Sample records for improving plasma performance

  1. Dependence of LTX plasma performance on surface conditions as determined by in situ analysis of plasma facing components

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Kaita, R.; Majeski, R.; Bedoya, F.; Allain, J. P.; Abrams, T.; Bell, R. E.; Boyle, D. P.; Jaworski, M. A.; Schmitt, J. C.

    2015-08-01

    The Materials Analysis and Particle Probe (MAPP) diagnostic has been implemented on the Lithium Tokamak Experiment (LTX) at PPPL, providing the first in situ X-ray photoelectron spectroscopy (XPS) surface characterization of tokamak plasma facing components (PFCs). MAPP samples were exposed to argon glow discharge conditioning (GDC), lithium evaporations, and hydrogen tokamak discharges inside LTX. Samples were analyzed with XPS, and alterations to surface conditions were correlated against observed LTX plasma performance changes. Argon GDC caused the accumulation of nm-scale metal oxide layers on the PFC surface, which appeared to bury surface carbon and oxygen contamination and thus improve plasma performance. Lithium evaporation led to the rapid formation of a lithium oxide (Li2O) surface; plasma performance was strongly improved for sufficiently thick evaporative coatings. Results indicate that a 5 h argon GDC or a 50 nm evaporative lithium coating will both significantly improve LTX plasma performance.

  2. Improving the work function of the niobium surface of SRF cavities by plasma processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyagi, P. V.; Doleans, M.; Hannah, B.

    2016-01-01

    An in situ plasma processing technique using chemically reactive oxygen plasma to remove hydrocarbons from superconducting radio frequency cavity surfaces at room temperature was developed at the spallation neutron source, at Oak Ridge National Laboratory. To understand better the interaction between the plasma and niobium surface, surface studies on small samples were performed. In this article, we report the results from those surface studies. The results show that plasma processing removes hydrocarbons from top surface and improves the surface work function by 0.5₋1.0 eV. Improving the work function of RF surface of cavities can help to improve their operational performance.

  3. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO₂ Gate Dielectrics by CF₄ Plasma Treatment.

    PubMed

    Fan, Ching-Lin; Tseng, Fan-Ping; Tseng, Chiao-Yuan

    2018-05-17

    In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a HfO₂ gate insulator and CF₄ plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO₂ gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm²/V∙s (without treatment) to 54.6 cm²/V∙s (with CF₄ plasma treatment), which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO₂ gate dielectric has also been improved by the CF₄ plasma treatment. By applying the CF₄ plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device's immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF₄ plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO₂ gate dielectric, but also enhances the device's reliability.

  4. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectrics by CF4 Plasma Treatment

    PubMed Central

    Fan, Ching-Lin; Tseng, Fan-Ping; Tseng, Chiao-Yuan

    2018-01-01

    In this work, amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a HfO2 gate insulator and CF4 plasma treatment was demonstrated for the first time. Through the plasma treatment, both the electrical performance and reliability of the a-IGZO TFT with HfO2 gate dielectric were improved. The carrier mobility significantly increased by 80.8%, from 30.2 cm2/V∙s (without treatment) to 54.6 cm2/V∙s (with CF4 plasma treatment), which is due to the incorporated fluorine not only providing an extra electron to the IGZO, but also passivating the interface trap density. In addition, the reliability of the a-IGZO TFT with HfO2 gate dielectric has also been improved by the CF4 plasma treatment. By applying the CF4 plasma treatment to the a-IGZO TFT, the hysteresis effect of the device has been improved and the device’s immunity against moisture from the ambient atmosphere has been enhanced. It is believed that the CF4 plasma treatment not only significantly improves the electrical performance of a-IGZO TFT with HfO2 gate dielectric, but also enhances the device’s reliability. PMID:29772767

  5. Improved confinement in highly powered high performance scenarios on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrie, Thomas W.; Osborne, Thomas; Fenstermacher, Max E.

    DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95 = 6, P IN up to 15 MW, H 98 = 1.4–1.8, and β N = 2.5–4.0. The ion B xmore » $$\\triangledown$$B direction is away from the primary X-point. While plasma conditions at lower to moderate power input (e.g., 11 MW) are shown to be favorable to successful puff-and-pump radiating divertor applications, particularly when using argon seeds, plasma behavior at higher powers (e.g., ≥14 MW) may make successful puff-and-pump operation more problematic. In contrast to lower powered high performance plasmas, both $$\\tau$$ E and β N in the high power cases (≥14 MW) increased and ELM frequency decreased, as density was raised by deuterium gas injection. Improved performance in the higher power plasmas was tied to higher pedestal pressure, which according to peeling-ballooning mode stability analysis using the ELITE code could increase with density along the kink/peeling stability threshold, while the pedestal pressure gradient in the lower power discharges were limited by the ballooning threshold. This resulted in improved fueling efficiency and ≈10% higher $$\\tau$$ E and β N than is normally observed in comparable high performance plasmas on DIII-D. Applying the puff-and-pump radiating divertor approach at moderate versus high power input is shown to result in a much different evolution in core and pedestal plasma behavior. In conclusion, we find that injecting deuterium gas into these highly powered DND plasmas may open up a new avenue for achieving elevated plasma performance, including better fueling, but the resulting higher density may also complicate application of a radiating divertor approach to heat flux reduction in present-day tokamaks, if scenarios involving second-harmonic electron cyclotron heating are used.« less

  6. Improved confinement in highly powered high performance scenarios on DIII-D

    DOE PAGES

    Petrie, Thomas W.; Osborne, Thomas; Fenstermacher, Max E.; ...

    2017-06-09

    DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95 = 6, P IN up to 15 MW, H 98 = 1.4–1.8, and β N = 2.5–4.0. The ion B xmore » $$\\triangledown$$B direction is away from the primary X-point. While plasma conditions at lower to moderate power input (e.g., 11 MW) are shown to be favorable to successful puff-and-pump radiating divertor applications, particularly when using argon seeds, plasma behavior at higher powers (e.g., ≥14 MW) may make successful puff-and-pump operation more problematic. In contrast to lower powered high performance plasmas, both $$\\tau$$ E and β N in the high power cases (≥14 MW) increased and ELM frequency decreased, as density was raised by deuterium gas injection. Improved performance in the higher power plasmas was tied to higher pedestal pressure, which according to peeling-ballooning mode stability analysis using the ELITE code could increase with density along the kink/peeling stability threshold, while the pedestal pressure gradient in the lower power discharges were limited by the ballooning threshold. This resulted in improved fueling efficiency and ≈10% higher $$\\tau$$ E and β N than is normally observed in comparable high performance plasmas on DIII-D. Applying the puff-and-pump radiating divertor approach at moderate versus high power input is shown to result in a much different evolution in core and pedestal plasma behavior. In conclusion, we find that injecting deuterium gas into these highly powered DND plasmas may open up a new avenue for achieving elevated plasma performance, including better fueling, but the resulting higher density may also complicate application of a radiating divertor approach to heat flux reduction in present-day tokamaks, if scenarios involving second-harmonic electron cyclotron heating are used.« less

  7. Whey protein rich in alpha-lactalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects.

    PubMed

    Markus, C Rob; Olivier, Berend; de Haan, Edward H F

    2002-06-01

    Cognitive performance often declines under chronic stress exposure. The negative effect of chronic stress on performance may be mediated by reduced brain serotonin function. The uptake of the serotonin precursor tryptophan into the brain depends on nutrients that influence the availability of tryptophan by changing the ratio of plasma tryptophan to the sum of the other large neutral amino acids (Trp-LNAA ratio). In addition, a diet-induced increase in tryptophan may increase brain serotonergic activity levels and improve cognitive performance, particularly in high stress-vulnerable subjects. We tested whether alpha-lactalbumin, a whey protein with a high tryptophan content, would increase the plasma Trp-LNAA ratio and improve cognitive performance in high stress- vulnerable subjects. Twenty-three high stress-vulnerable subjects and 29 low stress-vulnerable subjects participated in a double-blind, placebo-controlled, crossover study. All subjects conducted a memory-scanning task after the intake of a diet enriched with either alpha-lactalbumin (alpha-lactalbumin diet) or sodium caseinate (control diet). Blood samples were taken to measure the effect of dietary manipulation on the plasma Trp-LNAA ratio. A significantly greater increase in the plasma Trp-LNAA ratio after consumption of the alpha-lactalbumin diet than after the control diet (P = 0.0001) was observed; memory scanning improved significantly only in the high stress-vulnerable subjects (P = 0.019). Because an increase in the plasma Trp-LNAA ratio is considered to be an indirect indication of increased brain serotonin function, the results suggest that dietary protein rich in alpha-lactalbumin improves cognitive performance in stress-vulnerable subjects via increased brain tryptophan and serotonin activities.

  8. Improved mechanical performance of PBO fiber-reinforced bismaleimide composite using mixed O2/Ar plasma

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Chen, Ping; Yu, Qi; Ma, Keming; Ding, Zhenfeng

    2014-06-01

    The mixed O2/Ar plasma was employed to enhance mechanical properties of the PBO/bismaleimide composite. The interlaminar shear strength was improved to 61.6 MPa or by 38.1%, but the composite brittleness increased. The plasma gas compositions exhibited notable effects on the interfacial adhesion strength. XPS results suggested that the mixed plasma presented higher activation effects on the surface chemical compositions than pure gas plasmas and a larger number of oxygen atoms and hydrophilic groups were introduced on the fiber surface due to the synergy effect, but the synergy effect was considerably performed only within the O2 percentage range of 40-60%. The fibers surface was increasingly etched with growing the O2 contents in the plasma, deteriorating the fibers tensile strength. SEM micrographs demonstrated that the composite shear fracture changed from debonding to cohesive failure in the matrices, and the improving mechanisms were discussed.

  9. Radio frequency discharge with control of plasma potential distribution.

    PubMed

    Dudnikov, Vadim; Dudnikov, A

    2012-02-01

    A RF discharge plasma generator with additional electrodes for independent control of plasma potential distribution is proposed. With positive biasing of this ring electrode relative end flanges and longitudinal magnetic field a confinement of fast electrons in the discharge will be improved for reliable triggering of pulsed RF discharge at low gas density and rate of ion generation will be enhanced. In the proposed discharge combination, the electron energy is enhanced by RF field and the fast electron confinement is improved by enhanced positive plasma potential which improves the efficiency of plasma generation significantly. This combination creates a synergetic effect with a significantly improving the plasma generation performance at low gas density. The discharge parameters can be optimized for enhance plasma generation with acceptable electrode sputtering.

  10. Improvement in performance and reliability with CF4 plasma pretreatment on the buffer oxide layer for low-temperature polysilicon thin-film transistor

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Lin, Yi-Yan; Yang, Chun-Chieh

    2012-03-01

    This study applies CF4 plasma pretreatment to a buffer oxide layer to improve the performance of low-temperature polysilicon thin-film transistors (LTPS TFTs). Results show that the fluorine atoms piled up at the interface between the bulk channel and buffer oxide layer and accumulated in the bulk channel. The reduction of the trap states density by fluorine passivation can improve the electrical characteristics of the LTPS TFTs. It is found that the threshold voltage reduced from 4.32 to 3.03 V and the field-effect mobility increased from 29.71 to 45.65 cm2 V-1 S-1. In addition, the on current degradation and threshold voltage shift after stressing were significantly improved about 31% and 70%, respectively. We believe that the proposed CF4 plasma pretreatment on the buffer oxide layer can passivate the trap states and avoid the plasma induced damage on the polysilicon channel surface, resulting in the improvement in performance and reliability for LTPS-TFT mass production application on AMOLED displays with critical reliability requirement.

  11. Early plasma transfusion is associated with improved survival after isolated traumatic brain injury in patients with multifocal intracranial hemorrhage.

    PubMed

    Chang, Ronald; Folkerson, Lindley E; Sloan, Duncan; Tomasek, Jeffrey S; Kitagawa, Ryan S; Choi, H Alex; Wade, Charles E; Holcomb, John B

    2017-02-01

    Plasma-based resuscitation improves outcomes in trauma patients with hemorrhagic shock, while large-animal and limited clinical data suggest that it also improves outcomes and is neuroprotective in the setting of combined hemorrhage and traumatic brain injury. However, the choice of initial resuscitation fluid, including the role of plasma, is unclear for patients after isolated traumatic brain injury. We reviewed adult trauma patients admitted from January 2011 to July 2015 with isolated traumatic brain injury. "Early plasma" was defined as transfusion of plasma within 4 hours. Purposeful multiple logistic regression modeling was performed to analyze the relationship of early plasma and inhospital survival. After testing for interaction, subgroup analysis was performed based on the pattern of brain injury on initial head computed tomography: epidural hematoma, intraparenchymal contusion, subarachnoid hemorrhage, subdural hematoma, or multifocal intracranial hemorrhage. Of the 633 isolated traumatic brain injury patients included, 178 (28%) who received early plasma were injured more severely coagulopathic, hypoperfused, and hypotensive on admission. Survival was similar in the early plasma versus no early plasma groups (78% vs 84%, P = .08). After adjustment for covariates, early plasma was not associated with improved survival (odds ratio 1.18, 95% confidence interval 0.71-1.96). On subgroup analysis, multifocal intracranial hemorrhage was the largest subgroup with 242 patients. Of these, 61 (25%) received plasma within 4 hours. Within-group logistic regression analysis with adjustment for covariates found that early plasma was associated with improved survival (odds ratio 3.34, 95% confidence interval 1.20-9.35). Although early plasma transfusion was not associated with improved in-hospital survival for all isolated traumatic brain injury patients, early plasma was associated with increased in-hospital survival in those with multifocal intracranial hemorrhage. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun PLA Nanofibers.

    PubMed

    Rezaei, Fatemeh; Nikiforov, Anton; Morent, Rino; De Geyter, Nathalie

    2018-02-02

    Physical properties of pre-electrospinning polymer solutions play a key role in electrospinning as they strongly determine the morphology of the obtained electrospun nanofibers. In this work, an atmospheric-pressure argon plasma directly submerged in the liquid-phase was used to modify the physical properties of poly lactic acid (PLA) spinning solutions in an effort to improve their electrospinnability. The electrical characteristics of the plasma were investigated by two methods; V-I waveforms and Q-V Lissajous plots while the optical emission characteristics of the plasma were also determined using optical emission spectroscopy (OES). To perform a complete physical characterization of the plasma-modified polymer solutions, measurements of viscosity, surface tension, and electrical conductivity were performed for various PLA concentrations, plasma exposure times, gas flow rates, and applied voltages. Moreover, a fast intensified charge-couple device (ICCD) camera was used to image the bubble dynamics during the plasma treatments. In addition, morphological changes of PLA nanofibers generated from plasma-treated PLA solutions were observed by scanning electron microscopy (SEM). The performed plasma treatments were found to induce significant changes to the main physical properties of the PLA solutions, leading to an enhancement of electrospinnability and an improvement of PLA nanofiber formation.

  13. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CuInS2 solar cell by hydrogen plasma treatment.

    PubMed

    Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping

    2018-07-06

    The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS 2 film was deposited on TiO 2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO 2 nanorod arrays were treated with hydrogen plasma(H:TiO 2 ) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.

  14. Improving the photovoltaic performance of the all-solid-state TiO2 NR/CuInS2 solar cell by hydrogen plasma treatment

    NASA Astrophysics Data System (ADS)

    Chen, Bingfeng; Niu, Wenzhe; Lou, Zirui; Ye, Zhizhen; Zhu, Liping

    2018-07-01

    The interfacial properties of the heterojunction between p-type and n-type materials play an important role in the performance of the solar cell. In this paper, a p-type CuInS2 film was deposited on TiO2 nanorod arrays by spin coating to fabricate an all-solid-state solar cell and the TiO2 nanorod arrays were treated with hydrogen plasma(H:TiO2) to ameliorate the interfacial properties. The influence of the hydrogen plasma treatment on the performance of the solar cell was investigated. The short-circuit current density was obviously raised and the power conversion efficiency of the solar cell improved to 0.30%, which is three times that of solar cells without hydrogen plasma treatment. The enhancement of the performance is attributed to not only the enhancement of carrier separation and transport, but the reduction of the recombination of electrons and holes, which is caused by hydrogen plasma treatment.

  15. Charge plasma based source/drain engineered Schottky Barrier MOSFET: Ambipolar suppression and improvement of the RF performance

    NASA Astrophysics Data System (ADS)

    Kale, Sumit; Kondekar, Pravin N.

    2018-01-01

    This paper reports a novel device structure for charge plasma based Schottky Barrier (SB) MOSFET on ultrathin SOI to suppress the ambipolar leakage current and improvement of the radio frequency (RF) performance. In the proposed device, we employ dual material for the source and drain formation. Therefore, source/drain is divided into two parts as main source/drain and source/drain extension. Erbium silicide (ErSi1.7) is used as main source/drain material and Hafnium metal is used as source/drain extension material. The source extension induces the electron plasma in the ultrathin SOI body resulting reduction of SB width at the source side. Similarly, drain extension also induces the electron plasma at the drain side. This significantly increases the SB width due to increased depletion at the drain end. As a result, the ambipolar leakage current can be suppressed. In addition, drain extension also reduces the parasitic capacitances of the proposed device to improve the RF performance. The optimization of length and work function of metal used in the drain extension is performed to achieve improvement in device performance. Moreover, the proposed device makes fabrication simpler, requires low thermal budget and free from random dopant fluctuations.

  16. Performance of a plasma fluid code on the Intel parallel computers

    NASA Technical Reports Server (NTRS)

    Lynch, V. E.; Carreras, B. A.; Drake, J. B.; Leboeuf, J. N.; Liewer, P.

    1992-01-01

    One approach to improving the real-time efficiency of plasma turbulence calculations is to use a parallel algorithm. A parallel algorithm for plasma turbulence calculations was tested on the Intel iPSC/860 hypercube and the Touchtone Delta machine. Using the 128 processors of the Intel iPSC/860 hypercube, a factor of 5 improvement over a single-processor CRAY-2 is obtained. For the Touchtone Delta machine, the corresponding improvement factor is 16. For plasma edge turbulence calculations, an extrapolation of the present results to the Intel (sigma) machine gives an improvement factor close to 64 over the single-processor CRAY-2.

  17. Study on the Characteristics of Plasma Profiles in Improved Confinement Plasmas in HT-7 Superconducting Tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Shouyin; Gao, Xiang; Li, Jiangang; Wan, Baonian; Kuang, Guangli; Mao, Jianshan; Zhang, Xiaodong; Xie, Jikang; Wan, Yuanxi; Team HT-7

    2000-10-01

    In HT-7 superconducting tokamak of circular limiter configuration (R0=122cm, a=30cm, Bt:1 ~2.2T), plasma profiles were modified and controlled by means of gas puffing, supersonic molecule injection, pellet injection, ICRF and IBW heating as well as LHW heating and current drive; improved plasma confinements were achieved either by application of one of the above measures or by the combination of them, study of the effects of the characteristics of plasma profiles on plasma confinements were performed. The results show that in most of the improved confinement plasmas in HT-7, there are very steep and strong peeking electron temperature profiles in core plasma, and/or large decrease of local temperature in radius of 0.5 ~0.7a which makes temperature gradient steeper when improvements begin, as temperature profile evolves back to previous normal shape the improvements end. Electron density profile and soft X-ray profiles were studied as well. This research was supported under Natural Science Foundation of China contract No.19905010.

  18. Heat flux estimates of power balance on Proto-MPEX with IR imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Showers, M., E-mail: mshower1@vols.utk.edu; Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831; Biewer, T. M.

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a precursor linear plasma device to the Material Plasma Exposure eXperiment (MPEX), which will study plasma material interactions (PMIs) for future fusion reactors. This paper will discuss the initial steps performed towards completing a power balance on Proto-MPEX to quantify where energy is lost from the plasma, including the relevant diagnostic package implemented. Machine operating parameters that will improve Proto-MPEX’s performance may be identified, increasing its PMI research capabilities.

  19. Improvement of ITO properties in green-light-emitting devices by using N2:O2 plasma treatment

    NASA Astrophysics Data System (ADS)

    Jeon, Hyeonseong; Kang, Seongjong; Oh, Hwansool

    2016-01-01

    Plasma treatment reduces the roughness of the indium-tin-oxide (ITO) interface in organic light emitting diodes (OLEDs). Oxygen gas is typically used in the plasma treatment of conventional OLED devices. However, in this study, nitrogen and oxygen gases were used for surface treatment to improve the properties of ITO. To investigate the improvements resulting from the use of nitrogen and oxygen plasma treatment, fabricated green OLED devices. The device's structure was ITO (600 Å) / α-NPD (500 Å) / Alq3:NKX1595 (400 Å:20 Å,5%) / LiF / Al:Li (10 Å:1000 Å). The plasma treatment was performed in a capacitive coupled plasma (CCP) type plasma treatment chamber similar to that used in the traditional oxygen plasma treatment. The results of this study show that the combined nitrogen/oxygen plasma treatment increases the lifetime, current density, and brightness of the fabricated OLED while decreasing the operating voltage relative to those of OLEDs fabricated using oxygen plasma treatment.

  20. 1 μs broadband frequency sweeping reflectometry for plasma density and fluctuation profile measurements

    NASA Astrophysics Data System (ADS)

    Clairet, F.; Bottereau, C.; Medvedeva, A.; Molina, D.; Conway, G. D.; Silva, A.; Stroth, U.; ASDEX Upgrade Team; Tore Supra Team; Eurofusion Mst1 Team

    2017-11-01

    Frequency swept reflectometry has reached the symbolic value of 1 μs sweeping time; this performance has been made possible, thanks to an improved control of the ramp voltage driving the frequency source. In parallel, the memory depth of the acquisition system has been upgraded and can provide up to 200 000 signals during a plasma discharge. Additional improvements regarding the trigger delay determination of the acquisition and the voltage ramp linearity required by this ultra-fast technique have been set. While this diagnostic is traditionally dedicated to the plasma electron density profile measurement, such a fast sweeping rate can provide the study of fast plasma events and turbulence with unprecedented time and radial resolution from the edge to the core. Experimental results obtained on ASDEX Upgrade plasmas are presented to demonstrate the performances of the diagnostic.

  1. Radio-frequency power-assisted performance improvement of a magnetohydrodynamic power generator

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    2005-12-01

    We describe a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic power generation experiment, where an inductively coupled rf field (13.56MHz, 5.2kW) is continuously supplied to the disk generator. The rf power assists the precise plasma ignition, by which the otherwise irregular plasma behavior was stabilized. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions: insufficient, optimum, and excessive seed fractions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  2. Comparison of Plasma and Urine Biomarker Performance in Acute Kidney Injury

    PubMed Central

    Schley, Gunnar; Köberle, Carmen; Manuilova, Ekaterina; Rutz, Sandra; Forster, Christian; Weyand, Michael; Formentini, Ivan; Kientsch-Engel, Rosemarie; Eckardt, Kai-Uwe; Willam, Carsten

    2015-01-01

    Background New renal biomarkers measured in urine promise to increase specificity for risk stratification and early diagnosis of acute kidney injury (AKI) but concomitantly may be altered by urine concentration effects and chronic renal insufficiency. This study therefore directly compared the performance of AKI biomarkers in urine and plasma. Methods This single-center, prospective cohort study included 110 unselected adults undergoing cardiac surgery with cardiopulmonary bypass between 2009 and 2010. Plasma and/or urine concentrations of creatinine, cystatin C, neutrophil gelatinase-associated lipocalin (NGAL), liver fatty acid-binding protein (L-FABP), kidney injury molecule 1 (KIM1), and albumin as well as 15 additional biomarkers in plasma and urine were measured during the perioperative period. The primary outcome was AKI defined by AKIN serum creatinine criteria within 72 hours after surgery. Results Biomarkers in plasma showed markedly better discriminative performance for preoperative risk stratification and early postoperative (within 24h after surgery) detection of AKI than urine biomarkers. Discriminative power of urine biomarkers improved when concentrations were normalized to urinary creatinine, but urine biomarkers had still lower AUC values than plasma biomarkers. Best diagnostic performance 4h after surgery had plasma NGAL (AUC 0.83), cystatin C (0.76), MIG (0.74), and L-FAPB (0.73). Combinations of multiple biomarkers did not improve their diagnostic power. Preoperative clinical scoring systems (EuroSCORE and Cleveland Clinic Foundation Score) predicted the risk for AKI (AUC 0.76 and 0.71) and were not inferior to biomarkers. Preexisting chronic kidney disease limited the diagnostic performance of both plasma and urine biomarkers. Conclusions In our cohort plasma biomarkers had higher discriminative power for risk stratification and early diagnosis of AKI than urine biomarkers. For preoperative risk stratification of AKI clinical models showed similar discriminative performance to biomarkers. The discriminative performance of both plasma and urine biomarkers was reduced by preexisting chronic kidney disease. PMID:26669323

  3. Induction plasma tube

    DOEpatents

    Hull, D.E.

    1982-07-02

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  4. Induction plasma tube

    DOEpatents

    Hull, Donald E.

    1984-01-01

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  5. Recent Trends in Newly Developed Plasma-Sprayed and Sintered Coatings for Implant Applications

    NASA Astrophysics Data System (ADS)

    Bsat, Suzan; Speirs, Andrew; Huang, Xiao

    2016-08-01

    The current paper aims to review recent trends (2011 to 2015) in newly developed plasma-sprayed and sintered coatings for implant applications. Recent developments in plasma-sprayed and sintered coatings have focused on improving biological performance, bacterial growth resistance, and mechanical properties, predominantly of HA and glass ceramics. The majority of these improvements are attributed to the addition of dopants. To improve biological performance, trace elements, such as Zn and Mg, both of which are found in bone, were added to replicate the functions they provide for the skeletal system. Though bacterial growth resistance is traditionally improved by Ag dopant, the addition of new dopants such as CeO2 and Zn were explored as well. Great effort has also been made to improve coating adherence and reduce stresses by minimizing coefficient of thermal expansion mismatch between the coating and substrate through the addition of elements such as Zn and Mg or the inclusion of a buffer layer. For sintering process in particular, there was an emphasis on reducing sintering temperature through modification of 45S5 Bioglass. New plasma spray and sintering technologies aimed at reducing high-temperature exposure are briefly introduced as well. These include microplasma spray and spark plasma sintering.

  6. Plasma chemerin in young untrained men: association with cardio-metabolic traits and physical performance, and response to intensive interval training.

    PubMed

    Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2017-02-01

    Chemerin is an adipose tissue-derived adipokine thought to decrease insulin sensitivity and increase cardiometabolic risk. This study aimed to assess the association of chemerin with cardiometabolic risk and physical performance and examine its response to high-intensity interval training (HIIT). Eighteen young men have been applied a HIIT program during 8 weeks. Plasma chemerin together with several cardiometabolic factors and physical performance indices were determined before and after the training program. Plasma chemerin and insulin were assessed using immunoenzymatic methods. The homeostasis model assessment (HOMA-IR) index was calculated as an estimate of insulin resistance. Basal plasma chemerin was positively correlated with body mass index (r=0.782, p<0.001), body fat (r=0.767, p<0.001), total (r=0.686, p=0.002) and LDL (r=0.587, p=0.010) cholesterol, triglycerides (r=0.775, p<0.001), HOMA-IR (r=0.673, p=0.002) and C-reactive protein (r=0.765, p<0.001). With regards to physical performance, chemerin was negatively correlated with maximal oxygen uptake (r=-0.572, p=0.013) and squat jump (r=-0.627, p=0.005), but positively related to 10-m sprint (r=0.716, p=0.001) and 30-m sprint (r=0.667, p=0.002) times. HIIT program resulted in significant improvements in body composition, plasma lipids and insulin sensitivity. However, no significant change was detected for plasma chemerin in response to HIIT (134±50.7 ng/mL vs. 137±51.9 ng/mL, p=0.750). Basal plasma chemerin is associated with cardiometabolic health and physical performance in young men. Following HIIT, cardiometabolic health and physical performance had improved, but no significant change had occurred for plasma chemerin.

  7. Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance.

    PubMed

    Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor

    2017-03-29

    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving.

  8. Mineral-Based Coating of Plasma-Treated Carbon Fibre Rovings for Carbon Concrete Composites with Enhanced Mechanical Performance

    PubMed Central

    Schneider, Kai; Lieboldt, Matthias; Liebscher, Marco; Fröhlich, Maik; Hempel, Simone; Butler, Marko; Schröfl, Christof; Mechtcherine, Viktor

    2017-01-01

    Surfaces of carbon fibre roving were modified by means of a low temperature plasma treatment to improve their bonding with mineral fines; the latter serving as an inorganic fibre coating for the improved mechanical performance of carbon reinforcement in concrete matrices. Variation of the plasma conditions, such as gas composition and treatment time, was accomplished to establish polar groups on the carbon fibres prior to contact with the suspension of mineral particles in water. Subsequently, the rovings were implemented in a fine concrete matrix and their pull-out performance was assessed. Every plasma treatment resulted in increased pull-out forces in comparison to the reference samples without plasma treatment, indicating a better bonding between the mineral coating material and the carbon fibres. Significant differences were found, depending on gas composition and treatment time. Microscopic investigations showed that the samples with the highest pull-out force exhibited carbon fibre surfaces with the largest areas of hydration products grown on them. Additionally, the coating material ingresses into the multifilament roving in these specimens, leading to better force transfer between individual carbon filaments and between the entire roving and surrounding matrix, thus explaining the superior mechanical performance of the specimens containing appropriately plasma-treated carbon roving. PMID:28772719

  9. Improved confinement in highly powered high performance scenarios on DIII-D

    NASA Astrophysics Data System (ADS)

    Petrie, T. W.; Osborne, T.; Fenstermacher, M. E.; Ferron, J.; Groebner, R.; Grierson, B.; Holcomb, C.; Lasnier, C.; Leonard, A.; Luce, T.; Makowski, M.; Turco, F.; Solomon, W.; Victor, B.; Watkins, J.

    2017-08-01

    DIII-D has recently demonstrated improved energy confinement by injecting neutral deuterium gas into high performance near-double null divertor (DND) plasmas during high power operation. Representative parameters for these plasmas are: q 95  =  6, P IN up to 15 MW, H 98  =  1.4-1.8, and β N  =  2.5-4.0. The ion B   ×  \

  10. Enhanced confinement in electron cyclotron resonance ion source plasma.

    PubMed

    Schachter, L; Stiebing, K E; Dobrescu, S

    2010-02-01

    Power loss by plasma-wall interactions may become a limitation for the performance of ECR and fusion plasma devices. Based on our research to optimize the performance of electron cyclotron resonance ion source (ECRIS) devices by the use of metal-dielectric (MD) structures, the development of the method presented here, allows to significantly improve the confinement of plasma electrons and hence to reduce losses. Dedicated measurements were performed at the Frankfurt 14 GHz ECRIS using argon and helium as working gas and high temperature resistive material for the MD structures. The analyzed charge state distributions and bremsstrahlung radiation spectra (corrected for background) also clearly verify the anticipated increase in the plasma-electron density and hence demonstrate the advantage by the MD-method.

  11. Tritium Plasma Experiment Upgrade and Improvement of Surface Diagnostic Capabilities at STAR Facility for Enhancing Tritium and Nuclear PMI Sciences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimada, M.; Taylor, C. N.; Pawelko, R. J.

    2016-04-01

    The Tritium Plasma Experiment (TPE) is a unique high-flux linear plasma device that can handle beryllium, tritium, and neutron-irradiated plasma facing materials, and is the only existing device dedicated to directly study tritium retention and permeation in neutron-irradiated materials with tritium [M. Shimada et.al., Rev. Sci. Instru. 82 (2011) 083503 and and M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. The plasma-material-interaction (PMI) determines a boundary condition for diffusing tritium into bulk PFCs, and the tritium PMI is crucial for enhancing fundamental sciences that dictate tritium fuel cycles and safety and are high importance to an FNSF and DEMO. Recentlymore » the TPE has undergone major upgrades in its electrical and control systems. New DC power supplies and a new control center enable remote plasma operations from outside of the contamination area for tritium, minimizing the possible exposure risk with tritium and beryllium. We discuss the electrical upgrade, enhanced operational safety, improved plasma performance, and development of optical spectrometer system. This upgrade not only improves operational safety of the worker, but also enhances plasma performance to better simulate extreme plasma-material conditions expected in ITER, Fusion Nuclear Science Facility (FNSF), and Demonstration reactor (DEMO). This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.« less

  12. Lithium As Plasma Facing Component for Magnetic Fusion Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masayuki Ono

    The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor ofmore » two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.« less

  13. Experimental and Numerical Study of the Effect of Gas-Shrouded Plasma Spraying on Cathode Coating of Alkaline Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Liu, T.; Reißner, R.; Schiller, G.; Ansar, A.

    2018-01-01

    The aim of this work is to improve the performance of electrodes prepared via atmospheric plasma spray by means of gas shrouding which is expected to apparently reduce the oxygen content of the plasma plume and subsequently improve the coating quality. Electrodes with dual-layer coating for alkaline water electrolysis were deposited on Ni-coated perforated substrates. Microstructure and morphology were studied by SEM. Element content was measured by EDS. Enthalpy probe was employed for measuring plasma temperature and velocity as well as the gas composition. For verifying and better understanding the shrouding effect numerical calculation was carried out according to the experimental settings. Electrochemical test was carried out to validate the shrouding effect. The results showed slight protecting effect of gas shrouding on plasma plume and the final coating. Over the dual-layer section, the measured oxygen fraction was 3.46 and 3.15% for the case without gas shrouding and with gas shrouding, respectively. With gas shrouding the coating exhibited similar element contents as the coating sprayed by VPS, while no obvious improvement was observed in the microstructure or the morphology. Evident electrochemical improvement was nevertheless achieved that with gas shrouding the electrode exhibited similar performance as that of the VPS-sprayed electrode.

  14. Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F.

    2014-09-01

    Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50 °C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitivemore » substrates.« less

  15. Microwave induced plasma for solid fuels and waste processing: A review on affecting factors and performance criteria.

    PubMed

    Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir

    2017-11-01

    High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Plasma Equilibrium Control in Nuclear Fusion Devices 2. Plasma Control in Magnetic Confinement Devices 2.1 Plasma Control in Tokamaks

    NASA Astrophysics Data System (ADS)

    Fukuda, Takeshi

    The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.

  17. Transport studies in high-performance field reversed configuration plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, S., E-mail: sgupta@trialphaenergy.com; Barnes, D. C.; Dettrick, S. A.

    2016-05-15

    A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (butmore » with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The numerical study shows near sustainment of poloidal flux for nearly 1 ms in the presence of NBI.« less

  18. Surface modification of polyester fabrics by atmospheric-pressure air/He plasma for color strength and adhesion enhancement

    NASA Astrophysics Data System (ADS)

    Zhang, Chunming; Zhao, Meihua; Wang, Libing; Qu, Lijun; Men, Yajing

    2017-04-01

    Surface properties of water-based pigmented inks for ink-jet printed polyester fabrics were modified with atmospheric-pressure air/He plasma to improve the color strength and pigment adhesion of the treated surfaces. The influence of various parameters, including the surface morphology, chemical compositions, surface energy and dynamic contact angles of the control and plasma treated samples was studied. Color strength and edge definition were used to evaluate the ink-jet printing performance of fabrics. The change in pigment adhesion to polyester fibers was analyzed by SEM (scanning electron microscopy). AFM (Atomic force microscope) and XPS (X-ray photoelectron spectroscopy) analyses indicated the increase in surface roughness and the oxygen-containing polar groups(Cdbnd O, Csbnd OH and COOH) reinforced the fixation of pigments on the fiber surface. The result from this study suggested that the improved pigment color yield was clearly affected by alteration of pigment adhesion enhanced by plasma surface modification. Polyester fabrics exhibited better surface property and ink-jet printing performance after the air/He mixture plasma treatment comparing with those after air plasma treatment.

  19. Advanced Biasing Experiments on the C-2 Field-Reversed Configuration Device

    NASA Astrophysics Data System (ADS)

    Thompson, Matthew; Korepanov, Sergey; Garate, Eusebio; Yang, Xiaokang; Gota, Hiroshi; Douglass, Jon; Allfrey, Ian; Valentine, Travis; Uchizono, Nolan; TAE Team

    2014-10-01

    The C-2 experiment seeks to study the evolution, heating and sustainment effects of neutral beam injection on field-reversed configuration (FRC) plasmas. Recently, substantial improvements in plasma performance were achieved through the application of edge biasing with coaxial plasma guns located in the divertors. Edge biasing provides rotation control that reduces instabilities and E × B shear that improves confinement. Typically, the plasma gun arcs are run at ~ 10 MW for the entire shot duration (~ 5 ms), which will become unsustainable as the plasma duration increases. We have conducted several advanced biasing experiments with reduced-average-power plasma gun operating modes and alternative biasing cathodes in an effort to develop an effective biasing scenario applicable to steady state FRC plasmas. Early results show that several techniques can potentially provide effective, long-duration edge biasing.

  20. Plasma surface modification of polypropylene track-etched membrane to improve its performance properties

    NASA Astrophysics Data System (ADS)

    Kravets, L. I.; Elinson, V. M.; Ibragimov, R. G.; Mitu, B.; Dinescu, G.

    2018-02-01

    The surface and electrochemical properties of polypropylene track-etched membrane treated by plasma of nitrogen, air and oxygen are studied. The effect of the plasma-forming gas composition on the surface morphology is considered. It has been found that the micro-relief of the membrane surface formed under the gas-discharge etching, changes. Moreover, the effect of the non-polymerizing gas plasma leads to formation of oxygen-containing functional groups, mostly carbonyl and carboxyl. It is shown that due to the formation of polar groups on the surface and its higher roughness, the wettability of the plasma-modified membranes improves. In addition, the presence of polar groups on the membrane surface layer modifies its electrochemical properties so that conductivity of plasma-treated membranes increase.

  1. Manipulating Energetic Ion Velocity Space to Control Instabilities and Improve Tokamak Performance

    NASA Astrophysics Data System (ADS)

    Pace, David C.

    2017-10-01

    The first-ever demonstration of independent current (I) and voltage (V) control of high power neutral beams in tokamak plasma shots has successfully reduced the prevalence of instabilities and improved energetic ion confinement in experiments at the DIII-D tokamak. Energetic ions drive Alfvén eigenmode (AE) instabilities through a resonant energy exchange that can increase radial diffusion of the ions, thereby reducing beam heating and current drive efficiency. This resonance is incredibly sensitive to the ion velocity and orbit topology, which then allows changes in beam voltage (keeping the injected power constant through compensating changes in current) to remove nearly all instability drive. The implementation of temporal control of beam current and voltage allows for a reduction in the resonant energetic ion velocity space while maintaining the ability to inject maximum power. DIII-D low confinement (L-mode) plasmas demonstrate a nearly complete avoidance of AE activity in plasmas with 55 kV beam injection compared to the many AEs that are observed in plasmas featuring similar total beam power at 70 kV. Across the experimental range of beam settings, resulting increases in beam divergence have been inconsequential. High performance steady-state scenarios featuring equilibria that are conducive to dense arrays of Alfvén waves benefit the most from instability control mechanisms. One such scenario, the so-called high qmin scenario, demonstrates improved confinement and equilibrium evolution when the injected beam voltage begins at lower values (i.e., fewer resonances) and then increases as the plasma reaches its stationary period. These results suggest a future in which plasma confinement and performance is improved through continuous feedback control of auxiliary heating systems such that the energetic ion distribution is constantly adapted to produce an optimal plasma state. Work supported by US DOE under DE-FC02-04ER54698.

  2. Plasma equilibrium control during slow plasma current quench with avoidance of plasma-wall interaction in JT-60U

    NASA Astrophysics Data System (ADS)

    Yoshino, R.; Nakamura, Y.; Neyatani, Y.

    1997-08-01

    In JT-60U a vertical displacement event (VDE) is observed during slow plasma current quench (Ip quench) for a vertically elongated divertor plasma with a single null. The VDE is generated by an error in the feedback control of the vertical position of the plasma current centre (ZJ). It has been perfectly avoided by improving the accuracy of the ZJ measurement in real time. Furthermore, plasma-wall interaction has been avoided successfully during slow Ip quench owing to the good performance of the plasma equilibrium control system

  3. Study on surface adhesion of Plasma modified Polytetrafluoroethylene hollow fiber membrane

    NASA Astrophysics Data System (ADS)

    Chen, Jiangrong; Zhang, Huifeng; Liu, Guochang; Guo, Chungang; Lv, Jinglie; Zhangb, Yushan

    2018-01-01

    Polytetrafluoroethylene (PTFE) is popular membrane material because of its excellent thermal stability, chemical stability and mechanical stability. However, the low surface energy and non-sticky property of PTFE present challenges for modification. In the present study, plasma treatment was performed to improve the surface adhesion of PTFE hollow fiber membrane. The effect of discharge voltage, treatment time on the adhesion of PTFE hollow fiber membrane was symmetrically evaluated. Results showed that the plasma treatment method contributed to improve the surface activity and roughness of PTFE hollow fiber membrane, and the adhesion strength depend significantly on discharge voltage, which was beneficial to seepage pressure of PTFE hollow fiber membrane module. The adhesion strength of PTFE membrane by plasma treated at 220V for 3min reached as high as 86.2 N, far surpassing the adhesion strength 12.7 N of pristine membrane. Furthermore, improvement of content of free radical and composition analysis changes of the plasma modified PTFE membrane were investigated. The seepage pressure of PTFE membrane by plasma treated at 220V for 3min was 0.375 MPa, which means that the plasma treatment is an effective technique to improve the adhesion strength of membrane.

  4. Ignition and monitoring technique for plasma processing of multicell superconducting radio-frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doleans, Marc

    In this study, an in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface and to reduce its secondary emission yield. SNS SRF cavities are six-cell elliptical cavities and the plasma typically ignites in the cell where the electric field is the highest. This article will detail a technique that was developed to ignite and monitor the plasma in eachmore » cell of the SNS cavities.« less

  5. Ignition and monitoring technique for plasma processing of multicell superconducting radio-frequency cavities

    DOE PAGES

    Doleans, Marc

    2016-12-27

    In this study, an in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface and to reduce its secondary emission yield. SNS SRF cavities are six-cell elliptical cavities and the plasma typically ignites in the cell where the electric field is the highest. This article will detail a technique that was developed to ignite and monitor the plasma in eachmore » cell of the SNS cavities.« less

  6. Improved Cognitive Performance and Reduced Monocyte Activation in Virally Suppressed Chronic HIV Following Dual CCR2 and CCR5 Antagonism.

    PubMed

    D'Antoni, Michelle L; Paul, Robert H; Mitchell, Brooks I; Kohorn, Lindsay; Fischer, Laurent; Lefebvre, Eric; Seyedkazemi, Star; Nakamoto, Beau K; Walker, Maegen; Kallianpur, Kalpana J; Ogata-Arakaki, Debra; Ndhlovu, Lishomwa C; Shikuma, Cecilia

    2018-05-16

    To evaluate changes in neuropsychological (NP) performance and in plasma and cell surface markers of peripheral monocyte activation/migration following treatment with cenicriviroc (CVC), a dual C-C chemokine receptor type 2 (CCR2) and type 5 (CCR5) antagonist, in treatment-experienced, HIV-infected individuals. Single-arm, 24-week, open-label clinical trial. HIV-infected individuals on antiretroviral therapy (ART) >1 year with plasma HIV RNA <50 copies/ml and below-normal cognitive performance [defined as age, gender and education-adjusted NP performance (NPZ) <-0.5 in a single cognitive domain or in global performance] were enrolled. Changes over 24 weeks were assessed for global and domain-specific NPZ scores, plasma markers of monocyte/macrophage activation [neopterin, soluble (s)CD14 and sCD163] quantified by ELISA, and CCR2 and CCR5 expression on monocytes and T cells measured by flow cytometry. Seventeen of 20 enrolled participants completed the study. Improvements over 24 weeks were observed in global NPZ [median change (Δ)=0.24; p=0.008], and in cognitive domains of attention (Δ0.23; p=0.011) and working memory (Δ0.44; p=0.017). Plasma levels of sCD163, sCD14, and neopterin decreased significantly (p's<0.01). CCR2 and CCR5 monocyte expression remained unchanged; however, CCR5 levels on CD4 and CD8 T cells and CCR2 expression on CD4 T cells increased (p's<0.01). CVC given over 24 weeks was associated with improved NP test performance and decreased plasma markers of monocyte immune activation in virally-suppressed, HIV-infected participants. These data potentially link changes in monocyte activation to cognitive performance. Further study of CVC for HIV cognitive impairment in a randomized controlled study is warranted.

  7. Plasma-assisted nitrogen doping of VACNTs for efficiently enhancing the supercapacitor performance

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Alireza; Hosseini, Seyed Mahmoud; Hassanpour Amiri, Morteza; Namdar, Naser; Sanaee, Zeinab

    2016-06-01

    Nitrogen doping of vertically aligned carbon nanotubes (VACNTs) using plasma-enhanced chemical vapour deposition has been investigated to improve the supercapacitance performance of CNTs. Incorporating electrochemical measurements on the open-ended nitrogen-doped CNTs, showed the achievement of 6 times improvement in the capacitance value. For nitrogen-doped CNTs on silicon substrate, specific capacitance of 60 F g-1 was obtained in 0.5 M KCl solution, with capacity retention ratio above 90 % after cycled at 0.1 A g-1 for 5000 cycles. Using this sample, a symmetric supercapacitance was fabricated which showed the power density of 37.5 kW kg-1. The facile fabrication approach and its excellent capacitance improvement, propose it as an efficient technique for enhancing the supercapacitance performance of the carbon-based electrodes.

  8. Recent progress of RF-dominated experiments on EAST

    NASA Astrophysics Data System (ADS)

    Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.

    2017-10-01

    The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.

  9. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    NASA Astrophysics Data System (ADS)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume analysis on the plasma electrons. Balancing the plasma electron generation and loss yielded nominal values used in miniature ion thrusters. This result was ultimately used to develop a design tool for miniature discharges. This tool was used to perform a parametric evaluation on the magnet field configuration of the research mode. By understanding the plasma behavior, significant improvements over the baseline configuration were obtained with relatively minor changes, thus revealing the importance of plasma structure on the performance of miniature ring-cusp discharges.

  10. Enhancing surface functionality of reduced graphene oxide biosensors by oxygen plasma treatment for Alzheimer's disease diagnosis.

    PubMed

    Chae, Myung-Sic; Kim, Jinsik; Jeong, Dahye; Kim, YoungSoo; Roh, Jee Hoon; Lee, Sung Min; Heo, Youhee; Kang, Ji Yoon; Lee, Jeong Hoon; Yoon, Dae Sung; Kim, Tae Geun; Chang, Suk Tai; Hwang, Kyo Seon

    2017-06-15

    We performed oxygen plasma treatment on reduced graphene oxide (rGO) to improve its surface reactivity with respect to biomolecular interactions. Oxygen-plasma-treated rGO surfaces were employed as reactive interfaces for the detection of amyloid-beta (Aβ) peptides, the pathological hallmarks of Alzheimer's disease (AD), as the target analytes. By measuring the changes in electrical characteristics and confirmation through topographic analysis, the oxygen-plasma-treated rGO sensors had enhanced surface functionality for better antibody immobilization and sensing performance, with a 3.33-fold steeper slope for the electrical responses versus analyte concentration curve (logarithmic scale) compared to the untreated. The elicited biomolecular reactivity of the rGO surfaces with the oxygen plasma treatment remained at 46-51% of the initial value even after aging for 6h in ambient conditions. This phenomenon was also confirmed by pretreating the rGO surfaces with a blocking agent and subsequently subjecting them to antibody immobilization. Finally, the feasibility of the oxygen-plasma-treated rGO sensors as a diagnostic tool was evaluated with clinical samples of neural-derived exosomal Aβ peptides extracted from apparent AD patients and normal controls (NC). In contrast to the untreated sensors (p=0.0460), the oxygen-plasma-treated rGO sensors showed a significant p-value in the identification of clinical samples of AD and NC subjects (p<0.001). These results suggest that oxygen plasma treatment improves sensor performance without complicated fabrication procedures and should aid in the development of novel diagnostic tools based on carbon nanomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Improvement of technical purpose materials performance characteristics with the radio frequency low pressure plasma

    NASA Astrophysics Data System (ADS)

    Makhotkina, L. Yu; Khristoliubova, V. I.

    2017-11-01

    The main aim of the work is to solve the actual problem of increasing the competitiveness of tanning products by reducing the prime cost and improving the quality of finished products due to the increased durability of the working elements of tanneries. The impact of the low pressure radio frequency (RF) plasma in the processes of treating for modification of the materials for special purposes is considered in the article. The results of working elements of tanneries and the materials for special purposes sample processing by a RF low pressure plasma are described. As a result of leather materials nano structuring and nano modifying physical, mechanical and hygienic characteristics were increased. Processing of the technical purpose materials allows to increase operational performance of products and extend their lifespan.

  12. Improvement in the performance of external quality assessment in Korean HIV clinical laboratories using unrecalcified human plasma.

    PubMed

    Wang, Jin-Sook; Kee, Mee-Kyung; Choi, Byeong-Sun; Kim, Chan-Wha; Kim, Hyon-Suk; Kim, Sung Soon

    2012-01-01

    The external quality assessment schemes (EQAS) organizer provides a suitable program to monitor and improve the quality of human immunodeficiency virus (HIV) testing laboratories with EQAS panels prepared under various conditions. The aim of the current study was to investigate the effects of human plasma samples on the EQAS results of HIV obtained from hospital-based clinical laboratories. From 2007 to 2009, HIV EQAS panels consisted of four to six samples that consisted of undiluted positive and negative samples and were provided to laboratories twice per year. Up until the first half EQAS in 2008, EQAS panel materials were obtained by converting acid citrate dextrose treated plasma to serum via chemical treatment with CaCl2. Beginning with the second EQAS in 2008, all materials were prepared without the defibrination process. Approximately 300 HIV clinical laboratories participated in this program. The overall performance of clinical laboratories was shown to be improved when using unrecalcified plasma panels compared with recalcified panels. Significant differences were observed in EIA analyses of plasma for both positive (p<0.001) and negative (p<0.001) samples between the recalcified and unrecalcified groups. Our finding suggested that defibrination status of EQAS panels might affect the results of anti-HIV EQAS of Korean HIV testing laboratories.

  13. Multiphase-Multifunctional Ceramic Coatings

    DTIC Science & Technology

    2013-06-30

    were conducted at 1200-1600° C from 10-24 h. Densification of powders in the pyrochlore-fuorite system was also performed by Spark Plasma Sintering ...capability with emphasis on improving toughness and phase stability. The primary goal was clearly accomplished by developing an instrumented air plasma ...composition. Coating compositions were synthesized by atmospheric plasma spray (APS) at CINVESTAV facilities, and dense monolithic counterparts were

  14. Electromagnetic optimisation of a 2.45 GHz microwave plasma source operated at atmospheric pressure and designed for hydrogen production

    NASA Astrophysics Data System (ADS)

    Miotk, R.; Jasiński, M.; Mizeraczyk, J.

    2018-03-01

    This paper presents the partial electromagnetic optimisation of a 2.45 GHz cylindrical-type microwave plasma source (MPS) operated at atmospheric pressure. The presented device is designed for hydrogen production from liquid fuels, e.g. hydrocarbons and alcohols. Due to industrial requirements regarding low costs for hydrogen produced in this way, previous testing indicated that improvements were required to the electromagnetic performance of the MPS. The MPS has a duct discontinuity region, which is a result of the cylindrical structure located within the device. The microwave plasma is generated in this discontinuity region. Rigorous analysis of the region requires solving a set of Maxwell equations, which is burdensome for complicated structures. Furthermore, the presence of the microwave plasma increases the complexity of this task. To avoid calculating the complex Maxwell equations, we suggest the use of the equivalent circuit method. This work is based upon the idea of using a Weissfloch circuit to characterize the area of the duct discontinuity and the plasma. The resulting MPS equivalent circuit allowed the calculation of a capacitive metallic diaphragm, through which an improvement in the electromagnetic performance of the plasma source was obtained.

  15. High-performance liquid chromatographic determination of the beta2-selective adrenergic agonist fenoterol in human plasma after fluorescence derivatization.

    PubMed

    Kramer, S; Blaschke, G

    2001-02-10

    A sensitive high-performance liquid chromatographic method has been developed for the determination of the beta2-selective adrenergic agonist fenoterol in human plasma. To improve the sensitivity of the method, fenoterol was derivatized with N-(chloroformyl)-carbazole prior to HPLC analysis yielding highly fluorescent derivatives. The assay involves protein precipitation with acetonitrile, liquid-liquid-extraction of fenoterol from plasma with isobutanol under alkaline conditions followed by derivatization with N-(chloroformyl)-carbazole. Reversed-phase liquid chromatographic determination of the fenoterol derivative was performed using a column-switching system consisting of a LiChrospher 100 RP 18 and a LiChrospher RP-Select B column with acetonitrile, methanol and water as mobile phase. The limit of quantitation in human plasma was 376 pg fenoterol/ml. The method was successfully applied for the assay of fenoterol in patient plasma.

  16. Progress of long pulse operation with high performance plasma in KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Young; Kstar Team

    2015-11-01

    Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.

  17. The Performance Improvement of N2 Plasma Treatment on ZrO2 Gate Dielectric Thin-Film Transistors with Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition IGZO Channel.

    PubMed

    Wu, Chien-Hung; Huang, Bo-Wen; Chang, Kow-Ming; Wang, Shui-Jinn; Lin, Jian-Hong; Hsu, Jui-Mei

    2016-06-01

    The aim of this paper is to illustrate the N2 plasma treatment for high-κ ZrO2 gate dielectric stack (30 nm) with indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs). Experimental results reveal that a suitable incorporation of nitrogen atoms could enhance the device performance by eliminating the oxygen vacancies and provide an amorphous surface with better surface roughness. With N2 plasma treated ZrO2 gate, IGZO channel is fabricated by atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique. The best performance of the AP-PECVD IGZO TFTs are obtained with 20 W-90 sec N2 plasma treatment with field-effect mobility (μ(FET)) of 22.5 cm2/V-s, subthreshold swing (SS) of 155 mV/dec, and on/off current ratio (I(on)/I(off)) of 1.49 x 10(7).

  18. Demonstration of high-performance p-type tin oxide thin-film transistors using argon-plasma surface treatments

    NASA Astrophysics Data System (ADS)

    Bae, Sang-Dae; Kwon, Soo-Hun; Jeong, Hwan-Seok; Kwon, Hyuck-In

    2017-07-01

    In this work, we investigated the effects of low-temperature argon (Ar)-plasma surface treatments on the physical and chemical structures of p-type tin oxide thin-films and the electrical performance of p-type tin oxide thin-film transistors (TFTs). From the x-ray photoelectron spectroscopy measurement, we found that SnO was the dominant phase in the deposited tin oxide thin-film, and the Ar-plasma treatment partially transformed the tin oxide phase from SnO to SnO2 by oxidation. The resistivity of the tin oxide thin-film increased with the plasma-treatment time because of the reduced hole concentration. In addition, the root-mean-square roughness of the tin oxide thin-film decreased as the plasma-treatment time increased. The p-type oxide TFT with an Ar-plasma-treated tin oxide thin-film exhibited excellent electrical performance with a high current on-off ratio (5.2 × 106) and a low off-current (1.2 × 10-12 A), which demonstrates that the low-temperature Ar-plasma treatment is a simple and effective method for improving the electrical performance of p-type tin oxide TFTs.

  19. Analytical Comparison of In Vitro-Spiked Human Serum and Plasma for PCR-Based Detection of Aspergillus fumigatus DNA: a Study by the European Aspergillus PCR Initiative

    PubMed Central

    Mengoli, Carlo; Springer, Jan; Bretagne, Stéphane; Cuenca-Estrella, Manuel; Klingspor, Lena; Lagrou, Katrien; Melchers, Willem J. G.; Morton, C. Oliver; Barnes, Rosemary A.; Donnelly, J. Peter; White, P. Lewis

    2015-01-01

    The use of serum or plasma for Aspergillus PCR testing facilitates automated and standardized technology. Recommendations for serum testing are available, and while serum and plasma are regularly considered interchangeable for use in fungal diagnostics, differences in galactomannan enzyme immunoassay (GM-EIA) performance have been reported and are attributed to clot formation. Therefore, it is important to assess plasma PCR testing to determine if previous recommendations for serum are applicable and also to compare analytical performance with that of serum PCR. Molecular methods testing serum and plasma were compared through multicenter distribution of quality control panels, with additional studies to investigate the effect of clot formation and blood fractionation on DNA availability. Analytical sensitivity and time to positivity (TTP) were compared, and a regression analysis was performed to identify variables that enhanced plasma PCR performance. When testing plasma, sample volume, preextraction-to-postextraction volume ratio, PCR volume, duplicate testing, and the use of an internal control for PCR were positively associated with performance. When whole-blood samples were spiked and then fractionated, the analytical sensitivity and TTP were superior when testing plasma. Centrifugation had no effect on DNA availability, whereas the presence of clot material significantly lowered the concentration (P = 0.028). Technically, there are no major differences in the molecular processing of serum and plasma, but the formation of clot material potentially reduces available DNA in serum. During disease, Aspergillus DNA burdens in blood are often at the limits of PCR performance. Using plasma might improve performance while maintaining the methodological simplicity of serum testing. PMID:26085614

  20. Analytical Comparison of In Vitro-Spiked Human Serum and Plasma for PCR-Based Detection of Aspergillus fumigatus DNA: a Study by the European Aspergillus PCR Initiative.

    PubMed

    Loeffler, Juergen; Mengoli, Carlo; Springer, Jan; Bretagne, Stéphane; Cuenca-Estrella, Manuel; Klingspor, Lena; Lagrou, Katrien; Melchers, Willem J G; Morton, C Oliver; Barnes, Rosemary A; Donnelly, J Peter; White, P Lewis

    2015-09-01

    The use of serum or plasma for Aspergillus PCR testing facilitates automated and standardized technology. Recommendations for serum testing are available, and while serum and plasma are regularly considered interchangeable for use in fungal diagnostics, differences in galactomannan enzyme immunoassay (GM-EIA) performance have been reported and are attributed to clot formation. Therefore, it is important to assess plasma PCR testing to determine if previous recommendations for serum are applicable and also to compare analytical performance with that of serum PCR. Molecular methods testing serum and plasma were compared through multicenter distribution of quality control panels, with additional studies to investigate the effect of clot formation and blood fractionation on DNA availability. Analytical sensitivity and time to positivity (TTP) were compared, and a regression analysis was performed to identify variables that enhanced plasma PCR performance. When testing plasma, sample volume, preextraction-to-postextraction volume ratio, PCR volume, duplicate testing, and the use of an internal control for PCR were positively associated with performance. When whole-blood samples were spiked and then fractionated, the analytical sensitivity and TTP were superior when testing plasma. Centrifugation had no effect on DNA availability, whereas the presence of clot material significantly lowered the concentration (P = 0.028). Technically, there are no major differences in the molecular processing of serum and plasma, but the formation of clot material potentially reduces available DNA in serum. During disease, Aspergillus DNA burdens in blood are often at the limits of PCR performance. Using plasma might improve performance while maintaining the methodological simplicity of serum testing. Copyright © 2015 Loeffler et al.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevik, James; Wallner, Thomas; Pamminger, Michael

    The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coilmore » ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.« less

  2. Power Balance Analysis of the Prototype-Material Plasma Exposure eXperiment

    NASA Astrophysics Data System (ADS)

    Showers, M. A.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Lumsdaine, A.; Owen, L.; Rapp, J.; Youchison, D.; Beers, C. J.; Donovan, D. C.; Kafle, N.; Ray, H. B.

    2017-10-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) is a test bed for the plasma source concept for the planned Material Plasma Exposure eXperiment (MPEX), a steady-state linear device studying plasma material interactions for fusion reactors. A power balance of Proto-MPEX attempts to identify machine operating parameters that will improve Proto-MPEX's performance, potentially impacting the MPEX design concept. A power balance has been performed utilizing an extensive diagnostic suite to identify mechanisms and locations of power loss from the main plasma. The diagnostic package includes infrared cameras, double Langmuir probes, fluoroptic probes, Mach probes, a Thomson scattering diagnostic, a McPherson spectrometer and in-vessel thermocouples. Radiation losses are estimated with absolute calibrated spectroscopic signals. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  3. Effect of High-Intensity Interval Training on Plasma Omentin-1 Concentration in Overweight/Obese and Normal-Weight Youth

    PubMed Central

    Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Bezrati, Ikram; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2017-01-01

    Objectives Omentin-1 is a recently discovered adipokine, mainly produced by visceral adipose tissue, which is thought to improve insulin sensitivity. The study aimed to assess the association of plasma omentin-1 with cardiometabolic traits and physical performance and to test its response to high-intensity interval training (HIIT) in obese and normal-weight subjects. Methods Nine overweight/obese (OG) and 9 normal-weight (NWG) young men performed an 8-week HIIT program. Body composition, physical performance, homeostasis model assessment index for insulin resistance (HOMA-IR) as well as plasma omentin-1and lipid levels were assessed before and after the HIIT program. Results Baseline plasma omentin-1 was lower in OG than NWG men (359 ± 138 vs. 470 ± 114 ng/ml; p = 0.052). Plasma omentin-1 was related to body fat (r = −0.57; p = 0.03) and LDL-cholesterol (r = −0.49; p = 0.04). There was a trend towards significant association of omentin-1 with BMI (r = −0.47; p = 0.06) and VO2max (r = 0.41; p = 0.09). However, no association was observed with HOMA-IR. Following the HIIT program, omentin-1 concentrations have significantly (p < 0.01) increased in OG (359 ± 138 to 455 ± 126 ng/ml) and NWG men (470 ± 114 to 572 ± 115 ng/ml). In parallel, the cardiometabolic profile has improved with a significant decrease of HOMA-IR in OG. Conclusions HIIT resulted in a plasma omentin-1 increase and an improvement with regard to cardiometabolic traits in the OG men, which may contribute to modulate insulin sensitivity. PMID:28787708

  4. Effect of High-Intensity Interval Training on Plasma Omentin-1 Concentration in Overweight/Obese and Normal-Weight Youth.

