed, including heavy reliance on nematicide programs, low priority of nematode HPR in many breeding programs, and insufficient breeder-nematologist collaboration.

  15. Physiologically available cyanide (PAC) in manufactured gas plant waste and soil samples

    SciTech Connect

    Magee, B.; Taft, A.; Ratliff, W.; Kelley, J.; Sullivan, J.; Pancorbo, O.

    1995-12-31

    Iron-complexed cyanide compounds, such as ferri-ferrocyanide (Prussian Blue), are wastes associated with former manufactured gas plant (MGP) facilities. When tested for total cyanide, these wastes often show a high total cyanide content. Because simple cyanide salts are acutely toxic, cyanide compounds can be the subject of concern. However, Prussian Blue and related species are known to have a low order of human and animal toxicity. Toxicology data on complexed cyanides will be presented. Another issue regarding Prussian Blue and related species is that the total cyanide method does not accurately represent the amount of free cyanide released from these cyanide species. The method involves boiling the sample in an acidic solution under vacuum to force the formation of HCN gas. Thus, Prussian Blue, which is known to be low in toxicity, cannot be properly evaluated with current methods. The Massachusetts Natural Gas Council initiated a program with the Massachusetts Department of Environmental Protection to develop a method that would define the amount of cyanide that is able to be converted into hydrogen cyanide under the pH conditions of the stomach. It is demonstrated that less than 1% of the cyanide present in Prussian Blue samples and soils from MGP sites can be converted to HCN under the conditions of the human stomach. The physiologically available cyanide method has been designed to be executed at a higher temperature for one hour. It is shown that physiologically available cyanide in MGP samples is < 5--15% of total cyanide.

  16. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata).

    PubMed

    Berzitis, Emily A; Minigan, Jordan N; Hallett, Rebecca H; Newman, Jonathan A

    2014-09-01

    The bean leaf beetle, Cerotoma trifurcata, has become a major pest of soybean throughout its North American range. With a changing climate, there is the potential for this pest to further expand its distribution and become an increasingly severe pest in certain regions. To examine this possibility, we developed bioclimatic envelope models for both the bean leaf beetle, and its most important agronomic host plant, soybean (Glycine max). These two models were combined to examine the potential future pest status of the beetle using climate change projections from multiple general circulation models (GCMs) and climate change scenarios. Despite the broad tolerances of soybean, incorporation of host plant availability substantially decreased the suitable and favourable areas for the bean leaf beetle as compared to an evaluation based solely on the climate envelope of the beetle, demonstrating the importance of incorporating biotic interactions in these predictions. The use of multiple GCM-scenario combinations also revealed differences in predictions depending on the choice of GCM, with scenario choice having less of an impact. While the Norwegian model predicted little northward expansion of the beetle from its current northern range limit of southern Ontario and overall decreases in suitable and favourable areas over time, the Canadian and Russian models predict that much of Ontario and Quebec will become suitable for the beetle in the future, as well as Manitoba under the Russian model. The Russian model also predicts expansion of the suitable and favourable areas for the beetle over time. Two predictions that do not depend on our choice of GCM include a decrease in suitability of the Mississippi Delta region and continued favourability of the southeastern United States.

  17. Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential.

    PubMed

    Saltzman, Amy; Birol, Ekin; Oparinde, Adewale; Andersson, Meike S; Asare-Marfo, Dorene; Diressie, Michael T; Gonzalez, Carolina; Lividini, Keith; Moursi, Mourad; Zeller, Manfred

    2017-02-01

    Biofortification is the process of increasing the density of vitamins and minerals in a crop through plant breeding-using either conventional methods or genetic engineering-or through agronomic practices. Over the past 15 years, conventional breeding efforts have resulted in the development of varieties of several staple food crops with significant levels of the three micronutrients most limiting in diets: zinc, iron, and vitamin A. More than 15 million people in developing countries now grow and consume biofortified crops. Evidence from nutrition research shows that biofortified varieties provide considerable amounts of bioavailable micronutrients, and consumption of these varieties can improve micronutrient deficiency status among target populations. Farmer adoption and consumer acceptance research shows that farmers and consumers like the various production and consumption characteristics of biofortified varieties, as much as (if not more than) popular conventional varieties, even in the absence of nutritional information. Further development and delivery of these micronutrient-rich varieties can potentially reduce hidden hunger, especially in rural populations whose diets rely on staple food crops. Future work includes strengthening the supply of and the demand for biofortified staple food crops and facilitating targeted investment to those crop-country combinations that have the highest potential nutritional impact.

  18. A Hybrid Quorum Protocol for Improved Availability, Capacity, Load and Reduced Overhead

    NASA Astrophysics Data System (ADS)

    Pandey, Parul; Tripathi, Maheshwari

    2016-12-01

    Data replication is playing a vital role in the design of distributed information systems. This paper presents a novel and efficient distributed algorithm for managing replicated data and for better performance and availability. This paper presents an extension to existing wheel protocol for improved performance. Wheel protocol imposes a logical wheel structure on the set of copies of an object and gives smallest read quorum. In addition to small read quorum size for read intensive applications, it is necessary to have good write availability as well. This paper proposes two hybrid wheel protocols, which superimpose logarithmic and ring protocols on top of the wheel protocol. It shows that, both protocols help in improving write availability, read capacity, load and message overhead and also compare their performances with wheel and other protocols. Hybrid protocols expand usage of wheel protocol to different type of applications.

  19. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis

    PubMed Central

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071

  20. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis.

    PubMed

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants.

  1. A multicomponent strategy to improve the availability of antivenom for treating snakebite envenoming.

    PubMed

    Gutiérrez, José María; Burnouf, Thierry; Harrison, Robert A; Calvete, Juan J; Kuch, Ulrich; Warrell, David A; Williams, David J

    2014-07-01

    Snakebite envenoming is a common but neglected public health problem, particularly in impoverished rural regions of sub-Saharan Africa, Asia and Latin America. The only validated treatment for this condition is passive immunotherapy with safe and effective animal-derived antivenoms. However, there is a long-lasting crisis in the availability of these life-saving medications, particularly in sub-Saharan Africa and parts of Asia. We herein advocate a multicomponent strategy to substantially improve the availability of safe and effective antivenoms at the global level. This strategy is based on: (i) preparing validated collections of representative venom pools from the most medically dangerous snakes in high-risk regions of the world; (ii) strengthening the capacity of national antivenom manufacturing and quality control laboratories and their regulatory authorities and establishing new facilities in developing countries through technology transfer, as an integral part of efforts to develop their biological products industry; (iii) getting established laboratories to generate antivenoms for various regions of the world; and (iv) getting governments and relevant organizations to give snakebite envenoming due recognition within national and international public health policy frameworks. These ways of making antivenom available should be complemented by actions to improve health information systems, the accessibility of antivenoms, the training of medical and nursing staff, and community-based education. Such a multicomponent strategy involving stakeholders on many levels could help consolidate sustainable improvements in antivenom availability worldwide.

  2. Improving the availability of emergency obstetric care in conflict-affected settings.

    PubMed

    Krause, S K; Meyers, J L; Friedlander, E

    2006-01-01

    This paper describes an emergency obstetric care (EmOC) project implemented by the Reproductive Health Response in Conflict (RHRC) Consortium in 12 conflict-affected settings in nine countries from 2000-2005 with funding and technical support from Columbia University's Mailman School of Public Health Averting Maternal Death and Disability (AMDD) programme. The overall goal of the project was to reduce maternal morbidity and mortality in select conflict-affected settings by improving the availability of EmOC. Another aim of the project was to institutionalize EmOC within RHRC Consortium agencies by modelling how to improve the availability of basic and comprehensive EmOC at clinics and hospitals. The specific project purpose was to increase the availability of EmOC in select conflict-affected settings. The project demonstrated that a great deal more can and should be done by humanitarian workers to improve the availability of basic and comprehensive emergency obstetric services in conflict-affected settings.

  3. Trace element availability and plant growth in a mine-spill-contaminated soil under assisted natural remediation II. Plants.

    PubMed

    Pérez-de-Mora, Alfredo; Madejón, Engracia; Burgos, Pilar; Cabrera, Francisco

    2006-06-15

    In this second part, we evaluated the effects of different amendments on plant growth (Agrostis stolonifera L.), and trace element accumulation and removal by plants in a trace element (As, Cd, Cu, Pb and Zn) contaminated soil. Description of the various treatments is given in Part I of this work. The plants were grown for consecutive periods (2002, 2003, 2004), 5 months each and harvested twice in each period. Results showed that plant growth was enhanced and trace element concentrations in plant were reduced in SL, MWC, BC and LEO treatments in the first period. No significant differences were observed in subsequent periods. This seemed to be related with changes in soil pH. Removal of trace elements was higher in SL, MWC, BC and LEO treatments due to higher biomass production in the first period. In following years no significant differences between treatments were found. Data from Part I of this study were also used to compare trace element bioavailable concentrations extracted with 0.01 M CaCl2 and 0.05 M EDTA with trace elements in plant. We observed that 0.01 M CaCl2 was more suitable for determination of bioavailable concentrations and that extraction with EDTA overestimated biovailability of trace elements in amended treatments, especially in those where composts were added.

  4. Improved Construction and Project Management for Future Nuclear Power Plants - Westinghouse Perspective

    SciTech Connect

    Matzie, Regis A.

    2002-07-01

    The economic competitiveness of future nuclear power plants is the key issue to the expansion of this vital technology. The challenge is greater today than it has been because of the worldwide trend of deregulation of the power market. Deregulation favors smaller investments with shorter payback times. However, the key economic parameter is the power generation cost and its competitiveness to other sources of electric generation, principally natural gas and coal. The relative competitiveness of these three fuel types today is largely dictated by the availability of domestic sources of both fuel and technology infrastructure. The competitiveness of new nuclear power plants can be improved in any power market environment first by the features of the design itself, second by the approach to construction, and finally by the project structure used to implement the plant, or more importantly, a series of plants. These three aspects form the cornerstone to a successful resurgence of new nuclear power plant construction. (author)

  5. Improving the Energy Efficiency of Pumped-Storage Power Plants

    SciTech Connect

    Artyukh, S. F.; Galat, V. V.; Kuz’min, V. V.; Chervonenko, I. I.; Shakaryan, Yu. G.; Sokur, P. V.

    2015-01-15

    Possible ways to improve the energy efficiency of hydroelectric generating sets of pumped-storage power plants (PSPPs) are studied. The Kiev PSPP is used as an example to show how its generating sets can be upgraded. It is concluded based on studies conducted that synchronous motor-generators should be replaced with asynchronized motor-generators. The feasibility of changing over the turbine to variable-speed operation is shown.

  6. 76 FR 37770 - Monsanto Co.; Availability of Petition, Plant Pest Risk Assessment, and Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Engineered for Insect Resistance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION: Notice... MON 87701, which has been genetically engineered for insect resistance. The petition has been... genetically engineered for insect resistance, stating that this soybean is unlikely to pose a plant pest...

  7. Estimating plant available water for general crop simulations in ALMANAC/APEX/EPIC/SWAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Process-based simulation models ALMANAC/APEX/EPIC/SWAT contain generalized plant growth subroutines to predict biomass and crop yield. Environmental constraints typically restrict plant growth and yield. Water stress is often an important limiting factor; it is calculated as the sum of water use f...

  8. Aquatic Plant Control Research Program. Interactions between Macrophyte Growth and Sediment Nutrient Availability.

    DTIC Science & Technology

    1988-04-01

    freshwater systems. I25 Ul 0 , S 0 REFERENCES Agami, M. and Waisel, Y., 1986. The ecophysiology of roots of submerged vascular plants . Physiol. Veg., 24:607...349-354. Sculthorpe, C. D., 1967. The Biology of Aquatic Vascular Plants . Edward Arnold, London, 610 pp. Short, F. T., 1983. The response of

  9. Availability Of Deep Groundwater-Derived CO2 For Plant Uptake In A Costa Rican Rainforest

    NASA Astrophysics Data System (ADS)

    Oberbauer, S. F.; Genereux, D. P.; Osburn, C. L.; Dierick, D.; Oviedo Vargas, D.

    2014-12-01

    isotopically-heavy CO2 from the Arboleda stream. Keeling plots of samples taken at the Arboleda and Sura deviated from those over the Taconazo and indicated a source of 13C other than atmospheric air and respired CO2. Our data suggest that CO2 from regional groundwater has the potential to be available to riparian plants, but primarily at areas of turbulent water flow.

  10. Rearing conditions influence nutrient availability of plant extracts supplemented diets when fed to broiler chickens.

    PubMed

    Pirgozliev, V; Bravo, D; Rose, S P

    2014-08-01

    The effects of a standardised mixture of essential oils, including 5% carvacrol, 3% cinnamaldehyde and 2% capsicum (XT 6930; Pancosma S.A), on dietary apparent metabolisable energy corrected for nitrogen retention (AMEn), nutrient digestibility and mucin secretions, measured as sialic acid (SA) were investigated in broilers fed on the same diet but reared under different conditions, that is, cages and floor pens littered with wood shavings used in previous broiler study. The use of XT reduced (p < 0.05) nitrogen digestibility (0.585 vs. 0.544) and tended (p = 0.072) to reduce dry matter digestibility (0.733 vs. 0.717) of the diet when fed to birds reared in cages. However, XT supplementation improved (p < 0.05) fat digestibility (0.844 vs. 0.862) and tended (p = 0.093) to increase AMEn (14.01 vs. 14.25 MJ/kg DM) of the same diet when fed to broilers reared in floor pens. Essential oils supplementation tended (p = 0.059) to increase the secretion of SA, when fed to birds reared in cages (11.24 vs. 14.18 μg), but did not influence (p > 0.05) the SA secretion from birds reared in floor pens. The results obtained from the cage study tend to be the opposite of those obtained from the floor pen study. This suggests that the efficiency of dietary plant extracts may be influenced by the rearing/hygienic conditions of poultry. Based on the overall results, it can be concluded that information on rearing conditions should be taken into account for more complete interpretation of the experimental data emanating from experiments involving use of essential oils typified by those considered in this study.

  11. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    Unknown

    2001-07-01

    Waste Processors Management Inc. (WMPI), along with its subcontractors entered into a cooperative agreement with the USDOE to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US that produces ultra clean Fischer-Tropsch transportation fuels with either power or steam as the major co-product. The EECP will emphasize on reclaiming and gasifying low-cost coal waste and/or its mixture as the primary feedstocks. The project consists of three phases. Phase I objectives include conceptual development, technical assessment, feasibility design and economic evaluation of a Greenfield commercial co-production plant and a site specific demonstration EECP to be located adjacent to the existing WMPI Gilberton Power Station. There is very little foreseen design differences between the Greenfield commercial coproduction plant versus the EECP plant other than: The greenfield commercial plant will be a stand alone FT/power co-production plant, potentially larger in capacity to take full advantage of economy of scale, and to be located in either western Pennsylvania, West Virginia or Ohio, using bituminous coal waste (gob) and Pennsylvania No.8 coal or other comparable coal as the feedstock; The EECP plant, on the other hand, will be a nominal 5000 bpd plant, fully integrated into the Gilbertson Power Company's Cogeneration Plant to take advantage of the existing infrastructure to reduce cost and minimize project risk. The Gilberton EECP plant will be designed to use eastern Pennsylvania anthracite coal waste and/or its mixture as feedstock.

  12. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  13. Reduced Wind Speed Improves Plant Growth in a Desert City

    PubMed Central

    Bang, Christofer; Sabo, John L.; Faeth, Stanley H.

    2010-01-01

    Background The often dramatic effects of urbanization on community and ecosystem properties, such as primary productivity, abundances, and diversity are now well-established. In most cities local primary productivity increases and this extra energy flows upwards to alter diversity and relative abundances in higher trophic levels. The abiotic mechanisms thought to be responsible for increases in urban productivity are altered temperatures and light regimes, and increased nutrient and water inputs. However, another abiotic factor, wind speed, is also influenced by urbanization and well known for altering primary productivity in agricultural systems. Wind effects on primary productivity have heretofore not been studied in the context of urbanization. Methodology/Principal Findings We designed a field experiment to test if increased plant growth often observed in cities is explained by the sheltering effects of built structures. Wind speed was reduced by protecting Encelia farinosa (brittlebush) plants in urban, desert remnant and outlying desert localities via windbreaks while controlling for water availability and nutrient content. In all three habitats, we compared E. farinosa growth when protected by experimental windbreaks and in the open. E. farinosa plants protected against ambient wind in the desert and remnant areas grew faster in terms of biomass and height than exposed plants. As predicted, sheltered plants did not differ from unprotected plants in urban areas where wind speed is already reduced. Conclusion/Significance Our results indicate that reductions in wind speed due to built structures in cities contribute to increased plant productivity and thus also to changes in abundances and diversity of higher trophic levels. Our study emphasizes the need to incorporate wind speed in future urban ecological studies, as well as in planning for green space and sustainable cities. PMID:20548790

  14. Acclimation improves salt stress tolerance in Zea mays plants.

    PubMed

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot.

  15. Improvements in plant growth rate using underwater discharge

    NASA Astrophysics Data System (ADS)

    Takaki, K.; Takahata, J.; Watanabe, S.; Satta, N.; Yamada, O.; Fujio, T.; Sasaki, Y.

    2013-03-01

    The drainage water from plant pots was irradiated by plasma and then recycled to irrigate plants for improving the growth rate by supplying nutrients to plants and inactivating the bacteria in the bed-soil. Brassica rapa var. perviridis (Chinese cabbage; Brassica campestris) plants were cultivated in pots filled with artificial soil, which included the use of chicken droppings as a fertiliser. The water was recycled once per day from a drainage water pool and added to the bed-soil in the pots. A magnetic compression type pulsed power generator was used to produce underwater discharge with repetition rate of 250 pps. The plasma irradiation times were set as 10 and 20 minutes per day over 28 days of cultivation. The experimental results showed that the growth rate increased significantly with plasma irradiation into the drainage water. The growth rate increased with the plasma irradiation time. The nitrogen concentration of the leaves increased as a result of plasma irradiation based on chlorophyll content analysis. The bacteria in the drainage water were inactivated by the plasma irradiation.

  16. Classification and assessment models of first year byproducts nitrogen plant-availability from literature data.

    PubMed

    Joseph, Claude-Alla; Khiari, Lotfi; Gallichand, Jacques; Bouslama, Sidki

    2017-05-15

    Byproducts can provide an important amount of nutrients for crops and improve soils properties. According to their C/N, nitrogen (N) mineralization or immobilization may be observed after their application onto agricultural land. Therefore, an indicator is needed to assess byproducts N availability for crops. Thirty-seven studies from the scientific literature on N mineralization or immobilization after application to agricultural land under a wide range of climatic and experimental conditions were collected in order to elaborate models assessing non-composted byproducts N availability during the first growing season according to the C/N ratio. Four methods were used to evaluate N availability: incubation, apparent N recovery (ANR), relative N effectiveness (RNE) and fertilizer equivalence (FE). Since ANR was the model most related to C/N (R(2)=0.77), this model was used to define six categories of C/N. Results expressed in terms of FE were converted into RNE values. Although RNE is less precise than ANR, efficiencies of byproducts were expressed in terms of average RNE because it is the most appropriate for fertilization grids. Therefore, depending on C/N of non-composted byproducts, six categories were defined. i) high mineralization: +66% RNE and 5≤C/N, ii) moderate mineralization: +33% RNE and 5140.

  17. Application of Lean Methodology for Improved Quality and Efficiency in Operating Room Instrument Availability.

    PubMed

    Farrokhi, Farrokh R; Gunther, Maria; Williams, Barbara; Blackmore, Christopher Craig

    2015-01-01

    Advances in surgical instrumentation allow surgeons to treat patients with less morbidity and shorter recovery time. However, the increasing complexity also adds to surgical risk, and to operating room supply chain burden. To improve the quality and efficiency of operating room instrument availability, we developed and validated a Lean 5S approach consisting of sort (determining instrument usage and waste), simplify (removing unnecessary instruments), sweep (confirm availability of needed instruments), standardize (all trays the same for a given procedure), and self-discipline (monitor success). The primary outcome was reduction in unnecessary instruments delivered to the operating room. As a secondary analysis, we evaluated the effect of the Lean instrument intervention on surgery times. We reduced the number of instruments for minimally invasive spine surgery by 70% (from 197 to 58), and setup time decreased 37% (13.1-8.2 min, p = .0015). We also report subsequent validation of the approach on deep brain stimulator cases. We conclude that complex surgical procedures offer opportunities for substantial waste reduction, simplification, and quality improvement, with potential institutional annual cost savings of $2.8 million. We demonstrate that Lean methodology can improve quality at lower cost.

  18. Plant exomics: Concepts, applications and methodologies in crop improvement

    PubMed Central

    Hashmi, Uzair; Shafqat, Samia; Khan, Faria; Majid, Misbah; Hussain, Harris; Kazi, Alvina Gul; John, Riffat; Ahmad, Parvaiz

    2015-01-01

    Molecular breeding has a crucial role in improvement of crops. Conventional breeding techniques have failed to ameliorate food production. Next generation sequencing has established new concepts of molecular breeding. Exome sequencing has proven to be a significant tool for assessing natural evolution in plants, studying host pathogen interactions and betterment of crop production as exons assist in interpretation of allelic variation with respect to their phenotype. This review covers the platforms for exome sequencing, next generation sequencing technologies that have revolutionized exome sequencing and led toward development of third generation sequencing. Also discussed in this review are the uses of these sequencing technologies to improve wheat, rice and cotton yield and how these technologies are used in exploring the biodiversity of crops, providing better understanding of plant-host pathogen interaction and assessing the process of natural evolution in crops and it also covers how exome sequencing identifies the gene pool involved in symbiotic and other co-existential systems. Furthermore, we conclude how integration of other methodologies including whole genome sequencing, proteomics, transcriptomics and metabolomics with plant exomics covers the areas which are left untouched with exomics alone and in the end how these integration will transform the future of crops. PMID:25482786

  19. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon.

    PubMed

    Yu, Huan-Yun; Ding, Xiaodong; Li, Fangbai; Wang, Xiangqin; Zhang, Shirong; Yi, Jicai; Liu, Chuanping; Xu, Xianghua; Wang, Qi

    2016-08-01

    Adequate silicon (Si) can greatly boost rice yield and improve grain quality through alleviating stresses associated with heavy metals and metalloids such as arsenic (As) and cadmium (Cd). The soil plant-available Si is relatively low in South China due to severe desilicification and allitization of the soils in this region. Conversely, pollution of heavy metals and metalloids in the soils of this region occurs widely, especially As and Cd pollution in paddy soil. Therefore, evaluating the plant availability of Si in paddy soil of South China and examining its correlation with the availability of heavy metals and metalloids are of great significance. Accordingly, in our study, 107 pairs of soil and rice plant samples were collected from paddy fields contaminated by As and Cd in South China. Significantly positive correlations between Si in rice plants and Si fractions in soils extracted with citric acid, NaOAc-HOAc buffer, and oxalate-ammonium oxalate buffer suggest that these extractants are more suitable for use in extracting plant-available Si in the soils of our present study. Significantly negative correlations between different Si fractions and As or Cd in rice plant tissues and negative exponential correlations between the molar ratios of Si to As/Cd in rice roots, straws, husks or grains and As/Cd in rice grains indicate that Si can significantly alleviate the accumulation of As/Cd from soils to the rice plants. Finally, a contribution assessment of soil properties to As/Cd accumulation in rice grains based on random forest showed that in addition to Si concentrations in soil or rice plants, other factors such as Fe fractions and total phosphorus also contributed largely to As/Cd accumulation in rice grains. Overall, Si exhibited its unique role in mitigating As or Cd stress in rice, and our study results provide strong field evidence for this role.

  20. Therapeutic Education in Improving Cancer Pain Management: A Synthesis of Available Studies.

    PubMed

    Prevost, Virginie; Delorme, Claire; Grach, Marie-Christine; Chvetzoff, Gisèle; Hureau, Magalie

    2016-07-01

    This literature review aims to synthesize available studies and to update findings in order to obtain a current, comprehensive estimate of the benefits of pain education. Forty-four original articles obtained from the PubMed database were analyzed to investigate which protocols could be most effective in improving pain management. Recent studies indicate a growing interest in evaluating patients' skills and attitudes; these include satisfaction with cancer pain treatment, patient-reported improvement, and patient participation-all of which could be dependable benchmarks for evaluating the effectiveness of educational programs. Besides pain measurement, recent studies advance support for the importance of assessing newly developed outcome criteria. In this sense, patients' active participation and decision making in their pain management are probably the most relevant goals of pain education.

  1. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability

    PubMed Central

    Osuna, Daniel; Prieto, Pilar; Aguilar, Miguel

    2015-01-01

    Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N) ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose) and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA)-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA) biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO) and phytohormones (ABA, auxins and GAs) in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones. PMID:26635847

  2. Biochar increases plant available water in a sandy soil under an aerobic rice cropping system

    NASA Astrophysics Data System (ADS)

    de Melo Carvalho, M. T.; de Holanda Nunes Maia, A.; Madari, B. E.; Bastiaans, L.; van Oort, P. A. J.; Heinemann, A. B.; Soler da Silva, M. A.; Petter, F. A.; Meinke, H.

    2014-03-01

    The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 t ha-1) on the water retention capacity (WRC) of a sandy Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g-1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields at 2 and 3 years after application. Undisturbed soil samples were collected from 16 plots in two soil layers (5-10 and 15-20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each t ha-1 of biochar amendment at 2 and 3 years after application. The impact of biochar on soil WRC was most likely related to an increase in overall porosity of the sandy soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5% and 1.6% for each t ha-1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under water limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.

  3. Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment

    SciTech Connect

    L.T. Rader

    2001-10-01

    Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

  4. Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession.

    PubMed

    Cline, Lauren C; Zak, Donald R

    2015-12-01

    Although we understand the ecological processes eliciting changes in plant community composition during secondary succession, we do not understand whether co-occurring changes in plant detritus shape saprotrophic microbial communities in soil. In this study, we investigated soil microbial composition and function across an old-field chronosequence ranging from 16 to 86 years following agricultural abandonment, as well as three forests representing potential late-successional ecosystems. Fungal and bacterial community composition was quantified from ribosomal DNA, and insight into the functional potential of the microbial community to decay plant litter was gained from shotgun metagenomics and extracellular enzyme assays. Accumulation of soil organic matter across the chronosequence exerted a positive and significant effect on fungal phylogenetic β-diversity and the activity of extracellular enzymes with lignocellulolytic activity. In addition, the increasing abundance of lignin-rich C4 grasses was positively related to the composition of fungal genes with lignocellulolytic function, thereby linking plant community composition, litter biochemistry, and microbial community function. However, edaphic properties were the primary agent shaping bacterial communities, as bacterial β-diversity and variation in functional gene composition displayed a significant and positive relationship to soil pH across the chronosequence. The late-successional forests were compositionally distinct from the oldest old fields, indicating that substantial changes occur in soil microbial communities as old fields give way to forests. Taken together, our observations demonstrate that plants govern the turnover of soil fungal communities and functional characteristics during secondary succession, due to the continual input of detritus and differences in litter biochemistry among plant species.

  5. Larval food plants of Australian Larentiinae (Lepidoptera: Geometridae) - a review of available data

    PubMed Central

    2016-01-01

    Abstract Background In Australia, the subfamily Larentiinae (Lepidoptera: Geometridae) comprises over 45 genera with about 270 species described so far. However, life histories of the Australian larentiine moths have barely been studied. New information The current paper presents a list of larval food plants of 51 Australian larentiine species based on literature references, data from specimen labels and own observations. Some Australian habitats are shown. Possible relationships among the taxa based on food preference of the larvae are discussed. Additionally, a list of Australasian larentiine species from the genera occurring in Australia and their food plants is presented. PMID:27099558

  6. Using Participatory Approach to Improve Availability of Spatial Data for Local Government

    NASA Astrophysics Data System (ADS)

    Kliment, T.; Cetl, V.; Tomič, H.; Lisiak, J.; Kliment, M.

    2016-09-01

    Nowadays, the availability of authoritative geospatial features of various data themes is becoming wider on global, regional and national levels. The reason is existence of legislative frameworks for public sector information and related spatial data infrastructure implementations, emergence of support for initiatives as open data, big data ensuring that online geospatial information are made available to digital single market, entrepreneurs and public bodies on both national and local level. However, the availability of authoritative reference spatial data linking the geographic representation of the properties and their owners are still missing in an appropriate quantity and quality level, even though this data represent fundamental input for local governments regarding the register of buildings used for property tax calculations, identification of illegal buildings, etc. We propose a methodology to improve this situation by applying the principles of participatory GIS and VGI used to collect observations, update authoritative datasets and verify the newly developed datasets of areas of buildings used to calculate property tax rates issued to their owners. The case study was performed within the district of the City of Požega in eastern Croatia in the summer 2015 and resulted in a total number of 16072 updated and newly identified objects made available online for quality verification by citizens using open source geospatial technologies.

  7. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes.

    PubMed

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments.

  8. Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes

    PubMed Central

    Ch'ng, Huck Ywih; Ahmed, Osumanu Haruna; Majid, Nik Muhamad Ab.

    2014-01-01

    In acid soils, soluble inorganic phosphorus is fixed by aluminium and iron. To overcome this problem, acid soils are limed to fix aluminium and iron but this practice is not economical. The practice is also not environmentally friendly. This study was conducted to improve phosphorus availability using organic amendments (biochar and compost produced from chicken litter and pineapple leaves, resp.) to fix aluminium and iron instead of phosphorus. Amending soil with biochar or compost or a mixture of biochar and compost increased total phosphorus, available phosphorus, inorganic phosphorus fractions (soluble inorganic phosphorus, aluminium bound inorganic phosphorus, iron bound inorganic phosphorus, redundant soluble inorganic phosphorus, and calcium bound phosphorus), and organic phosphorus. This was possible because the organic amendments increased soil pH and reduced exchangeable acidity, exchangeable aluminium, and exchangeable iron. The findings suggest that the organic amendments altered soil chemical properties in a way that enhanced the availability of phosphorus in this study. The amendments effectively fixed aluminium and iron instead of phosphorus, thus rendering phosphorus available by keeping the inorganic phosphorus in a bioavailable labile phosphorus pool for a longer period compared with application of Triple Superphosphate without organic amendments. PMID:25032229

  9. Competitive interactions between established grasses and woody plant seedlings under elevated CO₂ levels are mediated by soil water availability.

    PubMed

    Manea, A; Leishman, M R

    2015-02-01

    The expansion of woody plants into grasslands has been observed worldwide and is likely to have widespread ecological consequences. One proposal is that woody plant expansion into grasslands is driven in part by the rise in atmospheric CO2 concentrations. We have examined the effect of CO2 concentration on the competitive interactions between established C4 grasses and woody plant seedlings in a model grassland system. Woody plant seedlings were grown in mesocosms together with established C4 grasses in three competition treatments (root competition, shoot competition and root + shoot competition) under ambient and elevated CO2 levels. We found that the growth of the woody plant seedlings was suppressed by competition from grasses, with root and shoot competition having similar competitive effects on growth. In contrast to expectations, woody plant seedling growth was reduced at elevated CO2 levels compared to that at the ambient CO2 level across all competition treatments, with the most plausible explanation being reduced light and soil water availability in the elevated CO2 mesocosms. Reduced light and soil water availability in the elevated CO2 mesocosms was associated with an increased leaf area index of the grasses which offset the reductions in stomatal conductance and increased rainfall interception. The woody plant seedlings also had reduced 'escapability' (stem biomass and stem height) under elevated compared to ambient CO2 levels. Our results suggest that the expansion of woody plants into grasslands in the future will likely be context-dependent, with the establishment success of woody plant seedlings being strongly coupled to the CO2 response of competing grasses and to soil water availability.

  10. 77 FR 21993 - Endangered and Threatened Wildlife and Plants; Notice of Availability of a Technical/Agency Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-12

    ... Fish and Wildlife Service Endangered and Threatened Wildlife and Plants; Notice of Availability of a Technical/Agency Draft Recovery Plan for Alabama Sturgeon AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of availability and request for public comment. SUMMARY: We, the Fish and Wildlife...

  11. Management Systems, Patient Quality Improvement, Resource Availability, and Substance Abuse Treatment Quality

    PubMed Central

    Fields, Dail; Roman, Paul M; Blum, Terry C

    2012-01-01

    Objective To examine the relationships among general management systems, patient-focused quality management/continuous process improvement (TQM/CPI) processes, resource availability, and multiple dimensions of substance use disorder (SUD) treatment. Data Sources/Study Setting Data are from a nationally representative sample of 221 SUD treatment centers through the National Treatment Center Study (NTCS). Study Design The design was a cross-sectional field study using latent variable structural equation models. The key variables are management practices, TQM/continuous quality improvement (CQI) practices, resource availability, and treatment center performance. Data Collection Interviews and questionnaires provided data from treatment center administrative directors and clinical directors in 2007–2008. Principal Findings Patient-focused TQM/CQI practices fully mediated the relationship between internal management practices and performance. The effects of TQM/CQI on performance are significantly larger for treatment centers with higher levels of staff per patient. Conclusions Internal management practices may create a setting that supports implementation of specific patient-focused practices and protocols inherent to TQM/CQI processes. However, the positive effects of internal management practices on treatment center performance occur through use of specific patient-focused TQM/CPI practices and have more impact when greater amounts of supporting resources are present. PMID:22098342

  12. Citrulline Supplementation Improves Organ Perfusion and Arginine Availability under Conditions with Enhanced Arginase Activity.

    PubMed

    Wijnands, Karolina A P; Meesters, Dennis M; van Barneveld, Kevin W Y; Visschers, Ruben G J; Briedé, Jacob J; Vandendriessche, Benjamin; van Eijk, Hans M H; Bessems, Babs A F M; van den Hoven, Nadine; von Wintersdorff, Christian J H; Brouckaert, Peter; Bouvy, Nicole D; Lamers, Wouter H; Cauwels, Anje; Poeze, Martijn

    2015-06-29

    Enhanced arginase-induced arginine consumption is believed to play a key role in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine availability with L-arginine supplementation exhibited less consistent results; however, L-citrulline, the precursor of L-arginine, may be a promising alternative. In this study, we determined the effects of L-citrulline compared to L-arginine supplementation on arginine-nitric oxide (NO) metabolism, arginine availability and microcirculation in a murine model with acutely-enhanced arginase activity. The effects were measured in six groups of mice (n = 8 each) injected intraperitoneally with sterile saline or arginase (1000 IE/mouse) with or without being separately injected with L-citrulline or L-arginine 1 h prior to assessment of the microcirculation with side stream dark-field (SDF)-imaging or in vivo NO-production with electron spin resonance (ESR) spectroscopy. Arginase injection caused a decrease in plasma and tissue arginine concentrations. L-arginine and L-citrulline supplementation both enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only the citrulline supplementation increased NO production and improved microcirculatory flow in arginase-injected mice. In conclusion, the present study provides for the first time in vivo experimental evidence that L-citrulline, and not L-arginine supplementation, improves the end organ microcirculation during conditions with acute arginase-induced arginine deficiency by increasing the NO concentration in tissues.

  13. Suggested improvements for the allergenicity assessment of genetically modified plants used in foods.

    PubMed

    Goodman, Richard E; Tetteh, Afua O

    2011-08-01

    Genetically modified (GM) plants are increasingly used for food production and industrial applications. As the global population has surpassed 7 billion and per capita consumption rises, food production is challenged by loss of arable land, changing weather patterns, and evolving plant pests and disease. Previous gains in quantity and quality relied on natural or artificial breeding, random mutagenesis, increased pesticide and fertilizer use, and improved farming techniques, all without a formal safety evaluation. However, the direct introduction of novel genes raised questions regarding safety that are being addressed by an evaluation process that considers potential increases in the allergenicity, toxicity, and nutrient availability of foods derived from the GM plants. Opinions vary regarding the adequacy of the assessment, but there is no documented proof of an adverse effect resulting from foods produced from GM plants. This review and opinion discusses current practices and new regulatory demands related to food safety.

  14. 77 FR 41366 - Syngenta Biotechnology, Inc.; Availability of Petition, Plant Pest Risk Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Genetically Engineered for Insect Resistance AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION..., an insect pest of corn. The petition has been submitted in accordance with our regulations concerning... resistance to corn rootworm, an insect pest of corn. The petition states that this corn is unlikely to pose...

  15. Evaluation of H3A for determination of plant available P vs. FeAIO strips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus is an essential nutrient for plant growth but in excess is a source of environmental pollution. Fertilizer additions of P are recommended based on soil tests; however, the commonly applied P extractants are often applied outside of their design criteria (specifically soil pH). As a resu...

  16. 78 FR 44924 - Monsanto Co.; Availability of Plant Pest Risk Assessment, Environmental Assessment, Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... Nonregulated Status of Canola Genetically Engineered for Herbicide Resistance AGENCY: Animal and Plant Health... genetically engineered for resistance to the herbicide glyphosate with more flexibility in the timing of... (Brassica napus) designated as event MON 88302, ] which has been genetically engineered for resistance...

  17. 78 FR 47272 - Monsanto Co.; Availability of Plant Pest Risk Assessment and Environmental Assessment for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ... Environmental Assessment for Determination of Nonregulated Status of Soybean Genetically Engineered for... Monsanto Company seeking a determination of nonregulated status of soybean designated as MON 87712, which... genetically engineered soybean is likely to pose a plant pest risk. DATES: We will consider all comments...

  18. Plant Community Responses to Simultaneous Changes in Temperature, Nitrogen Availability, and Invasion

    PubMed Central

    Gornish, Elise S.; Miller, Thomas E.

    2015-01-01

    Background Increasing rates of change in climate have been observed across the planet and have contributed to the ongoing range shifts observed for many species. Although ecologists are now using a variety of approaches to study how much and through what mechanisms increasing temperature and nutrient pollution may influence the invasions inherent in range shifts, accurate predictions are still lacking. Methods and Results In this study, we conducted a factorial experiment, simultaneously manipulating warming, nitrogen addition and introduction of Pityopsis aspera, to determine how range-shifting species affect a plant community. We quantified the resident community using ordination scores, then used structural equation modeling to examine hypotheses related to how plants respond to a network of experimental treatments and environmental variables. Variation in soil pH explained plant community response to nitrogen addition in the absence of invasion. However, in the presence of invasion, the direct effect of nitrogen on the community was negligible and soil moisture was important for explaining nitrogen effects. We did not find effects of warming on the native plant community in the absence of invasion. In the presence of invasion, however, warming had negative effects on functional richness directly and invasion and herbivory explained the overall positive effect of warming on the plant community. Conclusions and Significance This work highlights the variation in the biotic and abiotic factors responsible for explaining independent and collective climate change effects over a short time scale. Future work should consider the complex and non-additive relationships among factors of climate change and invasion in order to capture more ecologically relevant features of our changing environment. PMID:25879440

  19. Improving hot gas filtration behavior in PFBC power plants

    SciTech Connect

    Romeo, L.M.; Gil, A.; Cortes, C.

    1999-07-01

    According to a previous paper, a laboratory-scale cold flow model of the hot gas filtration system in Escatron PFBC power plant has been built. The main objectives were to establish the validity of the scaling laws for cyclone separator systems (cyclone and dipleg) and to perform detailed room temperature studies in a rapid and cost effective manner. In Escatron PFBC power plant, the hot gas filtration equipment is a two-stage process performed in nine streams between the fluidized bed and the gas turbine. Due to the unsteadiness in the dipleg and the suction nozzle, and the effect of sintered deposit, the cyclone performance is modified. The performances of cyclone separator system and suction nozzle diplegs are scarcely reported in the open literature. This paper presents the results of a detailed research in which some important conclusions of well known studies about cyclones are verified. Also remarkable is the increase in cyclone efficiency and decrease in pressure drop when the solid load to the cyclone is increased. The possibility to check the fouling by means of pressure drop has not been previously addressed. Finally, the influences of gas input velocity to the cyclone, the transport gas to the ash conveying lines, the solid load and the cyclone fouling have been analyzed. This study has allowed characterizing the performance of the full-scale ash removal system, establishing safe limits of operation and testing design improvements as the two suction nozzle dipleg, pointing out important conclusions for the filtration process in PFBC power plants.

  20. Soil Phosphatase Activity and Plant-available Phosphorus Increase Following Grassland Invasion by N-fixing Tree Legumes

    NASA Astrophysics Data System (ADS)

    Boutton, T. W.; Kantola, I. B.; Stott, D. E.; Balthrop, S. L.; Tribble, J. E.; Filley, T. R.

    2009-12-01

    Grass-dominated ecosystems around the world are experiencing woody plant invasion due to human land uses. Vast regions in southern Texas have been transformed from open grasslands to subtropical thorn woodlands during the past 150 yrs. These woodlands are dominated by N-fixing tree legumes which are more productive above- and belowground, and store 2-3X more C and N than remnant grasslands. In tropical savannas and forests, it has been demonstrated that N-fixing plants are able to invest additional N in the acquisition of soil P. Accordingly, we hypothesized that soil acid phosphatase (AP) enzyme activity and concentrations of plant-available soil P (largely HPO4-2 and H2PO4-) would be greater in wooded areas dominated by N-fixing trees than in remnant grasslands where N-fixers are absent. We collected soils (0-7.5 cm) in remnant grasslands and in each of 4 different woodland types (clusters, groves, drainage woodlands, and playas) in a savanna parkland landscape in southern Texas. Plant-available soil P was determined by sorption onto anion exchange resin membranes placed in soil-water mixtures and shaken for 16 hr. P was desorbed from resin membranes using 0.5 N HCl and quantified colorimetrically using the Murphy-Riley technique. AP activity was determined using para-nitrophenyl phosphate as an analogue orthophosphate substrate, and then quantifying the p-nitrophenol (pNP) reaction product. AP activity was 250 µg pNP/g soil/hr in grasslands, and increased linearly with time following woody plant invasion to 1400 µg pNP/g soil/hr in the oldest woody plant assemblages (90 yrs). Plant available P was 3 mg P/kg soil in grasslands, and ranged from 10 to 45 mg P/kg soil in wooded areas. Within each of the wooded landscape types, plant-available P increased linearly with time following woody invasion and was correlated with soil AP activity. Results are consistent with prior studies showing that AP and plant-available P are elevated under canopies of N-fixing plants

  1. Genetic Improvement of Switchgrass and Other Herbaceous Plants for Use as Biomass Fuel Feedstock

    SciTech Connect

    Vogel, K.P.