    PubMed

    Ouerghi, Nejmeddine; Ben Fradj, Mohamed Kacem; Bezrati, Ikram; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2017-01-01

    Omentin-1 is a recently discovered adipokine, mainly produced by visceral adipose tissue, which is thought to improve insulin sensitivity. The study aimed to assess the association of plasma omentin-1 with cardiometabolic traits and physical performance and to test its response to high-intensity interval training (HIIT) in obese and normal-weight subjects. Nine overweight/obese (OG) and 9 normal-weight (NWG) young men performed an 8-week HIIT program. Body composition, physical performance, homeostasis model assessment index for insulin resistance (HOMA-IR) as well as plasma omentin-1and lipid levels were assessed before and after the HIIT program. Baseline plasma omentin-1 was lower in OG than NWG men (359 ± 138 vs. 470 ± 114 ng/ml; p = 0.052). Plasma omentin-1 was related to body fat (r = -0.57; p = 0.03) and LDL-cholesterol (r = -0.49; p = 0.04). There was a trend towards significant association of omentin-1 with BMI (r = -0.47; p = 0.06) and VO2max (r = 0.41; p = 0.09). However, no association was observed with HOMA-IR. Following the HIIT program, omentin-1 concentrations have significantly (p < 0.01) increased in OG (359 ± 138 to 455 ± 126 ng/ml) and NWG men (470 ± 114 to 572 ± 115 ng/ml). In parallel, the cardiometabolic profile has improved with a significant decrease of HOMA-IR in OG. HIIT resulted in a plasma omentin-1 increase and an improvement with regard to cardiometabolic traits in the OG men, which may contribute to modulate insulin sensitivity. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  5. CO2 Plasma-Treated TiO2 Film as an Effective Electron Transport Layer for High-Performance Planar Perovskite Solar Cells.

    PubMed

    Wang, Kang; Zhao, Wenjing; Liu, Jia; Niu, Jinzhi; Liu, Yucheng; Ren, Xiaodong; Feng, Jiangshan; Liu, Zhike; Sun, Jie; Wang, Dapeng; Liu, Shengzhong Frank

    2017-10-04

    Perovskite solar cells (PSCs) have received great attention because of their excellent photovoltaic properties especially for the comparable efficiency to silicon solar cells. The electron transport layer (ETL) is regarded as a crucial medium in transporting electrons and blocking holes for PSCs. In this study, CO 2 plasma generated by plasma-enhanced chemical vapor deposition (PECVD) was introduced to modify the TiO 2 ETL. The results indicated that the CO 2 plasma-treated compact TiO 2 layer exhibited better surface hydrophilicity, higher conductivity, and lower bulk defect state density in comparison with the pristine TiO 2 film. The quality of the stoichiometric TiO 2 structure was improved, and the concentration of oxygen-deficiency-induced defect sites was reduced significantly after CO 2 plasma treatment for 90 s. The PSCs with the TiO 2 film treated by CO 2 plasma for 90 s exhibited simultaneously improved short-circuit current (J SC ) and fill factor. As a result, the PSC-based TiO 2 ETL with CO 2 plasma treatment affords a power conversion efficiency of 15.39%, outperforming that based on pristine TiO 2 (13.54%). These results indicate that the plasma treatment by the PECVD method is an effective approach to modify the ETL for high-performance planar PSCs.

  6. Effect of plasma distribution on propulsion performance in electrodeless plasma thrusters

    NASA Astrophysics Data System (ADS)

    Takao, Yoshinori; Takase, Kazuki; Takahashi, Kazunori

    2016-09-01

    A helicon plasma thruster consisting of a helicon plasma source and a magnetic nozzle is one of the candidates for long-lifetime thrusters because no electrodes are employed to generate or accelerate plasma. A recent experiment, however, detected the non-negligible axial momentum lost to the lateral wall boundary, which degrades thruster performance, when the source was operated with highly ionized gases. To investigate this mechanism, we have conducted two-dimensional axisymmetric particle-in-cell (PIC) simulations with the neutral distribution obtained by Direct Simulation Monte Carlo (DSMC) method. The numerical results have indicated that the axially asymmetric profiles of the plasma density and potential are obtained when the strong decay of neutrals occurs at the source downstream. This asymmetric potential profile leads to the accelerated ion towards the lateral wall, leading to the non-negligible net axial force in the opposite direction of the thrust. Hence, to reduce this asymmetric profile by increasing the neutral density at downstream and/or by confining plasma with external magnetic field would result in improvement of the propulsion performance. These effects are also analyzed by PIC/DSMC simulations.

  7. Wavefront-sensor-based electron density measurements for laser-plasma accelerators.

    PubMed

    Plateau, G R; Matlis, N H; Geddes, C G R; Gonsalves, A J; Shiraishi, S; Lin, C; van Mourik, R A; Leemans, W P

    2010-03-01

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength and hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, offer greater phase sensitivity and straightforward analysis, improving shot-to-shot plasma density diagnostics.

  8. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plateau, Guillaume; Matlis, Nicholas; Geddes, Cameron

    2010-02-20

    Characterization of the electron density in laser produced plasmas is presented using direct wavefront analysis of a probe laser beam. The performance of a laser-driven plasma-wakefield accelerator depends on the plasma wavelength, hence on the electron density. Density measurements using a conventional folded-wave interferometer and using a commercial wavefront sensor are compared for different regimes of the laser-plasma accelerator. It is shown that direct wavefront measurements agree with interferometric measurements and, because of the robustness of the compact commercial device, have greater phase sensitivity, straightforward analysis, improving shot-to-shot plasma-density diagnostics.

  9. Clinical outcomes and predictive factors related to good outcomes in plasma exchange in severe attack of NMOSD and long extensive transverse myelitis: Case series and review of the literature.

    PubMed

    Aungsumart, Saharat; Apiwattanakul, Metha

    2017-04-01

    To investigate the predictive factors associated with good outcomes of plasma exchange in severe attacks through neuromyelitis optica spectrum disorder (NMOSD) and long extensive transverse myelitis (LETM). In addition, to review the literature of predictive factors associated with the good outcomes of plasma exchange in central nervous system inflammatory demyelinating diseases (CNS IDDs). Retrospective study in 27 episodes of severe acute attacks myelitis and optic neuritis in 24 patients, including 20 patients with NMOSD seropositive, 1 patient with NMOSD seronegative and 3 patients with LETM. Plasma exchange was performed, reflecting poor responses to high-dose intravenous methylprednisolone (IVMP) therapy. The outcomes of the present study were the functional outcome improvements at 6 months after plasma exchange. The predictive factors of good outcomes after plasma exchange were determined in this cohort, and additional factors reported in the literature were reviewed. Plasma exchange was performed in 16 spinal cord attacks and 11 attacks of optic neuritis. Twenty patients were female (83%). The median age of the patients at the time of plasma exchange was 41 years old. The median disease duration was 0.6 years. The AQP4-IgG status was positive in 20 patients (83%). Plasma exchange following IVMP therapy led to a significant improvement in 81% of the cases after 6 months of follow up. A baseline Expanded Disability Status Scale (EDSS) score ≤6 before the attack was associated with significant improvement at 6 months (p=0.02, OR 58.33, 95%CI 1.92-1770). In addition, we reviewed the evidence for factors associated with good outcomes of plasma exchange in CNS IDDs, classified according to pre-plasma exchange, post-plasma exchange, and radiological features. Plasma exchange following IVMP therapy is effective as a treatment for patients experiencing a severe attack of NMOSD or LETM. The factors associated with good outcomes after plasma exchange in CNS IDDs are reviewed in the literature. We classified 3 different aspects, including pre-plasma exchange factors, based on minimal disability at baseline, preserved reflexes, early initiation, and short disease duration; post plasma exchange factors, including early improvement or lower disability at last follow up; and radiographic factors, for which the presence of active gadolinium lesions and the absence of spinal cord atrophy seem to be good outcomes for plasmapheresis. Copyright © 2017. Published by Elsevier B.V.

  10. Surface processing and ageing behavior of silk fabrics treated with atmospheric-pressure plasma for pigment-based ink-jet printing

    NASA Astrophysics Data System (ADS)

    Zhang, Chunming; Wang, Libing; Yu, Miao; Qu, Lijun; Men, Yajing; Zhang, Xiangwu

    2018-03-01

    Pigment inkjet printing has highlighted the advantages of cost-effective, short production cycle and environment-friendly. However, patterns directly printed with pigment inks usually have low color yields and blurry images which are caused by bleeding phenomenon. This work presents an atmospheric-pressure plasma method for improving the pigment-based ink-jet printing performance of silk fabrics. The effects of surface changes induced are discussed, with data derived from morphological study by atomic force microscopy (AFM), chemical analysis using X-ray photoelectron spectroscopy (XPS) and contact angle measurement. Ink-jet printing experiments were conducted to study the influence of measured changes on anti-bleeding property and color strength of treated and original samples. The ageing experiment indicates that the modified silk fabrics should be printed within 24 h after plasma processing for maximum color yields. This study explores an effective approach for the atmospheric-pressure plasma, which can provide its significant use in improving the surface properties and ink-jet printing performance of fabrics.

  11. Vacuum plasma coatings for turbine blades

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.

    1985-01-01

    Turbine blades, vacuum plasma spray coated with NiCrAlY, CoCrAlY or NiCrAlY/Cr2O3, were evaluated and rated superior to standard space shuttle main engine (SSME) coated blades. Ratings were based primarily on 25 thermal cycles in the MSFC Burner Rig Tester, cycling between 1700 F (gaseous H2) and -423 F (liquid H2). These tests showed no spalling on blades with improved vacuum plasma coatings, while standard blades spalled. Thermal barrier coatings of ZrO2, while superior to standard coatings, lacked the overall performance desired. Fatigue and tensile specimens, machined from MAR-M-246(Hf) test bars identical to the blades were vacuum plasma spray coated, diffusion bond treated, and tested to qualify the vacuum plasma spray process for flight hardware testing and application. While NiCrAlY/Cr2O3 offers significant improvement over standard coatings in durability and thermal protection, studies continue with an objective to develop coatings offering even greater improvements.

  12. Ultrasound-guided platelet-rich plasma injection for distal biceps tendinopathy.

    PubMed

    Barker, Scott L; Bell, Simon N; Connell, David; Coghlan, Jennifer A

    2015-04-01

    Distal biceps tendinopathy is an uncommon cause of elbow pain. The optimum treatment for cases refractory to conservative treatment is unclear. Platelet-rich plasma has been used successfully for other tendinopathies around the elbow. Six patients with clinical and radiological evidence of distal biceps tendinopathy underwent ultrasound-guided platelet-rich plasma (PRP) injection. Clinical examination findings, visual analogue score (VAS) for pain and Mayo Elbow Performance scores were recorded. The Mayo Elbow Performance Score improved from 68.3 (range 65 to 85) (fair function) to 95 (range 85 to 100) (excellent function). The VAS at rest improved from a mean of 2.25 (range 2 to 5) pre-injection to 0. The VAS with movement improved from a mean of 7.25 (range 5 to 8) pre-injection to 1.3 (range 0 to 2). No complications were noted. Ultrasound-guided PRP injection appears to be a safe and effective treatment for recalcitrant cases of distal biceps tendinopathy. Further investigation with a randomized controlled trial is needed to fully assess its efficacy.

  13. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources.

    PubMed

    Odorici, F; Malferrari, L; Montanari, A; Rizzoli, R; Mascali, D; Castro, G; Celona, L; Gammino, S; Neri, L

    2016-02-01

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to "screen" the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used, as explained by plasma diffusion models.

  14. Plasma Heating Simulation in the VASIMR System

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.; ChangDiaz, Franklin R.; Squire, Jared P.; Carter, Mark D.

    2005-01-01

    The paper describes the recent development in the simulation of the ion-cyclotron acceleration of the plasma in the VASIMR experiment. The modeling is done using an improved EMIR code for RF field calculation together with particle trajectory code for plasma transport calculat ion. The simulation results correlate with experimental data on the p lasma loading and predict higher ICRH performance for a higher density plasma target. These simulations assist in optimizing the ICRF anten na so as to achieve higher VASIMR efficiency.

  15. Plasma-treated Langmuir-Blodgett reduced graphene oxide thin film for applications in biophotovoltaics

    NASA Astrophysics Data System (ADS)

    Ibrahim, Siti Aisyah; Jaafar, Muhammad Musoddiq; Ng, Fong-Lee; Phang, Siew-Moi; Kumar, G. Ghana; Majid, Wan Haliza Abd; Periasamy, Vengadesh

    2018-01-01

    The surface optimization and structural characteristics of Langmuir-Blodgett (LB) reduced graphene oxide thin (rGO) film treated by argon plasma treatment were studied. In this work, six times deposition of rGO was deposited on a clean glass substrate using the LB method. Plasma technique involving a variation of plasma power, i.e., 20, 60, 100 and 140 W was exposed to the LB-rGO thin films under argon ambience. The plasma treatment generally improves the wettability or hydrophilicity of the film surface compared to without treatment. Maximum wettability was observed at a plasma power of 20 W, while also increasing the adhesion of the rGO film with the glass substrate. The multilayer films fabricated were characterized by means of spectroscopic, structural and electrical studies. The treatment of rGO with argon plasma was found to have improved its biocompatibility, and thus its performance as an electrode for biophotovoltaic devices has been shown to be enhanced considerably.

  16. Pellet injection into H-mode ITER plasma with the presence of internal transport barriers

    NASA Astrophysics Data System (ADS)

    Leekhaphan, P.; Onjun, T.

    2011-04-01

    The impacts of pellet injection into ITER type-1 ELMy H-mode plasma with the presence of internal transport barriers (ITBs) are investigated using self-consistent core-edge simulations of 1.5D BALDUR integrated predictive modeling code. In these simulations, the plasma core transport is predicted using a combination of a semi-empirical Mixed B/gB anomalous transport model, which can self-consistently predict the formation of ITBs, and the NCLASS neoclassical model. For simplicity, it is assumed that toroidal velocity for ω E× B calculation is proportional to local ion temperature. In addition, the boundary conditions are predicted using the pedestal temperature model based on magnetic and flow shear stabilization width scaling; while the density of each plasma species, including both hydrogenic and impurity species, at the boundary are assumed to be a large fraction of its line averaged density. For the pellet's behaviors in the hot plasma, the Neutral Gas Shielding (NGS) model by Milora-Foster is used. It was found that the injection of pellet could result in further improvement of fusion performance from that of the formation of ITB. However, the impact of pellet injection is quite complicated. It is also found that the pellets cannot penetrate into a deep core of the plasma. The injection of the pellet results in a formation of density peak in the region close to the plasma edge. The injection of pellet can result in an improved nuclear fusion performance depending on the properties of pellet (i.e., increase up to 5% with a speed of 1 km/s and radius of 2 mm). A sensitivity analysis is carried out to determine the impact of pellet parameters, which are: the pellet radius, the pellet velocity, and the frequency of injection. The increase in the pellet radius and frequency were found to greatly improve the performance and effectiveness of fuelling. However, changing the velocity is observed to exert small impact.

  17. Effect of plasma exchange on in-hospital mortality in patients with pulmonary hemorrhage secondary to antineutrophil cytoplasmic antibody-associated vasculitis: A propensity-matched analysis using a nationwide administrative database.

    PubMed

    Uechi, Eishi; Okada, Masato; Fushimi, Kiyohide

    2018-01-01

    Secondary pulmonary hemorrhage increases the risk of mortality in patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV); plasma exchange therapy may improve outcomes in these patients. We conducted a retrospective cohort study to investigate the effect of plasma exchange therapy on short-term prognoses in patients with pulmonary hemorrhage secondary to AAV. This study utilized the Diagnosis Procedure Combination database, which is a nationwide inpatient database in Japan. We checked the abstract data and medical actions and identified the patients with pulmonary hemorrhage secondary to AAV who required proactive treatment between 2009 and 2014. To compare the in-hospital mortality, we performed propensity score matching between the plasma exchange and non-plasma exchange groups at a ratio of 1:1. Of the 52,932 patients with AAV, 940 developed pulmonary hemorrhage as a complication. A total of 249 patients from 194 hospitals were eligible for the study. Propensity score matching at a ratio of 1:1 was performed, and 59 pairs were formed (plasma exchange group, n = 59; non-plasma exchange group, n = 59). A statistically significant difference was found in the all-cause in-hospital mortality between the plasma exchange and non-plasma exchange groups (35.6% vs. 54.2%; p = 0041; risk difference, -18.6; 95% confidence interval (CI), -35.4% to -0.67%). Thus, plasma exchange therapy was associated with improved in-hospital mortality in patients with pulmonary hemorrhage secondary to AAV.

  18. Sawtooth pacing by real-time auxiliary power control in a tokamak plasma.

    PubMed

    Goodman, T P; Felici, F; Sauter, O; Graves, J P

    2011-06-17

    In the standard scenario of tokamak plasma operation, sawtooth crashes are the main perturbations that can trigger performance-degrading, and potentially disruption-generating, neoclassical tearing modes. This Letter demonstrates sawtooth pacing by real-time control of the auxiliary power. It is shown that the sawtooth crash takes place in a reproducible manner shortly after the removal of that power, and this can be used to precisely prescribe, i.e., pace, the individual sawteeth. In combination with preemptive stabilization of the neoclassical tearing modes, sawtooth pacing provides a new sawtooth control paradigm for improved performance in burning plasmas.

  19. Prediction of changes in memory performance by plasma homovanillic acid levels in clozapine-treated patients with schizophrenia.

    PubMed

    Sumiyoshi, Tomiki; Roy, A; Kim, C-H; Jayathilake, K; Lee, M A; Sumiyoshi, C; Meltzer, H Y

    2004-12-01

    Cognitive dysfunction in schizophrenia has been demonstrated to be dependent, in part, on dopaminergic activity. Clozapine has been found to improve some domains of cognition, including verbal memory, in patients with schizophrenia. This study tested the hypothesis that plasma homovanillic acid (pHVA) levels, a peripheral measure of central dopaminergic activity, would predict the change in memory performance in patients with schizophrenia treated with clozapine. Twenty-seven male patients with schizophrenia received clozapine treatment for 6 weeks. Verbal list learning (VLL)-Delayed Recall (VLL-DR), a test of secondary verbal memory, was administered before and after clozapine treatment. Blood samples to measure pHVA levels were collected at baseline. Baseline pHVA levels were negatively correlated with change in performance on VLL-DR; the lower baseline pHVA level was associated with greater improvement in performance on VLL-DR during treatment with clozapine. Baseline pHVA levels in subjects who showed improvement in verbal memory during clozapine treatment ( n=13) were significantly lower than those in subjects whose memory performance did not improve ( n=14). The results of this study indicate that baseline pHVA levels predict the ability of clozapine to improve memory performance in patients with schizophrenia.

  20. Improved selectivity for high-performance liquid chromatographic determination of clonazepam in plasma of epileptic patients.

    PubMed

    Le Guellec, C; Gaudet, M L; Breteau, M

    1998-11-20

    We report a high-performance liquid chromatography method for clonazepam determination in plasma. The use of a synthetic silica-based stationary phase markedly improved clonazepam resolution compared to standard reversed-phase columns. A liquid-liquid extraction was used, associated with reversed-phase chromatography, gradient elution and ultraviolet detection. Accuracy and precision were satisfactory at therapeutic concentrations. Selectivity was studied for benzodiazepines or other antiepileptic drugs, with particular attention to newly marketed drugs i.e., gabapentine and vigabatrin. No interfering substance was evidenced. Under the conditions described, it was possible to quantify clonazepam at nanogram level even when carbamazepine was present at therapeutic concentrations.

  1. Comparative Plasma Exposure of Albendazole after Administration of Rapidly Disintegrating Tablets in Dogs

    PubMed Central

    Castro, Silvina G.; Dib, Alicia; Suarez, Gonzalo; Allemandi, Daniel; Lanusse, Carlos; Sanchez Bruni, Sergio; Palma, Santiago D.

    2013-01-01

    The main objectives of this study were (a) to evaluate the in vitro performance of the rapid disintegration tablets as a way to improve the solid dispersions and (b) to study the in vivo pharmacokinetics of the albendazole modified formulation in dogs. Rapid disintegration of tablets seems to be a key factor for efficiency of solid dispersions with regard to improvement of the albendazole bioavailability. The in vivo assays performed on dogs showed a marked increase in drug plasma exposure when albendazole was given in solid dispersions incorporated into rapid disintegration tablets compared with conventional solid dosage form. PMID:24063016

  2. Plasma-sprayed zirconia gas path seal technology: A state-of-the-art review

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1979-01-01

    The benefits derived from application of ceramic materials to high pressure turbine gas path seal components are described and the developmental backgrounds of various approaches are reviewed. The most fully developed approaches are those employing plasma sprayed zirconium oxide as the ceramic material. Prevention of cracking and spalling of the zirconium oxide under cyclic thermal shock conditions imposed by the engine operating cycle is the most immediate problem to be solved before implementation is undertaken. Three promising approaches to improving cyclic thermal shock resistance are described and comparative rig performance of each are reviewed. Advanced concepts showing potential for performance improvements are described.

  3. Plasma gun with coaxial powder feed and adjustable cathode

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor (Inventor)

    1991-01-01

    An improved plasma gun coaxially injects particles of ceramic materials having high melting temperatures into the central portion of a plasma jet. This results in a more uniform and higher temperature and velocity distribution of the sprayed particles. The position of the cathode is adjustable to facilitate optimization of the performance of the gun wherein grains of the ceramic material are melted at lower power input levels.

  4. Analysis of postoperative biochemical values and clinical outcomes after adrenalectomy for primary aldosteronism.

    PubMed

    Swearingen, Andrew J; Kahramangil, Bora; Monteiro, Rosebel; Krishnamurthy, Vikram; Jin, Judy; Shin, Joyce; Siperstein, Allan; Berber, Eren

    2018-04-01

    Primary aldosteronism causes hypertension and hypokalemia and is often surgically treatable. Diagnosis includes elevated plasma aldosterone, suppressed plasma renin activity, and elevated aldosterone renin ratio. Adrenalectomy improves hypertension and hypokalemia. Postoperative plasma aldosterone and plasma renin activity may be useful in documenting cure or failure. A retrospective analysis of patients who underwent adrenalectomy for primary aldosteronism from 2010 to 2016 was performed, analyzing preoperative and postoperative plasma aldosterone, plasma renin activity, hypertension, and hypokalemia. The utility of postoperative testing was assessed. Clinical cure was defined as improved hypertension control and resolution of potassium loss. Biochemical cure was defined as aldosterone renin ratio reduction to <23.6. Forty-four patients were included; 20 had plasma aldosterone and plasma renin activity checked on postoperative day 1. In the study, 40/44 (91%) were clinically cured. All clinical failures had of biochemical failure at follow-up. Postoperative day 1aldosterone renin ratio <23.6 had PPV of 95% for clinical cure. Cured patients had mean plasma aldosterone drop of 33.1 ng/dL on postoperative day 1; noncured patient experienced 3.9 ng/dL increase. A cutoff of plasma aldosterone decrease of 10 ng/dL had high positive predictive value for clinical cure. Changes in plasma aldosterone and plasma renin activity after adrenalectomy correlate with improved hypertension and hypokalemia. The biochemical impact of adrenalectomy manifests as early as postoperative day 1. We propose a plasma aldosterone decrease of 10 ng/dL as a criterion to predict clinical cure. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Effect of telmisartan on selected adipokines, insulin sensitivity, and substrate utilization during insulin-stimulated conditions in patients with metabolic syndrome and impaired fasting glucose.

    PubMed

    Wohl, Petr; Krusinová, Eva; Hill, Martin; Kratochvílová, Simona; Zídková, Katerina; Kopecký, Jan; Neskudla, Tomás; Pravenec, Michal; Klementová, Marta; Vrbíková, Jana; Wohl, Pavel; Mlejnek, Petr; Pelikánová, Terezie

    2010-10-01

    Telmisartan improves glucose and lipid metabolism in rodents. This study evaluated the effect of telmisartan on insulin sensitivity, substrate utilization, selected plasma adipokines and their expressions in subcutaneous adipose tissue (SAT) in metabolic syndrome. Twelve patients with impaired fasting glucose completed the double-blind, randomized, crossover trial. Patients received telmisartan (160 mg/day) or placebo for 3 weeks and vice versa with a 2-week washout period. At the end of each period, a hyperinsulinemic euglycemic clamp (HEC) combined with indirect calorimetry was performed. During HEC (0, 30, and 120 min), plasma levels of adipokines were measured and a needle biopsy (0 and 30 min) of SAT was performed. Fasting plasma glucose was lower after telmisartan compared with placebo (P<0.05). There were no differences in insulin sensitivity and substrate utilization. We found no differences in basal plasma adiponectin, resistin and tumour necrosis factor α (TNFα), but an increase was found in basal leptin, after telmisartan treatment. Insulin-stimulated plasma adiponectin (P<0.05), leptin and resistin (P<0.001) were increased, whereas TNFα was decreased (P<0.05) after telmisartan treatment. Expression of resistin, but not adiponectin, TNFα and leptin was increased after telmisartan treatment. Despite the decrease in fasting plasma glucose, telmisartan does not improve insulin sensitivity and substrate utilization. Telmisartan increases plasma leptin as well as insulin-stimulated plasma adiponectin, leptin and resistin, and decreases plasma TNFα during HEC. Changes in plasma adipokines cannot be explained by their expressions in SAT. The changes in plasma adipokines might be involved in the metabolic effects of telmisartan in metabolic syndrome.

  6. Impact of an exercise program on muscular and functional performance and plasma levels of interleukin 6 and soluble receptor tumor necrosis factor in prefrail community-dwelling older women: a randomized controlled trial.

    PubMed

    Lustosa, Lygia Paccini; Máximo Pereira, Leani Souza; Coelho, Fernanda Matos; Pereira, Daniele Sirineu; Silva, Juscélio Pereira; Parentoni, Adriana Netto; Dias, Rosângela Correa; Domingues Dias, João Marcos

    2013-04-01

    To examine the impact of a muscle resistance program (MRP) on muscular and functional performance and on interleukin 6 (IL-6) and soluble tumor necrosis factor receptor-1 (sTNFr1) plasma levels in prefrail community-dwelling women. Randomized controlled trial crossover design with a postintervention and short-term follow-up. University hospital. Prefrail community-dwelling women (N=32; ≥65y). The MRP was designed based on the exercise at 75% of each participant's maximum load (10wk, 3 times/wk). Plasma concentrations of IL-6 and sTNFr1 (high-sensitivity enzyme-linked immunosorbent assay kits), muscle strength of the knee extensors (isokinetic), and functional performance (Timed Up & Go [TUG] test and 10-meter walk test [10MWT]). There were significant differences in functional and muscular performance between the pre-MRP, post-MRP, and 10-week follow-up period. After the MRP, both functional (TUG, pre-MRP=11.1s vs post-MRP=10.4s, P=.00; 10MWT, pre-MRP=4.9s vs post-MRP, 4.4s, P=.00) and muscular performances (pre-MRP=77.8% and post-MRP=83.1%, P=.02) improved. After cessation of the MRP (follow-up period), sTNFr1 plasma levels increased by 21.4% at 10-week follow-up (post-MRP, 406.4pg/mL; 10-week follow-up, 517.0pg/mL; P=.03). There were significant differences in sTNFr1 (P=.01). The MRP was effective in improving functional and muscular performances, although alterations in plasma levels of IL-6 and sTNFr1 could not be identified after the MRP. Cessation of the MRP after 10 weeks resulted in increased plasma levels of sTNFr1. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Injection of auxiliary electrons for increasing the plasma density in highly charged and high intensity ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odorici, F., E-mail: fabrizio.odorici@bo.infn.it; Malferrari, L.; Montanari, A.

    Different electron guns based on cold- or hot-cathode technologies have been developed since 2009 at INFN for operating within ECR plasma chambers as sources of auxiliary electrons, with the aim of boosting the source performances by means of a higher plasma lifetime and density. Their application to microwave discharge ion sources, where plasma is not confined, has required an improvement of the gun design, in order to “screen” the cathode from the plasma particles. Experimental tests carried out on a plasma reactor show a boost of the plasma density, ranging from 10% to 90% when the electron guns are used,more » as explained by plasma diffusion models.« less

  8. Cognitive style, alprazolam plasma levels, and treatment response in panic disorder.

    PubMed

    Uhlenhuth, E H; Starcevic, Vladan; Qualls, Clifford; Antal, Edward J; Matuzas, William; Javaid, Javaid I; Barnhill, Jamie

    2008-01-01

    This study investigated an anxiety-prone cognitive style (measured by the Anxious Thoughts and Tendencies Questionnaire, AT&T) as a predictor of the acute response to increasing alprazolam plasma levels in panic disorder. Panic disorder patients (n=26) were treated with escalating doses of alprazolam for 4 weeks, then a fixed dose of 1 mg four times a day for 4 weeks. At 0, 1, 2, 3, 4, 6, and 8 weeks, trough alprazolam plasma levels; clinical, self-report, and performance measures; and vital signs were assessed. Panic attack data were from daily diaries. The repeated response measures were analyzed in relation to alprazolam plasma levels using SAS GENMOD, with patients classified as high or low on the baseline AT&T. Panic attacks, anticipatory anxiety, fear, avoidance, overall agoraphobia, the Hamilton Anxiety Rating Scale, and clinicians' global ratings improved with increasing alprazolam plasma levels. Hopkins Symptom Checklist-90 Anger-Hostility; Profile of Mood States Vigor, Confusion, and Friendliness; and speed and accuracy of performance worsened. Patients with high AT&T scores were worse throughout the study on situational panics, fear, avoidance, overall agoraphobia, the Hamilton Anxiety Rating Scale, the Hamilton Rating Scale for Depression, and Clinical Global Improvement; most Hopkins Symptom Checklist-90 clusters; Profile of Mood States Anxiety, Depression, and Confusion; and Continuous Performance Task omissions. We conclude that in panic disorder: (1) alprazolam has a broad spectrum of clinical activity related to plasma levels in individual patients; (2) sedation, disinhibition, and performance deficits may persist for at least a month after dose escalation ends; (3) marked anxiety-prone cognitions predict more symptoms throughout treatment, but do not modify the response to alprazolam and therefore should not influence the choice of alprazolam as treatment. Published 2007 Wiley-Liss, Inc.

  9. Novel Flow Cytometry Analyses of Boar Sperm Viability: Can the Addition of Whole Sperm-Rich Fraction Seminal Plasma to Frozen-Thawed Boar Sperm Affect It?

    PubMed

    Torres, Mariana Andrade; Díaz, Rommy; Boguen, Rodrigo; Martins, Simone Maria Massami Kitamura; Ravagnani, Gisele Mouro; Leal, Diego Feitosa; Oliveira, Melissa de Lima; Muro, Bruno Bracco Donatelli; Parra, Beatriz Martins; Meirelles, Flávio Vieira; Papa, Frederico Ozanan; Dell'Aqua, José Antônio; Alvarenga, Marco Antônio; Moretti, Aníbal de Sant'Anna; Sepúlveda, Néstor; de Andrade, André Furugen Cesar

    2016-01-01

    Boar semen cryopreservation remains a challenge due to the extension of cold shock damage. Thus, many alternatives have emerged to improve the quality of frozen-thawed boar sperm. Although the use of seminal plasma arising from boar sperm-rich fraction (SP-SRF) has shown good efficacy; however, the majority of actual sperm evaluation techniques include a single or dual sperm parameter analysis, which overrates the real sperm viability. Within this context, this work was performed to introduce a sperm flow cytometry fourfold stain technique for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential. We then used the sperm flow cytometry fourfold stain technique to study the effect of SP-SRF on frozen-thawed boar sperm and further evaluated the effect of this treatment on sperm movement, tyrosine phosphorylation and fertility rate (FR). The sperm fourfold stain technique is accurate (R2 = 0.9356, p > 0.01) for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential (IPIAH cells). Centrifugation pre-cryopreservation was not deleterious (p > 0.05) for any analyzed variables. Addition of SP-SRF after cryopreservation was able to improve total and progressive motility (p < 0.05) when boar semen was cryopreserved without SP-SRF; however, it was not able to decrease tyrosine phosphorylation (p > 0.05) or improve IPIAH cells (p > 0.05). FR was not (p > 0.05) statistically increased by the addition of seminal plasma, though females inseminated with frozen-thawed boar semen plus SP-SRF did perform better than those inseminated with sperm lacking seminal plasma. Thus, we conclude that sperm fourfold stain can be used to simultaneously evaluate plasma and acrosomal membrane integrity and mitochondrial membrane potential, and the addition of SP-SRF at thawed boar semen cryopreserved in absence of SP-SRF improve its total and progressive motility.

  10. Novel Flow Cytometry Analyses of Boar Sperm Viability: Can the Addition of Whole Sperm-Rich Fraction Seminal Plasma to Frozen-Thawed Boar Sperm Affect It?

    PubMed Central

    Díaz, Rommy; Boguen, Rodrigo; Martins, Simone Maria Massami Kitamura; Ravagnani, Gisele Mouro; Leal, Diego Feitosa; Oliveira, Melissa de Lima; Muro, Bruno Bracco Donatelli; Parra, Beatriz Martins; Meirelles, Flávio Vieira; Papa, Frederico Ozanan; Dell’Aqua, José Antônio; Alvarenga, Marco Antônio; Moretti, Aníbal de Sant’Anna; Sepúlveda, Néstor

    2016-01-01

    Boar semen cryopreservation remains a challenge due to the extension of cold shock damage. Thus, many alternatives have emerged to improve the quality of frozen-thawed boar sperm. Although the use of seminal plasma arising from boar sperm-rich fraction (SP-SRF) has shown good efficacy; however, the majority of actual sperm evaluation techniques include a single or dual sperm parameter analysis, which overrates the real sperm viability. Within this context, this work was performed to introduce a sperm flow cytometry fourfold stain technique for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential. We then used the sperm flow cytometry fourfold stain technique to study the effect of SP-SRF on frozen-thawed boar sperm and further evaluated the effect of this treatment on sperm movement, tyrosine phosphorylation and fertility rate (FR). The sperm fourfold stain technique is accurate (R2 = 0.9356, p > 0.01) for simultaneous evaluation of plasma and acrosomal membrane integrity and mitochondrial membrane potential (IPIAH cells). Centrifugation pre-cryopreservation was not deleterious (p > 0.05) for any analyzed variables. Addition of SP-SRF after cryopreservation was able to improve total and progressive motility (p < 0.05) when boar semen was cryopreserved without SP-SRF; however, it was not able to decrease tyrosine phosphorylation (p > 0.05) or improve IPIAH cells (p > 0.05). FR was not (p > 0.05) statistically increased by the addition of seminal plasma, though females inseminated with frozen-thawed boar semen plus SP-SRF did perform better than those inseminated with sperm lacking seminal plasma. Thus, we conclude that sperm fourfold stain can be used to simultaneously evaluate plasma and acrosomal membrane integrity and mitochondrial membrane potential, and the addition of SP-SRF at thawed boar semen cryopreserved in absence of SP-SRF improve its total and progressive motility. PMID:27529819

  11. Performance improvement of magnetized coaxial plasma gun by magnetic circuit on a bias coil

    NASA Astrophysics Data System (ADS)

    Edo, Takahiro; Matsumoto, Tadafumi; Asai, Tomohiko; Kamino, Yasuhiro; Inomoto, Michiaki; Gota, Hiroshi

    2016-10-01

    A magnetized coaxial plasmoid accelerator has been utilized for compact torus (CT) injection to refuel into fusion reactor core plasma. Recently, CT injection experiments have been conducted on the C-2/C-2U facility at Tri Alpha Energy. In the series of experiments successful refueling, i.e. increased particle inventory of field-reversed configuration (FRC) plasma, has been observed. In order to improve the performance of CT injector and to refuel in the upgraded FRC device, called C-2W, with higher confinement magnetic field, magnetic circuit consisting of magnetic material onto a bias magnetic coil is currently being tested at Nihon University. Numerical work suggests that the optimized bias magnetic field distribution realizes the increased injection velocity because of higher conversion efficiency of Lorenz self force to kinetic energy. Details of the magnetic circuit design as well as results of the test experiment and field calculations will be presented and discussed.

  12. Design of a new nozzle for direct current plasma guns with improved spraying parameters

    NASA Astrophysics Data System (ADS)

    Jankovic, M.; Mostaghimi, J.; Pershin, V.

    2000-03-01

    A new design is proposed for direct current plasma spray gas-shroud attachments. It has curvilinearly shaped internal walls aimed toward elimination of the cold air entrainment, recorded for commercially available conical designs of the shrouded nozzle. The curvilinear nozzle design was tested; it proved to be capable of withstanding high plasma temperatures and enabled satisfactory particle injection. Parallel measurements with an enthalpy probe were performed on the jet emerging from two different nozzles. Also, corresponding calculations were made to predict the plasma flow parameters and the particle parameters. Adequate spray tests were performed by spraying iron-aluminum and MCrAlY coatings onto stainless steel substrates. Coating analyses were performed, and coating qualities, such as microstructure, open porosity, and adhesion strength, were determined. The results indicate that the coatings sprayed with a curvilinear nozzle exhibited lower porosity, higher adhesion strength, and an enhanced microstructure.

  13. The effect of oxygen-plasma treatment on Kevlar fibers and the properties of Kevlar fibers/bismaleimide composites

    NASA Astrophysics Data System (ADS)

    Su, Min; Gu, Aijuan; Liang, Guozheng; Yuan, Li

    2011-02-01

    The effect of oxygen-plasma treatment for Kevlar fibers on the interfacial adhesion and typical macro-properties of Kevlar fiber/bismaleimide composites was intensively studied. It is found that oxygen-plasma treatment significantly affects the interfacial adhesion by changing the chemistry and morphology of the surfaces of the fibers, and thus leading to improved interlaminar shear strength, water resistance and dielectric properties of the composites. However, the improvement is closely related to the treatment power and time. The best condition for treating Kevlar fiber is 70 W for 5 min. Oxygen-plasma treatment provides an effective technique for overcoming the poor interfacial adhesion of Kevlar fiber based composites, and thus showing great potential in fabricating high performance copper clad laminates.

  14. Operational Characteristics of Liquid Lithium Divertor in NSTX

    NASA Astrophysics Data System (ADS)

    Kaita, R.; Kugel, H.; Abrams, T.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Jaworski, M. A.; Kallman, J.; Leblanc, B.; Mansfield, D.; Mueller, D.; Paul, S.; Roquemore, A. L.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L.; Maingi, R.; Nygren, R.; Raman, R.; Sabbagh, S.; Soukhanovskii, V.

    2010-11-01

    Lithium coatings on plasma-facing components (PFC's) have resulted in improved plasma performance on NSTX in deuterium H-mode plasmas with neutral beam heating.^ Salient results included improved electron confinement and ELM suppression. In CDX-U, the use of lithium-coated PFC's and a large-area liquid lithium limiter resulted in a six-fold increase in global energy confinement time. A Liquid Lithium Divertor (LLD) has been installed in NSTX for the 2010 run campaign. The LLD PFC consists of a thin film of lithium on a temperature-controlled substrate to keep the lithium liquefied between shots, and handle heat loads during plasmas. This capability was demonstrated when the LLD withstood a strike point on its surface during discharges with up to 4 MW of neutral beam heating.

  15. Improved motor and cognitive performance with sodium nitrite supplementation is related to small metabolite signatures: a pilot trial in middle-aged and older adults

    PubMed Central

    DeVan, Allison E.; Cruickshank-Quinn, Charmion; Reisdorph, Nichole; Bassett, Candace J.; Evans, Trent D.; Brooks, Forrest A.; Bryan, Nathan S.; Chonchol, Michel B.; Giordano, Tony; McQueen, Matthew B.; Seals, Douglas R.

    2015-01-01

    Advancing age is associated with reductions in nitric oxide bioavailability and changes in metabolic activity, which are implicated in declines in motor and cognitive function. In preclinical models, sodium nitrite supplementation (SN) increases plasma nitrite and improves motor function, whereas other nitric oxide-boosting agents improve cognitive function. This pilot study was designed to translate these findings to middle-aged and older (MA/O) humans to provide proof-of-concept support for larger trials. SN (10 weeks, 80 or 160 mg/day capsules, TheraVasc, Inc.) acutely and chronically increased plasma nitrite and improved performance on measures of motor and cognitive outcomes (all p<0.05 or better) in healthy MA/O adults (62 ± 7 years). Untargeted metabolomics analysis revealed that SN significantly altered 33 (160 mg/day) to 45 (80 mg/day) different metabolites, 13 of which were related to changes in functional outcomes; baseline concentrations of 99 different metabolites predicted functional improvements with SN. This pilot study provides the first evidence that SN improves aspects of motor and cognitive function in healthy MA/O adults, and that these improvements are associated with, and predicted by, the plasma metabolome. Our findings provide the necessary support for larger clinical trials on this promising pharmacological strategy for preserving physiological function with aging. PMID:26626856

  16. Analytical strategy for the determination of non-steroidal anti-inflammatory drugs in plasma and improved analytical strategy for the determination of authorized and non-authorized non-steroidal anti-inflammatory drugs in milk by LC-MS/MS.

    PubMed

    Dowling, Geraldine; Malone, Edward; Harbison, Tom; Martin, Sheila

    2010-07-01

    A sensitive and selective method for the determination of six non-steroidal anti-inflammatory drugs (NSAIDs) in bovine plasma was developed. An improved method for the determination of authorized and non-authorized residues of 10 non-steroidal anti-inflammatory drugs in milk was developed. Analytes were separated and acquired by high performance liquid chromatography coupled with an electrospray ionisation tandem mass spectrometer (ESI-MS/MS). Target compounds were acidified in plasma, and plasma and milk samples were extracted with acetonitrile and both extracts were purified on an improved solid phase extraction procedure utilising Evolute ABN cartridges. The accuracy of the methods for milk and plasma was between 73 and 109%. The precision of the method for authorized and non-authorized NSAIDs in milk and plasma expressed as % RSD, for the within lab reproducibility was less than 16%. The % RSD for authorized NSAIDs at their associated MRL(s) in milk was less than 10% for meloxicam, flunixin and tolfenamic acid and was less than 25% for hydroxy flunixin. The methods were validated according to Commission Decision 2002/657/EC.

  17. X-ray opacity measurements in mid-Z dense plasmas with a new target design of indirect heating

    NASA Astrophysics Data System (ADS)

    Dozières, M.; Thais, F.; Bastiani-Ceccotti, S.; Blenski, T.; Fariaut, J.; Fölsner, W.; Gilleron, F.; Khaghani, D.; Pain, J.-C.; Reverdin, C.; Rosmej, F.; Silvert, V.; Soullié, G.; Villette, B.

    2015-12-01

    X-ray transmission spectra of copper, nickel and aluminum laser produced plasmas were measured at the LULI2000 laser facility with an improved target design of indirect heating. Measurements were performed in plasmas close to local thermodynamic equilibrium at temperatures around 25 eV and densities between 10-3g/cm3 and 10-2 g/cm3. This improved design provides several advantages, which are discussed in this paper. The sample is a thin foil of mid-Z material inserted between two gold cavities heated by two 300J, 2ω, nanosecond laser beams. A third laser beam irradiates a gold foil to create a spectrally continuous X-ray source (backlight) used to probe the sample. We investigate 2p-3d absorption structures in Ni and Cu plasmas as well as 1s-2p transitions in an additional Al plasma layer to infer the in-situ plasma temperature. Geometric and hydrodynamic calculations indicate that the improved geometry reduces spatial gradients during the transmission measurements. Experimental absorption spectra are in good agreement with calculations from the hybrid atomic physics code SCO-RCG.

  18. Fabrication of ultrathin and highly uniform silicon on insulator by numerically controlled plasma chemical vaporization machining.

    PubMed

    Sano, Yasuhisa; Yamamura, Kazuya; Mimura, Hidekazu; Yamauchi, Kazuto; Mori, Yuzo

    2007-08-01

    Metal-oxide semiconductor field-effect transistors fabricated on a silicon-on-insulator (SOI) wafer operate faster and at a lower power than those fabricated on a bulk silicon wafer. Scaling down, which improves their performances, demands thinner SOI wafers. In this article, improvement on the thinning of SOI wafers by numerically controlled plasma chemical vaporization machining (PCVM) is described. PCVM is a gas-phase chemical etching method in which reactive species generated in atmospheric-pressure plasma are used. Some factors affecting uniformity are investigated and methods for improvements are presented. As a result of thinning a commercial 8 in. SOI wafer, the initial SOI layer thickness of 97.5+/-4.7 nm was successfully thinned and made uniform at 7.5+/-1.5 nm.

  19. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel

    PubMed Central

    Lin, Naiming; Liu, Qiang; Zou, Jiaojuan; Guo, Junwen; Li, Dali; Yuan, Shuo; Ma, Yong; Wang, Zhenxia; Wang, Zhihua; Tang, Bin

    2016-01-01

    Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316), surface-textured 316 (ST-316), and duplex-treated 316 (DT-316) in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication. PMID:28773996

  20. Ta2O5 Polycrystalline Silicon Capacitors with CF4 Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Kao, Chyuan-Haur; Chen, Hsiang

    2012-04-01

    In this research, the effects of CF4 plasma treatment with post annealing on the electrical characteristics and material properties of Ta2O5 dielectrics were determined. The dielectric performance characteristics of samples under different treatment conditions were measured using equivalent oxide thickness (EOT), current density-electric field (J-E) characteristics, gate voltage shift versus time, and Weibull plots. In addition, X-ray diffraction (XRD) analysis provided insight into the changes in crystalline structure, atomic force microscopy (AFM) measurements visualized the surface roughness, and secondary ion mass spectroscopy (SIMS) revealed the distribution of fluorine ions inside the dielectric samples. Findings indicate that dielectric performance can be significantly improved by CF4 plasma treatment for 1 min with post annealing at 800 °C. The improvements in electrical characteristics were caused by the appropriate incorporation of the fluorine atoms and the removal of the dangling bonds and traps. The Ta2O5 dielectric incorporated with appropriate CF4 plasma and annealing treatments shows great promise for future generation of nonvolatile memory applications.

  1. The Production and Evolution of Atomic Oxygen in the Afterglow of Streamer Discharge in Atmospheric Pressure Fuel/Air Mixtures

    DTIC Science & Technology

    2013-07-02

    in streamer discharge afterglow in a variety of fueVair mixtures in order to account for the 0 reaction pathways in transient plasma ignition. It is... plasma ignition (TPI), the use of streamers for ignition in combustion engines, holds great promise for improving performance. TPI has been tested...standard spark gap or arc ignition methods [1-4]. These improvements to combustion allow increasing power and efficiency in existing engines such as

  2. Impact of plasma viscosity on microcirculatory flow after traumatic haemorrhagic shock: A prospective observational study.

    PubMed

    Naumann, David N; Hazeldine, Jon; Bishop, Jon; Midwinter, Mark J; Harrison, Paul; Nash, Gerard; Hutchings, Sam D

    2018-05-19

    Preclinical studies report that higher plasma viscosity improves microcirculatory flow after haemorrhagic shock and resuscitation, but no clinical study has tested this hypothesis. We investigated the relationship between plasma viscosity and sublingual microcirculatory flow in patients during resuscitation for traumatic haemorrhagic shock (THS). Sublingual video-microscopy was performed for 20 trauma patients with THS as soon as feasible in hospital, and then at 24 h and 48 h. Values were obtained for total vessel density, perfused vessel density, proportion of perfused vessels, microcirculatory flow index (MFI), microcirculatory heterogeneity index (MHI), and Point of Care Microcirculation (POEM) scores. Plasma viscosity was measured using a Wells-Brookfield cone and plate micro-viscometer. Logistic regression analyses examined relationships between microcirculatory parameters and plasma viscosity, adjusting for covariates (systolic blood pressure, heart rate, haematocrit, rate and volume of fluids, and rate of noradrenaline). Higher plasma viscosity was not associated with improved microcirculatory parameters. Instead, there were weakly significant associations between higher plasma viscosity and lower (poorer) MFI (p = 0.040), higher (worse) MHI (p = 0.033), and lower (worse) POEM scores (p = 0.039). The current study did not confirm the hypothesis that higher plasma viscosity improves microcirculatory flow dynamics in patients with THS. Further clinical investigations are warranted to determine whether viscosity is a physical parameter of importance during resuscitation of these patients.

  3. Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolston, Nicholas; Printz, Adam D.; Hilt, Florian

    Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less

  4. Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air

    DOE PAGES

    Rolston, Nicholas; Printz, Adam D.; Hilt, Florian; ...

    2017-10-27

    Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less

  5. Ultrasound-guided platelet-rich plasma injection for distal biceps tendinopathy

    PubMed Central

    Bell, Simon N; Connell, David; Coghlan, Jennifer A

    2015-01-01

    Background Distal biceps tendinopathy is an uncommon cause of elbow pain. The optimum treatment for cases refractory to conservative treatment is unclear. Platelet-rich plasma has been used successfully for other tendinopathies around the elbow. Methods Six patients with clinical and radiological evidence of distal biceps tendinopathy underwent ultrasound-guided platelet-rich plasma (PRP) injection. Clinical examination findings, visual analogue score (VAS) for pain and Mayo Elbow Performance scores were recorded. Results The Mayo Elbow Performance Score improved from 68.3 (range 65 to 85) (fair function) to 95 (range 85 to 100) (excellent function). The VAS at rest improved from a mean of 2.25 (range 2 to 5) pre-injection to 0. The VAS with movement improved from a mean of 7.25 (range 5 to 8) pre-injection to 1.3 (range 0 to 2). No complications were noted. Discussion Ultrasound-guided PRP injection appears to be a safe and effective treatment for recalcitrant cases of distal biceps tendinopathy. Further investigation with a randomized controlled trial is needed to fully assess its efficacy. PMID:27582965

  6. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    NASA Astrophysics Data System (ADS)

    Lucia, Matthew James

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experiment (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (dLi ˜ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2 O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H 2 within minutes. For impurity sequestration, LTX plasma performance---ascertained from plasma current and density measurements---progressively improved as plasma carbon and oxygen impurity levels fell. This was true for PFC conditioning by vacuum baking and argon glow discharge cleaning, as well as by lithium evaporation. Some evidence suggested that impurity sequestration was more important than hydrogen retention in enhancing LTX plasma performance. In contrast with expectations for lithium PFCs, heating the Li2 O PFCs in LTX caused increased plasma impurity levels that tended to reduce plasma performance.

  7. Simple O2 plasma-processed V2O5 as an anode buffer layer for high-performance polymer solar cells.

    PubMed

    Bao, Xichang; Zhu, Qianqian; Wang, Ting; Guo, Jing; Yang, Chunpeng; Yu, Donghong; Wang, Ning; Chen, Weichao; Yang, Renqiang

    2015-04-15

    A simple O2 plasma processing method for preparation of a vanadium oxide (V2O5) anode buffer layer on indium tin oxide (ITO)-coated glass for polymer solar cells (PSCs) is reported. The V2O5 layer with high transmittance and good electrical and interfacial properties was prepared by spin coating a vanadium(V) triisopropoxide oxide alcohol solution on ITO and then O2 plasma treatment for 10 min [V2O5 (O2 plasma)]. PSCs based on P3HT:PC61BM and PBDTTT-C:PC71BM using V2O5 (O2 plasma) as an anode buffer layer show high power conversion efficiencies (PCEs) of 4.47 and 7.54%, respectively, under the illumination of AM 1.5G (100 mW/cm(2)). Compared to that of the control device with PBDTTT-C:PC71BM as the active layer and PSS (PCE of 6.52%) and thermally annealed V2O5 (PCE of 6.27%) as the anode buffer layer, the PCE was improved by 15.6 and 20.2%, respectively, after the introduction of a V2O5 (O2 plasma) anode buffer layer. The improved PCE is ascribed to the greatly improved fill factor and enhanced short-circuit current density of the devices, which benefited from the change in the work function of V2O5, a surface with many dangling bonds for better interfacial contact, and the excellent charge transport property of the V2O5 (O2 plasma) layer. The results indicate that an O2 plasma-processed V2O5 film is an efficient and economical anode buffer layer for high-performance PSCs. It also provides an attractive choice for low-cost fabrication of organic electronics.

  8. Apparatus and method for improving electrostatic precipitator performance by plasma reactor conversion of SO.sub.2 to SO.sub.3

    DOEpatents

    Huang, Hann-Sheng; Gorski, Anthony J.

    1999-01-01

    An apparatus and process that utilize a low temperature nonequilibrium plasma reactor, for improving the particulate removal efficiency of an electrostatic precipitator (ESP) are disclosed. A portion of the flue gas, that contains a low level of SO.sub.2 O.sub.2 H.sub.2 O, and particulate matter, is passed through a low temperature plasma reactor, which defines a plasma volume, thereby oxidizing a portion of the SO.sub.2 present in the flue gas into SO.sub.3. An SO.sub.2 rich flue gas is thereby generated. The SO.sub.3 rich flue gas is then returned to the primary flow of the flue gas in the exhaust treatment system prior to the ESP. This allows the SO.sub.3 to react with water to form H.sub.2 SO.sub.4 that is in turn is absorbed by fly ash in the gas stream in order to improve the removal efficiency of the EPS.

  9. Improving yield and performance in ZnO thin-film transistors made using selective area deposition.

    PubMed

    Nelson, Shelby F; Ellinger, Carolyn R; Levy, David H

    2015-02-04

    We describe improvements in both yield and performance for thin-film transistors (TFTs) fabricated by spatial atomic layer deposition (SALD). These improvements are shown to be critical in forming high-quality devices using selective area deposition (SAD) as the patterning method. Selective area deposition occurs when the precursors for the deposition are prevented from reacting with some areas of the substrate surface. Controlling individual layer quality and the interfaces between layers is essential for obtaining good-quality thin-film transistors and capacitors. The integrity of the gate insulator layer is particularly critical, and we describe a method for forming a multilayer dielectric using an oxygen plasma treatment between layers that improves crossover yield. We also describe a method to achieve improved mobility at the important interface between the semiconductor and the gate insulator by, conversely, avoiding oxygen plasma treatment. Integration of the best designs results in wide design flexibility, transistors with mobility above 15 cm(2)/(V s), and good yield of circuits.

  10. Helicon plasma generator-assisted surface conversion ion source for the production of H- ion beams at the Los Alamos Neutron Science Centera)

    NASA Astrophysics Data System (ADS)

    Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.

  11. Helicon plasma generator-assisted surface conversion ion source for the production of H(-) ion beams at the Los Alamos Neutron Science Center.

    PubMed

    Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J

    2008-02-01

    The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.

  12. Comparison of several von Willebrand factor (VWF) activity assays for monitoring patients undergoing treatment with VWF/FVIII concentrates: improved performance with a new modified automated method.

    PubMed

    Hillarp, A; Friedman, K D; Adcock-Funk, D; Tiefenbacher, S; Nichols, W L; Chen, D; Stadler, M; Schwartz, B A

    2015-11-01

    The ability of von Willebrand factor (VWF) to bind platelet GP Ib and promote platelet plug formation is measured in vitro using the ristocetin cofactor (VWF:RCo) assay. Automated assay systems make testing more accessible for diagnosis, but do not necessarily improve sensitivity and accuracy. We assessed the performance of a modified automated VWF:RCo assay protocol for the Behring Coagulation System (BCS(®) ) compared to other available assay methods. Results from different VWF:RCo assays in a number of specialized commercial and research testing laboratories were compared using plasma samples with varying VWF:RCo activities (0-1.2 IU mL(-1) ). Samples were prepared by mixing VWF concentrate or plasma standard into VWF-depleted plasma. Commercially available lyophilized standard human plasma was also studied. Emphasis was put on the low measuring range. VWF:RCo accuracy was calculated based on the expected values, whereas precision was obtained from repeated measurements. In the physiological concentration range, most of the automated tests resulted in acceptable accuracy, with varying reproducibility dependent on the method. However, several assays were inaccurate in the low measuring range. Only the modified BCS protocol showed acceptable accuracy over the entire measuring range with improved reproducibility. A modified BCS(®) VWF:RCo method can improve sensitivity and thus enhances the measuring range. Furthermore, the modified BCS(®) assay displayed good precision. This study indicates that the specific modifications - namely the combination of increased ristocetin concentration, reduced platelet content, VWF-depleted plasma as on-board diluent and a two-curve calculation mode - reduces the issues seen with current VWF:RCo activity assays. © 2015 John Wiley & Sons Ltd.

  13. Power accounting of plasma discharges in the linear device Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Showers, M.; Piotrowicz, P. A.; Beers, C. J.; Biewer, T. M.; Caneses, J.; Canik, J.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Lumsdaine, A.; Kafle, N.; Owen, L. W.; Rapp, J.; Ray, H.

    2018-06-01

    Plasma material interaction (PMI) studies are crucial to the successful development of future fusion reactors. Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a prototype design for the MPEX, a steady-state linear device being developed to study PMI. The primary purpose of Proto-MPEX is developing the plasma heating source concepts for MPEX. A power accounting study of Proto-MPEX works to identify machine operating parameters that could improve its performance, thereby increasing its PMI research capabilities, potentially impacting the MPEX design concept. To build a comprehensive power balance, an analysis of the helicon region has been performed implementing a diagnostic suite and software modeling to identify mechanisms and locations of heat loss from the main plasma. Of the 106.3 kW of input power, up to 90.5% of the power has been accounted for in the helicon region. When the analysis was extended to encompass the device to its end plates, 49.2% of the input power was accounted for and verified diagnostically. Areas requiring further diagnostic analysis are identified. The required improvements will be implemented in future work. The data acquisition and analysis processes will be streamlined to form a working model for future power balance studies of Proto-MPEX. ).

  14. The PLX- α Plasma Guns: Progress and Plans

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Brockington, S.; Case, A.; Cruz, E.; Luna, M.; Thio, Y. C. Francis; LANL PLX-α Team

    2017-10-01

    The ALPHA coaxial plasma guns are being developed to support a 60-gun scaling study of spherically imploding plasma liners as a standoff driver for plasma-jet-driven magneto-inertial fusion (PJMIF). Seven complete guns have been delivered to LANL with 6 guns currently undergoing simultaneous test firings on PLX. The guns are designed to operate over a range of parameters: 0.5-5.0 mg of Ar, Ne, N2, Kr, and Xe; 20-60 km/s; 2 × 1016 cm-3 muzzle density; and up to 7.5 kJ stored energy per gun. Each coaxial gun incorporates a fast dense gas injection and triggering system, a compact low-weight pfn with integral sparkgap switching, and a contoured coaxial gap to suppress the blow-by instability. Optimizing parameter scans performed at HyperV have achieved : 4 mg at >50 km/s and length of 10 cm. Peak axial density 30 cm from the muzzle is 2 ×1016 cm-3. We will provide an overview of the experimental results, along with plans for further improvements in reliability, maintainability, fabricability, and plasma jet performance, with the latter focused on further improvements in the fast gas valve and the ignitors. This work supported by the ARPA-E ALPHA Program under contract DE-AR0000566 and Strong Atomics, LLC.

  15. Environmental and economic performance of plasma gasification in Enhanced Landfill Mining.

    PubMed

    Danthurebandara, Maheshi; Van Passel, Steven; Vanderreydt, Ive; Van Acker, Karel

    2015-11-01

    This paper describes an environmental and economic assessment of plasma gasification, one of the viable candidates for the valorisation of refuse derived fuel from Enhanced Landfill Mining. The study is based on life cycle assessment and life cycle costing. Plasma gasification is benchmarked against conventional incineration, and the study indicates that the process could have significant impact on climate change, human toxicity, particulate matter formation, metal depletion and fossil depletion. Flue gas emission, oxygen usage and disposal of residues (plasmastone) are the major environmental burdens, while electricity production and metal recovery represent the major benefits. Reductions in burdens and improvements in benefits are found when the plasmastone is valorised in building materials instead of landfilling. The study indicates that the overall environmental performance of plasma gasification is better than incineration. The study confirms a trade-off between the environmental and economic performance of the discussed scenarios. Net electrical efficiency and investment cost of the plasma gasification process and the selling price of the products are the major economic drivers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Numerical study of Si nanoparticle formation by SiCl4 hydrogenation in RF plasma

    NASA Astrophysics Data System (ADS)

    Rehmet, Christophe; Cao, Tengfei; Cheng, Yi

    2016-04-01

    Nanocrystalline silicon (nc-Si) is a promising material for many applications related to electronics and optoelectronics. This work performs numerical simulations in order to understand a new process with high deposition rate production of nc-Si in a radio-frequency plasma reactor. Inductive plasma formation, reaction kinetics and nanoparticle formation have been considered in a sophisticated model. Results show that the plasma parameters could be adjusted in order to improve selectivity between nanoparticle and molecule formation and, thus, the deposition rate. Also, a parametric study helps to optimize the system with appropriate operating conditions.

  17. The Effects of Magnetic Nozzle Configurations on Plasma Thrusters

    NASA Technical Reports Server (NTRS)

    Turchi, P. J.

    1997-01-01

    Over the course of eight years, the Ohio State University has performed research in support of electric propulsion development efforts at the NASA Lewis Research Center, Cleveland, OH. This research has been largely devoted to plasma propulsion systems including MagnetoPlasmaDynamic (MPD) thrusters with externally-applied, solenoidal magnetic fields, hollow cathodes, and Pulsed Plasma Microthrusters (PPT's). Both experimental and theoretical work has been performed, as documented in four master's theses, two doctoral dissertations, and numerous technical papers. The present document is the final report for the grant period 5 December 1987 to 31 December 1995, and summarizes all activities. Detailed discussions of each area of activity are provided in appendices: Appendix 1 - Experimental studies of magnetic nozzle effects on plasma thrusters; Appendix 2 - Numerical modeling of applied-field MPD thrusters; Appendix 3 - Theoretical and experimental studies of hollow cathodes; and Appendix 4 -Theoretical, numerical and experimental studies of pulsed plasma thrusters. Especially notable results include the efficacy of using a solenoidal magnetic field downstream of a plasma thruster to collimate the exhaust flow, the development of a new understanding of applied-field MPD thrusters (based on experimentally-validated results from state-of-the art, numerical simulation) leading to predictions of improved performance, an experimentally-validated, first-principles model for orificed, hollow-cathode behavior, and the first time-dependent, two-dimensional calculations of ablation-fed, pulsed plasma thrusters.

  18. Electron Injection by E-Field Drift and its Application in Starting-up Tokamaks at Low Loop Voltage

    NASA Astrophysics Data System (ADS)

    Pan, Yuan; Yan, Xiao-Lin; Liu, Bao-Hua

    2003-05-01

    We propose an innovative method of electron injection by E-field drift into a plasma device and discuss its application in starting-up tokamak plasmas at low loop voltage. The experimental results obtained from HT-6M Tokamak are also presented. The breakdown loop voltage is obviously reduced and the discharge performance is improved by using the electron injection method. It could be applied to some other types of plasma device.

  19. The plasmatron: Advanced mode thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    Hansen, L. K.; Hatch, G. L.; Rasor, N. S.

    1976-01-01

    A theory of the plasmatron was developed. Also, a wide range of measurements were obtained with two versatile, research devices. To gain insight into plasmatron performance, the experimental results are compared with calculations based on the theoretical model of plasmatron operation. Results are presented which show that the plasma arc drop of the conventional arc (ignited) mode converter can be suppressed by use of an auxiliary ion source. The improved performance, however, is presently limited to low current densities because of voltage losses due to plasma resistance. This resistance loss could be suppressed by an increase in the plasma electron temperature or a decrease in spacing. Plasmatron performance characteristics for both argon and cesium are reported. The argon plasmatron has superior performance. Results are also presented for magnetic cutoff effects and for current distributing effects. These are shown to be important factors for the design of practical devices.

  20. Plasma characterization for application in ballistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katulka, G.; Nusca, M.; White, K.