    2001-01-11

    It should be highly feasible to genetically modify the feedstock quality of switchgrass and other herbaceous plants using both conventional and molecular breeding techniques. Effectiveness of breeding to modify herbages of switchgrass and other perennial and annual herbaceous species has already been demonstrated. The use of molecular markers and transformation technology will greatly enhance the capability of breeders to modify the plant structure and cell walls of herbaceous plants. It will be necessary to monitor gene flow to remnant wild populations of plants and have strategies available to curtail gene flow if it becomes a potential problem. It also will be necessary to monitor plant survival and long-term productivity as affected by genetic changes that improve forage quality. Information on the conversion processes that will be used and the biomass characteristics that affect conversion efficiency and rate is absolutely essential as well as information on the relative economic value of specific traits. Because most forage or biomass quality characteristics are highly affected by plant maturity, it is suggested that plant material of specific maturity stages be used in research to determining desirable feedstock quality characteristics. Plant material could be collected at various stages of development from an array of environments and storage conditions that could be used in conversion research. The same plant material could be used to develop NIRS calibrations that could be used by breeders in their selection programs and also to develop criteria for a feedstock quality assessment program. Breeding for improved feedstock quality will likely affect the rate of improvement of biomass production per acre. If the same level of resources are used, multi-trait breeding simply reduces the selection pressure and hence the breeding progress that can be made for a single trait unless all the traits are highly correlated. Since desirable feedstock traits are likely

  2. Can measures of prey availability improve our ability to predict the abundance of large marine predators?

    PubMed

    Wirsing, Aaron J; Heithaus, Michael R; Dill, Lawrence M

    2007-09-01

    Apex marine predators can structure marine communities, so factors underlying their abundance are of broad interest. However, such data are almost completely lacking for large sharks. We assessed the relationship between tiger shark abundance, water temperature, and the availability of a variety of known prey over 5 years in Western Australia. Abundance of sharks in four size categories and the density of prey (cormorants, dugongs, sea snakes, sea turtles) were indexed using daily catch rates and transects, respectively. Across all sizes, thermal conditions were a determinant of abundance, with numerical peaks coinciding with periods of high water temperature. However, for sharks exceeding 300 cm total length, the inclusion of dugong density significantly improved temperature-based models, suggesting that use of particular areas by large tiger sharks is influenced by availability of this sirenian. We conclude that large marine predator population models may benefit from the inclusion of measures of prey availability, but only if such measures consider prey types separately and account for ontogenetic shifts in the diet of the predator in question.

  3. Hanford Waste Vitrification Plant technical background document for toxics best available control technology demonstration

    SciTech Connect

    1992-10-01

    This document provides information on toxic air pollutant emissions to support the Notice of Construction for the proposed Hanford Waste Vitrification Plant (HWVP) to be built at the the Department of Energy Hanford Site near Richland, Washington. Because approval must be received prior to initiating construction of the facility, state and federal Clean Air Act Notices of construction are being prepared along with necessary support documentation.

  4. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    Unknown

    2002-06-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the USDOE, National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report is WMPI's fourth quarterly technical progress report. It covers the period performance from January 1, 2002 through March 31, 2002.

  5. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    Unknown

    2001-12-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification, SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the US Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP designs emphasize on recovery and gasification of low-cost coal waste (culm) from coal clean operations and will assess blends of the culm and coal or petroleum coke as feedstocks. The project is being carried out in three phases. Phase I involves definition of concept and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II consists of an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III involves updating the original EECP design, based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 BPD coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania.

  6. EARLY ENTRANCE CO-PRODUCTION PLANT - DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    Unknown

    2003-01-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors Texaco Power & Gasification (now ChevronTexaco), SASOL Technology Ltd., and Nexant Inc. entered into a Cooperative Agreement DE-FC26-00NT40693 with the U. S. Department of Energy (DOE), National Energy Technology Laboratory (NETL) to assess the technoeconomic viability of building an Early Entrance Co-Production Plant (EECP) in the United States to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase I is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase II is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase III updates the original EECP design based on results from Phase II, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from July 1, 2002 through September 30, 2002.

  7. Availability Improvement of Layer 2 Seamless Networks Using OpenFlow

    PubMed Central

    Molina, Elias; Jacob, Eduardo; Matias, Jon; Moreira, Naiara; Astarloa, Armando

    2015-01-01

    The network robustness and reliability are strongly influenced by the implementation of redundancy and its ability of reacting to changes. In situations where packet loss or maximum latency requirements are critical, replication of resources and information may become the optimal technique. To this end, the IEC 62439-3 Parallel Redundancy Protocol (PRP) provides seamless recovery in layer 2 networks by delegating the redundancy management to the end-nodes. In this paper, we present a combination of the Software-Defined Networking (SDN) approach and PRP topologies to establish a higher level of redundancy and thereby, through several active paths provisioned via the OpenFlow protocol, the global reliability is increased, as well as data flows are managed efficiently. Hence, the experiments with multiple failure scenarios, which have been run over the Mininet network emulator, show the improvement in the availability and responsiveness over other traditional technologies based on a single active path. PMID:25759861

  8. Solid Lipid Nanoparticles Improve the Diclofenac Availability in Vitreous after Intraocular Injection

    PubMed Central

    Abrishami, Majid; Vakili Ahrari Roodi, Mohammad

    2016-01-01

    Purpose. In order to improve the drug availability after intravitreal administration, solid lipid nanoparticles (SLNs) containing diclofenac were prepared. Methods. In this experimental study, 18 albino rabbits were included. In right and left eyes of all rabbits, SLNs containing diclofenac and commercial form of diclofenac (0.3 mg drug) were intravitreally injected, respectively. One, four, twelve, twenty-four, and forty-eight hours after injection, vitreous and aqueous humor samples were obtained in all cases. Then, the concentration of diclofenac sodium was evaluated in all samples. Results. Size of nanoparticles was around 170 nm after preparation. Drug concentration in eyes injected with SLNs was significantly higher than left eyes injected with commercial formulation up to 4 hours after intravitreal injection (p < 0.05). Diclofenac was quantified in samples up to 48 hours after intraocular injection. Four hours after intravitreal injection, the concentration of diclofenac in vitreous and aqueous humor of eyes receiving SLNs was, respectively, 2.5 and 6.5 times higher than eyes injected with commercial form of drug. Conclusions. Here, we demonstrate the potential of SLNs as a carrier of diclofenac for intraocular injection in order to prevent the systemic effects of the drug, increase the injection intervals, and improve the patient compliance. PMID:27803815

  9. Publicly Available Database : Improved Spectral Line Measurements In SDSS DR7 Galaxies

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Sarzi, M.; Schawinski, K.; Yi, S. K.

    2012-01-01

    We present a new database of absorption and emission line measurements based on the Sloan Digital Sky Survey 7th data release for the galaxies within a redshift of 0.2. Our work makes use of the publicly available penalized pixel-fitting(pPXF) and GANDALF codes, aiming to improve the existing measurements for stellar kinematics, the strength of various absorption-line features, and the flux and width of the emissions from different species of ionized gas. The absorption line strengths measured by SDSS pipeline are seriously contaminated by emission fill-in. We effectively separate emission lines from absorption lines. For instance, this work successfully extract [NI] doublet from Mgb and it leads to more realistic result of alpha enhancement on late-type galaxies compared to the previous database. Besides accurately measuring line strengths, the database provides new parameters that are indicative of line strength measurement quality. Users can build a subset of database optimal for their studies using specific cuts in the fitting quality parameters as well as empirical signal-to-noise. Applying these parameters, we found `hidden’ broad-line-region galaxies and they turned out to be Seyfert I nuclei that were not picked up as AGN by SDSS. The database is publicly available at http://gem.yonsei.ac.kr/ossy

  10. Optimizing available water capacity using microwave satellite data for improving irrigation management

    NASA Astrophysics Data System (ADS)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2015-04-01

    This work addresses the improvement of available water capacity by developing a technique for estimating soil hydraulic parameters through the utilization of satellite-retrieved near surface soil moisture. The prototype involves the usage of Monte Carlo analysis to assimilate historical remote sensing soil moisture data available from the Advanced Microwave Scanning Radiometer (AMSR-E) within the hydrological model. The main hypothesis used in this study is that near-surface soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately In the method followed in this study the hydraulic parameters are derived directly from information on the soil moisture state at the AMSR-E footprint scale and the available water capacity is derived for the root zone by coupling of AMSR-E soil moisture with the physically-based hydrological model. The available capacity water, which refers to difference between the field capacity and wilting point of the soil and represent the soil moisture content at 0.33 bar and 15 bar respectively is estimated from the soil hydraulic parameters using the van Genuchten equation. The initial ranges of soil hydraulic parameters are taken in correspondence with the values available from the literature based on Soil Survey Geographic (SSURGO) database within the particular AMSR-E footprint. Using the Monte Carlo simulation, the ranges are narrowed in the region where simulation shows a good match between predicted and near-surface soil moisture from AMSR-E. In this study, the uncertainties in accurately determining the parameters of the nonlinear soil water retention function for large-scale hydrological modeling is the focus of the development of the Bayesian framework. Thus, the model forecasting has been combined with the observational information to optimize the model state and the soil hydraulic parameters simultaneously. The optimization process is divided into

  11. A new grading system for plant-available potassium using exhaustive cropping techniques combined with chemical analyses of soils

    NASA Astrophysics Data System (ADS)

    Li, Ting; Wang, Huoyan; Zhou, Zijun; Chen, Xiaoqin; Zhou, Jianmin

    2016-11-01

    A new grading system for plant-available potassium (K) in soils based on K release rate from soils and plant growth indices was established. In the study, fourteen different agricultural soils from the southern subtropical to the northern temperate zones in China were analyzed by both chemical extraction methods and exhaustive cropping techniques. Based on the change trends in plant growth indices, relative biomass yields of 70% and 50%, K-deficient coefficients of 35 and 22 under conventional exhaustive experiments, and tissue K concentrations of 40 g kg‑1 and 15 g kg‑1 under intensive exhaustive experiments were obtained as critical values that represent different change trends. In addition, the extraction method using 0.2 mol L‑1 sodium tetraphenylboron (NaTPB) suggested soil K release rates of 12 mg kg‑1 min‑1 and 0.4 mg kg‑1 min‑1 as turning points that illustrated three different release trends. Thus, plant-available K in soils was classified into three categories: high available K, medium available K and low available K, and grading criteria and measurement methods were also proposed. This work has increased our understanding of soil K bioavailability and has direct application in terms of routine assessment of agriculture soils.

  12. A new grading system for plant-available potassium using exhaustive cropping techniques combined with chemical analyses of soils

    PubMed Central

    Li, Ting; Wang, Huoyan; Zhou, Zijun; Chen, Xiaoqin; Zhou, Jianmin

    2016-01-01

    A new grading system for plant-available potassium (K) in soils based on K release rate from soils and plant growth indices was established. In the study, fourteen different agricultural soils from the southern subtropical to the northern temperate zones in China were analyzed by both chemical extraction methods and exhaustive cropping techniques. Based on the change trends in plant growth indices, relative biomass yields of 70% and 50%, K-deficient coefficients of 35 and 22 under conventional exhaustive experiments, and tissue K concentrations of 40 g kg−1 and 15 g kg−1 under intensive exhaustive experiments were obtained as critical values that represent different change trends. In addition, the extraction method using 0.2 mol L−1 sodium tetraphenylboron (NaTPB) suggested soil K release rates of 12 mg kg−1 min−1 and 0.4 mg kg−1 min−1 as turning points that illustrated three different release trends. Thus, plant-available K in soils was classified into three categories: high available K, medium available K and low available K, and grading criteria and measurement methods were also proposed. This work has increased our understanding of soil K bioavailability and has direct application in terms of routine assessment of agriculture soils. PMID:27876838

  13. Effects of climate change on water demand and water availability for power plants - examples for the German capital Berlin

    NASA Astrophysics Data System (ADS)

    Voegele, Stefan; Koch, Hagen; Grünewald, Uwe

    2010-05-01

    Effects of climate change on water demand and water availability for power plants - examples for the German capital Berlin Stefan Vögelea, Hagen Kochb&c, Uwe Grünewaldb a Forschungszentrum Jülich, Institute of Energy Research - Systems Analysis and Technology Evaluation, D-52425 Jülich, Germany b Brandenburg University of Technology Cottbus, Chair Hydrology and Water Resources Management, P.O. Box. 101 344, D-03013 Cottbus, Germany c Potsdam Institute for Climate Impact Research, Research Domain Climate Impacts and Vulnerabilities, P.O. Box 601203, D-14412 Potsdam, Germany Numerous power plants in Europe had to be throttled in the summer months of the years 2003 and 2006 due to water shortages and high water temperatures. Therefore, the effects of climate change on water availability and water temperature, and their effects on electric power generation in power plants have received much attention in the last years. The water demand of a power plant for cooling depends on the temperature of the surface waters from which the cooling water is withdrawn. Furthermore, air temperature and air humidity influence the water demand if a cooling tower is used. Beside climatic parameters, the demand for water depends on economic and technological factors as well as on the electricity demand and the socio-political framework. Since the different systems are connected with certain levels of uncertainty, scenarios of socio-economic development and climate change should be used in analyses of climate change on power plants and to identify adaptation measures. In this presentation the effects of global change, comprising technological, socio-economic and climate change, and adaptation options to water shortages for power plants in the German capital Berlin in the short- and long-term are analysed. The interconnection between power plants, i.e. water demand, and water resources management, i.e. water availability, is described in detail. By changing the cooling system of power

  14. DUV light source availability improvement via further enhancement of gas management technologies

    NASA Astrophysics Data System (ADS)

    Riggs, Daniel J.; O'Brien, Kevin; Brown, Daniel J. W.

    2011-04-01

    The continuous evolution of the semiconductor market necessitates ever-increasing improvements in DUV light source uptime as defined in the SEMI E10 standard. Cymer is developing technologies to exceed current and projected light source availability requirements via significant reduction in light source downtime. As an example, consider discharge chamber gas management functions which comprise a sizable portion of DUV light source downtime. Cymer's recent introduction of Gas Lifetime Extension (GLXTM) as a productivity improvement technology for its DUV lithography light sources has demonstrated noteworthy reduction in downtime. This has been achieved by reducing the frequency of full gas replenishment events from once per 100 million pulses to as low as once per 2 billion pulses. Cymer has continued to develop relevant technologies that target further reduction in downtime associated with light source gas management functions. Cymer's current subject is the development of technologies to reduce downtime associated with gas state optimization (e.g. total chamber gas pressure) and gas life duration. Current gas state optimization involves execution of a manual procedure at regular intervals throughout the lifetime of light source core components. Cymer aims to introduce a product enhancement - iGLXTM - that eliminates the need for the manual procedure and, further, achieves 4 billion pulse gas lives. Projections of uptime on DUV light sources indicate that downtime associated with gas management will be reduced by 70% when compared with GLX2. In addition to reducing downtime, iGLX reduces DUV light source cost of operation by constraining gas usage. Usage of fluorine rich Halogen gas mix has been reduced by 20% over GLX2.

  15. 77 FR 41367 - Dow AgroSciences LLC; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Risk Assessment, and Environmental Assessment for Determination of Nonregulated Status of Soybean... soybean designated as DAS-68416-4, which has been genetically engineered for tolerance to broadleaf... engineered soybean is likely to pose a plant pest risk. We are making available for public comment the...

  16. 76 FR 19510 - Notice of Availability (NOA) of the Models For Plant-Specific Adoption of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-07

    ... COMMISSION Notice of Availability (NOA) of the Models For Plant-Specific Adoption of Technical Specifications..., Revision 2. Please note, this NOA supersedes in its entirety the NOA for TSTF-422, Revision 1, published in...- specific information. The NRC will process each amendment application responding to this NOA according...

  17. Soil respiration responses to variation in temperature and moisture availability under woody plants and grasses

    NASA Astrophysics Data System (ADS)

    Pravalprukskul, P.; Pavao-Zuckerman, M.; Barron-Gafford, G. A.

    2011-12-01

    Woody plant encroachment into grasslands, such as in the southwestern US, is thought to have altered regional carbon fluxes due to the differences in structure and function between grasses and woody plants. It is unknown how climate change predictions for such areas, particularly warmer temperatures and fewer but larger precipitation events, might further acerbate our ability to estimate flux dynamics. Soil respiration, a key flux affecting ecosystem carbon balance, has been increasingly studied, but the exact effects of temperature and precipitation changes on flux rates have not been fully determined, particularly their interactive effects. The goal of this study was to compare soil respiration responses to different temperatures in soils under native southwestern mesquites and grasses undergoing a precipitation pulse, whilst removing other confounding factors, such as soil history, through the controlled environments within Biosphere 2. Mesquites and grasses were transplanted into ground basalt within two environments maintained at a 4°C temperature difference, the projected temperature increase from climate change. Post-transplant soil samples were incubated between 10 and 40°C to determine the temperature sensitivities of soils from each microhabitat within a month of this transplant. A single-peak, best-fit model for grass soils suggested a weak temperature sensitivity, while mesquite soils showed little to no sensitivity. Additionally, all plants underwent a drought treatment prior to the precipitation event, and soil respiration rates were tracked over several days using the collar technique. This portion of the study allowed for an estimation of the sensitivity of soil respiration to precipitation pulses under a variety of antecedent moisture conditions. Initial results illustrate that soils under mesquites tend to respire significantly more than soil under grasses or in bare soils over the course of a precipitation event. Together, these results suggest

  18. Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities.

    PubMed

    Aoyagi, Ryota; Kitayama, Kanehiro

    2016-07-01

    Allocation of nitrogen (N) and phosphorus (P) among plant organs is an important factor regulating growth rate, which is a key ecological process associated with plant life-history strategies. However, few studies have explored how N and P investment in photosynthetic (leaves) and non-photosynthetic (stems and roots) organs changes in relation to depletion of each element. We investigated nutrient concentrations of plant organs in relation to whole-plant nutrient concentration (total nutrient weight per total biomass) as an index of nutrient status of each individual using the saplings of the 13 species in three tropical rain forests with contrasting N and P availabilities (tropical evergreen forests and tropical heath forests). We found a steeper decrease in foliar N concentration than foliar P concentration with decreasing whole-plant nutrient concentration. Moreover, the steeper decrease in foliar N concentration was associated with relatively stable N concentration in stems, and vice versa for P. We suggest that the depletion of N is associated with a rapid dilution of foliar N because the cell walls in non-photosynthetic organs function as an N sink. On the other hand, these species can maintain foliar P concentration by decreasing stem P concentrations despites the depletion of P. Our results emphasize the significance of non-photosynthetic organs as an N sink for understanding the variation of foliar nutrient concentrations for the tree species in the three Bornean rain forests with different N and P availabilities.

  19. Water table and species identity outweigh carbon and nitrogen availability in a softwater plant community

    NASA Astrophysics Data System (ADS)

    Vanderhaeghe, Floris; Smolders, Alfons J. P.; Roelofs, Jan G. M.; Hoffmann, Maurice

    2013-02-01

    Performance of aquatic macrophytes is driven by many environmental factors, and a major challenge is to understand how aquatic macrophyte communities are structured in various environments. In softwater lakes in Western Europe, hydrological state (submersed/emersed), carbon dioxide and ammonium levels and species interactions are considered as driving forces in structuring amphibious plant communities. In this study we aimed at evaluating the relative importance of these factors for four species in a competitive neighbourhood. Softwater lake habitat was simulated during one growing season in laboratory conditions, mimicking water level fluctuation, photoperiod and temperature. Artificial communities consisted of small populations of four softwater macrophyte species: Luronium natans, Baldellia ranunculoides ssp. repens, Eleocharis multicaulis and Hydrocotyle vulgaris. These communities were subjected to two levels of carbon dioxide and ammonium. Additionally, monocultures of Baldellia and Eleocharis were grown at a higher nutrient level combination in order to measure their competitive response in a community. Time (hydrological state) and species identity turned out to be the only consistently significant factors determining community composition. Plant performance was clearly species-dependent, while carbon dioxide and ammonium did not have major effects. The competitive response was significant in both Eleocharis and Baldellia. Competition intensity was highest in the emersed state. Carbon dioxide had a supplementary effect on the within-species performance in Luronium, Baldellia and Eleocharis, with high carbon dioxide level mainly resulting in more flowers and more stolons. Community outcomes and competitive responses in aquatic macrophytes appear difficult to predict, because of mixed life strategies and morphological and functional plasticity. We conclude that hydrological state was the only important environmental factor. The identity of the species that

  20. 78 FR 79658 - Okanagan Specialty Fruits, Inc.; Availability of Plant Pest Risk Assessment and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... are also available on the APHIS Web site at http://www.aphis.usda.gov/biotechnology/petitions_table..., Director, Environmental Risk Analysis Programs, Biotechnology Regulatory Services, APHIS, 4700 River...

  1. Morphological and Physiological Responses to Sediment Type and Light Availability in Roots of the Submerged Plant Myriophyllum spicatum

    PubMed Central

    Xie, Yonghong; Luo, Wenbo; Ren, Bo; Li, Feng

    2007-01-01

    Background and Aims Both sediment and light are essential factors regulating the growth of submerged macrophytes, but the role of these two factors in regulating root morphology and physiology is far from clear. The responses of root morphology and physiology to sediment type and light availability in the submerged plant Myriophyllum spicatum were studied and the hypothesis was tested that a trade-off exists in root growth strategy between internal aeration and nutrient acquisition. Method Plants were grown on two types of sediment (fertile mud and an infertile mixture of mud and sandy loam) and under three levels of light availability (600, 80 and 20 µ mol m−2 s−1) in a greenhouse. Key Results The significantly higher alcohol dehydrogenase (ADH) activity in root tissues indicated that oxygen deficiency existed in the plants growing in fertile mud and low (or high) light environments. Significantly, low plant N and P concentrations indicated that nutrient deficiency existed in the mixed sediment and high light environment. As a response to anoxia, plants did not change the porosity of the main roots. The effect of sediment type on root morphology was insignificant under higher light environments, whereas root diameter generally decreased but specific root length (SRL) increased with decreasing light availability. Both low light and fertile mud jointly led to lack of second-order laterals. More biomass was allocated to lateral roots in infertile environments, whereas mass fractions of laterals were lower in low light and mud environments. Conclusions These data indicate that this plant can achieve the trade-off between internal aeration and nutrient acquisition by adjusting the structure of the root system and the pattern of biomass allocation to different root orders rather than root morphology and root porosity. PMID:17959731

  2. Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition.

    PubMed

    Xiong, Hongchun; Guo, Xiaotong; Kobayashi, Takanori; Kakei, Yusuke; Nakanishi, Hiromi; Nozoye, Tomoko; Zhang, Lixia; Shen, Hongyun; Qiu, Wei; Nishizawa, Naoko K; Zuo, Yuanmei

    2014-07-01

    Iron (Fe) limitation is a widespread agricultural problem in calcareous soils and severely limits crop production. Iron Regulated Transporter 1 (IRT1) is a key component for Fe uptake from the soil in dicot plants. In this study, the peanut (Arachis hypogaea L.) AhIRT1 was introduced into tobacco and rice plants using an Fe-deficiency-inducible artificial promoter. Induced expression of AhIRT1 in tobacco plants resulted in accumulation of Fe in young leaves under Fe deficient conditions. Even under Fe-excess conditions, the Fe concentration was also markedly enhanced, suggesting that the Fe status did not affect the uptake and translocation of Fe by AhIRT1 in the transgenic plants. Most importantly, the transgenic tobacco plants showed improved tolerance to Fe limitation in culture in two types of calcareous soils. Additionally, the induced expression of AhIRT1 in rice plants also resulted in high tolerance to low Fe availability in calcareous soils.

  3. Ethylene resistance in flowering ornamental plantsimprovements and future perspectives

    PubMed Central

    Olsen, Andreas; Lütken, Henrik; Hegelund, Josefine Nymark; Müller, Renate

    2015-01-01

    Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants. These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful, nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently, newer and more precise genome-editing techniques have become available and they are already being implemented in some crops. New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of these technologies are indistinguishable from plants obtained by conventional techniques. PMID:26504580

  4. A Review on Plants Used for Improvement of Sexual Performance and Virility

    PubMed Central

    Chauhan, Nagendra Singh; Sharma, Vikas; Dixit, V. K.; Thakur, Mayank

    2014-01-01

    The use of plant or plant-based products to stimulate sexual desire and to enhance performance and enjoyment is almost as old as the human race itself. The present paper reviews the active, natural principles, and crude extracts of plants, which have been useful in sexual disorders, have potential for improving sexual behaviour and performance, and are helpful in spermatogenesis and reproduction. Review of refereed journals and scientific literature available in electronic databases and traditional literature available in India was extensively performed. The work reviews correlation of the evidence with traditional claims, elucidation, and evaluation of a plausible concept governing the usage of plants as aphrodisiac in total. Phytoconstituents with known structures have been classified in appropriate chemical groups and the active crude extracts have been tabulated. Data on their pharmacological activity, mechanism of action, and toxicity are reported. The present review provides an overview of the herbs and their active molecule with claims for improvement of sexual behaviour. A number of herbal drugs have been validated for their effect on sexual behavior and fertility and can therefore serve as basis for the identification of new chemical leads useful in sexual and erectile dysfunction. PMID:25215296

  5. A review on plants used for improvement of sexual performance and virility.

    PubMed

    Chauhan, Nagendra Singh; Sharma, Vikas; Dixit, V K; Thakur, Mayank

    2014-01-01

    The use of plant or plant-based products to stimulate sexual desire and to enhance performance and enjoyment is almost as old as the human race itself. The present paper reviews the active, natural principles, and crude extracts of plants, which have been useful in sexual disorders, have potential for improving sexual behaviour and performance, and are helpful in spermatogenesis and reproduction. Review of refereed journals and scientific literature available in electronic databases and traditional literature available in India was extensively performed. The work reviews correlation of the evidence with traditional claims, elucidation, and evaluation of a plausible concept governing the usage of plants as aphrodisiac in total. Phytoconstituents with known structures have been classified in appropriate chemical groups and the active crude extracts have been tabulated. Data on their pharmacological activity, mechanism of action, and toxicity are reported. The present review provides an overview of the herbs and their active molecule with claims for improvement of sexual behaviour. A number of herbal drugs have been validated for their effect on sexual behavior and fertility and can therefore serve as basis for the identification of new chemical leads useful in sexual and erectile dysfunction.

  6. Supplemental blue LED lighting array to improve the signal quality in hyperspectral imaging of plants.

    PubMed

    Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce

    2015-06-01

    Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400-500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm.

  7. Supplemental Blue LED Lighting Array to Improve the Signal Quality in Hyperspectral Imaging of Plants

    PubMed Central

    Mahlein, Anne-Katrin; Hammersley, Simon; Oerke, Erich-Christian; Dehne, Heinz-Wilhelm; Goldbach, Heiner; Grieve, Bruce

    2015-01-01

    Hyperspectral imaging systems used in plant science or agriculture often have suboptimal signal-to-noise ratio in the blue region (400–500 nm) of the electromagnetic spectrum. Typically there are two principal reasons for this effect, the low sensitivity of the imaging sensor and the low amount of light available from the illuminating source. In plant science, the blue region contains relevant information about the physiology and the health status of a plant. We report on the improvement in sensitivity of a hyperspectral imaging system in the blue region of the spectrum by using supplemental illumination provided by an array of high brightness light emitting diodes (LEDs) with an emission peak at 470 nm. PMID:26039423

  8. Advances in the genetic dissection of plant cell walls: tools and resources available in Miscanthus

    PubMed Central

    Slavov, Gancho; Allison, Gordon; Bosch, Maurice

    2013-01-01

    Tropical C4 grasses from the genus Miscanthus are believed to have great potential as biomass crops. However, Miscanthus species are essentially undomesticated, and genetic, molecular and bioinformatics tools are in very early stages of development. Furthermore, similar to other crops targeted as lignocellulosic feedstocks, the efficient utilization of biomass is hampered by our limited knowledge of the structural organization of the plant cell wall and the underlying genetic components that control this organization. The Institute of Biological, Environmental and Rural Sciences (IBERS) has assembled an extensive collection of germplasm for several species of Miscanthus. In addition, an integrated, multidisciplinary research programme at IBERS aims to inform accelerated breeding for biomass productivity and composition, while also generating fundamental knowledge. Here we review recent advances with respect to the genetic characterization of the cell wall in Miscanthus. First, we present a summary of recent and on-going biochemical studies, including prospects and limitations for the development of powerful phenotyping approaches. Second, we review current knowledge about genetic variation for cell wall characteristics of Miscanthus and illustrate how phenotypic data, combined with high-density arrays of single-nucleotide polymorphisms, are being used in genome-wide association studies to generate testable hypotheses and guide biological discovery. Finally, we provide an overview of the current knowledge about the molecular biology of cell wall biosynthesis in Miscanthus and closely related grasses, discuss the key conceptual and technological bottlenecks, and outline the short-term prospects for progress in this field. PMID:23847628

  9. Cyanogenic glycosides in plant-based foods available in New Zealand.

    PubMed

    Cressey, Peter; Saunders, Darren; Goodman, Janet

    2013-01-01

    Cyanogenic glycosides occur in a wide range of plant species. The potential toxicity of cyanogenic glycosides arises from enzymatic degradation to produce hydrogen cyanide, which may result in acute cyanide poisoning and has also been implicated in the aetiology of several chronic diseases. One hundred retail foods were sampled and analysed for the presence of total hydrocyanic acid using an acid hydrolysis-isonicotinic/barbituric acid colourimetric method. Food samples included cassava, bamboo shoots, almonds and almond products, pome fruit products, flaxseed/linseed, stone fruit products, lima beans, and various seeds and miscellaneous products, including taro leaves, passion fruit, spinach and canned stuffed vine leaves. The concentrations of total hydrocyanic acid (the hydrocyanic acid equivalents of all cyanogenic compounds) found were consistent with or lower than concentrations reported in the scientific literature. Linseed/flaxseed contained the highest concentrations of total hydrocyanic acid of any of the analysed foods (91-178 mg kg(-1)). Linseed-containing breads were found to contain total hydrocyanic acid at concentrations expected from their linseed content, indicating little impact of processing on the total hydrocyanic acid content. Simulation modelling was used to assess the risk due to the total hydrocyanic acid in fruit juice and linseed-containing bread. 

  10. Projected techno-economic improvements for advanced solar thermal power plants

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Manvi, R.; Roschke, E. J.

    1979-01-01

    The projected characteristics of solar thermal power plants (with outputs up to 10 MWe) employing promising advanced technology subsystems/components are compared to current (or pre-1985) steam-Rankine systems. Improvements accruing to advanced technology development options are delineated. The improvements derived from advanced systems result primarily from achieving high efficiencies via solar collector systems which (1) capture a large portion of the available insolation and (2) concentrate this captured solar flux to attain high temperatures required for high heat engine/energy conversion performance. The most efficient solar collector systems employ two-axis tracking. Attractive systems include the central receiver/heliostat and the parabolic dish.

  11. Elevated CO2 affects plant responses to variation in boron availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of elevated CO2 on N relations are well studied, but effects on other nutrients, especially micronutrients, are not. We investigated effects of elevated CO2 on response to variation in boron (B) availability in three unrelated species: geranium (Pelargonium x hortorum), barley (Hordeum vulga...

  12. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE (CT)/COMBINED CYCLE (CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2002-04-01

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. Such systems would interpret sensor and instrument outputs, correlate them to the machine's condition, provide interpretative analyses, forward projections of servicing intervals, estimate remaining component life, and identify faults. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and

  13. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.

    PubMed

    Trumbo, Jennifer Lynn; Zhang, Baohong; Stewart, Charles Neal

    2015-04-01

    Petroleum-based fuels are nonrenewable and unsustainable. Renewable sources of energy, such as lignocellulosic biofuels and plant metabolite-based drop-in fuels, can offset fossil fuel use and reverse environmental degradation through carbon sequestration. Despite these benefits, the lignocellulosic biofuels industry still faces many challenges, including the availability of economically viable crop plants. Cell wall recalcitrance is a major economic barrier for lignocellulosic biofuels production from biomass crops. Sustainability and biomass yield are two additional, yet interrelated, foci for biomass crop improvement. Many scientists are searching for solutions to these problems within biomass crop genomes. MicroRNAs (miRNAs) are involved in almost all biological and metabolic process in plants including plant development, cell wall biosynthesis and plant stress responses. Because of the broad functions of their targets (e.g. auxin response factors), the alteration of plant miRNA expression often results in pleiotropic effects. A specific miRNA usually regulates a biologically relevant bioenergy trait. For example, relatively low miR156 overexpression leads to a transgenic feedstock with enhanced biomass and decreased recalcitrance. miRNAs have been overexpressed in dedicated bioenergy feedstocks such as poplar and switchgrass yielding promising results for lignin reduction, increased plant biomass, the timing of flowering and response to harsh environments. In this review, we present the status of miRNA-related research in several major biofuel crops and relevant model plants. We critically assess published research and suggest next steps for miRNA manipulation in feedstocks for increased biomass and sustainability for biofuels and bioproducts.

  14. Effects of clonal integration on the invasive clonal plant Alternanthera philoxeroides under heterogeneous and homogeneous water availability

    PubMed Central

    You, Wen-Hua; Han, Cui-Min; Liu, Chun-Hua; Yu, Dan

    2016-01-01

    Many notorious invasive plants are clonal, living in heterogeneous or homogeneous habitats. To understand how clonal integration affects the performance of these plants in different habitat conditions, an 8-week greenhouse experiment was conducted: ramet pairs of A. philoxeroides were grown in two habitats, either heterogeneous or homogeneous in water availability, with the stolon connections either severed or kept intact. Under heterogeneous water availability, compared with ramets in homogeneous habitats, clonal integration significantly promoted the growth and photosynthetic performance of water-stressed apical ramets, whereas it only increased the photosynthetic performance but did not affect the growth of water-stressed basal ramets. Moreover, clonal integration markedly increased the root/shoot ratios of ramets grown in habitats with high water supply but decreased it under low water availability. Under homogeneous water availability, stolon connection (clonal integration) did not influence the growth, photosynthetic performance and biomass allocation of water-stressed ramets, but it significantly promoted the growth of well-watered ramets in both apical and basal sections. These findings deepen our understanding of the bidirectional and differentiated (mainly acropetal) clonal integration of A. philoxeroides, suggesting that the invasive plant A. philoxeroides can benefit from clonal integration in both heterogeneous and homogeneous habitats. PMID:27416868

  15. Drivers of Plant-Availability of Phosphorus from Thermally Conditioned Sewage Sludge as Assessed by Isotopic Labeling

    PubMed Central

    Andriamananjara, Andry; Rabeharisoa, Lilia; Prud’homme, Loïc; Morel, Christian

    2016-01-01

    Urban sewage sludge is a potential source of phosphorus (P) for agriculture and represents an alternative way to recycle P as fertilizer. However, the use of thermally conditioned sewage sludge (TCSS) required an accurate assessment of its value as P-fertilizer. This work aimed at assessing the plant-availability of P from TCSS. Uptake of P by a mixture of ryegrass and fescue from TCSS and triple super phosphate (TSP) fertilizers was studied using 32P-labeling technique in a greenhouse experiment. Phosphorus was applied at the rate of 50 mg P kg−1.We also conducted incubation experiments considering the same treatments to assess soil microbial respiration. Applications of TCSS and TSP increased plant P uptake that is related to the root P acquisition. The P taken up by plant from soil plant-available P was lower for control compared to TSP or TCSS that was attributed to the increase of root interception of soil P. The contribution of TSP to ryegrass nutrition (Pdff%) was 55% with 22% of the applied P which was taken up by plants (CPU%). The Pdff value for TCSS was 56% with 14% of fertilizer P recovery (CPU%). Shoot biomass and total P uptake from TCSS were lower than those from TSP. As a result, the agronomic effectiveness of TCSS calculated from Pdff value (in comparison with TSP treatment) was 102%, while the AE of TCSS estimated from CPU value (in % TSP) was 64%, which is attributed to microbial activity stimulation inducing P immobilization onto soil constituents and microbial biomass during plant growth. The high C/N ratio of TCSS stimulated soil microbial biomass that competes with plant roots to acquire nutrients, such as P. As a consequence, the P taken up from either native soil or TCSS decreased in similar proportions. The AE value calculated with Pdff% took into account these interactions between soil, plant, and microbial biomass, and is less dependent on operational conditions than the AE value calculated with %Precovery. PMID:27379240

  16. The most commonly available woody plant species are the most useful for human populations: a meta-analysis.

    PubMed

    Gonçalves, Paulo Henrique Santos; Albuquerque, Ulysses Paulino; Medeiros, Patrícia Muniz de

    2016-10-01

    An increasing number of studies have aimed to clarify the factors leading human groups to prioritize the use of some woody plant species compared to others. Some of these studies have tested the apparency hypothesis in aiming to understand this phenomenon. According to the apparency hypothesis, the most commonly available local plant species on a forest path are the most useful to that local human population. However, the sparse and diverse nature of the results from studies investigating the factors that influence human exploitation of plant resources motivated us to perform a meta-analysis on the apparency hypothesis. We searched in the main databases (Scopus, ScienceDirect, Google Scholar, and Scielo) for studies that correlated the environmental availability of woody species (estimated through vegetation parameters) with the degree of importance of such species to the local human population (estimated by means of the use value index). Overall, this meta-analysis supported the apparency hypothesis, although we also found high levels of heterogeneity in these studies. When the distinct uses of woody flora were considered separately, we found that local species availability is important for fuelwood (firewood and charcoal) and construction (houses, fences, etc.) purposes but does not explain medicinal and technological (object manufacture) plant use. We found no important differences in correlation values between the degree of species importance for people and the different vegetation parameters, although correlations are slightly higher for the dominance and importance value index. Our findings suggest that the exploitation of woody flora is influenced by local availability.

  17. An improved protocol to study the plant cell wall proteome

    PubMed Central

    Printz, Bruno; Dos Santos Morais, Raphaël; Wienkoop, Stefanie; Sergeant, Kjell; Lutts, Stanley; Hausman, Jean-Francois; Renaut, Jenny

    2015-01-01

    Cell wall proteins were extracted from alfalfa stems according to a three-steps extraction procedure using sequentially CaCl2, EGTA, and LiCl-complemented buffers. The efficiency of this protocol for extracting cell wall proteins was compared with the two previously published methods optimized for alfalfa stem cell wall protein analysis. Following LC-MS/MS analysis the three-steps extraction procedure resulted in the identification of the highest number of cell wall proteins (242 NCBInr identifiers) and gave the lowest percentage of non-cell wall proteins (about 30%). However, the three protocols are rather complementary than substitutive since 43% of the identified proteins were specific to one protocol. This three-step protocol was therefore selected for a more detailed proteomic characterization using 2D-gel electrophoresis. With this technique, 75% of the identified proteins were shown to be fraction-specific and 72.7% were predicted as belonging to the cell wall compartment. Although, being less sensitive than LC-MS/MS approaches in detecting and identifying low-abundant proteins, gel-based approaches are valuable tools for the differentiation and relative quantification of protein isoforms and/or modified proteins. In particular isoforms, having variations in their amino-acid sequence and/or carrying different N-linked glycan chains were detected and characterized. This study highlights how the extracting protocols as well as the analytical techniques devoted to the study of the plant cell wall proteome are complementary and how they may be combined to elucidate the dynamism of the plant cell wall proteome in biological studies. Data are available via ProteomeXchange with identifier PXD001927. PMID:25914713

  18. Planting the [open quote]seeds[close quote] for increased water availability for hydro

    SciTech Connect

    Griffith, D.A. )

    1993-08-01

    Cloud seeding programs are providing some hydro producers with a way of increasing their water reserves on short notice and with relatively low cost. The fundamental formula has been known for half a century: clouds plus cold plus solid particles equal precipitation. What was not certain until more recently is how that relationship could be effectively used to alter the weather in positive ways. Research and practical experience now show that cloud seeding -- adding tiny solid particles to the right clouds at the right temperature -- works. More pertinent, evidence is mounting that hydropower producers can use well-designed, carefully times seeding programs to increase the amount of water available to their systems and thus enhance electricity generation. Cloud seeding has several advantages as a tool to augment hydroelectric production. Seeding programs typically require no capital investment by the utility or other power producer, and can be started and stopped on relatively short notice. Operating costs usually are less than $10 per acre-foot of additional streamflow. More broadly, the additional water produced for hydro generation has the environmental and community relations benefits of being reusable and less expensive than thermal power alternatives. There also normally are the additional benefits of increased water supplies for other users.

  19. High irradiance increases NH(4)(+) tolerance in Pisum sativum: Higher carbon and energy availability improve ion balance but not N assimilation.

    PubMed

    Ariz, Idoia; Artola, Ekhiñe; Asensio, Aaron Cabrera; Cruchaga, Saioa; Aparicio-Tejo, Pedro María; Moran, Jose Fernando

    2011-07-01

    The widespread use of NO(3)(-) fertilization has had a major ecological impact. NH(4)(+) nutrition may help to reduce this impact, although high NH(4)(+) concentrations are toxic for most plants. The underlying tolerance mechanisms are not yet fully understood, although they are thought to include the limitation of C, the disruption of ion homeostasis, and a wasteful NH(4)(+) influx/efflux cycle that carries an extra energetic cost for root cells. In this study, high irradiance (HI) was found to induce a notable tolerance to NH(4)(+) in the range 2.5-10mM in pea plants by inducing higher C availability, as shown by carbohydrate content. This capacity was accompanied by a general lower relative N content, indicating that tolerance is not achieved through higher net N assimilation on C-skeletons, and it was also not attributable to increased GS content or activity in roots or leaves. Moreover, HI plants showed higher ATP content and respiration rates. This extra energy availability is related to the internal NH(4)(+) content regulation (probably NH(4)(+) influx/efflux) and to an improvement of the cell ionic balance. The limited C availability at lower irradiance (LI) and high NH(4)(+) resulted in a series of metabolic imbalances, as reflected in a much higher organic acid content, thereby suggesting that the origin of the toxicity in plants cultured at high NH(4)(+) and LI is related to their inability to avoid large-scale accumulation of the NH(4)(+) ion.

  20. Plant available silicon in South-east Asian rice paddy soils - relevance of agricultural practice and of abiotic factors

    NASA Astrophysics Data System (ADS)

    Marxen, A.; Klotzbücher, T.; Vetterlein, D.; Jahn, R.

    2012-12-01

    Background Silicon (Si) plays a crucial role in rice production. Si content of rice plants exceeds the content of other major nutrients such as nitrogen, phosphorous or potassium. Recent studies showed that in some environments external supply of Si can enhance the growth of rice plants. Rice plants express specific Si transporters to absorb Si from soil solutions in form of silicic acid, which precipitates in tissue cells forming amorphous silica bodies, called phytoliths. The phytoliths are returned to soils with plant residues. They might be a main source of plant available silicic acid in soils. Aims In this study we assess the effects of rice paddy cultivation on the stocks of `reactive` Si fractions in mineral topsoils of rice paddy fields in contrasting landscapes. The `reactive` Si fractions are presumed to determine the release of plant-available silicic acid in soils. We consider the relevance of abiotic factors (mineral assemblage; soil weathering status) and agricultural practice for these fractions. Agricultural practices, which were assumed to affect the stocks of `reactive` Si were (i) the usage of different rice varieties (which might differ in Si demand), (ii) straw residue management (i.e., whether straw residues are returned to the fields or removed and used e.g. as fodder), and (iii) yield level and number of crops per year. Material and methods Soils (top horizon of about 0-20 cm depth) were sampled from rice paddy fields in 2 mountainous and 5 lowland landscapes of contrasting geologic conditions in Vietnam and the Philippines. Ten paddy fields were sampled per landscape. The rice paddy management within landscapes differed when different farmers and/or communities managed the fields. We analysed the following fractions of `reactive` Si in the soils: acetate-extractable Si (dissolved and easily exchangeable Si), phosphate-extractable Si (adsorbed Si), oxalate extractable Si (Si associated with poorly-ordered sesquioxides), NaOH extractable Si

  1. Compressed Air System Upgrade Improves Production at an Automotive Glass Plant

    SciTech Connect

    Not Available

    2003-02-01

    In 2000, The Visteon automotive glass plant improved its compressed air system at its automotive glass plant in Nashville, Tennessee. This improvement allowed Visteon to save $711,000 annually, reduce annual energy consumption by 7.9 million kilowatt-hours, reduce maintenance, improve system performance, and avoid $800,000 in asbestos abatement costs.

  2. Comparison of the Insecticidal Characteristics of Commercially Available Plant Essential Oils Against Aedes aegypti and Anopheles gambiae (Diptera: Culicidae).

    PubMed

    Norris, Edmund J; Gross, Aaron D; Dunphy, Brendan M; Bessette, Steven; Bartholomay, Lyric; Coats, Joel R

    2015-09-01

    Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD(50) and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils.

  3. Improving forage quality and availability in the southern Great Plains with grasspea (Lathyrus sativus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rising cost of inorganic commercial fertilizer has renewed interest in introducing legumes into paddocks of tame grass. Legumes fix atmospheric nitrogen (N), which will be available to the legume and some will be available to the following non-legume crop, reducing the need for N fertilizers (Ba...

  4. Genetic Modification for Improving Seed Vigor Is Transitioning from Model Plants to Crop Plants

    PubMed Central

    Wu, Xiaolin; Ning, Fen; Hu, Xiuli; Wang, Wei

    2017-01-01

    Although seed vigor is a complex physiological trait controlled by quantitative trait loci, technological advances in the laboratory are being translated into applications for enhancing seed vigor in crop plants. In this article, we summarize and discuss pioneering work in the genetic modification of seed vigor, especially through the over-expression of protein L-isoaspartyl methyltransferase (PIMT, EC 2.1.1.77) in seeds. The impressive success in improving rice seed vigor through the over-expression of PIMT provides a valuable reference for engineering high-vigor seeds for crop production. In recent decades, numerous genes/proteins associated with seed vigor have been identified. It is hoped that such potential candidates may be used in the development of genetically edited crops for a high and stable yield potential in crop production. This possibility is very valuable in the context of a changing climate and increasing world population. PMID:28149305

  5. Exploring high throughput phenotyping, plant architecture and plant-boll distribution for improving drought tolerance in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a pressing need to identify and understand the effects of different irrigation regimes on plant-boll distribution, seed cotton yield, and plant architecture for improving yield and fiber quality under stress and/or drought tolerance of cotton (Gossypium spp.) cultivars. To identify the impa...

  6. The Virtual Genetics Lab II: Improvements to a Freely Available Software Simulation of Genetics

    ERIC Educational Resources Information Center

    White, Brian T.

    2012-01-01

    The Virtual Genetics Lab II (VGLII) is an improved version of the highly successful genetics simulation software, the Virtual Genetics Lab (VGL). The software allows students to use the techniques of genetic analysis to design crosses and interpret data to solve realistic genetics problems involving a hypothetical diploid insect. This is a brief…

  7. Improved Acquisition for System Sustainment: Availability-Based Importance Framework for Maintenance, Repair, and Overhaul Acquisition

    DTIC Science & Technology

    2015-06-30

    criteria are preferred (e.g., expenditures, losses, travel time ). Eq. (51) suggests that the positive ideal solution consists of those weighted...system achieved availability, a common availability calculation that is a ratio of mean time between maintenance and total system time , including mean...maintenance time . With these measures, more effective maintenance plans, including inspection and supply inventory, can focus on those components

  8. Mobility and plant availability of risk elements in soil after long-term application of farmyard manure.

    PubMed

    Tlustoš, Pavel; Hejcman, Michal; Hůlka, Martin; Patáková, Michaela; Kunzová, Eva; Száková, Jiřina

    2016-12-01

    Crop rotation long-term field experiments were established in 1955 and 1956 at three locations in the Czech Republic (Čáslav, Ivanovice, and Lukavec) differing in their climatic and soil physicochemical properties. The effect of long-term application of farmyard manure and farmyard manure + NPK treatments on plant-available, easily mobilizable, potentially mobilizable, and pseudo-total contents of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) contents in soils (in 2013) as well as the uptake of these elements by winter wheat (Triticum aestivum L.) grain and straw were analyzed in the two following seasons: 2012 and 2013. The treatments resulted in increasing the soil pH level when compared to the control, but the cation exchange capacity remained unchanged. Although all fertilizers were applied for six decades, the pseudo-total concentration elements in both the soil and wheat plants stayed far below those of the Czech and European threshold limits for agricultural soils and cereals for human nutrition and feedstuff. Although the mobile pools of As, Cu, and Zn were slightly changed at the treated soils, these changes were not related to the element uptake by the wheat plants. Moreover, the effect of the location and growing season was more decisive for the differences in soil and plant element contents than for the individual treatments. Thus, the long-term application of farmyard manure did not result in any substantial change in risk element contents in both soils and winter wheat plants.

  9. Plant availability of nutrients recovered as solids from human urine tested in climate chamber on Triticum aestivum L.

    PubMed

    Ganrot, Zsófia; Dave, Göran; Nilsson, Eva; Li, Bo

    2007-11-01

    Recovered nutrients by freezing-thawing from human urine in combination with struvite precipitation and nitrogen adsorption on zeolite and activated carbon have been tested in pot trials with wheat, Triticum aestivum L., in a climate chamber during 21 days. A simple test design using sand as substrate was chosen to give a first, general evaluation of the nutrient (P and N) availability from these sources. Dry weight, plant growth morphology, total-P and total-N were analysed. The tests show a slow-release of nutrients (P and N) from struvite and from N-adsorbents. The nitrogen in all treatments was in the deficiency range for optimum yield for wheat. Higher pH than usual for soil tests contributed to the difficulties in plant uptake, especially in the pots with only struvite (with highest MgO addition) as nutrient source.

  10. Analysis of plant available water in the context of climate change using Thornthwaite type monthly water balance model

    NASA Astrophysics Data System (ADS)

    Herceg, Andras; Gribovszki, Zoltan; Kalicz, Peter

    2016-04-01

    The hydrological impact of climate change can be dramatic. The primary objective of this paper was to analyze plant available water in the context of climate change using Thornthwaite type monthly water balance calibrated by remote sensing based ET maps. The calibrated model was used for projection on the basis of 4 climate model datasets. The 3 periods of projection were: 2010-2040, 2040-2070, and 2070-2100. The benefit of this method is its robust build up, which can be applied if temperature and precipitation time series are accessible. The key parameter is the water storage capacity of the soil (SOILMAX), which can be calibrated using the actual available evapotranspiration data. If the soil's physical properties are available, the maximal rooting depth is also projectable. Plant available water was evaluated for future scenarios focusing water stress periods. For testing the model, a dataset of an agricultural parcel next to Mosonmagyaróvár and a dataset of a small forest covered catchment next to Sopron were successfully used. Each of the models projected slightly ascending evapotranspiration values (+7 percent), but strongly decreasing soil moisture values (-15 percent) for the 21st century. The soil moisture minimum values (generally appeared at the end of the summer) reduced more than 50 percent which indicate almost critical water stress for vegetation. This research has been supported by Agroclimate.2 VKSZ_12-1-2013-0034 project.

  11. Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability.

    PubMed

    Ramos-Robles, Michelle; Andresen, Ellen; Díaz-Castelazo, Cecilia

    2016-01-01

    Background. Ecological communities are dynamic collections whose composition and structure change over time, making up complex interspecific interaction networks. Mutualistic plant-animal networks can be approached through complex network analysis; these networks are characterized by a nested structure consisting of a core of generalist species, which endows the network with stability and robustness against disturbance. Those mutualistic network structures can vary as a consequence of seasonal fluctuations and food availability, as well as the arrival of new species into the system that might disorder the mutualistic network structure (e.g., a decrease in nested pattern). However, there is no assessment on how the arrival of migratory species into seasonal tropical systems can modify such patterns. Emergent and fine structural temporal patterns are adressed here for the first time for plant-frugivorous bird networks in a highly seasonal tropical environment. Methods. In a plant-frugivorous bird community, we analyzed the temporal turnover of bird species comprising the network core and periphery of ten temporal interaction networks resulting from different bird migration periods. Additionally, we evaluated how fruit abundance and richness, as well as the arrival of migratory birds into the system, explained the temporal changes in network parameters such as network size, connectance, nestedness, specialization, interaction strength asymmetry and niche overlap. The analysis included data from 10 quantitative plant-frugivorous bird networks registered from November 2013 to November 2014. Results. We registered a total of 319 interactions between 42 plant species and 44 frugivorous bird species; only ten bird species were part of the network core. We witnessed a noteworthy turnover of the species comprising the network periphery during migration periods, as opposed to the network core, which did not show significant temporal changes in species composition. Our results

  12. Improved stereo matching applied to digitization of greenhouse plants

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Xu, Lihong; Li, Dawei; Gu, Xiaomeng

    2015-03-01

    The digitization of greenhouse plants is an important aspect of digital agriculture. Its ultimate aim is to reconstruct a visible and interoperable virtual plant model on the computer by using state-of-the-art image process and computer graphics technologies. The most prominent difficulties of the digitization of greenhouse plants include how to acquire the three-dimensional shape data of greenhouse plants and how to carry out its realistic stereo reconstruction. Concerning these issues an effective method for the digitization of greenhouse plants is proposed by using a binocular stereo vision system in this paper. Stereo vision is a technique aiming at inferring depth information from two or more cameras; it consists of four parts: calibration of the cameras, stereo rectification, search of stereo correspondence and triangulation. Through the final triangulation procedure, the 3D point cloud of the plant can be achieved. The proposed stereo vision system can facilitate further segmentation of plant organs such as stems and leaves; moreover, it can provide reliable digital samples for the visualization of greenhouse tomato plants.

  13. Ectopic expression of a soybean phytase in developing seeds of Glycine max to improve phosphorus availability.

    PubMed

    Chiera, Joseph M; Finer, John J; Grabau, Elizabeth A

    2004-12-01

    A transgenic approach was used to alter soybean seed phytate content by expressing a soybean phytase gene (GmPhy) during seed development to degrade accumulating phytic acid (IP6). An expression vector containing the soybean phytase cDNA controlled by the seed-specific beta-conglycinin promoter (alpha'-subunit) was used to transform embryogenic soybean cultures. Plants from four independent transgenic lines were analyzed for transgene integration and seed IP6 levels. The reduction in IP6 levels in transgenic seeds compared to control 'Jack' soybeans ranged from 12.6 to 24.8 as determined by HPLC. A low copy transformant was propagated to the T4 generation and examined in more detail for phytase expression and enzyme activity during seed development. Expression of phytase mRNA and phytase activity increased during seed development, consistent with the use of an embryo-specific promoter. Ectopic phytase expression during seed development offers potential as an effective strategy for reducing phytate content in soybean seed.

  14. Prospects for optimizing soil microbial functioning to improve plant nutrient uptake and soil carbon sequestration under elevated CO2

    NASA Astrophysics Data System (ADS)

    Nie, M.; Pendall, E. G.

    2013-12-01

    Potential to mitigate climate change through increasing plant productivity and its carbon (C) input to soil may be limited by soil nitrogen (N) availability. Using a novel 13C-CO2 and 15N-soil dual labeling method, we investigated whether plant growth-promoting bacteria would interact with atmospheric CO2 concentration to alter plant productivity and soil C storage. We grew Bouteloua gracilis under ambient (380 ppm) or elevated CO2 (700 ppm) in climate-controlled chambers, and plant individuals were grown with or without Pseudomonas fluorescens inoculum, which can produce N catabolic enzymes. We observed that both eCO2 and P. fluorescens increased plant productivity and its C allocation to soil. P. fluorescens relative to eCO2 enhanced plant N uptake from soil organic matter, which highly correlated with soil N enzyme activities and rhizosphere exudate C. More importantly, P. fluorescens increased microbial biomass and deceased specific microbial respiration in comparison with eCO2. These results indicate that application of plant growth-promoting bacteria can increase microbial C utilization efficiency with subsequent N mineralization from soil organic matter, and may improve plant N availability and soil C sequestration. Together, our findings highlight the potential of plant growth-promoting bacteria for global change mitigation by terrestrial ecosystems.

  15. Crop Improvement through Modification of the Plant's Own Genome

    PubMed Central

    Rommens, Caius M.; Humara, Jaime M.; Ye, Jingsong; Yan, Hua; Richael, Craig; Zhang, Lynda; Perry, Rachel; Swords, Kathleen

    2004-01-01

    Plant genetic engineering has, until now, relied on the incorporation of foreign DNA into plant genomes. Public concern about the extent to which transgenic crops differ from their traditionally bred counterparts has resulted in molecular strategies and gene choices that limit, but not eliminate, the introduction of foreign DNA. Here, we demonstrate that a plant-derived (P-) DNA fragment can be used to replace the universally employed Agrobacterium transfer (T-) DNA. Marker-free P-DNAs are transferred to plant cell nuclei together with conventional T-DNAs carrying a selectable marker gene. By subsequently linking a positive selection for temporary marker gene expression to a negative selection against marker gene integration, 29% of derived regeneration events contain P-DNA insertions but lack any copies of the T-DNA. Further refinements are accomplished by employing Ω-mutated virD2 and isopentenyl transferase cytokinin genes to impair T-DNA integration and select against backbone integration, respectively. The presented methods are used to produce hundreds of marker-free and backbone-free potato (Solanum tuberosum) plants displaying reduced expression of a tuber-specific polyphenol oxidase gene in potato. The modified plants represent the first example of genetically engineered plants that only contain native DNA. PMID:15133156

  16. Improving Agricultural Productivity in Tonga through Ensuring Data Availability and Enhancing Agro-meteorological Services

    NASA Astrophysics Data System (ADS)

    Kim, K. H.

    2015-12-01

    The project was first conceived in the Global Framework for Climate Services Regional Consultation in the Cook Islands in March 2014. In this meeting, key officials from the Ministry of Agriculture and Food, Forests, and Fisheries and the Tonga Meteorological Services had a meeting with the APEC Climate Center scientists with the idea to collaborate on a joint project. The project evolved to include the following components: assessment of users' needs and capacities, development of an agricultural database, research on the core relationships between agriculture and climate through modeling and field trials, and the development and delivery of agro-meteorological services. Envisioned outputs include a 2-7 day warning for pests and diseases, a suite of tools supporting decisions on planting dates and crop varieties, and other advisory services derived from seasonal climate forecasts. As one of the climate adaptation projects under its Pacific Island portfolio, the project will deliver urgent information services for Tongan agricultural growers and exporters. The project comes into greater importance and urgency, as the 2014 drought event resulted in the destruction of 80% of squash in Tonga, a main export crop from which the country derives foreign exchange earnings. Since 2014, some of the project achievements include the first agro-met data collection in Tonga, the development of an agricultural DB management system that houses archived agriculture data, and key meetings with stakeholders to ensure alignment of the project objectives and design with the interests of the Tongan government and other stakeholders. In addition, rigorous scientific research through modeling and field trials has been conducted to address the twin goals of supporting Tonga's economy as well as food security. Based on the findings from the research, tools will be developed to translate the science into knowledge that supports decisions on the farm scale.

  17. Randomized Trial of the Availability, Responsiveness and Continuity (ARC) Organizational Intervention for Improving Youth Outcomes in Community Mental Health Programs

    ERIC Educational Resources Information Center

    Glisson, Charles; Hemmelgarn, Anthony; Green, Philip; Williams, Nathaniel J.

    2013-01-01

    Objectives: The primary objective of the study was to assess whether the Availability, Responsiveness and Continuity (ARC) organizational intervention improved youth outcomes in community based mental health programs. The second objective was to assess whether programs with more improved organizational social contexts following the 18-month ARC…

  18. Collect Data, Tell Stories: Utilizing Available Data to Improve Wound Product Selection, Reduce Costs, and Improve Outcomes.

    PubMed

    Mostow, Eliot; Montemayor, Jon D; Pittinger, Sean; Miller, Stephannie; Blasiole, Kimberly N; Fulton, Judith

    2014-08-01

    Objective: To develop a tool to assist in the evaluation of treatment options based on clinically relevant parameters, thus enabling clinicians to heal patients more efficiently. Approach: Outlined here is the prototypic model of a comprehensive analysis tool to compare products by category, accounting for product characteristics, effectiveness data from literature, costs, and patient needs or clinician preferences. Results: The tool is demonstrated with a venous leg ulcer example, and ideas for expanding the tool in the future are provided. Innovation: Although this is a simple model, the authors believe that it provides a valid and useful platform for comparing similar products of a given type using available information and reflecting real-world use to give a practical approach to clinical decision-making. Conclusion: Future funding for comprehensive, comparative effectiveness studies should provide clarity on which products to choose for specific applications. Meanwhile, tools like this can provide guidance, and can be modified to accommodate varying circumstances.

  19. Collect Data, Tell Stories: Utilizing Available Data to Improve Wound Product Selection, Reduce Costs, and Improve Outcomes

    PubMed Central

    Mostow, Eliot; Montemayor, Jon D.; Pittinger, Sean; Miller, Stephannie; Blasiole, Kimberly N.; Fulton, Judith

    2014-01-01

    Objective: To develop a tool to assist in the evaluation of treatment options based on clinically relevant parameters, thus enabling clinicians to heal patients more efficiently. Approach: Outlined here is the prototypic model of a comprehensive analysis tool to compare products by category, accounting for product characteristics, effectiveness data from literature, costs, and patient needs or clinician preferences. Results: The tool is demonstrated with a venous leg ulcer example, and ideas for expanding the tool in the future are provided. Innovation: Although this is a simple model, the authors believe that it provides a valid and useful platform for comparing similar products of a given type using available information and reflecting real-world use to give a practical approach to clinical decision-making. Conclusion: Future funding for comprehensive, comparative effectiveness studies should provide clarity on which products to choose for specific applications. Meanwhile, tools like this can provide guidance, and can be modified to accommodate varying circumstances. PMID:25126475

  20. Improving Fatty Acid Availability for Bio-Hydrocarbon Production in Escherichia coli by Metabolic Engineering

    PubMed Central

    Lin, Fengming; Chen, Yu; Levine, Robert; Lee, Kilho; Yuan, Yingjin; Lin, Xiaoxia Nina

    2013-01-01

    Previous studies have demonstrated the feasibility of producing fatty-acid-derived hydrocarbons in Escherichia coli. However, product titers and yields remain low. In this work, we demonstrate new methods for improving fatty acid production by modifying central carbon metabolism and storing fatty acids in triacylglycerol. Based on suggestions from a computational model, we deleted seven genes involved in aerobic respiration, mixed-acid fermentation, and glyoxylate bypass (in the order of cyoA, nuoA, ndh, adhE, dld, pta, and iclR) to modify the central carbon metabolic/regulatory networks. These gene deletions led to increased total fatty acids, which were the highest in the mutants containing five or six gene knockouts. Additionally, when two key enzymes in the fatty acid biosynthesis pathway were over-expressed, we observed further increase in strain △cyoA△adhE△nuoA△ndh△pta△dld, leading to 202 mg/g dry cell weight of total fatty acids, ~250% of that in the wild-type strain. Meanwhile, we successfully introduced a triacylglycerol biosynthesis pathway into E. coli through heterologous expression of wax ester synthase/acyl-coenzyme:diacylglycerol acyltransferase (WS/DGAT) enzymes. The added pathway improved both the amount and fuel quality of the fatty acids. These new metabolic engineering strategies are providing promising directions for future investigation. PMID:24147139

  1. Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index

    NASA Astrophysics Data System (ADS)

    Chen, Jing M.; Cihlar, Josef

    1995-09-01

    Optical instruments currently available for measuring the leaf-area index (LAI) of a plant canopy all utilize only the canopy gap-fraction information. These instruments include the Li-Cor LAI-2000 Plant Canopy Analyzer, Decagon, and Demon. The advantages of utilizing both the canopy gap-fraction and gap-size information are shown. For the purpose of measuring the canopy gap size, a prototype sunfleck-LAI instrument named Tracing Radiation and Architecture of Canopies (TRAC), has been developed and tested in two pure conifer plantations, red pine (Pinus resinosa Ait.) and jack pine (Pinus banksiana Lamb). A new gap-size-analysis theory is presented to quantify the effect of canopy architecture on optical measurements of LAI based on the gap-fraction principle. The theory is an improvement on that of Lang and Xiang [Agric. For. Meteorol. 37, 229 (1986)]. In principle, this theory can be used for any heterogeneous canopies.

  2. Does information available at admission for delivery improve prediction of vaginal birth after cesarean?

    PubMed

    Grobman, William A; Lai, Yinglei; Landon, Mark B; Spong, Catherine Y; Leveno, Kenneth J; Rouse, Dwight J; Varner, Michael W; Moawad, Atef H; Simhan, Hyagriv N; Harper, Margaret; Wapner, Ronald J; Sorokin, Yoram; Miodovnik, Menachem; Carpenter, Marshall; O'Sullivan, Mary J; Sibai, Baha M; Langer, Oded; Thorp, John M; Ramin, Susan M; Mercer, Brian M

    2009-11-01

    We sought to construct a predictive model for vaginal birth after cesarean (VBAC) that combines factors that can be ascertained only as the pregnancy progresses with those known at initiation of prenatal care. Using multivariable modeling, we constructed a predictive model for VBAC that included patient factors known at the initial prenatal visit as well as those that only become evident as the pregnancy progresses to the admission for delivery. We analyzed 9616 women. The regression equation for VBAC success included multiple factors that could not be known at the first prenatal visit. The area under the curve for this model was significantly greater ( P < 0.001) than that of a model that included only factors available at the first prenatal visit. A prediction model for VBAC success, which incorporates factors that can be ascertained only as the pregnancy progresses, adds to the predictive accuracy of a model that uses only factors available at a first prenatal visit.

  3. Formosa Plastics Corporation: Plant-Wide Assessment of Texas Plant Identifies Opportunities for Improving Process Efficiency and Reducing Energy Costs

    SciTech Connect

    2005-01-01

    At Formosa Plastics Corporation's plant in Point Comfort, Texas, a plant-wide assessment team analyzed process energy requirements, reviewed new technologies for applicability, and found ways to improve the plant's energy efficiency. The assessment team identified the energy requirements of each process and compared actual energy consumption with theoretical process requirements. The team estimated that total annual energy savings would be about 115,000 MBtu for natural gas and nearly 14 million kWh for electricity if the plant makes several improvements, which include upgrading the gas compressor impeller, improving the vent blower system, and recovering steam condensate for reuse. Total annual cost savings could be $1.5 million. The U.S. Department of Energy's Industrial Technologies Program cosponsored this assessment.

  4. Army Reserve Components: Improvements Needed to Data Quality and Management Procedures to Better Report Soldier Availability

    DTIC Science & Technology

    2015-07-01

    its number of soldiers over the next several years. The House Report accompanying the Fiscal Year 2015 National Defense Authorization Act... House of Representatives As an integral part of the Army, its reserve components (the Army Reserve and the Army National Guard) are called upon to...from a smaller population of the remaining available soldiers. 5 The House Report 113-446 accompanying a proposed bill for the National Defense

  5. Comparison of toxic heavy metals concentration in medicinal plants and their respective branded herbal formulations commonly available in Khyber Pakhtunkhwa.

    PubMed

    Shah, Waheed Ali; Zakiullah; Khuda, Fazli; Khan, Faridullah; Saeed, Muhammad

    2016-07-01

    The present study was conducted on fifteen medicinal plants and their respective branded formulations, commonly used in Khyber Pakhtunkhwa, for the evaluation of toxic heavy metals. The purpose of the study was to assess the toxic profile of the crude medicinal plants with respect to the worldwide permissible limits of metal concentrations and to correlate it with their respective herbal formulations available on the market. Chromium (Cr), Copper (Cu), Lead (Pb), Manganese (Mn) and Nickel (Ni) content were evaluated using wet digestion and Atomic Absorption Spectrophotometry technique. The results exhibited that in 100% of the analyzed medicinal plants Cr and Ni are present in excess of the maximum limits, Cu and Pb in 73% and 60% respectively, while Mn is in the normal range. Likewise in the respective branded formulations Cr and Ni exceed the normal limit in 100% of the products, Cu and Pb in 27% and 20% of the products respectively, while Mn is in the normal range. It indicates that majority of people in Pakistan who frequently use herbal drugs in various forms are exposed to the hazardous elements, which may pose serious health effects. Regulatory measures should therefore be taken to protect the general public from their hazardous health effects.

  6. Battery available power prediction of hybrid electric vehicle based on improved Dynamic Matrix Control algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Limei; Cheng, Yong; Zou, Ju

    2014-09-01

    The core technology to any hybrid engine vehicle (HEV) is the design of energy management strategy (EMS). To develop a reasonable EMS, it is necessary to monitor the state of capacity, state of health and instantaneous available power of battery packs. A new method that linearizes RC equivalent circuit model and predicts battery available power according to original Dynamic Matrix Control algorithm is proposed. To verify the validity of the new algorithm, a bench test with lithium-ion battery cell and a HEV test with lithium-ion battery packs are carried out. The bench test results indicate that a single RC block equivalent circuit model could be used to describe the dynamic and the steady state characteristics of a battery under testing conditions. However, lacking of long time constant of RC modules, there is a sample deviation in the open-circuit voltage identified and that measured. The HEV testing results show that the battery voltage predicted is in good agreement with that measured, the maximum difference is within 3.7%. Fixing the time constant to a numeric value, satisfactory results can still be achieved. After setting a battery discharge cut-off voltage, the instantaneous available power of the battery can be predicted.

  7. A natural plant growth promoter calliterpenone from a plant Callicarpa macrophylla Vahl improves the plant growth promoting effects of plant growth promoting rhizobacteria (PGPRs).

    PubMed

    Maji, Deepamala; Barnawal, Deepti; Gupta, Aakansha; King, Shikha; Singh, A K; Kalra, A

    2013-05-01

    Experiments were conducted to evaluate the efficacy of calliterpenone, a natural plant growth promoter from a shrub Callicarpa macrophylla Vahl., in enhancing the growth and yield promoting effects of plant growth promoting rhizobacteria (PGPRs), in menthol mint (Mentha arvensis L).This study is based on our previous results indicating the microbial growth promotion by calliterpenone and assumption that application of calliterpenone along with PGPRs will improve the population of PGPRs resulting in higher impacts on plant growth and yield. Of the 15 PGPRs (identified as potent ones in our laboratory), 25 μl of 0.01 mM calliterpenone (8.0 μg/100 ml) was found to be useful in improving the population of nine PGPRs in culture media. The five selected strains of PGPRs exhibiting synergy with calliterpenone in enhancing growth of maize compared to PGPR or calliterpenone alone were selected and tested on two cultivars (cvs. Kosi and Kushal) of M. arvensis. Of the five strains, Bacillus subtilis P-20 (16S rDNA sequence homologous to Accession No NR027552) and B. subtilis Daz-26 (16SrDNA sequence homologuos to Accession No GU998816) were found to be highly effective in improving the herb and essential oil yield in the cultivars Kushal and Kosi respectively when co-treated with calliterpenone. The results open up the possibilities of using a natural growth promoter along with PGPRs as a bio-agri input for sustainable and organic agriculture.

  8. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology.

    PubMed

    Brooker, Rob W; Bennett, Alison E; Cong, Wen-Feng; Daniell, Tim J; George, Timothy S; Hallett, Paul D; Hawes, Cathy; Iannetta, Pietro P M; Jones, Hamlyn G; Karley, Alison J; Li, Long; McKenzie, Blair M; Pakeman, Robin J; Paterson, Eric; Schöb, Christian; Shen, Jianbo; Squire, Geoff; Watson, Christine A; Zhang, Chaochun; Zhang, Fusuo; Zhang, Junling; White, Philip J

    2015-04-01

    Intercropping is a farming practice involving two or more crop species, or genotypes, growing together and coexisting for a time. On the fringes of modern intensive agriculture, intercropping is important in many subsistence or low-input/resource-limited agricultural systems. By allowing genuine yield gains without increased inputs, or greater stability of yield with decreased inputs, intercropping could be one route to delivering ‘sustainable intensification’. We discuss how recent knowledge from agronomy, plant physiology and ecology can be combined with the aim of improving intercropping systems. Recent advances in agronomy and plant physiology include better understanding of the mechanisms of interactions between crop genotypes and species – for example, enhanced resource availability through niche complementarity. Ecological advances include better understanding of the context-dependency of interactions, the mechanisms behind disease and pest avoidance, the links between above- and below-ground systems, and the role of microtopographic variation in coexistence. This improved understanding can guide approaches for improving intercropping systems, including breeding crops for intercropping. Although such advances can help to improve intercropping systems, we suggest that other topics also need addressing. These include better assessment of the wider benefits of intercropping in terms of multiple ecosystem services, collaboration with agricultural engineering, and more effective interdisciplinary research.

  9. Temporal changes in the structure of a plant-frugivore network are influenced by bird migration and fruit availability

    PubMed Central

    Andresen, Ellen; Díaz-Castelazo, Cecilia

    2016-01-01

    Background. Ecological communities are dynamic collections whose composition and structure change over time, making up complex interspecific interaction networks. Mutualistic plant–animal networks can be approached through complex network analysis; these networks are characterized by a nested structure consisting of a core of generalist species, which endows the network with stability and robustness against disturbance. Those mutualistic network structures can vary as a consequence of seasonal fluctuations and food availability, as well as the arrival of new species into the system that might disorder the mutualistic network structure (e.g., a decrease in nested pattern). However, there is no assessment on how the arrival of migratory species into seasonal tropical systems can modify such patterns. Emergent and fine structural temporal patterns are adressed here for the first time for plant-frugivorous bird networks in a highly seasonal tropical environment. Methods. In a plant-frugivorous bird community, we analyzed the temporal turnover of bird species comprising the network core and periphery of ten temporal interaction networks resulting from different bird migration periods. Additionally, we evaluated how fruit abundance and richness, as well as the arrival of migratory birds into the system, explained the temporal changes in network parameters such as network size, connectance, nestedness, specialization, interaction strength asymmetry and niche overlap. The analysis included data from 10 quantitative plant-frugivorous bird networks registered from November 2013 to November 2014. Results. We registered a total of 319 interactions between 42 plant species and 44 frugivorous bird species; only ten bird species were part of the network core. We witnessed a noteworthy turnover of the species comprising the network periphery during migration periods, as opposed to the network core, which did not show significant temporal changes in species composition. Our

  10. Cool perch availability improves the performance and welfare status of broiler chickens in hot weather.

    PubMed

    Zhao, J P; Jiao, H C; Jiang, Y B; Song, Z G; Wang, X J; Lin, H

    2012-08-01

    A study was conducted to determine whether water-cooled perches would be preferred by commercial broilers exposed to a hot ambient environment, and subsequently, whether utilization of these perches would improve performance and the well-being of birds, beyond those provided by normal perches. Four hundred and thirty-two 14-d-old male chickens from a commercial fast-growing strain (Arbor Acres) were housed in the following conditions: 1) cool perches, 2) normal perches, and 3) control pens with no perches. The results showed that there was greater use of cool perches than normal perches for broiler chickens during summer (F1, 4=125, P=0.0004). Cool perches increased BW gain (F2, 6=5.44, P=0.0449) and breast (F2, 24=3.31, P=0.0539) and thigh muscle yields (F2, 24=6.29, P=0.0063), while decreasing abdominal fat deposition (F2, 24=7.57, P=0.0028), cooking loss (pectoralis major, F2, 24=3.30, P=0.0542; biceps femoris, F2, 24=3.42, P=0.0493), percentage of panting birds (F2, 6=102, P<0.0001), and scores of footpad (F2, 6=122, P<0.0001) and hock (F2, 6=68.2, P<0.0001) burn, and abdominal plumage condition (F2, 6=52.0, P=0.0002), particularly toward the end of the rearing period. In contrast, normal perches hardly affected growth performance, carcass composition, meat quality and behavioral patterns, and appeared to worsen the welfare status, including footpad and hock burns and abdominal plumage condition, due to a lower occupancy rate. Cool perches offer a thermoregulatory and performance advantage to broilers exposed to a hot environment and appear to be a management strategy for improving the production and well-being of commercial broilers.

  11. Improved pose and affinity predictions using different protocols tailored on the basis of data availability

    NASA Astrophysics Data System (ADS)

    Prathipati, Philip; Nagao, Chioko; Ahmad, Shandar; Mizuguchi, Kenji

    2016-09-01

    The D3R 2015 grand drug design challenge provided a set of blinded challenges for evaluating the applicability of our protocols for pose and affinity prediction. In the present study, we report the application of two different strategies for the two D3R protein targets HSP90 and MAP4K4. HSP90 is a well-studied target system with numerous co-crystal structures and SAR data. Furthermore the D3R HSP90 test compounds showed high structural similarity to existing HSP90 inhibitors in BindingDB. Thus, we adopted an integrated docking and scoring approach involving a combination of both pharmacophoric and heavy atom similarity alignments, local minimization and quantitative structure activity relationships modeling, resulting in the reasonable prediction of pose [with the root mean square deviation (RMSD) values of 1.75 Å for mean pose 1, 1.417 Å for the mean best pose and 1.85 Å for the mean all poses] and affinity (ROC AUC = 0.702 at 7.5 pIC50 cut-off and R = 0.45 for 180 compounds). The second protein, MAP4K4, represents a novel system with limited SAR and co-crystal structure data and little structural similarity of the D3R MAP4K4 test compounds to known MAP4K4 ligands. For this system, we implemented an exhaustive pose and affinity prediction protocol involving docking and scoring using the PLANTS software which considers side chain flexibility together with protein-ligand fingerprints analysis assisting in pose prioritization. This protocol through fares poorly in pose prediction (with the RMSD values of 4.346 Å for mean pose 1, 4.69 Å for mean best pose and 4.75 Å for mean all poses) and produced reasonable affinity prediction (AUC = 0.728 at 7.5 pIC50 cut-off and R = 0.67 for 18 compounds, ranked 1st among 80 submissions).

  12. Bromeliad-living spiders improve host plant nutrition and growth.

    PubMed

    Romero, Gustavo Q; Mazzafera, Paulo; Vasconcellos-Neto, Joao; Trivelin, Paulo C O

    2006-04-01

    Although bromeliads are believed to obtain nutrients from debris deposited by animals in their rosettes, there is little evidence to support this assumption. Using stable isotope methods, we found that the Neotropical jumping spider Psecas chapoda (Salticidae), which lives strictly associated with the terrestrial bromeliad Bromelia balansae, contributed 18% of the total nitrogen of its host plant in a greenhouse experiment. In a one-year field experiment, plants with spiders produced leaves 15% longer than plants from which the spiders were excluded. This is the first study to show nutrient provisioning in a spider-plant system. Because several animal species live strictly associated with bromeliad rosettes, this type of facultative mutualism involving the Bromeliaceae may be more common than previously thought.

  13. Resveratrol biosynthesis: plant metabolic engineering for nutritional improvement of food.

    PubMed

    Giovinazzo, Giovanna; Ingrosso, Ilaria; Paradiso, Annalisa; De Gara, Laura; Santino, Angelo

    2012-09-01

    The plant polyphenol trans-resveratrol (3, 5, 4'-trihydroxystilbene) mainly found in grape, peanut and other few plants, displays a wide range of biological effects. Numerous in vitro studies have described various biological effects of resveratrol. In order to provide more information regarding absorption, metabolism, and bioavailability of resveratrol, various research approaches have been performed, including in vitro, ex vivo, and in vivo models. In recent years, the induction of resveratrol synthesis in plants which normally do not accumulate such polyphenol, has been successfully achieved by molecular engineering. In this context, the ectopic production of resveratrol has been reported to have positive effects both on plant resistance to biotic stress and the enhancement of the nutritional value of several widely consumed fruits and vegetables. The metabolic engineering of plants offers the opportunity to change the content of specific phytonutrients in plant - derived foods. This review focuses on the latest findings regarding on resveratrol bioproduction and its effects on the prevention of the major pathological conditions in man.

  14. Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger.

    PubMed

    Li, An; Pfelzer, Nina; Zuijderwijk, Robbert; Brickwedde, Anja; van Zeijl, Cora; Punt, Peter

    2013-05-01

    Aspergillus niger has an extraordinary potential to produce organic acids as proven by its application in industrial citric acid production. Previously, it was shown that expression of the cis-aconitate decarboxylase gene (cadA) from Aspergillus terreus converted A. niger into an itaconic acid producer (Li et al., Fungal Genet Bio 48: 602-611, 2011). After some initial steps in production optimization in the previous research (Li et al., BMC biotechnol 12: 57, 2012), this research aims at modifying host strains and fermentation conditions to further improve itaconic acid production. Expression of two previously identified A. terreus genes encoding putative organic acid transporters (mttA, mfsA) increased itaconic acid production in an A. niger cis-aconitate decarboxylase expressing strain. Surprisingly, the production did not increase further when both transporters were expressed together. Meanwhile, oxalic acid was accumulated as a by-product in the culture of mfsA transformants. In order to further increase itaconic acid production and eliminate by-product formation, the non-acidifying strain D15#26 and the oxaloacetate acetylhydrolase (oahA) deletion strain AB 1.13 ∆oahA #76 have been analyzed for itaconic acid production. Whereas cadA expression in AB 1.13 ∆oahA #76 resulted in higher itaconic acid production than strain CAD 10.1, this was not the case in strain D15#26. As expected, oxalic acid production was eliminated in both strains. In a further attempt to increase itaconic acid levels, an improved basal citric acid-producing strain, N201, was used for cadA expression. A selected transformant (N201CAD) produced more itaconic acid than strain CAD 10.1, derived from A. niger strain AB1.13. Subsequently, we have focused on the influence of dissolved oxygen (D.O.) on itaconic acid production. Interestingly, reduced D.O. levels (10-25 %) increased itaconic acid production using strain N201 CAD. Similar results were obtained in strain AB 1.13 CAD + HBD2

  15. Ecosystem responses to warming-induced plant species loss and increased nitrogen availability in a Rocky Mountain subalpine meadow

    NASA Astrophysics Data System (ADS)

    Smith, Molly Elizabeth

    Climate change is predicted to be an important driver of future biodiversity changes, especially in mountainous environments. Climate warming-induced plant species loss is likely to be non-random and based on species-specific susceptibility to rising temperatures. Experimental warming results from a subalpine meadow in Colorado suggest that warming adversely affects shallow-rooted forb species in this ecosystem. To examine the ecological consequences of losing this warming-sensitive species group, I experimentally removed all shallow-rooted forb species from otherwise intact subalpine meadow plots. Since experimental warming also resulted in increased soil nitrogen availability, I crossed the removal treatment with a nitrogen addition treatment to determine whether the loss of shallow-rooted forbs altered the community's response to a perturbation in nitrogen availability. After three years of experimental species removal, tap-rooted forbs and grasses were able to fully compensate for the loss of shallow-rooted forbs with increased biomass production. Moreover, the remaining plant community yielded a larger biomass response to nitrogen addition when shallow-rooted forbs were removed, possibly because removal led to increased soil moisture. The loss of shallow-rooted forbs and addition of nitrogen did not have strong effects on nitrogen cycling beyond increases in the amount of nitrate moving down through the soil profile. Uptake of nitrogen into plant tissue was also not affected by either the shallow-rooted forb removal or nitrogen addition treatments, suggesting that nitrogen may not have been the most limiting resource during the experiment. I found that spatial heterogeneity generally had a greater influence on soil microbial community composition than any of the experimental treatments. I conclude that the warming-induced loss of shallow-rooted forbs did not affect biomass production, nitrogen cycling, or soil microbial community composition, but did increase

  16. [Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China's cropland soil].

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Duan, Xiao-Nan; Zheng, Hua

    2008-10-01

    With reference to the situation of nitrogen fertilization in 2003 and the recommendations from agricultural experts on fertilization to different crops, two scenarios, namely, 'current situation' and 'fertilization as recommended', were set for estimating the current and potential carbon sequestration of China's cropland soil under nitrogen fertilization. After collecting and analyzing the typical data from the long-term agricultural experiment stations all over China, and based on the recent studies of soil organic matter and nutrient dynamics, we plotted China into four agricultural regions, and estimated the carbon sequestration rate and potential of cropland soil under the two scenarios in each province of China. Meanwhile, with the data concerning fossil fuel consumption for fertilizer production and nitrogen fertilization, the greenhouse gas leakage caused by nitrogen fertilizer production and application was estimated with the help of the parameters given by domestic studies and IPCC. We further proposed that the available carbon sequestration potential of cropland soil could be taken as the criterion of the validity and availability of carbon sequestration measures. The results showed that the application of synthetic nitrogen fertilizer could bring about a carbon sequestration potential of 21.9 Tg C x a(-1) in current situation, and 30.2 Tg C x a(-1) with fertilization as recommended. However, under the two scenarios, the greenhouse gas leakage caused by fertilizer production and application would reach 72.9 Tg C x a(-1) and 91.4 Tg C x a(-1), and thus, the actual available carbon sequestration potential would be -51.0 Tg C x a(-1) and -61.1 Tg C x a(-1), respectively. The situation was even worse under the 'fertilization as recommended' scenario, because the increase in the amount of nitrogen fertilization would lead to 10. 1 Tg C x a(-1) or more net greenhouse gas emission. All these results indicated that the application of synthetic nitrogen fertilizer

  17. Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient

    PubMed Central

    Ricalde, M. Fernanda; Durán, Rafael; Dupuy, Juan Manuel; Simá, J. Luis; Us-Santamaría, Roberth; Santiago, Louis S.

    2010-01-01

    Expression of crassulacean acid metabolism (CAM) is characterized by extreme variability within and between taxa and its sensitivity to environmental variation. In this study, we determined seasonal fluctuations in CAM photosynthesis with measurements of nocturnal tissue acidification and carbon isotopic composition (δ13C) of bulk tissue and extracted sugars in three plant communities along a precipitation gradient (500, 700, and 1,000 mm year−1) on the Yucatan Peninsula. We also related the degree of CAM to light habitat and relative abundance of species in the three sites. For all species, the greatest tissue acid accumulation occurred during the rainy season. In the 500 mm site, tissue acidification was greater for the species growing at 30% of daily total photon flux density (PFD) than species growing at 80% PFD. Whereas in the two wetter sites, the species growing at 80% total PFD had greater tissue acidification. All species had values of bulk tissue δ13C less negative than −20‰, indicating strong CAM activity. The bulk tissue δ13C values in plants from the 500 mm site were 2‰ less negative than in plants from the wetter sites, and the only species growing in the three communities, Acanthocereus tetragonus (Cactaceae), showed a significant negative relationship between both bulk tissue and sugar δ13C values and annual rainfall, consistent with greater CO2 assimilation through the CAM pathway with decreasing water availability. Overall, variation in the use of CAM photosynthesis was related to water and light availability and CAM appeared to be more ecologically important in the tropical dry forests than in the coastal dune. PMID:20652592

  18. Environmental regulation of carbon isotope composition and crassulacean acid metabolism in three plant communities along a water availability gradient.