    1996-12-31

    There is currently a strong motivation for improving the existing performance of fielded military gun systems. For that objective, research over the past several years has been carried out in an effort to enhance performance by addition of energy into the gun chamber by way of a plasma generator. This energy addition, referred to as Electro-thermal Chemical (ETC) propulsion, can be readily controlled electrically where it can be used to ignite the chamber`s energetic material, enhance the total energy, and control the interior process through control of the propellant combustion. To realize the potential advantages of this system it ismore » important to characterize the plasma generator in terms of (a) the impedance characteristics and its relationship to the pulse forming network used to generate the plasma, (b) the plasma output energy components such as radiation and convection in both time and space, (c) the details of the hydrodynamic interactions of the plasma with the propelling charge bed in the gun chamber and, (d) the direct effect of the plasma on the propellant reactions. Experimental studies have been carried out to study the effect of the plasma radiation on the propellant characteristics related to combustion.« less

  1. Characterisation of Plasma Filled Rod Pinch electron beam diode operation

    NASA Astrophysics Data System (ADS)

    MacDonald, James; Bland, Simon; Chittenden, Jeremy

    2016-10-01

    The plasma filled rod pinch diode (aka PFRP) offers a small radiographic spot size and a high brightness source. It operates in a very similar to plasma opening switches and dense plasma focus devices - with a plasma prefill, supplied via a number of simple coaxial plasma guns, being snowploughed along a thin rod cathode, before detaching at the end. The aim of this study is to model the PFRP and understand the factors that affect its performance, potentially improving future output. Given the dependence on the PFRP on the prefill, we are making detailed measurements of the density (1015-1018 cm-3), velocity, ionisation and temperature of the plasma emitted from a plasma gun/set of plasma guns. This will then be used to provide initial conditions to the Gorgon 3D MHD code, and the dynamics of the entire rod pinch process studied.

  2. Investigation of helicon ion source extraction systems.

    PubMed

    Mordyk, S; Miroshnichenko, V; Shulha, D; Storizhko, V

    2008-02-01

    Various versions of an extraction system for a helicon ion source have been investigated in high plasma density (>10(12) cm(-3)) modes. The measurements of the plasma density were carried out with a microwave interferometer. Experiments were performed with hydrogen and helium gases. The preliminary results indicate that specially designed extractors are very promising for improving ion beam paraxial brightness.

  3. Effects of supplementation with branched chain amino acids and ornithine aspartate on plasma ammonia and central fatigue during exercise in healthy men.

    PubMed

    Mikulski, Tomasz; Dabrowski, Jan; Hilgier, Wojciech; Ziemba, Andrzej; Krzeminski, Krzysztof

    2015-01-01

    Our previous studies showed only slight improvement in central fatigue, measured indirectly by psychomotor performance, after branched chain amino acids (BCAA) supplementation during various efforts in healthy men. It is hypothesised that hyperammonaemia resulting from amino acids metabolism may attenuate their beneficial effect on psychomotor performance; therefore, the L-ornithine L-aspartate (OA) as an ammonia decreasing agent was used. The aim of this study was to investigate the effectiveness of oral BCAA + OA supplementation to reduce plasma ammonia concentration and enhance psychomotor performance during exhaustive exercise in healthy men. Eleven endurance-trained men (mean age 32.6 ± 1.9 years) performed two sessions (separated by one week) of submaximal cycloergometer exercise for 90 minutes at 60% of maximal oxygen uptake followed by graded exercise until exhaustion with randomised, double-blind supplementation with a total of 16 g BCAA and 12 g OA (BCAA + OA trial) or flavoured water (placebo trial). Before exercise, during both efforts and after 20 minutes of recovery multiple choice reaction time (MCRT), perceived exertion, heart rate and oxygen uptake were measured and venous blood samples were taken for plasma leucine, valine, isoleucine, ornithine, aspartate, free tryptophan (fTRP), ammonia, lactate and glucose determination. After ingestion, during both efforts and after 20 minutes of recovery the plasma concentrations of all supplemented amino acids were significantly increased, while the fTRP/BCAA ratio decreased in the BCAA + OA trial more than in the placebo trial. At the end of graded exercise plasma fTRP was lower and MCRT shorter in BCAA + OA than in the placebo trial (p < 0.05). At the end of prolonged exercise the plasma ammonia concentration was higher in BCAA + OA than in placebo trial (p < 0.05). Decreases in plasma ammonia during recovery were significantly higher in BCAA + OA than in the placebo trial. Plasma ammonia positively correlated with the total plasma BCAA and MCRT only in the BCAA + OA trial. The fTRP/BCAA ratio positively correlated with MCRT only in the placebo trial. Supplementation with BCAA and OA is a useful way to improve MCRT during high-intensity exercise and accelerate the elimination of ammonia at the recovery stage after exercise in healthy young men.

  4. Plasma-sprayed titanium coating to polyetheretherketone improves the bone-implant interface.

    PubMed

    Walsh, William R; Bertollo, Nicky; Christou, Chrisopher; Schaffner, Dominik; Mobbs, Ralph J

    2015-05-01

    Rapid and stable fixation at the bone-implant interface would be regarded as one of the primary goals to achieve clinical efficacy, regardless of the surgical site. Although mechanical and physical properties of polyetheretherketone (PEEK) provide advantages for implant devices, the hydrophobic nature and the lack of direct bone contact remains a limitation. To examine the effects of a plasma-sprayed titanium coated PEEK on the mechanical and histologic properties at the bone-implant interface. A preclinical laboratory study. Polyetheretherketone and plasma-sprayed titanium coated PEEK implants (Ti-bond; Spinal Elements, Carlsbad, CA, USA) were placed in a line-to-line manner in cortical bone and in a press-fit manner in cancellous bone of adult sheep using an established ovine model. Shear strength was assessed in the cortical sites at 4 and 12 weeks, whereas histology was performed in cortical and cancellous sites at both time points. The titanium coating dramatically improved the shear strength at the bone-implant interface at 4 weeks and continued to improve with time compared with PEEK. Direct bone ongrowth in cancellous and cortical sites can be achieved using a plasma-sprayed titanium coating on PEEK. Direct bone to implant bonding can be achieved on PEEK in spite of its hydrophobic nature using a plasma-sprayed titanium coating. The plasma-sprayed titanium coating improved mechanical properties in the cortical sites and the histology in cortical and cancellous sites. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A novel gate and drain engineered charge plasma tunnel field-effect transistor for low sub-threshold swing and ambipolar nature

    NASA Astrophysics Data System (ADS)

    Yadav, Dharmendra Singh; Raad, Bhagwan Ram; Sharma, Dheeraj

    2016-12-01

    In this paper, we focus on the improvement of figures of merit for charge plasma based tunnel field-effect transistor (TFET) in terms of ON-state current, threshold voltage, sub-threshold swing, ambipolar nature, and gate to drain capacitance which provides better channel controlling of the device with improved high frequency response at ultra-low supply voltages. Regarding this, we simultaneously employ work function engineering on the drain and gate electrode of the charge plasma TFET. The use of gate work function engineering modulates the barrier on the source/channel interface leads to improvement in the ON-state current, threshold voltage, and sub-threshold swing. Apart from this, for the first time use of work function engineering on the drain electrode increases the tunneling barrier for the flow of holes on the drain/channel interface, it results into suppression of ambipolar behavior. The lowering of gate to drain capacitance therefore enhanced high frequency parameters. Whereas, the presence of dual work functionality at the gate electrode and over the drain region improves the overall performance of the charge plasma based TFET.

  6. The significance and robustness of a plasma free amino acid (PFAA) profile-based multiplex function for detecting lung cancer

    PubMed Central

    2013-01-01

    Background We have recently reported on the changes in plasma free amino acid (PFAA) profiles in lung cancer patients and the efficacy of a PFAA-based, multivariate discrimination index for the early detection of lung cancer. In this study, we aimed to verify the usefulness and robustness of PFAA profiling for detecting lung cancer using new test samples. Methods Plasma samples were collected from 171 lung cancer patients and 3849 controls without apparent cancer. PFAA levels were measured by high-performance liquid chromatography (HPLC)–electrospray ionization (ESI)–mass spectrometry (MS). Results High reproducibility was observed for both the change in the PFAA profiles in the lung cancer patients and the discriminating performance for lung cancer patients compared to previously reported results. Furthermore, multivariate discriminating functions obtained in previous studies clearly distinguished the lung cancer patients from the controls based on the area under the receiver-operator characteristics curve (AUC of ROC = 0.731 ~ 0.806), strongly suggesting the robustness of the methodology for clinical use. Moreover, the results suggested that the combinatorial use of this classifier and tumor markers improves the clinical performance of tumor markers. Conclusions These findings suggest that PFAA profiling, which involves a relatively simple plasma assay and imposes a low physical burden on subjects, has great potential for improving early detection of lung cancer. PMID:23409863

  7. Plasma skin regeneration technology.

    PubMed

    Bogle, M A

    2006-09-01

    Plasma skin regeneration (PSR) technology uses energy delivered from plasma rather than light or radiofrequency. Plasma is the fourth state of matter in which electrons are stripped from atoms to form an ionized gas. The plasma is emitted in a millisecond pulse to deliver energy to target tissue upon contact without reliance on skin chromophores. The technology can be used at varying energies for different depths of effect, from superficial epidermal sloughing to deeper dermal heating. With the Portrait PSR device (Rhytec, Inc.) there are three treatment guidelines termed PSR1, PSR2, and PSR3. The PSR1 protocol uses a series of low-energy treatments (1.0,1.2 Joules) spaced 3 weeks apart. The PSR2 protocol uses one high-energy pass (3.0, 4.0 Joules) performed in a single treatment, and the PSR3 protocol uses two high-energy passes (3.0 4.0 Joules) performed in a single treatment. All protocols improve fine lines, textural irregularities, and dyspigmentation; however, skin tightening is probably more pronounced with the high-energy treatments.

  8. Effect of Plasma Treatment on Air and Water-Vapor Permeability of Bamboo Knitted Fabric

    NASA Astrophysics Data System (ADS)

    Prakash, C.; Ramakrishnan, G.; Chinnadurai, S.; Vignesh, S.; Senthilkumar, M.

    2013-11-01

    In this paper, the effects of oxygen and atmospheric plasma on air and water-vapor permeability properties of single jersey bamboo fabric have been investigated. The changes in these properties are believed to be related closely to the inter-fiber and inter-yarn friction force induced by the plasma treatments. The outcomes showed that the water-vapor permeability increased, although the air permeability decreased along with the plasma treatments. The SEM images clearly showed that the plasma modified the fiber surface outwardly. The results showed that the atmospheric plasma has an etching effect and increases the functionality of a bamboo surface, which is evident from SEM and FTIR-ATR analysis. These results reveal that atmospheric pressure plasma treatment is an effective method to improve the performance of bamboo fabric. Statistical analysis also indicates that the results are significant for air permeability and water-vapor permeability of the plasma-treated bamboo fabric.

  9. Conversion of CH4/CO2 to syngas over Ni-Co/Al2O3-ZrO2 nanocatalyst synthesized via plasma assisted co-impregnation method: Surface properties and catalytic performance

    NASA Astrophysics Data System (ADS)

    Rahemi, Nader; Haghighi, Mohammad; Akbar Babaluo, Ali; Fallah Jafari, Mahdi; Khorram, Sirous

    2013-09-01

    Ni/Al2O3 catalyst promoted by Co and ZrO2 was prepared by co-impregnation method and treated with glow discharge plasma. The catalytic activity of the synthesized nanocatalysts has been tested toward conversion of CH4/CO2 to syngas. The physicochemical characterizations like XRD, EDX, FESEM, TEM, BET, FTIR, and XPS show that plasma treatment results in smaller particle size, more surface concentration, and uniform morphology. The dispersion of nickel in plasma-treated nanocatalyst was also significantly improved, which was helpful for controlling the ensemble size of active phase atoms on the support surface. Improved physicochemical properties caused 20%-30% enhancement in activity of plasma-treated nanocatalyst that means to achieve the same H2 or CO yield, the plasma-treated nanocatalyst needed about 100 °C lower reaction temperature. The H2/CO ratio got closer to 1 at higher temperatures and finally at 850 °C H2/CO = 1 is attained for plasma-treated nanocatalyst. Plasma-treated nanocatalyst due to smaller Ni particles and strong interaction between active phase and support has lower tendency to keep carbon species on its structure and hence excellent stability can be observed for this catalyst.

  10. Advanced electric propulsion and space plasma contactor research

    NASA Technical Reports Server (NTRS)

    Wilbur, P. J.

    1986-01-01

    A series of experiments performed on an 8 cm dia. ring cusp magnetic field ion thruster are described. The results show the effects of anode and cathode position and size, ring cusp axial location and discharge chamber length on plasma ion energy cost and extracted ion fraction. Thruster performance is shown to be improved substantially when optimum values of these parameters are used. Investigations into the basic plasma phenomena associated with the process of plasma contacting are described. The results show the process of electron collection from a background plasma to a hollow cathode plasma contactor exhibits a higher impedance than the process of electron emission from the hollow cathode. The importance of having cold ions present to facilitate the plasma contacting process is shown. Results of experiments into the behavior of hollow cathodes operating at high interelectrode pressures (up to approx. 100 Torr) on nitrogen and ammonia are presented. They suggest that diffuse emission from the insert of a hollow cathode can be sustained at high interelectrode pressures if the cathode is made of non-conducting material and the cathode internal pressure is reduced by evacuating the cathode interior. A theoretical model of discharge chamber operation developed for inert gas thrusters is extended so it can be used to evaluste the performance of mercury ion thrusters. Predictions of the model are compared to experimental results obtained on two 30 cm dia. thrusters.

  11. PANDORA, a new facility for interdisciplinary in-plasma physics

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Musumarra, A.; Leone, F.; Romano, F. P.; Galatà, A.; Gammino, S.; Massimi, C.

    2017-07-01

    PANDORA, Plasmas for Astrophysics, Nuclear Decays Observation and Radiation for Archaeometry, is planned as a new facility based on a state-of-the-art plasma trap confining energetic plasma for performing interdisciplinary research in the fields of Nuclear Astrophysics, Astrophysics, Plasma Physics and Applications in Material Science and Archaeometry: the plasmas become the environment for measuring, for the first time, nuclear decay rates in stellar-like condition (such as 7Be decay and beta-decay involved in s-process nucleosynthesis), especially as a function of the ionization state of the plasma ions. These studies will give important contributions for addressing several astrophysical issues in both stellar and primordial nucleosynthesis environment ( e.g., determination of solar neutrino flux and 7Li Cosmological Problem), moreover the confined energetic plasma will be a unique light source for high-performance stellar spectroscopy measurements in the visible, UV and X-ray domains, offering advancements in observational astronomy. As to magnetic fields, the experimental validation of theoretical first- and second-order Landé factors will drive the layout of next-generation polarimetric units for the high-resolution spectrograph of the future giant telescopes. In PANDORA new plasma heating methods will be explored, that will push forward the ion beam output, in terms of extracted intensity and charge states. More, advanced and optimized injection methods of ions in an ECR plasma will be experimented, with the aim to optimize its capture efficiency. This will be applied to the ECR-based Charge Breeding technique, that will improve the performances of the SPES ISOL-facility at Laboratori Nazionali di Legnaro-INFN. Finally, PANDORA will be suitable for energy conversion, making the plasma a source of high-intensity electromagnetic radiation, for applications in material science and archaeometry.

  12. Miniature ion thruster ring-cusp discharge performance and behavior

    NASA Astrophysics Data System (ADS)

    Dankongkakul, Ben; Wirz, Richard E.

    2017-12-01

    Miniature ion thrusters are an attractive option for a wide range of space missions due to their low power levels and high specific impulse. Thrusters using ring-cusp plasma discharges promise the highest performance, but are still limited by the challenges of efficiently maintaining a plasma discharge at such small scales (typically 1-3 cm diameter). This effort significantly advances the understanding of miniature-scale plasma discharges by comparing the performance and xenon plasma confinement behavior for 3-ring, 4-ring, and 5-ring cusp by using the 3 cm Miniature Xenon Ion thruster as a modifiable platform. By measuring and comparing the plasma and electron energy distribution maps throughout the discharge, we find that miniature ring-cusp plasma behavior is dominated by the high magnetic fields from the cusps; this can lead to high loss rates of high-energy primary electrons to the anode walls. However, the primary electron confinement was shown to considerably improve by imposing an axial magnetic field or by using cathode terminating cusps, which led to increases in the discharge efficiency of up to 50%. Even though these design modifications still present some challenges, they show promise to bypassing what were previously seen as inherent limitations to ring-cusp discharge efficiency at miniature scales.

  13. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.

    1999-01-01

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

  14. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, D.S.; Schubert, W.K.; Gee, J.M.

    1999-02-16

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.

  15. Analysis of 6-mercaptopurine in human plasma with a high-performance liquid chromatographic method including post-column derivatization and fluorimetric detection.

    PubMed

    Jonkers, R E; Oosterhuis, B; ten Berge, R J; van Boxtel, C J

    1982-12-10

    A relatively simple assay with improved reliability and sensitivity for measuring levels of 6-mercaptopurine in human plasma is presented. After extraction of the compound and the added internal standard with phenyl mercury acetate, samples were separated by ion-pair reversed-phase high-performance liquid chromatography. On-line the analytes were oxidized to fluorescent products and detected in a flow-fluorimeter. The within-day coefficient of variation was 3.8% at a concentration of 25 ng/ml. The lower detection limit was 2 ng/ml when 1.0 ml of plasma was used. Mercaptopurine concentration versus time curves of two subjects after a single oral dose of azathioprine are shown.

  16. Railgun armature velocity improvement, SBIR phase 2

    NASA Astrophysics Data System (ADS)

    Thurmond, Leo E.; Bauer, David P.

    1992-08-01

    Railgun hypervelocity performance has not been repeatably demonstrated at velocities over 6 km/s. A significant performance limiting phenomena is the formation of secondary current paths in parallel with the main projectile accelerating plasma. A confined plasma armature technique was developed to prevent secondary armature formation. Confinement prevents loss of ionized material from the plasma armature and thereby prevents formation of a low rail-to-rail conductance. We controlled pressure in the confined armature via controlled venting through ports in the rails. Railgun tests with the confined armature show that sealing at the rail-confinement vessel interface is critical and difficult to achieve. Our tests show that during low seal leakage operation secondaries are prevented. However, maintaining good seal for the entire launch is very difficult.

  17. Effect of Rapid Thermal Annealing on the Electrical Characteristics of ZnO Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Remashan, Kariyadan; Hwang, Dae-Kue; Park, Seong-Ju; Jang, Jae-Hyung

    2008-04-01

    Thin-film transistors (TFTs) with a bottom-gate configuration were fabricated with an RF magnetron sputtered undoped zinc oxide (ZnO) channel layer and plasma-enhanced chemical vapor deposition (PECVD) grown silicon nitride as a gate dielectric. Postfabrication rapid thermal annealing (RTA) and subsequent nitrous oxide (N2O) plasma treatment were employed to improve the performance of ZnO TFTs in terms of on-current and on/off current ratio. The RTA treatment increases the on-current of the TFT significantly, but it also increases its off-current. The off-current of 2×10-8 A and on/off current ratio of 3×103 obtained after the RTA treatment were improved to 10-10 A and 105, respectively, by the subsequent N2O plasma treatment. The better device performance can be attributed to the reduction of oxygen vacancies at the top region of the channel due to oxygen incorporation from the N2O plasma. X-ray photoelectron spectroscopy (XPS) analysis of the TFT samples showed that the RTA-treated ZnO surface has more oxygen vacancies than as-deposited samples, which results in the increased drain current. The XPS study also showed that the subsequent N2O plasma treatment reduces oxygen vacancies only at the surface of ZnO so that the better off-current and on/off current ratio can be obtained.

  18. Assembling a supercapacitor electrode with dual metal oxides and activated carbon using a liquid phase plasma.

    PubMed

    Ki, Seo Jin; Jeon, Ki-Joon; Park, Young-Kwon; Park, Hyunwoong; Jeong, Sangmin; Lee, Heon; Jung, Sang-Chul

    2017-12-01

    Developing supercapacitor electrodes at an affordable cost while improving their energy and/or power density values is still a challenging task. This study introduced a recipe which assembled a novel electrode composite using a liquid phase plasma that was applied to a reactant solution containing an activated carbon (AC) powder with dual metal precursors of iron and manganese. A comparison was made between the composites doped with single and dual metal components as well as among those synthesized under different precursor concentrations and plasma durations. The results showed that increasing the precursor concentration and plasma duration raised the content of both metal oxides in the composites, whereas the deposition conditions were more favorable to iron oxide than manganese oxide, due to its higher standard potential. The composite treated with the longest plasma duration and highest manganese concentration was superior to the others in terms of cyclic stability and equivalent series resistance. In addition, the new composite selected out of them showed better electrochemical performance than the raw AC material only and even two types of single metal-based composites, owing largely to the synergistic effect of the two metal oxides. Therefore, the proposed methodology can be used to modify existing and future composite electrodes to improve their performance with relatively cheap host and guest materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    NASA Astrophysics Data System (ADS)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  20. Effects of active recovery during interval training on plasma catecholamines and insulin.

    PubMed

    Nalbandian, Harutiun M; Radak, Zsolt; Takeda, Masaki

    2018-06-01

    BACKGROUNDː Active recovery has been used as a method to accelerate the recovery during intense exercise. It also has been shown to improve performance in subsequent exercises, but little is known about its acute effects on the hormonal and metabolic profile. The aim of this research was to study the effects of active recovery on plasma catecholamines and plasma insulin during a high-intensity interval exercise. METHODSː Seven subjects performed two high-intensity interval training protocols which consisted of three 30-second high-intensity bouts (constant intensity), separated by a recovery of 4 minutes. The recovery was either active recovery or passive recovery. During the main test blood samples were collected and plasma insulin, plasma catecholamines and blood lactate were determined. Furthermore, respiratory gasses were also measured. RESULTSː Plasma insulin and blood lactate were significantly higher in the passive recovery trial, while plasma adrenaline was higher in the active recovery. Additionally, VO2 and VCO2 were significantly more increased during the active recovery trials. CONCLUSIONSː These results suggest that active recovery affects the hormonal and metabolic responses to high-intensity interval exercise. Active recovery produces a hormonal environment which may favor lipolysis and oxidative metabolism, while passive recovery may be favoring glycolysis.

  1. Effects of plasma pretreatment on the process of self-forming Cu-Mn alloy barriers for Cu interconnects

    NASA Astrophysics Data System (ADS)

    Park, Jae-Hyung; Han, Dong-Suk; Kim, Kyoung-Deok; Park, Jong-Wan

    2018-02-01

    This study investigated the effect of plasma pretreatment on the process of a self-forming Cu-Mn alloy barrier on porous low-k dielectrics. To study the effects of plasma on the performance of a self-formed Mn-based barrier, low-k dielectrics were pretreated with H2 plasma or NH3 plasma. Cu-Mn alloy materials on low-k substrates that were subject to pretreatment with H2 plasma exhibited lower electrical resistivity values and the formation of thicker Mn-based interlayers than those on low-k substrates that were subject to pretreatment with NH3 plasma. Transmission electron microscopy (TEM), X-ray photoemission spectroscopy (XPS), and thermal stability analyses demonstrated the exceptional performance of the Mn-based interlayer on plasma-pretreated low-k substrates with regard to thickness, chemical composition, and reliability. Plasma treating with H2 gas formed hydrophilic Si-OH bonds on the surface of the low-k layer, resulting in Mn-based interlayers with greater thickness after annealing. However, additional moisture uptake was induced on the surface of the low-k dielectric, degrading electrical reliability. By contrast, plasma treating with NH3 gas was less effective with regard to forming a Mn-based interlayer, but produced a Si-N/C-N layer on the low-k surface, yielding improved barrier characteristics.

  2. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma

    PubMed Central

    Hoon Park, Ji; Kumar, Naresh; Hoon Park, Dae; Yusupov, Maksudbek; Neyts, Erik C.; Verlackt, Christof C. W.; Bogaerts, Annemie; Ho Kang, Min; Sup Uhm, Han; Ha Choi, Eun; Attri, Pankaj

    2015-01-01

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132

  3. Platelets and Plasma Stimulate Sheep Rotator Cuff Tendon Tenocytes When Cultured in an Extracellular Matrix Scaffold

    PubMed Central

    Kelly, Brian A.; Proffen, Benedikt L.; Haslauer, Carla M.; Murray, Martha M.

    2015-01-01

    The addition of platelet-rich plasma (PRP) to rotator cuff repair has not translated into improved outcomes after surgery. However, recent work stimulating ligament healing has demonstrated improved outcomes when PRP or whole blood is combined with an extracellular matrix carrier. The objective of this study was to evaluate the effect of three components of blood (plasma, platelets and macrophages) on the in vitro activity of ovine rotator cuff cells cultured in an extracellular matrix environment. Tenocytes were obtained from six ovine infraspinatus tendons and cultured over 14 days in an extracellular matrix scaffold with the following additives: 1) Plasma (PPP), 2) Plasma and platelets (PAP), 3) Plasma and macrophages (PPPM), 4) Plasma, platelets and macrophages (PAPM), 5) Phosphate buffered saline (PBS), and 6) PBS with macrophages (PBSM). Assays measuring cellular metabolism (AlamarBlue), proliferation (Quantitative DNA assay), synthesis of collagen and cytokines (SIRCOL, TNF-α and IL-10 ELISA, and MMP assay), and collagen gene expression (qPCR) were performed over the duration of the experiment, as well as histology at the conclusion. Plasma was found to stimulate cell attachment and spreading on the scaffold, as well as cellular proliferation. Platelets also stimulated cell proliferation, cellular metabolism, transition of cells to a myofibroblast phenotype and contraction of the scaffolds. The addition of macrophages did not have any significant effect on the sheep rotator cuff cells in vitro. In vivo studies are needed to determine if these changes in cellular function will translate into improved tendon healing. PMID:26419602

  4. Platelets and plasma stimulate sheep rotator cuff tendon tenocytes when cultured in an extracellular matrix scaffold.

    PubMed

    Kelly, Brian A; Proffen, Benedikt L; Haslauer, Carla M; Murray, Martha M

    2016-04-01

    The addition of platelet-rich plasma (PRP) to rotator cuff repair has not translated into improved outcomes after surgery. However, recent work stimulating ligament healing has demonstrated improved outcomes when PRP or whole blood is combined with an extracellular matrix carrier. The objective of this study was to evaluate the effect of three components of blood (plasma, platelets, and macrophages) on the in vitro activity of ovine rotator cuff cells cultured in an extracellular matrix environment. Tenocytes were obtained from six ovine infraspinatus tendons and cultured over 14 days in an extracellular matrix scaffold with the following additives: (1) plasma (PPP), (2) plasma and platelets (PAP), (3) plasma and macrophages (PPPM), (4) plasma, platelets and macrophages (PAPM), (5) phosphate buffered saline (PBS), and (6) PBS with macrophages (PBSM). Assays measuring cellular metabolism (AlamarBlue), proliferation (Quantitative DNA assay), synthesis of collagen and cytokines (SIRCOL, TNF-α and IL-10 ELISA, and MMP assay), and collagen gene expression (qPCR) were performed over the duration of the experiment, as well as histology at the conclusion. Plasma was found to stimulate cell attachment and spreading on the scaffold, as well as cellular proliferation. Platelets also stimulated cell proliferation, cellular metabolism, transition of cells to a myofibroblast phenotype, and contraction of the scaffolds. The addition of macrophages did not have any significant effect on the sheep rotator cuff cells in vitro. In vivo studies are needed to determine whether these changes in cellular function will translate into improved tendon healing. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. [Thrombotic microangiopathy in pregnancy complicated by acute hemorrhagic-necrotic pancreatitis during early puerperium].

    PubMed

    Redechová, S; Féderová, L; Hammerová, L; Filkászová, A; Horváthová, D; Redecha, M

    2014-06-01

    Authors in the article describe a case of a patient with thrombotic thrombocytopenic purpurain 37 weeks gestation complicated by acute severe hemorrhagic-necrotic pancreatitis during the early puerperium. Case report. Ist Department of gynaecology and obstetrics of the Comenius University Bratislava. 33-years-old patient in the 37 weeks gestation was admitted to our department with the signs of HELLP syndrome (hemolysis, elevated liver enzymes, low platelets). Due to the worsening clinical status, we have performed caesarean section. After the transient stabilization of the patient's clinical status, the hemolysis with severe thrombocytopenia reappeared. Based on the clinical signs of abdominal pain and computer tomography, the diagnosis of acute hemorrhagic-necrotic pancreatitis was set. The primary diagnosis was thrombotic thrombocytopenic purpura. Therefore, therapeutic plasma exchange was performed with consequent improvement of the patients clinical state. Normalization of the platelet count was achieved after 4.plasma exchanges. Consequently 5 plasma exchanges were performed. However, one month later, the disease relapsed. Therapeutic plasma exchanges were needed again (4x), with anti CD 20 administration. This therapy had good clinical outcome, without the need for further plasma exchanges. Thrombotic thrombocytopenic purpura is highly lethal disease. Early diagnosis, treatment, and multidisciplinary approach are essential.

  6. Towards a better comprehension of plasma formation and heating in high performances electron cyclotron resonance ion sources (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, D.; Gammino, S.; Celona, L.

    2012-02-15

    Further improvements of electron cyclotron resonance ion sources (ECRIS) output currents and average charge state require a deep understanding of electron and ion dynamics in the plasma. This paper will discuss the most recent advances about modeling of non-classical evidences like the sensitivity of electron energy distribution function to the magnetic field detuning, the influence of plasma turbulences on electron heating and ion confinement, the coupling between electron and ion dynamics. All these issues have in common the non-homogeneous distribution of the plasma inside the source: the abrupt density drop at the resonance layer regulates the heating regimes (from collectivemore » to turbulent), the beam formation mechanism and emittance. Possible means to boost the performances of future ECRIS will be proposed. In particular, the use of Bernstein waves, in preliminary experiments performed at Laboratori Nazionali del Sud (LNS) on MDIS (microwave discharge ion sources)-type sources, has permitted to sustain largely overdense plasmas enhancing the warm electron temperature, which will make possible in principle the construction of sources for high intensity multicharged ions beams with simplified magnetic structures.« less

  7. Plasma myostatin levels are related to the extent of right ventricular dysfunction in exacerbation of chronic obstructive pulmonary disease.

    PubMed

    Ju, Chun-Rong; Zhang, Jian-Heng; Chen, Miao; Chen, Rong-Chang

    To investigate the relationship between plasma myostatin levels and right ventricle (RV) dysfunction (RVD) in acute exacerbation of chronic obstructive pulmonary disease (AECOPD). The study recruited 84 patients with AECOPD. Plasma myostatin was analyzed and tricuspid annular plane systolic excursion (TAPSE) < 16 mm was used as the main indicator for RVD. Plasma myostatin levels were significantly higher in 47 patients with RVD than 37 ones without (P < 0.005). Multivariate regression analysis revealed that myostatin levels correlated significantly with TAPSE values and RV myocardial performance index (p < 0.001) among the study patients. Plasma myostatin is a potential biomarker for improving diagnosis of RVD in AECOPD.

  8. Four hour creatinine clearance is better than plasma creatinine for monitoring renal function in critically ill patients

    PubMed Central

    2012-01-01

    Introduction Acute kidney injury (AKI) diagnosis is based on an increase in plasma creatinine, which is a slowly changing surrogate of decreased glomerular filtration rate. We investigated whether serial creatinine clearance, a direct measure of the glomerular filtration rate, provided more timely and accurate information on renal function than serial plasma creatinine in critically ill patients. Methods Serial plasma creatinine and 4-hour creatinine clearance were measured 12-hourly for 24 hours and then daily in 484 patients. AKI was defined either as > 50% increase in plasma creatinine from baseline, or > 33.3% decrease in creatinine clearance. The diagnostic and predictive performance of the two AKI definitions were compared. Results Creatinine clearance decrease diagnosed AKI in 24% of those not diagnosed by plasma creatinine increase on entry. These patients entered the ICU sooner after insult than those diagnosed with AKI by plasma creatinine elevation (P = 0.0041). Mortality and dialysis requirement increased with the change in creatinine clearance-acute kidney injury severity class (P = 0.0021). Amongst patients with plasma creatinine < 1.24 mg/dl on entry, creatinine clearance improved the prediction of AKI considerably (Net Reclassification Improvement 83%, Integrated Discrimination Improvement 0.29). On-entry, creatinine clearance associated with AKI severity and duration (P < 0.0001) predicted dialysis need (area under the curve: 0.75) and death (0.61). A > 33.3% decrease in creatinine clearance over the first 12 hours was associated with a 2.0-fold increased relative risk of dialysis or death. Conclusions Repeated 4-hour creatinine clearance measurements in critically ill patients allow earlier detection of AKI, as well as progression and recovery compared to plasma creatinine. Trial Registration Australian New Zealand Clinical Trials Registry ACTRN012606000032550. PMID:22713519

  9. Improving the Stability of High-Performance Multilayer MoS2 Field-Effect Transistors.

    PubMed

    Liu, Na; Baek, Jongyeol; Kim, Seung Min; Hong, Seongin; Hong, Young Ki; Kim, Yang Soo; Kim, Hyun-Suk; Kim, Sunkook; Park, Jozeph

    2017-12-13

    In this study, we propose a method for improving the stability of multilayer MoS 2 field-effect transistors (FETs) by O 2 plasma treatment and Al 2 O 3 passivation while sustaining the high performance of bulk MoS 2 FET. The MoS 2 FETs were exposed to O 2 plasma for 30 s before Al 2 O 3 encapsulation to achieve a relatively small hysteresis and high electrical performance. A MoO x layer formed during the plasma treatment was found between MoS 2 and the top passivation layer. The MoO x interlayer prevents the generation of excess electron carriers in the channel, owing to Al 2 O 3 passivation, thereby minimizing the shift in the threshold voltage (V th ) and increase of the off-current leakage. However, prolonged exposure of the MoS 2 surface to O 2 plasma (90 and 120 s) was found to introduce excess oxygen into the MoO x interlayer, leading to more pronounced hysteresis and a high off-current. The stable MoS 2 FETs were also subjected to gate-bias stress tests under different conditions. The MoS 2 transistors exhibited negligible decline in performance under positive bias stress, positive bias illumination stress, and negative bias stress, but large negative shifts in V th were observed under negative bias illumination stress, which is attributed to the presence of sulfur vacancies. This simple approach can be applied to other transition metal dichalcogenide materials to understand their FET properties and reliability, and the resulting high-performance hysteresis-free MoS 2 transistors are expected to open up new opportunities for the development of sophisticated electronic applications.

  10. Design advances of the Core Plasma Thomson Scattering diagnostic for ITER

    NASA Astrophysics Data System (ADS)

    Scannell, R.; Maslov, M.; Naylor, G.; O'Gorman, T.; Kempenaars, M.; Carr, M.; Bilkova, P.; Bohm, P.; Giudicotti, L.; Pasqualotto, R.; Bassan, M.; Vayakis, G.; Walsh, M.; Huxford, R.

    2017-11-01

    The Core Plasma Thomson Scattering (CPTS) diagnostic on ITER performs measurements of the electron temperature and density profiles which are critical to the understanding of the ITER plasma. The diagnostic must satisfy the ITER project requirements, which translate to requirements on performance as well as reliability, safety and engineering. The implications are particularly challenging for beam dump lifetime, the need for continuous active alignment of the diagnostic during operation, allowable neutron flux in the interspace and the protection of the first mirror from plasma deposition. The CPTS design has been evolving over a number of years. One recent improvement is that the collection optics have been modified to include freeform surfaces. These freeform surfaces introduce extra complexity to the manufacturing but provide greater flexibility in the design. The greater flexibility introduced allows for example to lower neutron throughput or use fewer surfaces while improving optical performance. Performance assessment has shown that scattering from a 1064 nm laser will be sufficient to meet the measurement requirements, at least for the system at the start of operations. Optical transmission at λ < 600 nm is expected to degrade over the ITER lifetime due to fibre darkening and deposition on the first mirror. For this reason, it is proposed that the diagnostic should additionally include measurements of TS 'depolarised light' and a 1319 nm laser system. These additional techniques have different spectral and polarisation dependencies compared to scattering from a 1064 nm laser and hence provide greater robustness into the inferred measurements of Te and ne in the core.

  11. Material Surface Characteristics and Plasma Performance in the Lithium Tokamak Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucia, Matthew James

    The performance of a tokamak plasma and the characteristics of the surrounding plasma facing component (PFC) material surfaces strongly influence each other. Despite this relationship, tokamak plasma physics has historically been studied more thoroughly than PFC surface physics. The disparity is particularly evident in lithium PFC research: decades of experiments have examined the effect of lithium PFCs on plasma performance, but the understanding of the lithium surface itself is much less complete. This latter information is critical to identifying the mechanisms by which lithium PFCs affect plasma performance. This research focused on such plasma-surface interactions in the Lithium Tokamak Experimentmore » (LTX), a spherical torus designed to accommodate solid or liquid lithium as the primary PFC. Surface analysis was accomplished via the novel Materials Analysis and Particle Probe (MAPP) diagnostic system. In a series of experiments on LTX, the MAPP x-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS) capabilities were used for in vacuo interrogation of PFC samples. This represented the first application of XPS and TDS for in situ surface analysis of tokamak PFCs. Surface analysis indicated that the thin (d ~ 100nm) evaporative lithium PFC coatings in LTX were converted to Li2O due to oxidizing agents in both the residual vacuum and the PFC substrate. Conversion was rapid and nearly independent of PFC temperature, forming a majority Li2O surface within minutes and an entirely Li2O surface within hours. However, Li2O PFCs were still capable of retaining hydrogen and sequestering impurities until the Li2O was further oxidized to LiOH, a process that took weeks. For hydrogen retention, Li2O PFCs retained H+ from LTX plasma discharges, but no LiH formation was observed. Instead, results implied that H+ was only weakly-bound, such that it almost completely outgassed as H2 within minutes. For impurity sequestration, LTX plasma performance—ascertained from plasma current and density measurements—progressively improved as plasma carbon and oxygen impurity levels fell. This was true for PFC conditioning by vacuum baking and argon glow discharge cleaning, as well as by lithium evaporation. Some evidence suggested that impurity sequestration was more important than hydrogen retention in enhancing LTX plasma performance. In contrast with expectations for lithium PFCs, heating the Li2O PFCs in LTX caused increased plasma impurity levels that tended to reduce plasma performance.« less

  12. Role of Reynolds Stress-Induced Poloidal Flow in Triggering the Transition to Improved Ohmic Confinement on the HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Xu, Y. H.; Yu, C. X.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.; Wan, B. N.; Wan, Y. X.

    2000-04-01

    Time and space resolved measurements of electrostatic Reynolds stress, radial electric field Er, and plasma rotations have been performed across the transition to improved Ohmic confinement in the Hefei Tokamak-6M (HT-6M). The first experimental evidence of the correlation between the enhanced Reynolds stress gradient and the poloidal flow acceleration in the edge plasma is presented. The results indicate that the turbulence-induced Reynolds stress might be the dominant mechanism to create the sheared poloidal flow and Er, which may further trigger the transition.

  13. Role of reynolds stress-induced poloidal flow in triggering the transition to improved ohmic confinement on the HT-6M tokamak

    PubMed

    Xu; Yu; Luo; Mao; Liu; Li; Wan; Wan

    2000-04-24

    Time and space resolved measurements of electrostatic Reynolds stress, radial electric field E(r), and plasma rotations have been performed across the transition to improved Ohmic confinement in the Hefei Tokamak-6M (HT-6M). The first experimental evidence of the correlation between the enhanced Reynolds stress gradient and the poloidal flow acceleration in the edge plasma is presented. The results indicate that the turbulence-induced Reynolds stress might be the dominant mechanism to create the sheared poloidal flow and E(r), which may further trigger the transition.

  14. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    DOE PAGES

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; ...

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipactingmore » issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.« less

  15. Present status of numerical modeling of hydrogen negative ion source plasmas and its comparison with experiments: Japanese activities and their collaboration with experimental groups

    NASA Astrophysics Data System (ADS)

    Hatayama, A.; Nishioka, S.; Nishida, K.; Mattei, S.; Lettry, J.; Miyamoto, K.; Shibata, T.; Onai, M.; Abe, S.; Fujita, S.; Yamada, S.; Fukano, A.

    2018-06-01

    The present status of kinetic modeling of particle dynamics in hydrogen negative ion (H‑) source plasmas and their comparisons with experiments are reviewed and discussed with some new results. The main focus is placed on the following topics, which are important for the research and development of H‑ sources for intense and high-quality H‑ ion beams: (i) effects of non-equilibrium features of electron energy distribution function on volume and surface H‑ production, (ii) the origin of the spatial non-uniformity in giant multi-cusp arc-discharge H‑ sources, (iii) capacitive to inductive (E to H) mode transition in radio frequency-inductively coupled plasma H‑ sources and (iv) extraction physics of H‑ ions and beam optics, especially the present understanding of the meniscus formation in strongly electronegative plasmas (so-called ion–ion plasmas) and its effect on beam optics. For these topics, mainly Japanese modeling activities, and their domestic and international collaborations with experimental studies, are introduced with some examples showing how models have been improved and to what extent the modeling studies can presently contribute to improving the source performance. Close collaboration between experimental and modeling activities is indispensable for the validation/improvement of the modeling and its contribution to the source design/development.

  16. Effects of chromium-enriched bacillus subtilis KT260179 supplementation on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality.

    PubMed

    Yang, Jiajun; Qian, Kun; Zhang, Wei; Xu, Yayuan; Wu, Yijing

    2016-11-08

    Both chromium (Cr) and probiotic bacillus own the virtues of regulating animal metabolism and meat quality. Purpose of this study was to evaluate the efficiency of supplemental Cr and bacillus in the form of chromium-enriched Bacillus subtilis KT260179 (CEBS) on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality. Six hundred of 1-day-old Chinese Huainan Partridge chickens were divided into four groups randomly: Control, inorganic Cr, Bacillus subtilis, and CEBS. The feed duration was 56 days. After 28 days of treatment, broiler feed CEBS or normal B. subtilis had higher body weights than control broiler, and after 56 days, chickens given either CEBS or B. subtilis had greater body weights than control broiler or those given inorganic Cr. Plasma total cholesterol, triglycerides, and low density lipoprotein cholesterol levels declined significantly in the CEBS group compared with the control, whereas plasma high density lipoprotein cholesterol levels increased significantly. The concentration of Cr in blood and breast muscle increased after CEBS and inorganic Cr supplementation. B. subtilis and CEBS supplementation caused a significant increase in the numbers of Lactobacillus and Bifidobacterium in the caecum, while the numbers of Escherichia coli and Salmonella decreased significantly compared to the control. Feed adding CEBS increased the lightness, redness, and yellowness of breast meat, improved the water-holding capacity, decreased the shear force and cooking loss. In all, CEBS supplementation promoted body growth, improved plasma lipid parameters, increased tissue Cr concentrations, altered cecal bacterial composition and improved breast meat quality.

  17. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Sik; Yu, Qingsong; Deng, Baolin

    2011-09-01

    Commercial nanofiltration (NF) thin-film composite (TFC) membranes were treated by low-pressure NH3 plasma, and the effects of the plasma treatment were investigated in terms of the membrane hydrophilicity, pure water flux, salt rejection, protein adsorption, and humic acid fouling. Experimental results indicated that the membrane surface hydrophilicity was increased by the plasma treatment, and changes in the hydrophilicity as well as membrane performance including permeate flux and fouling varied with the original membrane characteristics (e.g., roughness and hydrophilicity). Water flux of plasma treated membranes was the highest with 10 min and 90 W of plasma treatment, and salt rejection was mainly affected by the intensity of the plasma power. Results of bovine serum albumin (BSA) adsorption demonstrated that the protein adsorption decreased with increasing plasma treatment time. The plasma treatment that resulted in more negatively charged surfaces could also better prevent Aldrich humic acid (AHA) attachment on the membrane surface.

  18. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  19. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Tianping, ZHANG; Xiaodong, WEN; Weilong, GUO; Jiayao, SONG

    2018-02-01

    Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter. The results of the two methods indicated that the highest plasma density and electron temperature, which improved significantly in the orifice region, were located in the discharge region of the hollow cathode. The magnitude of plasma density was about 1021 m-3 in the emitter and orifice regions, as obtained by numerical calculations, but decreased exponentially in the plume region with the distance from the orifice exit. Meanwhile, compared to the emitter region, the electron temperature and current improved by about 36% in the orifice region. The hollow cathode performance test results were in good agreement with the numerical calculation results, which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current. The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.

  20. Enhanced Discharge Performance in a Ring Cusp Plasma Source

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2000-01-01

    There is a need for a lightweight, low power ion thruster for space science missions. Such an ion thruster is under development at NASA Glenn Research Center. In an effort to better understand the discharge performance of this thruster, a thruster discharge chamber with an anode containing electrically isolated electrodes at the cusps was fabricated and tested. Characteristics of this ring cusp ion discharge were measured without ion beam extraction. Discharge current was measured at collection electrodes located at the magnetic cusps and at the anode body itself. Discharge performance and plasma properties were measured as a function of power, which was varied between 20 and 50 W. It was found that ion production costs decreased by as much as 20 percent when the two most downstream cusp electrodes were allowed to float. Floating the electrodes did not give rise to a significant increase in discharge power even though the plasma density increased markedly. The improved performance is attributed to enhanced electron containment.

  1. Internal Plasma Properties and Enhanced Performance of an 8 cm Ion Thruster Discharge

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    1999-01-01

    There is a need for a lightweight, low power ion thruster for space science missions. Such an ion thruster is under development at NASA Glenn Research Center. In an effort to better understand the discharge performance of this thruster. a version of this thruster with an anode containing electrically isolated electrodes at the cusps was fabricated and tested. Discharge characteristics of this ring cusp ion thruster were measured without ion beam extraction. Discharge current was measured at collection electrodes located at the cusps and at the anode body itself. Discharge performance and plasma properties were measured as a function of discharge power, which was varied between 20 and 50 W. It was found that ion production costs decreased by as much as 20 percent when the two most downstream cusp electrodes were allowed to float. Floating the electrodes did not give rise to a significant increase in discharge power even though the plasma density increased markedly. The improved performance is attributed to enhanced electron containment.

  2. Dietary nitrate supplementation improves team sport-specific intense intermittent exercise performance.

    PubMed

    Wylie, Lee J; Mohr, Magni; Krustrup, Peter; Jackman, Sarah R; Ermιdis, Georgios; Kelly, James; Black, Matthew I; Bailey, Stephen J; Vanhatalo, Anni; Jones, Andrew M

    2013-07-01

    Recent studies have suggested that dietary inorganic nitrate (NO₃(-)) supplementation may improve muscle efficiency and endurance exercise tolerance but possible effects during team sport-specific intense intermittent exercise have not been examined. We hypothesized that NO₃(-) supplementation would enhance high-intensity intermittent exercise performance. Fourteen male recreational team-sport players were assigned in a double-blind, randomized, crossover design to consume 490 mL of concentrated, nitrate-rich beetroot juice (BR) and nitrate-depleted placebo juice (PL) over ~30 h preceding the completion of a Yo-Yo intermittent recovery level 1 test (Yo-Yo IR1). Resting plasma nitrite concentration ([NO₂(-)]) was ~400% greater in BR compared to PL. Plasma [NO₂(-)] declined by 20% in PL (P < 0.05) and by 54 % in BR (P < 0.05) from pre-exercise to end-exercise. Performance in the Yo-Yo IR1 was 4.2% greater (P < 0.05) with BR (1,704 ± 304 m) compared to PL (1,636 ± 288 m). Blood [lactate] was not different between BR and PL, but the mean blood [glucose] was lower (3.8 ± 0.8 vs. 4.2 ± 1.1 mM, P < 0.05) and the rise in plasma [K(+)] tended to be reduced in BR compared to PL (P = 0.08). These findings suggest that NO₃(-) supplementation may promote NO production via the nitrate-nitrite-NO pathway and enhance Yo-Yo IR1 test performance, perhaps by facilitating greater muscle glucose uptake or by better maintaining muscle excitability. Dietary NO₃(-) supplementation improves performance during intense intermittent exercise and may be a useful ergogenic aid for team sports players.

  3. Progress of the ELISE test facility: towards one hour pulses in hydrogen

    NASA Astrophysics Data System (ADS)

    Wünderlich, D.; Fantz, U.; Heinemann, B.; Kraus, W.; Riedl, R.; Wimmer, C.; the NNBI Team

    2016-10-01

    In order to fulfil the ITER requirements, the negative hydrogen ion source used for NBI has to deliver a high source performance, i.e. a high extracted negative ion current and simultaneously a low co-extracted electron current over a pulse length up to 1 h. Negative ions will be generated by the surface process in a low-temperature low-pressure hydrogen or deuterium plasma. Therefore, a certain amount of caesium has to be deposited on the plasma grid in order to obtain a low surface work function and consequently a high negative ion production yield. This caesium is re-distributed by the influence of the plasma, resulting in temporal instabilities of the extracted negative ion current and the co-extracted electrons over long pulses. This paper describes experiments performed in hydrogen operation at the half-ITER-size NNBI test facility ELISE in order to develop a caesium conditioning technique for more stable long pulses at an ITER relevant filling pressure of 0.3 Pa. A significant improvement of the long pulse stability is achieved. Together with different plasma diagnostics it is demonstrated that this improvement is correlated to the interplay of very small variations of parameters like the electrostatic potential and the particle densities close to the extraction system.

  4. Effects of Nitrogen and Hydrogen Codoping on the Electrical Performance and Reliability of InGaZnO Thin-Film Transistors.

    PubMed

    Abliz, Ablat; Gao, Qingguo; Wan, Da; Liu, Xingqiang; Xu, Lei; Liu, Chuansheng; Jiang, Changzhong; Li, Xuefei; Chen, Huipeng; Guo, Tailiang; Li, Jinchai; Liao, Lei

    2017-03-29

    Despite intensive research on improvement in electrical performances of ZnO-based thin-film transistors (TFTs), the instability issues have limited their applications for complementary electronics. Herein, we have investigated the effect of nitrogen and hydrogen (N/H) codoping on the electrical performance and reliability of amorphous InGaZnO (α-IGZO) TFTs. The performance and bias stress stability of α-IGZO device were simultaneously improved by N/H plasma treatment with a high field-effect mobility of 45.3 cm 2 /(V s) and small shifts of threshold voltage (V th ). On the basis of X-ray photoelectron spectroscopy analysis, the improved electrical performances of α-IGZO TFT should be attributed to the appropriate amount of N/H codoping, which could not only control the V th and carrier concentration efficiently, but also passivate the defects such as oxygen vacancy due to the formation of stable Zn-N and N-H bonds. Meanwhile, low-frequency noise analysis indicates that the average trap density near the α-IGZO/SiO 2 interface is reduced by the nitrogen and hydrogen plasma treatment. This method could provide a step toward the development of α-IGZO TFTs for potential applications in next-generation high-definition optoelectronic displays.

  5. Ion thruster performance model

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density, cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature. The model and experiments indicate that thruster performance may be described in terms of only four thruster configuration dependent parameters and two operating parameters. The model also suggests that improved performance should be exhibited by thruster designs which extract a large fraction of the ions produced in the discharge chamber, which have good primary electron and neutral atom containment and which operate at high propellant flow rates.

  6. Treatment of Partial Rotator Cuff Tear with Ultrasound-guided Platelet-rich Plasma.

    PubMed

    Sengodan, Vetrivel Chezian; Kurian, Sajith; Ramasamy, Raghupathy

    2017-01-01

    The treatment of symptomatic partial rotator cuff tear has presented substantial challenge to orthopaedic surgeons as it can vary from conservative to surgical repair. Researches have established the influence of platelet rich plasma in healing damaged tissue. Currently very few data are available regarding the evidence of clinical and radiological outcome of partial rotator cuff tear treated with ultrasound guided platelet rich plasma injection in English literature. 20 patients with symptomatic partial rotator cuff tears were treated with ultrasound guided platelet rich plasma injection. Before and after the injection of platelet rich plasma scoring was done with visual analogue score, Constant shoulder score, and UCLA shoulder score at 8 weeks and third month. A review ultrasound was performed 8 weeks after platelet rich plasma injection to assess the rotator cuff status. Our study showed statistically significant improvements in 17 patients in VAS pain score, constant shoulder score and UCLA shoulder score. No significant changes in ROM were noted when matched to the contra-lateral side ( P < 0.001) at the 3 month follow-up. The study also showed good healing on radiological evaluation with ultrasonogram 8 weeks after platelet rich plasma injection. Ultrasound guided platelet rich plasma injection for partial rotator cuff tears is an effective procedure that leads to significant decrease in pain, improvement in shoulder functions, much cost-effective and less problematic compared to a surgical treatment.

  7. Status of BOUT fluid turbulence code: improvements and verification

    NASA Astrophysics Data System (ADS)

    Umansky, M. V.; Lodestro, L. L.; Xu, X. Q.

    2006-10-01

    BOUT is an electromagnetic fluid turbulence code for tokamak edge plasma [1]. BOUT performs time integration of reduced Braginskii plasma fluid equations, using spatial discretization in realistic geometry and employing a standard ODE integration package PVODE. BOUT has been applied to several tokamak experiments and in some cases calculated spectra of turbulent fluctuations compared favorably to experimental data. On the other hand, the desire to understand better the code results and to gain more confidence in it motivated investing effort in rigorous verification of BOUT. Parallel to the testing the code underwent substantial modification, mainly to improve its readability and tractability of physical terms, with some algorithmic improvements as well. In the verification process, a series of linear and nonlinear test problems was applied to BOUT, targeting different subgroups of physical terms. The tests include reproducing basic electrostatic and electromagnetic plasma modes in simplified geometry, axisymmetric benchmarks against the 2D edge code UEDGE in real divertor geometry, and neutral fluid benchmarks against the hydrodynamic code LCPFCT. After completion of the testing, the new version of the code is being applied to actual tokamak edge turbulence problems, and the results will be presented. [1] X. Q. Xu et al., Contr. Plas. Phys., 36,158 (1998). *Work performed for USDOE by Univ. Calif. LLNL under contract W-7405-ENG-48.

  8. Study on plasma sheath and plasma transport properties in the azimuthator

    NASA Astrophysics Data System (ADS)

    Zhenyu, WANG; Binhao, JIANG; N, A. STROKIN; A, N. STUPIN

    2018-04-01

    A physical model of transport in an azimuthator channel with the sheath effect resulting from the interaction between the plasma and insulation wall is established in this paper. Particle in cell simulation is carried out by the model and results show that, besides the transport due to classical and Bohm diffusions, the sheath effect can significantly influences the transport in the channel. As a result, the ion density is larger than the electron density at the exit of azimuthator, and the non-neutral plasma jet is divergent, which is unfavorable for mass separation. Then, in order to improve performance of the azimuthator, a cathode is designed to emit electrons. Experiment results have demonstrated that the auxiliary cathode can obviously compensate the space charge in the plasma.

  9. Comparison of the performances of copeptin and multiple biomarkers in long-term prognosis of severe traumatic brain injury.

    PubMed

    Zhang, Zu-Yong; Zhang, Li-Xin; Dong, Xiao-Qiao; Yu, Wen-Hua; Du, Quan; Yang, Ding-Bo; Shen, Yong-Feng; Wang, Hao; Zhu, Qiang; Che, Zhi-Hao; Liu, Qun-Jie; Jiang, Li; Du, Yuan-Feng

    2014-10-01

    Enhanced blood levels of copeptin correlate with poor clinical outcomes after acute critical illness. This study aimed to compare the prognostic performances of plasma concentrations of copeptin and other biomarkers like myelin basic protein, glial fibrillary astrocyte protein, S100B, neuron-specific enolase, phosphorylated axonal neurofilament subunit H, Tau and ubiquitin carboxyl-terminal hydrolase L1 in severe traumatic brain injury. We recruited 102 healthy controls and 102 acute patients with severe traumatic brain injury. Plasma concentrations of these biomarkers were determined using enzyme-linked immunosorbent assay. Their prognostic predictive performances of 6-month mortality and unfavorable outcome (Glasgow Outcome Scale score of 1-3) were compared. Plasma concentrations of these biomarkers were statistically significantly higher in all patients than in healthy controls, in non-survivors than in survivors and in patients with unfavorable outcome than with favorable outcome. Areas under receiver operating characteristic curves of plasma concentrations of these biomarkers were similar to those of Glasgow Coma Scale score for prognostic prediction. Except plasma copeptin concentration, other biomarkers concentrations in plasma did not statistically significantly improve prognostic predictive value of Glasgow Coma Scale score. Copeptin levels may be a useful tool to predict long-term clinical outcomes after severe traumatic brain injury and have a potential to assist clinicians. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Rocket-borne thermal plasma instrument "MIPEX" for the ionosphere D, E layer in-situ measurements

    NASA Astrophysics Data System (ADS)

    Fang, H. K.; Chen, A. B. C.; Lin, C. C. H.; Wu, T. J.; Liu, K. S.; Chuang, C. W.

    2017-12-01

    In this presentation, the design concepts, performances and status of a thermal plasma particle instrument package "Mesosphere and Ionosphere Plasma Exploration complex (MIPEX)", which is going to be installed onboard a NSPO-funded hybrid rocket, to investigate the electrodynamic processes in ionosphere D, E layers above Taiwan are reported. MIPEX is capable of measuring plasma characteristics including ion temperature, ion composition, ion drift, electron temperature and plasma density at densities as low as 1-10 cm-1. This instrument package consists of an improved retarding potential analyzer with a channel electron multiplier (CEM), a simplified ion drift meter and a planar Langmuir probe. To achieve the working atmospheric pressure of CEM at the height of lower D layer ( 70km), a portable vacuum pump is also placed in the package. A prototype set of the MIPEX has been developed and tested in the Space Plasma Operation Chamber (SPOC) at NCKU, where in ionospheric plasma is generated by back-diffusion plasma sources. A plasma density of 10-106 cm-1, ion temperature of 300-1500 K and electron temperature of 1000-3000K is measured and verified. Limited by the flight platform and the performance of the instruments, the in-situ plasma measurements at the Mesosphere and lower Thermosphere is very challenging and rare. MIPEX is capable of extending the altitude of the effective plasma measurement down to 70 km height and this experiment can provide unique high-quality data of the plasma environment to explore the ion distribution and the electrodynamic processes in the Ionosphere D, E layers at dusk.

  11. Upgrade of the neutral particle analyzers for the TJ-II stellarator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontdecaba, J. M., E-mail: josepmaria.fontdecaba@ciemat.es; Ros, A.; McCarthy, K. J.

    2014-11-15

    The TJ-II stellarator, a magnetically confined plasma device, is equipped with a broad range of diagnostics for plasma characterization. These include 4 neutral particle analyzers (NPAs), consisting of two Acord-12's, to perform poloidal measurements, plus a compact NPA, and an Acord-24, these in tangential viewing positions. The Acord-12's were originally equipped with two rows of 6 channels each, one for hydrogen neutrals and the other for deuterium neutrals but were changed to a single row of 12 detectors for hydrogen, the principal working gas in TJ-II. With this upgrade the resultant improved energy resolution spectrum has allowed more reliable ionmore » temperature estimates to be obtained. Here we present the upgrades undertaken and present results to demonstrate the improved performance of this diagnostic.« less

  12. Regular walking improves plasma protein concentrations that promote blood hyperviscosity in women 65-74 yr with type 2 diabetes.

    PubMed

    Simmonds, Michael J; Sabapathy, Surendran; Serre, Kevin R; Haseler, Luke J; Gass, Gregory C; Marshall-Gradisnik, Sonya M; Minahan, Clare L

    2016-11-25

    The purpose of the present study was to investigate the effects of regular treadmill walking on plasma factors that increase low-shear blood viscosity and red blood cell aggregation in older women with type 2 diabetes. Eighteen women with type 2 diabetes (age: 69±3 yr; body mass index: 30.5±5.0 kg⋅m-2) performed 12-wk of 120 min⋅wk-1 of supervised treadmill walking at an intensity equivalent to the gas-exchange threshold. Peak exercise values, anthropometry and blood indices of diabetic status, markers of inflammation, and plasma fibrinogen were analysed during a 6-wk pre-training 'control' period, and then after 6 and 12-wk of regular walking. Regular walking significantly increased peak oxygen uptake (p = 0.01). Body mass, waist to hip ratio, and glycaemic control did not change. Systolic and diastolic blood pressures decreased by 8.5% (p < 0.01) and 7.2% (p < 0.01) respectively, cholesterol to high-density lipoprotein (HDL) ratio decreased by 9.6% (p = 0.01), and HDL concentration significantly increased (p = 0.01). While 12 wk of regular walking did not significantly alter plasma concentrations of interleukin-6 (IL-6), tumour necrosis factor-α, or C-reactive protein, plasma fibrinogen concentration decreased by 6.9% (p < 0.01) and plasma interleukin-10 (IL-10) concentration increased from 1.15±0.32 to 1.62±0.22 mmol⋅L-1 (p < 0.04). Improved plasma inflammatory profile and decreased plasma fibrinogen concentration is induced by regular walking, independent of glycaemic control. These factors may mediate the improved haemorheology associated with exercise training in metabolic disorders.

  13. Performance of ITER as a burning plasma experiment

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Mukhovatov, V.; Federici, G.; Gribov, Y.; Kukushkin, A.; Murakami, Y.; Polevoi, A.; Pustovitov, V.; Sengoku, S.; Sugihara, M.

    2004-02-01

    Recent performance analysis has improved confidence in achieving Q (= fusion power/auxiliary heating power)geq 10 in inductive operation in ITER. Performance analysis based on empirical scalings shows the feasibility of achieving Q geq 10 in inductive operation, particularly with improved modelling of helium exhaust. Analysis has also indicated the possibility that ITER can potentially demonstrate Q ~ 50, enabling studies of self-heated plasmas. Theory-based core modelling indicates the need for a high pedestal temperature (3.2-5.3 keV) to achieve Q geq 10, which is in the range of projections with presently available pedestal scalings. Pellet injection from the high-field side would be useful in enhancing Q and reducing edge localized mode (ELM) heat load in high plasma current operation. If the ELM heat load is not acceptable, it could be made tolerable by further tilting the target plate. Steady state operation scenarios at Q = 5 have been developed with modest requirements on confinement improvement and beta (HH98(y,2) geq 1.3 and bgrN geq 2.6). Stabilization of the resistive wall modes (RWMs), required in such regimes, is feasible with the present saddle coils and power supplies with double-wall structures taken into account. Recent analysis shows a potential of high power steady state operation with a fusion power of 0.7 GW at Q ~ 8. Achievement of the required bgrN ~ 3.6 by RWM stabilization is a possibility. Further analysis is also needed on reduction of the divertor target heat load.

  14. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification

    PubMed Central

    Reis, Rackel; Dumée, Ludovic F.; Tardy, Blaise L.; Dagastine, Raymond; Orbell, John D.; Schutz, Jürg A.; Duke, Mikel C.