    PubMed

    Ricalde, M Fernanda; Andrade, José Luis; Durán, Rafael; Dupuy, Juan Manuel; Simá, J Luis; Us-Santamaría, Roberth; Santiago, Louis S

    2010-12-01

    Expression of crassulacean acid metabolism (CAM) is characterized by extreme variability within and between taxa and its sensitivity to environmental variation. In this study, we determined seasonal fluctuations in CAM photosynthesis with measurements of nocturnal tissue acidification and carbon isotopic composition (δ(13)C) of bulk tissue and extracted sugars in three plant communities along a precipitation gradient (500, 700, and 1,000 mm year(-1)) on the Yucatan Peninsula. We also related the degree of CAM to light habitat and relative abundance of species in the three sites. For all species, the greatest tissue acid accumulation occurred during the rainy season. In the 500 mm site, tissue acidification was greater for the species growing at 30% of daily total photon flux density (PFD) than species growing at 80% PFD. Whereas in the two wetter sites, the species growing at 80% total PFD had greater tissue acidification. All species had values of bulk tissue δ(13)C less negative than -20‰, indicating strong CAM activity. The bulk tissue δ(13)C values in plants from the 500 mm site were 2‰ less negative than in plants from the wetter sites, and the only species growing in the three communities, Acanthocereus tetragonus (Cactaceae), showed a significant negative relationship between both bulk tissue and sugar δ(13)C values and annual rainfall, consistent with greater CO(2) assimilation through the CAM pathway with decreasing water availability. Overall, variation in the use of CAM photosynthesis was related to water and light availability and CAM appeared to be more ecologically important in the tropical dry forests than in the coastal dune.

  19. Lab to Farm: Applying Research on Plant Genetics and Genomics to Crop Improvement

    PubMed Central

    Ronald, Pamela C.

    2014-01-01

    Over the last 300 years, plant science research has provided important knowledge and technologies for advancing the sustainability of agriculture. In this Essay, I describe how basic research advances have been translated into crop improvement, explore some lessons learned, and discuss the potential for current and future contribution of plant genetic improvement technologies to continue to enhance food security and agricultural sustainability. PMID:24915201

  20. Improved enzymatic method to measure processing effects and starch availability in sorghum grain.

    PubMed

    Xiong, Y; Bartle, S J; Preston, R L

    1990-11-01

    A modified enzymatic method to measure processing effects and starch availability in steam-flaked sorghum grain (SFSG) was developed. To establish the method, experiments were conducted to determine the required enzyme concentration, color reagents, precipitants, sample particle size, shaking frequency and buffer pH. Glucose release at different incubation times (0 to 48 h) from uncooked (UNC) or fully cooked (CK, 100% gelatinized) ground sorghum grain, a 50:50 mixture of UNC and CK (C50) and SFSG was determined. Glucose release from UNC, CK and SFSG was expressed as one-component equations with rate constant k and r2 of .119 and .98, 1.781 and .98, and .368 and .99, respectively; C50 was characterized by having two starch components, one with a fast rate constant, 2.624/h, and one with a slow rate constant, .066/h (R2 = .99). Different degrees of gelatinization were obtained by mixing different proportions of CK and UNC. Glucose release from these samples was highly correlated with starch gelatinization (r2 = .99). By adjusting the tension between mill rollers, five SFSG samples with bulk densities ranging from 476 to 283 g/liter (37 to 22 lb/bu) were produced; respective roller mill electrical load ranged from 21 to 51.5 amps. Enzymatic determination of glucose release resulted in values of 422, 512, 588, 618 and 678 mg/g, which were more closely related to bulk density than birefringence measurements. The modified method for starch availability determination was found to be relatively simple, fast and sensitive, and is recommended.

  1. Evaluation of protein pattern changes in roots and leaves of Zea mays plants in response to nitrate availability by two-dimensional gel electrophoresis analysis

    PubMed Central

    Prinsi, Bhakti; Negri, Alfredo S; Pesaresi, Paolo; Cocucci, Maurizio; Espen, Luca

    2009-01-01

    Background Nitrogen nutrition is one of the major factors that limit growth and production of crop plants. It affects many processes, such as development, architecture, flowering, senescence and photosynthesis. Although the improvement in technologies for protein study and the widening of gene sequences have made possible the study of the plant proteomes, only limited information on proteome changes occurring in response to nitrogen amount are available up to now. In this work, two-dimensional gel electrophoresis (2-DE) has been used to investigate the protein changes induced by NO3- concentration in both roots and leaves of maize (Zea mays L.) plants. Moreover, in order to better evaluate the proteomic results, some biochemical and physiological parameters were measured. Results Through 2-DE analysis, 20 and 18 spots that significantly changed their amount at least two folds in response to nitrate addition to the growth medium of starved maize plants were found in roots and leaves, respectively. Most of these spots were identified by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS). In roots, many of these changes were referred to enzymes involved in nitrate assimilation and in metabolic pathways implicated in the balance of the energy and redox status of the cell, among which the pentose phosphate pathway. In leaves, most of the characterized proteins were related to regulation of photosynthesis. Moreover, the up-accumulation of lipoxygenase 10 indicated that the leaf response to a high availability of nitrate may also involve a modification in lipid metabolism. Finally, this proteomic approach suggested that the nutritional status of the plant may affect two different post-translational modifications of phosphoenolpyruvate carboxylase (PEPCase) consisting in monoubiquitination and phosphorylation in roots and leaves, respectively. Conclusion This work provides a first characterization of the proteome changes that occur in

  2. Guide for prioritizing power plant productivity improvement projects: modification and simplification of the DOE/MRI methodology

    SciTech Connect

    Not Available

    1981-03-01

    In recent years, the subject of public utility power plant productivity and reliability has received significant attention from both federal and state agencies and from within the utilities. One study was a FEA-sponsored program that had as its purpose the development of improved techniques for assessing cause of power plant unavailability. The results of this study have become widely known as the DOE/MRI methodology for calculating increased power plant equivalent availability resulting from instituting improvement projects. To further the development of the DOE/MRI methodology for assessing and quantifying the effect of improvement projects, the DOE initiated studies with two states to demonstrate the methodology in operating plants. These studies were focused on applying the methodology to specific power plants (fossil-fueled and nuclear) and on identifying any difficulties in using the method. In the course of these investigations, several problems were uncovered. Various recommendations were made for both eliminating the identified deficiencies in the methodology and for simplifying several of the calculations needed to evaluate proposed plant improvements. The information provided here describes four major modifications to the DOE/MRI methodology which eliminate previously uncovered deficiencies and simplify calculational methods.

  3. Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

    PubMed

    Shi, Mingjie; Fisher, Joshua B; Brzostek, Edward R; Phillips, Richard P

    2016-03-01

    Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutrient acquisition model - the Fixation and Uptake of Nitrogen Model - into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N-fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr(-1) to acquire 1.0 Pg N yr(-1) , and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi - generally considered for their role in phosphorus (P) acquisition - are estimated to be the primary source of global plant N uptake owing to the dominance of AM-associated plants in mid- and low-latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2 , and warming temperatures) may impact the land C sink.

  4. A Method to Quantify Plant Availability and Initiating Event Frequency Using a Large Event Tree, Small Fault Tree Model

    SciTech Connect

    Kee, Ernest J.; Sun, Alice; Rodgers, Shawn; Popova, ElmiraV; Nelson, Paul; Moiseytseva, Vera; Wang, Eric

    2006-07-01

    South Texas Project uses a large fault tree to produce scenarios (minimal cut sets) used in quantification of plant availability and event frequency predictions. On the other hand, the South Texas Project probabilistic risk assessment model uses a large event tree, small fault tree for quantifying core damage and radioactive release frequency predictions. The South Texas Project is converting its availability and event frequency model to use a large event tree, small fault in an effort to streamline application support and to provide additional detail in results. The availability and event frequency model as well as the applications it supports (maintenance and operational risk management, system engineering health assessment, preventive maintenance optimization, and RIAM) are briefly described. A methodology to perform availability modeling in a large event tree, small fault tree framework is described in detail. How the methodology can be used to support South Texas Project maintenance and operations risk management is described in detail. Differences with other fault tree methods and other recently proposed methods are discussed in detail. While the methods described are novel to the South Texas Project Risk Management program and to large event tree, small fault tree models, concepts in the area of application support and availability modeling have wider applicability to the industry. (authors)

  5. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Bentley, C.; Carlson, G.; Doyon, J.

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  6. ERC product improvement activities for direct fuel cell power plants

    SciTech Connect

    Maru, H.C.; Farooque, M.; Bentley, C.

    1995-12-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  7. Leveraging Cloud Computing to Improve Storage Durability, Availability, and Cost for MER Maestro

    NASA Technical Reports Server (NTRS)

    Chang, George W.; Powell, Mark W.; Callas, John L.; Torres, Recaredo J.; Shams, Khawaja S.

    2012-01-01

    The Maestro for MER (Mars Exploration Rover) software is the premiere operation and activity planning software for the Mars rovers, and it is required to deliver all of the processed image products to scientists on demand. These data span multiple storage arrays sized at 2 TB, and a backup scheme ensures data is not lost. In a catastrophe, these data would currently recover at 20 GB/hour, taking several days for a restoration. A seamless solution provides access to highly durable, highly available, scalable, and cost-effective storage capabilities. This approach also employs a novel technique that enables storage of the majority of data on the cloud and some data locally. This feature is used to store the most recent data locally in order to guarantee utmost reliability in case of an outage or disconnect from the Internet. This also obviates any changes to the software that generates the most recent data set as it still has the same interface to the file system as it did before updates

  8. Improving the turbine district heating installations of single-circuit nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kondurov, E. P.; Kruglikov, P. A.; Smolkin, Yu. V.

    2015-10-01

    Ways for improving the turbine district heating installations of single-circuit nuclear power plants are considered as a possible approach to improving the nuclear power plant energy efficiency. The results of thermal tests carried out at one of single-circuit NPPs in Russia with a view to reveal the possibilities of improving the existing heat-transfer equipment of the turbine district heating installation without making significant investments in it were taken as a basis for the analysis. The tests have shown that there is certain energy saving potential in some individual units and elements in the turbine district heating installation's process circuit. A significant amount of thermal energy can be obtained only by decreasing the intermediate circuit temperature at the inlet to the heater of the first district-heating extraction. The taking of this measure will also lead to an additional amount of generated electricity because during operation with the partially loaded first heater, the necessary amount of heat has to be obtained from the peaking heater by reducing live steam. An additional amount of thermal energy can also be obtained by eliminating leaks through the bypass control valves. The possibility of achieving smaller consumption of electric energy for power plant auxiliaries by taking measures on reducing the available head in the intermediate circuit installation's pump unit is demonstrated. Partial cutting of pump impellers and dismantling of control valves are regarded to be the most efficient methods. The latter is attributed to qualitative control of the turbine district heating installation's thermal load. Adjustment of the noncondensable gas removal system will make it possible to improve the performance of the turbine district heating installation's heat-transfer equipment owing to bringing the heat-transfer coefficients in the heaters to the design level. The obtained results can be used for estimating the energy saving potential at other

  9. Improvement of oral availability of ginseng fruit saponins by a proliposome delivery system containing sodium deoxycholate

    PubMed Central

    Hao, Fei; He, Yanxi; Sun, Yating; Zheng, Bin; Liu, Yan; Wang, Xinmei; Zhang, Yongkai; Lee, Robert J.; Teng, Lirong; Xie, Jing

    2015-01-01

    Ginseng fruit saponins (GFS) extracted from the ginseng fruit are the bioactive triterpenoid saponin components. The aim of the present study was to develop a drug delivery system called proliposome using sodium deoxycholate (NaDC) as a bile salt to improve the oral bioavailability of GFS in rats. The liposomes of GFS were prepared by a conventional ethanol injection and formed the solid proliposomes (P-GFS) using spray drying method on mannitol carriers. The formulation of P-GFS was optimized using the response surface methodology. The physicochemical properties of liposome suspensions including encapsulation efficiency, in vitro drug release studies, particle size of the reconstituted liposome were tested. The solid state characterization studies using the method of Field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) and Differential scanning colorimetric (DSC) were tested to study the molecular state of P-GFS and to indicate the interactions among the formulation ingredients. In vitro studies showed a delayed release of ginsenoside Re (GRe). In vivo studies were carried out in rats. The concentrations of GRe in plasma of rats and its pharmacokinetic behaviors after oral administration of GFS, Zhenyuan tablets (commercial dosage form of GFS) and P-GFS were studied using ultra performance liquid chromatography tandem mass spectrometry. It was founded that the GRe concentration time curves of GFS, Zhenyuan tablets and P-GFS were much more different in rats. Pharmacokinetic behaviors of P-GFS showed a second absorption peak on the concentration time curve. The pharmacokinetic parameters of GFS, Zhenyuan tablets, P-GFS in rats were separately listed as follows: T max 0.25 h, C max 474.96 ± 66.06 ng/ml and AUC0−∞ 733.32 ± 113.82 ng/ml h for GFS; T max 0.31 ± 0.043 h, C max 533.94 ± 106.54 ng/ml and AUC0−∞ 1151.38 ± 198.29 ng/ml h for Zhenyuan tablets; T max 0.5 h, C max 680.62 ± 138.051 ng/ml and

  10. AN INDEX OF THE AVAILABLE MEDICINAL PLANTS, USED IN INDIAN SYSTEM OF MEDICINE FROM JAMMU AND KASHMIR STATE

    PubMed Central

    Srivastava, T. N.; Rajasekharan, S.; Badola, D. P.; Shah, D. C.

    1986-01-01

    The medicinal plants used in Indian system of medicine and its distribution in Jammu and Kashmir has been categorized systematically here. The paper deals with 246 medicinal plants and has to off-set an index which is not there so far. Out of 246 medicinal plants 12 plants are considered to be controversial. Substitutes, Adulterants of these plants which are being used in various parts of India were also recorded separately in this study. PMID:22557549

  11. Texas plant retrofit improves throughput, C{sub 2} recovery

    SciTech Connect

    Lynch, J.T.; Pitman, R.N.

    1996-06-03

    GPM Gas Co.`s Goldsmith (Ector Co., Tex.) plant was recently converted from a nominal 90% ethane recovery and 86 MMscfd design capacity two-stage expansion process to a 95% ethane recovery and 135 MMscfd capacity. The project used the Gas Subcooled Process (GSP) design of Ortloff Engineers Ltd., Midland, Tex. The conversion required modification of existing expanders and chillers and addition of a plate-fin exchanger, an absorber column, and a set of pumps. Time from project approval through start-up was 5 months. NGL production was interrupted for 10 days while the plant was down for tie-ins and checkout. Plant throughput was compression-limited to operation at 130 MMscfd through late 1995. Compression to allow throughput of greater than 130 MMscfd was operational in late 1995. The demethanizer column and six of nine heat exchangers were reused in the Ortloff process retrofit. The demethanizer internals were changed out in 1995 in anticipation of higher throughput with the new compression. The two expanders were modified for parallel expander and booster compressor operation. Expander replacement was unnecessary. Similar retrofits of other GPM plants using GSP are currently under study.

  12. Using plant canopy temperature to improve irrigated crop management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remotely sensed plant canopy temperature has long been recognized as having potential as a tool for irrigation management. However, a number of barriers have prevented its routine use in practice, such as the spatial and temporal resolution of remote sensing platforms, limitations in computing capac...

  13. DOD Service Acquisition: Improved Use of Available Data Needed to Better Manage and Forecast Service Contract Requirements

    DTIC Science & Technology

    2016-02-01

    Definitions Object Class Code Description 25.1 Advisory and assistance services 25.2 Other services from non-federal sources 25.3 Other federal...DOD SERVICE ACQUISITION Improved Use of Available Data Needed to Better Manage and Forecast Service Contract...Government Accountability Office Highlights of GAO-16-119, a report to congressional committees February 2016 DOD SERVICE ACQUISITION Improved

  14. Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants.

    PubMed

    Yang, Wen-Tao; Gu, Jiao-Feng; Zou, Jia-Ling; Zhou, Hang; Zeng, Qing-Ru; Liao, Bo-Han

    2016-10-01

    The objective of the present study was to investigate the effects of rapeseed dregs (RSD, a commonly organic fertilizer in rural China) at application rates of 0, 0.75, 1.5, and 3.0 % on Cd availability in soil and its accumulation in rice plants (Oryza sativa L., Xiangwanxian 12(#), and Weiyou 46(#)) by means of a pot experiment. The results showed that application of RSD resulted in a sharp decrease in the soil TCLP-extractable Cd content. However, the soil TCLP-extractable Cd content in amended soil gradually increased during the rice growing period. Application of RSD significantly increased Cd transport from root to shoot and the amount of Cd accumulated in the aerial part. RSD was an effective organic additive for increasing rice grain yield, but total Cd content in rice grain was also increased. At an application rate of 1.5-3.0 % RSD, the total Cd content in Weiyou 46(#) brown rice was 0.27-0.31 mg kg(-1), which exceeded the standard safe limit (0.2 mg kg(-1)) and was also higher than that of Xiangwanxian 12(#) (0.04-0.14 mg kg(-1)). Therefore, Weiyou 46(#) had a higher dietary risk than Xiangwanxian 12(#) with RSD application. We do not recommend planting Weiyou 46(#) and applying more than 0.75 % RSD in Cd-contaminated paddy fields.

  15. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

    PubMed

    Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J

    2011-02-01

    Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.

  16. Effects of sewage sludge on pH and plant availability of metals in oxidising sulphide mine tailings.

    PubMed

    Forsberg, Lovisa Stjernman; Ledin, Stig

    2006-04-01

    A field study was conducted adjacent to the tailings deposit of the Aitik copper mine in the north of Sweden to investigate the effects of sewage sludge on pH and plant availability of Al, Mn, Cu, Zn, Ni, Pb, As, Cr and Cd in the oxidising sulphide tailings. One treatment was supplied with sewage sludge, while the control received NPK-fertiliser. The tailings samples were collected at the beginning and the end of the growing season and extracted by NH(4)NO(3), NH(4)Ac-EDTA and HNO(3). Plant tissue concentrations of the elements were determined in the above-ground parts of barley (Hordeum vulgare) and red fescue (Festuca rubra). The application of sewage sludge resulted in higher crop yields compared to the control, although the buffering capacity and the metal immobilising effect of the sludge were limited. The pH decreased from 6.6 to 4.3 in the control and from 6.4 to 4.8 in the sludge-treated tailings during the growing season, probably due to sulphide oxidation in the tailings. This resulted in increased levels of soluble elements in all treatments studied. Application of sewage sludge resulted in elevated levels of soluble Zn and lower values of soluble As and Cd in the unaltered tailings but increased levels of specifically adsorbed Cu, Ni and As in the oxidised tailings. This was partly reflected in the plants, as the application of sewage sludge resulted in 67 mg Zn kg(-1) in barley grains and 60 mg Zn kg(-1) in red fescue shoots, both values twice as high as the corresponding values in the control, but lower As contents in both straw (0.3 mg kg(-1)) and grain (0.06 mg kg(-1)) of barley compared to the control (0.6 and 0.2 mg kg(-1), respectively). In addition, red fescue grown in sludge-treated plots contained significantly higher levels of Al, Cu, Pb, As and Cr compared to the control. The levels of several metals in barley and red fescue grown in both treatments exceeded background values found in the literature. The Cu content in barley straw exceeded

  17. Effects of Sediment Nitrogen Availability and Plant Density on Interactions Between the Growth of Hydrilla Verticillata and Potamogeton Americanus. Aquatic Plant Control Research Program.

    DTIC Science & Technology

    1991-12-01

    fractions. Suppression coefficients for each species were calculated to summarize competitive effects in mixtures relative to grow*.h of plants alone...11 4 Discussion Responses to Density A long-standing criticism of plant competition experiments has been the use of a single initial plant density... competitive superiority may be more sensitive than others to initial plant density (for review, see Rousch et al. 1989). However, initial plant density

  18. Mathematical modeling and fuzzy availability analysis for serial processes in the crystallization system of a sugar plant

    NASA Astrophysics Data System (ADS)

    Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram

    2016-08-01

    The binary states, i.e., success or failed state assumptions used in conventional reliability are inappropriate for reliability analysis of complex industrial systems due to lack of sufficient probabilistic information. For large complex systems, the uncertainty of each individual parameter enhances the uncertainty of the system reliability. In this paper, the concept of fuzzy reliability has been used for reliability analysis of the system, and the effect of coverage factor, failure and repair rates of subsystems on fuzzy availability for fault-tolerant crystallization system of sugar plant is analyzed. Mathematical modeling of the system is carried out using the mnemonic rule to derive Chapman-Kolmogorov differential equations. These governing differential equations are solved with Runge-Kutta fourth-order method.

  19. Generic requirements specification for qualifying a commercially available PLC for safety-related applications in nuclear power plants. Final report

    SciTech Connect

    Ostenso, A.; May, R.

    1996-12-01

    This is a specification for qualifying a commercially available PLC for application to safety systems in nuclear power plants. The specifications are suitable for evaluating a particular PLC product line as a platform for safety-related applications, establishing a suitable qualification test program, and confirming that the manufacturer has a quality assurance program that is adequate for safety-related applications or is sufficiently complete that, with a reasonable set of compensatory actions, it can be brought into conformance. The specification includes requirements for: (1) quality assurance measures applied to the qualification activities, (2) documentation to support the qualification, and (3) documentation to provide the information needed for applying the qualified PLC platform to a specific application. The specifications are designed to encompass a broad range of safety applications; however, qualifying a particular platform for a different range of applications can be accomplished by appropriate adjustments to the requirements.

  20. Genetic improvement of plants for enhanced bio-ethanol production.

    PubMed

    Saha, Sanghamitra; Ramachandran, Srinivasan

    2013-04-01

    The present world energy situation urgently requires exploring and developing alternate, sustainable sources for fuel. Biofuels have proven to be an effective energy source but more needs to be produced to meet energy goals. Whereas first generation biofuels derived from mainly corn and sugarcane continue to be used and produced, the contentious debate between "feedstock versus foodstock" continues. The need for sources that can be grown under different environmental conditions has led to exploring newer sources. Lignocellulosic biomass is an attractive source for production of biofuel, but pretreatment costs to remove lignin are high and the process is time consuming. Genetically modified plants that have increased sugar or starch content, modified lignin content, or produce cellulose degrading enzymes are some options that are being explored and tested. This review focuses on current research on increasing production of biofuels by genetic engineering of plants to have desirable characteristics. Recent patents that have been filed in this area are also discussed.

  1. An improved quantitative analysis method for plant cortical microtubules.

    PubMed

    Lu, Yi; Huang, Chenyang; Wang, Jia; Shang, Peng

    2014-01-01

    The arrangement of plant cortical microtubules can reflect the physiological state of cells. However, little attention has been paid to the image quantitative analysis of plant cortical microtubules so far. In this paper, Bidimensional Empirical Mode Decomposition (BEMD) algorithm was applied in the image preprocessing of the original microtubule image. And then Intrinsic Mode Function 1 (IMF1) image obtained by decomposition was selected to do the texture analysis based on Grey-Level Cooccurrence Matrix (GLCM) algorithm. Meanwhile, in order to further verify its reliability, the proposed texture analysis method was utilized to distinguish different images of Arabidopsis microtubules. The results showed that the effect of BEMD algorithm on edge preserving accompanied with noise reduction was positive, and the geometrical characteristic of the texture was obvious. Four texture parameters extracted by GLCM perfectly reflected the different arrangements between the two images of cortical microtubules. In summary, the results indicate that this method is feasible and effective for the image quantitative analysis of plant cortical microtubules. It not only provides a new quantitative approach for the comprehensive study of the role played by microtubules in cell life activities but also supplies references for other similar studies.

  2. 76 FR 37769 - Bayer CropScience LP; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... Produced Through Genetic Engineering Which Are Plant Pests or Which There Is Reason to Believe Are Plant... into the environment) of organisms and products altered or produced through genetic engineering...

  3. Are fire, soil fertility and toxicity, water availability, plant functional diversity, and litter decomposition related in a Neotropical savanna?

    PubMed

    Carvalho, Gustavo Henrique; Batalha, Marco Antônio; Silva, Igor Aurélio; Cianciaruso, Marcus Vinicius; Petchey, Owen L

    2014-07-01

    Understanding how biodiversity and ecosystem functioning respond to changes in the environment is fundamental to the maintenance of ecosystem function. In realistic scenarios, the biodiversity-ecosystem functioning path may account for only a small share of all factors determining ecosystem function. Here, we investigated the strength to which variations in environmental characteristics in a Neotropical savanna affected functional diversity and decomposition. We sought an integrative approach, testing a number of pairwise hypotheses about how the environment, biodiversity, and functioning were linked. We used structural equation modelling to connect fire frequency, soil fertility, exchangeable Al, water availability, functional diversity of woody plants, tree density, tree height, and litter decomposition rates in a causal chain. We found significant effects of soil nutrients, water availability, and Al on functional diversity and litter decomposition. Fire did not have a significant direct effect on functional diversity or litter decomposition. However, fire was connected to both variables through soil fertility. Functional diversity did not influence rates of litter decomposition. The mediated effects that emerged from pairwise interactions are encouraging not only for predicting the functional consequences of changes in environmental variables and biodiversity, but also to caution against predictions based on only environmental or only biodiversity change.

  4. Vermicomposting of herbal pharmaceutical industry waste: earthworm growth, plant-available nutrient and microbial quality of end materials.

    PubMed

    Singh, Deepika; Suthar, Surindra

    2012-05-01

    Efforts were made to decompose herbal pharmaceutical industrial waste (HPIW) spiked with cow dung (CD) using Eisenia fetida. A total of five vermibeds: T(1) - HPIW (0%+CD 100%, control), T(2) - HPIW (25%), T(3) - HPIW (50%), T(4) - HPIW (75%) and T(5) - HPIW (100%) were used for vermicomposting. The changes in biology and chemistry of vermibeds were measured after ten days interval. E. fetida showed high growth and cocoon production rate in all vermibeds. The vermicomposted material contained great population of fungi 6.0-40.6 (CFU × 10(5)g(-1)), bacteria 220-1276.0 (CFU × 10(8)g(-1)) and actinomycetes 410.0-2962.0 (CFU × 10(5)g(-1)) than initial material. Vermicomposted material was rich in plant-available forms of nutrients (N-NO(3)(-),PO(4)(3-),available K and SO(4)(-2)). Results suggested that noxious industrial waste can be converted into valuable product for sustainable soil fertility programme.

  5. Forward genetic screening for the improved production of fermentable sugars from plant biomass.

    PubMed

    Stamatiou, George; Vidaurre, Danielle P; Shim, Isaac; Tang, Xurong; Moeder, Wolfgang; Bonetta, Dario; McCourt, Peter

    2013-01-01

    With their unique metabolism and the potential to produce large amounts of biomass, plants are an excellent bio-energy feedstock for a variety of industrial purposes. Here we developed a high-throughput strategy, using the model plant Arabidopsis thaliana, to identify mutants with improved sugar release from plant biomass. Molecular analysis indicates a variety of processes including starch degradation, cell wall composition and polar transport of the plant hormone auxin can contribute to this improved saccharification. To demonstrate translatability, polar auxin transport in maize was either genetically or chemical inhibited and this also resulted in increased sugar release from plant tissues. Our forward genetic approach using Arabidopsis not only uncovers new functions that contribute to cell wall integrity but also demonstrates that information gleaned from this genetic model can be directly translated to monocotyledonous crops such as maize to improve sugar extractability from biomass.

  6. Limited mate availability decreases reproductive success of fragmented populations of Linnaea borealis, a rare, clonal self-incompatible plant

    PubMed Central

    Scobie, A. R.; Wilcock, C. C.

    2009-01-01

    Background and Aims Small populations of rare plant species are increasingly reported to have high levels of reproductive failure. The objective of this study was to understand the principal constraints on sexual reproduction in small fragmented populations of a rare clonal self-incompatible plant. Methods The pollinator spectrum, diversity of flower colour, natural pollination and fruit-set levels of L. borealis were examined in Scotland. Artificially crossed seed production was compared within and between different flower colour types and patches. Key Results Linnaea borealis was pollinated by a diverse spectrum of insect species and the principal pollinators were muscid, syrphid and empid flies which mostly moved only small distances (<0·25 m) between flowers when foraging. Natural pollination levels were high, indicating high pollinator effectiveness, but fruit set was very low in most patches. Flower colour diversity was low in most patches and only those with a diversity of flower colour types had high fruiting success. Pollination experiments showed L. borealis to be highly self-incompatible and artificial crosses within and between patches and flower colour types confirmed that low fruit success was the result of a lack of compatible mates and limited pollen movement between them. Evidence of isolation from pollen exchange was apparent at as little as 6 m and severe at 30 m and beyond. Conclusions Limited mate availability and isolation from pollen exchange compromise the reproductive success of fragmented populations of L. borealis in Scotland. A diversity of compatible mates situated within close proximity (<6 m) is the key requirement to ensure high natural fruiting success. This study emphasizes that an understanding of the breeding system, pollinator spectrum and potential for interconnectivity via pollinator movement are fundamental to identify isolation distances and to establish when conservation intervention is necessary for rare species. PMID

  7. Plant available nitrogen from anaerobically digested sludge and septic tank sludge applied to crops grown in the tropics.

    PubMed

    Sripanomtanakorn, S; Polprasert, C

    2002-04-01

    Agricultural land is an attractive alternative for the disposal of biosolids since it utilises the recyclable nutrients in the production of crops. In Thailand and other tropical regions, limited field-study information exists on the effect of biosolids management strategies on crop N utilisation and plant available N (PAN) of biosolids. A field study was conducted to quantify the PAN of the applied biosolids, and to evaluate the N uptake rates of some tropical crops. Sunflower (Helianthus annuus) and tomato (Lycopersicon esculentum) were chosen in this study. Two types of biosolids used were: anaerobically digested sludge and septic tank sludge. The soil is acid sulfate and is classified as Sulfic Tropaquepts with heavy clay in texture. The anaerobically digested sludge applied rates were: 0, 156 and 312 kg N ha(-1) for the sunflower plots, and 0, 586, and 1172 kg N ha(-1) for the tomato plots. The septic tank sludge applied rates were: 0, 95 and 190 kg N ha(-1) for the sunflower plots, and 0, 354 and 708 kg N ha(-1) for the tomato plots, respectively. The results indicated the feasibility of applying biosolids to grow tropical crops. The applications of the anaerobically digested sludge and the septic tank sludge resulted in the yields of sunflower seeds and tomato fruits and the plant N uptakes comparable or better than that applied with only the chemical fertiliser. The estimated PAN of the anaerobically digested sludge was about 27-42% of the sludge organic N during the growing season. For the septic tank sludge, the PAN was about 15-58% of the sludge organic N. It is interesting to observe that an increase of the rate of septic tank sludge incorporated into this heavy clay soil under the cropping system resulted in the decrease of N mineralisation rate. This situation could cause the reduction of yield and N uptake of crops.

  8. Plant plasma membrane proteomics for improving cold tolerance.

    PubMed

    Takahashi, Daisuke; Li, Bin; Nakayama, Takato; Kawamura, Yukio; Uemura, Matsuo

    2013-01-01

    Plants are always exposed to various stresses. We have focused on freezing stress, which causes serious problems for agricultural management. When plants suffer freeze-induced damage, the plasma membrane is thought to be the primary site of injury because of its central role in regulation of various cellular processes. Cold tolerant species, however, adapt to such freezing conditions by modifying cellular components and functions (cold acclimation). One of the most important adaptation mechanisms to freezing is alteration of plasma membrane compositions and functions. Advanced proteomic technologies have succeeded in identification of many candidates that may play roles in adaptation of the plasma membrane to freezing stress. Proteomics results suggest that adaptations of plasma membrane functions to low temperature are associated with alterations of protein compositions during cold acclimation. Some of proteins identified by proteomic approaches have been verified their functional roles in freezing tolerance mechanisms further. Thus, accumulation of proteomic results in the plasma membrane is of importance for application to molecular breeding efforts to increase cold tolerance in crops.

  9. Application of microbial inoculants promote plant growth, increased nutrient uptake and improve root morphology of corn plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing fertilizers impacts from agriculture is a world-wide concern, both from an environmental and human health perspective. One way to reduce impacts of fertilizers is by enhancing plant uptake which improves nutrient use efficiency and also potentially reduce the amounts of fertilizer needed. ...

  10. Manipulating plant geometry to improve microclimate, grain yield, and harvest index in grain sorghum

    PubMed Central

    Stewart, Bob A.; Xue, Qingwu; Chen, Yuanquan

    2017-01-01

    Cultivar selection, planting geometry, and plant population are the key factors determining grain sorghum yields in water deficit areas. The objective of this study was to investigate whether clump geometry (three plants clustered) improves microclimate within crop canopy when plants are grown under varying water levels. In a 2-yr sorghum (Sorghum bicolor L. Moench) greenhouse study, plants were grown at two geometries (clump and conventional evenly spaced planting, ESP), two water levels (high and low, representing well-watered and water-limited condition, respectively), and three soil surface treatments (lid covered, straw-mulched, and bare). Air temperature and relative humidity (RH) within the plant canopy were measured every five minutes at different growth stages. Mean vapor pressure deficits (VPDs) within the clumps were consistently lower than those for ESPs, indicating that clumps improved the microclimate. Clumps had significantly higher harvest index (HI) compared to ESPs (0.48 vs. 0.43), which was largely due to clumps having an average of 0.4 tillers per plant compared to 1.2 tillers per plant for ESPs. Grain yield in the current study was similar between clumps and ESPs. However, our results suggest that improved microclimate was likely a reason for clumps producing significantly higher grain yields compared to ESPs in previous studies. PMID:28264051

  11. Novel enabling technologies of gene isolation and plant transformation for improved crop protection

    SciTech Connect

    Torok, Tamas

    2013-02-04

    Meeting the needs of agricultural producers requires the continued development of improved transgenic crop protection products. The completed project focused on developing novel enabling technologies of gene discovery and plant transformation to facilitate the generation of such products.

  12. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    NASA Astrophysics Data System (ADS)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact

  13. Remote Sensing and Modeling for Improving Operational Aquatic Plant Management

    NASA Technical Reports Server (NTRS)

    Bubenheim, Dave

    2016-01-01

    The California Sacramento-San Joaquin River Delta is the hub for California’s water supply, conveying water from Northern to Southern California agriculture and communities while supporting important ecosystem services, agriculture, and communities in the Delta. Changes in climate, long-term drought, water quality changes, and expansion of invasive aquatic plants threatens ecosystems, impedes ecosystem restoration, and is economically, environmentally, and sociologically detrimental to the San Francisco Bay/California Delta complex. NASA Ames Research Center and the USDA-ARS partnered with the State of California and local governments to develop science-based, adaptive-management strategies for the Sacramento-San Joaquin Delta. The project combines science, operations, and economics related to integrated management scenarios for aquatic weeds to help land and waterway managers make science-informed decisions regarding management and outcomes. The team provides a comprehensive understanding of agricultural and urban land use in the Delta and the major water sheds (San Joaquin/Sacramento) supplying the Delta and interaction with drought and climate impacts on the environment, water quality, and weed growth. The team recommends conservation and modified land-use practices and aids local Delta stakeholders in developing management strategies. New remote sensing tools have been developed to enhance ability to assess conditions, inform decision support tools, and monitor management practices. Science gaps in understanding how native and invasive plants respond to altered environmental conditions are being filled and provide critical biological response parameters for Delta-SWAT simulation modeling. Operational agencies such as the California Department of Boating and Waterways provide testing and act as initial adopter of decision support tools. Methods developed by the project can become routine land and water management tools in complex river delta systems.

  14. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants.

    PubMed

    Almeida, Diego M; Oliveira, M Margarida; Saibo, Nelson J M

    2017-03-27

    Soil salinity is a major abiotic stress that results in considerable crop yield losses worldwide. However, some plant genotypes show a high tolerance to soil salinity, as they manage to maintain a high K+/Na+ ratio in the cytosol, in contrast to salt stress susceptible genotypes. Although, different plant genotypes show different salt tolerance mechanisms, they all rely on the regulation and function of K+ and Na+ transporters and H+ pumps, which generate the driving force for K+ and Na+ transport. In this review we will introduce salt stress responses in plants and summarize the current knowledge about the most important ion transporters that facilitate intra- and intercellular K+ and Na+ homeostasis in these organisms. We will describe and discuss the regulation and function of the H+-ATPases, H+-PPases, SOS1, HKTs, and NHXs, including the specific tissues where they work and their response to salt stress.

  15. Optimum combinations of visible and near-infrared reflectances for estimating the fraction of photosynthetically available radiation absorbed by plants

    NASA Technical Reports Server (NTRS)

    Podaire, Alain; Deschamps, Pierre-Yves; Frouin, R.; Asrar, Ghassem

    1991-01-01

    A useful parameter to estimate terrestrial primary productivity, that can be sensed from space, is the daily averaged fraction of Photosynthetically Available Radiation (PAR) absorbed by plants. To evaluate this parameter, investigators have relied on the fact that the relative amount of radiation reflected by a vegetated surface in the visible and near infrared depends on the fraction of the surface covered by the vegetation and therefore, correlates with absorbed PAR. They have used vegetation indices, namely normalized difference and simple ratio, to derive absorbed PAR. The problem with normalized difference and simple ratio is first, they are non linear functions of radiance or reflectance and therefore, cannot be readily applied to heterogeneous targets, second, they are used in generally nonlinear relationships, which make time integrals of the indices not proportional to primary productivity, and third, the relationships depend strongly on the type of canopy and background. To remove these limitations, linear combinations of visible and near infrared reflectances at optimum (one or two) viewing zenith angles are proposed.

  16. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants.

    PubMed

    Zeng, Fanrong; Ali, Shafaqat; Zhang, Haitao; Ouyang, Younan; Qiu, Boyin; Wu, Feibo; Zhang, Guoping

    2011-01-01

    The experiments were done to investigate the effect of soil pH and organic matter content on EDTA-extractable heavy metal contents in soils and heavy metal concentrations in rice straw and grains. EDTA-extractable Cr contents in soils and concentrations in rice tissues were negatively correlated with soil pH, but positively correlated with organic matter content. The combination of soil pH and organic matter content would produce the more precise regression models for estimation of EDTA-Cu, Pb and Zn contents in soils, demonstrating the distinct effect of the two factors on the availability of these heavy metals in soils. Soil pH greatly affected heavy metal concentrations in rice plants. Furthermore, inclusion of other soil properties in the stepwise regression analysis improved the regression models for predicting straw Fe and grain Zn concentrations, indicating that other soil properties should be taken into consideration for precise predicting of heavy metal concentrations in rice plants.

  17. Overexpression of monoubiquitin improves photosynthesis in transgenic tobacco plants following high temperature stress.

    PubMed

    Tian, Fengxia; Gong, Jiangfeng; Zhang, Jin; Feng, Yanan; Wang, Guokun; Guo, Qifang; Wang, Wei

    2014-09-01

    The ubiquitin/26S proteasome system (Ub/26S) is implicated in abiotic stress responses in plants. In this paper, transgenic tobacco plants overexpressing Ta-Ub2 from wheat were used to study the functions of Ub in the improvement of photosynthesis under high temperature (45°C) stress. We observed higher levels of Ub conjugates in transgenic plants under high temperature stress conditions compared to wild type (WT) as a result of the constitutive overexpression of Ta-Ub2, suggesting increased protein degradation by the 26S proteasome system under high temperature stress. Overexpressing Ub increased the photosynthetic rate (Pn) of transgenic tobacco plants, consistent with the improved ATPase activity in the thylakoid membrane and enhanced efficiency of PSII photochemistry. The higher D1 protein levels following high temperature stress in transgenic plants than WT were also observed. These findings imply that Ub may be involved in tolerance of photosynthesis to high temperature stress in plants. Compared with WT, the transgenic plants showed lower protein carbonylation and malondialdehyde (MDA) levels, less reactive oxygen species (ROS) accumulation, but higher antioxidant enzyme activity under high temperature stress. These findings suggest that the improved antioxidant capacity of transgenic plants may be one of the most important mechanisms underlying Ub-regulated high temperature tolerance.

  18. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  19. Adaptation of a commercially available 200 kW natural gas fuel cell power plant for operation on a hydrogen rich gas stream

    SciTech Connect

    Maston, V.A.

    1997-12-01

    International Fuel Cells (IFC) has designed a hydrogen fueled fuel cell power plant based on a modification of its standard natural gas fueled PC25{trademark} C fuel cell power plant. The natural gas fueled PC25 C is a 200 kW, fuel cell power plant that is commercially available. The program to accomplish the fuel change involved deleting the natural gas processing elements, designing a new fuel pretreatment subsystem, modifying the water and thermal management subsystem, developing a hydrogen burner to combust unconsumed hydrogen, and modifying the control system. Additionally, the required modifications to the manufacturing and assembly procedures necessary to allow the hydrogen fueled power plant to be manufactured in conjunction with the on-going production of the standard PC25 C power plants were identified. This work establishes the design and manufacturing plan for the 200 kW hydrogen fueled PC25 power plant.

  20. Aquatic plant debris improve phosphorus sorption into sediment under anoxic condition.

    PubMed

    Jin, Chong-Wei; Du, Shao-Ting; Dong, Wu-Yuan; Wang, Jue-Hua; Shen, Cheng; Zhang, Yong-Song

    2013-11-01

    The effects of plant debris on phosphorus sorption by anoxic sediment were investigated. Addition of plant debris significantly enhanced the decrease of soluble relative phosphorus (SRP) in overlying water at both 10 and 30 °C during the 30-day investigation. Both cellulose and glucose, two typical plant components, also clearly enhanced the SRP decrease in anoxic overlying water. The measurement of phosphorus (P) fractions in sediment revealed that the levels of unstable P forms were decreased by plant debris addition, whereas the opposites were true for stable P forms. However, under sterilized condition, plant debris/glucose addition has no effect on the SRP decrease in overlying water. Overall, our results suggested that plant debris improve P sorption into sediment under anoxic condition through a microorganism-mediated mechanism.

  1. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway.

    PubMed

    Shi, Haitao; Chan, Zhulong

    2014-02-01

    Polyamines (mainly putrescine (Put), spermidine (Spd), and spermine (Spm)) have been widely found in a range of physiological processes and in almost all diverse environmental stresses. In various plant species, abiotic stresses modulated the accumulation of polyamines and related gene expression. Studies using loss-of-function mutants and transgenic overexpression plants modulating polyamine metabolic pathways confirmed protective roles of polyamines during plant abiotic stress responses, and indicated the possibility to improve plant tolerance through genetic manipulation of the polyamine pathway. Additionally, putative mechanisms of polyamines involved in plant abiotic stress tolerance were thoroughly discussed and crosstalks among polyamine, abscisic acid, and nitric oxide in plant responses to abiotic stress were emphasized. Special attention was paid to the interaction between polyamine and reactive oxygen species, ion channels, amino acid and carbon metabolism, and other adaptive responses. Further studies are needed to elucidate the polyamine signaling pathway, especially polyamine-regulated downstream targets and the connections between polyamines and other stress responsive molecules.

  2. Insect stings to change gear for healthy plant: Improving maize drought tolerance by whitefly infestation.

    PubMed

    Park, Yong-Soon; Ryu, Choong-Min

    2016-05-03

    Since plants first appeared about 1.1 billion years ago, they have been faced with biotic and abiotic stresses in their environment. To overcome these stresses, plants developed defense strategies. Accumulating evidence suggests that the whitefly [Bemisia tabaci (Genn.)] affects the regulation of plant defenses and physiology. A recent study demonstrates that aboveground whitefly infestation positively modulates root biomass and anthocyanin pigmentation on brace roots of maize plants (Zea mays L.). In agreement with these observations, indole-3-acetic acid (IAA) and jasmonic acid (JA) contents and the expression of IAA- and JA-related genes are higher in whitefly-infested maize plants than in non-infected control plants. Interestingly, the fresh weight of whitefly-infested maize plants is approximately 20% higher than in non-infected control plants under water stress conditions. Further investigation has revealed that hydrogen peroxide (H2O2) accumulates in whitefly-infested maize plants after water stoppage. Taken together, these results suggest that activation of phytohormones- (i.e., IAA and JA) and H2O2-mediated maize signaling pathways triggered by aboveground whitefly infestation promotes drought resistance. They also provide an insight into how inter-kingdom interactions can improve drought tolerance in plants.

  3. A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering.

    PubMed

    Ruan, Cheng-Jiang; Shao, Hong-Bo; Teixeira da Silva, Jaime A

    2012-03-01

    Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect

  4. Using remote sensing to calculate plant available nitrogen needed by crops on swine factory farm sprayfields in North Carolina

    NASA Astrophysics Data System (ADS)

    Christenson, Elizabeth; Serre, Marc

    2015-10-01

    North Carolina (NC) is the second largest producer of hogs in the United States with Duplin county, NC having the densest population of hogs in the world. In NC, liquid swine manure is generally stored in open-air lagoons and sprayed onto sprayfields with sprinkler systems to be used as fertilizer for crops. Swine factory farms, termed concentrated animal feeding operations (CAFOs), are regulated by the Department of Environment and Natural Resources (DENR) based on nutrient management plans (NMPs) having balanced plant available nitrogen (PAN). The estimated PAN in liquid manure being sprayed must be less than the estimated PAN needed crops during irrigation. Estimates for PAN needed by crops are dependent on crop and soil types. Objectives of this research were to develop a new, time-efficient method to identify PAN needed by crops on Duplin county sprayfields for years 2010-2014. Using remote sensing data instead of NMP data to identify PAN needed by crops allowed calendar year identification of which crops were grown on sprayfields instead of a five-year range of values. Although permitted data have more detailed crop information than remotely sensed data, identification of PAN needed by crops using remotely sensed data is more time efficient, internally consistent, easily publically accessible, and has the ability to identify annual changes in PAN on sprayfields. Once PAN needed by crops is known, remote sensing can be used to quantify PAN at other spatial scales, such as sub-watershed levels, and can be used to inform targeted water quality monitoring of swine CAFOs.

  5. Performance improvements resulting from implementation of an ISO 14001 environmental management system at a utility plant

    SciTech Connect

    Borofka, B.P.

    1999-07-01

    Wisconsin Electric Power Company (WE) has realized both internal performance improvements and received external recognition for its efforts in implementing an environmental management system (EMS) at its Presque Isle Power Plant in Marquette, Michigan. Located on the shores of Lake Superior and surrounded by water on three sides, the plant was acquired by WE in 1988. Operation of the plant was under contract with the previous owner, utilizing the existing plant staff. Beginning in 1995, WE embarked on a series of environmental audits followed by numerous environmental policy and practice improvements, coupled with an extensive training program. The activities eventually resulted in the core components of a formal environmental management system (EMS) modeled on ISO 14001. Implementation of the EMS components has resulted in the continued improvement of specific environmental performance parameters, several of which are part of an overall balanced business scorecard. The balanced business scorecard, a corporate performance metric, is directly linked to individual employee compensation. Specific improvements at the Presque Isle Power Plant include, (1) reduced number of exceedances, (2) reduced generation of hazardous wastes, (3) improved collection and reduction on non-hazardous solid wastes, (4) improved employee training rates and overall awareness, (5) improved pollution prevention and waste minimization program goals, and (6) reduced assistance from external staff. The plant has received a Clean Corporate Citizen (C3) designation from the Michigan Department of Environmental Quality, has become a member of the Michigan Business Pollution Prevention Program (MBP3), and has been recognized for its efforts by the Michigan Department of Environmental Quality. The plant's activities are now used as an internal model by other facilities.

  6. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.

    PubMed

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2016-02-01

    The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency.

  7. Global Change and Response of Coastal Dune Plants to the Combined Effects of Increased Sand Accretion (Burial) and Nutrient Availability

    PubMed Central

    Frosini, Silvia; Lardicci, Claudio; Balestri, Elena

    2012-01-01

    Coastal dune plants are subjected to natural multiple stresses and vulnerable to global change. Some changes associated with global change could interact in their effects on vegetation. As vegetation plays a fundamental role in building and stabilizing dune systems, effective coastal habitat management requires a better understanding of the combined effects of such changes on plant populations. A manipulative experiment was conducted along a Mediterranean dune system to examine the individual and combined effects of increased sediment accretion (burial) and nitrogen enrichment associated with predicted global change on the performance of young clones of Sporobolus virginicus, a widespread dune stabilizing species. Increased burial severity resulted in the production of taller but thinner shoots, while nutrient enrichment stimulated rhizome production. Nutrient enrichment increased total plant biomass up to moderate burial levels (50% of plant height), but it had not effect at the highest burial level (100% of plant height). The effects of such factors on total biomass, shoot biomass and branching were influenced by spatial variation in natural factors at the scale of hundreds of metres. These results indicate that the effects of burial and nutrient enrichment on plant performance were not independent. Their combined effects may not be predicted by knowing the individual effects, at least under the study conditions. Under global change scenarios, increased nutrient input could alleviate nutrient stress in S. virginicus, enhancing clonal expansion and productivity, but this benefit could be offset by increased sand accretion levels equal or exceeding 100% of plant height. Depletion of stored reserves for emerging from sand could increase plant vulnerability to other stresses in the long-term. The results emphasize the need to incorporate statistical designs for detecting non-independent effects of multiple changes and adequate spatial replication in future works to

  8. Global change and response of coastal dune plants to the combined effects of increased sand accretion (burial) and nutrient availability.

    PubMed

    Frosini, Silvia; Lardicci, Claudio; Balestri, Elena

    2012-01-01

    Coastal dune plants are subjected to natural multiple stresses and vulnerable to global change. Some changes associated with global change could interact in their effects on vegetation. As vegetation plays a fundamental role in building and stabilizing dune systems, effective coastal habitat management requires a better understanding of the combined effects of such changes on plant populations. A manipulative experiment was conducted along a Mediterranean dune system to examine the individual and combined effects of increased sediment accretion (burial) and nitrogen enrichment associated with predicted global change on the performance of young clones of Sporobolus virginicus, a widespread dune stabilizing species. Increased burial severity resulted in the production of taller but thinner shoots, while nutrient enrichment stimulated rhizome production. Nutrient enrichment increased total plant biomass up to moderate burial levels (50% of plant height), but it had not effect at the highest burial level (100% of plant height). The effects of such factors on total biomass, shoot biomass and branching were influenced by spatial variation in natural factors at the scale of hundreds of metres. These results indicate that the effects of burial and nutrient enrichment on plant performance were not independent. Their combined effects may not be predicted by knowing the individual effects, at least under the study conditions. Under global change scenarios, increased nutrient input could alleviate nutrient stress in S. virginicus, enhancing clonal expansion and productivity, but this benefit could be offset by increased sand accretion levels equal or exceeding 100% of plant height. Depletion of stored reserves for emerging from sand could increase plant vulnerability to other stresses in the long-term. The results emphasize the need to incorporate statistical designs for detecting non-independent effects of multiple changes and adequate spatial replication in future works to

  9. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    PubMed

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-07-13

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.

  10. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements

    PubMed Central

    Nguyen, Nga T.; McInturf, Samuel A.; Mendoza-Cózatl, David G.

    2016-01-01

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements. PMID:27500800

  11. Genetic improvement of biofuel plants: recent progress and patents.

    PubMed

    Johnson, T Sudhakar; Badri, Jyothi; Sastry, R Kalpana; Shrivastava, Anshul; Kishor, P B Kavi; Sujatha, M

    2013-04-01

    Due to depleting reserves of fossil fuels, political uncertainties, increase in demand of energy needs and growing concerns of environmental effects, bioenergy as an alternative source of energy needs had taken centre stage globally. In this report, we review the progress made in lignocellulose, cellulose and fermentation based biofuels in addition to tree borne oil seeds. Algae as a source of feedstock for the biofuel has also been reviewed. Recent efforts in genome sequencing of biofuel crops and molecular breeding approaches have increased our understanding towards crop improvement of major feedstocks. Besides, patenting trends in bioenergy sector were assessed by patent landscape analysis. The results showed an increasing trend in published patents during the last decade which is maximum during 2011. A conceptual framework of "transgenesis in biofuels to industrial application" was developed based on the patent analytics viz., International Patent Classification (IPC) analysis and Theme Maps. A detailed claim analysis based on the conceptual framework assessed the patenting trends that provided an exhaustive dimension of the technology. The study emphasizes the current thrust in bioenergy sector by various public and private institutions to expedite the process of biofuel production.

  12. 77 FR 27490 - Plant-Specific Adoption, Revision 4 of the Improved Standard Technical Specifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY...: Nuclear Regulatory Commission. ACTION: Notice of Availability. SUMMARY: The U.S. Nuclear Regulatory... Specifications, Combustion Engineering Plants,'' NUREG-1433, ``Standard Technical Specifications,...

  13. Computers in engineering of plants for improved MTBF

    SciTech Connect

    Saxena, M.N.; RajKumar, M.; Vyas, M.N.

    1998-12-31

    Since the advent of the 20th Century, the popularity of Centrifugal Pumps has resulted in it cornering about 80% share of rotating equipment in the Hydrocarbon/Chemical Industry. While this indisputable niche has led to an increase in the volume of engineering, tight project schedules has greatly reduced the available time span for pump evaluation process. This paper addresses two issues: (a) Develop a pump evaluation program in spread sheet format and how its use can effectively help in increasing MTBF (Mean Time Between Failures) and (b) Evaluate the present computer technology and its application during and post engineering stage and what needs to be addressed to graduate to the next step in integrating various stages, from engineering to erection to operation and maintenance.

  14. Archimede solar energy molten salt parabolic trough demo plant: Improvements and second year of operation

    NASA Astrophysics Data System (ADS)

    Maccari, Augusto; Donnola, Sandro; Matino, Francesca; Tamano, Shiro

    2016-05-01

    Since July 2013, the first stand-alone Molten Salt Parabolic Trough (MSPT) demo plant, which was built in collaboration with Archimede Solar Energy and Chiyoda Corporation, is in operation, located adjacent to the Archimede Solar Energy (ASE) manufacturing plant in Massa Martana (Italy). During the two year's operating time frame, the management of the demo plant has shown that MSPT technology is a suitable and reliable option. Several O&M procedures and tests have been performed, as Heat Loss and Minimum Flow Test, with remarkable results confirming that this technology is ready to be extended to standard size CSP plant, if the plant design takes into account molten salt peculiarities. Additionally, the plant has been equipped on fall 2014 with a Steam Generator system by Chiyoda Corporation, in order to test even this important MSPT plant subsystem and to extend the solar field active time, overcoming the previous lack of an adequate thermal load. Here, a description of the plant improvements and the overall plant operation figures will be presented.

  15. Voltage control for a wind power plant based on the available reactive current of a DFIG and its impacts on the point of interconnection

    DOE PAGES

    Usman, Yasir; Kim, Jinho; Muljadi, Eduard; ...

    2016-01-01

    Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gainmore » of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.« less

  16. Voltage control for a wind power plant based on the available reactive current of a DFIG and its impacts on the point of interconnection

    SciTech Connect

    Usman, Yasir; Kim, Jinho; Muljadi, Eduard; Kang, Yong Cheol

    2016-01-01

    Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gain of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Furthermore, simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.

  17. Assessing the ecotoxicological effects of long-term contaminated mine soils on plants and earthworms: relevance of soil (total and available) and body concentrations.

    PubMed

    García-Gómez, Concepción; Esteban, Elvira; Sánchez-Pardo, Beatriz; Fernández, María Dolores

    2014-09-01

    The interactions and relevance of the soil (total and available) concentrations, accumulation, and acute toxicity of several essential and non-essential trace elements were investigated to determine their importance in environmental soil assessment. Three plant species (T. aestivum, R. sativum, and V. sativa) and E. fetida were simultaneously exposed for 21 days to long-term contaminated soils collected from the surroundings of an abandoned pyrite mine. The soils presented different levels of As and metals, mainly Zn and Cu, and were tested at different soil concentrations [12.5, 25, 50, and 100% of contaminated soil/soil (w/w)] to increase the range of total and available soil concentrations necessary for the study. The total concentrations in the soils (of both As and metals) were better predictors of earthworm uptake than were the available concentrations. In plants, the accumulation of metals was related to the available concentrations of Zn and Cu, which could indicate that plants and earthworms accumulate elements from different pools of soil contaminants. Moreover, Zn and Cu, which are essential elements, showed controlled uptake at low concentrations. The external metal concentrations predicted earthworm mortality, whereas in plants, the effects on growth were correlated to the As and metal contents in the plants. In general, the bioaccumulation factors were lower at higher exposure levels, which implies the existence of auto-regulation in the uptake of both essential and non-essential elements by plants and earthworms.

  18. Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system

    NASA Astrophysics Data System (ADS)

    de Melo Carvalho, M. T.; de Holanda Nunes Maia, A.; Madari, B. E.; Bastiaans, L.; van Oort, P. A. J.; Heinemann, A. B.; Soler da Silva, M. A.; Petter, F. A.; Marimon, B. H., Jr.; Meinke, H.

    2014-09-01

    The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 Mg ha-1) on the water retention capacity (WRC) of a sandy loam Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g-1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields 2 and 3 years after its application. Undisturbed soil samples were collected from 16 plots in two soil layers (5-10 and 15-20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant-available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each Mg ha-1 biochar amendment 2 and 3 years after its application. The impact of biochar on soil WRC was most likely related to an effect in overall porosity of the sandy loam soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5 and 1.6% for each Mg ha-1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during the critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under short-term water-limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.

  19. Impact of future climate change on wheat production in relation to plant-available water capacity in a semiaridenvironment

    NASA Astrophysics Data System (ADS)

    Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; Zuo, Heping; Yang, Yonghui

    2014-02-01

    Conceptions encompassing climate change are irreversible rise of atmospheric carbon dioxide (CO2) concentration, increased temperature, and changes in rainfall both in spatial- and temporal-scales worldwide. This will have a major impact on wheat production, particularly if crops are frequently exposed to a sequence, frequency, and intensity of specific weather events like high temperature during growth period. However, the process of wheat response to climate change is complex and compounded by interactions among atmospheric CO2 concentration, climate variables, soil, nutrition, and agronomic management. In this study, we use the Agricultural Production Systems sIMulator (APSIM)-wheat model, driven by statistically downscaled climate projections of 18 global circulation models (GCMs) under the 2007 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 CO2 emission scenario to examine impact on future wheat yields across key wheat growing regions considering different soil types in New South Wales (NSW) of Australia. The response of wheat yield, yield components, and phenology vary across sites and soil types, but yield is closely related to plant available water capacity (PAWC). Results show a decreasing yield trend during the period of 2021-2040 compared to the baseline period of 1961-1990. Across different wheat-growing regions in NSW, grain yield difference in the future period (2021-2040) over the baseline (1961-1990) varies from +3.4 to -14.7 %, and in most sites, grain number is decreased, while grain size is increased in future climate. Reduction of wheat yield is mainly due to shorter growth duration, where average flowering and maturing time are advanced by an average of 11 and 12 days, respectively. In general, larger negative impacts of climate change are exhibited in those sites with higher PAWC. Current wheat cultivars with shorter growing season properties are viable in the future climate, but breading for

  20. Acupuncture enhances the synaptic dopamine availability to improve motor function in a mouse model of Parkinson's disease.

    PubMed

    Kim, Seung-Nam; Doo, Ah-Reum; Park, Ji-Yeun; Bae, Hyungjin; Chae, Younbyoung; Shim, Insop; Lee, Hyangsook; Moon, Woongjoon; Lee, Hyejung; Park, Hi-Joon

    2011-01-01

    Parkinson's disease (PD) is caused by the selective loss of dopaminergic neurons in the substantia nigra (SN) and the depletion of striatal dopamine (DA). Acupuncture, as an alternative therapy for PD, has beneficial effects in both PD patients and PD animal models, although the underlying mechanisms therein remain uncertain. The present study investigated whether acupuncture treatment affected dopamine neurotransmission in a PD mouse model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We found that acupuncture treatment at acupoint GB34 improved motor function with accompanying dopaminergic neuron protection against MPTP but did not restore striatal dopamine depletion. Instead, acupuncture treatment increased dopamine release that in turn, may lead to the enhancement of dopamine availability in the synaptic cleft. Moreover, acupuncture treatment mitigated MPTP-induced abnormal postsynaptic changes, suggesting that acupuncture treatment may increase postsynaptic dopamine neurotransmission and facilitate the normalization of basal ganglia activity. These results suggest that the acupuncture-induced enhancement of synaptic dopamine availability may play a critical role in motor function improvement against MPTP.

  1. Available nutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar technology may contribute to the recovery and recycling of plant nutrients and thus add a fertilizer value to the biochar. Total nutrient content in biochars varies greatly and is mainly dependent on feedstock elemental composition and to a lesser extent on pyrolysis conditions. Availability...

  2. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study

  3. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth.

    PubMed

    Wilson, Robert H; Alonso, Hernan; Whitney, Spencer M

    2016-03-01

    In photosynthesis Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyses the often rate limiting CO2-fixation step in the Calvin cycle. This makes Rubisco both the gatekeeper for carbon entry into the biosphere and a target for functional improvement to enhance photosynthesis and plant growth. Encumbering the catalytic performance of Rubisco is its highly conserved, complex catalytic chemistry. Accordingly, traditional efforts to enhance Rubisco catalysis using protracted "trial and error" protein engineering approaches have met with limited success. Here we demonstrate the versatility of high throughput directed (laboratory) protein evolution for improving the carboxylation properties of a non-photosynthetic Rubisco from the archaea Methanococcoides burtonii. Using chloroplast transformation in the model plant Nicotiana tabacum (tobacco) we confirm the improved forms of M. burtonii Rubisco increased photosynthesis and growth relative to tobacco controls producing wild-type M. burtonii Rubisco. Our findings indicate continued directed evolution of archaeal Rubisco offers new potential for enhancing leaf photosynthesis and plant growth.

  4. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function.

    PubMed

    Howes, Melanie-Jayne R; Houghton, Peter J

    2003-06-01

    In traditional practices of Ayurvedic and Chinese medicine, numerous plants have been used to treat cognitive disorders, including neurodegenerative diseases such as Alzheimer's disease (AD). An ethnopharmacological approach has provided leads to identifying potential new drugs from plant sources, including those for cognitive disorders. Many drugs currently available in Western medicine were originally isolated from plants, or are derived from templates of compounds isolated from plants. Some anticholinesterase (anti-ChE) alkaloids isolated from plants have been investigated for their potential in the treatment of AD, and are now in clinical use. Galantamine, isolated from several plants including Lycoris radiata Herb., which was used in traditional Chinese medicine (TCM), is licensed in the United Kingdom for the treatment of mild to moderate AD. Various other plant species have shown pharmacological activities relevant to the treatment of cognitive disorders, indicating potential for therapeutic use in disorders such as AD. This article reviews some of the plants and their active constituents that have been used in traditional Ayurvedic medicine and TCM for their reputed cognitive-enhancing or antiageing effects. Plants and their constituents with pharmacological activities that may be relevant for the treatment of cognitive disorders, including enhancement of cholinergic function in the central nervous system (CNS), anti-inflammatory and antioxidant activities, are discussed.

  5. Nitrogen and water availability to tomato plants triggers bottom-up effects on the leafminer Tuta absoluta

    PubMed Central

    Han, Peng; Lavoir, Anne-Violette; Le Bot, Jacques; Amiens-Desneux, Edwige; Desneux, Nicolas

    2014-01-01

    This study examined the effects of various levels of nitrogen inputs (optimal, insufficient and excessive) and water inputs (optimal, low drought and high drought) to tomato plants (Solanum lycopersicum) on survival and development of an invasive tomato leafminer, Tuta absoluta (Meytick) (Lepidoptera: Gelechiidae). Plant growth i.e. plant height and the number of nodes declined under insufficient or excessive nitrogen treatment. Compared to optimal N, insufficient N treatment decreased leaf N content and increased the carbon/nitrogen ratio (C/N) whereas an excess of N had no effect on both leaf N content and leaf C/N ratio. Sub-optimal nitrogen supplies, water treatments and their interactions, significantly reduced the leafminer survival rate and slowed down its development. Together with the findings from three recent companion studies, we assumed that a combination of changes in nutritional value and chemical defense could explain these observed effects. Furthermore, our findings supported both the “Plant vigor hypothesis” and the “Nitrogen limitation hypothesis”. PMID:24675796

  6. Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial decomposer C metabolism is considered a factor controlling soil C stability, a key regulator of global climate. The plant rhizosphere is now recognized as a crucial driver of soil C dynamics but specific mechanisms are unclear. Climate change could affect microbial C metabolism via impacts...

  7. 78 FR 13312 - Pioneer Hi-Bred International, Inc.; Availability of Petition, Plant Pest Risk Assessment, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-27

    ... Maize Genetically Engineered for Herbicide Tolerance and Insect Resistance AGENCY: Animal and Plant... confers resistance to certain lepidopteran pests, including European corn borer; the Cry34Ab1 and Cry35Ab1 proteins confers resistance to certain coleopteran pests, including the western corn rootworm; and the...

  8. 77 FR 41358 - Bayer CropScience LP; Availability of Petition, Plant Pest Risk Assessment, and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-13

    ... Risk Assessment, and Environmental Assessment for Determination of Nonregulated Status of Soybean... soybean designated as event FG72, which has been genetically engineered for resistance to the herbicides... on whether this genetically engineered soybean is likely to pose a plant pest risk. We are...

  9. Evaluation of thrombolytic potential of three medicinal plants available in Bangladesh, as a potent source of thrombolytic compounds

    PubMed Central

    Ramjan, Ali; Hossain, Marjan; Runa, Jannatul Ferdous; Md, Hasanuzzaman; Mahmodul, Islam

    2014-01-01

    Objective: The present study is aimed to investigate in vitro thrombolytic activity of three Bangladeshi medicinal plants Averrhoa bilimbi (Oxalidiaceae), Clerodendrum viscosum (Verbanaceae) and Drynaria quercifolia (Polypodiaceae). Materials and methods: Each the plant was extracted with methanol at room temperature and the concentrated methanolic extracts (MEF) were fractionated by the modified Kupchan partitioning method to render pet-ether soluble fraction (PESF), carbon tetrachloride soluble fraction (CTSF), chloroform soluble fraction (CSF) and aqueous soluble fraction (AQSF). To observe their thrombolytic potential, a prompt and swift method was involved where streptokinase and water were used as positive and negative control, respectively. Result: Among the three plants, AQSF and PESF of D. quercifolia with CTSF of C. viscosum exhibited highest thrombolytic activity by clot lysis of 34.38%, 34.27% and 28.64%, respectively. Among other extracts A. bilimbi, C. viscosun and D.quercifolia showed significant percentage (%) of clot lysis compared to standard streptokinase (41.05%) while the negative control water revealed 3.31 % lysis of clot. Conclusion: From our findings it is observed that all the plants revealed remarkable thrombolytic activity. Therefore, steps should be taken to observe in vivo clot dissolving potential and to isolate active component(s) of these extracts. PMID:25386407

  10. Water stress preconditioning to improve drought resistance in young apricot plants.

    PubMed

    Ruiz-Sánchez; Domingo; Torrecillas; Pérez-Pastor

    2000-07-28

    The effect of water stress preconditioning was studied in 1-year-old apricot plants (Prunus armeniaca L., cv. Búlida). Plants were submitted to different treatments, T-0 (control treatment) and T-1, drip irrigated daily; T-2 and T-3, irrigated daily at 50% and 25% of T-0, respectively; T-4 and T-5, irrigated to field capacity every 3 and 6 days, respectively. After 30 days, irrigation was withheld for 10 days, maintaining the T-0 treatment irrigated daily. After this period, the plants were re-irrigated to run-off and treated as control treatment. The stomatal closure and epinasty observed in response to water stress represented adaptive mechanisms to drought, allowing the plants to regulate water loss more effectively and prevent leaf heating. A substantial reduction in the irrigation water supplied combined with a high frequency of application (T-3 treatment) promoted plant hardening; the plants enduring drought better, due to their greater osmotic adjustment (0.77 MPa), which prevented severe plant dehydration and leaf abscission. Such a preconditioning treatment may be valuable for young apricot plants in the nursery stage in order to improve their subsequent resistance to drought. A 50% reduction in daily irrigation (T-2 treatment) did not significantly affect either gas exchange rates or leaf turgor, which suggests that water should be applied frequently if deficit irrigation is to be implemented.

  11. Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species.

    PubMed

    Amir, Hamid; Lagrange, Alexandre; Hassaïne, Nadine; Cavaloc, Yvon

    2013-10-01

    In order to improve knowledge about the role of arbuscular mycorrhizal fungi (AMF) in the tolerance to heavy metals in ultramafic soils, the present study investigated the influence of two Glomus etunicatum isolates from New Caledonian ultramafic maquis (shrubland), on nickel tolerance of a model plant species Sorghum vulgare, and of two ultramafic endemic plant species, Alphitonia neocaledonica and Cloezia artensis. In a first step, plants were grown in a greenhouse, on sand with defined concentrations of Ni, to appreciate the effects of the two isolates on the alleviation of Ni toxicity in controlled conditions. In a second step, the influence of the AMF on A. neocaledonica and C. artensis plants grown in a New Caledonian ultramafic soil rich in extractable nickel was investigated. Ni reduced mycorrhizal colonization and sporulation of the fungal isolates, but the symbionts increased plant growth and adaptation of endemic plant species to ultramafic conditions. One of the two G. etunicatum isolates showed a stronger positive effect on plant biomass and phosphorus uptake, and a greater reduction in toxicity symptoms and Ni concentration in roots and shoots. The symbionts seemed to act as a barrier to the absorption of Ni by the plant and reduced root-to-shoot Ni translocation. Results indicate the potential of selected native AMF isolates from ultramafic areas for ecological restoration of such degraded ecosystems.

  12. Available, accessible, aware, appropriate, and acceptable: a strategy to improve participation of teenagers and young adults in cancer trials.

    PubMed

    Fern, Lorna A; Lewandowski, Jennifer A; Coxon, Katy M; Whelan, Jeremy

    2014-07-01

    Under-representation of teenagers and young adults in clinical trials for cancer is acknowledged internationally and might account for the lower survival gains noted for this group. Little research has focused on strategies to increase participation of teenagers and young adults in clinical trials. We applied a conceptual framework for barriers to recruitment of under-represented populations to data for cancer clinical trials in teenagers and young adults. We did a systematic analysis of data for clinical trial enrolment in Great Britain over 6 years (2005-10), and reviewed the published work for the origins and scientific rationale of age eligibility criteria in clinical trials for cancer. Our Review revealed little scientific evidence for use of age eligibility criteria in cancer clinical trials. Participation in cancer trials fell as age increased. Between 2005 and 2010, participation rates increased for children and young people aged 0-24 years. The highest increase in participation was for teenagers aged 15-19 years, with smaller improvements in rates for 20-24 year olds. Improvements were related to five key criteria, the five As: available, accessible, aware, appropriate, and acceptable. In studies for which age eligibility criteria were appropriate for inclusion of teenagers or young adults or amended during the study period, participation rates for 15-19 year olds were similar to those for 10-14 year olds. We propose a conceptual model for a strategic approach to improve recruitment of teenagers and younger adults to clinical trials for cancer, with use of the five As, which is applicable worldwide for investigators, regulatory authorities, representatives in industry, policy makers, funders, and health-care professionals.

  13. Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    1994-01-21

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  14. HTRATE; Heat-Rate Improvement Obtained by Retubing Power-Plant Condenser Enhanced Tubes

    SciTech Connect

    Rabas, T.J.

    1990-06-01

    A utility will only retube a condenser with enhanced tubes if the incremental cost of the enhanced tubes can be offset with reduced fuel costs. The reduced fuel cost is obtained for some units because of the higher heat-transfer coefficient of enhanced tubes. They lead to improved condenser performance measured by a lower condenser pressure and therefore a more efficient power plant. However, the higher haet-transfer coefficients do not always guarantee that enhanced tubes will be more cost effective. Other issues must be considered such as the cooling-water flow reduction due to the increased pressure drop, the low-pressure turbine heat-rate variation with backpressure, and the cooling-water pump and system characteristics. These and other parameters must be considered to calculate the efficiency improvement of the power plant as commonly measured by the quantity known as the heat rate. Knowing the heat-rate improvement, the fuel cost, and the incremental increase of the enhanced tubes from the supplier, the payback time can be determined. This program calculates the heat-rate improvement that can be obtained by retubing a power plant condenser with enhanced tubes of a particular type called Korodense LPD made by Wolverine Tube, Inc. The fuel savings are easily established knowing the heat-rate improvement. All electrical utilities are potential users because a condenser is used as the heat sink for every power plant.

  15. Nitrogen availability impacts oilseed rape (Brassica napus L.) plant water status and proline production efficiency under water-limited conditions.

    PubMed

    Albert, Benjamin; Le Cahérec, Françoise; Niogret, Marie-Françoise; Faes, Pascal; Avice, Jean-Christophe; Leport, Laurent; Bouchereau, Alain

    2012-08-01

    Large amounts of nitrogen (N) fertilizers are used in the production of oilseed rape. However, as low-input methods of crop management are introduced crops will need to withstand temporary N deficiency. In temperate areas, oilseed rape will also be affected by frequent drought periods. Here we evaluated the physiological and metabolic impact of nitrate limitation on the oilseed rape response to water deprivation. Different amounts of N fertilizer were applied to plants at the vegetative stage, which were then deprived of water and rehydrated. Both water and N depletion accelerated leaf senescence and reduced leaf development. N-deprived plants exhibited less pronounced symptoms of wilting during drought, probably because leaves were smaller and stomata were partially closed. Efficiency of proline production, a major stress-induced diversion of nitrogen metabolism, was assessed at different positions along the whole plant axis and related to leaf developmental stage and water status indices. Proline accumulation, preferentially in younger leaves, accounted for 25-85% of the free amino acid pool. This was mainly due to a better capacity for proline synthesis in fully N-supplied plants whether they were subjected to drought or not, as deduced from the expression patterns of the proline metabolism BnP5CS and BnPDH genes. Although less proline accumulated in the oldest leaves, a significant amount was transported from senescing to emerging leaves. Moreover, during rehydration proline was readily recycled. Our results therefore suggest that proline plays a significant role in leaf N remobilization and in N use efficiency in oilseed rape.

  16. Trends in plant virus epidemiology: opportunities from new or improved technologies.

    PubMed

    Jones, R A C

    2014-06-24

    This review focuses on new or improved technologies currently being applied, or likely to be applied in the future, to worldwide research on plant virus epidemiology. Recent technological advances and innovations provide many opportunities to improve understanding of the way diverse types of plant virus epidemics develop and how to manage them. The review starts at the macro level by considering how recent innovations in remote sensing and precision agriculture can provide valuable information about (i) virus epidemics occurring at continental, regional or district scales (via satellites) and within individual crops (mostly via lightweight unmanned aerial vehicles), and (ii) exactly where to target control measures. It then considers recent improvements in information systems and innovations in modelling that improve (i) understanding of virus epidemics and ability to predict them, and (ii) delivery to end-users of critical advice on control measures, such as Internet-based Decision Support Systems. The review goes on to discuss how advances in analysis of spatiotemporal virus spread patterns within crops can help to enhance understanding of how virus epidemics develop and validate potentially useful virus control measures. At the micro level, the review then considers the many insights that advances in molecular epidemiology can provide about genetic variation within plant virus populations involved in epidemics, and how this variation drives what occurs at the macro level. Next, it describes how recent innovations in virus detection technologies are providing many opportunities to collect and analyse new types, and ever increasing amounts, of data about virus epidemics, and the genetic variability of the virus populations involved. Finally, the implications for plant virus epidemiology of technologies likely to be important in the future are considered. To address looming world food insecurity and threats to plant biodiversity resulting from climate change and

  17. EARLY ENTRANCE CO-PRODUCTION PLANT-DECENTRALIZED GASIFICATION COGENERATION TRANSPORTATION FUELS AND STEAM FROM AVAILABLE FEEDSTOCKS

    SciTech Connect

    Unknown

    2002-07-01

    Waste Processors Management, Inc. (WMPI), along with its subcontractors entered into a Cooperative Agreement with the US Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) to assess the techno-economic viability of building an Early Entrance Co-Production Plant (EECP) in the US to produce ultra clean Fischer-Tropsch (FT) transportation fuels with either power or steam as the major co-product. The EECP design includes recovery and gasification of low-cost coal waste (culm) from physical coal cleaning operations and will assess blends of the culm with coal or petroleum coke. The project has three phases. Phase 1 is the concept definition and engineering feasibility study to identify areas of technical, environmental and financial risk. Phase 2 is an experimental testing program designed to validate the coal waste mixture gasification performance. Phase 3 updates the original EECP design based on results from Phase 2, to prepare a preliminary engineering design package and financial plan for obtaining private funding to build a 5,000 barrel per day (BPD) coal gasification/liquefaction plant next to an existing co-generation plant in Gilberton, Schuylkill County, Pennsylvania. The current report covers the period performance from April 1, 2002 through June 30, 2002.

  18. Hybrid-Cut: An Improved Sectioning Method for Recalcitrant Plant Tissue Samples

    PubMed Central

    Fang, Su-Chiung; Lien, Yi-Chen; Yang, Ting-Ting; Ko, Swee-Suak

    2016-01-01

    Maintaining plant section integrity is essential for studying detailed anatomical structures at the cellular, tissue, or even organ level. However, some plant cells have rigid cell walls, tough fibers and crystals(calcium oxalate, silica, etc.), and high water content that often disrupt tissue integrity during plant tissue sectioning. This study establishes a simple Hybrid-Cut tissue sectioning method. This protocol modifies a paraffin-based sectioning technique and improves the integrity of tissue sections from different plants. Plant tissues were embedded in paraffin before sectioning in a cryostat at -16 °C. Sectioning under low temperature hardened the paraffin blocks, reduced tearing and scratching, and improved tissue integrity significantly. This protocol was successfully applied to calcium oxalate-rich Phalaenopsis orchid tissues as well as recalcitrant tissues such as reproductive organs and leaves of rice, maize, and wheat. In addition, the high quality of tissue sections from Hybrid-Cut could be used in combination with in situ hybridization (ISH) to provide spatial expression patterns of genes of interest. In conclusion, this protocol is particularly useful for recalcitrant plant tissue containing high crystal or silica content. Good quality tissue sections enable morphological and other biological studies. PMID:27911377

  19. Isopentenyl transferase gene (ipt) downstream transcriptionally fused with gene expression improves the growth of transgenic plants.

    PubMed

    Guo, Jian-Chun; Duan, Rui-Jun; Hu, Xin-Wen; Li, Kai-Mian; Fu, Shao-Ping

    2010-04-01

    This research reports a promising approach to increase a plant's physiological cytokinin content. This approach also enables the increase to play a role in plant growth and development by introducing the ipt gene to downstream transcriptionally fuse with other genes under the control of a CaMV35S promoter, in which the ipt gene is far from the 35S promoter. According to Kozak's ribosome screening model, expression of the ipt gene is reduced by the terminal codon of the first gene and the internal untranslated nucleotides between the fused genes. In the transgenic plants pVKH35S-GUS-ipt, pVKH35S-AOC-ipt, and pVKH35S-AtGolS2-ipt, cytokinins were increased only two to threefold, and the plants grew more vigorously than the pVKH35S-AOC or pVKH35S-AtGolS2 transgenic plants lacking the ipt gene. The vigorous growth was reflected in rapid plant growth, a longer flowering period, a greater number of flowers, more seed product, and increased chlorophyll synthesis. The AOC and AtGolS2 genes play a role in a plant's tolerance of salt or cold, respectively. When the ipt gene transcriptionally fuses with AOC or AtGolS2 in the frame of AOC-ipt and AtGolS2-ipt, slight cytokinin increases were obtained in their transgenic plants; furthermore, those increases played a positive role in improvements of plant growth. Notably, an increased cytokinin volume at the physiological level, in concert with AtGolS2 expression, enhances a plant's tolerance to cold.

  20. Natural plant colonization improves the physical condition of bauxite residue over time.

    PubMed

    Zhu, Feng; Li, Xiaofei; Xue, Shengguo; Hartley, William; Wu, Chuan; Han, Fusong

    2016-11-01

    Freshly stacked bauxite residue in Central China has little vegetative growth probably as a result of its poor physical condition and chemical properties which deter plant establishment. Over the last 20 years, spontaneous plant colonization on the deposits has revealed that natural weathering processes may improve bauxite residue to the extent that it can support vegetation. Bauxite residue samples were collected from a chronosequence and analyzed to determine the effect of natural processes over time. The freshly stacked residue showed considerable physical degradation, having a high bulk density, low porosity, and poor aggregate stability. Through natural processes over a 20-year period, the texture changed from a silty loam to a sandy loam, porosity was enhanced (43.88 to 58.24 %), while improvements in both aggregate stability (43.32 to 93.20 %) and structural stability (1.33 to 5.46 %) of the stacked residue were observed. Plant growth had a positive effect on pH, exchangeable sodium percentage, soil organic carbon, water-stable aggregation, and structural stability, probably due to the presence of plant roots and associated microbial activity. It was concluded that natural processes of regeneration, stabilization, and attenuation have improved the hostile physical environment of bauxite residue allowing plant establishment to take place.

  1. Application of plant growth regulators, a simple technique for improving the establishment success of plant cuttings in coastal dune restoration

    NASA Astrophysics Data System (ADS)

    Balestri, Elena; Vallerini, Flavia; Castelli, Alberto; Lardicci, Claudio

    2012-03-01

    high survival potential and greater area cover. In contrast, a pre-treatment of cuttings of S. virginicus with Kinetin would achieve more acceptable plant survival rates. This easy and low cost-effective technique may be extended to other dune plant species and applied on a large scale to improve the chance of dune restoration success.

  2. Improved Method for HPLC Analysis of Polyamines, Agmatine and Aromatic Monoamines in Plant Tissue

    PubMed Central

    Slocum, Robert D.; Flores, Hector E.; Galston, Arthur W.; Weinstein, Leonard H.

    1989-01-01

    The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucus carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues. Images Figure 4 Figure 5 PMID:11537449

  3. Exploiting plant-microbe partnerships to improve biomass production and remediation

    SciTech Connect

    Weyens, N.; van der Lelie, D.; Taghavi, S.; Newman, L.; Vangronsveld, J.

    2009-10-01

    Although many plant-associated bacteria have beneficial effects on their host, their importance during plant growth and development is still underestimated. A better understanding of their plant growth-promoting mechanisms could be exploited for sustainable growth of food and feed crops, biomass for biofuel production and feedstocks for industrial processes. Such plant growth-promoting mechanisms might facilitate higher production of energy crops in a more sustainable manner, even on marginal land, and thus contribute to avoiding conflicts between food and energy production. Furthermore, because many bacteria show a natural capacity to cope with contaminants, they could be exploited to improve the efficiency of phytoremediation or to protect the food chain by reducing levels of agrochemicals in food crops.

  4. Improved method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissue

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Flores, H. E.; Galston, A. W.; Weinstein, L. H.

    1989-01-01

    The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucas carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues.

  5. Plant cell wall engineering: applications in biofuel production and improved human health.

    PubMed

    Burton, Rachel A; Fincher, Geoffrey B

    2014-04-01

    Plant cell walls consist largely of cellulose, non-cellulosic polysaccharides and lignin. Concerted attempts are underway to convert wall polysaccharides from crop plant residues into renewable transport fuels and other valuable products, and to exploit the dietary benefits of cereal grain wall polysaccharides in human health. Attempts to improve plant performance for these applications have involved the manipulation of the levels and structures of wall components. Some successes in altering non-cellulosic polysaccharides has been achieved, but it would appear that drastic changes in cellulose are more difficult to engineer. Nevertheless, future prospects for both genetically modified (GM) and non-GM technologies to modify plant cell wall composition and structure remain bright, and will undoubtedly find applications beyond the current focus on human health and biofuel production.

  6. Value impact assessment: A preliminary assessment of improvement opportunities at the Quantico Central Heating Plant

    SciTech Connect

    Brambley, M.R.; Weakley, S.A.

    1990-09-01

    This report presents the results of a preliminary assessment of opportunities for improvement at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This study is part of a program intended to provide the CHP staff with a computerized Artificial Intelligence (AI) decision support system that will assist in a more efficient, reliable, and safe operation of their plant. As part of the effort to provide the AI decision support system, a team of six scientists and engineers from the Pacific Northwest Laboratory (PNL) visited the plant to characterize the conditions and environment of the CHP. This assessment resulted in a list of potential performance improvement opportunities at the CHP. In this report, 12 of these opportunities are discussed and qualitatively analyzed. 70 refs., 7 figs., 6 tabs.

  7. Enhanced IGCC regulatory control and coordinated plant-wide control strategies for improving power ramp rates

    SciTech Connect

    Mahapatra, P.; Zitney, S.

    2012-01-01

    As part of ongoing R&D activities at the National Energy Technology Laboratory’s (NETL) Advanced Virtual Energy Simulation Training & Research (AVESTAR™) Center, this paper highlights strategies for enhancing low-level regulatory control and system-wide coordinated control strategies implemented in a high-fidelity dynamic simulator for an Integrated Gasification Combined Cycle (IGCC) power plant with carbon capture. The underlying IGCC plant dynamic model contains 20 major process areas, each of which is tightly integrated with the rest of the power plant, making individual functionally-independent processes prone to routine disturbances. Single-loop feedback control although adequate to meet the primary control objective for most processes, does not take into account in advance the effect of these disturbances, making the entire power plant undergo large offshoots and/or oscillations before the feedback action has an opportunity to impact control performance. In this paper, controller enhancements ranging from retuning feedback control loops, multiplicative feed-forward control and other control techniques such as split-range control, feedback trim and dynamic compensation, applicable on various subsections of the integrated IGCC plant, have been highlighted and improvements in control responses have been given. Compared to using classical feedback-based control structure, the enhanced IGCC regulatory control architecture reduces plant settling time and peak offshoots, achieves faster disturbance rejection, and promotes higher power ramp-rates. In addition, improvements in IGCC coordinated plant-wide control strategies for “Gasifier-Lead”, “GT-Lead” and “Plantwide” operation modes have been proposed and their responses compared. The paper is concluded with a brief discussion on the potential IGCC controller improvements resulting from using advanced process control, including model predictive control (MPC), as a supervisory control layer.