    2016-01-01

    Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties. PMID:27363670

  15. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    NASA Astrophysics Data System (ADS)

    Dechana, A.; Thamboon, P.; Boonyawan, D.

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.

  16. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber.

    PubMed

    Dechana, A; Thamboon, P; Boonyawan, D

    2014-10-01

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides high flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al2O3 layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al2O3 films-analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques-will be discussed.

  17. Parametric study of plasma-mediated thermoluminescence produced by Al2O3 sub-micron powders

    NASA Astrophysics Data System (ADS)

    Morávek, T.; Ambrico, P. F.; Ambrico, M.; Schiavulli, L.; Ráheľ, J.

    2017-10-01

    Sub-micron Al2O3 powders with a surface activated by dielectric barrier discharge exhibit improved performance in wet deposition of ceramic layers. In addressing the possible mechanisms responsible for the observed improvement, a comprehensive thermoluminescence (TL) study of plasma-activated powders was performed. TL offers the unique possibility of exploring the population of intrinsic electrons/holes in the charge trapping states. This study covers a wide range of experimental conditions affecting the TL of powders: treatment time, plasma working gas composition, change of discharge configuration, step-annealing of powder, exposure to laser irradiation and aging time. Deconvoluted TL spectra were followed for the changes in their relative contributions. The TL spectra of all tested gases (air, Ar, N2 and 5% He in N2) consist of the well-known main dosimetric peak at 450 K and a peak of similar magnitude at higher temperatures, centered between 700 and 800 K depending on the working gas used. N2 plasma treatment gave rise to a new specific TL peak at 510 K, which exhibited several peculiarities. Initial thermal annealing of Al2O3 powders led to its significant amplification (unlike the other peaks); the peak was insensitive to optical bleaching, and it exhibited slow gradual growth during the long-term aging test. Besides its relevance to the ceramic processing studies, a comprehensive set of data is presented that provides a useful and unconventional view on plasma-mediated material changes.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp; Ohnishi, Naofumi

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasmamore » increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.« less

  19. Fabrication of high-performance InGaZnOx thin film transistors based on control of oxidation using a low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Takenaka, Kosuke; Endo, Masashi; Uchida, Giichiro; Setsuhara, Yuichi

    2018-04-01

    This work demonstrated the low-temperature control of the oxidation of Amorphous InGaZnOx (a-IGZO) films using inductively coupled plasma as a means of precisely tuning the properties of thin film transistors (TFTs) and as an alternative to post-deposition annealing at high temperatures. The effects of the plasma treatment of the as-deposited a-IGZO films were investigated by assessing the electrical properties of TFTs incorporating these films. A TFT fabricated using an a-IGZO film exposed to an Ar-H2-O2 plasma at substrate temperatures as low as 300 °C exhibited the best performance, with a field effect mobility as high as 42.2 cm2 V-1 s-1, a subthreshold gate voltage swing of 1.2 V decade-1, and a threshold voltage of 2.8 V. The improved transfer characteristics of TFTs fabricated with a-IGZO thin films treated using an Ar-H2-O2 plasma are attributed to the termination of oxygen vacancies around Ga and Zn atoms by OH radicals in the gas phase.

  20. Determination of plasma density from data on the ion current to cylindrical and planar probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voloshin, D. G., E-mail: dvoloshin@mics.msu.su; Vasil’eva, A. N.; Kovalev, A. S.

    2016-12-15

    To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 10{sup 10}–10{sup 11} cm{sup –3}, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models weremore » used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.« less

  1. Overview of C-2U FRC Experimental Program and Plans for C-2W

    NASA Astrophysics Data System (ADS)

    Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Smirnov, A.; Thompson, M. C.; Yang, X.; Cappello, M.; Ivanov, A. A.; TAE Team

    2016-10-01

    Tri Alpha Energy's experimental program has been focused on a demonstration of reliable field-reversed configuration (FRC) formation and sustainment, driven by fast ions via high-power neutral-beam (NB) injection. The world's largest compact-toroid experimental devices, C-2 and C-2U, have successfully produced a well-stabilized, sustainable FRC plasma state with NB injection (input power, PNB 10 + MW; 15 keV hydrogen) and end-on coaxial plasma guns. Remarkable improvements in confinement and stability of FRC plasmas have led to further improved fast-ion build up; thereby, an advanced beam-driven FRC state has been produced and sustained for up to 5 + ms (longer than all characteristic system time scales), only limited by hardware and electric supply constraints such as NB and plasma-gun power supplies. To further improve the FRC performance the C-2U device is being replaced by C-2W featuring higher injected NB power, longer pulse duration as well as enhanced edge-biasing systems and substantially upgraded divertors. Main C-2U experimental results and key features of C-2W will be presented. Tri Alpha Energy, Inc.

  2. Mucuna pruriens improves male fertility by its action on the hypothalamus-pituitary-gonadal axis.

    PubMed

    Shukla, Kamla Kant; Mahdi, Abbas Ali; Ahmad, Mohammad Kaleem; Shankhwar, Satya Narain; Rajender, Singh; Jaiswar, Shyam Pyari

    2009-12-01

    To understand the mechanism of action of Mucuna pruriens in the treatment of male infertility. Prospective study. Departments of Biochemistry, Urology, and Obstetrics and Gynecology, C.S.M. Medical University, Lucknow, India. Seventy-five normal healthy fertile men (controls) and 75 men undergoing infertility screening. High-performance liquid chromatography assay for quantitation of dopa, adrenaline, and noradrenaline in seminal plasma and blood. Estimation by RIA of hormonal parameters in blood plasma, namely T, LH, FSH, and PRL. Before and after treatment, serum T, LH, FSH, PRL, dopamine, adrenaline, and noradrenaline in seminal and blood plasma were measured. Decreased sperm count and motility were seen in infertile subjects. Serum T and LH levels, as well as seminal plasma and blood levels of dopamine, adrenaline, and noradrenaline were also decreased in all groups of infertile men. This was accompanied by significantly increased serum FSH and PRL levels in oligozoospermic subjects. Treatment with M. pruriens significantly improved T, LH, dopamine, adrenaline, and noradrenaline levels in infertile men and reduced levels of FSH and PRL. Sperm count and motility were significantly recovered in infertile men after treatment. Treatment with M. pruriens regulates steroidogenesis and improves semen quality in infertile men.

  3. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    NASA Astrophysics Data System (ADS)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  4. Relationship between plasma concentrations of lamotrigine and its early therapeutic effect of lamotrigine augmentation therapy in treatment-resistant depressive disorder.

    PubMed

    Kagawa, Shoko; Mihara, Kazuo; Nakamura, Akifumi; Nemoto, Kenji; Suzuki, Takeshi; Nagai, Goyo; Kondo, Tsuyoshi

    2014-12-01

    The relationship between plasma concentrations of lamotrigine and its therapeutic effects was prospectively studied on 34 (9 men and 25 women) inpatients with treatment-resistant depressive disorder during an 8-week treatment of lamotrigine augmentation using an open-study design. The subjects were depressed patients who had already shown insufficient response to at least 3 psychotropics, including antidepressants, mood stabilizers, and atypical antipsychotics. The diagnoses were major depressive disorder (n = 12), bipolar I disorder (n = 7), and bipolar II disorder (n = 15). The final doses of lamotrigine were 100 mg/d for 18 subjects who were not taking valproate and 75 mg/d for 16 subjects taking valproate. Depressive symptoms were evaluated by the Montgomery Åsberg Depression Rating Scale (MADRS) before and after the 8-week treatment. Blood sampling was performed at week 8. Plasma concentrations of lamotrigine were measured by high-performance liquid chromatography. There was a significant linear relationship between the plasma concentrations of lamotrigine and percentage improvements at week 8 (r = 0.418, P < 0.05). A stepwise multiple regression analysis showed that plasma lamotrigine concentrations alone had a significant effect on the percentage improvements at week 8 (standardized partial correlation coefficients = 0.454, P < 0.001). The receiver operating characteristics analysis indicated that a plasma lamotrigine concentration of 12.7 μmol/L or greater was significantly (P < 0.001) predictive of response (50% or more reduction in the MADRS score). The proportion of the responders was significantly higher in the groups with a lamotrigine concentration >12.7 μmol/L (11/15 versus 4/19, P < 0.01). The present study suggests that an early therapeutic response to lamotrigine is dependent on its plasma concentration and that a plasma lamotrigine concentration of 12.7 μmol/L may be a threshold for a good therapeutic response in treatment-resistant depressive disorder.

  5. An Improved LC-ESI-MS/MS Method to Quantify Pregabalin in Human Plasma and Dry Plasma Spot for Therapeutic Monitoring and Pharmacokinetic Applications.

    PubMed

    Dwivedi, Jaya; Namdev, Kuldeep K; Chilkoti, Deepak C; Verma, Surajpal; Sharma, Swapnil

    2018-06-06

    Therapeutic drug monitoring (TDM) of anti-epileptic drugs provides a valid clinical tool in optimization of overall therapy. However, TDM is challenging due to the high biological samples (plasma/blood) storage/shipment costs and the limited availability of laboratories providing TDM services. Sampling in the form of dry plasma spot (DPS) or dry blood spot (DBS) is a suitable alternative to overcome these issues. An improved, simple, rapid, and stability indicating method for quantification of pregabalin in human plasma and DPS has been developed and validated. Analyses were performed on liquid chromatography tandem mass spectrometer under positive ionization mode of electrospray interface. Pregabain-d4 was used as internal standard, and the chromatographic separations were performed on Poroshell 120 EC-C18 column using an isocratic mobile phase flow rate of 1 mL/min. Stability of pregabalin in DPS was evaluated under simulated real-time conditions. Extraction procedures from plasma and DPS samples were compared using statistical tests. The method was validated considering the FDA method validation guideline. The method was linear over the concentration range of 20-16000 ng/mL and 100-10000 ng/mL in plasma and DPS, respectively. DPS samples were found stable for only one week upon storage at room temperature and for at least four weeks at freezing temperature (-20 ± 5 °C). Method was applied for quantification of pregabalin in over 600 samples of a clinical study. Statistical analyses revealed that two extraction procedures in plasma and DPS samples showed statistically insignificant difference and can be used interchangeably without any bias. Proposed method involves simple and rapid steps of sample processing that do not require a pre- or post-column derivatization procedure. The method is suitable for routine pharmacokinetic analysis and therapeutic monitoring of pregabalin.

  6. Swirl Ring Improves Performance Of Welding Torch

    NASA Technical Reports Server (NTRS)

    Mcgee, William F.; Rybicki, Daniel J.

    1995-01-01

    Plasma-arc welding torch modified to create vortex in plasma gas to focus arc into narrower and denser column. Swirl ring contains four channels with angled exit holes to force gas to swirl as it flows out of torch past tip of electrode. Degradation of electrode and orifice more uniform and need to rotate torch during operation to compensate for asymmetry in arc reduced or eliminated. Used in both keyhole and nonkeyhole welding modes.

  7. Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy.

    PubMed

    Fu, Yangting; Hou, Zongyu; Wang, Zhe

    2016-02-08

    Using cavity confinement to enhance the plasma emission has been proved to be an effective way in LIBS technique while no direct visual evidence has been made to illustrate the physical mechanism of this enhancing effect. In this work, both laser-induced plasma plume images and shockwave images were obtained and synchronized for both flat surface case and rectangular cavity case. Phenomena of shockwave reflection, plasma compression by the reflected shockwave and merge of the reflected shockwave into plasma were observed. Plasma emission intensities recorded by ICCD in both cases were compared and the enhancement effect in the cavity case was identified in the comparison. The enhancement effect could be explained as reflected shockwave "compressing" effect, that is, the reflected shockwave would compress the plasma and result in a more condensed plasma core area with higher plasma temperature. Reflected shockwave also possibly contributed to plasma core position stabilization, which indicated the potential of better plasma signal reproducibility for the cavity case. Both plasma emission enhancement and plasma core position stabilization only exist within a certain temporal window, which indicates that the delay time of spectra acquisition is essential while using cavity confinement as a way to improve LIBS performance.

  8. Adhesion and failure analysis of metal-polymer interface in flexible printed circuits boards

    NASA Astrophysics Data System (ADS)

    Park, Sanghee; Kim, Ye Chan; Choi, Kisuk; Chae, Heeyop; Suhr, Jonghwan; Nam, Jae-Do

    2017-12-01

    As device miniaturization in microelectronics is currently requested in the development of high performance device, which usually include highly-integrated metal-polyimide multilayer structures. A redistribution layer (RDL) process is currently emerging as one of the most advance fabrication techniques for on-chip interconnect and packaging. One of the major issues in this process is the poor adhesion of the metal-polyimide interfaces particularly in flexible circuit boards due to the flexibility and bendability of devices. In this study, low pressure O2 plasma treatment was investigated to improve the adhesion of metal-polyimide interfaces, using inductively coupled plasma (ICP) treatment. We identified that the adhesion of metal-polyimide interfaces was greatly improved by the surface roughness control providing 46.1 MPa of shear force in the ball shear test after O2 plasma treatment, compared 14.2 MPa without O2 plasma treatment. It was seemingly due to the fact that the adhesion in metal-polyimide interfaces was improved by a chemical conversion of C=O to C-O bonds and by a ring opening reaction of imide groups, which was confirmed with FT-IR analysis. In the finite element numerical analysis of metal-polyimide interfaces, the O2 plasma treated interface showed that the in-plane stress distribution and the vertical directional deformation agreed well with real failure modes in flexible circuits manufacturing.

  9. Plasma treatment of fiber facets for increased (de)mating endurance in physical contact fiber connectors

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Voss, Kevin; De Witte, Martijn; Radulescu, Radu; Beri, Stefano; Watté, Jan; Thienpont, Hugo

    2016-04-01

    It is known that cleaving an optical fiber introduces a number of irregularities and defects to the fiber's end-face, such as hackles and shockwaves. These defects can act as failure initiators when stress is applied to the end-face. Given the fiber's small diameter of 125 ffm, a large amount of mechanical stress can be expected to be applied on its end-face during the mating-demating cycle. In addition, a connector in a fiber-to-the-home (FTTH) network can be expected to be mated and demated more than 30 times during its lifetime for purposes such as testing, churning, or provisioning. For this reason, the performance of a connector that displays low optical loss when first installed can dramatically degrade after few mating-demating cycles and catastrophic connector failure due to end-face breakage is likely. We present plasma discharge shaping of cleaved fiber tips to strongly improve the endurance of the fibers to repeated mating-demating cycles. We quantify the dependency of the plasma-induced surface curvature of the fiber tip on the plasma duration and on the position of the fiber tip within the plasma cloud. Finally we present data showing the improved endurance of fibers that are exposed to plasma compared to conventional as-cleaved fibers.

  10. Association between posttest dexamethasone and cortisol concentrations in the 1 mg overnight dexamethasone suppression test.

    PubMed

    Asvold, Bjørn O; Grill, Valdemar; Thorstensen, Ketil; Bjørgaas, Marit R

    2012-11-01

    It has been suggested that comparison of posttest dexamethasone and cortisol concentrations may improve the evaluation of the dexamethasone suppression test (DST) for Cushing's syndrome. In particular, this would be reasonable if posttest cortisol differs by dexamethasone levels within the range that is usually attained in the DST. Using fractional polynomial regression, we therefore studied the association between posttest 0800 h dexamethasone and cortisol levels in 53 subjects without Cushing's syndrome who were tested with the 1 mg overnight DST. Plasma dexamethasone was associated with plasma cortisol (P<0.001), and the regression line suggested a strong negative association related to dexamethasone levels <5 nmol/l. However, among the 94% of subjects with plasma dexamethasone >5.0 nmol/l, there was no association between dexamethasone and cortisol levels (P=0.55). In conclusion, subjects tested with the 1 mg overnight DST usually attain an 0800 h plasma dexamethasone >5 nmol/l, and plasma cortisol does not differ by plasma dexamethasone in these subjects. This suggests that routine comparison of dexamethasone and cortisol levels may not be a useful approach to improve the performance of the 1 mg DST. However, dexamethasone measurements may identify subjects with inadequately low plasma dexamethasone and may therefore be of value when retesting subjects with possibly false-positive DST results.

  11. Association between posttest dexamethasone and cortisol concentrations in the 1 mg overnight dexamethasone suppression test

    PubMed Central

    Åsvold, Bjørn O; Grill, Valdemar; Thorstensen, Ketil; Bjørgaas, Marit R

    2012-01-01

    It has been suggested that comparison of posttest dexamethasone and cortisol concentrations may improve the evaluation of the dexamethasone suppression test (DST) for Cushing's syndrome. In particular, this would be reasonable if posttest cortisol differs by dexamethasone levels within the range that is usually attained in the DST. Using fractional polynomial regression, we therefore studied the association between posttest 0800 h dexamethasone and cortisol levels in 53 subjects without Cushing's syndrome who were tested with the 1 mg overnight DST. Plasma dexamethasone was associated with plasma cortisol (P<0.001), and the regression line suggested a strong negative association related to dexamethasone levels <5 nmol/l. However, among the 94% of subjects with plasma dexamethasone >5.0 nmol/l, there was no association between dexamethasone and cortisol levels (P=0.55). In conclusion, subjects tested with the 1 mg overnight DST usually attain an 0800 h plasma dexamethasone >5 nmol/l, and plasma cortisol does not differ by plasma dexamethasone in these subjects. This suggests that routine comparison of dexamethasone and cortisol levels may not be a useful approach to improve the performance of the 1 mg DST. However, dexamethasone measurements may identify subjects with inadequately low plasma dexamethasone and may therefore be of value when retesting subjects with possibly false-positive DST results. PMID:23781306

  12. Contoured-gap coaxial guns for imploding plasma liner experiments

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  13. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  14. A novel approach for the improvement of electrostatic behaviour of physically doped TFET using plasma formation and shortening of gate electrode with hetero-gate dielectric

    NASA Astrophysics Data System (ADS)

    Soni, Deepak; Sharma, Dheeraj; Aslam, Mohd.; Yadav, Shivendra

    2018-04-01

    This article presents a new device configuration to enhance current drivability and suppress negative conduction (ambipolar conduction) with improved RF characteristics of physically doped TFET. Here, we used a new approach to get excellent electrical characteristics of hetero-dielectric short gate source electrode TFET (HD-SG SE-TFET) by depositing a metal electrode of 5.93 eV work function over the heavily doped source (P+) region. Deposition of metal electrode induces the plasma (thin layer) of holes under the Si/HfO2 interface due to work function difference of metal and semiconductor. Plasma layer of holes is advantageous to increase abruptness as well as decrease the tunneling barrier at source/channel junction for attaining higher tunneling rate of charge carriers (i.e., electrons), which turns into 86.66 times higher ON-state current compared with the conventional physically doped TFET (C-TFET). Along with metal electrode deposition, gate electrode is under-lapped for inducing asymmetrical concentration of charge carriers in the channel region, which is helpful for widening the tunneling barrier width at the drain/channel interface. Consequently, HD-SG SE-TFET shows suppression of ambipolar behavior with reduction in gate-to-drain capacitance which is beneficial for improvement in RF performance. Furthermore, the effectiveness of hetero-gate dielectric concept has been used for improving the RF performance. Furthermore, reliability of C-TFET and proposed structures has been confirmed in term of linearity.

  15. Polarimetric Thomson scattering for high Te fusion plasmas

    NASA Astrophysics Data System (ADS)

    Giudicotti, L.

    2017-11-01

    Polarimetric Thomson scattering (TS) is a technique for the analysis of TS spectra in which the electron temperature Te is determined from the depolarization of the scattered radiation, a relativistic effect noticeable only in very hot (Te >= 10 keV) fusion plasmas. It has been proposed as a complementary technique to supplement the conventional spectral analysis in the ITER CPTS (Core Plasma Thomson Scattering) system for measurements in high Te, low ne plasma conditions. In this paper we review the characteristics of the depolarized TS radiation with special emphasis to the conditions of the ITER CPTS system and we describe a possible implementation of this diagnostic method suitable to significantly improve the performances of the conventional TS spectral analysis in the high Te range.

  16. In vitro performance of ceramic coatings obtained by high velocity oxy-fuel spray.

    PubMed

    Melero, H; Garcia-Giralt, N; Fernández, J; Díez-Pérez, A; Guilemany, J M

    2014-01-01

    Hydroxyapatite coatings obtained by plasma-spraying have been used for many years to improve biological performance of bone implants, but several studies have drawn attention to the problems arising from high temperatures and the lack of mechanical properties. In this study, plasma-spraying is substituted by high velocity oxy-fuel (HVOF) spray, with lower temperatures reached, and TiO2 is added in low amounts to hydroxyapatite in order to improve the mechanical properties. Four conditions have been tested to evaluate which are those with better biological properties. Viability and proliferation tests, as well as differentiation assays and morphology observation, are performed with human osteoblast cultures onto the studied coatings. The hydroxyapatite-TiO2 coatings maintain good cell viability and proliferation, especially the cases with higher amorphous phase amount and specific surface, and promote excellent differentiation, with a higher ALP amount for these cases than for polystyrene controls. Observation by SEM corroborates this excellent behaviour. In conclusion, these coatings are a good alternative to those used industrially, and an interesting issue would be improving biological behaviour of the worst cases, which in turn show the better mechanical properties.

  17. Treatment of Partial Rotator Cuff Tear with Ultrasound-guided Platelet-rich Plasma

    PubMed Central

    Sengodan, Vetrivel Chezian; Kurian, Sajith; Ramasamy, Raghupathy

    2017-01-01

    Background: The treatment of symptomatic partial rotator cuff tear has presented substantial challenge to orthopaedic surgeons as it can vary from conservative to surgical repair. Researches have established the influence of platelet rich plasma in healing damaged tissue. Currently very few data are available regarding the evidence of clinical and radiological outcome of partial rotator cuff tear treated with ultrasound guided platelet rich plasma injection in English literature. Materials and Methods: 20 patients with symptomatic partial rotator cuff tears were treated with ultrasound guided platelet rich plasma injection. Before and after the injection of platelet rich plasma scoring was done with visual analogue score, Constant shoulder score, and UCLA shoulder score at 8 weeks and third month. A review ultrasound was performed 8 weeks after platelet rich plasma injection to assess the rotator cuff status. Results: Our study showed statistically significant improvements in 17 patients in VAS pain score, constant shoulder score and UCLA shoulder score. No significant changes in ROM were noted when matched to the contra-lateral side (P < 0.001) at the 3 month follow-up. The study also showed good healing on radiological evaluation with ultrasonogram 8 weeks after platelet rich plasma injection. Conclusion: Ultrasound guided platelet rich plasma injection for partial rotator cuff tears is an effective procedure that leads to significant decrease in pain, improvement in shoulder functions, much cost-effective and less problematic compared to a surgical treatment. PMID:28900553

  18. Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: A study on cell growth/proliferation and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Rezaei, Fatemeh; Shokri, Babak; Sharifian, M.

    2016-01-01

    This paper reports polymethyl methacrylate (PMMA) surface modification by atmospheric-pressure oxygen dielectric barrier discharge (DBD) plasma to improve its biocompatibility and antibacterial effects. The role of plasma system parameters, such as electrode gap, treatment time and applied voltage, on the surface characteristics and biological responses was studied. The surface characteristics of PMMA films before and after the plasma treatments were analyzed by water contact angle (WCA) goniometry, atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Also, acid-base approach was used for evaluation of surface free energy (SFE) and its components. Stability of plasma treatment or aging effect was examined by repeating water contact angle measurements in a period of 9 days after treatment. Moreover, the antibacterial properties of samples were investigated by bacterial adhesion assay against Escherichia coli. Additionally, all samples were tested for the biocompatibility by cell viability assay of mouse embryonic fibroblast. WCA measurements indicated that the surface wettability of PMMA films was improved by increasing surface free energy via oxygen DBD plasma treatments. AFM measurement revealed that surface roughness was slightly increased after treatments, and ATR-FTIR analysis showed that more polar groups were introduced on the plasma-treated PMMA film surface. The results also demonstrated an enhancement of antibacterial performance of the modified surfaces. Furthermore, it was observed that plasma-treated samples exhibited significantly better biocompatibility, comparing to the pristine one.

  19. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    NASA Astrophysics Data System (ADS)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-07-01

    The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  20. Global modeling of wall material migration following boronization in NSTX-U

    NASA Astrophysics Data System (ADS)

    Nichols, J. H.; Jaworski, M. A.; Skinner, C. H.; Bedoya, F.; Scotti, F.; Soukhanovskii, V. A.; Schmid, K.

    2017-10-01

    NSTX-U operated in 2016 with graphite plasma facing components, periodically conditioned with boron to improve plasma performance. Following each boronization, spectroscopic diagnostics generally observed a decrease in oxygen influx from the walls, and an in-vacuo material probe (MAPP) observed a corresponding decrease in surface oxygen concentration at the lower divertor. However, oxygen levels tended to return to a pre-boronization state following repeated plasma exposure. This behavior is interpretively modeled using the WallDYN mixed-material migration code, which couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. A spatially inhomogenous model of the thin films produced by the boronization process is presented. Plasma backgrounds representative of NSTX-U conditions are reconstructed from a combination of NSTX-U and NSTX datasets. Low-power NSTX-U fiducial discharges, which led to less apparent surface degradation than normal operations, are also modeled with WallDYN. Likely mechanisms driving the observed evolution of surface oxygen are examined, as well as remaining discrepancies between model and experiment and potential improvements to the model. Work supported by US DOE contract DE-AC02-09CH11466.

  1. Effects of xylo-oligosaccharide and flavomycin on the immune function of broiler chickens

    PubMed Central

    Yuan, Lin; Li, Wanli; Huo, Qianqian; Du, Chenhong; Wang, Zhixiang; Yi, Baodi

    2018-01-01

    This study investigated the effects of xylo-oligosaccharide (XOS) and flavomycin (FLA) on the performance and immune function of broiler chickens. A total of 150 ArborAcres broilers were randomly divided into three groups and fed for six weeks from one day of age in cascade cages. The diets of each test group were (1) a basal diet, (2) the basal diet supplemented with 2 mg/kg FLA, and (3) the basal diet supplemented with 2 mg/kg XOS. At 21 and 42 days, the growth performance index values and short-chain fatty acid (SCFA) concentrations in the cecum were quantified. Furthermore, immunoglobulin G (IgG) and plasma interleukin 2 (IL-2) as well as mRNA expression of LPS-Induced TNF-alpha Factor (LITAF), Toll-like receptor-5 (TLR5) and interferon gamma (IFNγ) in the jejunum were quantified. The results showed that administration of XOS or FLA to chickens significantly improved the average daily gain. Supplementation with XOS increased acetate and butyrate in the cecum, while FLA supplementation increased propionate in the cecum. An increase in plasma IgG was observed in XOS-fed 21-day-old broilers, but FLA supplementation decreased IgG in the plasma of 42-day-old broilers and increased plasma IL-2. Furthermore, FLA or XOS supplementation downregulated mRNA expression of IFNγ, LITAF and TLR5. The above data suggest that addition of XOS and FLA to the diet could improve the growth performance of broilers and reduce the expression of cytokine genes by stimulating SCFA. PMID:29527412

  2. The Role of Platelet Rich Plasma (PRP) and Other Biologics for Rotator Cuff Repair.

    PubMed

    Greenspoon, Joshua A; Moulton, Samuel G; Millett, Peter J; Petri, Maximilian

    2016-01-01

    Surgical treatment of rotator cuff tears has consistently demonstrated good clinical and functional outcomes. However, in some cases, the rotator cuff fails to heal. While improvements in rotator cuff constructs and biomechanics have been made, the role of biologics to aid healing is currently being investigated. A selective literature search was performed and personal surgical experiences are reported. Biologic augmentation of rotator cuff repairs can for example be performed wtableith platelet-rich plasma (PRP) and mesenchymal stem cells (MSCs). Clinical results on PRP application have been controversial. Application of MSCs has shown promise in animal studies, but clinical data on its effectiveness is presently lacking. The role of Matrix Metalloproteinase (MMP) inhibitors is another interesting field for potential targeted drug therapy after rotator cuff repair. Large randomized clinical studies need to confirm the benefit of these approaches, in order to eventually lower retear rates and improve clinical outcomes after rotator cuff repair.

  3. Design and Preliminary Performance Testing of Electronegative Gas Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Liu, Thomas M.; Schloeder, Natalie R.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane

    2014-01-01

    In classical gridded electrostatic ion thrusters, positively charged ions are generated from a plasma discharge of noble gas propellant and accelerated to provide thrust. To maintain overall charge balance on the propulsion system, a separate electron source is required to neutralize the ion beam as it exits the thruster. However, if high-electronegativity propellant gases (e.g., sulfur hexafluoride) are instead used, a plasma discharge can result consisting of both positively and negatively charged ions. Extracting such electronegative plasma species for thrust generation (e.g., with time-varying, bipolar ion optics) would eliminate the need for a separate neutralizer cathode subsystem. In addition for thrusters utilizing a RF plasma discharge, further simplification of the ion thruster power system may be possible by also using the RF power supply to bias the ion optics. Recently, the PEGASES (Plasma propulsion with Electronegative gases) thruster prototype successfully demonstrated proof-of-concept operations in alternatively accelerating positively and negatively charged ions from a RF discharge of a mixture of argon and sulfur hexafluoride.i In collaboration with NASA Marshall Space Flight Center (MSFC), the Georgia Institute of Technology High-Power Electric Propulsion Laboratory (HPEPL) is applying the lessons learned from PEGASES design and testing to develop a new thruster prototype. This prototype will incorporate design improvements and undergo gridless operational testing and diagnostics checkout at HPEPL in April 2014. Performance mapping with ion optics will be conducted at NASA MSFC starting in May 2014. The proposed paper discusses the design and preliminary performance testing of this electronegative gas plasma thruster prototype.

  4. Three-dimensional reduced-graphene/MnO2 prepared by plasma treatment as high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Runru; Wen, Dongdong; Zhang, Xueyu; Wang, Dejun; Yang, Qiang; Yuan, Beilei; Lü, Wei

    2018-06-01

    In this work, three-Dimensional nitrogen-doped graphene/MnO2 (NG/MnO2) was prepared by plasma treatment, which provides a high specific surface area due to porous structure and exhibits enhanced supercapacitor performance. The advantage of NG/MnO2 electrode was obvious compared with reduced graphene oxide/MnO2 (RGO/MnO2) which was prepared by traditional hydrothermal method, such as improved electrochemical property and better cycling stability. The specific capacitance of NG/MnO2 at the scan rate of 5 mV s‑1 (393 F g‑1) is higher than that of RGO/MnO2 (260 F g‑1). In addition, NG/MnO2 showed higher durability with 90.2% capacitance retention than that of RGO/MnO2 (82%) after 5000 cycles. Such cheap and high-performance supercapacitor electrodes are available by our feasible plasma treatment, which give promise in large-scale commercial energy storage devices.

  5. Energetic particle instabilities in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Sharapov, S. E.; Alper, B.; Berk, H. L.; Borba, D. N.; Breizman, B. N.; Challis, C. D.; Classen, I. G. J.; Edlund, E. M.; Eriksson, J.; Fasoli, A.; Fredrickson, E. D.; Fu, G. Y.; Garcia-Munoz, M.; Gassner, T.; Ghantous, K.; Goloborodko, V.; Gorelenkov, N. N.; Gryaznevich, M. P.; Hacquin, S.; Heidbrink, W. W.; Hellesen, C.; Kiptily, V. G.; Kramer, G. J.; Lauber, P.; Lilley, M. K.; Lisak, M.; Nabais, F.; Nazikian, R.; Nyqvist, R.; Osakabe, M.; Perez von Thun, C.; Pinches, S. D.; Podesta, M.; Porkolab, M.; Shinohara, K.; Schoepf, K.; Todo, Y.; Toi, K.; Van Zeeland, M. A.; Voitsekhovich, I.; White, R. B.; Yavorskij, V.; TG, ITPA EP; Contributors, JET-EFDA

    2013-10-01

    Remarkable progress has been made in diagnosing energetic particle instabilities on present-day machines and in establishing a theoretical framework for describing them. This overview describes the much improved diagnostics of Alfvén instabilities and modelling tools developed world-wide, and discusses progress in interpreting the observed phenomena. A multi-machine comparison is presented giving information on the performance of both diagnostics and modelling tools for different plasma conditions outlining expectations for ITER based on our present knowledge.

  6. Various divertor biasing configurations and improved divertor performance with biasing on Tokamak de Varennes (TdeV)*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decoste, R.; Lachambre, J.; Abel, G.

    1994-05-01

    Electrically insulated divertor plates are used on TdeV (Tokamak de Varennes) [18[ital th] [ital EPS] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Physics] Berlin (European Physical Society, Petit-Lancy, 1991), Vol. 15C, Part I, pp. 1--141] to produce various biasing configurations, which can be decomposed into two basic modes. Plasma biasing, with a radial electric field [ital E][sub [ital r

  7. Capacity building and predictors of success for HIV-1 drug resistance testing in the Asia-Pacific region and Africa

    PubMed Central

    Land, Sally; Zhou, Julian; Cunningham, Philip; Sohn, Annette H; Singtoroj, Thida; Katzenstein, David; Mann, Marita; Sayer, David; Kantor, Rami

    2013-01-01

    Background The TREAT Asia Quality Assessment Scheme (TAQAS) was developed as a quality assessment programme through expert education and training, for laboratories in the Asia-Pacific and Africa that perform HIV drug-resistance (HIVDR) genotyping. We evaluated the programme performance and factors associated with high-quality HIVDR genotyping. Methods Laboratories used their standard protocols to test panels of human immunodeficiency virus (HIV)-positive plasma samples or electropherograms. Protocols were documented and performance was evaluated according to a newly developed scoring system, agreement with panel-specific consensus sequence, and detection of drug-resistance mutations (DRMs) and mixtures of wild-type and resistant virus (mixtures). High-quality performance was defined as detection of ≥95% DRMs. Results Over 4.5 years, 23 participating laboratories in 13 countries tested 45 samples (30 HIV-1 subtype B; 15 non-B subtypes) in nine panels. Median detection of DRMs was 88–98% in plasma panels and 90–97% in electropherogram panels. Laboratories were supported to amend and improve their test outcomes as appropriate. Three laboratories that detected <80% DRMs in early panels demonstrated subsequent improvement. Sample complexity factors – number of DRMs (p<0.001) and number of DRMs as mixtures (p<0.001); and laboratory performance factors – detection of mixtures (p<0.001) and agreement with consensus sequence (p<0.001), were associated with high performance; sample format (plasma or electropherogram), subtype and genotyping protocol were not. Conclusion High-quality HIVDR genotyping was achieved in the TAQAS collaborative laboratory network. Sample complexity and detection of mixtures were associated with performance quality. Laboratories conducting HIVDR genotyping are encouraged to participate in quality assessment programmes. PMID:23845227

  8. A Neutral Beam for the Lithium Tokamak eXperiment Upgrade (LTX-U)

    NASA Astrophysics Data System (ADS)

    Merino, Enrique; Majeski, Richard; Kaita, Robert; Kozub, Thomas; Boyle, Dennis; Schmitt, John; Smirnov, Artem

    2015-11-01

    Neutral beam injection into tokamaks is a proven method of plasma heating and fueling. In LTX, high confinement discharges have been achieved with low-recycling lithium walls. To further improve plasma performance, a neutral beam (NB) will be installed as part of an upgrade to LTX (LTX-U). The NB will provide core plasma fueling with up to 700 kW of injected power. Requirements for accommodating the NB include the addition of injection and beam-dump ports onto the vessel and enhancement of the vacuum vessel pumping capability. Because the NB can also serve as a source of neutrals for charge-exchange recombination spectroscopy, ``active'' spectroscopic diagnostics will also be developed. An overview of these plans and other improvements for upgrading LTX to LTX-U will be presented. Supported by US DOE contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  9. Studying Filamentary Currents with Thomson Scattering on MST

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Young, W. C.; Kubala, S. Z.

    2016-10-01

    The MST reversed-field pinch plasma generates bursts of toroidally localized magnetic activity associated with m = 0 modes resonant at the reversal surface near the plasma edge. Previously, using data from an array of edge magnetic probes, these bursts were connected to poloidal current filaments. Now the MST Thomson scattering diagnostic is being used to measure the net drift in the electron distribution due to these currents. An additional long-wavelength spectral bin has been added to several Thomson scattering polychromators, in addition to 5-7 pre-existing short wavelength spectral bins, to improve discrimination between shifted vs. broadened spectra. The bursts are examined in plasma conditions that display spontaneous periods of low tearing-mode activity, with higher confinement and higher temperatures that improve Thomson scattering measurement performance. This work is supported by the U.S. Department of Energy and the National Science Foundation.

  10. Comparative evaluation of the Aptima HIV-1 Quant Dx assay and COBAS TaqMan HIV-1 v2.0 assay using the Roche High Pure System for the quantification of HIV-1 RNA in plasma.

    PubMed

    Schalasta, Gunnar; Börner, Anna; Speicher, Andrea; Enders, Martin

    2016-03-01

    Quantification of human immunodeficiency virus type 1 (HIV-1) RNA in plasma has become the standard of care in the management of HIV-infected patients. There are several commercially available assays that have been implemented for the detection of HIV-1 RNA in plasma. Here, the new Hologic Aptima® HIV-1 Quant Dx assay (Aptima HIV) was compared to the Roche COBAS® TaqMan® HIV-1 Test v2.0 for use with the High Pure System (HPS/CTM). The performance characteristics of the assays were assessed using commercially available HIV reference panels, dilution of the WHO 3rd International HIV-1 RNA International Standard (WHO-IS) and plasma from clinical specimens. Assay performance was determined by linear regression, Deming correlation analysis and Bland-Altman analysis. Testing of HIV-1 reference panels revealed excellent agreement. The 61 clinical specimens quantified in both assays were linearly associated and strongly correlated. The Aptima HIV assay offers performance comparable to that of the HPS/CTM assay and, as it is run on a fully automated platform, a significantly improved workflow.

  11. Analysis of performance degradation in an electron heating dominant H-mode plasma after ECRH termination in EAST

    NASA Astrophysics Data System (ADS)

    Du, Hongfei; Ding, Siye; Chen, Jiale; Wang, Yifeng; Lian, Hui; Xu, Guosheng; Zhai, Xuemei; Liu, Haiqing; Zang, Qing; Lyu, Bo; Duan, Yanmin; Qian, Jinping; Gong, Xianzu

    2018-06-01

    In recent EAST experiments, significant performance degradation accompanied by a decrease of internal inductance is observed in an electron heating dominant H-mode plasma after the electron cyclotron resonance heating termination. The lower hybrid wave (LHW) deposition and effective electron heat diffusivity are calculated to explain this phenomenon. Analysis shows that the changes of LHW heating deposition rather than the increase of transport are responsible for the significant decrease in energy confinement (). The reason why the confinement degradation occurred on a long time scale could be attributed to both good local energy confinement in the core and also the dependence of LHW deposition on the magnetic shear. The electron temperature profile shows weaker stiffness in near axis region where electron heating is dominant, compared to that in large radius region. Unstable electron modes from low to high k in the core plasma have been calculated in the linear GYRO simulations, which qualitatively agree with the experimental observation. This understanding of the plasma performance degradation mechanism will help to find ways of improving the global confinement in the radio-frequency dominant scenario in EAST.

  12. Results from core-edge experiments in high Power, high performance plasmas on DIII-D

    DOE PAGES

    Petrie, T. W.; Fenstermacher, M. E.; Holcomb, C. T.; ...

    2016-12-24

    Here, significant challenges to reducing divertor heat flux in highly powered near-double null divertor (DND) hybrid plasmas, while still maintaining both high performance metrics and low enough density for application of RF heating, are identified. For these DNDs on DIII-D, the scaling of the peak heat flux at the outer target (q ⊥ P) ∝ [P SOL x I P] 0.92 for P SOL = 8-19 MW and I P = 1.0–1.4 MA, and is consistent with standard ITPA scaling for single-null H-mode plasmas. Two divertor heat flux reduction methods were tested. First, applying the puff-and-pump radiating divertor to DIII-Dmore » plasmas may be problematical at high power and H98 (≥ 1.5) due to improvement in confinement time with deuterium gas puffing which can lead to unacceptably high core density under certain conditions. Second, q ⊥ P for these high performance DNDs was reduced by ≈35% when an open divertor is closed on the common flux side of the outer divertor target (“semi-slot”) but also that heating near the slot opening is a significant source for impurity contamination of the core.« less

  13. The Role of Combined ICRF and NBI Heating in JET Hybrid Plasmas in Quest for High D-T Fusion Yield

    NASA Astrophysics Data System (ADS)

    Mantsinen, Mervi; Challis, Clive; Frigione, Domenico; Graves, Jonathan; Hobirk, Joerg; Belonohy, Eva; Czarnecka, Agata; Eriksson, Jacob; Gallart, Dani; Goniche, Marc; Hellesen, Carl; Jacquet, Philippe; Joffrin, Emmanuel; King, Damian; Krawczyk, Natalia; Lennholm, Morten; Lerche, Ernesto; Pawelec, Ewa; Sips, George; Solano, Emilia R.; Tsalas, Maximos; Valisa, Marco

    2017-10-01

    Combined ICRF and NBI heating played a key role in achieving the world-record fusion yield in the first deuterium-tritium campaign at the JET tokamak in 1997. The current plans for JET include new experiments with deuterium-tritium (D-T) plasmas with more ITER-like conditions given the recently installed ITER-like wall (ILW). In the 2015-2016 campaigns, significant efforts have been devoted to the development of high-performance plasma scenarios compatible with ILW in preparation of the forthcoming D-T campaign. Good progress was made in both the inductive (baseline) and the hybrid scenario: a new record JET ILW fusion yield with a significantly extended duration of the high-performance phase was achieved. This paper reports on the progress with the hybrid scenario which is a candidate for ITER longpulse operation (˜1000 s) thanks to its improved normalized confinement, reduced plasma current and higher plasma beta with respect to the ITER reference baseline scenario. The combined NBI+ICRF power in the hybrid scenario was increased to 33 MW and the record fusion yield, averaged over 100 ms, to 2.9x1016 neutrons/s from the 2014 ILW fusion record of 2.3x1016 neutrons/s. Impurity control with ICRF waves was one of the key means for extending the duration of the high-performance phase. The main results are reviewed covering both key core and edge plasma issues.

  14. Effect of high-dose phytase and citric acid, alone or in combination, on growth performance of broilers given diets severely limited in available phosphorus.

    PubMed

    Taheri, H R; Jabbari, Z; Adibnia, S; Shahir, M H; Hosseini, S A

    2015-01-01

    1. Two trials were conducted to evaluate the effect of high-dose phytase alone or in combination with citric acid (CA) in the diet severely limited in available phosphorus (P) on performance, plasma P and plasma Ca of broilers from 22 to 42 d of age. 2. In Trial 1, 297 21-d-old female chicks were placed into 27 pens and allocated to 9 maize-soybean meal-based dietary treatments, which were a positive control [PC, 4.23 g/kg non-phytate P (NPP)] and 8 negative control (NC, 1.35 g/kg NPP) groups consisting of two concentrations of CA (0 and 20 g/kg) and 4 concentrations of phytase (0, 1000, 2000 and 4000 U/kg) in a 2 × 4 factorial arrangement. In Trial 2, 192 21-d-old male chicks were placed into 24 pens and allocated to 6 wheat-canola meal-based dietary treatments, which were a PC (4.2 g/kg NPP), a NC (1.68 g/kg NPP) and 4 NC groups consisting of two concentrations of CA (0 and 20 g/kg) and two concentrations of phytase (2000 and 4000 U/kg) in a 2 × 2 factorial arrangement. 3. In both trials, birds fed on the PC had significantly higher average daily gain (ADG), average daily feed intake (ADFI), plasma P and lower feed conversion ratio (FCR) and plasma Ca than those of birds fed on the NC. CA supplementation significantly increased ADG and ADFI. There was a significant interaction between CA and phytase on plasma P where CA improved the effect of phytase on plasma P. In Trial 1, phytase addition improved ADG, ADFI, FCR and plasma Ca linearly. 4. Briefly, this research showed the interaction effect between CA and phytase on plasma P when broilers were fed on diets based on maize-soybean meal or wheat-canola meal. The results showed that CA supplementation lowered the concentration of phytase that is needed in low NPP diets to increase plasma P.

  15. Plasma Wake-field Acceleration in the Blow-out Regime

    NASA Astrophysics Data System (ADS)

    Barov, Nikolai; Rosenzweig, James

    1999-11-01

    Recent experiments at Argonne National Laboratory, investigating the blow-out regime of the plasma wake-field accelerator, are discussed. These experiments achieved stable underdense (beam denser than the ambient plasma density) beam transport, and measured average acceleration of 25 MV/m, corresponding to peak wave fields of over 60 MVm. A comparison of the results to simulation is given, and the physics of the system is discussed. Potential for improvements in performance and achieved acceleration gradient, as well as accelerated beam quality are examined within the context of the next generation of experiments at the Fermilab Test Facility. The status of these experiments will be given.

  16. Overview of Current Drive Experiment-Upgrade (CDX-U)

    NASA Astrophysics Data System (ADS)

    Hwang, Y. S.; Choe, W.; Stutman, D.; Lo, E.; Menard, J.; Ono, M.; Jones, T. G.; Armstrong, R.

    1996-11-01

    The CDX-U tokamak is a spherical tokamak (ST) facility with R ≈ 32 cm, R/a >= 1.4, and B_TF ≈ 1 kG. With an OH power supply of 60 mV-S capability, experiments were conducted with Ip up to ~ 100 kA and q(a) >= 3.5. The ST plasma performance has been studied along with various MHD-related activities. By appropriate discharge programing, it was possible to obtain MHD-quiescent discharges with a factor of 2 - 3 improvement in the electron energy confinement. Recently, the outer vacuum vessel was replaced with a toroidally continuous stainless steel chamber to accomodate the fast wave antenna. With the newly installed antenna, preliminary heating experiments using high harmonic fast waves have been pursued. The success of fast wave heating is a crucial element for achieving high beta plasmas in ST devices such as NSTX. Also, preliminary electron ripple injection (ERI) experiments were performed in CDX-U to examine the feasibility of this technique for improving ST tokamak confinement. To support the ST physics investigation, various novel plasma profile diagnostics such as the multi-pass Thomson scattering, soft x-ray tomography, and tangential-phase-contrast-imaging systems are under development on CDX-U.

  17. Graphene as a Coating for Plasma Facing Components

    NASA Astrophysics Data System (ADS)

    Navarro, Marcos; Zamiri, Marziyeh; Kulcinski, Gerald; Lagally, Max; Santarius, John

    2017-10-01

    This research explores the protection by graphene of plasma facing materials bombarded with energetic ions of helium. Few studies have shown that graphene can act as a protective layer against sputtering due to energetic ions. In the presence of such irradiation, plasma facing components (PFC's) tend to develop surface morphologies that lead to the sputtering of wall material, potentially diminishing the lifetime of the PFC's and plasma performance. Since plasmas have broad applications and the quality of transferred and grown graphene is different, we have used a chemical vapor deposition method to grow on other substrates. We have also shown that graphene can reduce changes on surface morphology due to energetic helium. After irradiation, in the case of graphene-covered tungsten, our results show that, compared to the uncovered W, graphene suppresses these morphologies that form on the surface of hot W. Using Raman spectroscopy as a diagnostic, the graphene coating shows little sign of damage after being irradiated, indicating that there is little to no sputtering of carbon impurities from the surface. We have determined that the mass losses in W have been reduced significantly, which may lead to an improved plasma performance and longer PFC lifetimes. Supported by DHS Project 2015-DN-077-ARI095 and the Grainger Foundation.

  18. Vacuum application of thermal barrier plasma coatings

    NASA Technical Reports Server (NTRS)

    Holmes, R. R.; Mckechnie, T. N.

    1988-01-01

    Coatings are presently applied to Space Shuttle Main Engine (SSME) turbine blades for protection against the harsh environment realized in the engine during lift off-to-orbit. High performance nickel, chromium, aluminum, and yttrium (NiCrAlY) alloy coatings, which are applied by atmospheric plasma spraying, crack and spall off because of the severe thermal shock experienced during start-up and shut-down of the engine. Ceramic coatings of yttria stabilized zirconia (ZrO2-Y2O3) were applied initially as a thermal barrier over coating to the NiCrAlY but were removed because of even greater spalling. Utilizing a vacuum plasma spraying process, bond coatings of NiCrAlY were applied in a low pressure atmosphere of argon/helium, producing significantly improved coating-to-blade bonding. The improved coatings showed no spalling after 40 MSFC burner rig thermal shock cycles, cycling between 1700 and -423 F. The current atmospheric plasma NiCrAlY coatings spalled during 25 test cycles. Subsequently, a process was developed for applying a durable thermal barrier coating of ZrO2-Y2O3 to the turbine blades of first stage high-pressure fuel turbopumps utilizing the vacuum plasma process. The improved thermal barrier coating has successfully passed 40 burner rig thermal shock cycles without spalling. Hot firing in an SSME turbine engine is scheduled for the blades. Tooling was installed in preparation for vacuum plasma spray coating other SSME hardware, e.g., the titanium main fuel valve housing (MFVH) and the fuel turbopump nozzle/stator.

  19. A lipidomics approach to assess the association between plasma sphingolipids and verbal memory performance in coronary artery disease patients undertaking cardiac rehabilitation: a C18:0 signature for cognitive response to exercise

    PubMed Central

    Saleem, Mahwesh; Herrmann, Nathan; Dinoff, Adam; Mielke, Michelle M.; Oh, Paul I.; Shammi, Prathiba; Cao, Xingshan; Venkata, Swarajya Lakshmi Vattem; Haughey, Norman J.; Lanctôt, Krista L.

    2017-01-01

    Background Early subtle deficits in verbal memory, which may indicate early neural risk, are common in patients with coronary artery disease (CAD). While exercise can improve cognition, cognitive response to exercise is heterogeneous. Sphingolipids have been associated with the development and progression of CAD, and impairments in sphingolipid metabolism may play roles in neurodegeneration, and in the neural adaptation response to exercise. In this study, change in plasma concentrations of sphingolipids were assessed in relation to change in verbal memory performance and in other cognitive domains among CAD subjects undertaking a 6-month cardiac rehabilitation (CR) program. Methods Patients with CAD (n=120, mean age=64±6 years, 84% male, years of education=16±3 years) underwent CR with neuropsychological assessments and blood collected at baseline, 3-, and 6-months. Z-scores based on age, gender and education were combined for verbal memory, visuospatial memory, processing speed, executive function and global cognition tasks to calculate cognitive domain Z-scores. Plasma sphingolipid concentrations were measured from fasting blood samples using high performance liquid chromatography coupled electrospray ionization tandem mass spectrometry (LC/MS/MS). Mixed models were used to identify sphingolipids significantly associated with performance in verbal memory and other cognitive domains, adjusting for potential confounders. Results A decrease in ceramide C18:0 concentrations was significantly associated with improvement in verbal memory performance (b[SE]=-0.51 [0.25], p=0.04), visuospatial memory (b[SE]=-0.44 [0.22], p=0.05), processing speed (b[SE]=-0.89 [0.32], p=0.007) and global cognition (b[SE]=-1.47 [0.59], p=0.01) over 6 months of CR. Conclusions Plasma ceramide C18:0 concentrations may be a sensitive marker of cognitive response to exercise in patients with CAD. PMID:28598843

  20. A Lipidomics Approach to Assess the Association Between Plasma Sphingolipids and Verbal Memory Performance in Coronary Artery Disease Patients Undertaking Cardiac Rehabilitation: A C18:0 Signature for Cognitive Response to Exercise.

    PubMed

    Saleem, Mahwesh; Herrmann, Nathan; Dinoff, Adam; Mielke, Michelle M; Oh, Paul I; Shammi, Prathiba; Cao, Xingshan; Venkata, Swarajya Lakshmi Vattem; Haughey, Norman J; Lanctôt, Krista L

    2017-01-01

    Early subtle deficits in verbal memory, which may indicate early neural risk, are common in patients with coronary artery disease (CAD). While exercise can improve cognition, cognitive response to exercise is heterogeneous. Sphingolipids have been associated with the development and progression of CAD, and impairments in sphingolipid metabolism may play roles in neurodegeneration and in the neural adaptation response to exercise. In this study, change in plasma concentrations of sphingolipids was assessed in relation to change in verbal memory performance and in other cognitive domains among CAD subjects undertaking a 6-month cardiac rehabilitation (CR) program. Patients with CAD (n = 120, mean age = 64±6 y, 84% male, years of education = 16±3) underwent CR with neuropsychological assessments and blood collected at baseline, 3-, and 6-months. Z-scores based on age, gender, and education were combined for verbal memory, visuospatial memory, processing speed, executive function, and global cognition tasks to calculate cognitive domain Z-scores. Plasma sphingolipid concentrations were measured from fasting blood samples using high performance liquid chromatography coupled electrospray ionization tandem mass spectrometry (LC/MS/MS). Mixed models were used to identify sphingolipids significantly associated with performance in verbal memory and other cognitive domains, adjusting for potential confounders. A decrease in ceramide C18:0 concentration was significantly associated with improvement in verbal memory performance (b[SE] = -0.51 [0.25], p = 0.04), visuospatial memory (b[SE] = -0.44 [0.22], p = 0.05), processing speed (b[SE] = -0.89 [0.32], p = 0.007), and global cognition (b[SE] = -1.47 [0.59], p = 0.01) over 6 months of CR. Plasma ceramide C18:0 concentrations may be a sensitive marker of cognitive response to exercise in patients with CAD.

  1. Effect of tryptophan-rich egg protein hydrolysate on brain tryptophan availability, stress and performance.

    PubMed

    Markus, C Rob; Verschoor, E; Firk, C; Kloek, J; Gerhardt, C C

    2010-10-01

    Reduced brain serotonin function is involved in stress-related disturbances and may particularly occur under chronic stress. Although serotonin production directly depends on the availability of its plasma dietary amino acid precursor tryptophan (TRP), previously described effects of tryptophan-rich food sources on stress-related behavior are rather modest. Recently, an egg protein hydrolysate (EPH) was developed that showed a much greater effect on brain TRP availability than pure TRP and other TRP-food sources and therefore may be more effective for performance under stress. The aim of the present study was to investigate the effects of EPH compared to placebo protein on plasma amino acids, stress coping and performance in subjects with high and low chronic stress vulnerabilities. In a placebo-controlled, double-blind, crossover study, 17 participants with high and 18 participants with low chronic stress vulnerabilities were monitored for mood and performance under acute stress exposure either following intake of EPH or placebo. EPH significantly increased plasma TRP availability for uptake into the brain, decreased depressive mood in all subjects and improved perceptual-motor and vigilance performance only in low chronic stress-vulnerable subjects. The acute use of a TRP-rich egg protein hydrolysate (EPH) is an adequate method to increase plasma TRP for uptake into the brain and may be beneficial for perceptual-motor and vigilance performance in healthy volunteers. Copyright © 2010 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  2. Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechana, A.; Thamboon, P.; Boonyawan, D., E-mail: dheerawan.b@cmu.ac.th

    A microwave remote Plasma Enhanced-Atomic Layer Deposition system with multicusp confinement chamber is established at the Plasma and Beam Physics research facilities, Chiang Mai, Thailand. The system produces highly-reactive plasma species in order to enhance the deposition process of thin films. The addition of the multicusp magnetic fields further improves the plasma density and uniformity in the reaction chamber. Thus, the system is more favorable to temperature-sensitive substrates when heating becomes unwanted. Furthermore, the remote-plasma feature, which is generated via microwave power source, offers tunability of the plasma properties separately from the process. As a result, the system provides highmore » flexibility in choice of materials and design experiments, particularly for low-temperature applications. Performance evaluations of the system were carried on coating experiments of Al{sub 2}O{sub 3} layers onto a silicon wafer. The plasma characteristics in the chamber will be described. The resulted Al{sub 2}O{sub 3} films—analyzed by Rutherford Backscattering Spectrometry in channeling mode and by X-ray Photoelectron Spectroscopy techniques—will be discussed.« less

  3. Plasma first resuscitation reduces lactate acidosis, enhances redox homeostasis, amino acid and purine catabolism in a rat model of profound hemorrhagic shock

    PubMed Central

    D’Alessandro, Angelo; Moore, Hunter B; Moore, Ernest E; Wither, Matthew J.; Nemkov, Travis; Morton, Alexander P; Gonzalez, Eduardo; Chapman, Michael P; Fragoso, Miguel; Slaughter, Anne; Sauaia, Angela; Silliman, Christopher C; Hansen, Kirk C; Banerjee, Anirban

    2016-01-01

    The use of aggressive crystalloid resuscitation to treat hypoxemia, hypovolemia and nutrient deprivation promoted by massive blood loss may lead to the development of the blood vicious cycle of acidosis, hypothermia, and coagulopathy and, utterly, death. Metabolic acidosis is one of the many metabolic derangements triggered by severe trauma/hemorrhagic shock, also including enhanced proteolysis, lipid mobilization, as well as traumatic diabetes. Appreciation of the metabolic benefit of plasma first resuscitation is an important concept. Plasma resuscitation has been shown to correct hyperfibrinolysis secondary to severe hemorrhage better than normal saline. Here we hypothesize that plasma first resuscitation corrects metabolic derangements promoted by severe hemorrhage better than resuscitation with normal saline. Ultra-high-performance liquid chromatography-mass spectrometry-based metabolomics analyses were performed to screen plasma metabolic profiles upon shock and resuscitation with either platelet-free plasma or normal saline in a rat model of severe hemorrhage. Of the 251 metabolites that were monitored, 101 were significantly different in plasma vs normal saline resuscitated rats. Plasma resuscitation corrected lactate acidosis by promoting glutamine/amino acid catabolism and purine salvage reactions. Plasma first resuscitation may benefit critically injured trauma patients by relieving the lactate burden and promoting other non-clinically measured metabolic changes. In the light of our results, we propose that plasma resuscitation may promote fueling of mitochondrial metabolism, through the enhancement of glutaminolysis/amino acid catabolism and purine salvage reactions. The treatment of trauma patients in hemorrhagic shock with plasma first resuscitation is likely not only to improve coagulation, but also to promote substrate-specific metabolic corrections. PMID:26863033

  4. Spectroscopic and antimicrobial studies of polystyrene films under air plasma and He-Ne laser treatment

    NASA Astrophysics Data System (ADS)

    Pawde, S. M.; Parab, Sanmesh S.

    2008-05-01

    Polystyrene (PS) films are used in packaging and biomedical applications because of their transparency and good environmental properties. The present investigation is centered on the antifungal and antibacterial activities involved in the film surface. Subsequently, microbial formations were immobilized on the modified PS films. Living microorganisms such as bacteria and yeast were used. Untreated PS films show very fast rate of growth of bacteria within few hours. The study involves developments of polymer surfaces with bacterial growth and further studies after giving antibacterial treatment such as plasma treatment. Major emphasis has been given to study the effect of various parameters which can affect the performance of the improved material. Films were prepared by two methods: plasma treatment under vacuum and under ongoing He-Ne laser source. The parameters such as (1) surface area by contact angle measurements, (2) quality of material before and after treatment by SEM and FTIR spectra and (3) material characterization by UV-vis spectra were studied. It was observed that plasma treatment of the PS material for different processing time improved the surface properties of PS films.

  5. Acid Etching and Plasma Sterilization Fail to Improve Osseointegration of Grit Blasted Titanium Implants

    PubMed Central

    Saksø, Mikkel; Jakobsen, Stig S; Saksø, Henrik; Baas, Jørgen; Jakobsen, Thomas; Søballe, Kjeld

    2012-01-01

    Interaction between implant surface and surrounding bone influences implant fixation. We attempted to improve the bone-implant interaction by 1) adding surface micro scale topography by acid etching, and 2) removing surface-adherent pro-inflammatory agents by plasma cleaning. Implant fixation was evaluated by implant osseointegration and biomechanical fixation. The study consisted of two paired animal sub-studies where 10 skeletally mature Labrador dogs were used. Grit blasted titanium alloy implants were inserted press fit in each proximal tibia. In the first study grit blasted implants were compared with acid etched grit blasted implants. In the second study grit blasted implants were compared with acid etched grit blasted implants that were further treated with plasma sterilization. Implant performance was evaluated by histomorphometrical investigation (tissue-to-implant contact, peri-implant tissue density) and mechanical push-out testing after four weeks observation time. Neither acid etching nor plasma sterilization of the grit blasted implants enhanced osseointegration or mechanical fixation in this press-fit canine implant model in a statistically significant manner. PMID:22962567

  6. Effects of Inductively Coupled Plasma Hydrogen on Long-Wavelength Infrared HgCdTe Photodiodes

    NASA Astrophysics Data System (ADS)

    Boieriu, P.; Buurma, C.; Bommena, R.; Blissett, C.; Grein, C.; Sivananthan, S.

    2013-12-01

    Bulk passivation of semiconductors with hydrogen continues to be investigated for its potential to improve device performance. In this work, hydrogen-only inductively coupled plasma (ICP) was used to incorporate hydrogen into long-wavelength infrared HgCdTe photodiodes grown by molecular-beam epitaxy. Fully fabricated devices exposed to ICP showed statistically significant increases in zero-bias impedance values, improved uniformity, and decreased dark currents. HgCdTe photodiodes on Si substrates passivated with amorphous ZnS exhibited reductions in shunt currents, whereas devices on CdZnTe substrates passivated with polycrystalline CdTe exhibited reduced surface leakage, suggesting that hydrogen passivates defects in bulk HgCdTe and in CdTe.

  7. Evolution of plasma homovanillic acid (HVA) levels during treatment in schizo-affective disorder.

    PubMed

    Galinowski, A; Castelnau, C; Spreux-Varoquaux, O; Bourdel, M C; Olie, J P; Loo, H; Poirier, M F

    2000-11-01

    1. Plasma Homovanillic Acid (p HVA) levels were measured by HPLC (high performance liquid chromatography) in 5 schizo-affective depressed patients receiving a standardized treatment. (lithium, chlorpromazine and clomipramine) during 4 weeks. 2. Four patients were pretreated, without a washout period. 3. No significant difference was observed between patients and normal controls at baseline. Under treatment, pHVA levels increased (p<0.02) with clinical improvement (MADRS and PANSS scores). 4. Although effects of medications prior to the study period were not controlled, these findings suggest that depressed schizo-affective patients may have normal pHVA levels that increase with clinical improvement, unlike schizophrenic patients whose increased pHVA concentrations decline with neuroleptic treatment.

  8. Simulation of wave interactions with MHD

    NASA Astrophysics Data System (ADS)

    Batchelor, D.; Alba, C.; Bateman, G.; Bernholdt, D.; Berry, L.; Bonoli, P.; Bramley, R.; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, W.; Fu, G.; Harvey, R.; Jaeger, E.; Jardin, S.; Jenkins, T.; Keyes, D.; Klasky, S.; Kruger, S.; Ku, L.; Lynch, V.; McCune, D.; Ramos, J.; Schissel, D.; Schnack, D.; Wright, J.