  8. The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem.

    PubMed

    Blue, Jarrod D; Souza, Lara; Classen, Aimée T; Schweitzer, Jennifer A; Sanders, Nathan J

    2011-11-01

    Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth. Overall, we found a significant effect of reduced soil N availability on aboveground biomass and belowground plant biomass production. Specifically, responses of aboveground and belowground community biomass to nutrients were driven by reductions in soil N, but not additions, indicating that soil N may not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient manipulations and insect removals suggest strong bottom-up influences on total plant community productivity but more subtle effects of insect herbivores on aspects of aboveground and belowground production.

  9. Consumption and biochemical impact of commercially available plant-derived nutritional supplements. An observational pilot-study on recreational athletes

    PubMed Central

    2012-01-01

    Background A growing consumption of natural (plant-derived) dietary supplements with ergogenic aims, with particular regard for ecdysteroids, phytoestrogens and vegetal sterols, has been registered over the last years among “recreational” athletes. The present study was carried out in order to evaluate the real knowledge of plant-derived nutritional supplements among physically active people as well as their real consumption. Additional aim was to evaluate the effects of these supplements on the health profile of the users. Methods Twenty-three trained subjects who habitually used natural dietary supplements, and 30 matched controls were analyzed for plasma biochemical markers and hormonal profile. Results The laboratory tests revealed the absence of any sign of organ toxicity/damage in both athletes and controls. On the contrary, hormone profiles revealed marked alterations in 15 (65%) out of the 23 of investigated athletes. Specifically, 10 males presented increased plasma levels of progesterone, 15 subjects presented abnormal estrogen levels, including 5 (2 F and 3 M) presenting a “dramatic” increased estrogen values and 2 two males with increased estrogen levels, increased testosterone levels and associated suppression of luteinizing hormone and follicle-stimulating hormone. Conclusions The results of the present study highlighted that the habitual consumption of plant-derived nutritional supplements is frequently associated with significant hormonal alterations both in male and female subjects. Although these biochemical alterations were not associated with signs or symptoms of organ toxicity/damage at the moment of the study, it cannot be excluded that, in the mid/long-term, these subjects would suffer of health problems secondary to chronic exposure to heavily altered hormonal levels. Further large scale studies are needed to confirm the results of this pilot study as well as to investigate the biological mechanisms at the base of the observed

  10. Clean Air Act Settlement Reduces Air Emissions and Improves Chemical Safety at Rhode Island Biodiesel Plant

    EPA Pesticide Factsheets

    The U.S. EPA & U.S. Department of Justice have settled an environmental enforcement case with Newport Biodiesel, Inc., resulting in reduced air emissions and improved safety controls at the company’s biodiesel manufacturing plant in Newport, Rhode Island.

  11. Giprokoks proposals for improvement in air quality at coke battery 1A of Radlin coke plant

    SciTech Connect

    T.F. Trembach; A.G. Klimenko

    2009-07-15

    Coke battery 1A, which uses rammed batch, has gone into production at Radlin coke plant (Poland), on the basis of Giprokoks designs. Up-to-date dust-trapping methods are used for the first time within the aspiration systems in the coal-preparation shop and in improving dust collection within the production buildings.

  12. Amending metal contaminated mine soil with biochars to sequester metals and improve plant growth cover

    EPA Science Inventory

    There are numerous mine spoil sites in the U.S. Pacific Northwest that contain highly acidic, heavy metal-laden soils, which limits establishment of a soil-stabilizing plant cover. Biochars may be a suitable soil amendment to reduce toxic metals, improve soil fertility, soil wa...

  13. Practical aspects of running DOE for improving growth media for in vitro plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments using DOE software to improve plant tissue culture growth medium are complicated and require complex setups. Once the experimental design is set and the treatment points calculated, media sheets and mixing charts must be developed. Since these experiments require three passages on the sa...

  14. Coal flow aids reduce coke plant operating costs and improve production rates

    SciTech Connect

    Bedard, R.A.; Bradacs, D.J.; Kluck, R.W.; Roe, D.C.; Ventresca, B.P.

    2005-06-01

    Chemical coal flow aids can provide many benefits to coke plants, including improved production rates, reduced maintenance and lower cleaning costs. This article discusses the mechanisms by which coal flow aids function and analyzes several successful case histories. 2 refs., 10 figs., 1 tab.

  15. An improved, low-cost, hydroponic system for growing Arabidopsis and other plant species under aseptic conditions

    PubMed Central

    2014-01-01

    Background Hydroponics is a plant growth system that provides a more precise control of growth media composition. Several hydroponic systems have been reported for Arabidopsis and other model plants. The ease of system set up, cost of the growth system and flexibility to characterize and harvest plant material are features continually improved in new hydroponic system reported. Results We developed a hydroponic culture system for Arabidopsis and other model plants. This low cost, proficient, and novel system is based on recyclable and sterilizable plastic containers, which are readily available from local suppliers. Our system allows a large-scale manipulation of seedlings. It adapts to different growing treatments and has an extended growth window until adult plants are established. The novel seed-holder also facilitates the transfer and harvest of seedlings. Here we report the use of our hydroponic system to analyze transcriptomic responses of Arabidopsis to nutriment availability and plant/pathogen interactions. Conclusions The efficiency and functionality of our proposed hydroponic system is demonstrated in nutrient deficiency and pathogenesis experiments. Hydroponically grown Arabidopsis seedlings under long-time inorganic phosphate (Pi) deficiency showed typical changes in root architecture and high expression of marker genes involved in signaling and Pi recycling. Genome-wide transcriptional analysis of gene expression of Arabidopsis roots depleted of Pi by short time periods indicates that genes related to general stress are up-regulated before those specific to Pi signaling and metabolism. Our hydroponic system also proved useful for conducting pathogenesis essays, revealing early transcriptional activation of pathogenesis-related genes. PMID:24649917

  16. Quality of information available via the internet for patients with head and neck cancer: are we improving?

    PubMed

    Best, James; Muzaffar, Jameel; Mitchell-Innes, Alistair

    2015-11-01

    This study aimed to evaluate the type, content, accessibility and quality of information available via the internet for patients with head and neck cancer. The Google search engine was used to generate lists of the first 100 websites for general head and neck cancer and the first ten for head and neck cancers by anatomical location (160 total). Websites were evaluated with the validated DISCERN and LIDA instruments, the SMOG (Simple measure of gobbledygook) readability score and against the JAMA (Journal of the American Medical Association) criteria. 40 of the 160 websites ranked by Google were suitable for analysis. Seven websites (17.5%) partially or fully achieved all four JAMA benchmarks and only one (2.5%) site achieved none. 28 (70%) included reference to quality of life factors. Correlations were identified between Google site rank and all four of our appraisal tools; LIDA (-0.966, p = 0.006), JAMA (-5.93, p = 0.028), DISCERN (-0.568, p = 0.037) and SMOG (4.678, p = 0.04). Google site rank and both government run sites (-35.38, p = 0.034) and sites run by universities or hospitals (-27.32, p = 0.016) also showed an association. Comparing our observations with those of Riordain in 2008, there has been little improvement in the quality of head and neck cancer information available online over this time. Given the variability in quality of information online, patients would benefit from being directed to reliable websites by clinicians.

  17. Biochar from sugarcane filtercake reduces soil CO2 emissions relative to raw residue and improves water retention and nutrient availability in a highly-weathered tropical soil.

    PubMed

    Eykelbosh, Angela Joy; Johnson, Mark S; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions.

  18. Biochar from Sugarcane Filtercake Reduces Soil CO2 Emissions Relative to Raw Residue and Improves Water Retention and Nutrient Availability in a Highly-Weathered Tropical Soil

    PubMed Central

    Eykelbosh, Angela Joy; Johnson, Mark S.; Santos de Queiroz, Edmar; Dalmagro, Higo José; Guimarães Couto, Eduardo

    2014-01-01

    In Brazil, the degradation of nutrient-poor Ferralsols limits productivity and drives agricultural expansion into pristine areas. However, returning agricultural residues to the soil in a stabilized form may offer opportunities for maintaining or improving soil quality, even under conditions that typically promote carbon loss. We examined the use of biochar made from filtercake (a byproduct of sugarcane processing) on the physicochemical properties of a cultivated tropical soil. Filtercake was pyrolyzed at 575°C for 3 h yielding a biochar with increased surface area and porosity compared to the raw filtercake. Filtercake biochar was primarily composed of aromatic carbon, with some residual cellulose and hemicellulose. In a three-week laboratory incubation, CO2 effluxes from a highly weathered Ferralsol soil amended with 5% biochar (dry weight, d.w.) were roughly four-fold higher than the soil-only control, but 23-fold lower than CO2 effluxes from soil amended with 5% (d.w.) raw filtercake. We also applied vinasse, a carbon-rich liquid waste from bioethanol production typically utilized as a fertilizer on sugarcane soils, to filtercake- and biochar-amended soils. Total CO2 efflux from the biochar-amended soil in response to vinasse application was only 5% of the efflux when vinasse was applied to soil amended with raw filtercake. Furthermore, mixtures of 5 or 10% biochar (d.w.) in this highly weathered tropical soil significantly increased water retention within the plant-available range and also improved nutrient availability. Accordingly, application of sugarcane filtercake as biochar, with or without vinasse application, may better satisfy soil management objectives than filtercake applied to soils in its raw form, and may help to build soil carbon stocks in sugarcane-cultivating regions. PMID:24897522

  19. 76 FR 189 - Notice of Availability of the Models for Plant-Specific Adoption of Technical Specifications Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ... Instrumentation.'' TSTF-513, Revision 3, is available in the Agencywide Documents Access and Management System... Access and Management System (ADAMS): Publicly available documents created or received at the NRC are... proposed changes and more accurately reflect the contents of the facility design bases related to...

  20. 75 FR 29588 - Notice of Availability of the Models for Plant-Specific Adoption of Technical Specifications Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... process (CLIIP), the NRC is announcing the availability of the enclosed model application (with model no...,'' by relocating the current stored diesel fuel oil and lube oil numerical volume requirements from the... publicly available documents related to this notice using the following methods: NRC's Public Document...

  1. Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions.

    PubMed

    Mengual, Carmen; Schoebitz, Mauricio; Azcón, Rosario; Roldán, Antonio

    2014-02-15

    The re-establishment of autochthonous shrub species is an essential strategy for recovering degraded soils under semiarid Mediterranean conditions. A field assay was carried out to determine the combined effects of the inoculation with native rhizobacteria (Bacillus megaterium, Enterobacter sp, Bacillus thuringiensis and Bacillus sp) and the addition of composted sugar beet (SB) residue on physicochemical soil properties and Lavandula dentata L. establishment. One year after planting, Bacillus sp. and B. megaterium + SB were the most effective treatments for increasing shoot dry biomass (by 5-fold with respect to control) and Enterobacter sp + SB was the most effective treatments for increasing dry root biomass. All the treatments evaluated significantly increased the foliar nutrient content (NPK) compared to control values (except B. thuringiensis + SB). The organic amendment had significantly increased available phosphorus content in rhizosphere soil by 29% respect to the control. Enterobacter sp combined with sugar beet residue improved total N content in soil (by 46% respect to the control) as well as microbiological and biochemical properties. The selection of the most efficient rhizobacteria strains and their combined effect with organic residue seems to be a critical point that drives the effectiveness of using these biotechnological tools for the revegetation and rehabilitation of degraded soils under semiarid conditions.

  2. Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia.

    PubMed

    Panickar, Kiran S; Jang, Saebyeol

    2013-08-01

    Cerebral ischemia is caused by an interruption of blood flow to the brain which generally leads to irreversible brain damage. Ischemic injury is associated with vascular leakage, inflammation, tissue injury, and cell death. Cellular changes associated with ischemia include impairment of metabolism, energy failure, free radical production, excitotoxicity, altered calcium homeostasis, and activation of proteases all of which affect brain functioning and also contribute to longterm disabilities including cognitive decline. Inflammation, mitochondrial dysfunction, increased oxidative/nitrosative stress, and intracellular calcium overload contribute to brain injury including cell death and brain edema. However, there is a paucity of agents that can effectively reduce cerebral damage and hence considerable attention has focused on developing newer agents with more efficacy and fewer side-effects. Polyphenols are natural compounds with variable phenolic structures and are rich in vegetables, fruits, grains, bark, roots, tea, and wine. Most polyphenols have antioxidant, anti-inflammatory, and anti-apoptotic properties and their protective effects on mitochondrial functioning, glutamate uptake, and regulating intracellular calcium levels in ischemic injury in vitro have been demonstrated. This review will assess the current status of the potential effects of polyphenols in reducing cerebral injury and improving cognitive function in ischemia in animal and human studies. In addition, the review will also examine available patents in nutrition and agriculture that relates to cerebral ischemic injury with an emphasis on plant polyphenols.

  3. Plant growth improvement mediated by nitrate capture in co-composted biochar.

    PubMed

    Kammann, Claudia I; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Joseph, Stephen; Stephen, Joseph

    2015-06-09

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars' positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BC(comp)). Conversely, addition of 2% (w/w) untreated biochar (BC(pure)) decreased the biomass to 60% of the control. Growth-promoting (BC(comp)) as well as growth-reducing (BC(pure)) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BC(comp) was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils.

  4. Plant growth improvement mediated by nitrate capture in co-composted biochar

    NASA Astrophysics Data System (ADS)

    Kammann, Claudia I.; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Stephen, Joseph

    2015-06-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils.

  5. Plant growth improvement mediated by nitrate capture in co-composted biochar

    PubMed Central

    Kammann, Claudia I.; Schmidt, Hans-Peter; Messerschmidt, Nicole; Linsel, Sebastian; Steffens, Diedrich; Müller, Christoph; Koyro, Hans-Werner; Conte, Pellegrino; Stephen, Joseph

    2015-01-01

    Soil amendment with pyrogenic carbon (biochar) is discussed as strategy to improve soil fertility to enable economic plus environmental benefits. In temperate soils, however, the use of pure biochar mostly has moderately-negative to -positive yield effects. Here we demonstrate that co-composting considerably promoted biochars’ positive effects, largely by nitrate (nutrient) capture and delivery. In a full-factorial growth study with Chenopodium quinoa, biomass yield increased up to 305% in a sandy-poor soil amended with 2% (w/w) co-composted biochar (BCcomp). Conversely, addition of 2% (w/w) untreated biochar (BCpure) decreased the biomass to 60% of the control. Growth-promoting (BCcomp) as well as growth-reducing (BCpure) effects were more pronounced at lower nutrient-supply levels. Electro-ultra filtration and sequential biochar-particle washing revealed that co-composted biochar was nutrient-enriched, particularly with the anions nitrate and phosphate. The captured nitrate in BCcomp was (1) only partly detectable with standard methods, (2) largely protected against leaching, (3) partly plant-available, and (4) did not stimulate N2O emissions. We hypothesize that surface ageing plus non-conventional ion-water bonding in micro- and nano-pores promoted nitrate capture in biochar particles. Amending (N-rich) bio-waste with biochar may enhance its agronomic value and reduce nutrient losses from bio-wastes and agricultural soils. PMID:26057083

  6. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2004-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  7. Availability of surface boron species in improved oxygen reduction activity of Pt catalysts: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Libo; Zhou, Gang

    2016-04-01

    The oxidation process of boron (B) species on the Pt(111) surface and the beneficial effects of boron oxides on the oxygen reduction activity are investigated by first-principles calculations. The single-atom B anchored on the Pt surface has a great attraction for the oxygen species in the immediate environment. With the dissociation of molecular oxygen, a series of boron oxides is formed in succession, both indicating exothermic oxidation reactions. After BO2 is formed, the subsequent O atom immediately participates in the oxygen reduction reaction. The calculated O adsorption energy is appreciably decreased as compared to Pt catalysts, and more approximate to the optimal value of the volcano plot, from which is clear that O hydrogenation kinetics is improved. The modulation mechanism is mainly based on the electron-deficient nature of stable boron oxides, which normally reduces available electronic states of surface Pt atoms that bind the O by facilitating more electron transfer. This modification strategy from the exterior opens the new way, different from the alloying, to efficient electrocatalyst design for PEMFCs.

  8. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2004-03-31

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.

  9. Lathyrus diversity: available resources with relevance to crop improvement – L. sativus and L. cicera as case studies

    PubMed Central

    Vaz Patto, M. C.; Rubiales, D.

    2014-01-01

    Background The Lathyrus genus includes 160 species, some of which have economic importance as food, fodder and ornamental crops (mainly L. sativus, L. cicera and L. odoratus, respectively) and are cultivated in >1·5 Mha worldwide. However, in spite of their well-recognized robustness and potential as a source of calories and protein for populations in drought-prone and marginal areas, cultivation is in decline and there is a high risk of genetic erosion. Scope In this review, current and past taxonomic treatments of the Lathyrus genus are assessed and its current status is examined together with future prospects for germplasm conservation, characterization and utilization. A particular emphasis is placed on the importance of diversity analysis for breeding of L. sativus and L. cicera. Conclusions Efforts for improvement of L. sativus and L. cicera should concentrate on the development of publicly available joint core collections, and on high-resolution genotyping. This will be critical for permitting decentralized phenotyping. Such a co-ordinated international effort should result in more efficient and faster breeding approaches, which are particularly needed for these neglected, underutilized Lathyrus species. PMID:24623333

  10. Making products available among community health workers: Evidence for improving community health supply chains from Ethiopia, Malawi, and Rwanda

    PubMed Central

    Chandani, Yasmin; Andersson, Sarah; Heaton, Alexis; Noel, Megan; Shieshia, Mildred; Mwirotsi, Amanda; Krudwig, Kirstin; Nsona, Humphreys; Felling, Barbara

    2014-01-01

    best when three key elements (product flow, data flow, and effective people) are deliberately included as an integral part of the system design. Although these elements may be designed differently in different settings, streamlining and synchronizing them while ensuring inclusion of all components for each element improves supply chain performance and promotes product availability at the community level. PMID:25520795

  11. Advances in plant proteomics toward improvement of crop productivity and stress resistancex

    PubMed Central

    Hu, Junjie; Rampitsch, Christof; Bykova, Natalia V.

    2015-01-01

    Abiotic and biotic stresses constrain plant growth and development negatively impacting crop production. Plants have developed stress-specific adaptations as well as simultaneous responses to a combination of various abiotic stresses with pathogen infection. The efficiency of stress-induced adaptive responses is dependent on activation of molecular signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification (PTM) of proteins primarily associated with defense mechanisms. In this review, we summarize and evaluate the contribution of proteomic studies to our understanding of stress response mechanisms in different plant organs and tissues. Advanced quantitative proteomic techniques have improved the coverage of total proteomes and sub-proteomes from small amounts of starting material, and characterized PTMs as well as protein–protein interactions at the cellular level, providing detailed information on organ- and tissue-specific regulatory mechanisms responding to a variety of individual stresses or stress combinations during plant life cycle. In particular, we address the tissue-specific signaling networks localized to various organelles that participate in stress-related physiological plasticity and adaptive mechanisms, such as photosynthetic efficiency, symbiotic nitrogen fixation, plant growth, tolerance and common responses to environmental stresses. We also provide an update on the progress of proteomics with major crop species and discuss the current challenges and limitations inherent to proteomics techniques and data interpretation for non-model organisms. Future directions in proteomics research toward crop improvement are further discussed. PMID:25926838

  12. Replace, reuse, recycle: improving the sustainable use of phosphorus by plants.

    PubMed

    Baker, Alison; Ceasar, S Antony; Palmer, Antony J; Paterson, Jaimie B; Qi, Wanjun; Muench, Stephen P; Baldwin, Stephen A

    2015-06-01

    The 'phosphorus problem' has recently received strong interest with two distinct strands of importance. The first is that too much phosphorus (P) is entering into waste water, creating a significant economic and ecological problem. Secondly, while agricultural demand for phosphate fertilizer is increasing to maintain crop yields, rock phosphate reserves are rapidly declining. Unravelling the mechanisms by which plants sense, respond to, and acquire phosphate can address both problems, allowing the development of crop plants that are more efficient at acquiring and using limited amounts of phosphate while at the same time improving the potential of plants and other photosynthetic organisms for nutrient recapture and recycling from waste water. In this review, we attempt to synthesize these important but often disparate parts of the debate in a holistic fashion, since solutions to such a complex problem require integrated and multidisciplinary approaches that address both P supply and demand. Rapid progress has been made recently in our understanding of local and systemic signalling mechanisms for phosphate, and of expression and regulation of membrane proteins that take phosphate up from the environment and transport it within the plant. We discuss the current state of understanding of such mechanisms involved in sensing and responding to phosphate stress. We also discuss approaches to improve the P-use efficiency of crop plants and future direction for sustainable use of P, including use of photosynthetic organisms for recapture of P from waste waters.

  13. Appendix A: Fuelwood availability for a ten megawatt power plant in Tupper Lake, New York, based on remotely sensed and other data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Forested land potentially available for fuelwood harvest within 30 km of Tupper Lake, N.Y. was delineated and classified as to forest using NASA aerial photography and LANDSAT imagery. Published inventory and growth data were used to estimate woody material on the available land. The information submitted to the Energy Office indicates that there is sufficient woody material to supply a 10 MW plant.

  14. Leaf δ15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability

    PubMed Central

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J.; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M.; Aranjuelo, Iker

    2015-01-01

    The natural 15N/14N isotope composition (δ15N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol−1), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency—WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol−1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions. PMID:26322051

  15. Leaf δ(15)N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability.

    PubMed

    Ariz, Idoia; Cruz, Cristina; Neves, Tomé; Irigoyen, Juan J; Garcia-Olaverri, Carmen; Nogués, Salvador; Aparicio-Tejo, Pedro M; Aranjuelo, Iker

    2015-01-01

    The natural (15)N/(14)N isotope composition (δ(15)N) of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ(15)N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L.) plants were subjected to distinct conditions of [CO2] (400 vs. 700 μmol mol(-1)), temperature (ambient vs. ambient +4°C) and water availability (fully watered vs. water deficiency-WD). As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ(15)N in leaves, stems, roots, and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP) contents detected at 700 μmol mol(-1) [CO2] and WD conditions. In summary, leaf δ(15)N provides relevant information integrating parameters which condition plant responsiveness (e.g., photosynthesis, TSP, N demand, and water transpiration) to environmental conditions.

  16. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    SciTech Connect

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  17. 75 FR 79048 - Notice of Availability of the Models for Plant-Specific Adoption of Technical Specifications Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ... available electronically at the NRC's Electronic Reading Room at http://www.nrc.gov/reading-rm/adams.html.... Kristy Bucholtz, Reactor Systems Engineer, Technical Specifications Branch, Mail Stop: O7-C2A,...

  18. 76 FR 9614 - Notice of Availability of the Proposed Models for Plant-Specific Adoption of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ..., this notice of availability (NOA) supersedes in its entirety the NOA for TSTF-423, Revision 0... responding to this NOA according to applicable NRC rules and procedures. The proposed models do not...

  19. Plant- and microbial-based mechanisms to improve the agronomic effectiveness of phosphate rock: a review.

    PubMed

    Arcand, Melissa M; Schneider, Kim D

    2006-12-01

    Deficiency in plant-available phosphorus is considered to be a major limiting factor to food production in many agricultural soils. Mineral resources are necessary to restore soil phosphorus content. In regions where conventional fertilizers are not used due to cost limitations or to mitigate adverse environmental effects, local sources of phosphate rock are being increasingly recognized for potential use as alternative phosphorus fertilizers. The main obstacle associated with using directly applied ground phosphate rock is that the phosphate released is often unable to supply sufficient plant-available phosphorus for crop uptake. Plantand microbial-based mechanisms are low-cost, appropriate technologies to enhance the solubilization and increase the agronomic effectiveness of phosphate rock. Common mechanisms of phosphate rock dissolution including proton and organic acid production will be reviewed for both plants and microorganisms. This review will also address possibilities for future research directions and applications to agriculture, as well as highlight ongoing research at the University of Guelph, Guelph, Canada.

  20. SF3M 2.0: improvement of 3D photo-reconstruction interface based on freely available software

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; James, Michael R.; Pérez, Rafael; Gómez, Jose A.

    2016-04-01

    During recent years, a number of tools based on Structure-from-Motion algorithms have been released for full image-based 3D reconstruction either freely (e.g. Bundler, PMVS2, VisualSFM, MicMac) or commercially (e.g. Agisoft PhotoScan). The SF3M interface was developed in Matlab® to use link software developments (VisualSFM, CloudCompare) and new applications to create a semi-automated workflow including reconstruction, georeferencing and point-cloud filtering, and has been tested for gully erosion assessment with terrestrial images (Castillo et al., 2015). The main aim of this work to provide an improved freely-available and easy-to-use alternative for 3D reconstruction intended for public agencies, non-profit organisations, researchers and other stakeholders interested in 3D modelling. In this communication we present SF3M 2.0, a new version of the graphical user interface. In this case, the SfM module is based on MicMac, an open-software tool (Pierrot-Deseilligny and Cléry, 2011) which provides advanced features such as camera calibration and constrained bundle adjustment using ground control points. SF3M 2.0 will be tested in two scenarios: a) using the same ground-based image set tested in Castillo et al. (2015) to compare the performance of both versions and b) using aerial images taken from a helium balloon to assess a gully network in a 40-hectares catchment. In this study we explore the advantages of SF3M 2.0, explain its operation and evaluate its accuracy and performance. This tool will be also available for free download. References Castillo, C., James, M.R., Redel-Macías, M. D., Pérez, R., and Gómez, J.A.: SF3M software: 3-D photo-reconstruction for non-expert users and its application to a gully network, SOIL, 1, 583-594. Pierrot-Deseilligny, M and Cléry, I. APERO, an Open Source Bundle Adjusment Software for Automatic Calibration and Orientation of a Set of Images. Proceedings of the ISPRS Commission V Symposium, Image Engineering and Vision

  1. ADVANCED MONITORING TO IMPROVE COMBUSTION TURBINE/COMBINED CYCLE CT/(CC) RELIABILITY, AVAILABILITY AND MAINTAINABILITY (RAM)

    SciTech Connect

    Leonard Angello

    2003-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established operation and maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performance to its owner/operators. Such systems would interpret sensor and instrument outputs, correlate them to the machine's condition, provide interpretative analyses, forward projections of servicing intervals, estimate remaining component life, and identify faults. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that will, in real time, interpret data to assess the ''total health'' of combustion turbines. The Combustion Turbine Health Management System (CTHM) will consist of a series of dynamic link library (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. The CTHM system will be a significant improvement over currently available techniques for turbine monitoring and diagnostics. CTHM will interpret sensor and instrument outputs, correlate them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, it will enable real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and

  2. Experimental Warming and Precipitation Effects on Plant Community Composition, Productivity, Nutrient Availability, and Soil Respiration in Pacific Northwest Prairies along a Natural Climate Gradient

    NASA Astrophysics Data System (ADS)

    Bridgham, S. D.; Pfeifer-Meister, L.; Tomaszewski, T.; Reynolds, L.; Goklany, M.; Wilson, H.; Johnson, B. R.

    2011-12-01

    Climate change effects on soil respiration and carbon stores in grasslands globally may have significant implications for future atmospheric carbon dioxide concentrations. Climate change may also may negatively impact native plant species and favor exotic species. We are experimentally increasing temperature by 3 degrees C and increasing precipitation by 25% above ambient in three upland prairie sites along a natural climate gradient from southwestern Oregon to central-western Washington to determine how future climate change will affect (i) plant community composition and the relative success of native versus introduced plant species and (ii) above- and belowground carbon and nutrient dynamics. Sixty plots (20 at each site) were restored by mowing, raking, and herbicide application followed by the sowing of the same 34 native grass and forb species in each plot. Differences in total cover, net primary productivity, and community composition were much greater among sites than among treatments within sites in both 2010--the establishment year, and 2011-the first full year of treatment. Strong successional dynamics occurred over the two years as competition intensified, but these were dependent on a site-treatment interaction, with lower native plant survival in heated plots because of competitive exclusion by exotic, invasive plants. A strong treatment - season interaction in canopy cover (as determined by canopy reflectance) also occurred, with heating causing greater cover during the wet season and lower cover during the dry season. This effect was strongest in the southernmost site which experiences earlier and more intense drought conditions. There were also strong site, treatment, and season interactions on nutrient availability as determined by cation-anion exchange resins. Heating increased nutrient availability in all but the northernmost site during the growing season, and that site also had much lower nutrient availability, but overall availability and

  3. Review of nuclear power plant safety cable aging studies with recommendations for improved approaches and for future work.

    SciTech Connect

    Gillen, Kenneth Todd; Bernstein, Robert

    2010-11-01

    Many U. S. nuclear power plants are approaching 40 years of age and there is a desire to extend their life for up to 100 total years. Safety-related cables were originally qualified for nuclear power plant applications based on IEEE Standards that were published in 1974. The qualifications involved procedures to simulate 40 years of life under ambient power plant aging conditions followed by simulated loss of coolant accident (LOCA). Over the past 35 years or so, substantial efforts were devoted to determining whether the aging assumptions allowed by the original IEEE Standards could be improved upon. These studies led to better accelerated aging methods so that more confident 40-year lifetime predictions became available. Since there is now a desire to potentially extend the life of nuclear power plants way beyond the original 40 year life, there is an interest in reviewing and critiquing the current state-of-the-art in simulating cable aging. These are two of the goals of this report where the discussion is concentrated on the progress made over the past 15 years or so and highlights the most thorough and careful published studies. An additional goal of the report is to suggest work that might prove helpful in answering some of the questions and dealing with some of the issues that still remain with respect to simulating the aging and predicting the lifetimes of safety-related cable materials.

  4. Improved Exact Enumerative Algorithms for the Planted (l, d)-Motif Search Problem.

    PubMed

    Tanaka, Shunji

    2014-01-01

    In this paper efficient exact algorithms are proposed for the planted ( l, d)-motif search problem. This problem is to find all motifs of length l that are planted in each input string with at most d mismatches. The "quorum" version of this problem is also treated in this paper to find motifs planted not in all input strings but in at least q input strings. The proposed algorithms are based on the previous algorithms called qPMSPruneI and qPMS7 that traverse a search tree starting from a l-length substring of an input string. To improve these previous algorithms, several techniques are introduced, which contribute to reducing the computation time for the traversal. In computational experiments, it will be shown that the proposed algorithms outperform the previous algorithms.

  5. Genetic selection and liquid medium conditions improve the yield of androgenetic plants from diploid potatoes.

    PubMed

    Uhrig, H

    1985-12-01

    Solatium tuberosum L. diploid strains with superior androgenetic capacity have been selected for from androgenetic progenies of unselected diploid material. The paper also demonstrates that the use of a liquid medium for culturing potato anthers, instead of the conventional solid agar plates, improves the yield of androgenetic embryoids. The new method, associated with two successive cycles of selection for superior androgenetic response, allows the induction and regeneration of microspore derived plants on a large scale. The best genotype (clone 21 in this paper) regenerates androgenetic plants with a frequency around 30 per each anther plated. Over 80% of the regenerated plants are diploid. It is suggested that the androgenetic embryoids mainly originate from unreduced microspores by a mechanism which maintains a heterozygous or a partly heterozygous genetic situation.

  6. Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance.

    PubMed

    Sytar, Oksana; Brestic, Marian; Zivcak, Marek; Olsovska, Katarina; Kovar, Marek; Shao, Hongbo; He, Xiaolan

    2017-02-01

    Salinity represents an abiotic stress constraint affecting growth and productivity of plants in many regions of the world. One of the possible solutions is to improve the level of salt resistance using natural genetic variability within crop species. In the context of recent knowledge on salt stress effects and mechanisms of salt tolerance, this review present useful phenomic approach employing different non-invasive imaging systems for detection of quantitative and qualitative changes caused by salt stress at the plant and canopy level. The focus is put on hyperspectral imaging technique, which provides unique opportunities for fast and reliable estimate of numerous characteristics associated both with various structural, biochemical and physiological traits. The method also provides possibilities to combine plant and canopy analyses with a direct determination of salinity in soil. The future perspectives in salt stress applications as well as some limits of the method are also identified.

  7. Chemical speciation of cadmium: an approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated concentration of cadmium (Cd) in cacao beans has raised serious concerns about the safety of chocolate consumption. Accumulation of Cd cacao bean in southern Ecuador has been reported to relate soil contamination. In this study, soil fractionation was conducted to identify available Cd poo...

  8. 75 FR 39991 - Notice of Availability of the Proposed Models For Plant-Specific Adoption of Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... . From this page, the public can gain entry into ADAMS, which provides text and image files of NRC's... documents related to this notice using the following methods: NRC's Public Document Room (PDR): The public may examine and have copied for a fee publicly available documents at the NRC's PDR, Public File...

  9. NGEE Arctic Plant Traits: Soil Nutrient Availability, Kougarok Road Mile Marker 64, Seward Peninsula, Alaska, beginning 2016

    DOE Data Explorer

    Verity Salmon; Colleen Iversen; Amy Breen; Joanne Childs; Holly Vander Stel; Stan Wullschleger

    2017-03-09

    Soil nutrient availability at all vegetation plots was measured using anion and cation binding resins deployed to vegetation plots at the Kougarok hillslope site located at Kougarok Road Marker 64. Concentrations of ammonia, nitrate, and phosphate in resin extract solutions were determined in the lab.

  10. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms.

    PubMed

    Zhou, Cheng; Guo, Jiansheng; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Ma, Zhongyou; Wang, Jianfei

    2016-08-01

    Despite the high abundance of iron (Fe) in most earth's soils, Fe is the major limiting factor for plant growth and development due to its low bioavailability. With an increasing recognition that soil microbes play important roles in plant growth, several strains of beneficial rhizobactria have been applied to improve plant nutrient absorption, biomass, and abiotic or biotic stress tolerance. In this study, we report the mechanisms of microbe-induced plant Fe assimilation, in which the plant growth promoting rhizobacteria (PGPR) Paenibacillus polymyxa BFKC01 stimulates plant's Fe acquisition machinery to enhance Fe uptake in Arabidopsis plants. Mechanistic studies show that BFKC01 transcriptionally activates the Fe-deficiency-induced transcription factor 1 (FIT1), thereby up-regulating the expression of IRT1 and FRO2. Furthermore, BFKC01 has been found to induce plant systemic responses with the increased transcription of MYB72, and the biosynthetic pathways of phenolic compounds are also activated. Our data reveal that abundant phenolic compounds are detected in root exudation of the BFKC01-inoculated plants, which efficiently facilitate Fe mobility under alkaline conditions. In addition, BFKC01 can secret auxin and further improved root systems, which enhances the ability of plants to acquire Fe from soils. As a result, BFKC01-inoculated plants have more endogenous Fe and increased photosynthetic capacity under alkaline conditions as compared to control plants. Our results demonstrate the potential roles of BFKC01 in promoting Fe acquisition in plants and underline the intricate integration of microbial signaling in controlling plant Fe acquisition.

  11. Physicochemical characterization of coke-plant soil for the assessment of polycyclic aromatic hydrocarbon availability and the feasibility of phytoremediation

    SciTech Connect

    Ahn, S.; Werner, D.; Luthy, R.G.

    2005-09-01

    Coke oven site soil was characterized to assess the particle association and availability of polycyclic aromatic hydrocarbons (PAHs). We identified various carbonaceous materials including coal, coke, pitch, and tar decanter sludge. Most of the PAHs were associated with the polymeric matrix of tar sludge or hard pitch as discrete particles, coatings on soil mineral particles, or complex aggregates. The PAH availability from these particles was very low due to hindered diffusive release from solid tar or pitch with apparent diffusivities of 6 x 10{sup -15} for phenanthrene, 3 x 10{sup -15} for pyrene, and 1 x 10{sup -15} cm{sup 2}/s for benzo(a)pyrene. Significant concentrations of PAHs were observed in the interior of solid tar aggregates with up to 40,000 mg/kg total PAHs. The release of PAHs from the interior of such particles requires diffusion over a substantial distance, and semipermeable membrane device tests confirmed a very limited availability of PAHs. These findings explain the results from three years of phytoremediation of the site soil, for which no significant changes in the total PAH concentrations were observed in the test plot samples. The observed low bioavailability of PAHs probably inhibited PAH phytoremediation, as diffusion-limited mass transfer would limit the release of PAHs to the aqueous phase.

  12. [Rhizospheria bacteria of Poplus euphratica improve resistance of wood plants to heavy metals].

    PubMed

    Chen, Wen; Ouyang, Li-ming; Kong, Pei-jun; Yang, Ze-yu; Wu, Wei; Zhu, Dong-lin; Zhang, Li-li

    2015-09-01

    Populus euphratica is a special kind of woody plant, which lives in desert area of northwestern China and is strongly resistant to multiple abiotic stresses. However, the knowledge about the ecology and physiological roles of microbes associated with P. euphratica is still not enough. In this paper, we isolated 72 strains resistant to heavy metals from rhizospheric soil of wild P. euphratica forest in Shaya County of Xinjiang. There were 50 strains conveying resistance to one of four heavy metals (Cu2+, Ni2+, Pb2+ or Zn2+), and 9 strains were resistant to at least three kinds of these heavy metals. Five of the multi-heavy metal resistant bacteria were inoculated to bamboo willow and the growth inhibition of plant under stresses of Cu2+ or Zn2+ was found to be alleviated to different extent. Among the 5 strains, Pseudomonas sp. Z30 and Cupriavidus sp. N8 significantly improved the growth of plant under stresses of both zinc and copper when compared to the uninoculated controls. The results showed the diversity of heavy metal resistant bacteria associated with P. euphratica which lived in a non-heavy metal polluted area and some of the multi-heavy metal resistant bacteria may greatly improve the growth of host plant under heavy metal.stress. The PGPB associated with P. euphratica has potential application in the xylophyte-microbe remediation of environmental heavy metal pollution.

  13. High irradiance improves ammonium tolerance in wheat plants by increasing N assimilation.

    PubMed

    Setién, Igor; Fuertes-Mendizabal, Teresa; González, Azucena; Aparicio-Tejo, Pedro Ma; González-Murua, Carmen; González-Moro, María Begoña; Estavillo, José María

    2013-05-15

    Ammonium is a paradoxical nutrient ion. Despite being a common intermediate in plant metabolism whose oxidation state eliminates the need for its reduction in the plant cell, as occurs with nitrate, it can also result in toxicity symptoms. Several authors have reported that carbon enrichment in the root zone enhances the synthesis of carbon skeletons and, accordingly, increases the capacity for ammonium assimilation. In this work, we examined the hypothesis that increasing the photosynthetic photon flux density is a way to increase plant ammonium tolerance. Wheat plants were grown in a hydroponic system with two different N sources (10mM nitrate or 10mM ammonium) and with two different light intensity conditions (300 μmol photon m(-2)s(-1) and 700 μmol photon m(-2)s(-1)). The results show that, with respect to biomass yield, photosynthetic rate, shoot:root ratio and the root N isotopic signature, wheat behaves as a sensitive species to ammonium nutrition at the low light intensity, while at the high intensity, its tolerance is improved. This improvement is a consequence of a higher ammonium assimilation rate, as reflected by the higher amounts of amino acids and protein accumulated mainly in the roots, which was supported by higher tricarboxylic acid cycle activity. Glutamate dehydrogenase was a key root enzyme involved in the tolerance to ammonium, while glutamine synthetase activity was low and might not be enough for its assimilation.

  14. Improving Compressed Air Energy Efficiency in Automotive Plants - Practical Examples and Implementation

    SciTech Connect

    Alkadi, Nasr E; Kissock, Professor Kelly

    2011-01-01

    The automotive industry is the largest industry in the United States in terms of the dollar value of production [1]. U.S. automakers face tremendous pressure from foreign competitors, which have an increasing manufacturing presence in this country. The Big Three North American Original Equipment Manufacturers (OEMs) General Motors, Ford, and Chrysler are reacting to declining sales figures and economic strain by working more efficiently and seeking out opportunities to reduce production costs without negatively affecting the production volume or the quality of the product. Successful, cost-effective investment and implementation of the energy efficiency technologies and practices meet the challenge of maintaining the output of high quality product with reduced production costs. Automotive stamping and assembly plants are typically large users of compressed air with annual compressed air utility bills in the range of $2M per year per plant. This paper focuses on practical methods that the authors have researched, analyzed and implemented to improve compressed air system efficiency in automobile manufacturing facilities. It describes typical compressed air systems in automotive stamping and assembly plants, and compares these systems to best practices. The paper then presents a series of examples, organized using the method of inside-out approach, which strategically identifies the energy savings in the compressed air system by first minimizing end-use demand, then minimizing distribution losses, and finally making improvements to primary energy conversion equipment, the air compressor plant.

  15. Utilizing clad piping to improve process plant piping integrity, reliability, and operations

    SciTech Connect

    Chakravarti, B.

    1996-07-01

    During the past four years carbon steel piping clad with type 304L (UNS S30403) stainless steel has been used to solve the flow accelerated corrosion (FAC) problem in nuclear power plants with exceptional success. The product is designed to allow ``like for like`` replacement of damaged carbon steel components where the carbon steel remains the pressure boundary and type 304L (UNS S30403) stainless steel the corrosion allowance. More than 3000 feet of piping and 500 fittings in sizes from 6 to 36-in. NPS have been installed in the extraction steam and other lines of these power plants to improve reliability, eliminate inspection program, reduce O and M costs and provide operational benefits. This concept of utilizing clad piping in solving various corrosion problems in industrial and process plants by conservatively selecting a high alloy material as cladding can provide similar, significant benefits in controlling corrosion problems, minimizing maintenance cost, improving operation and reliability to control performance and risks in a highly cost effective manner. This paper will present various material combinations and applications that appear ideally suited for use of the clad piping components in process plants.

  16. 75 FR 19670 - Notice of Availability of the Record of Decision for the I-65 to US 31W Access Improvement Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ...-1 (73)] Notice of Availability of the Record of Decision for the I-65 to US 31W Access Improvement... ROD to implement the I-65 to US 31W Access Improvement project in Warren County, Kentucky. The... for the I-65 to US 31W Access Improvement project can be viewed and downloaded from the project...

  17. Towards an Enhanced Understanding of Plant-Microbiome Interactions to Improve Phytoremediation: Engineering the Metaorganism.