    2008-07-01

    The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.

  9. Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying

    NASA Astrophysics Data System (ADS)

    Marr, M.; Kuhn, J.; Metcalfe, C.; Harris, J.; Kesler, O.

    2014-01-01

    Yttria-stabilized zirconia (YSZ) electrolytes were deposited by suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS). The electrolytes were evaluated for permeability, microstructure, and electrochemical performance. With SPS, three different suspensions were tested to explore the influence of powder size distribution and liquid properties. Electrolytes made from suspensions of a powder with d50 = 2.6 μm were more gas-tight than those made from suspensions of a powder with d50 = 0.6 μm. A peak open circuit voltage of 1.00 V was measured at 750 °C with a cell with an electrolyte made from a suspension of d50 = 2.6 μm powder. The use of a flammable suspension liquid was beneficial for improving electrolyte conductivity when using lower energy plasmas, but the choice of liquid was less important when using higher energy plasmas. With SPPS, peak electrolyte conductivities were comparable to the peak conductivities of the SPS electrolytes. However, leak rates through the SPPS electrolytes were higher than those through the electrolytes made from suspensions of d50 = 2.6 μm powder. The electrochemical test data on SPPS electrolytes are the first reported in the literature.

  10. Simple Quantification of Pentosidine in Human Urine and Plasma by High-Performance Liquid Chromatography

    PubMed Central

    Lee, Ji Sang; Chung, Yoon-Sok; Chang, Sun Young

    2017-01-01

    Pentosidine is an advanced glycation end-product (AGE) and fluorescent cross-link compound. A simple high-performance liquid chromatographic (HPLC) method was developed for the detection and quantification of pentosidine in human urine and plasma. The mobile phase used a gradient system to improve separation of pentosidine from endogenous peaks, and chromatograms were monitored by fluorescent detector set at excitation and emission wavelengths of 328 and 378 nm, respectively. The retention time for pentosidine was 24.3 min and the lower limits of quantification (LLOQ) in human urine and plasma were 1 nM. The intraday assay precisions (coefficients of variation) were generally low and found to be in the range of 5.19–7.49% and 4.96–8.78% for human urine and plasma, respectively. The corresponding values of the interday assay precisions were 9.45% and 4.27%. Accuracies (relative errors) ranged from 87.9% to 115%. Pentosidine was stable in a range of pH solutions, human urine, and plasma. In summary, this HPLC method can be applied in future preclinical and clinical evaluation of pentosidine in the diabetic patients. PMID:29181026

  11. Investigation of the helium effects on deuterium retention in thin film lithium coatings on tungsten substrates

    NASA Astrophysics Data System (ADS)

    Neff, A. L.; Allain, J. P.; Morgan, T. W.

    2017-10-01

    In a burning fusion plasma, the materials on the walls of the plasma vessel will have a significant effect on the performance of the plasma. Any amount of high Z wall material that is eroded will contaminate and cool the plasma and may lead to a disruption. Additionally, if the material retains or reflects fuel it can affect the stability of the plasma. A high recycling wall that retains minimal fuel will allow better control of the fuel inventory, especially tritium, in the walls. In contrast, a low recycling wall leads to improved plasma performance by preventing instabilities in the plasma. We have observed that when 5% He is added to D ions during low flux (1017 m-2s-1) dual ion beam irradiation the amount of D retained in the Li film diminishes. This conclusion is based on the reduction of a XPS peak (at 533 eV) associated with D retention in Li films. To further investigate this phenomenon, we have continued the dual beam studies in IGNIS (Ion-Gas-Neutral Interactions with Surfaces) by varying the energy and concentration of He to D. Additionally, we exposed lithiated W to sequential D and He plasmas (1024 m-2s-1 flux) in Magnum PSI at DIFFER. With XPS, we analyzed the chemistry of the Li films and determined changes in retention. These results will be presented. Work supported by DOE contract DE-SC0010719.

  12. Washing older blood units before transfusion reduces plasma iron and improves outcomes in experimental canine pneumonia.

    PubMed

    Cortés-Puch, Irene; Wang, Dong; Sun, Junfeng; Solomon, Steven B; Remy, Kenneth E; Fernandez, Melinda; Feng, Jing; Kanias, Tamir; Bellavia, Landon; Sinchar, Derek; Perlegas, Andreas; Solomon, Michael A; Kelley, Walter E; Popovsky, Mark A; Gladwin, Mark T; Kim-Shapiro, Daniel B; Klein, Harvey G; Natanson, Charles

    2014-02-27

    In a randomized controlled blinded trial, 2-year-old purpose-bred beagles (n = 24), with Staphylococcus aureus pneumonia, were exchanged-transfused with either 7- or 42-day-old washed or unwashed canine universal donor blood (80 mL/kg in 4 divided doses). Washing red cells (RBC) before transfusion had a significantly different effect on canine survival, multiple organ injury, plasma iron, and cell-free hemoglobin (CFH) levels depending on the age of stored blood (all, P < .05 for interactions). Washing older units of blood improved survival rates, shock score, lung injury, cardiac performance and liver function, and reduced levels of non-transferrin bound iron and plasma labile iron. In contrast, washing fresh blood worsened all these same clinical parameters and increased CFH levels. Our data indicate that transfusion of fresh blood, which results in less hemolysis, CFH, and iron release, is less toxic than transfusion of older blood in critically ill infected subjects. However, washing older blood prevented elevations in plasma circulating iron and improved survival and multiple organ injury in animals with an established pulmonary infection. Our data suggest that fresh blood should not be washed routinely because, in a setting of established infection, washed RBC are prone to release CFH and result in worsened clinical outcomes.

  13. Washing older blood units before transfusion reduces plasma iron and improves outcomes in experimental canine pneumonia

    PubMed Central

    Wang, Dong; Sun, Junfeng; Solomon, Steven B.; Remy, Kenneth E.; Fernandez, Melinda; Feng, Jing; Kanias, Tamir; Bellavia, Landon; Sinchar, Derek; Perlegas, Andreas; Solomon, Michael A.; Kelley, Walter E.; Popovsky, Mark A.; Gladwin, Mark T.; Kim-Shapiro, Daniel B.; Klein, Harvey G.; Natanson, Charles

    2014-01-01

    In a randomized controlled blinded trial, 2-year-old purpose-bred beagles (n = 24), with Staphylococcus aureus pneumonia, were exchanged-transfused with either 7- or 42-day-old washed or unwashed canine universal donor blood (80 mL/kg in 4 divided doses). Washing red cells (RBC) before transfusion had a significantly different effect on canine survival, multiple organ injury, plasma iron, and cell-free hemoglobin (CFH) levels depending on the age of stored blood (all, P < .05 for interactions). Washing older units of blood improved survival rates, shock score, lung injury, cardiac performance and liver function, and reduced levels of non-transferrin bound iron and plasma labile iron. In contrast, washing fresh blood worsened all these same clinical parameters and increased CFH levels. Our data indicate that transfusion of fresh blood, which results in less hemolysis, CFH, and iron release, is less toxic than transfusion of older blood in critically ill infected subjects. However, washing older blood prevented elevations in plasma circulating iron and improved survival and multiple organ injury in animals with an established pulmonary infection. Our data suggest that fresh blood should not be washed routinely because, in a setting of established infection, washed RBC are prone to release CFH and result in worsened clinical outcomes. PMID:24366359

  14. Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion

    NASA Astrophysics Data System (ADS)

    Pantoja, M.; Encinas, N.; Abenojar, J.; Martínez, M. A.

    2013-09-01

    Polypropylene is one of the most used polymers due to its lightweight and recyclability properties, among others. However, its poor characteristics regarding surface energy and lack of polar functional groups have to be overcome to perform adhesion processes. The main objective of this work is to improve the adhesion behavior of polypropylene by combining atmospheric pressure plasma surface activation and silane adhesion promoter. Tetraethoxysilane hydrolysis and condensation are followed through infrared spectroscopy by attenuated total reflectance in order to set the coating conditions. Contact angle measurements and surface energy calculations as well as infrared and X-ray photoelectron spectroscopy are used to evaluate polymer chemical modifications. Morphological changes are studied through scanning electron and atomic force microscopy. Results show the ability of plasma treatment to create active oxydised functional groups on the polypropylene surface. These groups lead to a proper wetting of the polymer by the silane. Shear strength of single-lap bonding of polypropylene with a polyurethane adhesive suffers a significant improvement when the silane coating is applied on previously plasma activated samples. It has been also demonstrated that the silane curing conditions play a decisive role on the adhesion response. Finally, the stability of the silane solution is tested up to 30 days, yielding diminished but still acceptable adhesion strength values.

  15. Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications

    NASA Technical Reports Server (NTRS)

    Shiembob, L. T.

    1977-01-01

    The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.

  16. Improvements, upgrades, and plans for Thomson scattering on DIII-D

    NASA Astrophysics Data System (ADS)

    Carlstrom, T. N.; Du, D.; Glass, F.; Liu, C.; Watkins, M.; McLean, A. G.

    2016-10-01

    The Thomson scattering diagnostic on DIII-D consists of 3 beam lines that probe vertically, horizontally, and in the divertor region of the tokamak, with 54 spatial locations, edge spatial resolution down to 5 mm, and 10 Nd:YAG lasers. In its 25-year history, the collection lens optics and interference filters degraded and have been replaced, restoring previous performance. In addition, improved calibrations and detector temperature control (+/- 0.1 C) have reduced systematic errors. Cross calibration with the CO2 interferometer and ECE cut-off have improved the density calibration. Improvements to the beam line and lasers have increased the laser energy delivered to the scattering volume in the plasma. Future plans include moving the divertor system to measure regions of high triangularity using in-vessel mirrors to redirect the laser beam; adding a wide angle lens to the horizontal system to view the entire plasma radius near the plasma mid plane; and reversing the direction of the laser beam on the horizontal system to reduce the scattering angle and compressing the spectrum in wavelength space so that higher central Te measurements (<5 KeV) can be made with improved accuracy. Work supported by the US DOE under DE-FC02-04ER54698 and by LLNL under DE-AC52-07NA27344.

  17. Laser Imprint Reduction with a Short Shaping Laser Pulse Incident Upon a Foam-Plastic Target

    DTIC Science & Technology

    2002-12-01

    Corporation, McLean, VA 22150, and Physics Department, Nuclear Research Center Negev , P. O. Box 9001, Beer Sheva, Israel Alexander L. Velikovich and...plasma oscillate rather than grow. Density tailoring seems to improve radiative performance of Z-pinch plasma radiation sources: For example, the cross...efficiency of the density profile shaping described above for laser imprint mitigation. We now use the the FAST2D hydrocode in a 2-D mode. The radiation

  18. Investigations of the surface activation of thermoplastic polymers by atmospheric pressure plasma treatment with a stationary plasma jet

    NASA Astrophysics Data System (ADS)

    Moritzer, Elmar; Nordmeyer, Timo; Leister, Christian; Schmidt, Martin Andreas; Grishin, Artur; Knospe, Alexander

    2016-03-01

    The production of high-quality thermoplastic parts often requires an additional process step after the injection molding stage. This may be a coating, bonding process or a 2K-injection moulding process. A commonly used process to improve the bond strength is atmospheric pressure plasma treatment. A variety of applications are realized with the aid of CNC systems. Although they ensure excellent reproducibility, they make it difficult to implement inline applications. This paper therefore examines the possibility of surface treatment using a stationary plasma jet. However, before it is possible to integrate this technology into a production process, preliminary trials need to be carried out to establish which factors influence the process. Experimental tests were performed using a special test set-up, enabling geometric, plasma-specific parameters to be identified. These results can help with the practical integration of this technology into existing production processes.

  19. Simultaneous estimation of plasma parameters from spectroscopic data of neutral helium using least square fitting of CR-model

    NASA Astrophysics Data System (ADS)

    Jain, Jalaj; Prakash, Ram; Vyas, Gheesa Lal; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana; Halder, Nilanjan; Choyal, Yaduvendra

    2015-12-01

    In the present work an effort has been made to estimate the plasma parameters simultaneously like—electron density, electron temperature, ground state atom density, ground state ion density and metastable state density from the observed visible spectra of penning plasma discharge (PPD) source using least square fitting. The analysis is performed for the prominently observed neutral helium lines. The atomic data and analysis structure (ADAS) database is used to provide the required collisional-radiative (CR) photon emissivity coefficients (PECs) values under the optical thin plasma condition in the analysis. With this condition the estimated plasma temperature from the PPD is found rather high. It is seen that the inclusion of opacity in the observed spectral lines through PECs and addition of diffusion of neutrals and metastable state species in the CR-model code analysis improves the electron temperature estimation in the simultaneous measurement.

  20. Laser-plasma interactions in magnetized environment

    NASA Astrophysics Data System (ADS)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interaction enters a relativistic-quantum regime. Using quantum electrodynamics, we compute a modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.

  1. NASA Astrophysics Data System (ADS)

    Sampath, S.; Wayne, S. F.

    1994-09-01

    Thermally sprayed molybdenum coatings are used in a variety of industrial applications, such as auto-motive piston rings, aeroturbine engines, and paper and plastics processing machinery. Molybdenum ex-hibits excellent scuffing resistance under sliding contact conditions. However, plasma-sprayed molybde-num coatings are relatively soft and require dispersion strengthening (e.g., Mo2C) or addition of a second phase (e.g., NiCrBSi) to improve hardness, wear resistance, and thus coating performance. In this study, Mo-Mo2C composite powders were plasma sprayed onto mild steel substrates. Considerable decarburi-zation was observed during air plasma spraying—a beneficial condition because carbon acts as a sacrifi-cial getter for the oxygen, thereby reducing the oxide content in the coating. Finer powders showed a greater degree of decarburization due to the increased surface area; however, the starting carbide con-tent in the powder exerted very little influence on the extent of decarburization. The friction properties of Mo-Mo2C coatings were significantly improved compared to those of pure molybdenum under con-tinuous sliding contact conditions. It also was found that the abrasion resistance of the coatings improved with increasing carbide addition.

  2. Langmuir Probe Measurements in a Grid-Assisted Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Sagás, Julio César; Pessoa, Rodrigo Sávio; Maciel, Homero Santiago

    2018-02-01

    The grid-assisted magnetron sputtering is a variation of the magnetron sputtering commonly used for thin film deposition. In this work, Langmuir probe measurements were performed in such a system by using the grid under two basic and practical electrical conditions, i.e., floating and grounded. The results show that grounding the grid leads to an enhancement of the plasma confinement and to increases in both floating and plasma potential, as inferred from the probe characteristics. The grounded grid drains electrons from the plasma, acting as an auxiliary anode and reducing the plasma diffusion toward the chamber walls. For the same discharge current, the improved confinement results in a lower electron temperature when compared to floating condition, although the electron densities are comparable in both cases.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Tao, E-mail: st@mail.iee.ac.cn; Yang, Wenjin; Zhang, Cheng

    Polymer materials, such as polymethylmethacrylate (PMMA), are widely used as insulators in vacuum. The insulating performance of a high-voltage vacuum system is mainly limited by surface flashover of the insulators rather than bulk breakdown. Non-thermal plasmas are an efficient method to modify the chemical and physical properties of polymer material surfaces, and enhance the surface insulating performance. In this letter, an atmospheric-pressure dielectric barrier discharge is used to treat the PMMA surface to improve the surface flashover strength in vacuum. Experimental results indicate that the plasma treatment method using Ar and CF{sub 4} (10:1) as the working gas can etchmore » the PMMA surface, introduce fluoride groups to the surface, and then alter the surface characteristics of the PMMA. The increase in the surface roughness can introduce physical traps that can capture free electrons, and the fluorination can enhance the charge capturing ability. The increase in the surface roughness and the introduction of the fluoride groups can enhance the PMMA hydrophobic ability, improve the charge capturing ability, decrease the secondary electron emission yield, increase the surface resistance, and improve the surface flashover voltage in vacuum.« less

  4. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer's disease.

    PubMed

    Newport, Mary T; VanItallie, Theodore B; Kashiwaya, Yoshihiro; King, Michael Todd; Veech, Richard L

    2015-01-01

    Providing ketone bodies to the brain can bypass metabolic blocks to glucose utilization and improve function in energy-starved neurons. For this, plasma ketones must be elevated well above the ≤ 0.2 mM default concentrations normally prevalent. Limitations of dietary methods currently used to produce therapeutic hyperketonemia have stimulated the search for better approaches. Described herein is a new way to produce therapeutic hyperketonemia, entailing prolonged oral administration of a potent ketogenic agent--ketone monoester (KME)--to a patient with Alzheimer's disease dementia and a pretreatment Mini-Mental State Examination score of 12. The patient improved markedly in mood, affect, self-care, and cognitive and daily activity performance. The KME was well tolerated throughout the 20-month treatment period. Cognitive performance tracked plasma β-hydroxybutyrate concentrations, with noticeable improvements in conversation and interaction at the higher levels, compared with predose levels. KME-induced hyperketonemia is robust, convenient, and safe, and the ester can be taken as an oral supplement without changing the habitual diet. Published by Elsevier Inc.

  5. Ratios of One-Carbon Metabolites Are Functional Markers of B-Vitamin Status in a Norwegian Coronary Angiography Screening Cohort.

    PubMed

    Ulvik, Arve; Hustad, Steinar; McCann, Adrian; Midttun, Øivind; Nygård, Ottar K; Ueland, Per M

    2017-06-01

    Background: Functional (metabolic) markers of B-vitamin status, including plasma total homocysteine (tHcy) for folate and plasma methylmalonic acid (MMA) for vitamin B-12, suffer from moderate sensitivity and poor specificity. Ratios of metabolites belonging to the same pathway may have better performance characteristics. Objective: We evaluated the ratios of tHcy to total cysteine (tCys; Hcy:Cys), tHcy to creatinine (Hcy:Cre), and tHcy to tCys to creatinine (Hcy:Cys:Cre) as functional markers of B-vitamin status represented by a summary score composed of folate, cobalamin, betaine, pyridoxal 5'-phosphate (PLP), and riboflavin concentrations measured in plasma. Methods: Cross-sectional data were obtained from a cohort of patients with stable angina pectoris (2994 men and 1167 women) aged 21-88 y. The relative contribution of the B-vitamin score, age, sex, smoking, body mass index, and markers of renal function and inflammation to the variance of the functional B-vitamin markers was calculated by using multiple linear regression. Results: Compared with tHcy alone, Hcy:Cys, Hcy:Cre, and Hcy:Cys:Cre all showed improved sensitivity and specificity for detecting plasma B-vitamin status. Improvements in overall performance ranged from 4-fold for Hcy:Cys to ∼8-fold for Hcy:Cys:Cre and were particularly strong in subjects with the common 5,10-methylenetetrahydrofolate reductase (MTHFR) 677CC genotype. Conclusions: Ratios of tHcy to tCys and/or creatinine showed a severalfold improvement over tHcy alone as functional markers of B-vitamin status in Norwegian coronary angiography screenees. The biological rationale for these ratios is discussed in terms of known properties of enzymes involved in the catabolism of homocysteine and synthesis of creatine and creatinine. © 2017 American Society for Nutrition.

  6. Plasma-assisted CO2 conversion: optimizing performance via microwave power modulation

    NASA Astrophysics Data System (ADS)

    Britun, Nikolay; Silva, Tiago; Chen, Guoxing; Godfroid, Thomas; van der Mullen, Joost; Snyders, Rony

    2018-04-01

    Significant improvement in the energy efficiency of plasma-assisted CO2 conversion is achieved with applied power modulation in a surfaguide microwave discharge. The obtained values of CO2 conversion and energy efficiency are, respectively, 0.23 and 0.33 for a 0.95 CO2  +  0.05 N2 gas mixture. Analysis of the energy relaxation mechanisms shows that power modulation can potentially affect the vibrational-translational energy exchange in plasma. In our case, however, this mechanism does not play a major role, likely due to the low degree of plasma non-equilibrium in the considered pressure range. Instead, the gas residence time in the discharge active zone together with plasma pulse duration are found to be the main factors affecting the CO2 conversion efficiency at low plasma pulse repetition rates. This effect is confirmed experimentally by the in situ time-resolved two-photon absorption laser-induced fluorescence measurements of CO molecular density produced in the discharge as a result of CO2 decomposition.

  7. Neutral beam and ICP etching of HKMG MOS capacitors: Observations and a plasma-induced damage model

    NASA Astrophysics Data System (ADS)

    Kuo, Tai-Chen; Shih, Tzu-Lang; Su, Yin-Hsien; Lee, Wen-Hsi; Current, Michael Ira; Samukawa, Seiji

    2018-04-01

    In this study, TiN/HfO2/Si metal-oxide-semiconductor (MOS) capacitors were etched by a neutral beam etching technique under two contrasting conditions. The configurations of neutral beam etching technique were specially designed to demonstrate a "damage-free" condition or to approximate "reactive-ion-etching-like" conditions to verify the effect of plasma-induced damage on electrical characteristics of MOS capacitors. The results show that by neutral beam etching (NBE), the interface state density (Dit) and the oxide trapped charge (Qot) were lower than routine plasma etching. Furthermore, the decrease in capacitor size does not lead to an increase in leakage current density, indicating less plasma induced side-wall damage. We present a plasma-induced gate stack damage model which we demonstrate by using these two different etching configurations. These results show that NBE is effective in preventing plasma-induced damage at the high-k/Si interface and on the high-k oxide sidewall and thus improve the electrical performance of the gate structure.

  8. A high-performance channel engineered charge-plasma-based MOSFET with high-κ spacer

    NASA Astrophysics Data System (ADS)

    Shan, Chan; Wang, Ying; Luo, Xin; Bao, Meng-tian; Yu, Cheng-hao; Cao, Fei

    2017-12-01

    In this paper, the performance of graded channel double-gate MOSFET (GC-DGFET) that utilizes the charge-plasma concept and a high-κ spacer is investigated through 2-D device simulations. The results demonstrate that GC-DGFET with high-κ spacer can effectively improve the ON-state driving current (ION) and reduce the OFF-leakage current (IOFF). We find that reduction of the initial energy barrier between the source and channel is the origin of this ION enhancement. The reason for the IOFF reduction is identified to be the extension of the effective channel length owing to the fringing field via high-κ spacers. Consequently, these devices offer enhanced performance by reducing the total gate-to-gate capacitance (Cgg) and decreasing the intrinsic delay (τ).

  9. Cognitive Performance: A Cross-Sectional Study on Serum Vitamin D and Its Interplay With Glucose Homeostasis in Dutch Older Adults.

    PubMed

    Brouwer-Brolsma, Elske M; Dhonukshe-Rutten, Rosalie A M; van Wijngaarden, Janneke P; van de Zwaluw, Nikita L; in 't Veld, Paulette H; Wins, Sophie; Swart, Karin M A; Enneman, Anke W; Ham, Annelies C; van Dijk, Suzanne C; van Schoor, Natasja M; van der Velde, Nathalie; Uitterlinden, Andre G; Lips, Paul; Kessels, Roy P C; Steegenga, Wilma T; Feskens, Edith J M; de Groot, Lisette C P G M

    2015-07-01

    First, the association between serum 25-hydroxyvitamin D (25[OH]D) and cognitive performance was examined. Second, we assessed whether there was evidence for an interplay between 25(OH)D and glucose homeostasis in the association with cognitive performance. Associations were studied using cross-sectional data of 776 (3 domains) up to 2722 (1 domain) Dutch community-dwelling older adults, aged 65 years or older. Serum 25(OH)D, plasma glucose, and insulin concentrations were obtained. Cognitive performance was assessed with an extensive cognitive test battery. Prevalence ratios (PRs) were calculated to quantify the association between 25(OH)D and cognition; poor performance was defined as the worst 10% of the distribution of the cognitive scores. The overall median MMSE score was 29 (IQR 28-30). Higher serum 25(OH)D was associated with better attention and working memory, PR 0.50 (95% CI 0.29-0.84) for the third serum 25(OH)D tertile, indicating a 50% lower probability of being a poor performer than participants in the lowest tertile. Beneficial trends were shown for 25(OH)D with executive function and episodic memory. Serum 25(OH)D was not associated with plasma glucose or insulin. Plasma insulin only modified the association between serum 25(OH)D and executive function (P for interaction: .001), suggesting that the improvement in executive function with high 25(OH)D concentrations is stronger in participants with high plasma insulin concentrations compared with those with low plasma insulin concentrations. Higher 25(OH)D concentrations significantly associated with better attention and working memory performance. This study does not demonstrate an interplay between serum 25(OH)D and glucose homeostasis in the association with cognitive performance. Copyright © 2015 AMDA - The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  10. Fretting wear study of surface modified Ni-Ti shape memory alloy.

    PubMed

    Tan, L; Crone, W C; Sridharan, K

    2002-05-01

    A combination of shape memory characteristics, pseudoelasticity, and good damping properties make near-equiatomic nickel-titanium (Ni-Ti) alloy a desirable candidate material for certain biomedical device applications. The alloy has moderately good wear resistance, however, further improvements in this regard would be beneficial from the perspective of reducing wear debris generation, improving biocompatibility, and preventing failure during service. Fretting wear tests of Ni-Ti in both austenitic and martensitic microstructural conditions were performed with the goal of simulating wear which medical devices such as stents may experience during surgical implantation or service. The tests were performed using a stainless steel stylus counter-wearing surface under dry conditions and also with artificial plasma containing 80 g/L albumen protein as lubricant. Additionally, the research explores the feasibility of surface modification by sequential ion implantation with argon and oxygen to enhance the wear characteristics of the Ni-Ti alloy. Each of these implantations was performed to a dose of 3 x 10(17) atom/cm(2) and an energy of 50 kV, using the plasma source ion implantation process. Improvements in wear resistance were observed for the austenitic samples implanted with argon and oxygen. Ion implantation with argon also reduced the surface Ni content with respect to Ti due to differential sputtering rates of the two elements, an effect that points toward improved biocompatibility.

  11. O2 Plasma Etching and Antistatic Gun Surface Modifications for CNT Yarn Microelectrode Improve Sensitivity and Antifouling Properties.

    PubMed

    Yang, Cheng; Wang, Ying; Jacobs, Christopher B; Ivanov, Ilia N; Venton, B Jill

    2017-05-16

    Carbon nanotube (CNT) based microelectrodes exhibit rapid and selective detection of neurotransmitters. While different fabrication strategies and geometries of CNT microelectrodes have been characterized, relatively little research has investigated ways to selectively enhance their electrochemical properties. In this work, we introduce two simple, reproducible, low-cost, and efficient surface modification methods for carbon nanotube yarn microelectrodes (CNTYMEs): O 2 plasma etching and antistatic gun treatment. O 2 plasma etching was performed by a microwave plasma system with oxygen gas flow and the optimized time for treatment was 1 min. The antistatic gun treatment flows ions by the electrode surface; two triggers of the antistatic gun was the optimized number on the CNTYME surface. Current for dopamine at CNTYMEs increased 3-fold after O 2 plasma etching and 4-fold after antistatic gun treatment. When the two treatments were combined, the current increased 12-fold, showing the two effects are due to independent mechanisms that tune the surface properties. O 2 plasma etching increased the sensitivity due to increased surface oxygen content but did not affect surface roughness while the antistatic gun treatment increased surface roughness but not oxygen content. The effect of tissue fouling on CNT yarns was studied for the first time, and the relatively hydrophilic surface after O 2 plasma etching provided better resistance to fouling than unmodified or antistatic gun treated CNTYMEs. Overall, O 2 plasma etching and antistatic gun treatment improve the sensitivity of CNTYMEs by different mechanisms, providing the possibility to tune the CNTYME surface and enhance sensitivity.

  12. Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.

    2014-07-01

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width asmore » a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less

  13. Practical difficulties in the diagnosis of transient non-ketotic hyperglycinaemia.

    PubMed

    Lang, T F; Parr, J R; Matthews, E E; Gray, R G F; Bonham, J R; Kay, J D S

    2008-02-01

    Making a diagnosis of transient non-ketotic hyperglycinaemia (tNKH) can be difficult. We report an infant who presented in the neonatal period with symptoms of NKH. Metabolic studies performed on day 2 of life showed raised cerebrospinal fluid (CSF) and plasma glycine, and a CSF:plasma glycine ratio consistent with NKH; however, a liver biopsy performed on day 5 revealed normal liver glycine cleavage system activity. Subsequently, the child's clinical condition improved in the absence of any therapeutic medication. Clinical assessment and developmental follow-up at 5 months, 1 year, and 2 years were age-appropriate. Guidance for the investigation and management of future suspected cases of tNKH is discussed.

  14. The effect of packing hydrophilization on bacterial attachment and the relationship with the performance of biotrickling filters.

    PubMed

    Prado, Oscar J; Popat, Sudeep C; Chen, Gexin; Walker, Sharon L; Lafuente, Javier; Gabriel, David; Deshusses, Marc A

    2009-08-15

    Many bioprocesses depend on the effective formation of a biofilm on a solid support. In the present study, three different surface treatments (sandblasting, pure-O(2) plasma, and He-O(2) plasma treatments) were conducted on polypropylene (PP) Pall rings used as a support in biotrickling filters for air pollution control. The intent was to modify the ring surface and/or electrochemical properties in order to possibly improve cell adhesion, wetting properties, and possibly reduce the start-up time and increase the performance of the biotrickling filters. The surface treatments were found to generally increase the hydrophilicity and the zeta potential of the surfaces. However, the startup and performance of lab-scale biotrickling filters packed with treated Pall rings were not significantly different than the control with untreated rings. Cell and colloid deposition experiments conducted in flow cells showed that the treated surfaces and the hydrodynamic conditions were not favorable for cell deposition indicating that there could be significant opportunities for improving packings used in environmental bioprocess applications. Copyright 2009 Wiley Periodicals, Inc.

  15. High Current Plasma Electrolytic Oxidation Coating Processes for Wear and Corrosion Prevention of Al 2024

    NASA Astrophysics Data System (ADS)

    Wang, Rui

    Plasma electrolytic oxidation (PEO) treatments have been used in the aerospace and automotive industries because the coating formed on light metals or alloys has great hardness, high wear, corrosion, and oxidation resistance, and a low friction coefficient that improves lifetime length and provide a higher surface quality. However, the PEO treatments that are presently used for industrial applications require a long period of time to confirm the quality of the coating. For this reason, the present study seeks to increase the current density of PEO treatments to improve their efficiency and explore the performance of the obtained coatings. It was found that for high current density (0.18A/cm2) PEO treatments, smaller ratio, such as 50% and 70%, is beneficial to obtaining a better performance coating. When compared with the coating of a "normal" (current density: 0.09A/cm2) PEO treatment, it had better wear resistance; however, for corrosion resistance, it had a lower performance than the coatings obtained by the "normal" current density PEO treatment which was attributed to the negative influence of porosity increase.

  16. Performance of homeostasis model assessment and serum high-sensitivity C-reactive protein for prediction of isolated post-load hyperglycaemia.

    PubMed

    Lai, Y-C; Li, H-Y; Hung, C-S; Lin, M-S; Shih, S-R; Ma, W-Y; Hua, C-H; Chuang, L-M; Sung, F-C; Wei, J-N

    2013-03-01

    To evaluate whether homeostasis model assessment and high-sensitivity C-reactive protein improve the prediction of isolated post-load hyperglycaemia. The subjects were 1458 adults without self-reported diabetes recruited between 2006 and 2010. Isolated post-load hyperglycaemia was defined as fasting plasma glucose < 7 mmol/l and 2-h post-load plasma glucose ≥ 11.1 mmol/l. Risk scores of isolated post-load hyperglycaemia were constructed by multivariate logistic regression. An independent group (n = 154) was enrolled from 2010 to 2011 to validate the models' performance. One hundred and twenty-three subjects (8.28%) were newly diagnosed as having diabetes mellitus. Among those with undiagnosed diabetes, 64 subjects (52%) had isolated post-load hyperglycaemia. Subjects with isolated post-load hyperglycaemia were older, more centrally obese and had higher blood pressure, HbA(1c), fasting plasma glucose, triglycerides, LDL cholesterol, high-sensitivity C-reactive protein and homeostasis model assessment of insulin resistance and lower homeostasis model assessment of β-cell function than those without diabetes. The risk scores included age, gender, BMI, homeostasis model assessment, high-sensitivity C-reactive protein and HbA(1c). The full model had high sensitivity (84%) and specificity (87%) and area under the receiver operating characteristic curve (0.91), with a cut-off point of 23.81; validation in an independent data set showed 88% sensitivity, 77% specificity and an area under curve of 0.89. Over half of those with undiagnosed diabetes had isolated post-load hyperglycaemia. Homeostasis model assessment and high-sensitivity C-reactive protein are useful to identify subjects with isolated post-load hyperglycaemia, with improved performance over fasting plasma glucose or HbA(1c) alone. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  17. THOR Field and Wave Processor - FWP

    NASA Astrophysics Data System (ADS)

    Soucek, Jan; Rothkaehl, Hanna; Balikhin, Michael; Zaslavsky, Arnaud; Nakamura, Rumi; Khotyaintsev, Yuri; Uhlir, Ludek; Lan, Radek; Yearby, Keith; Morawski, Marek; Winkler, Marek

    2016-04-01

    If selected, Turbulence Heating ObserveR (THOR) will become the first mission ever flown in space dedicated to plasma turbulence. The Fields and Waves Processor (FWP) is an integrated electronics unit for all electromagnetic field measurements performed by THOR. FWP will interface with all fields sensors: electric field antennas of the EFI instrument, the MAG fluxgate magnetometer and search-coil magnetometer (SCM) and perform data digitization and on-board processing. FWP box will house multiple data acquisition sub-units and signal analyzers all sharing a common power supply and data processing unit and thus a single data and power interface to the spacecraft. Integrating all the electromagnetic field measurements in a single unit will improve the consistency of field measurement and accuracy of time synchronization. The feasibility of making highly sensitive electric and magnetic field measurements in space has been demonstrated by Cluster (among other spacecraft) and THOR instrumentation complemented by a thorough electromagnetic cleanliness program will further improve on this heritage. Taking advantage of the capabilities of modern electronics, FWP will provide simultaneous synchronized waveform and spectral data products at high time resolution from the numerous THOR sensors, taking advantage of the large telemetry bandwidth of THOR. FWP will also implement a plasma a resonance sounder and a digital plasma quasi-thermal noise analyzer designed to provide high cadence measurements of plasma density and temperature complementary to data from particle instruments. FWP will be interfaced with the particle instrument data processing unit (PPU) via a dedicated digital link which will enable performing on board correlation between waves and particles, quantifying the transfer of energy between waves and particles. The FWP instrument shall be designed and built by an international consortium of scientific institutes from Czech Republic, Poland, France, UK, Sweden and Austria.

  18. Effects of dietary organic chromium and vitamin C supplementation on performance, immune responses, blood metabolites, and stress status of laying hens subjected to high stocking density.

    PubMed

    Mirfendereski, E; Jahanian, R

    2015-02-01

    The present study was carried out to investigate the effects of dietary supplementation of chromium-methionine (CrMet) and vitamin C (VC) on performance, immune response, and stress status of laying hens subjected to high stocking density. A total of 360 Hy-Line W-36 leghorn hens (at 26 wk old) were used in a 2×3×2 factorial arrangement that had 2 cage densities (5 and 7 hens per cage), 3 Cr levels (0, 500, and 1,000 ppb as CrMet), and 2 dietary VC levels (0 and 500 ppm as L-ascorbic acid). The trial lasted for 12 wk. The first 2 wk were for adaptation (26 to 28 wk of age), and the remaining 10 wk served as the main recording period. In addition to performance, immune response to Newcastle disease virus (NDV) was assessed at d 7 and 14 postvaccination. Also, the birds' stress status was evaluated by analyzing appropriate plasma metabolites. The results showed that hens in cages with higher stocking density had lower hen-day egg production, egg mass, and feed intake compared with those in normal density cages (P<0.05). Dietary CrMet supplementation caused significant increases in egg production and egg mass (P<0.01). There were significant Cr × VC interactions related to egg production and feed conversion efficiency (P<0.01); dietary CrMet supplementation was more effective in improving egg production and feed conversion ratio in VC-unsupplemented diets. Although plasma concentrations of triglycerides and high-density lipoproteins were not influenced by dietary treatments, supplemental CrMet decreased plasma cholesterol levels (P<0.05). Plasma insulin and glucose levels of hens kept at a density of 7 hens/cage were significantly higher than those of hens in normal cage density (P<0.01), and dietary CrMet supplementation decreased plasma concentrations of insulin (P<0.001) and glucose (P<0.01), with higher impacts in high stocking density-challenged hens. While high stocking density caused a marked increase in plasma corticosterone (P<0.01), both supplemental CrMet and VC decreased it to near normal levels. There were significant stocking density×Cr interactions related to plasma insulin and corticosterone concentrations (P<0.01); supplemental CrMet was more effective in lowering these hormones in high stocking density-challenged hens. The high stocking density challenge suppressed NDV antibody response (P<0.001), while dietary supplementation of CrMet improved antibody titers against NDV at d 14 post vaccination particularly in hens kept at a density of 7 hens/cage (P<0.01). From the present observations, it can be concluded that CrMet can improve laying performance largely because it alleviates harmful responses to stressful conditions. © 2015 Poultry Science Association Inc.

  19. Investigation of Metabolomic Blood Biomarkers for Detection of Adenocarcinoma Lung Cancer

    PubMed Central

    Fahrmann, Johannes F.; Kim, Kyoungmi; DeFelice, Brian C.; Taylor, Sandra L.; Gandara, David R.; Yoneda, Ken Y.; Cooke, David T.; Fiehn, Oliver; Kelly, Karen; Miyamoto, Suzanne

    2015-01-01

    Background Untargeted metabolomics was utilized in case control studies of adenocarcinoma (ADC) lung cancer in order to develop and test metabolite classifiers in serum and plasma as potential biomarkers for diagnosing lung cancer. Methods Serum and plasma were collected and used in two independent case-control studies (ADC1 and ADC2). Controls were frequency matched for gender, age and smoking history. There were 52 ADC cases and 31 controls in ADC1 and 43 ADC cases and 43 controls in ADC2. Metabolomics was conducted using gas chromatography time-of-flight mass spectrometry. Differential analysis was performed on ADC1 and the top candidates (FDR < 0.05) for serum and plasma used to develop individual and multiplex-classifiers that were then tested on an independent set of serum and plasma samples (ADC2). Results Aspartate provided the best accuracy (81.4%) for an individual metabolite classifier in serum whereas pyrophosphate had the best accuracy (77.9%) in plasma when independently tested. Multiplex classifiers of either 2 or 4 serum metabolites had an accuracy of 72.7% when independently tested. For plasma, a multi-metabolite classifier consisting of 8 metabolites gave an accuracy of 77.3% when independently tested. Comparison of overall diagnostic performance between the two blood matrices yielded similar performances. However, serum is most ideal given higher sensitivity for low abundant metabolites. Conclusion This study shows the potential of metabolite-based diagnostic tests for detection of lung adenocarcinoma. Further validation in a larger pool of samples is warranted. Impact These biomarkers could improve early detection and diagnosis of lung cancer. PMID:26282632

  20. ONIX results: Comparison of grid geometry (BATMAN - ELISE - flat grid)

    NASA Astrophysics Data System (ADS)

    Revel, Adrien; Mochalskyy, Serhiy; Wünderlich, Dirk; Fantz, Ursel; Minea, Tiberiu

    2017-08-01

    The 3D PIC-MCC code ONIX is dedicated to the modelling of negative hydrogen or deuterium ion extraction and the co-extracted electrons from the plasma in radio-frequency driven sources. The extraction process highly depends on the plasma characteristics close to the plasma grid where it is difficult to obtain experimental data. ONIX brings valuable insights on the plasma behavior in this area. In the code, the numerical treatment of the boundaries have been improved in order to describe with more accuracy the potential and the electric field in this vicinity. The computation time has been reduced by a factor of 2 and the parallelization efficiency has been highly improved. The influence of the magnetic field in BATMAN on the plasma behaviour has been investigated by comparing two different configurations of the magnet bars producing the filter field (internal magnets: x = 3 cm; external magnets: x = 9 cm). A flat grid geometry for the PG instead of the usual conical grid geometry has been studied to evaluate its impact on the extracted current, especially for the negative ions emitted from the surface of the PG. Finally, the ONIX code has been used for the first 3D PIC calculations ever performed for the ELISE experiment.

  1. From Lawson to Burning Plasmas: a Multi-Fluid Approach

    NASA Astrophysics Data System (ADS)

    Guazzotto, Luca; Betti, Riccardo

    2017-10-01

    The Lawson criterion, easily compared to experimental parameters, gives the value for the triple product of plasma density, temperature and energy confinement time needed for the plasma to ignite. Lawson's inaccurate assumptions of 0D geometry and single-fluid plasma model were improved in recent work, where 1D geometry and multi-fluid (ions, electrons and alphas) physics were included in the model, accounting for physical equilibration times and different energy confinement times between species. A much more meaningful analysis than Lawson's for current and future experiment would be expressed in terms of burning plasma state (Q=5, where Q is the ratio between fusion power and heating power). Minimum parameters for reaching Q=5 are calculated based on experimental profiles for density and temperatures and can immediately be compared with experimental performance by defining a no-alpha pressure. This is done in terms of the pressure that the plasma needs to reach for breakeven once the alpha heating has been subtracted from the energy balance. These calculations can be applied to current experiments and future burning-plasma devices. DE-FG02-93ER54215.

  2. Improved enzymatic hydrolysis of lignocellulosic biomass through pretreatment with plasma electrolysis.

    PubMed

    Gao, Jing; Chen, Li; Zhang, Jian; Yan, Zongcheng

    2014-11-01

    A comprehensive research on plasma electrolysis as pretreatment method for water hyacinth (WH) was performed based on lignin content, crystalline structure, surface property, and enzymatic hydrolysis. A large number of active particles, such as HO and H2O2, generated by plasma electrolysis could decompose the lignin of the biomass samples and reduce the crystalline index. An efficient pretreatment process made use of WH pretreated at a load of 48 wt% (0.15-0.18 mm) in FeCl3 solution for 30 min at 450 V. After the pretreatment, the sugar yield of WH was increased by 126.5% as compared with unpretreated samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Overview of NASA's Pulsed Plasma Thruster Development Program

    NASA Technical Reports Server (NTRS)

    Pencil, Eric J.; Kamhawi, Hani; Arrington, Lynn A.

    2004-01-01

    NASA's Pulsed Plasma Thruster Program consists of flight demonstration experiments, base research, and development efforts being conducted through a combination of in-house work, contracts, and collaborative programs. The program receives sponsorship from Energetics Project, the New Millennium Program, and the Small Business Innovative Research Program. The Energetics Project sponsors basic and fundamental research to increase thruster life, improve thruster performance, and reduce system mass. The New Millennium Program sponsors the in-orbit operation of the Pulsed Plasma Thruster experiment on the Earth Observing 1 spacecraft. The Small Business Innovative Research Program sponsors the development of innovative diamond-film capacitors, piezoelectric ignitors, and advanced fuels. Programmatic background, recent technical accomplishments, and future activities for each programmatic element are provided.

  4. Numerical Modeling and Testing of an Inductively-Driven and High-Energy Pulsed Plasma Thrusters

    NASA Technical Reports Server (NTRS)

    Parma, Brian

    2004-01-01

    Pulsed Plasma Thrusters (PPTs) are advanced electric space propulsion devices that are characterized by simplicity and robustness. They suffer, however, from low thrust efficiencies. This summer, two approaches to improve the thrust efficiency of PPTs will be investigated through both numerical modeling and experimental testing. The first approach, an inductively-driven PPT, uses a double-ignition circuit to fire two PPTs in succession. This effectively changes the PPTs configuration from an LRC circuit to an LR circuit. The LR circuit is expected to provide better impedance matching and improving the efficiency of the energy transfer to the plasma. An added benefit of the LR circuit is an exponential decay of the current, whereas a traditional PPT s under damped LRC circuit experiences the characteristic "ringing" of its current. The exponential decay may provide improved lifetime and sustained electromagnetic acceleration. The second approach, a high-energy PPT, is a traditional PPT with a variable size capacitor bank. This PPT will be simulated and tested at energy levels between 100 and 450 joules in order to investigate the relationship between efficiency and energy level. Arbitrary Coordinate Hydromagnetic (MACH2) code is used. The MACH2 code, designed by the Center for Plasma Theory and Computation at the Air Force Research Laboratory, has been used to gain insight into a variety of plasma problems, including electric plasma thrusters. The goals for this summer include numerical predictions of performance for both the inductively-driven PPT and high-energy PFT, experimental validation of the numerical models, and numerical optimization of the designs. These goals will be met through numerical and experimental investigation of the PPTs current waveforms, mass loss (or ablation), and impulse bit characteristics.

  5. Colloidal lithography nanostructured Pd/PdO x core-shell sensor for ppb level H2S detection.

    PubMed

    Benedict, Samatha; Lumdee, Chatdanai; Dmitriev, Alexandre; Anand, Srinivasan; Bhat, Navakanta

    2018-06-22

    In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core-shell sensor for ppb level H 2 S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H 2 S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H 2 S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H 2 S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy.

  6. Colloidal lithography nanostructured Pd/PdO x core–shell sensor for ppb level H2S detection

    NASA Astrophysics Data System (ADS)

    Benedict, Samatha; Lumdee, Chatdanai; Dmitriev, Alexandre; Anand, Srinivasan; Bhat, Navakanta

    2018-06-01

    In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core–shell sensor for ppb level H2S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H2S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H2S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H2S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV–vis spectroscopy and x-ray photoemission spectroscopy.

  7. Improvement of Blood-Brain Barrier Integrity in Traumatic Brain Injury and Hemorrhagic Shock Following Treatment With Valproic Acid and Fresh Frozen Plasma.

    PubMed

    Nikolian, Vahagn C; Dekker, Simone E; Bambakidis, Ted; Higgins, Gerald A; Dennahy, Isabel S; Georgoff, Patrick E; Williams, Aaron M; Andjelkovic, Anuska V; Alam, Hasan B

    2018-01-01

    Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Resuscitation with fresh frozen plasma results in improved expression of proteins essential for blood-brain barrier integrity. The addition of valproic acid provides significant improvement to these protein expression profiles. This is likely secondary to activation of key pathways related to endothelial functions.

  8. Study of disulfide reduction and alkyl chloroformate derivatization of plasma sulfur amino acids using gas chromatography-mass spectrometry.

    PubMed

    Svagera, Zdeněk; Hanzlíková, Dagmar; Simek, Petr; Hušek, Petr

    2012-03-01

    Four disulfide-reducing agents, dithiothreitol (DTT), 2,3-dimercaptopropanesulfonate (DMPS), and the newly tested 2-mercaptoethanesulfonate (MESNA) and Tris(hydroxypropyl)phosphine (THP), were investigated in detail for release of sulfur amino acids in human plasma. After protein precipitation with trichloroacetic acid (TCA), the plasma supernatant was treated with methyl, ethyl, or propyl chloroformate via the well-proven derivatization-extraction technique and the products were subjected to gas chromatographic-mass spectrometric (GC-MS) analysis. All the tested agents proved to be rapid and effective reducing agents for the assay of plasma thiols. When compared with DTT, the novel reducing agents DMPS, MESNA, and THP provided much cleaner extracts and improved analytical performance. Quantification of homocysteine, cysteine, and methionine was performed using their deuterated analogues, whereas other analytes were quantified by means of 4-chlorophenylalanine. Precise and reliable assay of all examined analytes was achieved, irrespective of the chloroformate reagent used. Average relative standard deviations at each analyte level were ≤6%, quantification limits were 0.1-0.2 μmol L(-1), recoveries were 94-121%, and linearity was over three orders of magnitude (r(2) equal to 0.997-0.998). Validation performed with the THP agent and propyl chloroformate derivatization demonstrated the robustness and reliability of this simple sample-preparation methodology.

  9. Investigation of tin-lithium eutectic as a liquid plasma facing material

    NASA Astrophysics Data System (ADS)

    Ruzic, David; Szott, Matthew; Christenson, Michael; Shchelkanov, Ivan; Kalathiparambil, Kishor Kumar

    2016-10-01

    Innovative materials and techniques need to be utilized to address the high heat and particle flux incident on plasma facing components in fusion reactors. A liquid metal diverter module developed at UIUC with self circulating lithium has been successfully demonstrated to be capable of handling the relevant heat flux in plasma gun based tests and on operational tokamaks. The proper geometry of the liquid lithium trenches to minimize droplet ejection during transient plasma events have also been identified. Although lithium has proven to be effective in improved plasma performance and contributes to other advantageous factors like reduction in the fuel recycling, impurity gettering and, owing to the low Z, a significantly reduced impact on plasma as compared to the solid wall materials, it still poses several drawbacks related to its high reactivity and high vapor pressure at the relevant tokamak wall temperatures. The evaporation properties of a new eutectic mixture of tin and lithium (20% Sn) shows that lithium segregates to the surface at melting temperatures and hence is an effective replacement for pure lithium. Also, the vapor from the eutectic is dominated by lithium, minimizing the entry of high Z Sn into the plasma. At UIUC experiments for the synthesis and characterization of the eutectic - measurement of the critical wetting parameters and Seebeck coefficients with respect to the trench materials have been performed to ensure lithium wetting and flow in the trenches. The results will be presented. DOE project DEFG02- 99ER54515.

  10. Effect of a 2-h hyperglycemic-hyperinsulinemic glucose clamp to promote glucose storage on endurance exercise performance.

    PubMed

    Maclaren, D P M; Mohebbi, H; Nirmalan, M; Keegan, M A; Best, C T; Perera, D; Harvie, M N; Campbell, I T

    2011-09-01

    Carbohydrate stores within muscle are considered essential as a fuel for prolonged endurance exercise, and regimes for enhancing such stores have proved successful in aiding performance. This study explored the effects of a hyperglycaemic-hyperinsulinemic clamp performed 18 h previously on subsequent prolonged endurance performance in cycling. Seven male subjects, accustomed to prolonged endurance cycling, performed 90 min of cycling at ~65% VO(2max) followed by a 16-km time trial 18 h after a 2-h hyperglycemic-hyperinsulinemic clamp (HCC). Hyperglycemia (10 mM) with insulin infused at 300 mU/m(2)/min over a 2-h period resulted in a total glucose uptake of 275 g (assessed by the area under the curve) of which glucose storage accounted for about 73% (i.e. 198 g). Patterns of substrate oxidation during 90-min exercise at 65% VO(2max) were not altered by HCC. Blood glucose and plasma insulin concentrations were higher during exercise after HCC compared with control (p < 0.05) while plasma NEFA was similar. Exercise performance was improved by 49 s and power output was 10-11% higher during the time trial (p < 0.05) after HCC. These data suggest that carbohydrate loading 18 h previously by means of a 2-h HCC improves cycling performance by 3.3% without any change in pattern of substrate oxidation.

  11. Characteristics of a 30-cm thruster operated with small hole accelerator grid ion optics

    NASA Technical Reports Server (NTRS)

    Vahrenkamp, R. P.

    1976-01-01

    Small hole accelerator grid ion optical systems have been tested as a possible means of improving 30-cm ion thruster performance. The effects of small hole grids on the critical aspects of thruster operation including discharge chamber performance, doubly-charged ion concentration, effluent beam characteristics, and plasma properties have been evaluated. In general, small hole accelerator grids are beneficial in improving thruster performance while maintaining low double ion ratios. However, extremely small accelerator aperture diameters tend to degrade beam divergence characteristics. A quantitative discussion of these advantages and disadvantages of small hole accelerator grids, as well as resulting variations in thruster operation characteristics, is presented.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiangyi; Lu, Jun; Sohm, Evan

    The present study aims to explore a new method to improve the catalytic activity of non-precious metals, especially in electrochemical reactions. In this study, highly ionized Fe plasma produced by arc discharge uniformly deposit on porous carbon substrate and form atomic clusters by the Pulsed Arc Plasma Deposition technique. The as-prepared FeOx/C material was tested as a cathode material in rechargeable Li-O2 battery under different current rates. The results show a significantly improvement of the battery performance in both cycle life and reaction rate. Furthermore, XRD and SEM results show that the as-prepared cathode material has the ability to stabilizemore » cathode and reduce side reactions, and current rate is a critical factor of the nucleation of the discharge products.« less

  13. GC-MS and LC-MS analysis of nerve agents in body fluids: intra-laboratory verification test using spiked plasma and urine samples.

    PubMed

    Koller, Marianne; Becker, Christian; Thiermann, Horst; Worek, Franz

    2010-05-15

    The purpose of this study was to check the applicability of different analytical methods for the identification of unknown nerve agents in human body fluids. Plasma and urine samples were spiked with nerve agents (plasma) or with their metabolites (urine) or were left blank. Seven random samples (35% of all samples) were selected for the verification test. Plasma was worked up for unchanged nerve agents and for regenerated nerve agents after fluoride-induced reactivation of nerve agent-inhibited butyrylcholinesterase. Both extracts were analysed by GC-MS. Metabolites were extracted from plasma and urine, respectively, and were analysed by LC-MS. The urinary metabolites and two blank samples could be identified without further measurements, plasma metabolites and blanks were identified in six of seven samples. The analysis of unchanged nerve agent provided five agents/blanks and the sixth agent after further investigation. The determination of the regenerated agents also provided only five clear findings during the first screening because of a rather noisy baseline. Therefore, the sample preparation was extended by a size exclusion step performed before addition of fluoride which visibly reduced baseline noise and thus improved identification of the two missing agents. The test clearly showed that verification should be performed by analysing more than one biomarker to ensure identification of the agent(s). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion.

    PubMed

    Ramakers, Marleen; Trenchev, Georgi; Heijkers, Stijn; Wang, Weizong; Bogaerts, Annemie

    2017-06-22

    Low-temperature plasmas are gaining a lot of interest for environmental and energy applications. A large research field in these applications is the conversion of CO 2 into chemicals and fuels. Since CO 2 is a very stable molecule, a key performance indicator for the research on plasma-based CO 2 conversion is the energy efficiency. Until now, the energy efficiency in atmospheric plasma reactors is quite low, and therefore we employ here a novel type of plasma reactor, the gliding arc plasmatron (GAP). This paper provides a detailed experimental and computational study of the CO 2 conversion, as well as the energy cost and efficiency in a GAP. A comparison with thermal conversion, other plasma types and other novel CO 2 conversion technologies is made to find out whether this novel plasma reactor can provide a significant contribution to the much-needed efficient conversion of CO 2 . From these comparisons it becomes evident that our results are less than a factor of two away from being cost competitive and already outperform several other new technologies. Furthermore, we indicate how the performance of the GAP can still be improved by further exploiting its non-equilibrium character. Hence, it is clear that the GAP is very promising for CO 2 conversion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Preparation of MgO/B₂O₃ coatings by plasma spraying on SUS304 surface and effects of heat-resistant.

    PubMed

    Song, Bo; Zhou, Ningning; Ju, Dongying

    2013-12-01

    This study mainly deals with the preparation of MgO/B2O3 coatings by plasma spraying on the SUS304 surface and the effects of heat-resistant. The power materials of low thermal conductivity were selected to control the heat divergent performance of high temperature parts. The reticular micro-structure between the cover thermal layer and the substrate was prepared by using the plasma spraying method. The powder mixture of MgO and B2O3 were selected as spraying materials and the SUS304 was used as the substrate material. The MgO/B2O3 coating was prepared on the surface of the SUS304 to provide better cover thermal performance. The properties of the microstructures and the morphologies were studied by Optical Microscope, Scanning Electron Microscope, Electron Probe Microanalyzer, and X-ray Diffraction. The results showed that the cover thermal performance has been improved. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. Omega-3 supplementation during the first 5 years of life and later academic performance: a randomised controlled trial.

    PubMed

    Brew, B K; Toelle, B G; Webb, K L; Almqvist, C; Marks, G B

    2015-04-01

    Consumption of oily fish more than once per week has been shown to improve cognitive outcomes in children. However, it is unknown whether similar benefits can be achieved by long-term omega-3 fatty acid supplementation. The objective was to investigate the effect of omega-3 fatty acid supplementation during the first 5 years of life on subsequent academic performance in children by conducting a secondary analysis of the CAPS (Childhood Asthma Prevention Study). A total of 616 infants with a family history of asthma were randomised to receive tuna fish oil (high in long-chain omega-3 fatty acids, active) or Sunola oil (low in omega-3 fatty acids, control) from the time breastfeeding ceased or at the age of 6 months until the age of 5 years. Academic performance was measured by a nationally standardised assessment of literacy and numeracy (National Assessment Program Literacy and Numeracy (NAPLAN)) in school years 3, 5, 7 and 9. Plasma omega-3 fatty acid levels were measured at regular intervals until 8 years of age. Between-group differences in test scores, adjusted for maternal age, birth weight and maternal education, were estimated using mixed-model regression. Among 239 children, there were no significant differences in NAPLAN scores between active and control groups. However, at 8 years, the proportion of omega-3 fatty acid in plasma was positively associated with the NAPLAN score (0.13 s.d. unit increase in score per 1% absolute increase in plasma omega-3 fatty acid (95% CI 0.03, 0.23)). Our findings do not support the practice of supplementing omega-3 fatty acids in the diet of young children to improve academic outcomes. Further exploration is needed to understand the association between plasma omega-3 fatty acid levels at 8 years and academic performance.

  17. Surface modification of polyester synthetic leather with tetramethylsilane by atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Kan, C. W.; Kwong, C. H.; Ng, S. P.

    2015-08-01

    Much works have been done on synthetic materials but scarcely on synthetic leather owing to its surface structures in terms of porosity and roughness. This paper examines the use of atmospheric pressure plasma (APP) treatment for improving the surface performance of polyester synthetic leather by use of a precursor, tetramethylsilane (TMS). Plasma deposition is regarded as an effective, simple and single-step method with low pollution. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) confirm the deposition of organosilanes on the sample's surface. The results showed that under a particular combination of treatment parameters, a hydrophobic surface was achieved on the APP treated sample with sessile drop static contact angle of 138°. The hydrophobic surface is stable without hydrophilic recovery 30 days after plasma treatment.

  18. Particle and heat flux estimates in Proto-MPEX in Helicon Mode with IR imaging

    NASA Astrophysics Data System (ADS)

    Showers, M. A.; Biewer, T. M.; Caughman, J. B. O.; Donovan, D. C.; Goulding, R. H.; Rapp, J.

    2016-10-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a linear plasma device developing the plasma source concept for the Material Plasma Exposure eXperiment (MPEX), which will address plasma material interaction (PMI) science for future fusion reactors. To better understand how and where energy is being lost from the Proto-MPEX plasma during ``helicon mode'' operations, particle and heat fluxes are quantified at multiple locations along the machine length. Relevant diagnostics include infrared (IR) cameras, four double Langmuir probes (LPs), and in-vessel thermocouples (TCs). The IR cameras provide temperature measurements of Proto-MPEX's plasma-facing dump and target plates, located on either end of the machine. The change in surface temperature is measured over the duration of the plasma shot to determine the heat flux hitting the plates. The IR cameras additionally provide 2-D thermal load distribution images of these plates, highlighting Proto-MPEX plasma behaviors, such as hot spots. The LPs and TCs provide additional plasma measurements required to determine particle and heat fluxes. Quantifying axial variations in fluxes will help identify machine operating parameters that will improve Proto-MPEX's performance, increasing its PMI research capabilities. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.

  19. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab

    2012-02-15

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profilemore » of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.« less

  20. Beam current enhancement of microwave plasma ion source utilizing double-port rectangular cavity resonator.

    PubMed

    Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab; Yang, J J; Hwang, Y S

    2012-02-01

    Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.

  1. Fundamental and Applied Investigations in Atomic Spectrometric Analysis

    NASA Astrophysics Data System (ADS)

    Wu, Min

    Simultaneous laser-excited fluorescence and absorption measurements were performed and the results have revealed that any interference caused by easily ionized elements does not originate from variations in analyte emission (quantum) efficiency. A closely related area, the roles of wet and dry aerosols in the matrix interference are clarified through spatially resolved imaging of the plasma by a charged coupled device camera. To eliminate matrix interference effects practically, various methods have been developed based on the above studies. The use of column pre-concentration with flow injection analysis has been found to provide a simple solution for reducing interference effects and increasing sensitivity of elemental analysis. A novel mini-spray chamber was invented. The new vertical rotary spray chamber combines gravitational, centrifugal, turbulent, and impact droplet segregation mechanisms to achieve a higher efficiency of small-droplet formation in a nebulized sample spray. As a result, it offers also higher sample-transport efficiency, lower memory effects, and improved analytical figures of merit over existing devices. This new device was employed with flow injection analysis to simulate an interface for coupling high performance liquid chromatography (HPLC) to a microwave plasma for chromatographic detection. The detection limits for common metallic elements are in the range of 5-50 mug/mL, and are degraded only twofold when the elements are presented in an organic solvent such as ethanol or methanol. Other sample-introduction schemes have also been investigated to improve sample-introduction technology. The direct coupling of hydride-generation techniques to the helium microwave plasma torch was evaluated for the determination of arsenic, antimony and tin by atomic emission spectrometry. A manually controlled peristaltic pump was modified for computer control and continuous flow injection was evaluated for standard calibration and trace elemental analysis. The present work evaluates the coupling of a novel microwave plasma torch with a quadruple mass spectrometer for the detection of ionic species from different nonmetals. Initial work performed with such a combination is demonstrated to be not only practicable but also promising. Detection limits for the halogens (F, Cl, Br, I) and S are in the range between 10 ng/mL and 1mug/mL. Further improvements have been realized through the use of chemical -vapor generation and by optimization of the plasma and the mass spectrometer. (Abstract shortened by UMI.).

  2. Alpha-channeling simulation experiment in the DIII-D tokamak.

    PubMed

    Wong, K L; Budny, R; Nazikian, R; Petty, C C; Greenfield, C M; Heidbrink, W W; Ruskov, E

    2004-08-20

    Alfvén instabilities can reduce the central magnetic shear via redistribution of energetic ions. They can sustain a steady state internal transport barrier as demonstrated in this DIII-D tokamak experiment. Improvement in burning plasma performance based on this mechanism is discussed.

  3. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen

    2015-05-22

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of themore » polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.« less

  4. Interaction of femtosecond laser pulses with plants: towards distinguishing weeds and crops using plasma temperature

    NASA Astrophysics Data System (ADS)

    Kunz, Jeremy N.; Voronine, Dmitri V.; Ko, Brian A.; Lee, Ho Wai Howard; Rana, Aman; Bagavathiannan, Muthukumar V.; Sokolov, Alexei V.; Scully, Marlan O.

    2017-05-01

    The ability to distinguish between crops and weeds using sensors from a distance will greatly benefit the farming community through improved and efficient scouting for weeds, reduced herbicide input costs and improved profitability. In the present study, we examined the utility of femtosecond laser-induced breakdown spectroscopy (LIBS) for plant species differentiation. Greenhouse-grown plants of dallisgrass, wheat, soybean and bell pepper were evaluated using LIBS under an ambient environment. LIBS experiments were performed on the leaf samples of different plant species using a femtosecond laser system with an inexpensive lightweight detector. Temperatures of laser-induced plasma in plants depend on many parameters and were determined for each of the study species by the constituent elements interacting with femtosecond laser pulses. Using elemental calcium transitions in plant tissue samples to measure plasma temperatures, we report consistent differences among the four study species, with average values ranging from 5090 ± 168 K (soybean) to 5647 ± 223 K (dallisgrass).

  5. The effect of electrohydrodynamic force on the lift coefficient of a NACA 0015 airfoil

    NASA Astrophysics Data System (ADS)

    Yusof, Y.; Hossain, A.; Abdullah, A. H.; Nasir, Rizal M. E.; Hamid, A.; Muthmainnah, N.; N, M.

    2017-11-01

    Lift, the force component that is perpendicular to the line of flight, is generated when a small aircraft moves through the air. With the help of the sets of flaps and slats on its wing, the pilot controls his aircraft manoeuvring in the air. In this study, we preferred to cut the drawbacks of the flaps system by introducing the electrohydrodynamic actuator. Widely known as plasma actuator, it is able to improve the induced lift force as well as the efficiency of a small aircraft system. A dielectric-barrier-discharge actuator using a 6 kV AC power supply was developed and tested on a NACA 0015 airfoil using copper as the electrodes and kapton as its dielectric component. The experimental results showed that it was successful in presenting a positive effect of the plasma actuator on the lift coefficient of the airfoil at smaller angle of attack, where enhancements ranged between 0.7% and 1.8%. However, at a higher angle, the results were not as swayed as it was desired since the energy exerted by the plasma actuator on the lift performance of the airfoil was inadequate. Further tests are needed using higher rated voltage supply and other equipment to improve the capability of the actuator in refining the aerodynamic performance of the airfoil.

  6. High-beta steady-state research with integrated modeling in the JT-60 Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozeki, T.

    2007-05-15

    Improvement of high-beta performance and its long sustainment was obtained with ferritic steel tiles in the JT-60 Upgrade (JT-60U) [T. Fujita et al., Phys. Plasmas 50, 104 (2005)], which were installed inside the vacuum vessel to reduce fast ion loss by decreasing the toroidal field ripple. When a separation between the plasma surface and the wall was small, high-beta plasmas reached the ideal wall stability limit, i.e., the ideal magnetohydrodynamics stability limit with the wall stabilization. A small rotation velocity of 0.3% of the Alfven velocity was found to be effective for suppressing the resistive wall mode. Sustainment of themore » high normalized beta value of {beta}{sub N}=2.3 has been extended to 28.6 s ({approx}15 times the current diffusion time) by improvement of the confinement and increase in the net heating power. Based on the research in JT-60U experiments and first-principle simulations, integrated models of core, edge-pedestal, and scrape-off-layer (SOL) divertors were developed, and they clarified complex features of reactor-relevant plasmas. The integrated core plasma model indicated that the small amount of electron cyclotron (EC) current density of about half the bootstrap current density could effectively stabilize the neoclassical tearing mode by the localized EC current accurately aligned to the magnetic island center. The integrated edge-pedestal model clarified that the collisionality dependence of energy loss due to the edge-localized mode was caused by the change in the width of the unstable mode and the SOL transport. The integrated SOL-divertor model clarified the effect of the exhaust slot on the pumping efficiency and the cause of enhanced radiation near the X-point multifaceted asymmetric radiation from edge. Success in these consistent analyses using the integrated code indicates that it is an effective means to investigate complex plasmas and to control the integrated performance.« less

  7. Development of helium electron cyclotron wall conditioning on TCV

    NASA Astrophysics Data System (ADS)

    Douai, D.; Goodman, T.; Isayama, A.; Fukumoto, M.; Wauters, T.; Sozzi, C.; Coda, S.; Blanchard, P.; Figini, L.; Garavaglia, S.; Miyata, Y.; Moro, A.; Ricci, D.; Silva, M.; Theiler, C.; Vartanian, S.; Verhaegh, K.; the EUROfusion MST1 Team; the TCV Team

    2018-02-01

    JT-60SA envisions electron cyclotron wall conditioning (ECWC), as wall conditioning method in the presence of the toroidal field to control fuel and impurity recycling and to improve plasma performance and reproducibility. This paper reports on Helium ECWC experiments on TCV in support of JT-60SA operation. Nearly sixty Helium conditioning discharges have been successfully produced in TCV, at a toroidal field B T  =  1.3 or 1.54 T, with gyrotrons at 82.7 GHz in X2 mode, mimicking ECWC operation in JT-60SA at the second harmonic of the EC wave. Discharge parameters were tuned in order to (i) minimize the time for the onset of ECWC plasmas, thus minimizing absorption of stray radiation by in-vessel components, (ii) improve discharge homogeneity by extending the discharge vertically and radially, and wall coverage, in particular of inboard surfaces where JT-60SA plasmas will be initiated, (iii) assess the efficiency of He-ECWC to deplete carbon walls from fuel. An optimized combination of vertical and radial magnetic fields, with amplitudes typically 0.1 to 0.6% of that of B T, has been determined, which resulted in lowest breakdown time, improved wall coverage and enhanced fuel removal. A standard ohmic D 2-plasma could be then sustained, whereas it would not have been possible without He-ECWC.

  8. Waon Therapy for Managing Chronic Heart Failure - Results From a Multicenter Prospective Randomized WAON-CHF Study.

    PubMed

    Tei, Chuwa; Imamura, Teruhiko; Kinugawa, Koichiro; Inoue, Teruo; Masuyama, Tohru; Inoue, Hiroshi; Noike, Hirofumi; Muramatsu, Toshihiro; Takeishi, Yasuchika; Saku, Keijiro; Harada, Kazumasa; Daida, Hiroyuki; Kobayashi, Youichi; Hagiwara, Nobuhisa; Nagayama, Masatoshi; Momomura, Shinichi; Yonezawa, Kazuya; Ito, Hiroshi; Gojo, Satoshi; Akaishi, Makoto; Miyata, Masaaki; Ohishi, Mitsuru

    2016-01-01

    Waon therapy improves heart failure (HF) symptoms, but further evidence in patients with advanced HF remains uncertain. In 19 institutes, we prospectively enrolled hospitalized patients with advanced HF, who had plasma levels of B-type natriuretic peptide (BNP) >500 pg/ml on admission and BNP >300 pg/ml regardless of more than 1 week of medical therapy. Enrolled patients were randomized into Waon therapy or control groups. Waon therapy was performed once daily for 10 days with a far infrared-ray dry sauna maintained at 60℃ for 15 min, followed by bed rest for 30 min covered with a blanket. The primary endpoint was the ratio of BNP before and after treatment. In total, 76 Waon therapy and 73 control patients (mean age 66 years, men 61%, mean plasma BNP 777 pg/ml) were studied. The groups differed only in body mass index and the frequency of diabetes. The plasma BNP, NYHA classification, 6-min walk distance (6MWD), and cardiothoracic ratio significantly improved only in the Waon therapy group. Improvements in NYHA classification, 6MWD, and cardiothoracic ratio were significant in the Waon therapy group, although the change in plasma BNP did not reach statistical significance. No serious adverse events were observed in either group. Waon therapy, a holistic soothing warmth therapy, showed clinical advantages in safety and efficacy among patients with advanced HF.

  9. Blood Volume: Importance and Adaptations to Exercise Training, Environmental Stresses and Trauma/Sickness

    NASA Technical Reports Server (NTRS)

    Sawka, Michael N.; Convertino, Victor A.; Eichner, E. Randy; Schnieder, Suzanne M.; Young, Andrew J.

    2000-01-01

    This paper reviews the influence of several perturbations (physical exercise, heat stress, terrestrial altitude, microgravity, and trauma/sickness) on adaptations of blood volume (BV), erythrocyte volume (EV), and plasma volume (PV). Exercise training can induced BV expansion; PV expansion usually occurs immediately, but EV expansion takes weeks. EV and PV expansion contribute to aerobic power improvements associated with exercise training. Repeated heat exposure induces PV expansion but does not alter EV. PV expansion does not improve thermoregulation, but EV expansion improves thermoregulation during exercise in the heat. Dehydration decreases PV (and increases plasma tonicity) which elevates heat strain and reduces exercise performance. High altitude exposure causes rapid (hours) plasma loss. During initial weeks at altitude, EV is unaffected, but a gradual expansion occurs with extended acclimatization. BV adjustments contribute, but are not key, to altitude acclimatization. Microgravity decreases PV and EV which contribute to orthostatic intolerance and decreased exercise capacity in astronauts. PV decreases may result from lower set points for total body water and central venous pressure, which EV decrease bay result form increased erythrocyte destruction. Trauma, renal disease, and chronic diseases cause anemia from hemorrhage and immune activation, which suppressions erythropoiesis. The re-establishment of EV is associated with healing, improved life quality, and exercise capabilities for these injured/sick persons.

  10. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

    2012-07-01

    We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminantsmore » are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.« less

  11. Destruction of chemical warfare surrogates using a portable atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Škoro, Nikola; Puač, Nevena; Živković, Suzana; Krstić-Milošević, Dijana; Cvelbar, Uroš; Malović, Gordana; Petrović, Zoran Lj.

    2018-01-01

    Today's reality is connected with mitigation of threats from the new chemical and biological warfare agents. A novel investigation of cold plasmas in contact with liquids presented in this paper demonstrated that the chemically reactive environment produced by atmospheric pressure plasma jet (APPJ) is potentially capable of rapid destruction of chemical warfare agents in a broad spectrum. The decontamination of three different chemical warfare agent surrogates dissolved in liquid is investigated by using an easily transportable APPJ. The jet is powered by a kHz signal source connected to a low-voltage DC source and with He as working gas. The detailed investigation of electrical properties is performed for various plasmas at different distances from the sample. The measurements of plasma properties in situ are supported by the optical spectrometry measurements, whereas the high performance liquid chromatography measurements before and after the treatment of aqueous solutions of Malathion, Fenitrothion and Dimethyl Methylphosphonate. These solutions are used to evaluate destruction and its efficiency for specific neural agent simulants. The particular removal rates are found to be from 56% up to 96% during 10 min treatment. The data obtained provide basis to evaluate APPJ's efficiency at different operating conditions. The presented results are promising and could be improved with different operating conditions and optimization of the decontamination process.

  12. Soft plasma electrolysis with complex ions for optimizing electrochemical performance

    NASA Astrophysics Data System (ADS)

    Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun

    2017-03-01

    Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model.

  13. Soft plasma electrolysis with complex ions for optimizing electrochemical performance

    PubMed Central

    Kamil, Muhammad Prisla; Kaseem, Mosab; Ko, Young Gun

    2017-01-01

    Plasma electrolytic oxidation (PEO) was a promising surface treatment for light metals to tailor an oxide layer with excellent properties. However, porous coating structure was generally exhibited due to excessive plasma discharges, restraining its performance. The present work utilized ethylenediaminetetraacetic acid (EDTA) and Cu-EDTA complexing agents as electrolyte additives that alter the plasma discharges to improve the electrochemical properties of Al-1.1Mg alloy coated by PEO. To achieve this purpose, PEO coatings were fabricated under an alternating current in silicate electrolytes containing EDTA and Cu-EDTA. EDTA complexes were found to modify the plasma discharging behaviour during PEO that led to a lower porosity than that without additives. This was attributed to a more homogeneous electrical field throughout the PEO process while the coating growth would be maintained by an excess of dissolved Al due to the EDTA complexes. When Cu-EDTA was used, the number of discharge channels in the coating layer was lower than that with EDTA due to the incorporation of Cu2O and CuO altering the dielectric behaviour. Accordingly, the sample in the electrolyte containing Cu-EDTA constituted superior corrosion resistance to that with EDTA. The electrochemical mechanism for excellent corrosion protection was elucidated in the context of equivalent circuit model. PMID:28281672

  14. Wear behavior of AISI 1090 steel modified by pulse plasma technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayday, Aysun; Durman, Mehmet

    2012-09-06

    AISI 1090 steel was pulse plasma treated (PPT) using a Molybdenum electrode. Two different pulse numbers were chosen to obtain modified layers of 20{+-}5 {mu}m thickness. The dry sliding wear studies performed on this steel with and without PPT against an alumina ball counterpart showed that the PPT improved the wear resistance. The pulse number of the PPT modified layer was found to be highly influential in imparting the wear resistance to this steel, due to enhancement of surface hardness depending on treatment time.

  15. Access to a new plasma edge state with high density and pressures using the quiescent H mode

    DOE PAGES

    Solomon, Wayne M.; Snyder, Philip B.; Burrell, Keith H.; ...

    2014-09-24

    A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence. As a result, calculations of themore » pedestal height and width as a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less

  16. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U

    DOE PAGES

    Boyer, M. D.; Battaglia, D. J.; Mueller, D.; ...

    2018-01-25

    Here, the upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgradedmore » to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.« less

  17. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyer, M. D.; Battaglia, D. J.; Mueller, D.

    Here, the upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgradedmore » to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.« less

  18. Small, qualitative changes in fatty acid intake decrease plasma low-density lipoprotein-cholesterol levels in mildly hypercholesterolemic outpatients on their usual high-fat diets.

    PubMed

    Lecerf, Jean-Michel; Luc, Gérald; Marécaux, Nadine; Bal, Sylvie; Bonte, Jean-Paul; Lacroix, Brigitte; Cayzeele, Amélie

    2009-01-01

    The diet is the first step in managing hypercholesterolemia. The objective of the present study is to assess whether moderate changes in dietary fatty acids improve plasma lipid parameters in mildly hypercholesterolemic outpatients. Using a randomized double-blind study, 121 outpatients within two groups received an isocaloric amount of unsaturated margarine or butter. Clinical and anthropometric measurements and a 3-day food record were made. Chi-square and Fisher's tests were used to compare qualitative variables and the general linear procedure was used to compare the groups. Additional analyses were performed after adjustment. There was a significant difference (P <0.03) in low-density lipoprotein-cholesterol levels between the groups. Total cholesterol, low-density lipoprotein-cholesterol, non-high-density lipoprotein-cholesterol and apolipoprotein B values decreased in the unsaturated group in comparison with the saturated group. Low-density lipoprotein-cholesterol changes were correlated with the variation in polyunsaturated fatty acid intake and with plasma phospholipid linoleic acid levels. A small change in saturated by polyunsaturated fatty acid intake may improve plasma lipid parameters in mildly hypercholesterolemic subjects.

  19. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Battaglia, D. J.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D. A.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C. E.; Sabbagh, S. A.; Scotti, F.; Vail, P.

    2018-03-01

    The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U control system (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.

  20. Ferrokinetics in Patients on CAPD: Influence of CAPD on the Anemia of Uremia*

    PubMed Central

    Lee, Hi Bahl; Koh, Seong Won; Park, Hee Sook

    1986-01-01

    Ferrokinetic studies were performed with 59Fe-citrate to evaluate erythropoietic activity in CAPD patients and to investigate the mechanism(s) by which the hematocrit increases in CAPD patients. Plasma iron disappearance rate (PID), plasma iron turnover rate (PIT), red cell iron utilization (RCIU), red cell iron turnover rate (RCIT) and marrow transit time (MTT) were all “normal” in uremic patients not yet on dialysis (Hct 23.8±3.4%), CAPD patients with persistently low hematocrit (Hct 24.9±1.8%) and CAPD patients with improved hematocrit (Hct 32.4±3.1%). Compared to these uremic patients, patients with iron deficiency anemia and normal renal function (Hct 28.0±5.1 %) had significantly faster PID and MTT and significantly higher RCIU and RCIT. Plasma volume was significantly reduced (to normal level) in CAPD patients with improved hematocrits. The results of this study suggest that erythropoietic activity is inadequate for the degree of anemia in CAPD patients as well as uremic patients not on dialysis and further suggest that the hematocrit increases in CAPD as a result of decreased plasma volume. PMID:15759377

  1. Ion behaviour in pulsed plasma regime by means of Time-resolved energy mass spectroscopy (TREMS) applied to an industrial radiofrequency Plasma Immersion Ion Implanter PULSION registered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrere, M.; Kaeppelin, V.; Torregrosa, F.

    2006-11-13

    In order to face the requirements for P+/N junctions requested for < 45 nm ITRS nodes, new doping techniques are studied. Among them Plasma Immersion Ion Implantation (PIII) has been largely studied. IBS has designed and developed its own PIII machine named PULSION registered . This machine is using a pulsed plasma. As other modem technological applications of low pressure plasma, PULSION registered needs a precise control over plasma parameters in order to optimise process characteristics. In order to improve pulsed plasma discharge devoted to PIII, a nitrogen pulsed plasma has been studied in the inductively coupled plasma (ICP) ofmore » PULSION registered and an argon pulsed plasma has been studied in the helicon discharge of the laboratory reactor of LPIIM (PHYSIS). Measurements of the Ion Energy Distribution Function (IEDF) with EQP300 (Hidden) have been performed in both pulsed plasma. This study has been done for different energies which allow to reconstruct the IEDF resolved in time (TREMS). By comparing these results, we found that the beginning of the plasma pulse, named ignition, exhaust at least three phases, or more. All these results allowed us to explain plasma dynamics during the pulse while observing transitions between capacitive and inductive coupling. This study leads in a better understanding of changes in discharge parameters as plasma potential, electron temperature, ion density.« less

  2. Contrast Enhancement of the LOASIS CPA Laser and Effects on Electron Beam Performance of LWFA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, Csaba; Gonsalves, Anthony J.; Panasenko, Dmitriy

    2009-01-22

    A nonlinear optical pulse cleaning technique based on cross-polarized wave (XPW) generation filtering [1] has been implemented to improve laser pulse contrast, and consequently to control pre-ionization in laser-plasma accelerator experiments. Three orders of magnitude improvement in pre-pulse contrast has been achieved, resulting in 4-fold increase in electron charge and improved stability of both the electron beam energy and THz radiation generated as a secondary process in the gas-jet-based LWFA experiments.

  3. N-acetylcysteine neither lowers plasma homocysteine concentrations nor improves brachial artery endothelial function in cardiac transplant recipients.

    PubMed

    Miner, S E S; Cole, D E C; Evrovski, J; Forrest, Q; Hutchison, S J; Holmes, K; Ross, H J

    2002-05-01

    N-acetylcysteine is a novel antioxidant that has been reported to reduce plasma homocysteine concentrations and improve endothelial function. Cardiac transplant recipients have a high incidence of coronary endothelial dysfunction and hyperhomocysteinemia, both of which may lead to the development of transplantation coronary artery disease. It was hypothesized that N-acetylcysteine would reduce plasma homocysteine concentrations and improve brachial endothelial function in cardiac transplant recipients. A cohort of stable cardiac transplant recipients was recruited from the outpatient clinic at the Toronto General Hospital, Toronto, Ontario. Brachial artery endothelial functions were studied according to standard techniques to determine flow-mediated dilation of the brachial artery. Plasma homocysteine concentrations were assayed using high performance liquid chromatography with electrochemical detection and pulsed integrated amperometry. After baseline testing, patients were treated in an unblinded fashion with N-acetylcysteine 500 mg/day. After 10 weeks of therapy, patients returned for follow-up endothelial function and homocysteine testing. Thirty-one patients were initially enrolled. Two patients withdrew due to excessive gastrointestinal upset. Two patients did not return for follow-up testing. The remaining 27 patients tolerated the treatment well. At baseline, 85% of the patients had hyperhomocysteinemia (greater than 15 mol/L) with a mean plasma concentration of 18.6 4.7 mol/L. No changes in homocysteine concentrations were seen at follow-up. At baseline, the average flow-mediated dilation was only 4.7 6.3%. No changes were seen at follow-up. Hyperhomocysteinemia and brachial endothelial dysfunction are common in stable cardiac transplant recipients and are unaffected by supplementation with N-acetylcysteine.

  4. Feasibility of Plasma Treated Clay in Clay/Polymer Nanocomposites Powders for use Laser Sintering (LS)

    NASA Astrophysics Data System (ADS)

    Almansoori, Alaa; Seabright, Ryan; Majewski, C.; Rodenburg, C.

    2017-05-01

    The addition of small quantities of nano-clay to nylon is known to improve mechanical properties of the resulting nano-composite. However, achieving a uniform dispersion and distribution of the clay within the base polymer can prove difficult. A demonstration of the fabrication and characterization of plasma-treated organoclay/Nylon12 nanocomposite was carried out with the aim of achieving better dispersion of clay platelets on the Nylon12 particle surface. Air-plasma etching was used to enhance the compatibility between clays and polymers to ensure a uniform clay dispersion in composite powders. Downward heat sintering (DHS) in a hot press is used to process neat and composite powders into tensile and XRD specimens. Morphological studies using Low Voltage Scanning Electron Microscopy (LV-SEM) were undertaken to characterize the fracture surfaces and clay dispersion in powders and final composite specimens. Thermogravimetric analysis (TGA) testing performed that the etched clay (EC) is more stable than the nonetched clay (NEC), even at higher temperatures. The influence of the clay ratio and the clay plasma treatment process on the mechanical properties of the nanocomposites was studied by tensile testing. The composite fabricated from (3% EC/N12) powder showed ~19 % improvement in elastic modulus while the composite made from (3% NEC/N12) powder was improved by only 14%). Most notably however is that the variation between tests is strongly reduced when etch clay is used in the composite. We attribute this to a more uniform distribution and better dispersion of the plasma treated clay within polymer powders and ultimately the composite.

  5. High-efficiency indium tin oxide/indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Li, X.; Wanlass, M. W.; Gessert, T. A.; Emery, K. A.; Coutts, T. J.

    1989-01-01

    Improvements in the performance of indium tin oxide (ITO)/indium phosphide solar cells have been realized by the dc magnetron sputter deposition of n-ITO onto an epitaxial p/p(+) structure grown on commercial p(+) bulk substrates. The highest efficiency cells were achieved when the surface of the epilayer was exposed to an Ar/H2 plasma before depositing the bulk of the ITO in a more typical Ar/O2 plasma. With H2 processing, global efficiencies of 18.9 percent were achieved. It is suggested that the excellent performance of these solar cells results from the optimization of the doping, thickness, transport, and surface properties of the p-type base, as well as from better control over the ITO deposition procedure.

  6. 15 cm mercury multipole thruster

    NASA Technical Reports Server (NTRS)

    Longhurst, G. R.; Wilbur, P. J.

    1978-01-01

    A 15 cm multipole ion thruster was adapted for use with mercury propellant. During the optimization process three separable functions of magnetic fields within the discharge chamber were identified: (1) they define the region where the bulk of ionization takes place, (2) they influence the magnitudes and gradients in plasma properties in this region, and (3) they control impedance between the cathode and main discharge plasmas in hollow cathode thrusters. The mechanisms for these functions are discussed. Data from SERT II and cusped magnetic field thrusters are compared with those measured in the multipole thruster. The performance of this thruster is shown to be similar to that of the other two thrusters. Means of achieving further improvement in the performance of the multipole thruster are suggested.

  7. Fundamental and methodological investigations for the improvement of elemental analysis by inductively coupled plasma mass soectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, Christopher Hysjulien

    This dissertation describes a variety of studies meant to improve the analytical performance of inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) ICP-MS. The emission behavior of individual droplets and LA generated particles in an ICP is studied using a high-speed, high frame rate digital camera. Phenomena are observed during the ablation of silicate glass that would cause elemental fractionation during analysis by ICP-MS. Preliminary work for ICP torch developments specifically tailored for the improvement of LA sample introduction are presented. An abnormal scarcity of metal-argon polyatomic ions (MAr{sup +}) is observed during ICP-MS analysis. Evidence shows thatmore » MAr{sup +} ions are dissociated by collisions with background gas in a shockwave near the tip of the skimmer cone. Method development towards the improvement of LA-ICP-MS for environmental monitoring is described. A method is developed to trap small particles in a collodion matrix and analyze each particle individually by LA-ICP-MS.« less

  8. Plasma Treatment to Remove Carbon from Indium UV Filters

    NASA Technical Reports Server (NTRS)

    Greer, Harold F.; Nikzad, Shouleh; Beasley, Matthew; Gantner, Brennan

    2012-01-01

    The sounding rocket experiment FIRE (Far-ultraviolet Imaging Rocket Experiment) will improve the science community fs ability to image a spectral region hitherto unexplored astronomically. The imaging band of FIRE (.900 to 1,100 Angstroms) will help fill the current wavelength imaging observation hole existing from approximately equal to 620 Angstroms to the GALEX band near 1,350 Angstroms. FIRE is a single-optic prime focus telescope with a 1.75-m focal length. The bandpass of 900 to 1100 Angstroms is set by a combination of the mirror coating, the indium filter in front of the detector, and the salt coating on the front of the detector fs microchannel plates. Critical to this is the indium filter that must reduce the flux from Lymanalpha at 1,216 Angstroms by a minimum factor of 10(exp -4). The cost of this Lyman-alpha removal is that the filter is not fully transparent at the desired wavelengths of 900 to 1,100 Angstroms. Recently, in a project to improve the performance of optical and solar blind detectors, JPL developed a plasma process capable of removing carbon contamination from indium metal. In this work, a low-power, low-temperature hydrogen plasma reacts with the carbon contaminants in the indium to form methane, but leaves the indium metal surface undisturbed. This process was recently tested in a proof-of-concept experiment with a filter provided by the University of Colorado. This initial test on a test filter showed improvement in transmission from 7 to 9 percent near 900 with no process optimization applied. Further improvements in this performance were readily achieved to bring the total transmission to 12% with optimization to JPL's existing process.

  9. Subsequent bone and metabolic responses of broilers to high-non-phytate phosphorus diets in the starter period.

    PubMed

    Baradaran, N; Shahir, M H; Asadi Kermani, Z

    2017-08-01

    1. An experiment was performed to elucidate the subsequent effects of high-non-phytate phosphorus (NPP) diets on growth performance, blood metabolites, bone characteristics and P retention of broilers fed on low-NPP grower diets. The 42-d study was designed as a 2 × 2 × 2 + 1 factorial, which included two starter NPP concentrations (4.5 and 5.5 g/kg; d 0-21), two grower NPP concentrations (1.5 and 2.3 g/kg; d 22-42), with or without phytase (1000 FTU/kg), with a reference diet containing an adequate NPP concentration over the course of the trial. 2. In the starter period, growth performance and P retention were not affected by experimental diets. The high-NPP diet increased plasma P concentration, increased tibia ash and tibia P contents and decreased plasma alkaline phosphatase (ALP) activity at d 21. 3. No significant interaction was observed between NPP concentrations in the starter and grower periods and phytase. The main effect data indicated that the increase in NPP concentration in the starter diets had no effects on growth performance in the grower period and overall. The high-NPP diet in the early stage of growth reduced plasma P concentration, plasma ALP activity and tibia ash content at d 42. The main effect data also showed that exogenous phytase increased body weight gain in the grower period and overall. 4. It can be concluded that feeding increased NPP diets have no effects on growth performance in the starter period. This feeding strategy results in negative effects on plasma P concentration and bone ash content at d 42. Also, exogenous phytase is effective in improving growth performance, bone characteristics and apparent P retention of growing broilers fed diets that are inadequate in phosphorus.

  10. Research Activities at Plasma Research Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, Meyya

    2000-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies are being developed at NASA-Ames Research Center using a multi-discipline approach. The first step is to understand the basic physics of the chemical reactions in the area of plasma reactors and processes. Low pressure glow discharges are indispensable in the fabrication of microelectronic circuits. These plasmas are used to deposit materials and also etch fine features in device fabrication. However, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Although a great deal of laboratory-scale research has been performed on many of these processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. Our present research involves the study of such plasmas. An inductively-coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics. This ICP source generates plasmas with higher electron densities and lower operating pressures than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The research goal is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas phase and surface reaction rates, species concentration, temperature, ion energy distribution, and electron number density.

  11. Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopy.

    PubMed

    Chlanda, Adrian; Kijeńska, Ewa; Rinoldi, Chiara; Tarnowski, Michał; Wierzchoń, Tadeusz; Swieszkowski, Wojciech

    2018-04-01

    Electrospun nanofibrous scaffolds are willingly used in tissue engineering applications due to their tunable mechanical, chemical and physical properties. Additionally, their complex openworked architecture is similar to the native extracellular matrix of living tissue. After implantation such scaffolds should provide sufficient mechanical support for cells. Moreover, it is of crucial importance to ensure sterility and hydrophilicity of the scaffold. For this purpose, a low temperature surface plasma treatment can be applied. In this paper, we report physico-mechanical evaluation of stiffness and adhesive properties of electrospun mats after their exposition to low temperature plasma. Complex morphological and mechanical studies performed with an atomic force microscope were followed by scanning electron microscope imaging and a wettability assessment. The results suggest that plasma treatment can be a useful method for the modification of the surface of polymeric scaffolds in a desirable manner. Plasma treatment improves wettability of the polymeric mats without changing their morphology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Deposition of Composite LSCF-SDC and SSC-SDC Cathodes by Axial-Injection Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Harris, Jeffrey; Qureshi, Musab; Kesler, Olivera

    2012-06-01

    The performance of solid oxide fuel cell cathodes can be improved by increasing the number of electrochemical reaction sites, by controlling microstructures, or by using composite materials that consist of an ionic conductor and a mixed ionic and electronic conductor. LSCF (La0.6Sr0.4Co0.2Fe0.8O3-δ) and SSC (Sm0.5Sr0.5CoO3) cathodes were manufactured by axial-injection atmospheric plasma spraying, and composite cathodes were fabricated by mixing SDC (Ce0.8Sm0.2O1.9) into the feedstock powders. The plasma power was varied by changing the proportion of nitrogen in the plasma gas. The microstructures of cathodes produced with different plasma powers were characterized by scanning electron microscopy and gas permeation measurements. The deposition efficiencies of these cathodes were calculated based on the mass of the sprayed cathode. Particle surface temperatures were measured in-flight to enhance understanding of the relationship between spray parameters, microstructure, and deposition efficiency.

  13. Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott

    2015-11-01

    Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.

  14. Effect of plasma actuator and splitter plate on drag coefficient of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Akbıyık, Hürrem; Erkan Akansu, Yahya; Yavuz, Hakan; Ertuğrul Bay, Ahmet

    2016-03-01

    In this paper, an experimental study on flow control around a circular cylinder with splitter plate and plasma actuator is investigated. The study is performed in wind tunnel for Reynolds numbers at 4000 and 8000. The wake region of circular cylinder with a splitter plate is analyzed at different angles between 0 and 180 degrees. In this the study, not only plasma actuators are activated but also splitter plate is placed behind the cylinder. A couple electrodes are mounted on circular cylinder at ±90 degrees. Also, flow visualization is achieved by using smoke wire method. Drag coefficient of the circular cylinder with splitter plate and the plasma actuator are obtained for different angles and compared with the plain circular cylinder. While attack angle is 0 degree, drag coefficient is decreased about 20% by using the splitter plate behind the circular cylinder. However, when the plasma actuators are activated, the improvement of the drag reduction is measured to be 50%.

  15. The GOL-NB program: further steps in multiple-mirror confinement research

    NASA Astrophysics Data System (ADS)

    Postupaev, V. V.; Batkin, V. I.; Beklemishev, A. D.; Burdakov, A. V.; Burmasov, V. S.; Chernoshtanov, I. S.; Gorbovsky, A. I.; Ivanov, I. A.; Kuklin, K. N.; Mekler, K. I.; Rovenskikh, A. F.; Sidorov, E. N.; Yurov, D. V.

    2017-03-01

    Physical and technical details of the GOL-NB project are presented. GOL-NB is a medium-scale multiple-mirror trap that is under development in the Budker Institute, Novosibirsk, Russia. This device will be created in several years as a deep conversion of the existing GOL-3 facility. It will consist of a central trap with two 0.75 MW neutral beams, two multiple-mirror solenoids, two expander tanks and a plasma gun that creates the start plasma. The central trap with the neutral beam injection-heated plasma is a compact gas-dynamic system. The multiple-mirror sections should decrease the power and particle losses along the magnetic field. The confinement improvement factor depends on plasma parameters and on the magnetic configuration in the multiple mirrors. The main physical task of GOL-NB is direct demonstration of the performance of multiple-mirror sections that will change equilibrium plasma parameters in the central trap. In this paper we discuss results of the scenario modeling and progress in the hardware.

  16. Tailoring properties of reduced graphene oxide by oxygen plasma treatment

    NASA Astrophysics Data System (ADS)

    Kondratowicz, Izabela; Nadolska, Małgorzata; Şahin, Samet; Łapiński, Marcin; Prześniak-Welenc, Marta; Sawczak, Mirosław; Yu, Eileen H.; Sadowski, Wojciech; Żelechowska, Kamila

    2018-05-01

    We report an easily controllable, eco-friendly method for tailoring the properties of reduced graphene oxide (rGO) by means of oxygen plasma. The effect of oxygen plasma treatment time (1, 5 and 10 min) on the surface properties of rGO was evaluated. Physicochemical characterization using microscopic, spectroscopic and thermal techniques was performed. The results revealed that different oxygen-containing groups (e.g. carboxyl, hydroxyl) were introduced on the rGO surface enhancing its wettability. Furthermore, upon longer treatment time, other functionalities were created (e.g. quinones, lactones). Moreover, external surface of rGO was partially etched resulting in an increase of the material surface area and porosity. Finally, the oxygen plasma-treated rGO electrodes with bilirubin oxidase were tested for oxygen reduction reaction. The study showed that rGO treated for 10 min exhibited twofold higher current density than untreated rGO. The oxygen plasma treatment may improve the enzyme adsorption on rGO electrodes by introduction of oxygen moieties and increasing the porosity.

  17. Improvement of AOAC Official Method 984.27 for the determination of nine nutritional elements in food products by Inductively coupled plasma-atomic emission spectroscopy after microwave digestion: single-laboratory validation and ring trial.

    PubMed

    Poitevin, Eric; Nicolas, Marine; Graveleau, Laetitia; Richoz, Janique; Andrey, Daniel; Monard, Florence

    2009-01-01

    A single-laboratory validation (SLV) and a ring trial (RT) were undertaken to determine nine nutritional elements in food products by inductively coupled plasma-atomic emission spectroscopy in order to improve and update AOAC Official Method 984.27. The improvements involved optimized microwave digestion, selected analytical lines, internal standardization, and ion buffering. Simultaneous determination of nine elements (calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc) was made in food products. Sample digestion was performed through wet digestion of food samples by microwave technology with either closed or open vessel systems. Validation was performed to characterize the method for selectivity, sensitivity, linearity, accuracy, precision, recovery, ruggedness, and uncertainty. The robustness and efficiency of this method was proved through a successful internal RT using experienced food industry laboratories. Performance characteristics are reported for 13 certified and in-house reference materials, populating the AOAC triangle food sectors, which fulfilled AOAC criteria and recommendations for accuracy (trueness, recovery, and z-scores) and precision (repeatability and reproducibility RSD and HorRat values) regarding SLV and RT. This multielemental method is cost-efficient, time-saving, accurate, and fit-for-purpose according to ISO 17025 Norm and AOAC acceptability criteria, and is proposed as an improved version of AOAC Official Method 984.27 for fortified food products, including infant formula.

  18. High-Performance and Self-Powered Deep UV Photodetectors Based on High Quality 2D Boron Nitride Nanosheets

    PubMed Central

    Rivera, Manuel; Rahaman, Mostafizur; Zhou, Andrew F.; Mohammed Alzuraiqi, Waleed; Feng, Peter

    2017-01-01

    High-quality two-dimensional (2D) crystalline boron nitride nanosheets (BNNSs) were grown on silicon wafers by using pulsed plasma beam deposition techniques. Self-powered deep ultraviolet (DUV) photodetectors (PDs) based on BNNSs with Schottky contact structures are designed and fabricated. By connecting the fabricated DUV photodetector to an ammeter, the response strength, response time and recovery time to different DUV wavelengths at different intensities have been characterized using the output short circuit photocurrent without a power supply. Furthermore, effects of temperature and plasma treatment on the induced photocurrent response of detectors have also been investigated. The experimental data clearly indicate that plasma treatment would significantly improve both induced photocurrent and response time. The BNNS-based DUV photodetector is demonstrated to possess excellent performance at a temperature up to 400 °C, including high sensitivity, high signal-to-noise ratio, high spectral selectivity, high speed, and high stability, which is better than almost all reported semiconducting nanomaterial-based self-powered photodetectors. PMID:29257098

  19. Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion.

    PubMed

    Alves, P; Pinto, S; Kaiser, Jean-Pierre; Bruinink, Arie; de Sousa, Hermínio C; Gil, M H

    2011-02-01

    The material performance, in a biological environment, is mainly mediated by its surface properties and by the combination of chemical, physical, biological, and mechanical properties required, for a specific application. In this study, the surface of a thermoplastic polyurethane (TPU) material (Elastollan(®)1180A50) was activated either by plasma or by ultra-violet (UV) irradiation. After surface activation, methacrylic acid (MAA) was linked to the surface of TPU in order to improve its reactivity and to reduce cell adhesion. Grafted surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), by atomic force microscopy (AFM) and by contact angle measurements. Blood compatibility studies and cell adhesion tests with human bone marrow cells (HBMC) were also performed. If was found that UV grafting method led to better results than the plasma activation method, since cell adhesion was reduced when methacrylic acid was grafted to the TPU surface by UV. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolat, Sami, E-mail: bolat@ee.bilkent.edu.tr; Tekcan, Burak; Ozgit-Akgun, Cagla

    2015-01-15

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N{sub 2}/H{sub 2} PA-ALD based GaN channels aremore » observed to have improved stability and transfer characteristics with respect to NH{sub 3} PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N{sub 2}:H{sub 2} ambient.« less

  1. Pharmacokinetic and pharmacodynamic analysis of d-amphetamine in an attention task in rodents.

    PubMed

    Slezak, Jonathan M; Mueller, Melanie; Ricaurte, George A; Katz, Jonathan L

    2018-06-02

    Amphetamine is a common therapeutic agent for alleviating the core symptoms associated with attention-deficit hyperactivity disorder (ADHD) in children and adults. The current study used a translational model of attention, the five-choice serial reaction time (5-CSRT) procedure with rats, to examine the time-course effects of d-amphetamine. Effects of different dosages of d-amphetamine were related to drug-plasma concentrations, fashioned after comprehensive pharmacokinetic/pharmacodynamic assessments that have been employed in clinical investigations. We sought to determine whether acute drug-plasma concentrations that enhance performance in the 5-CSRT procedure are similar to those found to be therapeutic in patients diagnosed with ADHD. Results from the pharmacokinetic/pharmacodynamic assessment indicate that d-amphetamine plasma concentrations associated with improved performance on the 5-CSRT procedure overlap with those that have been reported to be therapeutic in clinical trials. The current findings suggest that the 5-CSRT procedure may be a useful preclinical model for predicting the utility of novel ADHD therapeutics and their effective concentrations.

  2. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model.

    PubMed

    Brullé, Laura; Vandamme, Marc; Riès, Delphine; Martel, Eric; Robert, Eric; Lerondel, Stéphanie; Trichet, Valérie; Richard, Serge; Pouvesle, Jean-Michel; Le Pape, Alain

    2012-01-01

    Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun) was developed and its evaluation was performed on an orthotopic mouse model of human pancreatic carcinoma using a MIA PaCa2-luc bioluminescent cell line. The aim of this study was to characterize this pancreatic carcinoma model and to determine the effects of Plasma Gun alone or in combination with gemcitabine. During a 36 days period, quantitative BLI could be used to follow the tumor progression and we demonstrated that plasma gun induced an inhibition of MIA PaCa2-luc cells proliferation in vitro and in vivo and that this effect could be improved by association with gemcitabine possibly thanks to its radiosensitizing properties.

  3. Review of the High Performance Antiproton Trap (HiPAT) Experiment at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Pearson, J. B.; Sims, Herb; Martin, James; Chakrabarti, Suman; Lewis, Raymond; Fant, Wallace

    2003-01-01

    The significant energy density of matter-antimatter annihilation is attractive to the designers of future space propulsion systems, with the potential to offer a highly compact source of power. Many propulsion concepts exist that could take advantage of matter-antimatter reactions, and current antiproton production rates are sufficient to support basic proof-of-principle evaluation of technology associated with antimatter- derived propulsion. One enabling technology for such experiments is portable storage of low energy antiprotons, allowing antiprotons to be trapped, stored, and transported for use at an experimental facility. To address this need, the Marshall Space Flight Center's Propulsion Research Center is developing a storage system referred to as the High Performance Antiproton Trap (HiPAT) with a design goal of containing 10(exp 12) particles for up to 18 days. The HiPAT makes use of an electromagnetic system (Penning- Malmberg design) consisting of a 4 Telsa superconductor, high voltage electrode structure, radio frequency (RF) network, and ultra high vacuum system. To evaluate the system normal matter sources (both electron guns and ion sources) are used to generate charged particles. The electron beams ionize gas within the trapping region producing ions in situ, whereas the ion sources produce the particles external to the trapping region and required dynamic capture. A wide range of experiments has been performed examining factors such as ion storage lifetimes, effect of RF energy on storage lifetime, and ability to routinely perform dynamic ion capture. Current efforts have been focused on improving the FW rotating wall system to permit longer storage times and non-destructive diagnostics of stored ions. Typical particle detection is performed by extracting trapped ions from HiPAT and destructively colliding them with a micro-channel plate detector (providing number and energy information). This improved RF system has been used to detect various plasma modes for both electron and ion plasmas in the two traps at MSFC, including axial, cyclotron, and diocotron modes. New diagnostics are also being added to HiPAT to measure the axial density distribution of the trapped cloud to match measured RF plasma modes to plasma conditions.

  4. Plasma treatment of polymers for improved adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelber, J.A.

    1988-01-01

    A variety of plasma treatments of polymer surfaces for improved adhesion are reviewed: noble and reactive gas treatment of fluoropolymers; noble and reactive treatment of polyolefins, and plasma-induced amination of polymer fibers. The plasma induced surface chemical and morphological changes are discussed, as are the mechanisms of adhesion to polymeric adhesives, particularly epoxy. Noble gas plasma etching of flouropolymers produces a partially defluorinated, textured surface. The mechanical interlocking of this textured surface is the primary cause of improved adhesion to epoxy. Reactive gas plasmas also induce defluorination, but oxygen containing gases cause continual ablation of the fluoropolymer surface. Noble andmore » reactive gas (exept for hydrogen) etching of polyolefins results in surface oxidation and improved adhesion via hydrogen bonding of these oxygen containing groups across the interface. The introduction of amine groups to a polymer surface by amonia or amine plasma treatment generally results in improved adhesion to epoxy. However, amine-epoxy ring interactions can be severely effected by steric factors due to chemical groups surrounding the amine. 41 refs.« less

  5. A study of increasing radical density and etch rate using remote plasma generator system

    NASA Astrophysics Data System (ADS)

    Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook

    2013-09-01

    To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.

  6. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  7. Understanding the Role of Nitrogen in Plasma-Assisted Surface Modification of Magnetic Recording Media with and without Ultrathin Carbon Overcoats

    PubMed Central

    Dwivedi, Neeraj; Yeo, Reuben J.; Satyanarayana, Nalam; Kundu, Shreya; Tripathy, S.; Bhatia, C. S.

    2015-01-01

    A novel scheme of pre-surface modification of media using mixed argon-nitrogen plasma is proposed to improve the protection performance of 1.5 nm carbon overcoats (COC) on media produced by a facile pulsed DC sputtering technique. We observe stable and lower friction, higher wear resistance, higher oxidation resistance, and lower surface polarity for the media sample modified in 70%Ar + 30%N2 plasma and possessing 1.5 nm COC as compared to samples prepared using gaseous compositions of 100%Ar and 50%Ar + 50%N2 with 1.5 nm COC. Raman and X-ray photoelectron spectroscopy results suggest that the surface modification process does not affect the microstructure of the grown COC. Instead, the improved tribological, corrosion-resistant and oxidation-resistant characteristics after 70%Ar + 30%N2 plasma-assisted modification can be attributed to, firstly, the enrichment in surface and interfacial bonding, leading to interfacial strength, and secondly, more effective removal of ambient oxygen from the media surface, leading to stronger adhesion of the COC with media, reduction of media corrosion and oxidation, and surface polarity. Moreover, the tribological, corrosion and surface properties of mixed Ar + N2 plasma treated media with 1.5 nm COCs are found to be comparable or better than ~2.7 nm thick conventional COC in commercial media. PMID:25586898

  8. Hyperammonemia in Urinary Tract Infections.

    PubMed

    Kenzaka, Tsuneaki; Kato, Ken; Kitao, Akihito; Kosami, Koki; Minami, Kensuke; Yahata, Shinsuke; Fukui, Miho; Okayama, Masanobu

    2015-01-01

    The present study investigated the incidence of hyperammonemia in urinary tract infections and explored the utility of urinary obstruction relief and antimicrobial administration to improve hyperammonemia. This was an observational study. Subjects were patients who were diagnosed with urinary tract infection and hospitalized between June 2008 and June 2009. We measured plasma ammonia levels on admission in patients who were clinically diagnosed with urinary tract infection and hospitalized. We assessed each patient's level of consciousness on admission using the Glasgow Coma Scale (GCS) and performed urine and blood cultures. We also assessed hearing prior to hospitalization using the Eastern Cooperative Oncology Group performance status (ECOG-PS). In cases with high ammonia levels on admission, plasma ammonia and GCS were measured 24 hours and 5-7 days later. Sixty-seven candidates were enrolled; of these, 60 cases (89.6%) with bacterial cell counts ≥10(4) CFU/mL were studied. Five cases (8.3%) presented with high plasma ammonia levels. Cases with hyperammonemia were significantly more likely to present with low GCS scores and urinary retention rate. All five cases received antimicrobial therapy with an indwelling bladder catheter to relieve urinary retention. The case 5 patient died shortly after admission due to complicated aspiration pneumonia; in the remaining cases, plasma ammonia levels were rapidly normalized and the level of consciousness improved. The occurrence of hyperammonemia in urinary tract infections is not rare. The cause of hyperammonemia is urinary retention obstruction. Therefore, along with antimicrobial administration, relief of obstruction is important for the treatment of hyperammonemia caused by this mechanism.

  9. Oral preoperative antioxidants in pancreatic surgery: a double-blind, randomized, clinical trial.

    PubMed

    Braga, Marco; Bissolati, Massimiliano; Rocchetti, Simona; Beneduce, Aldo; Pecorelli, Nicolò; Di Carlo, Valerio

    2012-02-01

    Oxidative stress due to ischemia/reperfusion injury increases systemic inflammation and impairs immune defenses. Much interest has developed for the administration of antioxidant substrates in surgical patients. The purpose of this study was to perform a pilot evaluation of the impact of a carbohydrate- containing preconditioning oral nutritional supplement (pONS) enriched with glutamine, antioxidants, and green tea extract on postoperative oxidative stress. We performed a double-blind placebo-controlled randomized clinical trial, involving 36 cancer patients undergoing pancreaticoduodenectomy. Patients were randomized to receive either pONS or placebo twice the day before surgery and once 3 hours before surgery. Total endogenous antioxidant capacity (TEAC), plasma levels of vitamin C, vitamin E, selenium, zinc, F2-isoprostanes, and C-reactive protein were measured at baseline and on postoperative day (POD) 1, 3, and 7. At surgery, the mean gastric residual volume (mL) was 54.2 in the pONS group versus 51.3 in the placebo group (P = NS). On POD 1 plasma levels of vitamin C (P = 0.001), selenium (P = 0.07), and zinc (P = 0.06) were higher in the pONS group compared to placebo. TEAC was improved on POD 1, 3, and 7 in the pONS group compared to placebo (P = 0.01). No difference was found in plasma C-reactive protein levels after surgery in both groups. Perioperative pONS administration positively affected plasma vitamin C levels and improved TEAC shortly after surgery, but did not reduce oxidative stress and systemic inflammation markers. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Effects of vanadium supplementation on performance, some plasma metabolites and glucose metabolism in Mahabadi goat kids.

    PubMed

    Zarqami, A; Ganjkhanlou, M; Zali, A; Rezayazdi, K; Jolazadeh, A R

    2018-04-01

    This experiment was conducted to investigate the effects of vanadium (V) supplementation on performance, some plasma metabolites (cholesterol and triglycerides) and glucose metabolism in Mahabadi goat kids. Twenty-eight male kids (15 ± 2 kg body weight) were fed for 14 weeks in a completely randomized design with four treatments. Treatments were supplemented with 0 (control), 1, 2, and 3 mg V as vanadyl sulfate/animal/daily. On day 70, an intravenous glucose tolerance test (IVGTT) was conducted. Dry matter intake did not change by V supplementation, but adding V quadraticaly improved feed efficiency (p = .03) and tended to increase average daily gain (Quadratic, p = .09). Blood metabolites were unaffected by V supplementation, except for concentration of glucose in plasma, which decreased linearly as supplemental V level increased (p = .02). Plasma glucose concentrations at 15, 30, 45 and 60 min after glucose infusion were decreased in a quadratic fashion in response to increasing supplemental V level (p < .01). The IVGTT indicated that the kids supplemented with 2 mg V had higher glucose clearance rate (K) and lower glucose half-life (T ½ ; p < .05). Glucose area under the response curve from 0 to 60 min and 0 to 180 min after glucose infusion were decreased linearly (p = .04) by supplemental V. The results suggested that moderate supplementation of V may improve glucose utilization and feed efficiency in fattening kids. © 2017 Blackwell Verlag GmbH.

  11. Ethanol gas sensing performance of high-dimensional fuzz metal oxide nanostructure

    NASA Astrophysics Data System (ADS)

    Ibano, Kenzo; Kimura, Yoshihiro; Sugahara, Tohru; Lee, Heun Tae; Ueda, Yoshio

    2018-04-01

    Gas sensing ability of the He plasma induced fiber-like nanostructure, so-called fuzz structure, was firstly examined. A thin Mo layer deposited on a quartz surface was irradiated by He plasma to form the fuzz structure and oxidized by annealing in a quartz furnace. Electric conductivity of the fuzz Mo oxide layer was then measured through the Au electrodes deposited on the layer. Changes in electric conductivity by C2H5OH gas flow were examined as a function of temperature from 200 to 400 °C. Improved sensitivities were observed for the specimens after a fuzz nanostructure formation. However, the sensor developed in this study showed lower sensitivities than previously reported MoO3 nano-rod sensor, further optimization of oxidation is needed to improve the sensitivity.

  12. Balancing risk and benefit: maintenance of a thawed Group A plasma inventory for trauma patients requiring massive transfusion.

    PubMed

    Mehr, Chelsea R; Gupta, Rajan; von Recklinghausen, Friedrich M; Szczepiorkowski, Zbigniew M; Dunbar, Nancy M

    2013-06-01

    Transfusion of plasma and red blood cell (RBC) units in a balanced ratio approximating 1:1 has been shown in retrospective studies to be associated with improved outcomes for trauma patients. Our low-volume rural trauma center uses a trauma-activated transfusion algorithm. Plasma is thawed upon activation to avoid wastage. However, the time required for plasma thawing has made achievement of a 1:1 ratio early in resuscitation challenging. In this study, the time required for plasma thawing is characterized, and a potential solution is proposed. A retrospective chart study of 38 moderately and massively transfused (≥6 U in the first 24 hours) trauma patients admitted from January 2008 to March 2012 was performed. We evaluated the time required to dispense plasma and the number of RBCs dispensed before plasma in these patients. The average time between the dispense of RBCs and plasma was 26 minutes (median, 28; range, 0-48 minutes). The average number of RBCs dispensed before plasma was 8 U (median, 7 U; range, 0-24 U). Nearly one third of massively transfused patients had 10 RBCs or greater dispensed before plasma was available. There exists the potential for delayed plasma availability owing to time required for thawing, which may compromise the ability to provide balanced plasma to RBC transfusion to trauma patients. Maintenance of a thawed Group AB plasma inventory may not be operationally feasible for rural centers with low trauma volumes. Use of a thawed Group A plasma inventory is a potential alternative to ensure rapid plasma availability. Therapeutic study, level V.

  13. Minimal Intensity Physical Activity (Standing and Walking) of Longer Duration Improves Insulin Action and Plasma Lipids More than Shorter Periods of Moderate to Vigorous Exercise (Cycling) in Sedentary Subjects When Energy Expenditure Is Comparable

    PubMed Central

    Duvivier, Bernard M. F. M.; Schaper, Nicolaas C.; Bremers, Michelle A.; van Crombrugge, Glenn; Menheere, Paul P. C. A.; Kars, Marleen; Savelberg, Hans H. C. M.

    2013-01-01

    Background Epidemiological studies suggest that excessive sitting time is associated with increased health risk, independent of the performance of exercise. We hypothesized that a daily bout of exercise cannot compensate the negative effects of inactivity during the rest of the day on insulin sensitivity and plasma lipids. Methodology/Principal Findings Eighteen healthy subjects, age 21±2 year, BMI 22.6±2.6 kgm−2 followed randomly three physical activity regimes for four days. Participants were instructed to sit 14 hr/day (sitting regime); to sit 13 hr/day and to substitute 1 hr of sitting with vigorous exercise 1 hr (exercise regime); to substitute 6 hrs sitting with 4 hr walking and 2 hr standing (minimal intensity physical activity (PA) regime). The sitting and exercise regime had comparable numbers of sitting hours; the exercise and minimal intensity PA regime had the same daily energy expenditure. PA was assessed continuously by an activity monitor (ActivPAL) and a diary. Measurements of insulin sensitivity (oral glucose tolerance test, OGTT) and plasma lipids were performed in the fasting state, the morning after the 4 days of each regime. In the sitting regime, daily energy expenditure was about 500 kcal lower than in both other regimes. Area under the curve for insulin during OGTT was significantly lower after the minimal intensity PA regime compared to both sitting and exercise regimes 6727.3±4329.4 vs 7752.0±3014.4 and 8320.4±5383.7 mU•min/ml, respectively. Triglycerides, non-HDL cholesterol and apolipoprotein B plasma levels improved significantly in the minimal intensity PA regime compared to sitting and showed non-significant trends for improvement compared to exercise. Conclusions One hour of daily physical exercise cannot compensate the negative effects of inactivity on insulin level and plasma lipids if the rest of the day is spent sitting. Reducing inactivity by increasing the time spent walking/standing is more effective than one hour of physical exercise, when energy expenditure is kept constant. PMID:23418444

  14. Characterization of a linear device developed for research on advanced plasma imaging and dynamicsa)

    NASA Astrophysics Data System (ADS)

    Chung, J.; Lee, K. D.; Seo, D. C.; Nam, Y. U.; Choi, M. C.

    2010-10-01

    Within the scope of long term research on imaging diagnostics for steady-state plasmas and understanding of edge plasma physics through diagnostics with conventional spectroscopic methods, we have constructed a linear electron cyclotron resonance (ECR) plasma device named Research on Advanced Plasma Imaging and Dynamics (RAPID). It has a variety of axial magnetic field profiles provided by eight water-cooled magnetic coils and two dc power supplies. The positions of the magnetic coils are freely adjustable along the axial direction and the power supplies can be operated with many combinations of electrical wiring to the coils. Here, a 6 kW 2.45 GHz magnetron is used to produce steady-state hydrogen, helium, and argon plasmas with central magnetic fields of 875 and/or 437.5 G (second harmonic). In order to achieve the highest possible plasma performance within the limited input parameters, wall conditioning experiments were carried out. Chamber bake-out was achieved with heating coils that were wound covering the vessel, and long-pulse electron cyclotron heating discharge cleaning was also followed after 4 days of bake-out. A uniform bake-out temperature (150 °C) was achieved by wrapping the vessel in high temperature thermal insulation textile and by controlling the heating coil current using a digital control system. The partial pressure changes were observed using a residual gas analyzer, and a total system pressure of 5×10-8 Torr was finally reached. Diagnostic systems including a millimeter-wave interferometer, a high resolution survey spectrometer, a Langmuir probe, and an ultrasoft x-ray detector were used to provide the evidence that the plasma performance was improved as we desired. In this work, we present characterization of the RAPID device for various system conditions and configurations.

  15. Low-cost, disposable microfluidics device for blood plasma extraction using continuously alternating paramagnetic and diamagnetic capture modes

    PubMed Central

    Kim, Pilkee; Ong, Eng Hui; Yoon, Yong-Jin; Ng, Sum Huan Gary; Puttachat, Khuntontong

    2016-01-01

    Blood plasma contains biomarkers and substances that indicate the physiological state of an organism, and it can be used to diagnose various diseases or body condition. To improve the accuracy of diagnostic test, it is required to obtain the high purity of blood plasma. This paper presents a low-cost, disposable microfluidics device for blood plasma extraction using magnetophoretic behaviors of blood cells. This device uses alternating magnetophoretic capture modes to trap and separate paramagnetic and diamagnetic cells away from blood plasma. The device system is composed of two parts, a disposable microfluidics chip and a non-disposable (reusable) magnetic field source. Such modularized device helps the structure of the disposable part dramatically simplified, which is beneficial for low-cost mass production. A series of numerical simulation and parametric study have been performed to describe the mechanism of blood cell separation in the microchannel, and the results are discussed. Furthermore, experimental feasibility test has been carried out in order to demonstrate the blood plasma extraction process of the proposed device. In this experiment, pure blood plasma has been successfully extracted with yield of 21.933% from 75 μl 1:10 dilution of deoxygenated blood. PMID:27042252

  16. Effects of the injected plasma on the breakdown process of the trigatron gas switch under low working coefficient

    NASA Astrophysics Data System (ADS)

    Chen, Li; Yang, Lanjun; Qiu, Aici; Huang, Dong; Liu, Shuai

    2018-01-01

    Based on the surface flashover discharge, the injected plasma was generated, and the effects on the breakdown process of the trigatron gas switch were studied in this paper. The breakdown model caused by the injected plasma under the low working coefficient (<0.7) was established. The captured framing images showed that the injected plasma distorted the electrical field of the gap between the frontier of the injected plasma and the opposite electrode, making it easier to achieve the breakdown critical criterion. The calculation results indicated that the breakdown delay time was mainly decided by the development of the injected plasma, as without considering the effects of the photo-ionization and the invisible expansion process, the breakdown delay time of the calculation results was 20% higher than the experimental results. The morphology of the injected plasma generated by polyethylene surface flashover was more stable and regular than ceramic, leading to a 30% lower breakdown delay time when the working coefficient is larger than 0.2, and the difference increased sharply when the working coefficient is lower than 0.2. This was significant for improving the trigger performance of the trigatron gas switch under low working coefficient.

  17. Improvement of Thrust Characteristics of Helicon Plasma Thruster using Local Gas Fueling Method

    NASA Astrophysics Data System (ADS)

    Kuwahara, Daisuke; Amma, Kosuke; Ishigami, Yuichi; Igarashi, Akihiko; Nishimoto, Shinichi; Shinohara, Shunjiro; Miyazawa, Junichi

    2017-10-01

    A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. Here, a neutral particle, e.g., H2, Ar, and Xe works, as a fuel gas. In most cases, these gases are supplied into a discharge tube by the use of a simple nozzle. Therefore, the neutral particle fills a discharge tube homogenous. However, there are two problems in this configuration. First, there is a limitation of an electron density increase, due to a neutral particle depletion in the central region of the high-density helicon plasma. This limitation reduces the thrust performance directly. Second, the high-density plasma causes an erosion of an inner discharge tube wall. For the future MW class thruster, this problem will become serious because the particle and heat fluxes of the plasma will increase drastically. To solve above-mentioned problems, we have proposed local fueling methods for the high-density helicon plasma. In this presentation, we will show the methods and experimental results using a fueling tube, inserted in a plasma directly. This work is supported by JSPS KAKENHI Grant Number 16K17843 and NIFS Collaboration Research program (NIFSKBAF016).

  18. Sensitivity of the Boundary Plasma to the Plasma-Material Interface

    DOE PAGES

    Canik, John M.; Tang, X. -Z.

    2017-01-01

    While the sensitivity of the scrape-off layer and divertor plasma to the highly uncertain cross-field transport assumptions is widely recognized, the plasma is also sensitive to the details of the plasma-material interface (PMI) models used as part of comprehensive predictive simulations. Here in this paper, these PMI sensitivities are studied by varying the relevant sub-models within the SOLPS plasma transport code. Two aspects are explored: the sheath model used as a boundary condition in SOLPS, and fast particle reflection rates for ions impinging on a material surface. Both of these have been the study of recent high-fidelity simulation efforts aimedmore » at improving the understanding and prediction of these phenomena. It is found that in both cases quantitative changes to the plasma solution result from modification of the PMI model, with a larger impact in the case of the reflection coefficient variation. Finally, this indicates the necessity to better quantify the uncertainties within the PMI models themselves, and perform thorough sensitivity analysis to propagate these throughout the boundary model; this is especially important for validation against experiment, where the error in the simulation is a critical and less-studied piece of the code-experiment comparison.« less

  19. Thrust and efficiency model for electron-driven magnetic nozzles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, Justin M.; Choueiri, Edgar Y.

    2013-10-15

    A performance model is presented for magnetic nozzle plasmas driven by electron thermal expansion to investigate how the thrust coefficient and beam divergence efficiency scale with the incoming plasma flow and magnetic field geometry. Using a transformation from cylindrical to magnetic coordinates, an approximate analytical solution is derived to the axisymmetric two-fluid equations for a collisionless plasma flow along an applied magnetic field. This solution yields an expression for the half-width at half-maximum of the plasma density profile in the far-downstream region, from which simple scaling relations for the thrust coefficient and beam divergence efficiency are derived. It is foundmore » that the beam divergence efficiency is most sensitive to the density profile of the flow into the nozzle throat, with the highest efficiencies occurring for plasmas concentrated along the nozzle axis. Increasing the expansion ratio of the magnetic field leads to efficiency improvements that are more pronounced for incoming plasmas that are not concentrated along the axis. This implies that the additional magnet required to increase the expansion ratio may be worth the added complexity for plasma sources that exhibit poor confinement.« less

  20. Federal Plan for High-End Computing. Report of the High-End Computing Revitalization Task Force (HECRTF)

    DTIC Science & Technology

    2004-07-01

    steadily for the past fifteen years, while memory latency and bandwidth have improved much more slowly. For example, Intel processor clock rates38 have... processor and memory performance) all greatly restrict the ability to achieve high levels of performance for science, engineering, and national...sub-nuclear distances. Guide experiments to identify transition from quantum chromodynamics to quark -gluon plasma. Accelerator Physics Accurate

  1. Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, D.; Figini, L.; Henderson, M.

    2014-06-15

    The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power depositionmore » was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.« less

  2. Effects of Exercise Training under Hyperbaric Oxygen on Oxidative Stress Markers and Endurance Performance in Young Soccer Players: A Pilot Study.