    PubMed

    Thijs, Sofie; Sillen, Wouter; Rineau, Francois; Weyens, Nele; Vangronsveld, Jaco

    2016-01-01

    Phytoremediation is a promising technology to clean-up contaminated soils based on the synergistic actions of plants and microorganisms. However, to become a widely accepted, and predictable remediation alternative, a deeper understanding of the plant-microbe interactions is needed. A number of studies link the success of phytoremediation to the plant-associated microbiome functioning, though whether the microbiome can exist in alternative, functional states for soil remediation, is incompletely understood. Moreover, current approaches that target the plant host, and environment separately to improve phytoremediation, potentially overlook microbial functions and properties that are part of the multiscale complexity of the plant-environment wherein biodegradation takes place. In contrast, in situ studies of phytoremediation research at the metaorganism level (host and microbiome together) are lacking. Here, we discuss a competition-driven model, based on recent evidence from the metagenomics level, and hypotheses generated by microbial community ecology, to explain the establishment of a catabolic rhizosphere microbiome in a contaminated soil. There is evidence to ground that if the host provides the right level and mix of resources (exudates) over which the microbes can compete, then a competitive catabolic and plant-growth promoting (PGP) microbiome can be selected for as long as it provides a competitive superiority in the niche. The competition-driven model indicates four strategies to interfere with the microbiome. Specifically, the rhizosphere microbiome community can be shifted using treatments that alter the host, resources, environment, and that take advantage of prioritization in inoculation. Our model and suggestions, considering the metaorganism in its natural context, would allow to gain further knowledge on the plant-microbial functions, and facilitate translation to more effective, and predictable phytotechnologies.

  18. Evaluation and improvement of wastewater treatment plant performance using BioWin

    NASA Astrophysics Data System (ADS)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  20. Application of an improved in vivo counting program to Korean nuclear power plants.

    PubMed

    Kong, Tae Young; Kim, Hee Geun

    2009-01-01

    During the in vivo counting of individuals using a whole body counter at nuclear power plants (NPPs), external skin contamination is occasionally mistaken for internal radioactive contamination. This not only confuses the degree of external contamination and internal contamination, but can also result in the excessively conservative estimation of radioactive contamination. In this paper, previous experiments to improve in vivo counting at NPPs are introduced briefly and the practical application of techniques presented in those experiments to Korean NPPs is demonstrated in detail.

  1. Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants.

    PubMed

    Tan, Wei; Meng, Qing wei; Brestic, Marian; Olsovska, Katarina; Yang, Xinghong

    2011-11-15

    Effects of exogenous calcium chloride (CaCl(2)) (20 mM) on photosynthetic gas exchange, photosystem II photochemistry, and the activities of antioxidant enzymes in tobacco plants under high temperature stress (43°C for 2 h) were investigated. Heat stress resulted in a decrease in net photosynthetic rate (P(n)), stomatal conductance as well as the apparent quantum yield (AQY) and carboxylation efficiency (CE) of photosynthesis. Heat stress also caused a decrease of the maximal photochemical efficiency of primary photochemistry (F(v)/F(m)). On the other hand, CaCl(2) application improved P(n), AQY, and CE as well as F(v)/F(m) under high temperature stress. Heat stress reduced the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), whereas the activities of these enzymes either decreased less or increased in plants pretreated with CaCl(2); glutathione reductase (GR) activity increased under high temperature, and it increased more in plants pretreated with CaCl(2). There was an obvious accumulation of H(2)O(2) and O(2)(-) under high temperature, but CaCl(2) application decreased the contents of H(2)O(2) and O(2)(-) under heat stress conditions. Heat stress induced the level of heat shock protein 70 (HSP70), while CaCl(2) pretreatment enhanced it. These results suggested that photosynthesis was improved by CaCl(2) application in heat-stressed plants and such an improvement was associated with an improvement in stomatal conductance and the thermostability of oxygen-evolving complex (OEC), which might be due to less accumulation of reactive oxygen species.

  2. Rhizosphere Organic Anions Play a Minor Role in Improving Crop Species' Ability to Take Up Residual Phosphorus (P) in Agricultural Soils Low in P Availability.

    PubMed

    Wang, Yanliang; Krogstad, Tore; Clarke, Jihong L; Hallama, Moritz; Øgaard, Anne F; Eich-Greatorex, Susanne; Kandeler, Ellen; Clarke, Nicholas

    2016-01-01

    Many arable lands have accumulated large reserves of residual phosphorus (P) and a relatively large proportion of soil P is less available for uptake by plants. Root released organic anions are widely documented as a key physiological strategy to enhance P availability, while limited information has been generated on the contribution of rhizosphere organic anions to P utilization by crops grown in agricultural soils that are low in available P and high in extractable Ca, Al, and Fe. We studied the role of rhizosphere organic anions in P uptake from residual P in four common crops Triticum aestivum, Avena sativa, Solanum tuberosum, and Brassica napus in low- and high-P availability agricultural soils from long-term fertilization field trials in a mini-rhizotron experiment with four replications. Malate was generally the dominant organic anion. More rhizosphere citrate was detected in low P soils than in high P soil. B. napus showed 74-103% increase of malate in low P loam, compared with clay loam. A. sativa had the greatest rhizosphere citrate concentration in all soils (5.3-15.2 μmol g(-1) root DW). A. sativa also showed the highest level of root colonization by arbuscular mycorrhizal fungi (AMF; 36 and 40%), the greatest root mass ratio (0.51 and 0.66) in the low-P clay loam and loam respectively, and the greatest total P uptake (5.92 mg P/mini-rhizotron) in the low-P loam. B. napus had 15-44% more rhizosphere acid phosphatase (APase) activity, ~0.1-0.4 units lower rhizosphere pH than other species, the greatest increase in rhizosphere water-soluble P in the low-P soils, and the greatest total P uptake in the low-P clay loam. Shoot P content was mainly explained by rhizosphere APase activity, water-soluble P and pH within low P soils across species. Within species, P uptake was mainly linked to rhizosphere water soluble P, APase, and pH in low P soils. The effects of rhizosphere organic anions varied among species and they appeared to play minor roles in

  3. Rhizosphere Organic Anions Play a Minor Role in Improving Crop Species' Ability to Take Up Residual Phosphorus (P) in Agricultural Soils Low in P Availability

    PubMed Central

    Wang, Yanliang; Krogstad, Tore; Clarke, Jihong L.; Hallama, Moritz; Øgaard, Anne F.; Eich-Greatorex, Susanne; Kandeler, Ellen; Clarke, Nicholas

    2016-01-01

    Many arable lands have accumulated large reserves of residual phosphorus (P) and a relatively large proportion of soil P is less available for uptake by plants. Root released organic anions are widely documented as a key physiological strategy to enhance P availability, while limited information has been generated on the contribution of rhizosphere organic anions to P utilization by crops grown in agricultural soils that are low in available P and high in extractable Ca, Al, and Fe. We studied the role of rhizosphere organic anions in P uptake from residual P in four common crops Triticum aestivum, Avena sativa, Solanum tuberosum, and Brassica napus in low- and high-P availability agricultural soils from long-term fertilization field trials in a mini-rhizotron experiment with four replications. Malate was generally the dominant organic anion. More rhizosphere citrate was detected in low P soils than in high P soil. B. napus showed 74–103% increase of malate in low P loam, compared with clay loam. A. sativa had the greatest rhizosphere citrate concentration in all soils (5.3–15.2 μmol g−1 root DW). A. sativa also showed the highest level of root colonization by arbuscular mycorrhizal fungi (AMF; 36 and 40%), the greatest root mass ratio (0.51 and 0.66) in the low-P clay loam and loam respectively, and the greatest total P uptake (5.92 mg P/mini-rhizotron) in the low-P loam. B. napus had 15–44% more rhizosphere acid phosphatase (APase) activity, ~0.1–0.4 units lower rhizosphere pH than other species, the greatest increase in rhizosphere water-soluble P in the low-P soils, and the greatest total P uptake in the low-P clay loam. Shoot P content was mainly explained by rhizosphere APase activity, water-soluble P and pH within low P soils across species. Within species, P uptake was mainly linked to rhizosphere water soluble P, APase, and pH in low P soils. The effects of rhizosphere organic anions varied among species and they appeared to play minor roles in

  4. PCS Nitrogen: Combustion Fan System Optimization Improves Performance and Saves Energy at a Chemical Plant

    SciTech Connect

    2005-01-01

    This U.S. Department of Energy Industrial Technologies Program case study describes how, in 2003, PCS Nitrogen, Inc., improved the efficiency of the combustion fan on a boiler at the company's chemical fertilizer plant in Augusta, Georgia. The project saved $420,000 and 76,400 million British thermal units (MBtu) per year. In addition, maintenance needs declined, because there is now less stress on the fan motor and bearings and less boiler feed water usage. This project was so successful that the company has implemented more efficiency improvements that should result in energy cost savings of nearly $1 million per year.

  5. Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production.

    PubMed

    Chavez, E; He, Z L; Stoffella, P J; Mylavarapu, R S; Li, Y C; Baligar, V C

    2016-05-01

    Elevated concentration of cadmium (Cd) in cacao beans has raised serious concerns about the chocolate consumption on human health. Accumulation of Cd in cacao bean in southern Ecuador has been related to soil contamination. In this study, soil fractionation approach was used to identify available Cd pools in the soils and to correlate these Cd pools with bean Cd concentration and soil test indexes. The distribution of soil Cd fractions decreased in the order: oxidizable > acid-soluble > residual > reducible > water-soluble (+exchangeable). Oxidizable and acid-soluble fractions accounted for 59 and 68% of the total recoverable Cd for the 0-5 and 5-15 cm soil depth, respectively. Acid-soluble fraction was closely related to bean-Cd, with correlation coefficients (r) of 0.70 and 0.81 (P < 0.01) for the 0-5 and 5-15 cm soil depth, respectively. Acid-soluble Cd was significantly correlated with 0.01 M HCl- (r = 0.99, P < 0.01) or Mehlich 3- extractable Cd (r = 0.97, P < 0.01). These results indicate that acid-soluble Cd fraction is an important part of available Cd pool. Since approximately 60% of Cd in the cacao-growing soils is related to the acid-soluble fraction and bound to organic matter, remediation of the contaminated soils should consider to the dynamics of soil pH and organic matter content.

  6. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  7. The potential of beech seedlings to adapt to low P availability in soil - plant versus microbial effects on P mobilising potential in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Meller, Sonia; Frey, Beat; Frossard, Emmanuel; Spohn, Marie; Schack-Kirchner, Helmer; Luster, Jörg

    2016-04-01

    The objective of our work was to investigate to what extent tree seedlings (Fagus sylvatica) are able to adapt the process of P mobilisation in the rhizosphere according to P speciation in the soil. Such mobilisation activity can include root exudation of P mobilising compounds or stimulation of specific P mobilising soil microbes. We hypothesized that Fagus sylvatica seedlings can adapt their own activity based on their P nutritional status and genetic memory of how to react under a given nutritional situation. To test the hypothesis, we set up a cross-growth experiment with beech of different provenances growing in soil from their own provenance site and in soil differing in P availability. Experiments were performed as a greenhouse experiment, with temperature control and natural light, during one vegetation period in rhizoboxes . We used two acidic forest soils, contrasting in P availability, collected at field sites of the German research priority program "Ecosystem Nutrition". Juvenile trees were collected along with the soils at the sites and planted respectively. The occurrence of P mobilising compounds and available P in the rhizosphere and in bulk soil were measured during the active growth season of the plants. In particular, we assessed phosphatase activity, (measured with zymography and plate enzymatic assay at pH 4,6.5, and 11) carboxylates and phosphate (measured by application of ion exchange membranes to specific soil micro zones, and by microdialysis), and pH (mapping with optodes). Plant P nutrition status was assessed by total P, N/P, phosphatase activity, and metabolic (TCA extractable) P in the leaves. The P-nutritional status of the beech provenances differed markedly independent from the P status of the soil where they were actually grown during experiment. In particular, the juvenile trees from the site rich in mineral P were sufficient in P, while those from the P-poor site with mostly organic P, were deficient. Enzymatic activity at the

  8. Recent developments in plant zinc homeostasis and the path toward improved biofortification and phytoremediation programs.

    PubMed

    Rouached, Hatem

    2013-01-01

    Zinc (Zn) is an essential micronutrient for all living organisms. Plants serve as a major entry point for this element into the food chain. Zn deficiency has become a widespread nutritional condition, which mirror the inadequate Zn reserves in significant proportion of the earth's arable land. A recent assessment by the World Health Organization revealed that one third of the world's population is at risk of Zn deficiency. To counter this alarming situation, substantial efforts have been made to increase Zn content and availability in staple crops and grains. Nevertheless, the absence of fundamental information has held back progress in this field. Developing a better understanding of how Zn homeostasis is regulated in plants, such as Zn transporters at loading bottlenecks, is of primary interest to biofortification and phytoremediation programs. Many reviews have been published on this subject, and here we briefly summarize the regulation of one limiting step in Zn distribution within plants - the loading of Zn into root xylem.

  9. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance.

    PubMed

    Zhou, Cheng; Ma, Zhongyou; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Wang, Jianfei

    2016-06-21

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses.

  10. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance

    PubMed Central

    Zhou, Cheng; Ma, Zhongyou; Zhu, Lin; Xiao, Xin; Xie, Yue; Zhu, Jian; Wang, Jianfei

    2016-01-01

    Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillus megaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses. PMID:27338359

  11. Improved Predictions of the Geographic Distribution of Invasive Plants Using Climatic Niche Models.

    PubMed

    Ramírez-Albores, Jorge E; Bustamante, Ramiro O; Badano, Ernesto I

    2016-01-01

    Climatic niche models for invasive plants are usually constructed with occurrence records taken from literature and collections. Because these data neither discriminate among life-cycle stages of plants (adult or juvenile) nor the origin of individuals (naturally established or man-planted), the resulting models may mispredict the distribution ranges of these species. We propose that more accurate predictions could be obtained by modelling climatic niches with data of naturally established individuals, particularly with occurrence records of juvenile plants because this would restrict the predictions of models to those sites where climatic conditions allow the recruitment of the species. To test this proposal, we focused on the Peruvian peppertree (Schinus molle), a South American species that has largely invaded Mexico. Three climatic niche models were constructed for this species using high-resolution dataset gathered in the field. The first model included all occurrence records, irrespective of the life-cycle stage or origin of peppertrees (generalized niche model). The second model only included occurrence records of naturally established mature individuals (adult niche model), while the third model was constructed with occurrence records of naturally established juvenile plants (regeneration niche model). When models were compared, the generalized climatic niche model predicted the presence of peppertrees in sites located farther beyond the climatic thresholds that naturally established individuals can tolerate, suggesting that human activities influence the distribution of this invasive species. The adult and regeneration climatic niche models concurred in their predictions about the distribution of peppertrees, suggesting that naturally established adult trees only occur in sites where climatic conditions allow the recruitment of juvenile stages. These results support the proposal that climatic niches of invasive plants should be modelled with data of

  12. Improved Predictions of the Geographic Distribution of Invasive Plants Using Climatic Niche Models

    PubMed Central

    Ramírez-Albores, Jorge E.; Bustamante, Ramiro O.

    2016-01-01

    Climatic niche models for invasive plants are usually constructed with occurrence records taken from literature and collections. Because these data neither discriminate among life-cycle stages of plants (adult or juvenile) nor the origin of individuals (naturally established or man-planted), the resulting models may mispredict the distribution ranges of these species. We propose that more accurate predictions could be obtained by modelling climatic niches with data of naturally established individuals, particularly with occurrence records of juvenile plants because this would restrict the predictions of models to those sites where climatic conditions allow the recruitment of the species. To test this proposal, we focused on the Peruvian peppertree (Schinus molle), a South American species that has largely invaded Mexico. Three climatic niche models were constructed for this species using high-resolution dataset gathered in the field. The first model included all occurrence records, irrespective of the life-cycle stage or origin of peppertrees (generalized niche model). The second model only included occurrence records of naturally established mature individuals (adult niche model), while the third model was constructed with occurrence records of naturally established juvenile plants (regeneration niche model). When models were compared, the generalized climatic niche model predicted the presence of peppertrees in sites located farther beyond the climatic thresholds that naturally established individuals can tolerate, suggesting that human activities influence the distribution of this invasive species. The adult and regeneration climatic niche models concurred in their predictions about the distribution of peppertrees, suggesting that naturally established adult trees only occur in sites where climatic conditions allow the recruitment of juvenile stages. These results support the proposal that climatic niches of invasive plants should be modelled with data of

  13. Breeding for genetic improvement of forage plants in relation to increasing animal production with reduced environmental footprint.

    PubMed

    Kingston-Smith, A H; Marshall, A H; Moorby, J M

    2013-03-01

    Animal production is a fundamental component of the food supply chain, and with an increasing global population production levels are set to increase. Ruminant animals in particular are valuable in their ability to convert a fibre-rich forage diet into a high-quality protein product for human consumption, although this benefit is offset by inefficiencies in rumen fermentation that contribute to emission of significant quantities of methane and nitrogenous waste. Through co-operation between plant and animal sciences, we can identify how the nutritional requirements of ruminants can be satisfied by high-quality forages for the future. Selective forage plant breeding has supported crop improvement for nearly a century. Early plant breeding programmes were successful in terms of yield gains (4% to 5% per decade), with quality traits becoming increasingly important breeding targets (e.g. enhanced disease resistance and digestibility). Recently, demands for more sustainable production systems have required high yielding, high-quality forages that enable efficient animal production with minimal environmental impact. Achieving this involves considering the entire farm system and identifying opportunities for maximising nutrient use efficiency in both forage and animal components. Forage crops of the future must be able to utilise limited resources (water and nutrients) to maximise production on a limited land area and this may require us to consider alternative plant species to those currently in use. Furthermore, new breeding targets will be identified as the interactions between plants and the animals that consume them become better understood. This will ensure that available resources are targeted at delivering maximum benefits to the animal through enhanced transformation efficiency.

  14. Development of an engineered soil bacterium enabling to convert both insoluble inorganic and organic phosphate into plant available phosphate and its use as a biofertilizer.

    PubMed

    Liu, Lili; Du, Wenya; Luo, Wenyu; Su, Yi; Hui, Jiejie; Ma, Shengwu

    2015-05-01

    Phosphorus (P) is one of the most important nutrient elements for plant growth and metabolism. We previously isolated a P-solubilizing bacterium 9320-SD with the ability to utilize inorganic P and convert it into plant-available P. The present study aims to enhance the P-solubilizing capacity of 9320-SD, as our long-term goal is to develop a more effective P-solubilizing bacterial strain for use as a biofertilizer. In this end, we introduced a bacterial phytase encoding gene into 9320-SD. One randomly selected transformant, SDLiuTP02, was examined for recombinant protein expression and phytase activity, and assessed for its ability to promote plant growth. Our results indicate that SDLiuTP02 is capable of expressing high levels of phytase activity. Importantly, corn seedlings treated with the SDLiuTP02 cell culture exhibited increased rates of photosynthesis, transpiration, and stomatal conductance as well as increased growth rate under laboratory conditions and increased growth rate in pot assays compared to seedlings treated with cell cultures of the parental strain 9320-SD. Field experiments further indicated that application of SDLiuTP02 promoted a greater growth rate in young cucumber plant and a higher foliar chlorophyll level in chop suey greens when compared to 9320-SD treated controls. These results indicate that SDLiuTP02 has the potential to be a more effective P biofertilizer to increase agricultural productivity.

  15. 31P NMR characterization and efficiency of new types of water-insoluble phosphate fertilizers to supply plant-available phosphorus in diverse soil types.

    PubMed

    Erro, Javier; Baigorri, Roberto; Yvin, Jean-Claude; Garcia-Mina, Jose M

    2011-03-09

    Hydroponic plant experiments demonstrated the efficiency of a type of humic acid-based water-insoluble phosphate fertilizers, named rhizosphere controlled fertilizers (RCF), to supply available phosphorus (P) to different plant species. This effect was well correlated to the root release of specific organic acids. In this context, the aims of this study are (i) to study the chemical nature of RCF using solid-state (31)P NMR and (ii) to evaluate the real efficiency of RCF matrix as a source of P for wheat plants cultivated in an alkaline and acid soil in comparison with traditional water-soluble (simple superphosphate, SSP) and water-insoluble (dicalcium phosphate, DCP) P fertilizers. The (31)P NMR study revealed the formation of multimetal (double and triple, MgZn and/or MgZnCa) phosphates associated with chelating groups of the humic acid through the formation of metal bridges. With regard to P fertilizer efficiency, the results obtained show that the RCF matrix produced higher plant yields than SSP in both types of soil, with DCP and the water-insoluble fraction from the RCF matrix (WI) exhibiting the best results in the alkaline soil. By contrast, in the acid soil, DCP showed very low efficiency, WI performed on a par with SSP, and RCF exhibited the highest efficiency, thus suggesting a protector effect of humic acid from soil fixation.

  16. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I Demonstruation Plant, Newman, Kentucky. Appendix B. Best available control technology (BACT) proposals. [Demonstration plant at Newman, KY

    SciTech Connect

    Not Available

    1980-11-21

    The best available control technology (BACT) proposals for the following areas of the SRC-I demonstration plant are described: coal preparation and handling, SRC process and deashing, coke and liquid fuels (control of particles and hydrocarbon vapors), cryogenic systems and fuel gas purification (including sulfur recovery system and venting of gaseous wastes). (LTN)

  17. The Integrated Role of Water Availability, Nutrient Dynamics, and Xylem Hydraulic Dysfunction on Plant Rooting Strategies in Managed and Natural Ecosystems

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Savoy, P.; Pleban, J. R.; Tai, X.; Ewers, B. E.

    2015-12-01

    Plants adapt or acclimate to changing environments in part by allocating biomass to roots and leaves to strike a balance between water and nutrient uptake requirements on the one hand and growth and hydraulic safety on the other hand. In a recent study examining experimental drought with the TREES model, which couples plant ecophysiology with rhizosphere-and-xylem hydraulics, we hypothesized that the asynchronous nature of soil water availability and xylem repair supported root-to-leaf area (RLA) proportionality that favored long-term survival over short-term carbon gain or water use. To investigate this as a possible general principal of plant adjustment to changing environmental conditions, TREES was modified to allocate carbon to fine and coarse roots organized in ten orders differing in biomass allocated per unit absorbing root area, root lifespan, and total absorbing root area in each of several soil-root zones with depth. The expanded model allowed for adjustment of absorbing root area and rhizosphere volume based on available carbohydrate production and nitrogen (N) availability, resulting in dynamic expansion and contraction of the supply-side of the rhizosphere-plant hydraulics and N uptake capacity in response to changing environmental conditions and plant-environment asynchrony. The study was conducted partly in a controlled experimental setting with six genotypes of a widely grown crop species, Brassica rapa. The implications for forests were investigated in controlled experiments and at Fluxnet sites representing temperate mixed forests, semi-arid evergreen needle-leaf, and Mediterranean biomes. The results showed that the effects of N deficiency on total plant growth was modulated by a relative increase in fine root biomass representing a larger absorbing root volume per unit biomass invested. We found that the total absorbing root area per unit leaf area was consistently lower than that needed to maximize short-term water uptake and carbohydrate gain

  18. Development of an improved ground-based prototype of space plant-growing facility

    NASA Astrophysics Data System (ADS)

    Guo, S.; Liu, X.; Ai, W.; Tang, Y.; Zhu, J.; Wang, X.; Wei, M.; Qin, L.; Yang, Y.

    Based on a formerly developed ground-based prototype of space plant-growing facility, the development of its improved prototype has been finished, so as to make its operating principle better adapt to the space microgravity environment. According to the developing experience of its first generation prototype and detailed demonstration and design of technique plan, its blueprint design and machining of related components, whole facility installment, debugging and trial operations were all done gradually. Its growing chamber contains a volume of about 0.5 m3 and a growing area of approximate 0.5 m2; the atmospheric environmental parameters in the growing chamber and water content in the growing media were controlled totally and effectively; lighting source is a combination of both red and blue light emitting diodes (LED). The following demonstrating results showed that the entire system design of the prototype is reasonable and its operating principle can nearly meet the requirements of space microgravity environment. Therefore, our plant-growing technique in space was advanced further, which laid an important foundation for next development of the space plant-growing facility and plant-cultivating experimental research in space microgravity condition.

  19. Silicon application increases drought tolerance of kentucky bluegrass by improving plant water relations and morphophysiological functions.

    PubMed

    Saud, Shah; Li, Xin; Chen, Yang; Zhang, Lu; Fahad, Shah; Hussain, Saddam; Sadiq, Arooj; Chen, Yajun

    2014-01-01

    Drought stress encumbers the growth of turfgrass principally by disrupting the plant-water relations and physiological functions. The present study was carried out to appraise the role of silicon (Si) in improving the drought tolerance in Kentucky bluegrass (Poa pratensis L.). Drought stress and four levels (0, 200, 400, and 800 mg L(-1)) of Si (Na2SiO3·9H2O) were imposed after 2 months old plants cultured under glasshouse conditions. Drought stress was found to decrease the photosynthesis, transpiration rate, stomatal conductance, leaf water content, relative growth rate, water use efficiency, and turf quality, but to increase in the root/shoot and leaf carbon/nitrogen ratio. Such physiological interferences, disturbances in plant water relations, and visually noticeable growth reductions in Kentucky bluegrass were significantly alleviated by the addition of Si after drought stress. For example, Si application at 400 mg L(-1) significantly increased the net photosynthesis by 44%, leaf water contents by 33%, leaf green color by 42%, and turf quality by 44% after 20 days of drought stress. Si application proved beneficial in improving the performance of Kentucky bluegrass in the present study suggesting that manipulation of endogenous Si through genetic or biotechnological means may result in the development of drought resistance in grasses.

  20. Small RNAs in plants: recent development and application for crop improvement.

    PubMed

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20-24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement.

  1. Small RNAs in plants: recent development and application for crop improvement

    PubMed Central

    Kamthan, Ayushi; Chaudhuri, Abira; Kamthan, Mohan; Datta, Asis

    2015-01-01

    The phenomenon of RNA interference (RNAi) which involves sequence-specific gene regulation by small non-coding RNAs, i.e., small interfering RNA (siRNA) and microRNA (miRNA) has emerged as one of most powerful approaches for crop improvement. RNAi based on siRNA is one of the widely used tools of reverse genetics which aid in revealing gene functions in many species. This technology has been extensively applied to alter the gene expression in plants with an aim to achieve desirable traits. RNAi has been used for enhancing the crop yield and productivity by manipulating the gene involved in biomass, grain yield and enhanced shelf life of fruits and vegetables. It has also been applied for developing resistance against various biotic (bacteria, fungi, viruses, nematodes, insects) and abiotic stresses (drought, salinity, cold, etc.). Nutritional improvements of crops have also been achieved by enriching the crops with essential amino acids, fatty acids, antioxidants and other nutrients beneficial for human health or by reducing allergens or anti-nutrients. microRNAs are key regulators of important plant processes like growth, development, and response to various stresses. In spite of similarity in size (20–24 nt), miRNA differ from siRNA in precursor structures, pathway of biogenesis, and modes of action. This review also highlights the miRNA based genetic modification technology where various miRNAs/artificial miRNAs and their targets can be utilized for improving several desirable plant traits. microRNA based strategies are much efficient than siRNA-based RNAi strategies due to its specificity and less undesirable off target effects. As per the FDA guidelines, small RNA (sRNA) based transgenics are much safer for consumption than those over-expressing proteins. This review thereby summarizes the emerging advances and achievement in the field of sRNAs and its application for crop improvement. PMID:25883599

  2. Use of plant growth promoting bacterial strains to improve Cytisus striatus and Lupinus luteus development for potential application in phytoremediation.

    PubMed

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-03-01

    Plant growth promoting (PGP) bacterial strains possess different mechanisms to improve plant development under common environmental stresses, and are therefore often used as inoculants in soil phytoremediation processes. The aims of the present work were to study the effects of a collection of plant growth promoting bacterial strains on plant development, antioxidant enzyme activities and nutritional status of Cytisus striatus and/or Lupinus luteus plants a) growing in perlite under non-stress conditions and b) growing in diesel-contaminated soil. For this, two greenhouse experiments were designed. Firstly, C. striatus and L. luteus plants were grown from seeds in perlite, and periodically inoculated with 6 PGP strains, either individually or in pairs. Secondly, L. luteus seedlings were grown in soil samples of the A and B horizons of a Cambisol contaminated with 1.25% (w/w) of diesel and inoculated with best PGP inoculant selected from the first experiment. The results indicated that the PGP strains tested in perlite significantly improved plant growth. Combination treatments provoked better growth of L. luteus than the respective individual strains, while individual inoculation treatments were more effective for C. striatus. L. luteus growth in diesel-contaminated soil was significantly improved in the presence of PGP strains, presenting a 2-fold or higher increase in plant biomass. Inoculants did not provoke significant changes in plant nutritional status, with the exception of a subset of siderophore-producing and P-solubilising bacterial strains that resulted in significantly modification of Fe or P concentrations in leaf tissues. Inoculants did not cause significant changes in enzyme activities in perlite experiments, however they significantly reduced oxidative stress in contaminated soils suggesting an improvement in plant tolerance to diesel. Some strains were applied to non-host plants, indicating a non-specific performance of their plant growth promotion

  3. Improving planting stock quality: The humboldt experience. Forest Service general technical report (Final)

    SciTech Connect

    Jenkinson, J.L.; Nelson, J.A.; Huddleston, M.E.

    1993-05-01

    A seedling testing program was developed to improve the survival and growth potential of planting stock produced in the USDA Forest Service Humboldt Nursery, situated on the Pacific Coast in northern California. Coastal and inland seed sources of Douglas-fir and eight other conifers in the Pacific Slope forests of western Oregon and northern California were assessed in both nursery and field studies. Seedling top and root growth capacities were evaluated just after lifting and after cold storage, and stored seedlings were tested for suvival and growth on cleared planting sites in the seed zones of origin. Safe lifting and cold storage schedules were defined, and seedling cultural regimes were formulated to produce successful 1-0, 1-1, and 2-0 stock types. Testing deomonstrated the critical elements of reforestation and proved that rapid establishment is attainable on diverse sites. Accomplishments of the Humboldt program recommended similar programs for other forest nurseries and their service regions.

  4. Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement.

    PubMed

    Betti, Marco; Bauwe, Hermann; Busch, Florian A; Fernie, Alisdair R; Keech, Olivier; Levey, Myles; Ort, Donald R; Parry, Martin A J; Sage, Rowan; Timm, Stefan; Walker, Berkley; Weber, Andreas P M

    2016-05-01

    Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory energy or carbon loss have been proposed, based either on screening for natural variation or by means of genetic engineering. Recent work indicates that plant yield can be substantially improved by the alteration of photorespiratory fluxes or by engineering artificial bypasses to photorespiration. However, there is also evidence indicating that, under certain environmental and/or nutritional conditions, reduced photorespiratory capacity may be detrimental to plant performance. Here we summarize recent advances obtained in photorespiratory engineering and discuss prospects for these advances to be transferred to major crops to help address the globally increasing demand for food and biomass production.

  5. Improvements in mixing operations of water treatment plants by use of a stable finite element model.

    PubMed

    Vellando, P; Fe, J; Juncosa, R; Padilla, F

    2007-06-01

    This work shows improvements made in mixing operations at water treatment plants, as a result of the hydrodynamic analysis of the mixing processes carried out by the use of a Finite Element Model. The code, developed in the Civil Engineering Department of the University of La Coruña, Spain, solves the Navier-Stokes equations that rule viscous incompressible flow by using a Streamline Upwind/Petrov-Galerkin (SUPG) stabilization technique. The incorporation of the SUPG formulation leads to obtaining stable solutions for Reynolds numbers of a moderate order in connection with meshes that are not very refined. Some water treatment units present significant deficiencies in their design. The numerical evaluation of the flow avoids the high expenses of the trial-and-error processes involved in installing and removing the mixing mechanisms and those derived from the need to halt the water treatment processes. As a result, an optimum design of the treatment plant is obtained at a low cost.

  6. Optical fiber sensors to improve the safety of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Ferdinand, P.; Magne, S.; Laffont, G.

    2013-09-01

    Safety must always prevail in Nuclear Power Plants (NPPs), as shown at Fukushima-Daiichi. So, innovations are clearly needed to strengthen instrumentations, which went inoperative during this nuclear accident as a consequence of power supply losses. Possible improvements concern materials and structures, which may be remotely monitored thanks to Optical Fiber Sensors (OFS). We detail topics involving OFS helpful for monitoring, in nominal conditions as well as during a severe accident. They include distributed sensing (Rayleigh, Raman, Brillouin) for both temperature sensing and structure monitoring as well as H2 concentration and ionizing radiation monitoring. For future plants, Fiber Bragg Grating (FBG) sensors are considered up to high temperature for sodium-cooled fast reactor monitoring. These applications can benefit from fiber advantages: sensor multiplexing, multi-km range, no risk-to-people, no common failure mode with other technologies, remote sensing, and the ability to operate in case of power supply lost in the NPP.

  7. Using game technologies to improve the safety of construction plant operations.

    PubMed

    Guo, Hongling; Li, Heng; Chan, Greg; Skitmore, Martin

    2012-09-01

    Many accidents occur world-wide in the use of construction plant and equipment, and safety training is considered by many to be one of the best approaches to their prevention. However, current safety training methods/tools are unable to provide trainees with the hands-on practice needed. Game technology-based safety training platforms have the potential to overcome this problem in a virtual environment. One such platform is described in this paper - its characteristics are analysed and its possible contribution to safety training identified. This is developed and tested by means of a case study involving three major pieces of construction plant, which successfully demonstrates that the platform can improve the process and performance of the safety training involved in their operation. This research not only presents a new and useful solution to the safety training of construction operations, but illustrates the potential use of advanced technologies in solving construction industry problems in general.

  8. Are We Filling the Data Void? An Assessment of the Amount and Extent of Plant Collection Records and Census Data Available for Tropical South America

    PubMed Central

    Feeley, Kenneth

    2015-01-01

    Large-scale studies are needed to increase our understanding of how large-scale conservation threats, such as climate change and deforestation, are impacting diverse tropical ecosystems. These types of studies rely fundamentally on access to extensive and representative datasets (i.e., “big data”). In this study, I asses the availability of plant species occurrence records through the Global Biodiversity Information Facility (GBIF) and the distribution of networked vegetation census plots in tropical South America. I analyze how the amount of available data has changed through time and the consequent changes in taxonomic, spatial, habitat, and climatic representativeness. I show that there are large and growing amounts of data available for tropical South America. Specifically, there are almost 2,000,000 unique geo-referenced collection records representing more than 50,000 species of plants in tropical South America and over 1,500 census plots. However, there is still a gaping “data void” such that many species and many habitats remain so poorly represented in either of the databases as to be functionally invisible for most studies. It is important that we support efforts to increase the availability of data, and the representativeness of these data, so that we can better predict and mitigate the impacts of anthropogenic disturbances. PMID:25927831

  9. Are we filling the data void? An assessment of the amount and extent of plant collection records and census data available for tropical South America.

    PubMed

    Feeley, Kenneth

    2015-01-01

    Large-scale studies are needed to increase our understanding of how large-scale conservation threats, such as climate change and deforestation, are impacting diverse tropical ecosystems. These types of studies rely fundamentally on access to extensive and representative datasets (i.e., "big data"). In this study, I asses the availability of plant species occurrence records through the Global Biodiversity Information Facility (GBIF) and the distribution of networked vegetation census plots in tropical South America. I analyze how the amount of available data has changed through time and the consequent changes in taxonomic, spatial, habitat, and climatic representativeness. I show that there are large and growing amounts of data available for tropical South America. Specifically, there are almost 2,000,000 unique geo-referenced collection records representing more than 50,000 species of plants in tropical South America and over 1,500 census plots. However, there is still a gaping "data void" such that many species and many habitats remain so poorly represented in either of the databases as to be functionally invisible for most studies. It is important that we support efforts to increase the availability of data, and the representativeness of these data, so that we can better predict and mitigate the impacts of anthropogenic disturbances.

  10. Over-expression of STP13, a hexose transporter, improves plant growth and nitrogen use in Arabidopsis thaliana seedlings.

    PubMed

    Schofield, R A; Bi, Y-M; Kant, S; Rothstein, S J

    2009-03-01

    In Arabidopsis thaliana, the regulation of hexose levels by the large monosaccharide transporter (MST) gene family influences many aspects of plant growth. The cloning and transgenic expression of one family member (STP13) enabled the manipulation of carbon (C) and nitrogen (N) metabolism in Arabidopsis. Transgenic seedlings constitutively over-expressing STP13 (STP13OX) had increased rates of glucose uptake, higher endogenous sucrose levels and accumulated more total C and biomass per plant when grown on soil-less media supplemented with 55 mM glucose and sufficient N (9 mM nitrate). Furthermore, STP13OX seedlings acquired 90% more total N than the Col-0 seedlings, and had higher levels of expression of the nitrate transporter NRT2.2. In addition, STP13OX seedlings were larger and had higher biomass than Col-0 seedlings when grown under a limiting N condition (3 mM nitrate). Transgene analysis of STP13 reveals that its gene product is localized to the plasma membrane (PM) in tobacco BY-2 suspension cells, that it encodes a functional MST in planta, and that the STP13 promoter directs GUS expression to the vasculature and to leaf mesophyll cells. This work highlights the link between C and N metabolism, demonstrating that a plant's N use may be improved by increasing the availability of C.

  11. Analysis of Improved Reference Design for a Nuclear-Driven High Temperature Electrolysis Hydrogen Production Plant

    SciTech Connect

    Edwin A. Harvego; James E. O'Brien; Michael G. McKellar

    2010-06-01

    The use of High Temperature Electrolysis (HTE) for the efficient production of hydrogen without the greenhouse gas emissions associated with conventional fossil-fuel hydrogen production techniques has been under investigation at the Idaho National Engineering Laboratory (INL) for the last several years. The activities at the INL have included the development, testing and analysis of large numbers of solid oxide electrolysis cells, and the analyses of potential plant designs for large scale production of hydrogen using an advanced Very-High Temperature Reactor (VHTR) to provide the process heat and electricity to drive the electrolysis process. The results of these system analyses, using the UniSim process analysis software, have shown that the HTE process, when coupled to a VHTR capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to produce the large quantities of hydrogen needed to meet future energy and transportation needs with hydrogen production efficiencies in excess of 50%. In addition, economic analyses performed on the INL reference plant design, optimized to maximize the hydrogen production rate for a 600 MWt VHTR, have shown that a large nuclear-driven HTE hydrogen production plant can to be economically competitive with conventional hydrogen production processes, particularly when the penalties associated with greenhouse gas emissions are considered. The results of this research led to the selection in 2009 of HTE as the preferred concept in the U.S. Department of Energy (DOE) hydrogen technology down-selection process. However, the down-selection process, along with continued technical assessments at the INL, has resulted in a number of proposed modifications and refinements to improve the original INL reference HTE design. These modifications include changes in plant configuration, operating conditions and individual component designs. This paper describes the resulting new INL reference design and presents

  12. Nitrogen fertilizer improves boron phytoextraction by Brassica juncea grown in contaminated sediments and alleviates plant stress.

    PubMed

    Giansoldati, Virginia; Tassi, Eliana; Morelli, Elisabetta; Gabellieri, Edi; Pedron, Francesca; Barbafieri, Meri

    2012-06-01

    In this study we evaluated the effect of different fertilizer treatments on Brassica plants grown on boron-contaminated sediments. Experiments were conducted in the laboratory and on the lysimeter scale. At laboratory scale (microcosm), five different fertilizers were tested for a 35-d period. On the lysimeter scale, nitrogen fertilization was tested at three different doses and plants were allowed to grow until the end of the vegetative phase (70 d). Results showed that nitrogen application had effectively increased plant biomass production, while B uptake was not affected. Total B phytoextracted increased three-fold when the highest nitrogen dose was applied. Phytotoxicity on Brassica was evaluated by biochemical parameters. In plants grown in unfertilized B-contaminated sediments, the activity of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and pyrogallol peroxidase (PPX) increased, whereas catalase (CAT) decreased with respect to control plants. Addition of N progressively mitigated the alteration of enzymatic activity, thus suggesting that N can aid in alleviating B-induced oxidative stress. SOD activity was restored to control levels just at the lowest N treatment, whereas the CAT inhibition was partially restored only at the highest one. N application also lowered the B-induced increase in APX and PPX activities. Increased glutathione reductase activity indicated the need to restore the oxidative balance of glutathione. Data also suggest a role of glutathione and phytochelatins in B defense mechanisms. Results suggest that the nitrogen fertilizer was effective in improving B phytoextraction by increasing Brassica biomass and by alleviating B-induced oxidative stress.

  13. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2.

    PubMed

    Occhialini, Alessandro; Lin, Myat T; Andralojc, P John; Hanson, Maureen R; Parry, Martin A J

    2016-01-01

    Introducing a carbon-concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2 . Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, although still requiring elevated CO2 . We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen-use efficiency that may be achieved provided that adequate CO2 is available near the enzyme.

  14. Total Soluble Protein Extraction for Improved Proteomic Analysis of Transgenic Rice Plant Roots.

    PubMed

    Raorane, Manish L; Narciso, Joan O; Kohli, Ajay

    2016-01-01

    With the advent of high-throughput platforms, proteomics has become a powerful tool to search for plant gene products of agronomic relevance. Protein extractions using multistep protocols have been shown to be effective to achieve better proteome profiles than simple, single-step extractions. These protocols are generally efficient for above ground tissues such as leaves. However, each step leads to loss of some amount of proteins. Additionally, compounds such as proteases in the plant tissues lead to protein degradation. While protease inhibitor cocktails are available, these alone do not seem to suffice when roots are included in the plant sample. This is obvious given the lack of high molecular weight (HMW) proteins obtained from samples that include root tissue. For protein/proteome analysis of transgenic plant roots or of seedlings, which include root tissue, such pronounced protein degradation is especially undesirable. A facile protein extraction protocol is presented, which ensures that despite the inclusion of root tissues there is minimal loss in total protein components.

  15. Effects of agri-environmental schemes on farmland birds: do food availability measurements improve patterns obtained from simple habitat models?

    PubMed

    Ponce, Carlos; Bravo, Carolina; Alonso, Juan Carlos

    2014-07-01

    Studies evaluating agri-environmental schemes (AES) usually focus on responses of single species or functional groups. Analyses are generally based on simple habitat measurements but ignore food availability and other important factors. This can limit our understanding of the ultimate causes determining the reactions of birds to AES. We investigated these issues in detail and throughout the main seasons of a bird's annual cycle (mating, postfledging and wintering) in a dry cereal farmland in a Special Protection Area for farmland birds in central Spain. First, we modeled four bird response parameters (abundance, species richness, diversity and "Species of European Conservation Concern" [SPEC]-score), using detailed food availability and vegetation structure measurements (food models). Second, we fitted new models, built using only substrate composition variables (habitat models). Whereas habitat models revealed that both, fields included and not included in the AES benefited birds, food models went a step further and included seed and arthropod biomass as important predictors, respectively, in winter and during the postfledging season. The validation process showed that food models were on average 13% better (up to 20% in some variables) in predicting bird responses. However, the cost of obtaining data for food models was five times higher than for habitat models. This novel approach highlighted the importance of food availability-related causal processes involved in bird responses to AES, which remained undetected when using conventional substrate composition assessment models. Despite their higher costs, measurements of food availability add important details to interpret the reactions of the bird community to AES interventions and thus facilitate evaluating the real efficiency of AES programs.

  16. Effects of agri-environmental schemes on farmland birds: do food availability measurements improve patterns obtained from simple habitat models?

    PubMed Central

    Ponce, Carlos; Bravo, Carolina; Alonso, Juan Carlos

    2014-01-01

    Studies evaluating agri-environmental schemes (AES) usually focus on responses of single species or functional groups. Analyses are generally based on simple habitat measurements but ignore food availability and other important factors. This can limit our understanding of the ultimate causes determining the reactions of birds to AES. We investigated these issues in detail and throughout the main seasons of a bird's annual cycle (mating, postfledging and wintering) in a dry cereal farmland in a Special Protection Area for farmland birds in central Spain. First, we modeled four bird response parameters (abundance, species richness, diversity and “Species of European Conservation Concern” [SPEC]-score), using detailed food availability and vegetation structure measurements (food models). Second, we fitted new models, built using only substrate composition variables (habitat models). Whereas habitat models revealed that both, fields included and not included in the AES benefited birds, food models went a step further and included seed and arthropod biomass as important predictors, respectively, in winter and during the postfledging season. The validation process showed that food models were on average 13% better (up to 20% in some variables) in predicting bird responses. However, the cost of obtaining data for food models was five times higher than for habitat models. This novel approach highlighted the importance of food availability-related causal processes involved in bird responses to AES, which remained undetected when using conventional substrate composition assessment models. Despite their higher costs, measurements of food availability add important details to interpret the reactions of the bird community to AES interventions and thus facilitate evaluating the real efficiency of AES programs. PMID:25165523

  17. Improvement of water and light availability after thinning at a xeric site: which matters more? A dual isotope approach.

    PubMed

    Giuggiola, Arnaud; Ogée, Jérôme; Rigling, Andreas; Gessler, Arthur; Bugmann, Harald; Treydte, Kerstin

    2016-04-01

    Thinning fosters individual tree growth by increasing the availability of water, light and nutrients. At sites where water rather than light is limiting, thinning also enhances soil evaporation and might not be beneficial. Detailed knowledge of the short- to long-term physiological response underlying the growth responses to thinning is crucial for the management of forests already suffering from recurrent drought-induced dieback. We applied a dual isotope approach together with mechanistic isotope models to study the physiological processes underlying long-term growth enhancement of heavily thinned Pinus sylvestris in a xeric forest in Switzerland. This approach allowed us to identify and disentangle thinning-induced changes in stomatal conductance and assimilation rate. At our xeric study site, the increase in stomatal conductance far outweighed the increase in assimilation, implying that growth release in heavily thinned trees is primarily driven by enhanced water availability rather than increased light availability. We conclude that in forests with relatively isohydric species (drought avoiders) that are growing close to their physiological limits, thinning is recommended to maintain a less negative water balance and thus foster tree growth, and ultimately the survival of forest trees under drought.

  18. Why would plant species become extinct locally if growing conditions improve?

    PubMed

    Kramer, Koen; Bijlsma, Rienk-Jan; Hickler, Thomas; Thuiller, Wilfried

    2012-01-01

    Two assumptions underlie current models of the geographical ranges of perennial plant species: 1. current ranges are in equilibrium with the prevailing climate, and 2. changes are attributable to changes in macroclimatic factors, including tolerance of winter cold, the duration of the growing season, and water stress during the growing season, rather than to biotic interactions. These assumptions allow model parameters to be estimated from current species ranges. Deterioration of growing conditions due to climate change, e.g. more severe drought, will cause local extinction. However, for many plant species, the predicted climate change of higher minimum temperatures and longer growing seasons means, improved growing conditions. Biogeographical models may under some circumstances predict that a species will become locally extinct, despite improved growing conditions, because they are based on an assumption of equilibrium and this forces the species range to match the species-specific macroclimatic thresholds. We argue that such model predictions should be rejected unless there is evidence either that competition influences the position of the range margins or that a certain physiological mechanism associated with the apparent improvement in growing conditions negatively affects the species performance. We illustrate how a process-based vegetation model can be used to ascertain whether such a physiological cause exists. To avoid potential modelling errors of this type, we propose a method that constrains the scenario predictions of the envelope models by changing the geographical distribution of the dominant plant functional type. Consistent modelling results are very important for evaluating how changes in species areas affect local functional trait diversity and hence ecosystem functioning and resilience, and for inferring the implications for conservation management in the face of climate change.

  19. Reducing pump power consumption by 40% (1000 kw) through improved pump management in a central plant

    SciTech Connect

    Deng, S.; Liu, M.; Turner, D.

    1998-07-01

    Chilled water system data collection and field measurements performed at the Central Utility Plant of Texas A and M University (TAMU) in College Station, Texas revealed that 30--50 % of the primary pump head is consumed by manual and automatic valves being operated in a partially-opened condition. A comprehensive analysis was performed to develop an improved pump management schedule. The results show potential savings of up to 40% of the pump power consumption without any capital investment. The optimized schedule is being implemented. This paper describes the method and presents results of the analysis and implementation.

  20. The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)

    NASA Astrophysics Data System (ADS)

    Marincas, O.; Petrov, P.; Ternes, T.; Avram, V.; Moldovan, Z.

    2009-08-01

    Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

  1. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops.

    PubMed

    Ansari, Mohammad Wahid; Trivedi, Dipesh Kumar; Sahoo, Ranjan Kumar; Gill, Sarvajeet Singh; Tuteja, Narendra

    2013-09-01

    The beneficial fungi are potentially useful in agriculture sector to avail several services to crop plants such as water status, nutrient enrichment, stress tolerance, protection, weed control and bio-control. Natural agro-ecosystem relies on fungi because of it takes part in soil organic matter decomposition, nutrient acquisition, organic matter recycling, nutrient recycling, antagonism against plant pests, and crop management. The crucial role of fungi in normalizing the toxic effects of phenols, HCN and ROS by β-CAS, ACC demainase and antioxidant enzymes in plants is well documented. Fungi also play a part in various physiological processes such as water uptake, stomatal movement, mineral uptake, photosynthesis and biosynthesis of lignan, auxins and ethylene to improve growth and enhance plant fitness to cope heat, cold, salinity, drought and heavy metal stress. Here, we highlighted the ethylene- and cyclophilin A (CypA)-mediated response of Piriformospora indica for sustainable crop production under adverse environmental conditions.

  2. Developing Engineered Fuel (Briquettes) Using Fly Ash from the Aquila Coal-Fired Power Plant in Canon City and Locally Available Biomass Waste

    SciTech Connect

    H. Carrasco; H. Sarper

    2006-06-30

    The objective of this research is to explore the feasibility of producing engineered fuels from a combination of renewable and non renewable energy sources. The components are flyash (containing coal fines) and locally available biomass waste. The constraints were such that no other binder additives were to be added. Listed below are the main accomplishments of the project: (1) Determination of the carbon content of the flyash sample from the Aquila plant. It was found to be around 43%. (2) Experiments were carried out using a model which simulates the press process of a wood pellet machine, i.e. a bench press machine with a close chamber, to find out the ideal ratio of wood and fly ash to be mixed to get the desired briquette. The ideal ratio was found to have 60% wood and 40% flyash. (3) The moisture content required to produce the briquettes was found to be anything below 5.8%. (4) The most suitable pressure required to extract the lignin form the wood and cause the binding of the mixture was determined to be 3000psi. At this pressure, the briquettes withstood an average of 150psi on its lateral side. (5) An energy content analysis was performed and the BTU content was determined to be approximately 8912 BTU/lb. (6) The environmental analysis was carried out and no abnormalities were noted. (7) Industrial visits were made to pellet manufacturing plants to investigate the most suitable manufacturing process for the briquettes. (8) A simulation model of extrusion process was developed to explore the possibility of using a cattle feed plant operating on extrusion process to produce briquettes. (9) Attempt to produce 2 tons of briquettes was not successful. The research team conducted a trial production run at a Feed Mill in La Junta, CO to produce two (2) tons of briquettes using the extrusion process in place. The goal was to, immediately after producing the briquettes; send them through Aquila's current system to test the ability of the briquettes to flow through

  3. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Galitsky, Christina; Worrell, Ernst

    2008-01-01

    The motor vehicle industry in the U.S. spends about $3.6 billion on energy annually. In this report, we focus on auto assembly plants. In the U.S., over 70 assembly plants currently produce 13 million cars and trucks each year. In assembly plants, energy expenditures is a relatively small cost factor in the total production process. Still, as manufacturers face an increasingly competitive environment, energy efficiency improvements can provide a means to reduce costs without negatively affecting the yield or the quality of the product. In addition, reducing energy costs reduces the unpredictability associated with variable energy prices in today?s marketplace, which could negatively affect predictable earnings, an important element for publicly-traded companies such as those in the motor vehicle industry. In this report, we first present a summary of the motor vehicle assembly process and energy use. This is followed by a discussion of energy efficiency opportunities available for assembly plants. Where available, we provide specific primary energy savings for each energy efficiency measure based on case studies, as well as references to technical literature. If available, we have listed costs and typical payback periods. We include experiences of assembly plants worldwide with energy efficiency measures reviewed in the report. Our findings suggest that although most motor vehicle companies in the U.S. have energy management teams or programs, there are still opportunities available at individual plants to reduce energy consumption cost effectively. Further research on the economics of the measures for individual assembly plants, as part of an energy management program, is needed to assess the potential impact of selected technologies at these plants.

  4. Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication.

    PubMed

    Wang, Biao; Wang, Ren-Rui; Cui, Zhen-Hua; Bi, Wen-Lu; Li, Jing-Wei; Li, Bai-Quan; Ozudogru, Elif Aylin; Volk, Gayle M; Wang, Qiao-Chun

    2014-01-01

    Rapid increases in human populations provide a great challenge to ensure that adequate quantities of food are available. Sustainable development of agricultural production by breeding more productive cultivars and by increasing the productive potential of existing cultivars can help meet this demand. The present paper provides information on the potential uses of cryogenic techniques in ensuring food security, including: (1) long-term conservation of a diverse germplasm and successful establishment of cryo-banks; (2) maintenance of the regenerative ability of embryogenic tissues that are frequently the target for genetic transformation; (3) enhancement of genetic transformation and plant regeneration of transformed cells, and safe, long-term conservation for transgenic materials; (4) production and maintenance of viable protoplasts for transformation and somatic hybridization; and (5) efficient production of pathogen-free plants. These roles demonstrate that cryogenic technologies offer opportunities to ensure food security.

  5. Improving survival and growth of planted Austrocedrus chilensis seedlings in disturbed patagonian forests of Argentina by managing understory vegetation.

    PubMed

    Pafundi, Leticia; Urretavizcaya, M Florencia; Defossé, Guillermo E

    2014-12-01

    This study was aimed at determining, under field conditions, early interactions between planted cypress seedlings and their associated shrubs in a mesic area of Andean Patagonia and, in a nursery, the effects of increasing light availability on cypress performance when soil water was not a limiting factor. The field experiment was performed in a former cypress-coihue mixed forest (42°02'S, 71°33'W), which was replaced in the 1970s by a plantation of radiata pine. In 2005, 800 cypress seedlings were planted under maqui shrubs in a clear-cut area of the pine stand. In 2007, two treatments were set: no-competition treatment ([NCT] i.e., the surrounding aboveground biomass was removed) and competition treatment ([CT] i.e., without disturbance). The nursery experiment (42°55'S, 71°21'W) consisted of two groups: "shade" (grown under shade cloth) and "sun" (grown at full sun) cypress seedlings. After one growing season, seedling survival and stem growth (in height and diameter) were determined at both sites. Furthermore, the growth rate of leaves, stems, and roots was determined in the nursery. In the field experiment, height growth and survival in NCT were significantly greater than in CT, and a competition process occurred between cypress and surrounding shrubs. In the nursery, sun plants grew more in diameter and increased root weight more than shade plants. Results also showed that in mesic areas of Patagonia, decreasing competition and increasing light levels produced stouter seedlings better adapted to support harsh environmental conditions. Therefore, the removal of protecting shrubs could be a good management practice to improve seedling establishment.

  6. Improving Survival and Growth of Planted Austrocedrus chilensis Seedlings in Disturbed Patagonian Forests of Argentina by Managing Understory Vegetation

    NASA Astrophysics Data System (ADS)

    Pafundi, Leticia; Urretavizcaya, M. Florencia; Defossé, Guillermo E.

    2014-12-01

    This study was aimed at determining, under field conditions, early interactions between planted cypress seedlings and their associated shrubs in a mesic area of Andean Patagonia and, in a nursery, the effects of increasing light availability on cypress performance when soil water was not a limiting factor. The field experiment was performed in a former cypress-coihue mixed forest (42°02'S, 71°33'W), which was replaced in the 1970s by a plantation of radiata pine. In 2005, 800 cypress seedlings were planted under maqui shrubs in a clear-cut area of the pine stand. In 2007, two treatments were set: no-competition treatment ([NCT] i.e., the surrounding aboveground biomass was removed) and competition treatment ([CT] i.e., without disturbance). The nursery experiment (42°55'S, 71°21'W) consisted of two groups: "shade" (grown under shade cloth) and "sun" (grown at full sun) cypress seedlings. After one growing season, seedling survival and stem growth (in height and diameter) were determined at both sites. Furthermore, the growth rate of leaves, stems, and roots was determined in the nursery. In the field experiment, height growth and survival in NCT were significantly greater than in CT, and a competition process occurred between cypress and surrounding shrubs. In the nursery, sun plants grew more in diameter and increased root weight more than shade plants. Results also showed that in mesic areas of Patagonia, decreasing competition and increasing light levels produced stouter seedlings better adapted to support harsh environmental conditions. Therefore, the removal of protecting shrubs could be a good management practice to improve seedling establishment.

  7. Does Salicylic Acid (SA) Improve Tolerance to Salt Stress in Plants? A Study of SA Effects On Tomato Plant Growth, Water Dynamics, Photosynthesis, and Biochemical Parameters.

    PubMed

    Mimouni, Hajer; Wasti, Salma; Manaa, Arafet; Gharbi, Emna; Chalh, Abdellah; Vandoorne, Bertrand; Lutts, Stanley; Ben Ahmed, Hela

    2016-03-01

    Environmental stresses such as salinity directly impact crop growth, and by extension, world food supply and societal prosperity. It is estimated that over 800 million hectares of land throughout the world are salt-affected. In arid and semi-arid regions, salt concentration can be close to that in the seawater. Hence, there are intensive efforts to improve plant tolerance to salinity and other environmental stressors. Salicylic acid (SA) is an important signal molecule for modulating plant responses to stress. In the present study, we examined, on multiple plant growth related endpoints, whether SA applied through the rooting medium could mitigate the adverse effects of salinity on tomato (Solanum lycopersicum) cv. Marmande. The latter is a hitherto understudied tomato plant from the above perspective; it is a classic variety that produces the large ribbed tomatoes in the Mediterranean and consumed worldwide. We found salt stress negatively affected the growth of cv. Marmande tomato plants. However, the SA-treated plants had greater shoot and root dry mass, leaf area compared to untreated plants when exposed to salt stress. Application of SA restores photosynthetic rates and photosynthetic pigment levels under salt (NaCl) exposure. Leaf water, osmotic potential, stomatal conductance transpiration rate, and biochemical parameters were also ameliorated in SA-treated plants under saline stress conditions. Overall, these data illustrate that SA increases cv. Marmande tomato growth by improving photosynthesis, regulation and balance of osmotic potential, induction of compatible osmolyte metabolism, and alleviating membrane damage. We suggest salicylic acid might be considered as a potential growth regulator to improve tomato plant salinity stress resistance, in the current era of global climate change.

  8. A coordinated MIMO control design for a power plant using improved sliding mode controller.

    PubMed

    Ataei, Mohammad; Hooshmand, Rahmat-Allah; Samani, Siavash Golmohammadi

    2014-03-01

    For the participation of the steam power plants in regulating the network frequency, boilers and turbines should be co-ordinately controlled in addition to the base load productions. Lack of coordinated control over boiler-turbine may lead to instability; oscillation in producing power and boiler parameters; reduction in the reliability of the unit; and inflicting thermodynamic tension on devices. This paper proposes a boiler-turbine coordinated multivariable control system based on improved sliding mode controller (ISMC). The system controls two main boiler-turbine parameters i.e., the turbine revolution and superheated steam pressure of the boiler output. For this purpose, a comprehensive model of the system including complete and exact description of the subsystems is extracted. The parameters of this model are determined according to our case study that is the 320MW unit of Islam-Abad power plant in Isfahan/Iran. The ISMC method is simulated on the power plant and its performance is compared with the related real PI (proportional-integral) controllers which have been used in this unit. The simulation results show the capability of the proposed controller system in controlling local network frequency and superheated steam pressure in the presence of load variations and disturbances of boiler.

  9. Improvements of a molten carbonate fuel cell power plant via exergy analysis

    SciTech Connect

    Braun, R.J.; Gaggioli, R.A.; Dunbar, W.R. |

    1996-12-31

    A proposed molten carbonate fuel cell power plant design, intended for commercial production by the end of the 1990`s and developed under the auspices of the US Department of Energy and the Gas Research Institute, has been analyzed with exergy analysis. The commercial production units, targeted for dispersed power generation markets, are based on an existing demonstration molten carbonate fuel cell power plant design which entered the start-up phase in early 1996. Exergy analysis of the commercial plant design shows the overall, second-law system efficiency to be 53 percent. The principal inefficiency, 17 percent of the total, lies in the catalytic combustor. Another major inefficiency is the stack loss, 14 percent. Heat transfer accounts for approximately 6% of the loss. System reconfigurations, incorporating a steam cycle with reheat (System 1) and a gas turbine cycle (System 2), both with revised heat exchanger networks, for significant improvement are proposed and evaluated. The second-law system efficiency is raised to 66% in System 1 and to 70% for System 2.

  10. Aldo-keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants.

    PubMed

    Vemanna, Ramu S; Vennapusa, Amaranatha Reddy; Easwaran, Murugesh; Chandrashekar, Babitha K; Rao, Hanumantha; Ghanti, Kirankumar; Sudhakar, Chinta; Mysore, Kirankumar S; Udayakumar, M

    2016-09-09

    In recent years, concerns about the use of glyphosate-resistant (GR) crops have increased because of glyphosate residual levels in plants and development of herbicide-resistant weeds. In spite of identifying glyphosate detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an Aldo-keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologs in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate-mediated cucumber seedlings growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1 or OsAKRI expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta. This article is protected by copyright. All rights reserved.

  11. Anti-TNF-Mediated Modulation of Prohepcidin Improves Iron Availability in Inflammatory Bowel Disease, in an IL-6-Mediated Fashion

    PubMed Central

    Duca, Lorena; Rigolini, Roberta; Spina, Luisa; Tontini, Gian Eugenio; Munizio, Nadia; Cappellini, Maria Domenica

    2017-01-01

    Background. Anaemia is common in inflammatory bowel disease (IBD), frequently resulting from a combination of iron deficiency and of anaemia of chronic disease (ACD). ACD is characterized by macrophage iron retention induced by proinflammatory cytokines. Hepcidin is the master inducer of iron accumulation during ACD, and its production is mainly regulated by IL-6 and the novel erythroid hormone erythroferrone (ERFE). This study evaluates whether anti-TNF monoclonal antibodies therapy modurates hepcidin production and the levels of its main regulators, leading to a restoration of iron homeostasis. Methods. Sera were collected from 21 IBD patients, before each anti-TNF administration, for the first 6 weeks of therapy. Prohepcidin, erythropoietin, erythroferrone, C reactive protein, interleukin-6, iron markers, and haemoglobin levels were measured and clinical activity indexes were evaluated. Results. Serum prohepcidin, IL-6, CRP, and ferritin were significantly reduced after 6-week treatment; an increase in serum iron and total transferrin was observed. No changes in the EPO-ERFE axis were found. Remarkably, haemoglobin was significantly increased. Conclusions. Anti-TNF therapy improves iron metabolism and, subsequently, anaemia in IBD. This effect appears to be related to the modulation of the cytokine network and specifically IL-6 leading to a relevant decrease of hepcidin, a master regulator of ACD. PMID:28191453

  12. Anti-TNF-Mediated Modulation of Prohepcidin Improves Iron Availability in Inflammatory Bowel Disease, in an IL-6-Mediated Fashion.

    PubMed

    Cavallaro, Flaminia; Duca, Lorena; Pisani, Laura Francesca; Rigolini, Roberta; Spina, Luisa; Tontini, Gian Eugenio; Munizio, Nadia; Costa, Elena; Cappellini, Maria Domenica; Vecchi, Maurizio; Pastorelli, Luca

    2017-01-01

    Background. Anaemia is common in inflammatory bowel disease (IBD), frequently resulting from a combination of iron deficiency and of anaemia of chronic disease (ACD). ACD is characterized by macrophage iron retention induced by proinflammatory cytokines. Hepcidin is the master inducer of iron accumulation during ACD, and its production is mainly regulated by IL-6 and the novel erythroid hormone erythroferrone (ERFE). This study evaluates whether anti-TNF monoclonal antibodies therapy modurates hepcidin production and the levels of its main regulators, leading to a restoration of iron homeostasis. Methods. Sera were collected from 21 IBD patients, before each anti-TNF administration, for the first 6 weeks of therapy. Prohepcidin, erythropoietin, erythroferrone, C reactive protein, interleukin-6, iron markers, and haemoglobin levels were measured and clinical activity indexes were evaluated. Results. Serum prohepcidin, IL-6, CRP, and ferritin were significantly reduced after 6-week treatment; an increase in serum iron and total transferrin was observed. No changes in the EPO-ERFE axis were found. Remarkably, haemoglobin was significantly increased. Conclusions. Anti-TNF therapy improves iron metabolism and, subsequently, anaemia in IBD. This effect appears to be related to the modulation of the cytokine network and specifically IL-6 leading to a relevant decrease of hepcidin, a master regulator of ACD.

  13. Suppression of Tla1 gene expression for improved solar conversion efficiency and photosynthetic productivity in plants and algae

    DOEpatents

    Melis, Anastasios; Mitra, Mautusi

    2010-06-29

    The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.

  14. Ford Van Dyke: Compressed Air Management Program Leads to Improvements that Reduce Energy Consumption at an Automotive Transmission Plant

    SciTech Connect

    2010-06-25

    Staff at the Ford Van Dyke Transmission Plant in Sterling Heights, Michigan, have increased the efficiency of the plant’s compressed air system to enhance its performance while saving energy and improving production.

  15. Can Physiological Endpoints Improve the Sensitivity of Assays with Plants in the Risk Assessment of Contaminated Soils?

    PubMed Central

    Gavina, Ana; Antunes, Sara C.; Pinto, Glória; Claro, Maria Teresa; Santos, Conceição; Gonçalves, Fernando; Pereira, Ruth

    2013-01-01

    Site-specific risk assessment of contaminated areas indicates prior areas for intervention, and provides helpful information for risk managers. This study was conducted in the Ervedosa mine area (Bragança, Portugal), where both underground and open pit exploration of tin and arsenic minerals were performed for about one century (1857 – 1969). We aimed at obtaining ecotoxicological information with terrestrial and aquatic plant species to integrate in the risk assessment of this mine area. Further we also intended to evaluate if the assessment of other parameters, in standard assays with terrestrial plants, can improve the identification of phytotoxic soils. For this purpose, soil samples were collected on 16 sampling sites distributed along four transects, defined within the mine area, and in one reference site. General soil physical and chemical parameters, total and extractable metal contents were analyzed. Assays were performed for soil elutriates and for the whole soil matrix following standard guidelines for growth inhibition assay with Lemna minor and emergence and seedling growth assay with Zea mays. At the end of the Z. mays assay, relative water content, membrane permeability, leaf area, content of photosynthetic pigments (chlorophylls and carotenoids), malondialdehyde levels, proline content, and chlorophyll fluorescence (Fv/Fm and ΦPSII) parameters were evaluated. In general, the soils near the exploration area revealed high levels of Al, Mn, Fe and Cu. Almost all the soils from transepts C, D and F presented total concentrations of arsenic well above soils screening benchmark values available. Elutriates of several soils from sampling sites near the exploration and ore treatment areas were toxic to L. minor, suggesting that the retention function of these soils was seriously compromised. In Z. mays assay, plant performance parameters (other than those recommended by standard protocols), allowed the identification of more phytotoxic soils. The

  16. Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin

    SciTech Connect

    Mary Behling; Susan Pool; Douglas Patchen; John Harper

    2008-12-31

    To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos

  17. Use of collaboration software to improve nuclear power plant outage management

    SciTech Connect

    Germain, Shawn

    2015-02-01

    Nuclear Power Plant (NPP) refueling outages create some of the most challenging activities the utilities face in both tracking and coordinating thousands of activities in a short period of time. Other challenges, including nuclear safety concerns arising from atypical system configurations and resource allocation issues, can create delays and schedule overruns, driving up outage costs. Today the majority of the outage communication is done using processes that do not take advantage of advances in modern technologies that enable enhanced communication, collaboration and information sharing. Some of the common practices include: runners that deliver paper-based requests for approval, radios, telephones, desktop computers, daily schedule printouts, and static whiteboards that are used to display information. Many gains have been made to reduce the challenges facing outage coordinators; however; new opportunities can be realized by utilizing modern technological advancements in communication and information tools that can enhance the collective situational awareness of plant personnel leading to improved decision-making. Ongoing research as part of the Light Water Reactor Sustainability Program (LWRS) has been targeting NPP outage improvement. As part of this research, various applications of collaborative software have been demonstrated through pilot project utility partnerships. Collaboration software can be utilized as part of the larger concept of Computer-Supported Cooperative Work (CSCW). Collaborative software can be used for emergent issue resolution, Outage Control Center (OCC) displays, and schedule monitoring. Use of collaboration software enables outage staff and subject matter experts (SMEs) to view and update critical outage information from any location on site or off.

  18. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.

    SciTech Connect

    JOE,J.

    2007-07-08

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

  19. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  20. The natural abundance of 15N in plant and soil-available N indicates a shift of main plant N resources to NO3(-) from NH4(+) along the N leaching gradient.

    PubMed

    Takebayashi, Yu; Koba, Keisuke; Sasaki, Yuji; Fang, Yunting; Yoh, Muneoki

    2010-04-15

    To investigate which of ammonium (NH(4)(+)) or nitrate (NO(3)(-)) is used by plants at gradient sites with different nitrogen (N) availability, we measured the natural abundance of (15)N in foliage and soil extractable N. Hinoki cypress (Chamaecyparis obtusa Endlicher) planted broadly in Japan was selected for use in this study. We estimated the source proportion of foliar N (NH(4)(+) vs. NO(3)(-)) quantitatively using mass balance equations. The results showed that C. obtusa used mainly NH(4)(+) in N-limited forests, although the dependence of C. obtusa on NO(3)(-) was greater in other NO(3)(-)-rich forests. We regarded dissolved organic N (DON) as a potential N source because a previous study demonstrated that C. obtusa can take up glycine. Thus we added DON to our mass balance equations and calculated the source proportion using an isotope-mixing model (IsoSource model). The results still showed a positive correlation between the calculated plant N proportion of NO(3)(-) and the NO(3)(-) pool size in the soil, indicating that high NO(3)(-) availability increases the reliance of C. obtusa on NO(3)(-). Our data suggest the shift of the N source for C. obtusa from NH(4)(+) to NO(3)(-) according to the relative availability of NO(3)(-). They also show the potential of the foliar delta(15)N of C. obtusa as an indicator of the N status in forest ecosystems with the help of the delta(15)N values of soil inorganic and organic N.

  1. Ex vivo lung perfusion to improve donor lung function and increase the number of organs available for transplantation.

    PubMed

    Valenza, Franco; Rosso, Lorenzo; Coppola, Silvia; Froio, Sara; Palleschi, Alessandro; Tosi, Davide; Mendogni, Paolo; Salice, Valentina; Ruggeri, Giulia M; Fumagalli, Jacopo; Villa, Alessandro; Nosotti, Mario; Santambrogio, Luigi; Gattinoni, Luciano

    2014-06-01

    This paper describes the initial clinical experience of ex vivo lung perfusion (EVLP) at the Fondazione Ca' Granda in Milan between January 2011 and May 2013. EVLP was considered if donor PaO2 /FiO2 was below 300 mmHg or if lung function was doubtful. Donors with massive lung contusion, aspiration, purulent secretions, pneumonia, or sepsis were excluded. EVLP was run with a low-flow, open atrium and low hematocrit technique. Thirty-five lung transplants from brain death donors were performed, seven of which after EVLP. EVLP donors were older (54 ± 9 years vs. 40 ± 15 years, EVLP versus Standard, P < 0.05), had lower PaO2 /FiO2 (264 ± 78 mmHg vs. 453 ± 119 mmHg, P < 0.05), and more chest X-ray abnormalities (P < 0.05). EVLP recipients were more often admitted to intensive care unit as urgent cases (57% vs. 18%, P = 0.05); lung allocation score at transplantation was higher (79 [40-84] vs. 39 [36-46], P < 0.05). After transplantation, primary graft dysfunction (PGD72 grade 3, 32% vs. 28%, EVLP versus Standard, P = 1), mortality at 30 days (0% vs. 0%, P = 1), and overall survival (71% vs. 86%, EVLP versus Standard P = 0.27) were not different between groups. EVLP enabled a 20% increase in available donor organs and resulted in successful transplants with lungs that would have otherwise been rejected (ClinicalTrials.gov number: NCT01967953).

  2. Ex vivo lung perfusion to improve donor lung function and increase the number of organs available for transplantation

    PubMed Central

    Valenza, Franco; Rosso, Lorenzo; Coppola, Silvia; Froio, Sara; Palleschi, Alessandro; Tosi, Davide; Mendogni, Paolo; Salice, Valentina; Ruggeri, Giulia M; Fumagalli, Jacopo; Villa, Alessandro; Nosotti, Mario; Santambrogio, Luigi; Gattinoni, Luciano

    2014-01-01

    This paper describes the initial clinical experience of ex vivo lung perfusion (EVLP) at the Fondazione Ca’ Granda in Milan between January 2011 and May 2013. EVLP was considered if donor PaO2/FiO2 was below 300 mmHg or if lung function was doubtful. Donors with massive lung contusion, aspiration, purulent secretions, pneumonia, or sepsis were excluded. EVLP was run with a low-flow, open atrium and low hematocrit technique. Thirty-five lung transplants from brain death donors were performed, seven of which after EVLP. EVLP donors were older (54 ± 9 years vs. 40 ± 15 years, EVLP versus Standard, P < 0.05), had lower PaO2/FiO2 (264 ± 78 mmHg vs. 453 ± 119 mmHg, P < 0.05), and more chest X-ray abnormalities (P < 0.05). EVLP recipients were more often admitted to intensive care unit as urgent cases (57% vs. 18%, P = 0.05); lung allocation score at transplantation was higher (79 [40–84] vs. 39 [36–46], P < 0.05). After transplantation, primary graft dysfunction (PGD72 grade 3, 32% vs. 28%, EVLP versus Standard, P = 1), mortality at 30 days (0% vs. 0%, P = 1), and overall survival (71% vs. 86%, EVLP versus Standard P = 0.27) were not different between groups. EVLP enabled a 20% increase in available donor organs and resulted in successful transplants with lungs that would have otherwise been rejected (ClinicalTrials.gov number: NCT01967953). PMID:24628890

  3. Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants.

    PubMed

    Armada, E; Probanza, A; Roldán, A; Azcón, R

    2016-03-15

    This study evaluates the responses of Lavandula dentata under drought conditions to the inoculation with single autochthonous arbuscular mycorrhizal (AM) fungus (five fungal strains) or with their mixture and the effects of these inocula with a native Bacillus thuringiensis (endophytic bacteria). These microorganisms were drought tolerant and in general, increased plant growth and nutrition. Particularly, the AM fungal mixture and B. thuringiensis maximized plant biomass and compensated drought stress as values of antioxidant activities [superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase APX)] shown. The AMF-bacteria interactions highly reduced the plant oxidative damage of lipids [malondialdehyde (MDA)] and increased the mycorrhizal development (mainly arbuscular formation representative of symbiotic functionality). These microbial interactions explain the highest potential of dually inoculated plants to tolerate drought stress. B. thuringiensis "in vitro" under osmotic stress does not reduce its PGPB (plant growth promoting bacteria) abilities as indole acetic acid (IAA) and ACC deaminase production and phosphate solubilization indicating its capacity to improve plant growth under stress conditions. Each one of the autochthonous fungal strains maintained their particular interaction with B. thuringiensis reflecting the diversity, intrinsic abilities and inherent compatibility of these microorganisms. In general, autochthonous AM fungal species and particularly their mixture with B. thuringiensis demonstrated their potential for protecting plants against drought and helping plants to thrive in semiarid ecosystems.

  4. Overexpression of the Wheat Expansin Gene TaEXPA2 Improved Seed Production and Drought Tolerance in Transgenic Tobacco Plants.

    PubMed

    Chen, Yanhui; Han, Yangyang; Zhang, Meng; Zhou, Shan; Kong, Xiangzhu; Wang, Wei

    2016-01-01

    Expansins are cell wall proteins that are grouped into two main families, α-expansins and β-expansins, and they are implicated in the control of cell extension via the disruption of hydrogen bonds between cellulose and matrix glucans. TaEXPA2 is an α-expansin gene identified in wheat. Based on putative cis-regulatory elements in the TaEXPA2 promoter sequence and the expression pattern induced when polyethylene glycol (PEG) is used to mimic water stress, we hypothesized that TaEXPA2 is involved in plant drought tolerance and plant development. Through transient expression of 35S::TaEXPA2-GFP in onion epidermal cells, TaEXPA2 was localized to the cell wall. Constitutive expression of TaEXPA2 in tobacco improved seed production by increasing capsule number, not seed size, without having any effect on plant growth patterns. The transgenic tobacco exhibited a significantly greater tolerance to water-deficiency stress than did wild-type (WT) plants. We found that under drought stress, the transgenic plants maintained a better water status. The accumulated content of osmotic adjustment substances, such as proline, in TaEXPA2 transgenic plants was greater than that in WT plants. Transgenic plants also displayed greater antioxidative competence as indicated by their lower malondialdehyde (MDA) content, relative electrical conductivity, and reactive oxygen species (ROS) accumulation than did WT plants. This result suggests that the transgenic plants suffer less damage from ROS under drought conditions. The activities of some antioxidant enzymes as well as expression levels of several genes encoding key antioxidant enzymes were higher in the transgenic plants than in the WT plants under drought stress. Collectively, our results suggest that ectopic expression of the wheat expansin gene TaEXPA2 improves seed production and drought tolerance in transgenic tobacco plants.

  5. Improved virus removal by high-basicity polyaluminum coagulants compared to commercially available aluminum-based coagulants.

    PubMed

    Shirasaki, N; Matsushita, T; Matsui, Y; Oshiba, A; Marubayashi, T; Sato, S

    2014-01-01

    We investigated the effects of basicity, sulfate content, and aluminum hydrolyte species on the ability of polyaluminum chloride (PACl) coagulants to remove F-specific RNA bacteriophages from river water at a pH range of 6-8. An increase in PACl basicity from 1.5 to 2.1 and the absence of sulfate led to a reduction of the amount of monomeric aluminum species (i.e., an increase of the total amount of polymeric aluminum and colloidal aluminum species) in the PACl, to an increase in the colloid charge density of the PACl, or to both and, as a result, to high virus removal efficiency. The efficiency of virus removal at around pH 8 observed with PACl-2.1c, a nonsulfated high-basicity PACl (basicity 2.1-2.2) with a high colloidal aluminum content, was larger than that observed with PACl-2.1b, a nonsulfated high-basicity PACl (basicity 2.1-2.2) with a high polymeric aluminum content. In contrast, although extremely high basicity PACls (e.g., PACl-2.7ns, basicity 2.7) effectively removed turbidity and UV260-absorbing natural organic matter and resulted in a very low residual aluminum concentration, the virus removal ratio with PACl-2.7ns was smaller than the ratio with PACl-2.1c at around pH 8, possibly as a result of a reduction of the colloid charge density of the PACl as the basicity was increased from 2.1 to 2.7. Liquid (27)Al NMR analysis revealed that PACl-2.1c contained Al30 species, which was not the case for PACl-2.1b or PACl-2.7ns. This result suggests that Al30 species probably played a major role in virus removal during the coagulation process. In summary, PACl-2.1c, which has high colloidal aluminum content, contains Al30 species, and has a high colloid charge density, removed viruses more efficiently (>4 log10 for infectious viruses) than the other aluminum-based coagulants-including commercially available PACls (basicity 1.5-1.8), alum, and PACl-2.7ns-over the entire tested pH (6-8) and coagulant dosage (0.54-5.4 mg-Al/L) ranges.

  6. American Water Heater Company: Compressed Air System Optimization Project Saves Energy and Improves Production at Water Heater Plant

    SciTech Connect

    2003-11-01

    In 2001, American Water Heater Company implemented a system-level improvement project on the compressed air system that serves its manufacturing plant in Johnson City, Tennessee. The plant now operates with less compressor capacity, which has reduced its energy consumption and maintenance needs. The project's total cost was $228,000. The annual compressed air energy savings (2,345,000 kWh) and maintenance savings total $160,000, yielding a simple payback of 17 months. Furthermore, the system now supports the plant's production processes more effectively, which has improved product quality and increased production.

  7. Improving methods to evaluate the impacts of plant invasions: lessons from 40 years of research

    PubMed Central

    Stricker, Kerry Bohl; Hagan, Donald; Flory, S. Luke

    2015-01-01

    Methods used to evaluate the ecological impacts of biological invasions vary widely from broad-scale observational studies to removal experiments in invaded communities and experimental additions in common gardens and greenhouses. Different methods provide information at diverse spatial and temporal scales with varying levels of reliability. Thus, here we provide a synthetic and critical review of the methods used to evaluate the impacts of plant invasions and provide recommendations for future research. We review the types of methods available and report patterns in methods used, including the duration and spatial scale of studies and plant functional groups examined, from 410 peer-reviewed papers published between 1971 and 2011. We found that there has been a marked increase in papers published on plant invasion impacts since 2003 and that more than half of all studies employed observational methods while <5 % included predictive modelling. Most of the studies were temporally and spatially restricted with 51 % of studies lasting <1 year and almost half of all studies conducted in plots or mesocosms <1 m2. There was also a bias in life form studied: more than 60 % of all studies evaluated impacts of invasive forbs and graminoids while <16 % focused on invasive trees. To more effectively quantify invasion impacts, we argue that longer-term experimental research and more studies that use predictive modelling and evaluate impacts of invasions on ecosystem processes and fauna are needed. Combining broad-scale observational studies with experiments and predictive modelling may provide the most insight into invasion impacts for policy makers and land managers seeking to reduce the effects of plant invasions. PMID:25829379

  8. Improving methods to evaluate the impacts of plant invasions: lessons from 40 years of research.

    PubMed

    Stricker, Kerry Bohl; Hagan, Donald; Flory, S Luke

    2015-03-30

    Methods used to evaluate the ecological impacts of biological invasions vary widely from broad-scale observational studies to removal experiments in invaded communities and experimental additions in common gardens and greenhouses. Different methods provide information at diverse spatial and temporal scales with varying levels of reliability. Thus, here we provide a synthetic and critical review of the methods used to evaluate the impacts of plant invasions and provide recommendations for future research. We review the types of methods available and report patterns in methods used, including the duration and spatial scale of studies and plant functional groups examined, from 410 peer-reviewed papers published between 1971 and 2011. We found that there has been a marked increase in papers published on plant invasion impacts since 2003 and that more than half of all studies employed observational methods while <5 % included predictive modelling. Most of the studies were temporally and spatially restricted with 51 % of studies lasting <1 year and almost half of all studies conducted in plots or mesocosms <1 m(2). There was also a bias in life form studied: more than 60 % of all studies evaluated impacts of invasive forbs and graminoids while <16 % focused on invasive trees. To more effectively quantify invasion impacts, we argue that longer-term experimental research and more studies that use predictive modelling and evaluate impacts of invasions on ecosystem processes and fauna are needed. Combining broad-scale observational studies with experiments and predictive modelling may provide the most insight into invasion impacts for policy makers and land managers seeking to reduce the effects of plant invasions.

  9. An Innovative Magnetic Charging Chute to Improve Productivity of Sinter Machine at Rourkela Steel Plant

    NASA Astrophysics Data System (ADS)

    Selvam, Sambandham Thirumalai; Chaudhuri, Subhasis; Das, Arunaba; Singh, Mithilesh Kumar; Mahanta, H. K.

    Sintering is a process in sinter machine for agglomeration of iron ore and other raw material fines into a compact porous mass, i.e., sinter, used in Blast Furnaces as an iron bearing input charge material for hot metal production. 'Permeability' of sinter-bed on sinter machine i.e., the porosity in sinter-bed of charged materials, facilitates atmospheric air passes from the top to bottom across the depth of sinter-bed, when suction created from the bottom of the bed, for efficient heat carry over from top to bottom of the bed for complete burning of charged materials for effective sintering process controls the productivity of the sinter machine. The level of 'permeability' in sinter-bed is depending upon the effectiveness of 'charging chute' in size-wise 'segregation' of charge materials across the depth in sinter-bed, achieved due to differences in the sliding velocities of particles during charging into the moving sinter-bed. The permeability achieved by the earlier conventional 'charging chute' was limited due to its design and positional constraints in sinter machine. Improving the productivity of sinter machine, through increased permeability of sinter bed is successfully achieved through implementation of an innovatively designed and developed, "Magnetic Charging Chute" at Sinter Plant no. 2 of Rourkela Steel Plant. The induced magnetic force on the charged materials while the charge materials dropping down through the charge chute has improved the permeability of sinter bed through an unique method of segregating the para-magnetic materials and the finer materials of the charge materials to top layer of sinter bed along with improved size-wise segregation of charge materials. This has increased the productivity of the sinter machine by 3% and also reduced the solid fuel consumption i.e., coke breeze in input charge materials by 1 kg/t of sinter.

  10. Gibberellin-producing Promicromonospora sp. SE188 improves Solanum lycopersicum plant growth and influences endogenous plant hormones.

    PubMed

    Kang, Sang-Mo; Khan, Abdul Latif; Hamayun, Muhammad; Hussain, Javid; Joo, Gil-Jae; You, Young-Hyun; Kim, Jong-Guk; Lee, In-Jung

    2012-12-01

    Plant growth-promoting rhizobacteria (PGPR) producing gibberellins (GAs) can be beneficial to plant growth and development. In the present study, we isolated and screened a new strain of Promicromonospora sp., SE188, isolated from soil. Promicromonospora sp. SE188 secreted GAs into its growth medium and exhibited phosphate solubilization potential. The PGPR produced physiologically active (GA(1) and GA(4)) and inactive (GA(9), GA(12), GA(19), GA(20), GA(24), GA(34), and GA(53)) GAs in various quantities detected by GC/MS-SIM. Solanum lycopersicum (tomato) plants inoculated with Promicromonospora sp. SE188 showed a significantly higher shoot length and biomass as compared to controls where PGPR-free nutrient broth (NB) and distilled water (DW) were applied to plants. The presence of Promicromonospora sp. SE188 significantly up-regulated the non C-13 hydroxylation GA biosynthesis pathway (GA(12)→GA(24)→GA(9)→GA(4)→ GA(