    PubMed

    Burgos, Carlos; Henríquez-Olguín, Carlos; Andrade, David Cristóbal; Ramírez-Campillo, Rodrigo; Araneda, Oscar F; White, Allan; Cerda-Kohler, Hugo

    2016-01-01

    The aim of the present study was to determine the effects of three weeks of hyperbaric oxygen (HBO 2 ) training on oxidative stress markers and endurance performance in young soccer players. Participants (18.6 ± 1.6 years) were randomized into hyperbaric-hyperoxic (HH) training ( n = 6) and normobaric normoxic (NN) training ( n = 6) groups. Immediately before and after the 5th, 10th, and 15th training sessions, plasma oxidative stress markers (lipid hydroperoxides and uric acid), plasma antioxidant capacity (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid [TROLOX]), arterial blood gases, acid-base balance, bases excess (BE), and blood lactate analyses were performed. Before and after intervention, maximal oxygen uptake (VO 2 max) and peak power output (PPO) were determined. Neither HH nor NN experienced significant changes on oxidative stress markers or antioxidant capacity during intervention. VO 2 max and PPO were improved (moderate effect size) after HH training. The results suggest that HBO 2 endurance training does not increase oxidative stress markers and improves endurance performance in young soccer players. Our findings warrant future investigation to corroborate that HBO 2 endurance training could be a potential training approach for highly competitive young soccer players.

  3. Effects of Exercise Training under Hyperbaric Oxygen on Oxidative Stress Markers and Endurance Performance in Young Soccer Players: A Pilot Study

    PubMed Central

    Henríquez-Olguín, Carlos; Andrade, David Cristóbal; Ramírez-Campillo, Rodrigo; White, Allan; Cerda-Kohler, Hugo

    2016-01-01

    The aim of the present study was to determine the effects of three weeks of hyperbaric oxygen (HBO2) training on oxidative stress markers and endurance performance in young soccer players. Participants (18.6 ± 1.6 years) were randomized into hyperbaric-hyperoxic (HH) training (n = 6) and normobaric normoxic (NN) training (n = 6) groups. Immediately before and after the 5th, 10th, and 15th training sessions, plasma oxidative stress markers (lipid hydroperoxides and uric acid), plasma antioxidant capacity (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid [TROLOX]), arterial blood gases, acid-base balance, bases excess (BE), and blood lactate analyses were performed. Before and after intervention, maximal oxygen uptake (VO2max) and peak power output (PPO) were determined. Neither HH nor NN experienced significant changes on oxidative stress markers or antioxidant capacity during intervention. VO2max and PPO were improved (moderate effect size) after HH training. The results suggest that HBO2 endurance training does not increase oxidative stress markers and improves endurance performance in young soccer players. Our findings warrant future investigation to corroborate that HBO2 endurance training could be a potential training approach for highly competitive young soccer players. PMID:28083148

  4. Electrochemical and biological characterization of coatings formed on Ti-15Mo alloy by plasma electrolytic oxidation.

    PubMed

    Kazek-Kęsik, Alicja; Krok-Borkowicz, Małgorzata; Pamuła, Elżbieta; Simka, Wojciech

    2014-10-01

    β-Type titanium alloys are considered the future materials for bone implants. To improve the bioactivity of Ti-15Mo, the surface was modified using the plasma electrolytic oxidation (PEO) process. Tricalcium phosphate (TCP, Ca3PO4), wollastonite (CaSiO3) and silica (SiO2) were selected as additives in the anodizing bath to enhance the bioactivity of the coatings formed during the PEO process. Electrochemical analysis of the samples was performed in Ringer's solution at 37°C. The open-circuit potential (EOCP) as a function of time, corrosion potential (ECORR), corrosion current density (jCORR) and polarization resistance (Rp) of the samples were determined. Surface modification improved the corrosion resistance of Ti-15Mo in Ringer's solution. In vitro studies with MG-63 osteoblast-like cells were performed for 1, 3 and 7 days. After 24h, the cells were well adhered on the entire surfaces, and their number increased with increasing culture time. The coatings formed in basic solution with wollastonite exhibited better biological performance compared with the as-ground sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Comparative investigation of novel hetero gate dielectric and drain engineered charge plasma TFET for improved DC and RF performance

    NASA Astrophysics Data System (ADS)

    Yadav, Dharmendra Singh; Verma, Abhishek; Sharma, Dheeraj; Tirkey, Sukeshni; Raad, Bhagwan Ram

    2017-11-01

    Tunnel-field-effect-transistor (TFET) has emerged as one of the most prominent devices to replace conventional MOSFET due to its ability to provide sub-threshold slope below 60 mV/decade (SS ≤ 60 mV/decade) and low leakage current. Despite this, TFETs suffer from ambipolar behavior, lower ON-state current, and poor RF performance. To address these issues, we have introduced drain and gate work function engineering with hetero gate dielectric for the first time in charge plasma based doping-less TFET (DL TFET). In this, the usage of dual work functionality over the drain region significantly reduces the ambipolar behavior of the device by varying the energy barrier at drain/channel interface. Whereas, the presence of dual work function at the gate terminal increases the ON-state current (ION). The combined effect of dual work function at the gate and drain electrode results in the increment of ON-state current (ION) and decrement of ambipolar conduction (Iambi) respectively. Furthermore, the incorporation of hetero gate dielectric along with dual work functionality at the drain and gate electrode provides an overall improvement in the performance of the device in terms of reduction in ambipolarity, threshold voltage and sub-threshold slope along with improved ON-state current and high frequency figures of merit.

  6. Solar-Powered Electric Propulsion Systems: Engineering and Applications

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Kerrisk, D. J.

    1966-01-01

    Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.

  7. Effect of Inductive Coil Geometry on the Thrust Efficiency of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance (specific impulse, thrust efficiency) of the MAD-IPA thruster. Impulse data are obtained at various pulse energies, mass flow rates and inductive coil. geometries. Dependencies on these experimental parameters are discussed in the context of the current sheet formation and electromagnetic plasma acceleration processes.

  8. No Effect of Acute and 6-Day Nitrate Supplementation on VO2 and Time-Trial Performance in Highly Trained Cyclists.

    PubMed

    Nyakayiru, Jean M; Jonvik, Kristin L; Pinckaers, Philippe J M; Senden, Joan; van Loon, Luc J C; Verdijk, Lex B

    2017-02-01

    While the majority of studies reporting ergogenic effects of dietary nitrate have used a multiday supplementation protocol, some studies suggest that a single dose of dietary nitrate before exercise can also improve subsequent performance. We aimed to compare the impact of acute and 6-day sodium nitrate supplementation on oxygen uptake (V̇O 2 ) and time-trial performance in trained cyclists. Using a randomized, double-blind, cross-over design, 17 male cyclists (25 ± 4 y, V̇O 2peak 65 ± 4 ml·kg -1 ·min -1 , W max 411 ± 35 W) were subjected to 3 different trials; 5 days placebo and 1 day sodium nitrate supplementation (1-DAY); 6 days sodium nitrate supplementation (6-DAY); 6 days placebo supplementation (PLA). Nitrate was administered as 1097 mg sodium nitrate providing 800 mg (~12.9 mmol) nitrate per day. Three hours after ingestion of the last supplemental bolus, indirect calorimetry was performed while subjects performed 30 min of exercise at 45% W max and 30 min at 65% W max on a cycle ergometer, followed by a 10 km time-trial. Immediately before exercise, plasma [nitrate] and [nitrite] increased to a similar extent during the 6-DAY and 1-DAY trial, but not with PLA (plasma nitrite: 501 ± 205, 553 ± 278, and 239 ± 74 nM, respectively; p < .001). No differences were observed between interventions in V̇O 2 during submaximal exercise, or in time to complete the time-trial (6-DAY: 1004 ± 61, 1-DAY: 1022 ± 72, PLA: 1017 ± 71 s; p = .28). We conclude that both acute and 6-days of sodium nitrate supplementation do not alter V̇O 2 during submaximal exercise or improve time-trial performance in highly trained cyclists, despite increasing plasma [nitrate] and [nitrite].

  9. Morphology and characteristics of laser-induced aluminum plasma in argon and in air: A comparative study

    NASA Astrophysics Data System (ADS)

    Bai, Xueshi; Cao, Fan; Motto-Ros, Vincent; Ma, Qianli; Chen, Yanping; Yu, Jin

    2015-11-01

    In laser-induced breakdown spectroscopy (LIBS), ablation takes place in general in an ambient gas of the atmospheric pressure, often in air but also in noble gas such as argon or helium. The use of noble gas is known to significantly improve the performance of the technique. We investigate in this work the morphology and the characteristics of induced plasma in argon and in air. The purpose is to understand the mechanism of the analytical performance improvement by the use of argon ambient with respective to air ambient and the dependence on the other experimental parameters such as the laser fluence. The observation of plasma morphology in different ambient gases provides also information for better design of the detection system which optimizes the signal collection according to the used ambient gases. More specifically, the expansion of the plasma induced on an aluminum target with nanosecond infrared (1064 nm) laser pulse in two ambient gases, argon and the atmospheric air, has been studied with spectroscopic imaging at short delays and with emission spectroscopy at longer delays. With relatively low ablation laser fluence (65 J/cm2), similar morphologies have been observed in argon and in air over the early stage of plasma expansion, while diagnostics at longer delay shows stronger emission, higher electron density and temperature for plasma induced in argon. With higher ablation laser fluence (160 J/cm2) however, different expansion behaviors have been observed, with a stagnating aluminum vapor near the target surface in air while a propagating plume away from the target in argon. The craters left on the target surface show as well corresponding difference: in air, the crater is very shallow with a target surface chaotically affected by the laser pulse, indicating an effective re-deposition of the ablated material back to the crater; while in Ar a deeper crater is observed, indicating an efficient mass removal by laser ablation. At longer delays, a brighter, denser and hotter plasma is always observed in argon than in air as with lower ablation laser fluences. The observed different influences of the ambient gas on the plasma expansion behavior for different laser fluences are related to the different modes of laser-supported absorption waves, namely laser-supported combustion (LSC) wave and laser-supported detonation (LSD) wave.

  10. Effects of Six-Week Ginkgo biloba Supplementation on Aerobic Performance, Blood Pro/Antioxidant Balance, and Serum Brain-Derived Neurotrophic Factor in Physically Active Men.

    PubMed

    Sadowska-Krępa, Ewa; Kłapcińska, Barbara; Pokora, Ilona; Domaszewski, Przemysław; Kempa, Katarzyna; Podgórski, Tomasz

    2017-07-26

    Extracts of Ginkgo biloba leaves, a natural source of flavonoids and polyphenolic compounds, are commonly used as therapeutic agents for the improvement of both cognitive and physiological performance. The present study was aimed to test the effects of a six-week supplementation with 160 mg/day of a standardized extract of Ginkgo biloba or a matching placebo on aerobic performance, blood antioxidant capacity, and brain-derived neurotrophic factor (BDNF) level in healthy, physically active young men, randomly allocated to two groups ( n = 9 each). At baseline, as well as on the day following the treatment, the participants performed an incremental cycling test for the assessment of maximal oxygen uptake. Venous blood samples taken at rest, then immediately post-test and following 1 h of recovery, were analyzed for activities of antioxidant enzymes and plasma concentrations of non-enzymatic antioxidants, total phenolics, uric acid, lipid peroxidation products, ferric reducing ability of plasma (FRAP), and serum brain-derived neurotrophic factor (BDNF). Our results show that six weeks' supplementation with Ginkgo biloba extract in physically active young men may provide some marginal improvements in their endurance performance expressed as VO₂max and blood antioxidant capacity, as evidenced by specific biomarkers, and elicit somewhat better neuroprotection through increased exercise-induced production of BDNF.

  11. Plasma-Lyte 148: A clinical review

    PubMed Central

    Weinberg, Laurence; Collins, Neil; Van Mourik, Kiara; Tan, Chong; Bellomo, Rinaldo

    2016-01-01

    AIM To outline the physiochemical properties and specific clinical uses of Plasma-Lyte 148 as choice of solution for fluid intervention in critical illness, surgery and perioperative medicine. METHODS We performed an electronic literature search from Medline and PubMed (via Ovid), anesthesia and pharmacology textbooks, and online sources including studies that compared Plasma-Lyte 148 to other crystalloid solutions. The following keywords were used: “surgery”, “anaesthesia”, “anesthesia”, “anesthesiology”, “anaesthesiology”, “fluids”, “fluid therapy”, “crystalloid”, “saline”, “plasma-Lyte”, “plasmalyte”, “hartmann’s”, “ringers” “acetate”, “gluconate”, “malate”, “lactate”. All relevant articles were accessed in full. We summarized the data and reported the data in tables and text. RESULTS We retrieved 104 articles relevant to the choice of Plasma-Lyte 148 for fluid intervention in critical illness, surgery and perioperative medicine. We analyzed the data and reported the results in tables and text. CONCLUSION Plasma-Lyte 148 is an isotonic, buffered intravenous crystalloid solution with a physiochemical composition that closely reflects human plasma. Emerging data supports the use of buffered crystalloid solutions in preference to saline in improving physicochemical outcomes. Further large randomized controlled trials assessing the comparative effectiveness of Plasma-Lyte 148 and other crystalloid solutions in measuring clinically important outcomes such as morbidity and mortality are needed. PMID:27896148

  12. Mechanism for Plasma Etching of Shallow Trench Isolation Features in an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Agarwal, Ankur; Rauf, Shahid; He, Jim; Choi, Jinhan; Collins, Ken

    2011-10-01

    Plasma etching for microelectronics fabrication is facing extreme challenges as processes are developed for advanced technological nodes. As device sizes shrink, control of shallow trench isolation (STI) features become more important in both logic and memory devices. Halogen-based inductively coupled plasmas in a pressure range of 20-60 mTorr are typically used to etch STI features. The need for improved performance and shorter development cycles are placing greater emphasis on understanding the underlying mechanisms to meet process specifications. In this work, a surface mechanism for STI etch process will be discussed that couples a fundamental plasma model to experimental etch process measurements. This model utilizes ion/neutral fluxes and energy distributions calculated using the Hybrid Plasma Equipment Model. Experiments are for blanket Si wafers in a Cl2/HBr/O2/N2 plasma over a range of pressures, bias powers, and flow rates of feedstock gases. We found that kinetic treatment of electron transport was critical to achieve good agreement with experiments. The calibrated plasma model is then coupled to a string-based feature scale model to quantify the effect of varying process parameters on the etch profile. We found that the operating parameters strongly influence critical dimensions but have only a subtle impact on the etch depths.

  13. Stereoselective determination of vigabatrin enantiomers in human plasma by high performance liquid chromatography using UV detection.

    PubMed

    Franco, Valentina; Mazzucchelli, Iolanda; Fattore, Cinzia; Marchiselli, Roberto; Gatti, Giuliana; Perucca, Emilio

    2007-07-01

    A rapid and simple high-performance liquid chromatographic method for the determination of the R-(-)- and S-(+)-enantiomers of the antiepileptic drug vigabatrin in human plasma is described. After adding the internal standard (1-aminomethyl-cycloheptyl-acetic acid), plasma samples (200 microL) are deproteinized with acetonitrile and the supernatant is derivatized with 2,4,6 trinitrobenzene sulfonic acid (TNBSA). Separation is achieved on a reversed-phase cellulose-based chiral column (Chiralcel-ODR, 250 mm x 4.6 mm i.d.) using 0.05 M potassium hexafluorophosphate (pH 4.5)/acetonitrile/ethanol (50:40:10 vol/vol/vol) as mobile phase at a flow-rate of 0.9 mL/min. Chromatographic selectivity is improved by concentrating the derivatives on High Performance Extraction Disk Cartridges prior to injection. Detection is at 340 nm. Calibration curves are linear (r(2)> or =0.999) over the range of 0.5-40 microg/mL for each enantiomer, with a limit of quantification of 0.5 microg/mL for both analytes. The assay is suitable for therapeutic drug monitoring and for single-dose pharmacokinetic studies in man.

  14. [Determination of serum or plasma alpha-tocopherol by high performance liquid chromatography: optimization of operative models].

    PubMed

    Jezequel-Cuer, M; Le Moël, G; Mounié, J; Peynet, J; Le Bizec, C; Vernet, M H; Artur, Y; Laschi-Loquerie, A; Troupel, S

    1995-01-01

    A previous multicentric study set up by the Société française de biologie clinique has emphasized the usefulness of a standardized procedure for the determination by high performance liquid chromatography of alpha-tocopherol in serum or plasma. In our study, we have tested every step of the different published procedures: internal standard adduct, lipoprotein denaturation and vitamin extraction. Reproducibility of results was improved by the use of tocol as an internal standard when compared to retinol or alpha-tocopherol acetates. Lipoprotein denaturation was more efficient with ethanol addition than with methanol and when the ethanol/water ratio was > or = 0.7. Use of n-hexane or n-heptane gave the same recovery of alpha-tocopherol. When organic solvent/water ratio was > or = 1, n-hexane enabled to efficiently extract, in a one-step procedure, the alpha-tocopherol from both normo and hyperlipidemic sera. Performances of the selected procedure were: detection limit: 0.5 microM--linear range: 750 microM--within run coefficient of variation: 2.03%--day to day: 4.76%. Finally, this pluricentric study allows us to propose an optimised procedure for the determination of alpha-tocopherol in serum or plasma.

  15. The effect of phosphate loading on erythrocyte 2,3-bisphosphoglycerate levels.

    PubMed

    Bremner, Kyla; Bubb, William A; Kemp, Graham J; Trenell, Michael I; Thompson, Campbell H

    2002-09-01

    Phosphate supplementation has been used in an effort to enhance athletic performance by increasing erythrocyte 2,3-bisphosphoglycerate levels ([2,3-BPG]) and hence improve oxygen offloading from haemoglobin. Claimed effects of phosphate loading upon both exercise performance and erythrocyte [2,3-BPG] are inconsistent, and the basis of any change in [2,3-BPG] is unknown. We analysed plasma inorganic phosphate concentration ([P(i)]) and erythrocyte [P(i)] and [2,3-BPG] in venous blood samples from 12 healthy subjects. We re-examined a subset of five of these subjects after 7 days of phosphate loading. There were significant positive correlations between plasma [P(i)] and erythrocyte [P(i)] (r(2)=0.51, p=0.009) and between erythrocyte [P(i)] and [2,3-BPG] (r(2)=0.68, p<0.001). Following phosphate loading, there was a 30% increase in plasma [P(i)] (1.02+/-0.22 to 1.29+/-0.15 mmol/l (mean+/-S.D.), p=0.03) and a 25% increase in erythrocyte [2,3-BPG] (6.77+/-1.12 to 9.11+/-1.87 mmol/l cells, p=0.03). There is no relation between [2,3-BPG] and plasma [P(i)]. Phosphate loading increases both plasma and erythrocyte phosphate pools and the rise in [2,3-BPG] is probably a consequence of the rise in cell [P(i)].

  16. Testing and evaluation of the LES-6 pulsed plasma thruster by means of a torsion pendulum system

    NASA Technical Reports Server (NTRS)

    Hamidian, J. P.; Dahlgren, J. B.

    1973-01-01

    Performance characteristics of the LES-6 pulsed plasma thruster over a range of input conditions were investigated by means of a torsion pendulum system. Parameters of particular interest included the impulse bit and time average thrust (and their repeatability), specific impulse, mass ablated per discharge, specific thrust, energy per unit area, efficiency, and variation of performance with ignition command rate. Intermittency of the thruster as affected by input energy and igniter resistance were also investigated. Comparative experimental data correlation with the data presented. The results of these tests indicate that the LES-6 thruster, with some identifiable design improvements, represents an attractive reaction control thruster for attitude contol applications on long-life spacecraft requiring small metered impulse bits for precise pointing control of science instruments.

  17. Process Control in Production-Worthy Plasma Doping Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winder, Edmund J.; Fang Ziwei; Arevalo, Edwin

    2006-11-13

    As the semiconductor industry continues to scale devices of smaller dimensions and improved performance, many ion implantation processes require lower energy and higher doses. Achieving these high doses (in some cases {approx}1x1016 ions/cm2) at low energies (<3 keV) while maintaining throughput is increasingly challenging for traditional beamline implant tools because of space-charge effects that limit achievable beam density at low energies. Plasma doping is recognized as a technology which can overcome this problem. In this paper, we highlight the technology available to achieve process control for all implant parameters associated with modem semiconductor manufacturing.

  18. Myoadenylate deaminase deficiency, hypertrophic cardiomyopathy and gigantism syndrome.

    PubMed

    Skyllouriotis, M L; Marx, M; Bittner, R E; Skyllouriotis, P; Gross, M; Wimmer, M

    1997-07-01

    We report a 20-year-old man with gigantism syndrome, hypertrophic cardiomyopathy, muscle weakness, exercise intolerance, and severe psychomotor retardation since childhood. Histochemical and biochemical analysis of skeletal muscle biopsy revealed myoadenylate deaminase deficiency; molecular genetic analysis confirmed the diagnosis of primary (inherited) myoadenylate deaminase deficiency. Plasma, urine, and muscle carnitine concentrations were reduced. L-Carnitine treatment led to gradual improvement in exercise tolerance and cognitive performance; plasma and tissue carnitine levels returned to normal, and echocardiographic evidence of left ventricular hypertrophy disappeared. The combination of inherited myoadenylate deaminase deficiency, gigantism syndrome and carnitine deficiency has not previously been described.

  19. Plasma Sources for Medical Applications - A Comparison of Spot Like Plasmas and Large Area Plasmas

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter

    2015-09-01

    Plasma applications in life science are currently emerging worldwide. Whereas today's commercially available plasma surgical technologies such as argon plasma coagulation (APC) or ablation are mainly based on lethal plasma effects on living systems, the newly emerging therapeutic applications will be based on selective, at least partially non-lethal, possibly stimulating plasma effects on living cells and tissue. Promising results could be obtained by different research groups worldwide revealing a huge potential for the application of low temperature atmospheric pressure plasma in fields such as tissue engineering, healing of chronic wounds, treatment of skin diseases, tumor treatment based on specific induction of apoptotic processes, inhibition of biofilm formation and direct action on biofilms or treatment of dental diseases. The development of suitable and reliable plasma sources for the different therapies requires an in-depth knowledge of their physics, chemistry and parameters. Therefore much basic research still needs to be conducted to minimize risk and to provide a scientific fundament for new plasma-based medical therapies. It is essential to perform a comprehensive assessment of physical and biological experiments to clarify minimum standards for plasma sources for applications in life science and for comparison of different sources. One result is the DIN-SPEC 91315, which is now open for further improvements. This contribution intends to give an overview on the status of commercial cold plasma sources as well as cold plasma sources still under development for medical use. It will discuss needs, prospects and approaches for the characterization of plasmas from different points of view. Regarding the manageability in everyday medical life, atmospheric pressure plasma jets (APPJ) and dielectric barrier discharges (DBD) are of special interest. A comprehensive risk-benefit assessment including the state of the art of commercial sources for medical use will be discussed.

  20. Investigation of lithium PFC surface characteristics and low recycling at LTX/LTX-Beta

    NASA Astrophysics Data System (ADS)

    Maan, Anurag; Kaita, Robert; Elliott, Drew; Boyle, Dennis; Majeski, Richard; Donovan, David; Buzi, Luxherta; Koel, Bruce E.; Biewer, Theodore M.

    2017-10-01

    Lithium coatings on high-Z PFCs at LTX have led to improved plasma performance. The initial hypothesis was that lithium retains hydrogen by forming lithium hydride and thereby enabling low recycling in LTX. However, recent in-vacuo measurements indicate the presence of lithium oxide in deposited lithium coatings. Improved plasma performance continued to be observed in the presence of lithium oxide. These observations raise questions like what is the nature of the lithium oxide surface, whether the PFC is an amorphous mixture of lithium and lithium oxide or something more ordered like a lithium oxide layer growing on top of lithium, and whether lithium oxide is responsible for any retention of hydrogen from the plasma. To investigate the mechanism by which the LTX PFC might be responsible for low recycling, we discuss the results of deuterium retention measurements using NRA/RBS and sample characterization using high resolution XPS (HR-XPS) in bulk lithium samples. Baseline HR-XPS scans indicate the presence of Lithium Oxide on sputtered lithium samples. Status of related planned experiments at LTX- β will also be discussed. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725 and DE-AC02-09CH11466. BEK acknowledges support of this work by the U.S. DOE, Office of Science/FES under Award Number DE-SC0012890.

  1. SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Xu, Chang-Han; Chiu, Yi-Fan; Yeh, Po-Wei; Chen, Jian-Zhang

    2016-08-01

    SnO2/CNT electrodes for supercapacitors are fabricated by first screen-printing pastes containing SnO2 nanoparticles and CNTs on carbon cloth, following which nitrogen atmospheric pressure plasma jet (APPJ) sintering is performed at various APPJ scan rates. The APPJ scan rates change the time intervals for which the reactive plasma species and the heat of the nitrogen APPJs influence the designated sintering spot on the carbon cloth, resulting in APPJ-sintered SnO2/CNT nanocomposites with different properties. The water contact angle decreases with the APPJ scan rate. The improved wettability can facilitate the penetration of the electrolyte into the nanopores of the SnO2/CNT nanocomposites, thereby improving the charge storage and specific capacitance of the supercapacitors. Among the three tested APPJ scan rates, 1.5, 3, and 6 mm s-1, the SnO2/CNT supercapacitor sintered by APPJ under the lowest APPJ scan rate of 1.5 mm s-1 shows the best specific capacitance of ˜90 F g-1 as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s-1. A high APPJ scan rate may result in low degree of materials activation and sintering, leading to poorer performance of SnO2/CNT supercapacitors. The results suggest the feasibility of an APPJ roll-to-roll process for the fabrication of SnO2/CNT nanocomposite supercapacitors.

  2. Application of plasma gas modulation technique for improvement of the measurement of Mn emission intensity in ICP-AES.

    PubMed

    Kubota, K; Wagatsuma, K

    2001-01-02

    A phase-sensitive detection technique associated with a digital lock-in amplifier was applied for an improvement of the detection in ICP-AES. The lock-in amplifier works as an extremely narrow band pass filter. It can pick up the modulated signal, which has the same frequency as the reference signal, from any noise and thus it can improve the signal-to-noise ratio. Modulation of the ICP can be performed by mixing small amounts of air to argon as the outer gas cyclically, because the emission intensities of ionic lines are enhanced by using the mixed gas. An electromagnetic valve, which is placed in the outer-gas flow path, causes periodic variation in the air gas in the outer-gas flow, and thus switching the valve on/off can modulate the ICP. By choosing the appropriate conditions, the addition of air gas enhances the emission intensity of ionic lines more than that of the background, thus leading to improved signal-to-background ratios. At the same time the lock-in amplifier further enhances the ionic emissions because it picks up only the modulated part of the signal. By applying the plasma gas flow modulation technique the detection and the determination limits of the Mn II 257.610 nm line are improved in comparison with the conventional method. A change in plasma shape corresponding to the modulation frequency is observed when the ICP is modulated.

  3. Is supplementation efficacious in maintaining adequate plasma levels of vitamin a and e for thalassemic patients undergoing hematopoietic stem cell transplantation? A cross-sectional study.

    PubMed

    Hajimahmoodi, Mannan; Hadjibabaie, Molouk; Hamidieh, Amir-Ali; Ahmadvand, Alireza; Kazempanah, Sahebeh; Sadeghi, Naficeh; Mansouri, Ava; Ghavamzadeh, Ardeshir

    2014-02-01

    Thalassemia along with hematopoietic stem cell transplantation (HSCT) can lead to major oxidative stress. Vitamins A and E are antioxidants which protect membrane from lipid peroxidation. We sought to determine for the first time, whether vitamins A and E supplementation is efficacious in maintaining or increasing plasma level of these vitamins in thalassemic children undergoing HSCT. A cross-sectional study was performed on 50 children with β-thalassemia major hospitalized for HSCT. Patients took a daily multivitamin. Plasma vitamins A and E levels were measured at four different times: on admission, HSCT day (day 0), day 7 and day 14 after HSCT. Findings : Plasma vitamin A and E were abnormal on admission in most patients (62.0% and 60.0% respectively). Ratio of patient with normal to abnormal plasma level of the vitamins improved from baseline to a peak on day 7 then deteriorated afterward until day 14. There was an increasingly positive correlation between daily oral intake and plasma vitamin A at different times, but plasma vitamin E showed inverse correlation at first which tended towards no correlation subsequently. In multivariate analysis, supplementation significantly changed plasma level of vitamin A at different measurement time (P=0.001) within study subjects. But, plasma level of vitamin E showed no significant difference (P=0.2). Our findings suggest that oral supplementation could have beneficial effects due to increasing plasma vitamin A level and preventing plasma vitamin E depletion.

  4. Report of the Plasma Physics and Environmental Perturbation Laboratory (PPEPL) working groups. Volume 1: Plasma probes, wakes, and sheaths working group

    NASA Technical Reports Server (NTRS)

    1974-01-01

    It is shown in this report that comprehensive in-situ study of all aspects of the entire zone disturbance caused by a body in a flowing plasma resulted in a large number if requirements on the shuttle-PPEPL facility. A large amount of necessary in-situ observation can be obtained by adopting appropriate modes of performing the experiments. Requirements are indicated for worthwhile studies, of some aspects of the problems, which can be carried out effectively while imposing relatively few constraints on the early missions. Considerations for the desired growth and improvement of the PPEPL to facilitate more complete studies in later missions are also discussed. For Vol. 2, see N74-28170; for Vol# 3, see N74-28171.

  5. Ways to improve the efficiency and reliability of radio frequency driven negative ion sources for fusion.

    PubMed

    Kraus, W; Briefi, S; Fantz, U; Gutmann, P; Doerfler, J

    2014-02-01

    Large RF driven negative hydrogen ion sources are being developed at IPP Garching for the future neutral beam injection system of ITER. The overall power efficiency of these sources is low, because for the RF power supply self-excited generators are utilized and the plasma is generated in small cylindrical sources ("drivers") and expands into the source main volume. At IPP experiments to reduce the primary power and the RF power required for the plasma production are performed in two ways: The oscillator generator of the prototype source has been replaced by a transistorized RF transmitter and two alternative driver concepts, a spiral coil, in which the field is concentrated by ferrites, which omits the losses by plasma expansion and a helicon source are being tested.

  6. Use of external magnetic fields in hohlraum plasmas to improve laser-coupling

    DOE PAGES

    Montgomery, D. S.; Albright, B. J.; Barnak, D. H.; ...

    2015-01-13

    Efficient coupling of laser energy into hohlraum targets is important for indirect drive ignition. Laser-plasma instabilities can reduce coupling, reduce symmetry, and cause preheat. We consider the effects of an external magnetic field on laser-energy coupling in hohlraum targets. Experiments were performed at the Omega Laser Facility using low-Z gas-filled hohlraum targets which were placed in a magnetic coil with B z ≤ 7.5-T. We found that an external field B z = 7.5-T aligned along the hohlraum axis results in up to a 50% increase in plasma temperature as measured by Thomson scattering. As a result, the experiments weremore » modeled using the 2-D magnetohydrodynamics package in HYDRA and were found to be in good agreement.« less

  7. Characteristics of a plasma flow field produced by a metal array bridge foil explosion

    NASA Astrophysics Data System (ADS)

    Junying, WU; Long, WANG; Yase, LI; Lijun, YANG; Manzoor, SULTAN; Lang, CHEN

    2018-07-01

    To improve the energy utilization efficiency of metal bridge foil explosion, and increase the function range of plasmas, array bridge foil explosion experiments with different structures were performed. A Schlieren photographic measurement system with a double-pulse laser source was used to observe the flow field of a bridge foil explosion. The evolution laws of plasmas and shock waves generated by array bridge foil explosions of different structures were analyzed and compared. A multi-phase flow calculation model was established to simulate the electrical exploding process of a metal bridge foil. The plasma equation of state was determined by considering the effect of the changing number of particles and Coulomb interaction on the pressure and internal energy. The ionization degree of the plasma was calculated via the Saha–Eggert equation assuming conditions of local thermal equilibrium. The exploding process of array bridge foils was simulated, and the superposition processes of plasma beams were analyzed. The variation and distribution laws of the density, temperature, pressure, and other important parameters were obtained. The results show that the array bridge foil has a larger plasma jet diameter than the single bridge foil for an equal total area of the bridge foil. We also found that the temperature, pressure, and density of the plasma jet’s center region sharply increase because of the superposition of plasma beams.

  8. Direct targeting of human plasma for matrix-assisted laser desorption/ionization and analysis of plasma proteins by time of flight-mass spectrometry.

    PubMed

    Jin, Ya; Manabe, Takashi

    2005-07-01

    A method to analyze human plasma proteins without fractionation, directly applying a plasma-matrix mixture on the target plate of a matrix-assisted laser desorption/ionization-time of flight-mass spectrometer (MALDI-TOF-MS), has been described. Peaks of ionized plasma proteins could not be detected applying a mixture of an undiluted plasma sample and a matrix solution, but they appeared when the plasma was diluted before mixing with the matrix. Tenfold diluted plasma provided well-resolved protein peaks in the m/z range from 4000 to 30,000. The addition of a simple post-crystallization washing procedure performed on the target plate further improved the quality of mass spectra. We numbered 58 peaks in the range of 4-160 kDa and 32 out of which were assigned to the plasma protein species which have been reported. Especially high sensitivity and resolution were obtained in the region < 30 kDa, where multiple isoforms of apolipoprotein A-I, apolipoprotein A-II, apolipoprotein C-I, apolipoprotein C-II, apolipoprotein C-III, and transthyretin could be assigned. Various post-translational modifications are involved in the isoforms, e.g., proteolytic cleavage, glycosylation and chemical modifications. This method will become complementary with the present electrophoretic techniques, especially for the analysis of low-molecular-mass proteins.

  9. Alternative modeling methods for plasma-based Rf ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. Inmore » particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.« less

  10. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.

  11. Pseudoephedrine and preexercise feeding: influence on performance.

    PubMed

    Pritchard-Peschek, Kellie R; Osborne, Mark A; Slater, Gary J; Taaffe, Dennis R; Jenkins, David G

    2013-06-01

    This study examined the influence of preexercise food intake on plasma pseudoephedrine (PSE) concentrations and subsequent high-intensity exercise. In addition, urinary PSE concentrations were measured under the same conditions and compared with the present threshold of the World Anti-Doping Agency (WADA). Ten highly trained male cyclists and triathletes (age = 30.6 ± 6.6 yr, body mass [BM] = 72.9 ± 5.1 kg, and V˙O2max = 64.8 ± 4.5 mL·kg·min; mean ± SD) undertook four cycling time trials (TT), each requiring the completion of a set amount of work (7 kJ·kg BM) in the shortest possible time. Participants were randomized into a fed or nonfed condition and orally ingested 2.8 mg·kg BM of PSE or a placebo (PLA) 90 min before exercise; in the fed trials, they consumed a meal providing 1.5 g·kg BM of CHO. Venous blood was sampled at 30, 50, and 70 min and pre-warm-up and postexercise for the analysis of plasma PSE and catecholamine concentrations, and urine was also collected for the analysis of PSE concentration. Independent of the preexercise meal, 2.8 mg·kg BM of PSE did not significantly improve cycling TT performance. The fed trials resulted in lower plasma PSE concentrations at all time points compared with the nonfed trials. Both plasma epinephrine and blood lactate concentrations were higher in the PSE compared with the PLA trials, and preexercise and postexercise urinary PSE concentrations were significantly higher than the threshold (150 μg·mL) used by WADA to determine illicit PSE use. Irrespective of the preexercise meal, cycling TT performance of approximately 30 min was not improved after PSE supplementation. Furthermore, 2.8 mg·kg BM of PSE taken 90 min before exercise, with or without food, resulted in urinary PSE concentrations exceeding the present WADA threshold.

  12. An ablative pulsed plasma thruster with a segmented anode

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Ren, Junxue; Tang, Haibin; Ling, William Yeong Liang; York, Thomas M.

    2018-01-01

    An ablative pulsed plasma thruster (APPT) design with a ‘segmented anode’ is proposed in this paper. We aim to examine the effect that this asymmetric electrode configuration (a normal cathode and a segmented anode) has on the performance of an APPT. The magnetic field of the discharge arc, plasma density in the exit plume, impulse bit, and thrust efficiency were studied using a magnetic probe, Langmuir probe, thrust stand, and mass bit measurements, respectively. When compared with conventional symmetric parallel electrodes, the segmented anode APPT shows an improvement in the impulse bit of up to 28%. The thrust efficiency is also improved by 49% (from 5.3% to 7.9% for conventional and segmented designs, respectively). Long-exposure broadband emission images of the discharge morphology show that compared with a normal anode, a segmented anode results in clear differences in the luminous discharge morphology and better collimation of the plasma. The magnetic probe data indicate that the segmented anode APPT exhibits a higher current density in the discharge arc. Furthermore, Langmuir probe data collected from the central exit plane show that the peak electron density is 75% higher than with conventional parallel electrodes. These results are believed to be fundamental to the physical mechanisms behind the increased impulse bit of an APPT with a segmented electrode.

  13. Bioactivity of plasma implanted biomaterials

    NASA Astrophysics Data System (ADS)

    Chu, Paul K.

    2006-01-01

    Plasma immersion ion implantation and deposition (PIII&D) is an effective technique to enhance the surface bioactivity of materials. In this paper, recent progress made in our laboratory on plasma surface modification of biomedical materials is described. NiTi alloys have unique super-elastic and shape memory properties and are suitable for orthopedic implants but the leaching of toxic Ni may pose health hazards in humans. We have recently investigated the use of acetylene, oxygen and nitrogen PIII&D to prevent out-diffusion of nickel and good results have been obtained. Silicon is the most important material in the microelectronics industry but its surface biocompatibility has not been investigated in details. We have recently performed hydrogen PIII into silicon to improve the surface bioactivity and observed biomimetic growth of apatite on the surface in simulated body fluids. Diamond-like carbon (DLC) is widely used in the industry due to its excellent mechanical properties and chemical inertness and by incorporation of elements such as nitrogen and phosphorus, the surface blood compatibility can be improved. The properties as well as in vitro biological test results are discussed in this article.

  14. Analytical interference of 4-hydroxy-3-methoxymethamphetamine with the measurement of plasma free normetanephrine by ultra-high pressure liquid chromatography-tandem mass spectrometry.

    PubMed

    Dunand, Marielle; Donzelli, Massimiliano; Rickli, Anna; Hysek, Cédric M; Liechti, Matthias E; Grouzmann, Eric

    2014-08-01

    The diagnosis of pheochromocytoma relies on the measurement of plasma free metanephrines assay whose reliability has been considerably improved by ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Here we report an analytical interference occurring between 4-hydroxy-3-methoxymethamphetamine (HMMA), a metabolite of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy"), and normetanephrine (NMN) since they share a common pharmacophore resulting in the same product ion after fragmentation. Synthetic HMMA was spiked into plasma samples containing various concentrations of NMN and the intensity of the interference was determined by UPLC-MS/MS before and after improvement of the analytical method. Using a careful adjustment of chromatographic conditions including the change of the UPLC analytical column, we were able to distinguish both compounds. HMMA interference for NMN determination should be seriously considered since MDMA activates the sympathetic nervous system and if confounded with NMN may lead to false-positive tests when performing a differential diagnostic of pheochromocytoma. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  15. Plasma Inter-Particle and Particle-Wall Interactions

    NASA Astrophysics Data System (ADS)

    Patino, Marlene Idy

    An improved understanding of plasma inter-particle and particle-wall interactions is critical to the advancement of plasma devices used for space electric propulsion, fusion, high-power communications, and next-generation energy systems. Two interactions of particular importance are (1) ion-atom collisions in the plasma bulk and (2) secondary electron emission from plasma-facing materials. For ion-atom collisions, interactions between fast ions and slow atoms are commonly dominated by charge-exchange and momentum-exchange collisions that are important to understanding the performance and behavior of many plasma devices. To investigate this behavior, this work developed a simple, well-characterized experiment that accurately measures the effects of high energy xenon ions incident on a background of xenon neutral atoms. By comparing these results to both analytical and computational models of ion-atom interactions, we discovered the importance of (1) accurately treating the differential cross-sections for momentum-exchange and charge-exchange collisions over all neutral background pressures, and (2) commonly overlooked interactions, including ion-induced electron emission and neutral-neutral ionization collisions, at high pressures. Data provide vital information on the angular scattering distributions of charge-exchange and momentum-exchange ions at 1.5 keV relevant for ion thrusters, and serve as canonical data for validation of plasma models. This work also investigates electron-induced secondary electron emission behavior relevant to materials commonly considered for plasma thrusters, fusion systems, and many other plasma devices. For such applications, secondary electron emission can alter the sheath potential, which can significantly affect device performance and life. Secondary electron emission properties were measured for materials that are critical to the efficient operation of many plasma devices, including: graphite (for tokamaks, ion thrusters, and traveling wave tubes), lithium (for tokamak walls), tungsten (the most promising material for future tokamaks such as ITER), and nickel (for plasma-enhanced chemistry). Measurements were made for incident electron energies up to 1.5 keV and angles between 0 and 78°. The most significant results from these measurements are as follows: (1) first-ever measurements of naturally-forming tungsten fuzz show a more than 40% reduction in secondary electron emission and an independence on incidence angle; (2) original measurements of lithium oxide show a 2x and 6x increase in secondary electron emission for 17% and 100% oxidation; and (3) unique measurements of Ni(110) single crystal show extrema in secondary electron emission when incidence angle is varied and an up to 36% increase at 0° over polycrystalline nickel. Each of these results are important discoveries for improving plasma devices. For example, from (1), the growth of tungsten fuzz in tokamaks is desirable for minimizing adverse secondary electron emission effects. From (2), the opposite is true for tokamaks with lithium coatings which are oxidized by typical residual gases. From (3), secondary electron emission from Ni(110) catalysts in plasma-enhanced chemistry may facilitate further reactions.

  16. Diesel NO(x) aftertreatment by combined process using temperature swing adsorption, NO(x) reduction by nonthermal plasma, and NO(x) recirculation: improvement of the recirculation process.

    PubMed

    Yoshida, Keiichiro; Kuwahara, Takuya; Kuroki, Tomoyuki; Okubo, Masaaki

    2012-09-15

    NO(x) emitted from a stationary diesel engine generator was treated with a hybrid system comprising NO(x) reduction by nonthermal plasma (NTP) and temperature swing adsorption (TSA) driven by engine waste heat. TSA produces a low-volume gas mixture of N(2) and highly concentrated NO(x), which is effectively reduced by NTP treatment. Improved treatment performance and efficiency are achieved by re-injecting the NTP-treated gas mixture into the engine intake. The system comprises two switchable adsorption chambers; the operation of this system was simulated by using a one-chamber system. The maximum energy efficiency for NO(x) treatment is 200 g(NO(2))/kWh. The respective contributions of NTP and injection of N(2) and NO(x) to the performance were theoretically analyzed. The analysis predicts that high energy efficiency and high NO(x)-removal efficiency can be simultaneously achieved with this system but miniaturization of the adsorption chambers will be a challenge. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Ion extraction from a saddle antenna RF surface plasma source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R. P.; Han, B.

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation around 3 to 5 mA/cm{sup 2} per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H{sup −} ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed bymore » heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H{sup −} beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (∼1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (∼0.8 kW in the plasma) with production of Ic=5 mA, Iex ∼15 mA (Uex=8 kV, Uc=14 kV)« less

  18. Ion extraction from a saddle antenna RF surface plasma source

    NASA Astrophysics Data System (ADS)

    Dudnikov, V.; Johnson, R. P.; Han, B.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.; Breitschopf, J.; Dudnikova, G.

    2015-04-01

    Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ˜1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ˜4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (˜1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (˜0.8 kW in the plasma) with production of Ic=5 mA, Iex ˜15 mA (Uex=8 kV, Uc=14 kV).

  19. Platelet-rich plasma treatment improves outcomes for chronic proximal hamstring injuries in an athletic population.

    PubMed

    Fader, Ryan R; Mitchell, Justin J; Traub, Shaun; Nichols, Roger; Roper, Michelle; Mei Dan, Omer; McCarty, Eric C

    2014-01-01

    chronic proximal hamstring tendinopathies is a disabling activity related condition. Currently, there is no well-accepted or extensively documented non-operative treatment option that provides consistently successful results. to evaluate the efficacy of ultrasound guided platelet-rich plasma injections in treating chronic proximal hamstring tendinopathies. a total of 18 consecutive patients were retrospectively analyzed. All patients received a single injection of platelet rich plasma via ultra-sound guidance by a single radiologist. Outcome measures included a questionnaire evaluating previous treatments, visual analog scale (VAS) for pain, subjective improvement, history of injury, and return to activity. the patient population included 12 females and 6 males. The average age at the time of the injection was 42.6 years (19-60). Provocative activities included running, biking, swimming. The average body mass index of patients was 22.9 (17.2-30.2). The average time of chronic pain prior to receiving the first injection was 32.6 months (6-120). All patients had attempted other forms of non-surgical treatment prior to entering the study. The average VAS pre-injection was 4.6 (0-8). Six months after the injection, 10/18 patients had 80% or greater improvement in their VAS. Overall, the average improvement was 63% (5-100). The only documented side effect was post-injection discomfort that resolved within seventy-two hours. chronic hamstring tendinopathy is a debilitating condition secondary to the pain, which limits an athlete's ability to perform. For refractory cases of chronic insertional proximal hamstring injuries, platelet-rich plasma injections are safe and show benefit in the majority of patients in our study, allowing return to pre-injury activities. Case series; Level of evidence, 4.

  20. Platelet-rich plasma treatment improves outcomes for chronic proximal hamstring injuries in an athletic population

    PubMed Central

    Fader, Ryan R.; Mitchell, Justin J.; Traub, Shaun; Nichols, Roger; Roper, Michelle; Mei Dan, Omer; McCarty, Eric C.

    2014-01-01

    Summary Background: chronic proximal hamstring tendinopathies is a disabling activity related condition. Currently, there is no well-accepted or extensively documented non-operative treatment option that provides consistently successful results. Purpose: to evaluate the efficacy of ultrasound guided platelet-rich plasma injections in treating chronic proximal hamstring tendinopathies. Methods: a total of 18 consecutive patients were retrospectively analyzed. All patients received a single injection of platelet rich plasma via ultra-sound guidance by a single radiologist. Outcome measures included a questionnaire evaluating previous treatments, visual analog scale (VAS) for pain, subjective improvement, history of injury, and return to activity. Results: the patient population included 12 females and 6 males. The average age at the time of the injection was 42.6 years (19–60). Provocative activities included running, biking, swimming. The average body mass index of patients was 22.9 (17.2–30.2). The average time of chronic pain prior to receiving the first injection was 32.6 months (6–120). All patients had attempted other forms of non-surgical treatment prior to entering the study. The average VAS pre-injection was 4.6 (0–8). Six months after the injection, 10/18 patients had 80% or greater improvement in their VAS. Overall, the average improvement was 63% (5–100). The only documented side effect was post-injection discomfort that resolved within seventy-two hours. Conclusion: chronic hamstring tendinopathy is a debilitating condition secondary to the pain, which limits an athlete’s ability to perform. For refractory cases of chronic insertional proximal hamstring injuries, platelet-rich plasma injections are safe and show benefit in the majority of patients in our study, allowing return to pre-injury activities. Study Design: Case series; Level of evidence, 4. PMID:25767784

  1. The Influence of Current Density and Magnetic Field Topography in Optimizing the Performance, Divergence, and Plasma Oscillations of High Specific Impulse Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Jankovsky, Robert S.

    2003-01-01

    Recent studies of xenon Hall thrusters have shown peak efficiencies at specific impulses of less than 3000 s. This was a consequence of modern Hall thruster magnetic field topographies, which have been optimized for 300 V discharges. On-going research at the NASA Glenn Research Center is investigating this behavior and methods to enhance thruster performance. To conduct these studies, a laboratory model Hall thruster that uses a pair of trim coils to tailor the magnetic field topography for high specific impulse operation has been developed. The thruster-the NASA-173Mv2 was tested to determine how current density and magnetic field topography affect performance, divergence, and plasma oscillations at voltages up to 1000 V. Test results showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. At 1000 V, 10 milligrams per second the total specific impulse was 3390 s and the total efficiency was 60.8%. Plume divergence decreased at 400-1000 V, but increased at 300-400 V as the result of plasma oscillations. The dominant oscillation frequency steadily increased with voltage, from 14.5 kHz at 300 V, to 22 kHz at 1000 V. An additional oscillatory mode in the 80-90 kHz frequency range began to appear above 500 V. The use of trim coils to modify the magnetic field improved performance while decreasing plume divergence and the frequency and magnitude of plasma oscillations.

  2. Improved methods for nightside time domain Lunar Electromagnetic Sounding

    NASA Astrophysics Data System (ADS)

    Fuqua-Haviland, H.; Poppe, A. R.; Fatemi, S.; Delory, G. T.; De Pater, I.

    2017-12-01

    Time Domain Electromagnetic (TDEM) Sounding isolates induced magnetic fields to remotely deduce material properties at depth. The first step of performing TDEM Sounding at the Moon is to fully characterize the dynamic plasma environment, and isolate geophysically induced currents from concurrently present plasma currents. The transfer function method requires a two-point measurement: an upstream reference measuring the pristine solar wind, and one downstream near the Moon. This method was last performed during Apollo assuming the induced fields on the nightside of the Moon expand as in an undisturbed vacuum within the wake cavity [1]. Here we present an approach to isolating induction and performing TDEM with any two point magnetometer measurement at or near the surface of the Moon. Our models include a plasma induction model capturing the kinetic plasma environment within the wake cavity around a conducting Moon, and a geophysical forward model capturing induction in a vacuum. The combination of these two models enable the analysis of magnetometer data within the wake cavity. Plasma hybrid models use the upstream plasma conditions and interplanetary magnetic field (IMF) to capture the wake current systems formed around the Moon. The plasma kinetic equations are solved for ion particles with electrons as a charge-neutralizing fluid. These models accurately capture the large scale lunar wake dynamics for a variety of solar wind conditions: ion density, temperature, solar wind velocity, and IMF orientation [2]. Given the 3D orientation variability coupled with the large range of conditions seen within the lunar plasma environment, we characterize the environment one case at a time. The global electromagnetic induction response of the Moon in a vacuum has been solved numerically for a variety of electrical conductivity models using the finite-element method implemented within the COMSOL software. This model solves for the geophysically induced response in vacuum to any driving transient event for any specified 3D conductivity profile. Our models fit the analytic solutions to a Root-Mean-Square Error of better than 1%. Solutions are non-unique, however, serve to better understand and constrain the global interior composition and 3D structure of the Moon. [1] Dyal & Parkin (1971) JGR; [2] Fatemi et al. (2013) GRL.

  3. Overview of C-2W Field-Reversed Configuration Experimental Program

    NASA Astrophysics Data System (ADS)

    Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Romero, J.; Smirnov, A.; Song, Y.; Thompson, M. C.; van Drie, A.; Yang, X.; Ivanov, A. A.; TAE Team

    2017-10-01

    Tri Alpha Energy's research has been devoted to producing a high temperature, stable, long-lived field-reversed configuration (FRC) plasma state by neutral-beam injection (NBI) and edge biasing/control. C-2U experiments have demonstrated drastic improvements in particle and energy confinement properties of FRC's, and the plasma performance obtained via 10 MW NBI has achieved plasma sustainment of up to 5 ms and plasma (diamagnetism) lifetimes of 10 + ms. The emerging confinement scaling, whereby electron energy confinement time is proportional to a positive power of the electron temperature, is very attractive for higher energy plasma confinement; accordingly, verification of the observed Te scaling law will be a key future research objective. The new experimental device, C-2W (now also called ``Norman''), has the following key subsystem upgrades from C-2U: (i) higher injected power, optimum energies, and extended pulse duration of the NBI system; (ii) installation of inner divertors with upgraded edge-biasing systems; (iii) fast external equilibrium/mirror-coil current ramp-up capability; and (iv) installation of trim/saddle coils for active feedback control of the FRC plasma. This paper will review highlights of the C-2W program.

  4. Effects of a Non Thermal Plasma Treatment Alone or in Combination with Gemcitabine in a MIA PaCa2-luc Orthotopic Pancreatic Carcinoma Model

    PubMed Central

    Brullé, Laura; Vandamme, Marc; Riès, Delphine; Martel, Eric; Robert, Eric; Lerondel, Stéphanie; Trichet, Valérie; Richard, Serge; Pouvesle, Jean-Michel; Le Pape, Alain

    2012-01-01

    Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun) was developed and its evaluation was performed on an orthotopic mouse model of human pancreatic carcinoma using a MIA PaCa2-luc bioluminescent cell line. The aim of this study was to characterize this pancreatic carcinoma model and to determine the effects of Plasma Gun alone or in combination with gemcitabine. During a 36 days period, quantitative BLI could be used to follow the tumor progression and we demonstrated that plasma gun induced an inhibition of MIA PaCa2-luc cells proliferation in vitro and in vivo and that this effect could be improved by association with gemcitabine possibly thanks to its radiosensitizing properties. PMID:23300736

  5. Immunodepletion Plasma Proteomics by TripleTOF 5600 and Orbitrap Elite/LTQ-Orbitrap Velos/Q Exactive Mass Spectrometers

    PubMed Central

    Patel, Bhavinkumar B.; Kelsen, Steven G.; Braverman, Alan; Swinton, Derrick J.; Gafken, Philip R.; Jones, Lisa A.; Lane, William S.; Neveu, John M.; Leung, Hon-Chiu E.; Shaffer, Scott A.; Leszyk, John D.; Stanley, Bruce A.; Fox, Todd E.; Stanley, Anne; Hall, Michael J.; Hampel, Heather; South, Christopher D.; de la Chapelle, Albert; Burt, Randall W.; Jones, David A.; Kopelovich, Levy; Yeung, Anthony T.

    2013-01-01

    Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions. 480 LC-MS/MS runs delivered >250 GB of data in two months. Several analysis algorithms were compared. At 1 % false discovery rate, the relative comparative findings concluded that the Thermo Scientific Q Exactive Mass Spectrometer resulted in the highest number of identified proteins and unique sequences with iTRAQ quantitation. The confidence of iTRAQ fold-change for each protein is dependent on the overall ion statistics (Mascot Protein Score) attainable by each instrument. The benchmarking also suggested how to further improve the mass spectrometry parameters and HPLC conditions. Our findings highlight the special challenges presented by the low abundance peptide ions of iTRAQ plasma proteome because the dynamic range of plasma protein abundance is uniquely high compared with cell lysates, necessitating high instrument sensitivity. PMID:24004147

  6. Design of an Integrated Plasma Control System and Extension of XSCTools to Ignitor

    NASA Astrophysics Data System (ADS)

    Albanese, R.; Ambrosino, G.; Artaserse, G.; Pironti, A.; Rubinacci, G.; Villone, F.; Ramogida, G.

    2010-11-01

    The performance of the integrated system for vertical stability, shape and plasma current control for the Ignitor machine has been assessed by means of the CREATELlinearized model of plasma responseootnotetextR. Albanese, F. Villone, Nucl. Fusion 38, 723 (1998) against a set of disturbances for the reference 11 MA limiter configuration and the 9 MA Double Null configuration. A new design, based on the methodology of the eXtreme Shape Controller (XSC) at JET, has been tested : by using all the shape control circuits with the exception of those used to control the vertical stability is possible to control up to four independent linear combinations of the 36 plasma-wall gaps. The results point out a substantial improvement in shape recovery, especially in the presence of a disturbance in li. The new shape controller can also automatically generate, via feedback control, new plasma shapes in the proximity of a given equilibrium configuration. The XSC ToolsootnotetextG. Ambrosino, R. Albanese et al., Fus. Eng.& Des. 74, 521 (2005) have been adapted and extended to develop linearized Ignitor models including 2D eddy currents and to solve inverse linearized plasma equilibria.

  7. Induction of angiogenesis and neovascularization in adjacent tissue of plasma-collagen-coated silicone implants.

    PubMed

    Ring, Andrej; Langer, Stefan; Tilkorn, Daniel; Goertz, Ole; Henrich, Lena; Stricker, Ingo; Steinau, Hans-Ulrich; Steinstraesser, Lars; Hauser, Joerg

    2010-09-28

    Formation of encapsulating, avascular fibrous tissue is deemed to decrease implant's biocompatibility and versatility. We investigated whether plasma-mediated collagen coating possesses the ability to enhance neovascularization in the vicinity of silicone implants. Plasma-treated collagen-I-coated silicone samples were placed into the dorsal skinfold chambers of female balb/c mice (n = 10). Conventional silicone served as control (n = 10). Intravital microscopy was performed within implant's surrounding tissue on days 1, 5, and 10. Functional vessel density, intervascular distance, vessel diameter, microvascular permeability, red blood cell velocity, and leukocyte-endothelium interaction were determined. Enhanced angiogenesis in the tissue surrounding plasma-pretreated collagen-coated implants was noted. Significant increase of functional vessel density due to vascular new development was observed (t test, P < .05). Analyses of microvascular permeability and red blood cell velocity displayed stable perfusion of the vascular network neighboring the surface-modified implants. Intensified vascularity due to induced angiogenesis and neovascularization in the tissue surrounding plasma-collagen-coated samples were observed. These results indicate that plasma-mediated collagen coating might be a promising technology in order to improve the biocompatibility and versatility of silicone implants.

  8. Induction of Angiogenesis and Neovascularization in Adjacent Tissue of Plasma-Collagen–Coated Silicone Implants

    PubMed Central

    Ring, Andrej; Langer, Stefan; Tilkorn, Daniel; Goertz, Ole; Henrich, Lena; Stricker, Ingo; Steinau, Hans-Ulrich; Steinstraesser, Lars; Hauser, Joerg

    2010-01-01

    Objective: Formation of encapsulating, avascular fibrous tissue is deemed to decrease implant's biocompatibility and versatility. We investigated whether plasma-mediated collagen coating possesses the ability to enhance neovascularization in the vicinity of silicone implants. Methods: Plasma-treated collagen-I–coated silicone samples were placed into the dorsal skinfold chambers of female balb/c mice (n = 10). Conventional silicone served as control (n = 10). Intravital microscopy was performed within implant's surrounding tissue on days 1, 5, and 10. Functional vessel density, intervascular distance, vessel diameter, microvascular permeability, red blood cell velocity, and leukocyte-endothelium interaction were determined. Results: Enhanced angiogenesis in the tissue surrounding plasma-pretreated collagen-coated implants was noted. Significant increase of functional vessel density due to vascular new development was observed (t test, P < .05). Analyses of microvascular permeability and red blood cell velocity displayed stable perfusion of the vascular network neighboring the surface-modified implants. Conclusion: Intensified vascularity due to induced angiogenesis and neovascularization in the tissue surrounding plasma-collagen–coated samples were observed. These results indicate that plasma-mediated collagen coating might be a promising technology in order to improve the biocompatibility and versatility of silicone implants. PMID:20936137

  9. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations.

    PubMed

    Nielsen, Tenna Ruest Haarmark; Fonvig, Cilius Esmann; Dahl, Maria; Mollerup, Pernille Maria; Lausten-Thomsen, Ulrik; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2018-01-01

    The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment. 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6-21.7), and median BMI SDS 2.8 (range 1.3-5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4-7.4). Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), non-HDL, and triglycerides (TG)) were available in 469 individuals (264 girls). Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations. At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10-4) and positively with TG (p = 9.7*10-6). Reductions in BMI SDS were associated with reductions in total body fat percentage (p<2*10-16) and percent truncal body fat (p<2*10-16). Furthermore, reductions in BMI SDS were associated with improvements in concentrations of TC, LDL, HDL, non-HDL, LDL/HDL-ratio, and TG (all p <0.0001). Changes in body fat percentage seemed to mediate the changes in plasma concentrations of TC, LDL, and non-HDL, but could not alone explain the changes in HDL, LDL/HDL-ratio or TG. Among 81 individuals with available lipid concentrations, who increased their BMI SDS, 61% improved their body composition, and 80% improved their lipid concentrations. Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition and lipid concentrations may improve.

  10. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations

    PubMed Central

    Fonvig, Cilius Esmann; Dahl, Maria; Mollerup, Pernille Maria; Lausten-Thomsen, Ulrik; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2018-01-01

    Objective The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment. Methods 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6–21.7), and median BMI SDS 2.8 (range 1.3–5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4–7.4). Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), non-HDL, and triglycerides (TG)) were available in 469 individuals (264 girls). Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations. Results At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10−4) and positively with TG (p = 9.7*10−6). Reductions in BMI SDS were associated with reductions in total body fat percentage (p<2*10−16) and percent truncal body fat (p<2*10−16). Furthermore, reductions in BMI SDS were associated with improvements in concentrations of TC, LDL, HDL, non-HDL, LDL/HDL-ratio, and TG (all p <0.0001). Changes in body fat percentage seemed to mediate the changes in plasma concentrations of TC, LDL, and non-HDL, but could not alone explain the changes in HDL, LDL/HDL-ratio or TG. Among 81 individuals with available lipid concentrations, who increased their BMI SDS, 61% improved their body composition, and 80% improved their lipid concentrations. Conclusion Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition and lipid concentrations may improve. PMID:29444114

  11. Improving Biopharmaceutical Properties of Vinpocetine Through Cocrystallization.

    PubMed

    Golob, Samuel; Perry, Miranda; Lusi, Matteo; Chierotti, Michele R; Grabnar, Iztok; Lassiani, Lucia; Voinovich, Dario; Zaworotko, Michael J

    2016-12-01

    Vinpocetine is a poorly water soluble weakly basic drug (pK a  = 7.1) used for the treatment of several cerebrovascular and cognitive disorders. Because existing formulations exhibit poor bioavailability and scarce absorption, a dosage form with improved pharmacokinetic properties is highly desirable. Cocrystallization represents a promising approach to generate diverse novel crystal forms and to improve the aqueous solubility and in turn the oral bioavailability. In this article, a novel ionic cocrystal of vinpocetine is described, using boric acid as a coformer, and fully characterized (by means of differential scanning calorimetry, solid-state nuclear magnetic resonance, powder and single-crystal X-ray diffraction, and powder dissolution test). Pharmacokinetic performance was also tested in a human pilot study. This pharmaceutical ionic cocrystal exhibits superior solubilization kinetics and modulates important pharmacokinetic values such as maximum concentration in plasma (C max ), time to maximum concentration (t max ), and area under the plasma concentration-time curve (AUC) of the poorly soluble vinpocetine and it therefore offers an innovative approach to improve its bioavailability. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Spontaneous quasi single helicity regimes in EXTRAP T2R reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Menmuir, S.; Cecconello, M.

    2007-11-01

    In recent years, good progress toward a better understanding and control of the plasma performance in reversed-field pinch devices has been made. These improvements consist both of the discovery of spontaneous plasma regimes, termed the quasi single helicity (QSH) regime, in which part of the plasma core is no longer stochastic, and of the development of techniques for active control of plasma instabilities. In this paper, a systematic study of spontaneous QSH in the EXTRAP T2R device [P. R. Brunsell, H. Bergsaker, M. Cecconello et al., Plasma Phys. Control. Fusion 43, 1457 (2001)] is presented. In this device, QSH states can occur spontaneously and it is associated with magnetic and thermal structures. A statistical analysis to determine the most favorable experimental conditions to have a transition to the QSH regime will be presented. The results described here are useful to understand the underlying properties of QSH regimes in view of future applications of the QSH active control in EXTRAP T2R; they are also important to have a comparison with the QSH studied in other devices.

  13. Ion Thruster Discharge Performance Per Magnetic Field Topography

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Goebel, Dan

    2006-01-01

    DC-ION is a detailed computational model for predicting the plasma characteristics of rain-cusp ion thrusters. The advanced magnetic field meshing algorithm used by DC-ION allows precise treatment of the secondary electron flow. This capability allows self-consistent estimates of plasma potential that improves the overall consistency of the results of the discharge model described in Reference [refJPC05mod1]. Plasma potential estimates allow the model to predict the onset of plasma instabilities, and important shortcoming of the previous model for optimizing the design of discharge chambers. A magnetic field mesh simplifies the plasma flow calculations, for both the ions and the secondary electrons, and significantly reduces numerical diffusion that can occur with meshes not aligned with the magnetic field. Comparing the results of this model to experimental data shows that the behavior of the primary electrons, and the precise manner of their confinement, dictates the fundamental efficiency of ring-cusp. This correlation is evident in simulations of the conventionally sized NSTAR thruster (30 cm diameter) and the miniature MiXI thruster (3 cm diameter).

  14. A basic plasma test for gyrokinetics: GDC turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.

    2017-02-01

    Providing an important step towards validating gyrokinetics under comparatively little-explored conditions, simulations of pressure-gradient-driven plasma turbulence in the Large Plasma Device (LAPD) are compared with experimental observations. The corresponding signatures confirm the existence of a novel regime of turbulence, based on the recently-discovered gradient-driven drift coupling (GDC) instability, which is thus confirmed as a candidate mechanism for turbulence in basic, space and astrophysical plasmas. Despite the limitations of flux-tube gyrokinetics for this scenario, when accounting for box size scaling by applying a scalar factor η =6, agreement between simulations and experiment improves to within a factor of two for key observables: compressional magnetic, density, and temperature fluctuations, both in amplitude and structure. Thus, a first, strong indication is presented that the GDC instability seen in gyrokinetics appears to operate in the experiment and that the essential instability physics is present in the numerical model. Overall, the gyrokinetic framework and its numerical implementation in the Gene code therefore perform well for LAPD plasmas very different from their brethren in fusion experiments.

  15. Teaching an Old Dog an Old Trick: FREE-FIX and Free-Boundary Axisymmetric MHD Equilibrium

    NASA Astrophysics Data System (ADS)

    Guazzotto, Luca

    2015-11-01

    A common task in plasma physics research is the calculation of an axisymmetric equilibrium for tokamak modeling. The main unknown of the problem is the magnetic poloidal flux ψ. The easiest approach is to assign the shape of the plasma and only solve the equilibrium problem in the plasma / closed-field-lines region (the ``fixed-boundary approach''). Often, one may also need the vacuum fields, i.e. the equilibrium in the open-field-lines region, requiring either coil currents or ψ on some closed curve outside the plasma to be assigned (the ``free-boundary approach''). Going from one approach to the other is a textbook problem, involving the calculation of Green's functions and surface integrals in the plasma. However, no tools are readily available to perform this task. Here we present a code (FREE-FIX) to compute a boundary condition for a free-boundary equilibrium given only the corresponding fixed-boundary equilibrium. An improvement to the standard solution method, allowing for much faster calculations, is presented. Applications are discussed. PPPL fund 245139 and DOE grant G00009102.

  16. Plasma Immersion Ion Implantation with Solid Targets for Space and Aerospace Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, R. M.; Goncalves, J. A. N.; Ueda, M.

    2009-01-05

    This paper describes successful results obtained by a new type of plasma source, named as Vaporization of Solid Targets (VAST), for treatment of materials for space and aerospace applications, by means of plasma immersion ion implantation and deposition (PIII and D). Here, the solid element is vaporized in a high pressure glow discharge, being further ionized and implanted/deposited in a low pressure cycle, with the aid of an extra electrode. First experiments in VAST were run using lithium as the solid target. Samples of silicon and aluminum alloy (2024) were immersed into highly ionized lithium plasma, whose density was measuredmore » by a double Langmuir probe. Measurements performed with scanning electron microscopy (SEM) showed clear modification of the cross-sectioned treated silicon samples. X-ray photoelectron spectroscopy (XPS) analysis revealed that lithium was implanted/deposited into/onto the surface of the silicon. Implantation depth profiles may vary according to the condition of operation of VAST. One direct application of this treatment concerns the protection against radiation damage for silicon solar cells. For the case of the aluminum alloy, X-ray diffraction analysis indicated the appearance of prominent new peaks. Surface modification of A12024 by lithium implantation/deposition can lower the coefficient of friction and improve the resistance to fatigue of this alloy. Recently, cadmium was vaporized and ionized in VAST. The main benefit of this element is associated with the improvement of corrosion resistance of metallic substrates. Besides lithium and cadmium, VAST allows to performing PIII and D with other species, leading to the modification of the near-surface of materials for distinct purposes, including applications in the space and aerospace areas.« less

  17. Improved neurocognitive test performance in both arms of the SMART study: impact of practice effect

    PubMed Central

    Grund, Birgit; Wright, Edwina J.; Brew, Bruce J.; Price, Richard W.; Roediger, Mollie P.; Bain, Margaret P.; Hoy, Jennifer F.; Shlay, Judith C.; Vjecha, Michael J.; Robertson, Kevin R.

    2013-01-01

    We evaluated factors associated with improvement in neurocognitive performance in 258 HIV-infected adults with baseline CD4 lymphocyte counts above 350 cells/mm3 randomized to intermittent, CD4-guided antiretroviral therapy (ART) (128 participants) versus continuous therapy (130) in the Neurology substudy of the Strategies for Management of Antiretroviral Therapy trial. Participants were enrolled in Australia, North America, Brazil, and Thailand, and neurocognitive performance was assessed by a five-test battery at baseline and month 6. The primary outcome was change in the quantitative neurocognitive performance z score (QNPZ-5), the average of the z scores of the five tests. Associations of the 6-month change in test scores with ART use, CD4 cell counts, HIV RNA levels, and other factors were determined using multiple regression models. At baseline, median age was 40 years, median CD4 cell count was 513 cells/mm3, 88 % had plasma HIV RNA ≤400 copies/mL, and mean QNPZ-5 was −0.68. Neurocognitive performance improved in both treatment groups by 6 months; QNPZ-5 scores increased by 0.20 and 0.13 in the intermittent and continuous ART groups, respectively (both P<0.001 for increase and P=0.26 for difference). ART was used on average for 3.6 and 5.9 out of the 6 months in the intermittent and continuous ART groups, respectively, but the increase in neurocognitive test scores could not be explained by ART use, changes in CD4, or plasma HIV RNA, which suggests a practice effect. The impact of a practice effect after 6 months emphasizes the need for a control group in HIV studies that measure intervention effects using neurocognitive tests similar to ours. PMID:23943468

  18. Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air.

    PubMed

    Nguyen Dinh, M T; Giraudon, J-M; Vandenbroucke, A M; Morent, R; De Geyter, N; Lamonier, J-F

    2016-08-15

    The total oxidation of trichloroethylene (TCE) in air at low relative humidity (RH=10%) in the presence of CO2 (520ppmv) was investigated in function of energy density using an atmospheric pressure negative DC luminescent glow discharge combined with a cryptomelane catalyst positioned downstream of the plasma reactor at a temperature of 150°C. When using Non-Thermal Plasma (NTP) alone, it is found a low COx (x=1-2) yield in agreement with the detection of gaseous polychlorinated by-products in the outlet stream as well as ozone which is an harmful pollutant. Introduction of cryptomelane enhanced trichloroethylene removal, totally inhibited plasma ozone formation and increased significantly the COx yield. The improved performances of the hybrid system were mainly ascribed to the total destruction of plasma generated ozone on cryptomelane surface to produce active oxygen species. Consequently these active oxygen species greatly enhanced the abatement of the plasma non-reacted TCE and completely destroyed the hazardous plasma generated polychlorinated intermediates. The facile redox of Mn species associated with oxygen vacancies and mobility as well as the textural properties of the catalyst might also contribute as a whole to the efficiency of the process. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task.

    PubMed

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Episodic memory performance improved significantly (p = 0.010) after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA). Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity. © 2015 S. Karger GmbH, Freiburg.

  20. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    PubMed Central

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    Objective It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results Episodic memory performance improved significantly (p = 0.010) after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA). Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity. PMID:26139105

  1. The quiescent H-mode regime for high performance edge localized mode-stable operation in future burning plasmas [The quiescent H-mode regime for high performance ELM-stable operation in future burning plasmas

    DOE PAGES

    Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; ...

    2015-05-26

    For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less

  2. [Plasma fatty acids profile and lipids in Tunisian male elite athletes].

    PubMed

    Omar, Souheil; Sethom, Mohamed M; Feki-Mhiri, Sondes; Hadj-Taeib, Sameh; Ben Ayed, Ikram; Feki, Moncef; Kaabachi, Naziha

    2010-05-01

    Growing interest is accorded to polyunsaturated fatty acids (PUFAs) omega3, which are considered beneficial for health. to investigate the effect of sports on plasma lipids and fatty acids (FAs), especially omega6 and omega3 PUFAs and the omega6/omega3 ratio. The study included 75 Tunisian male elite athletes, practicing team sport and 70 sedentary healthy men as controls. Plasma FAs profile was analyzed by gas chromatography. Comparison between groups was performed using a univariate GLM analysis, with adjustment on age, body mass and energy intake. Athletes showed lower triglycerides and saturated FAs (27.64% +/- 2.17% vs. 30.41% +/- 4.35%) and increased HDL cholesterol and monounsaturated FAs (21.19% +/- 2 44% vs. 19.12% +/- 3.03%). However, there was no significant difference in total PUFAs, omega6 and omega3 families and omega6/omega3 ratio (10.15% +/- 3.24% vs. 10.20% +/- 3.37%) between athletes and sedentary. Sport favorably modifies the profile of plasma FAs by increasing monounsaturated FAs at the expense of saturated FAs, but has no effect on total PUFAs, and omega6 and omega3 families. A diet rich in omega3 PUFAs would lower the omega6/omega3 ratio, in order to improve the health and probably the performance of athletes.

  3. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    DOE PAGES

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; ...

    2015-01-09

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less

  4. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less

  5. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Y. L.; Southwestern Institute of Physics, Chengdu 610041; Wang, Z. H., E-mail: zhwang@swip.ac.cn

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heatmore » and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less

  6. Global performance enhancements via pedestal optimisation on ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Dunne, M. G.; Frassinetti, L.; Beurskens, M. N. A.; Cavedon, M.; Fietz, S.; Fischer, R.; Giannone, L.; Huijsmans, G. T. A.; Kurzan, B.; Laggner, F.; McCarthy, P. J.; McDermott, R. M.; Tardini, G.; Viezzer, E.; Willensdorfer, M.; Wolfrum, E.; The EUROfusion MST1 Team; The ASDEX Upgrade Team

    2017-02-01

    Results of experimental scans of heating power, plasma shape, and nitrogen content are presented, with a focus on global performance and pedestal alteration. In detailed scans at low triangularity, it is shown that the increase in stored energy due to nitrogen seeding stems from the pedestal. It is also shown that the confinement increase is driven through the temperature pedestal at the three heating power levels studied. In a triangularity scan, an orthogonal effect of shaping and seeding is observed, where increased plasma triangularity increases the pedestal density, while impurity seeding (carbon and nitrogen) increases the pedestal temperature in addition to this effect. Modelling of these effects was also undertaken, with interpretive and predictive models being employed. The interpretive analysis shows a general agreement of the experimental pedestals in separate power, shaping, and seeding scans with peeling-ballooning theory. Predictive analysis was used to isolate the individual effects, showing that the trends of additional heating power and increased triangularity can be recoverd. However, a simple change of the effective charge in the plasma cannot explain the observed levels of confinement improvement in the present models.

  7. Plasma-Surface Interactions and RF Antennas

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, D. N.; Beckwith, K.; Davidson, B. D.; Kruger, S. E.; Pankin, A. Y.; Roark, C. M.

    2015-11-01

    Implementation of recently developed finite-difference time-domain (FDTD) modeling techniques on high-performance computing platforms allows RF power flow, and antenna near- and far-field behavior, to be studied in realistic experimental ion-cyclotron resonance heating scenarios at previously inaccessible levels of resolution. We present results and 3D animations of high-performance (10k-100k core) FDTD simulations of Alcator C-Mod's field-aligned ICRF antenna on the Titan supercomputer, considering (a) the physics of slow wave excitation in the immediate vicinity of the antenna hardware and in the scrape-off layer for various edge densities, and (b) sputtering and impurity production, as driven by self-consistent sheath potentials at antenna surfaces. Related research efforts in low-temperature plasma modeling, including the use of proper orthogonal decomposition methods for PIC/fluid modeling and the development of plasma chemistry tools (e.g. a robust and flexible reaction database, principal path reduction analysis capabilities, and improved visualization options), will also be summarized. Supported by U.S. DoE SBIR Phase I/II Award DE-SC0009501 and ALCC/OLCF.

  8. Study on plasma pre-functionalized PVC film grafted with TiO2/PVP to improve blood compatible and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Suganya, Arjunan; Shanmugavelayutham, Gurusamy; Serra Rodríguez, Carmen

    2017-04-01

    Research into the design of new biopolymers/polymer functionalized with nanoparticles is of tremendous interest to the medical sector, particularly with regard to blood-contacting devices. In this present study, a steady blood compatible and active antibacterial coating was fabricated by the grafting of titanium dioxide (TiO2)/polyvinylpyyrolidone (PVP) onto a polyvinyl chloride (PVC) film surface via the direct-current glow discharge plasma method. To enhance the chemical interaction between TiO2/PVP and PVC, the surfaces of the PVC films were functionalized by different plasmas (air, argon, and oxygen) before coating. In this study, the plasma parameters were varied, such as treatment time of about 5-20 min for a constant power of 100 W, potential 300 V, and a constant gas pressure of 2 Pa for air, argon, and oxygen gas environment. Then, the different plasma treatments on the PVC films, TiO2/PVP were grafted using a simple dip-coating method. In addition, the TiO2/PVP-grafted PVC films were characterized by contact angle, attenuated total reflectance Fourier transform infrared spectroscopy, field-emission scanning electron microscope, and x-ray photo electron spectroscopy. Importantly, TiO2/PVP is grafted onto the PVC surface due to the plasma-based retained functionality and demonstrates adhesive efficiency, which was observed by XPS. The bio-stability of the TiO2/PVP-modified PVC film was evaluated by in vitro platelet activation analysis and protein adsorption analysis. Then, the antibacterial properties were evaluated by the agar diffusion method against Escherichia coli. The result reveals that the grafting of TiO2/PVP was slightly higher for the 15 min oxygen plasma-functionalized PVC, which significantly decreases the platelet adhesion and protein adsorption. Moreover, the antibacterial properties of the 15 min oxygen plasma-functionalized PVC with TiO2/PVP-grafted film is also greatly improved compared with an air- and argon-functionalized surface. Our present study demonstrates that the plasma treatment is a beneficial and eco-friendly method to achieve higher hydrophilicity. Furthermore, our results indicated that the plasma-modified PVC exhibits appropriate anti-fouling performance.

  9. Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kal, Subhadeep; Mohanty, Nihar; Farrell, Richard A.; Franke, Elliott; Raley, Angelique; Thibaut, Sophie; Pereira, Cheryl; Pillai, Karthik; Ko, Akiteru; Mosden, Aelan; Biolsi, Peter

    2017-04-01

    Scaling beyond the 7nm technology node demands significant control over the variability down to a few angstroms, in order to achieve reasonable yield. For example, to meet the current scaling targets it is highly desirable to achieve sub 30nm pitch line/space features at back-end of the line (BEOL) or front end of line (FEOL); uniform and precise contact/hole patterning at middle of line (MOL). One of the quintessential requirements for such precise and possibly self-aligned patterning strategies is superior etch selectivity between the target films while other masks/films are exposed. The need to achieve high etch selectivity becomes more evident for unit process development at MOL and BEOL, as a result of low density films choices (compared to FEOL film choices) due to lower temperature budget. Low etch selectivity with conventional plasma and wet chemical etch techniques, causes significant gouging (un-intended etching of etch stop layer, as shown in Fig 1), high line edge roughness (LER)/line width roughness (LWR), non-uniformity, etc. In certain circumstances this may lead to added downstream process stochastics. Furthermore, conventional plasma etches may also have the added disadvantage of plasma VUV damage and corner rounding (Fig. 1). Finally, the above mentioned factors can potentially compromise edge placement error (EPE) and/or yield. Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the features during the etch process. Herein we will also demonstrate a test case on how a combination or plasma assisted and plasma free etch techniques has the potential to improve process performance of a 193nm immersion based self aligned quandruple patterning (SAQP) for BEOL compliant films (an example shown in Fig 2). In addition, we will also present on the application of gas etches for (1) profile improvement, (2) selective mandrel pull (3) critical dimension trim of mandrels, with an analysis of advantages over conventional techniques in terms of LER and EPE.

  10. Theoretical and experimental analysis of analyte transport in a fiber-optic, protein C immuno-biosensor.

    PubMed

    Tang, Liang; Kwon, Hyun J; Kang, Kyung A

    2004-12-30

    Protein C (PC) is an important anticoagulant in human blood plasma, and early diagnosis of PC deficiency is critical for preventing dangerous thromboembolic complications. A fiber-optic PC immuno-biosensor has been under development in our research group for real-time PC-deficiency diagnosis. The sensor has demonstrated a good sensitivity and specificity for quantifying PC in buffered solutions. However, for plasma samples, with a limited sample reaction time, the sensor produced only 30% of the signal intensity of PC in buffer. The high plasma viscosity (1.9 cP) was speculated as the major reason for signal intensity reduction. In this investigation, the sensing performance of the fiber-optic PC biosensor is systematically characterized in terms of physical and chemical properties of the sample media. Theoretical and experimental analyses indicate that the reduced diffusion rate of PC molecules in viscous samples caused the sensing system to be more mass-transfer-limited. Convective flow of sample/reagent solutions during immunoreactions can increase the rate of the analyte mass transport from the bulk solution to the sensor surface, with reaction kinetics changing from mass-transfer-limited to reaction-limited as flow velocity increases. It was shown that PC sensor performance was significantly improved for plasma samples with convection. The effect of the flow velocity and incubation times for samples and reagents on the sensor performance was also systematically analyzed to optimize the assay protocol for PC sensing. Currently, a 6-cm-long immuno-biosensor is capable of quantifying PC in plasma (1 mL) in the heterozygous PC deficiency range (0.5 to 2.5 microg/mL) within 5 minutes, at an average signal-to-noise ratio of 50. 2004 Wiley Periodicals, Inc.

  11. Density gradient centrifugation of sperm from a subfertile stallion and effect of seminal plasma addition on fertility.

    PubMed

    Mari, Gaetano; Castagnetti, Carolina; Rizzato, Giovanni; Mislei, Beatrice; Iacono, Eleonora; Merlo, Barbara

    2011-06-01

    Stallions are not selected for fertility but for other criteria (pedigree, conformation, performances, progeny), therefore valuable but subfertile stallions with poor semen quality are frequently used in commercial breeding programs. The object of this study was to evaluate whether sperm selection through a silane-coated silica colloid gradient centrifugation, with or without the addition of seminal plasma of a high fertile stallion, could improve the pregnancy rates of an oligospermic valuable stallion in a commercial breeding program. In 2008 breeding season (experiment 1, n=104 mares), simple centrifugation and density gradient centrifugation of the sperm were compared. In 2009 and 2010 breeding seasons (experiment 2, n=125 mares), the effect of the addition of 5% seminal plasma to the extender after sperm selection was evaluated. In all mares deep horn uterine insemination was performed with 1 ml containing 50×10(6) morphologically normal progressive motile spermatozoa, 24-30 h after induction of ovulation with hCG. Pregnancy diagnosis by ultrasonography was performed 14 days following ovulation. Results showed a higher per cycle pregnancy rate (P>0.05) when sperm selection through a density gradient was used (62% vs. 42.3%, exp 1), while the addition of 5% seminal plasma did not influence the outcome (45.9% vs. 47.6%, exp 2) (P>0.05). An age-related decrease in the fertility of the stallion was observed when comparing the results from the different breeding seasons (P<0.05). In conclusion, sperm selection through a discontinuous density gradient enabled a normal per cycle pregnancy rate to be achieved from an oligospermic-subfertile stallion in a commercial breeding program, and no differences were observed regarding the addition of seminal plasma. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Effects of ractopamine hydrochloride and dietary protein content on performance, carcass traits and meat quality of Nellore bulls.

    PubMed

    Cônsolo, N R B; Mesquita, B S; Rodriguez, F D; Rizzi, V G; Silva, L F P

    2016-03-01

    Ractopamine hydrochloride (RH) alters protein metabolism and improves growth performance in Bos taurus cattle with high carcass fat. Our objective was to evaluate the effects of RH, dietary CP and RH×CP interaction on performance, blood metabolites, carcass characteristics and meat quality of young Nellore bulls. A total of 48 bulls were randomly assigned to four treatments in a 2×2 factorial arrangement. The factors were two levels of dietary CP (100% and 120% of metabolizable protein requirement, defined as CP100 and CP120, respectively), and two levels of RH (0 and 300 mg/animal·per day). Treated animal received RH for the final 35 days before slaughter. Animals were weighed at the beginning of the feedlot period (day 63), at the beginning of ractopamine supplementation (day 0), after 18 days of supplementation (day 18) and before slaughter (day 34). Animals were slaughtered and hot carcass weights recorded. After chilling, carcass data was collected and longissimus samples were obtained for determination of meat quality. The 9-11th rib section was removed for carcass composition analysis. Supplementation with RH increased ADG independently of dietary CP. There was a RH×CP interaction on dry matter intake (DMI), where RH reduced DMI at CP120, with no effect at CP100. Ractopamine improved feed efficiency, without RH×CP interaction. Ractopamine had no effect on plasma creatinine and urea concentration. Greater dietary CP tended to increase blood urea, and there was a RH×CP interaction for plasma total protein. Ractopamine supplementation increased plasma total protein at CP120, and had no effect at CP100. Ractopamine also decreased plasma glucose concentration at CP100, but had no effect at CP120. Ractopamine increased alkaline phosphatase activity at CP120 and had no effect at CP100. There was a tendency for RH to increase longissimus muscle area, independently of dietary CP. Ractopamine did not alter fat thickness; however, fat thickness was reduced by greater CP in the diet. Supplementation with RH decreased meat shear force, but only at day 0 of aging, having no effect after 7, 14 or 21 days. Greater dietary protein increased meat shear force after 0 and 7 days of aging, with no effect after 14 or 21 days. These results demonstrate for the first time the efficacy of ractopamine supplementation to improve gain and feed efficiency of intact Bos indicus males, with relatively low carcass fat content. Ractopamine effects were not further improved by increasing dietary protein content above requirements.

  13. Secondary electron emission from plasma-generated nanostructured tungsten fuzz

    DOE PAGES

    Patino, M.; Raitses, Y.; Wirz, R.

    2016-11-14

    Recently, several researchers (e.g., Q. Yang, Y.-W. You, L. Liu, H. Fan, W. Ni, D. Liu, C. S. Liu, G. Benstetter, and Y. Wang, Scientific Reports 5, 10959 (2015)) have shown that tungsten fuzz can grow on a hot tungsten surface under bombardment by energetic helium ions in different plasma discharges and applications, including magnetic fusion devices with plasma facing tungsten components. This work reports direct measurements of the total effective secondary electron emission (SEE) from tungsten fuzz. Using dedicated material surface diagnostics and in-situ characterization, we find two important results: (1) SEE values for tungsten fuzz are 40-63% lowermore » than for smooth tungsten and (2) the SEE values for tungsten fuzz are independent of the angle of the incident electron. The reduction in SEE from tungsten fuzz is most pronounced at high incident angles, which has important implications for many plasma devices since in a negative-going sheath the potential structure leads to relatively high incident angles for the electrons at the plasma confining walls. Overall, low SEE will create a relatively higher sheath potential difference that reduces plasma electron energy loss to the confining wall. Thus the presence or self-generation in a plasma of a low SEE surface such as tungsten fuzz can be desirable for improved performance of many plasma devices.:7px« less

  14. Inspiratory Muscle Training Improves Sleep and Mitigates Cardiovascular Dysfunction in Obstructive Sleep Apnea.

    PubMed

    Vranish, Jennifer R; Bailey, E Fiona

    2016-06-01

    New and effective strategies are needed to manage the autonomic and cardiovascular sequelae of obstructive sleep apnea (OSA). We assessed the effect of daily inspiratory muscle strength training (IMT) on sleep and cardiovascular function in adults unable to use continuous positive airway pressure (CPAP) therapy. This is a placebo-controlled, single-blind study conducted in twenty four adults with mild, moderate, and severe OSA. Subjects were randomly assigned to placebo or inspiratory muscle strength training. Subjects in each group performed 5 min of training each day for 6 w. All subjects underwent overnight polysomnography at intake and again at study close. We evaluated the effects of placebo training or IMT on sleep, blood pressure, and plasma catecholamines. Relative to placebo-trained subjects with OSA, subjects with OSA who performed IMT manifested reductions in systolic and diastolic blood pressures (-12.3 ± 1.6 SBP and -5.0 ± 1.3 DBP mmHg; P < 0.01); plasma norepinephrine levels (536.3 ± 56.6 versus 380.6 ± 41.2 pg/mL; P = 0.01); and registered fewer nighttime arousals and reported improved sleep (Pittsburgh Sleep Quality Index scores: 9.1 ± 0.9 versus 5.1 ± 0.7; P = 0.001). These favorable outcomes were achieved without affecting apneahypopnea index. The results are consistent with our previously published findings in normotensive adults but further indicate that IMT can modulate blood pressure and plasma catecholamines in subjects with ongoing nighttime apnea and hypoxemia. Accordingly, we suggest IMT offers a low cost, nonpharmacologic means of improving sleep and blood pressure in patients who are intolerant of CPAP. © 2016 Associated Professional Sleep Societies, LLC.

  15. Final Report on Jobin Yvon Contained Inductively Coupled Plasma Emission Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennebaker, F.M.

    2003-03-17

    A new Inductively Coupled Plasma -- Emission Spectrometer (ICP-ES) was recently purchased and installed in Lab B-147/151 at SRTC. The contained JY Model Ultima 170-C ICP-ES has been tested and compared to current ADS ICP-ES instrumentation. The testing has included both performance tests to evaluate instrumental ability, and the measurement of matrix standards commonly analyzed by ICP-ES at Savannah River. In developing operating procedures for this instrument, we have implemented the use of internal standards and off-peak background subtraction. Both of these techniques are recommended by EPA SW-846 ICP-ES methods and are common to current ICP-ES operations. Based on themore » testing and changes, the JY Model Ultima 170-C ICP-ES provides improved performance for elemental analysis of radioactive samples in the Analytical Development Section.« less

  16. Development of atmospheric pressure large area plasma jet for sterilisation and investigation of molecule and plasma interaction

    NASA Astrophysics Data System (ADS)

    Zerbe, Kristina; Iberler, Marcus; Jacoby, Joachim; Wagner, Christopher

    2016-09-01

    The intention of the project is the development and improvement of an atmospheric plasma jet based on various discharge forms (e.g. DBD, RF, micro-array) for sterilisation of biomedical equipment and investigation of biomolecules under the influence of plasma stress. The major objective is to design a plasma jet with a large area and an extended length. Due to the success on small scale plasma sterilisation the request of large area plasma has increased. Many applications of chemical disinfection in environmental and medical cleaning could thereby be complemented. Subsequently, the interaction between plasma and biomolecules should be investigated to improve plasma strerilisation. Special interest will be on non equilibrium plasma electrons affecting the chemical bindings of organic molecules.

  17. First beam measurements on the vessel for extraction and source plasma analyses (VESPA) at the Rutherford Appleton Laboratory (RAL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrie, Scott R., E-mail: scott.lawrie@stfc.ac.uk; John Adams Institute for Accelerator Science, Department of Physics, University of Oxford; Faircloth, Daniel C.

    2015-04-08

    In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for eithermore » long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.« less

  18. A case of photic retinal injury associated with exposure to plasma arc welding.

    PubMed

    Choi, Sung-Won; Chun, Ko-I; Lee, Seok-Joon; Rah, Sang-Hoon

    2006-12-01

    To report of photic retinopathy induced by plasma arc welding, and the OCT (optical coherence tomography) results of damaged retinal lesions. We describe a case report of a 37-year-old male, working in the steel industry, who presented with central scotoma in both eyes. On his first visit, one day after performing plasma arc welding with protective gear at work, his best corrected vision was 0.7 for both eyes. Ophthalmic examination of the fundus showed a round yellow lesion with an approximate size of 300 micrometers superonasal to the fovea of both eyes. On his next visit, one month later, his vision had recovered to 1.0, his symptoms had improved, and the ophthalmoscopic examination of the fundus revealed that the round yellow spots had disappeared from both eyes. To our knowledge, this is the first report of photic retinopathy induced by plasma arc welding, and the OCT (optical coherence tomography) results of damaged retinal lesions have not previously been reported. For these reasons, we report this case.

  19. Oxygen and nitrogen plasma etching of three-dimensional hydroxyapatite/chitosan scaffolds fabricated by additive manufacturing

    NASA Astrophysics Data System (ADS)

    Myung, Sung-Woon; Kim, Byung-Hoon

    2016-01-01

    Three-dimensional (3D) chitosan and hydroxyapatite (HAp)/chitosan (CH) scaffolds were fabricated by additive manufacturing, then their surfaces were etched with oxygen (O2) and nitrogen (N2) plasma. O2 and N2 plasma etching was performed to increase surface properties such as hydrophilicity, roughness, and surface chemistry on the scaffolds. After etching, hydroxyapatite was exposed on the surface of 3D HAp/CH scaffolds. The surface morphology and chemical properties were characterized by contact angle measurement, scanning electron microscopy, X-ray diffraction, and attenuated total reflection Fourier infrared spectroscopy. The cell viability of 3D chitosan scaffolds was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The differentiation of preosteoblast cells was evaluated by alkaline phosphatase assay. The cell viability was improved by O2 and N2 plasma etching of 3D chitosan scaffolds. The present fabrication process for 3D scaffolds might be applied to a potential tool for preparing biocompatible scaffolds.

  20. Fluid-electrolyte shifts and thermoregulation - Rest and work in heat with head cooling

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Van Beaumont, W.; Brock, P. J.; Montgomery, L. D.; Morse, J. T.; Shvartz, E.; Kravik, S.

    1980-01-01

    The effects of head cooling on thermoregulation and associated plasma fluid and electrolyte shifts during rest and submaximal exercise in the heat are investigated. Thermoregulatory responses and plasma volume were measured in four male subjects fitted with liquid-cooled neoprene headgear during 60 min of rest, 60 min of ergometer exercise at 45% maximal oxygen uptake and 30 min of recovery in the supine position at 40.1 C and 40% relative humidity. It is found that, compared to control responses, head cooling decreased thigh sweating and increased mean skin temperature at rest and attenuated increases in thigh sweating, heart rate, rectal temperature and ventilation during exercise. During recovery, cooling is observed to facilitate decreases in sweat rate, heart rate, rectal temperature and forearm blood flow and enhance the increase in average temperature. Cooling had no effect on plasma protein, osmotic or electrolyte shifts, and decreased plasma volume losses. The findings indicate the effectiveness of moderate head cooling for the improvement of human performance during exercise in heat.

  1. Simple and sensitive HPLC method with fluorescence detection for the measurement of ibuprofen in rat plasma: application to a long-lasting dosage form.

    PubMed

    Hassan, Ahmed Sheikh; Sapin, Anne; Ubrich, Nathalie; Maincent, Philippe; Bolzan, Claire; Leroy, Pierre

    2008-10-01

    A simple and sensitive high-performance liquid chromatography (HPLC) assay applied to the measurement of ibuprofen in rat plasma has been developed. Two parameters have been investigated to improve ibuprofen detectability using fluorescence detection: variation of mobile phase pH and the use of beta-cyclodextrin (beta-CD). Increasing the pH value from 2.5 to 6.5 and adding 5 mM beta-CD enhanced the fluorescence signal (lambda(exc) = 224 nm; lambda(em) = 290 nm) by 2.5 and 1.3-fold, respectively, when using standards. In the case of plasma samples, only pH variation significantly lowered detection and quantification limits, down to 10 and 35 ng/mL, respectively. Full selectivity was obtained with a single step for plasma treatment, that is, protein precipitation with acidified acetonitrile. The validated method was applied to a pharmacokinetic study of ibuprofen encapsulated in microspheres and subcutaneously administered to rats.

  2. Axially and radially viewed inductively coupled plasmas — a critical review

    NASA Astrophysics Data System (ADS)

    Brenner, I. B.; Zander, A. T.

    2000-08-01

    The present status of axially viewed inductively coupled plasmas (ICP) is reviewed with special emphasis placed on the analytical performance of currently available systems. Descriptions are given of the various designs of the plasma-spectrometer configuration. Conventional figures of merit such as limits of detection, background behavior, interferences due to easily ionized elements (EIE), Ca and acids, and the Mg II 280.270 nm/Mg I 285.213 nm intensity ratio, are used to compare the performance of axially viewed and radially viewed ICPs. Various modes of sample introduction, including conventional pneumatic and ultrasonic nebulization (USN), thermospray and a direct injection probe will be described. For axially viewed ICPs, limits of detection (LOD) are improved by factors varying from approximately 2 to 30. Additional improvements by factors of 2-20 can be obtained using USN. The improvement factors generally depend on energy potentials of the spectral lines and the element. Although limits of detection in the presence of Ca and Na are degraded relative to an aqueous solution 10-30-fold, USN LODs using an axially viewed ICP are improved relative to those obtained using a pneumatic nebulizer for solutions containing Ca and Na. With normal aerosol load and under robust plasma conditions (as evidenced by Mg II/Mg I intensity ratios >8), EIE, Ca and mineral acid induced interferences are relatively small and are similar in axial and conventional radial configurations. However, interferences due to Ca are larger than those caused by Na due to the larger amount of energy required to dissociate the matrix. Matrix effects increase considerably when an USN is employed. For robust plasmas, ICP operating conditions and performance for multi-element quantitative analysis do not differ significantly from those of conventional radial configurations. In cases where robustness decreases, matrix interferences should be taken into account when establishing optimum conditions for operation. In robust axially viewed ICPs, a single internal standard can compensate for ionic line intensity suppression due to Na. However, owing to the variable influence of Ca on spectral response, more than one internal standard is required to compensate for these matrix effects. In this situation, linear energy potential-interference functions can be used to improve accuracy using spectral lines varying over wide ranges of energy potentials. In axially viewed ICPs, Mg II/ Mg I ratios vary widely as a function of applied RF power, aerosol flow rates and load, diameter of the central torch injector, and composition of the aspirated solution. The highest values of 9-13 have been observed for a pure aqueous solution using conventional nebulization and argon carrier flow rates (0.5-0.7 ml min -1) and forward powers of 1.2-1.5 kW. Mg II/Mg I ratios decrease when the RF power decreases, when Na and Ca are added to the plasma, and when the aerosol load is increased. A low value of 2 was obtained when the carrier gas flow rate was high and when the aerosol load was high using an USN. The use of a copper metal skimmer below the analytical observation zone to isolate the axial channel of the ICP and to deflect the outer cool fringe results in 5-20 times improvement of the LODs compared to those obtained using a conventional configuration (a normal radially viewed ICP). A direct He purged plasma-spectrometer interface for end-on detection of the vacuum UV (VUV) emission from the axial region of an ICP allows the determination of Cl, Br and other analytes in the μg l -1 range. The characteristics of a secondary discharge at the orifice of a Cu cone when the axial channel of the ICP is extracted into a vacuum chamber will be discussed. The characteristics of the emission in the Mach disk region extracted from the axial column will be surveyed. Several applications and techniques are described: determination of major, minor and trace elements in geological, environmental and biological materials, analysis of brines, nuclear materials and organic solvents and solutions. Several unique techniques are described: elemental speciation, determination of the halides and other analytes with VUV spectral lines using a He purged direct plasma-spectrometer interface. Direct solids analysis using slurries, laser and spark ablation and direct solids insertion further extends the scope of axially viewed ICPs.

  3. Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Zhang, Tian-Bao; Yang, Wen; Zhu, Hao; Chen, Lin; Sun, Qing-Qing; Zhang, David Wei

    2017-01-01

    The effective and high-quality integration of high-k dielectrics on two-dimensional (2D) crystals is essential to the device structure engineering and performance improvement of field-effect transistor (FET) based on the 2D semiconductors. We report a 2D MoS2 transistor with ultra-thin Al2O3 top-gate dielectric (6.1 nm) and extremely low leakage current. Remote forming gas plasma pretreatment was carried out prior to the atomic layer deposition, providing nucleation sites with the physically adsorbed ions on the MoS2 surface. The top gate MoS2 FET exhibited excellent electrical performance, including high on/off current ratio over 109, subthreshold swing of 85 mV/decade and field-effect mobility of 45.03 cm2/V s. Top gate leakage current less than 0.08 pA/μm2 at 4 MV/cm has been obtained, which is the smallest compared with the reported top-gated MoS2 transistors. Such an optimized integration of high-k dielectric in 2D semiconductor FET with enhanced performance is very attractive, and it paves the way towards the realization of more advanced 2D nanoelectronic devices and integrated circuits.

  4. Tribological and Corrosion Properties of Coatings Produced by Plasma Electrolytic Oxidation on the ZA27 Alloy

    NASA Astrophysics Data System (ADS)

    Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert

    2018-05-01

    In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.

  5. Effect of a Protein Supplement on the Gut Microbiota of Endurance Athletes: A Randomized, Controlled, Double-Blind Pilot Study

    PubMed Central

    Moreno-Pérez, Diego; Bressa, Carlo; Bailén, María; Hamed-Bousdar, Safa; Carmona, Manuel; Pérez, Margarita; González-Soltero, Rocío; Montalvo-Lominchar, Maria Gregoria; Carabaña, Claudia

    2018-01-01

    Nutritional supplements are popular among athletes to improve performance and physical recovery. Protein supplements fulfill this function by improving performance and increasing muscle mass; however, their effect on other organs or systems is less well known. Diet alterations can induce gut microbiota imbalance, with beneficial or deleterious consequences for the host. To test this, we performed a randomized pilot study in cross-country runners whose diets were complemented with a protein supplement (whey isolate and beef hydrolysate) (n = 12) or maltodextrin (control) (n = 12) for 10 weeks. Microbiota, water content, pH, ammonia, and short-chain fatty acids (SCFAs) were analyzed in fecal samples, whereas malondialdehyde levels (oxidative stress marker) were determined in plasma and urine. Fecal pH, water content, ammonia, and SCFA concentrations did not change, indicating that protein supplementation did not increase the presence of these fermentation-derived metabolites. Similarly, it had no impact on plasma or urine malondialdehyde levels; however, it increased the abundance of the Bacteroidetes phylum and decreased the presence of health-related taxa including Roseburia, Blautia, and Bifidobacterium longum. Thus, long-term protein supplementation may have a negative impact on gut microbiota. Further research is needed to establish the impact of protein supplements on gut microbiota. PMID:29534465

  6. Tribological and Corrosion Properties of Coatings Produced by Plasma Electrolytic Oxidation on the ZA27 Alloy

    NASA Astrophysics Data System (ADS)

    Li, Guangyin; Mao, Yifan; Li, Zhijian; Wang, Linlin; DaCosta, Herbert

    2018-04-01

    In this paper, a continuous and dense coating was deposited on samples of the ZA27 alloy through the plasma electrolytic oxidation (PEO) process to improve its wear and corrosion performance. A nontoxic and environmentally friendly inorganic salt, Na2SiO3, is chosen as electrolytes with different concentrations. The effect of the concentration of Na2SiO3 aqueous solutions on the coating performances was investigated. The coatings with 3Al2O3·2SiO2 (mullite), Zn2SiO4 and Al2O3 (either crystal phase or with some amorphous SiO2 phases) were formed by the PEO processes. It was found that the coating thickness increased with the increase in electrolyte concentration. However, the wear and corrosion resistance performance of the coatings did not improve as the coating's thickness increased. This was due to the fact that the coating produced with electrolytes of 10 g/L has a porous structure with large pore size. Among all the samples, coating produced by 15 g/L Na2SiO3 has the best wear and corrosion resistance, which is attributed to its continuous and dense structure with thickness of about 47 μm.

  7. Effect of a Protein Supplement on the Gut Microbiota of Endurance Athletes: A Randomized, Controlled, Double-Blind Pilot Study.

    PubMed

    Moreno-Pérez, Diego; Bressa, Carlo; Bailén, María; Hamed-Bousdar, Safa; Naclerio, Fernando; Carmona, Manuel; Pérez, Margarita; González-Soltero, Rocío; Montalvo-Lominchar, Maria Gregoria; Carabaña, Claudia; Larrosa, Mar

    2018-03-10

    Nutritional supplements are popular among athletes to improve performance and physical recovery. Protein supplements fulfill this function by improving performance and increasing muscle mass; however, their effect on other organs or systems is less well known. Diet alterations can induce gut microbiota imbalance, with beneficial or deleterious consequences for the host. To test this, we performed a randomized pilot study in cross-country runners whose diets were complemented with a protein supplement (whey isolate and beef hydrolysate) ( n = 12) or maltodextrin (control) ( n = 12) for 10 weeks. Microbiota, water content, pH, ammonia, and short-chain fatty acids (SCFAs) were analyzed in fecal samples, whereas malondialdehyde levels (oxidative stress marker) were determined in plasma and urine. Fecal pH, water content, ammonia, and SCFA concentrations did not change, indicating that protein supplementation did not increase the presence of these fermentation-derived metabolites. Similarly, it had no impact on plasma or urine malondialdehyde levels; however, it increased the abundance of the Bacteroidetes phylum and decreased the presence of health-related taxa including Roseburia , Blautia , and Bifidobacterium longum . Thus, long-term protein supplementation may have a negative impact on gut microbiota. Further research is needed to establish the impact of protein supplements on gut microbiota.

  8. Growth and male reproduction improvement of non-thermal dielectric barrier discharge plasma treatment on chickens

    NASA Astrophysics Data System (ADS)

    Jiao Zhang, Jiao; Luong Huynh, Do; Chandimali, Nisansala; Kang, Tae Yoon; Kim, Nameun; Mok, Young Sun; Kwon, Taeho; Jeong, Dong Kee

    2018-05-01

    This study investigated whether plasma treatment of fertilized eggs before hatching could affect the growth and reproduction of chickens. Three point five-day-incubated fertilized eggs exposed to non-thermal dielectric barrier discharge plasma at 2.81 W of power for 2 min resulted in the highest growth in chickens. Plasma growth-promoting effect was regulated by the reactive oxygen species homeostasis and the improvement of energy metabolism via increasing serum hormones and adenosine triphosphate levels which were resulted from the regulation of genes involved in antioxidant defense, hormone biosynthesis and energetic metabolism. Interestingly, plasma-treated male chickens conspicuously grew faster than females. Further, aspects of male reproductive system (testosterone level and sperm quality) were improved by the plasma treatment but female reproduction (estradiol and progesterone levels, egg-laying rate and egg weight) had no significant changes. Unfortunately, offspring whose parents were the optimal plasma-treated chickens did not show any difference on growth characteristics and failed to inherit excellent growth features from their parents. Our results suggest a new method to improve the growth rate and male reproductive capacity in poultry but it is only effective in the plasma direct-treated generation.

  9. Modification of anisotropic plasma diffusion via auxiliary electrons emitted by a carbon nanotubes-based electron gun in an electron cyclotron resonance ion source.

    PubMed

    Malferrari, L; Odorici, F; Veronese, G P; Rizzoli, R; Mascali, D; Celona, L; Gammino, S; Castro, G; Miracoli, R; Serafino, T

    2012-02-01

    The diffusion mechanism in magnetized plasmas is a largely debated issue. A short circuit model was proposed by Simon, assuming fluxes of lost particles along the axial (electrons) and radial (ions) directions which can be compensated, to preserve the quasi-neutrality, by currents flowing throughout the conducting plasma chamber walls. We hereby propose a new method to modify Simon's currents via electrons injected by a carbon nanotubes-based electron gun. We found this improves the source performances, increasing the output current for several charge states. The method is especially sensitive to the pumping frequency. Output currents for given charge states, at different auxiliary electron currents, will be reported in the paper and the influence of the frequency tuning on the compensation mechanism will be discussed.

  10. Multiple micronutrient-fortified rice affects physical performance and plasma vitamin B-12 and homocysteine concentrations of Indian school children.

    PubMed

    Thankachan, Prashanth; Rah, Jee Hyun; Thomas, Tinku; Selvam, Sumithra; Amalrajan, Vani; Srinivasan, Krishnamachari; Steiger, Georg; Kurpad, Anura V

    2012-05-01

    Fortifying rice with multiple micronutrients could be a promising strategy for combat micronutrient deficiencies in developing countries. We determined the efficacy of extruded rice grains fortified with multiple micronutrients on the prevalence of anemia, micronutrient status, and physical and cognitive performance in 6- to 12-y-old, low-income school children in Bangalore, India. In a randomized, double-blind, controlled trial, 258 children were assigned to 1 of 3 intervention groups to receive rice-based lunch meals fortified with multiple micronutrients with either low-iron (6.25 mg) or high-iron (12.5 mg) concentrations or identical meals with unfortified rice. The meals were provided 6 d/wk for 6 mo. Anthropometric, biochemical, physical performance, and cognitive assessments were taken at baseline and endpoint. At baseline, study groups were comparable, with 61% of the children being anemic. However, only <10% were deficient in iron, vitamin A, and zinc. After 6 mo, plasma vitamin B-12 and homocysteine concentrations (both P < 0.001) as well as physical performance (P < 0.05) significantly improved in the intervention arms. No between-group differences were observed in hemoglobin concentration, anemia, and deficiencies of other micronutrients or cognitive function after 6 mo, but paired analyses revealed a small reduction in anemia prevalence in children in the low-iron group. The fortified rice was efficacious in improving vitamin B-12 status and physical performance in Indian school children.

  11. Effects of 1alpha-hydroxycholecalciferol on growth performance, parameters of tibia and plasma, meat quality, and type IIb sodium phosphate cotransporter gene expression of one- to twenty-one-day-old broilers.

    PubMed

    Han, J C; Yang, X D; Zhang, T; Li, H; Li, W L; Zhang, Z Y; Yao, J H

    2009-02-01

    This experiment was conducted to investigate the effects of 1alpha-hydroxycholecalciferol (1alpha-OH D3) on the growth performance, tibia and plasma parameters, nutrient utilization, meat quality of the breast and thigh, and type IIb sodium phosphate cotranspoter gene expression of broilers. A total of 96 males of 1-d-old Arbor Acres broilers were randomly assigned to 8 cages of 12 birds each. Two dietary treatments were applied to 4 cages each. Diet 1 was prepared as the basal diet (nonphytate phosphorus, 0.21%), whereas diet 2 was the basal diet supplemented with 5 microg/kg of 1alpha-OH D3. Results showed that supplementation of the basal diet with 1alpha-OH D3 increased growth performance, tibia ash and strength, plasma inorganic phosphate concentration, utilization of total phosphorus and nonphytate phosphorus, lightness and yellowness of the breast and thigh meat, and intestinal type IIb sodium phosphate cotranspoter mRNA expression, whereas it decreased the shear force and water-holding capacity of the thigh meat. These data suggest that the addition of 1alpha-OH D3 might improve growth performance, tibia development, and meat quality in 1- to 21-d-old broilers by increasing the absorption and retention of phosphorus.

  12. Method and platform standardization in MRM-based quantitative plasma proteomics.

    PubMed

    Percy, Andrew J; Chambers, Andrew G; Yang, Juncong; Jackson, Angela M; Domanski, Dominik; Burkhart, Julia; Sickmann, Albert; Borchers, Christoph H

    2013-12-16

    There exists a growing demand in the proteomics community to standardize experimental methods and liquid chromatography-mass spectrometry (LC/MS) platforms in order to enable the acquisition of more precise and accurate quantitative data. This necessity is heightened by the evolving trend of verifying and validating candidate disease biomarkers in complex biofluids, such as blood plasma, through targeted multiple reaction monitoring (MRM)-based approaches with stable isotope-labeled standards (SIS). Considering the lack of performance standards for quantitative plasma proteomics, we previously developed two reference kits to evaluate the MRM with SIS peptide approach using undepleted and non-enriched human plasma. The first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). Here, these kits have been refined for practical use and then evaluated through intra- and inter-laboratory testing on 6 common LC/MS platforms. For an identical panel of 22 plasma proteins, similar concentrations were determined, regardless of the kit, instrument platform, and laboratory of analysis. These results demonstrate the value of the kit and reinforce the utility of standardized methods and protocols. The proteomics community needs standardized experimental protocols and quality control methods in order to improve the reproducibility of MS-based quantitative data. This need is heightened by the evolving trend for MRM-based validation of proposed disease biomarkers in complex biofluids such as blood plasma. We have developed two kits to assist in the inter- and intra-laboratory quality control of MRM experiments: the first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). In this paper, we report the use of these kits in intra- and inter-laboratory testing on 6 common LC/MS platforms. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics. © 2013.

  13. Application of hot melt extrusion for improving bioavailability of artemisinin a thermolabile drug.

    PubMed

    Kulkarni, C; Kelly, A L; Gough, T; Jadhav, V; Singh, K K; Paradkar, A

    2018-02-01

    Hot melt extrusion has been used to produce a solid dispersion of the thermolabile drug artemisinin. Formulation and process conditions were optimized prior to evaluation of dissolution and biopharmaceutical performance. Soluplus ® , a low T g amphiphilic polymer especially designed for solid dispersions enabled melt extrusion at 110 °C although some drug-polymer incompatibility was observed. Addition of 5% citric acid as a pH modifier was found to suppress the degradation. The area under plasma concentration time curve (AUC 0-24h ) and peak plasma concentration (C max ) were four times higher for the modified solid dispersion compared to that of pure artemisinin.

  14. A survey of Kaufman thruster cathodes.

    NASA Technical Reports Server (NTRS)

    Weigand, A. J.; Nakanishi, S.

    1971-01-01

    A survey is presented of various cathodes which have been developed and used in the Kaufman ion thruster. The electron-bombardment type ion source used in the thruster is briefly described. The general design, operating characteristics, and power requirements are shown for each type of cathode from the refractory metals used in 1960 to the plasma discharge hollow cathodes of today. A detailed discussion of the hollow cathode is given describing starting and cyclic operating characteristics as well as more fundamental design parameters. Tests to date show that the plasma hollow cathode is an efficient electron source with demonstrated durability over 10,000 hours and should offer further performance and life improvements.

  15. Hydrogen isotope retention in beryllium for tokamak plasma-facing applications

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Causey, R. A.; Davis, J. W.; Doerner, R. P.; Federici, G.; Haasz, A. A.; Longhurst, G. R.; Wampler, W. R.; Wilson, K. L.

    Beryllium has been used as a plasma-facing material to effect substantial improvements in plasma performance in the Joint European Torus (JET), and it is planned as a plasma-facing material for the first wall (FW) and other components of the International Thermonuclear Experimental Reactor (ITER). The interaction of hydrogenic ions, and charge-exchange neutral atoms from plasmas, with beryllium has been studied in recent years with widely varying interpretations of results. In this paper we review experimental data regarding hydrogenic atom inventories in experiments pertinent to tokamak applications and show that with some very plausible assumptions, the experimental data appear to exhibit rather predictable trends. A phenomenon observed in high ion-flux experiments is the saturation of the beryllium surface such that inventories of implanted particles become insensitive to increased flux and to continued implantation fluence. Methods for modeling retention and release of implanted hydrogen in beryllium are reviewed and an adaptation is suggested for modeling the saturation effects. The TMAP4 code used with these modifications has succeeded in simulating experimental data taken under saturation conditions where codes without this feature have not. That implementation also works well under more routine conditions where the conventional recombination-limited release model is applicable. Calculations of tritium inventory and permeation in the ITER FW during the basic performance phase (BPP) using both the conventional recombination model and the saturation effects assumptions show a difference of several orders of magnitude in both inventory and permeation rate to the coolant.

  16. [Effect of atorvastatin on exercise tolerance in patients with diastolic dysfunction and exercise-induced hypertension].

    PubMed

    Ye, Ping-xian; Ye, Ping-zhen; Zhu, Jian-hua; Chen, Wei; Gao, Dan-chen

    2014-05-01

    To investigate the effect of atorvastatin on exercise tolerance in patients with diastolic dysfunction and exercise-induced hypertension. A randomized, double-blind, placebo-controlled prospective study was performed. Sixty patients with diastolic dysfunction (mitral flow velocity E/A <1) and exercise-induced hypertension (SBP>200 mm Hg) treated with atorvastatin (20 mg q.d) or placebo for 1 year. Cardiopulmonary exercise test and exercise blood pressure measurement were performed. Plasma B-natriuretic peptide (BNP) concentration at rest and at peak exercise, plasma high sensitive-C reaction protein (hs-CRP) and endothelin (ET) concentration were determined at baseline and after treatment. After treatment by atorvastatin, the resting SBP, pulse pressure, the peak exercise SBP and BNP were significantly decreased; and the exercise time, metabolic equivalent, maximal oxygen uptake and anaerobic threshold were increased. All of these parameters had significant differences with baseline levels (P<0.05) and the rest pulse pressure, the peak exercise SBP and BNP, and the exercise time had significant differences compared with placebo treatment (P<0.05). Plasma concentrations of hs-CRP and ET were markedly reduced by atorvastatin treatment compared with baseline and placebo (P<0.05). No difference in above parameters was found before and after placebo treatment (P>0.05). In patients with diastolic dysfunction at rest and exercise-induced hypertension, atorvastatin can effectively reduce plasma hs-CRP and ET level, lower blood pressure and peak exercise SBP, decrease peak exercise plasma BNP concentration, and ultimately improve exercise tolerance.

  17. Collaborative Research: Tomographic imaging of laser-plasma structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downer, Michael

    The interaction of intense short laser pulses with ionized gases, or plasmas, underlies many applications such as acceleration of elementary particles, production of energy by laser fusion, generation of x-ray and far-infrared “terahertz” pulses for medical and materials probing, remote sensing of explosives and pollutants, and generation of guide stars. Such laser-plasma interactions create tiny electron density structures (analogous to the wake behind a boat) inside the plasma in the shape of waves, bubbles and filaments that move at the speed of light, and evolve as they propagate. Prior to recent work by the PI of this proposal, detailed knowledgemore » of such structures came exclusively from intensive computer simulations. Now “snapshots” of these elusive, light-velocity structures can be taken in the laboratory using dynamic variant of holography, the technique used to produce ID cards and DVDs, and dynamic variant of tomography, the technique used in medicine to image internal bodily organs. These fast visualization techniques are important for understanding, improving and scaling the above-mentioned applications of laser-plasma interactions. In this project, we accomplished three things: 1) We took holographic pictures of a laser-driven plasma-wave in the act of accelerating electrons to high energy, and used computer simulations to understand the pictures. 2) Using results from this experiment to optimize the performance of the accelerator, and the brightness of x-rays that it emits. These x-rays will be useful for medical and materials science applications. 3) We made technical improvements to the holographic technique that enables us to see finer details in the recorded pictures. Four refereed journal papers were published, and two students earned PhDs and moved on to scientific careers in US National Laboratories based on their work under this project.« less

  18. Transport and Performance in DIII--D Discharges with Weak or Negative Central Magnetic Shear

    NASA Astrophysics Data System (ADS)

    Greenfield, C. M.

    1996-11-01

    The previously reported [B.W. Rice et al., Phys. Plasmas 3, 1983 (1996)] improved performance in DIII-D plasmas with weak or negative central magnetic shear has been additionally enhanced in recent experiments where controlled L-H transitions were used to further broaden the pressure profile and delay detrimental MHD activity [E.A. Lazarus et al., submitted to Phys. Rev. Letters]. These discharges exhibit the highest plasma energy (>=4 MJ) and fusion reactivity (R_DD <= 4.8 × 10^16 s-1, Q_DD <= 0.00146, equivalent Q_DT <= 0.32) yet realized in DIII-D. In such discharges, the core magnetic shear is reversed by tailoring the current profile through application of early, low power, neutral beam injection. These plasmas often undergo a transition to a high performance state, usually following an increase in the applied heating power. At the transition time, we observe the formation of an internal transport barrier near the location of the minimum safety factor, q_min. Formation of this barrier, which can result in central peaking of the temperature and density profiles, is consistent with suppression of turbulence by locally enhanced E×B flow shear. Beam emission spectroscopy and far infrared scattering measurements made in the vicinity of the barrier show that at the time of transition to high performance, fluctuation levels are reduced to below the threshold of detection (tilden/n <= 0.1%). Analysis with the ONETWO and TRANSP transport codes indicates concomitant reductions in the core ion thermal diffusivity to levels at or below Chang-Hinton neoclassical. Smaller reductions are indicated for the electrons. An L-H transition is programmed shortly before the plasma would become MHD unstable in order to broaden the profiles and delay the onset of instabilities. In the resulting state, the region exhibiting ion diffusivities at or below neoclassical is extended to nearly the entire plasma. Analysis to date suggests that the effect of strongly negative vs. weak magnetic shear on transport is negligible, although there is a significant effect on stability. A comparison of transport in strong and weakly sheared discharges will be shown, both in L- (peaked profiles) and H-mode (broadened profiles).

  19. Performance modelling of plasma microthruster nozzles in vacuum

    NASA Astrophysics Data System (ADS)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    Computational fluid dynamics and plasma simulations of three geometrical variations of the Pocket Rocket radiofrequency plasma electrothermal microthruster are conducted, comparing pulsed plasma to steady state cold gas operation. While numerical limitations prevent plasma modelling in a vacuum environment, results may be obtained by extrapolating from plasma simulations performed in a pressurised environment, using the performance delta from cold gas simulations performed in both environments. Slip regime boundary layer effects are significant at these operating conditions. The present investigation targets a power budget of ˜10 W for applications on CubeSats. During plasma operation, the thrust force increases by ˜30% with a power efficiency of ˜30 μNW-1. These performance metrics represent instantaneous or pulsed operation and will increase over time as the discharge chamber attains thermal equilibrium with the heated propellant. Additionally, the sculpted nozzle geometry achieves plasma confinement facilitated by the formation of a plasma sheath at the nozzle throat, and fast recombination ensures a neutral exhaust plume that avoids the contamination of solar panels and interference with externally mounted instruments.

  20. Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study.

    PubMed

    Sadowska-Krępa, E; Kłapcińska, B; Podgórski, T; Szade, B; Tyl, K; Hadzik, A

    2015-06-01

    The purpose of this pilot study was to examine whether regular consumption of an acai berry-based juice blend would affect sprint performance and improve blood antioxidant status and lipid profile in junior athletes. Seven junior hurdlers (17.5±1.2 years) taking part in a pre-season conditioning camp were supplemented once a day, for six weeks, with 100 ml of the juice blend. At the start and the end of the camp the athletes performed a 300-m sprint running test on an outdoor track. Blood samples were taken before and immediately after the test and after 1 h of recovery. Blood antioxidant status was evaluated based on activities of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px], glutathione reductase [GR]), concentrations of non-enzymatic antioxidants (reduced glutathione [GSH], uric acid), total plasma polyphenols, ferric reducing ability of plasma (FRAP), thiobarbituric acid reactive substances (TBARS) and activities of creatine kinase (CK) and lactate dehydrogenase (LDH) as muscle damage markers. In order to evaluate potential health benefits of the acai berry, the post-treatment changes in lipid profile parameters (triglycerides, cholesterol and its fractions) were analysed. Six weeks' consumption of acai berry-based juice blend had no effect on sprint performance, but it led to a marked increase in the total antioxidant capacity of plasma, attenuation of the exercise-induced muscle damage, and a substantial improvement of serum lipid profile. These findings strongly support the view of the health benefits of supplementation with the acai berry-based juice blend, mainly attributed to its high total polyphenol content and the related high in vivo antioxidant and hypocholesterolaemic activities of this supplement.

  1. Repeated administration of fresh garlic increases memory retention in rats.

    PubMed

    Haider, Saida; Naz, Nosheen; Khaliq, Saima; Perveen, Tahira; Haleem, Darakhshan J

    2008-12-01

    Garlic (Allium sativum) is regarded as both a food and a medicinal herb. Increasing attention has focused on the biological functions and health benefits of garlic as a potentially major dietary component. Chronic garlic administration has been shown to enhance memory function. Evidence also shows that garlic administration in rats affects brain serotonin (5-hydroxytryptamine [5-HT]) levels. 5-HT, a neurotransmitter involved in a number of physiological functions, is also known to enhance cognitive performance. The present study was designed to investigate the probable neurochemical mechanism responsible for the enhancement of memory following garlic administration. Sixteen adult locally bred male albino Wistar rats were divided into control (n = 8) and test (n = 8) groups. The test group was orally administered 250 mg/kg fresh garlic homogenate (FGH), while control animals received an equal amount of water daily for 21 days. Estimation of plasma free and total tryptophan (TRP) and whole brain TRP, 5-HT, and 5-hydroxyindole acetic acid (5-HIAA) was determined by high-performance liquid chromatography with electrochemical detection. For assessment of memory, a step-through passive avoidance paradigm (electric shock avoidance) was used. The results showed that the levels of plasma free TRP significantly increased (P < .01) and plasma total TRP significantly decreased (P < .01) in garlic-treated rats. Brain TRP, 5-HT, and 5-HIAA levels were also significantly increased following garlic administration. A significant improvement in memory function was exhibited by garlic-treated rats in the passive avoidance test. Increased brain 5-HT levels were associated with improved cognitive performance. The present results, therefore, demonstrate that the memory-enhancing effect of garlic may be associated with increased brain 5-HT metabolism in rats. The results further support the use of garlic as a food supplement for the enhancement of memory.

  2. Effects of supplementation with acai (Euterpe oleracea Mart.) berry-based juice blend on the blood antioxidant defence capacity and lipid profile in junior hurdlers. A pilot study

    PubMed Central

    Kłapcińska, B; Podgórski, T; Szade, B; Tyl, K; Hadzik, A

    2015-01-01

    The purpose of this pilot study was to examine whether regular consumption of an acai berry-based juice blend would affect sprint performance and improve blood antioxidant status and lipid profile in junior athletes. Seven junior hurdlers (17.5±1.2 years) taking part in a pre-season conditioning camp were supplemented once a day, for six weeks, with 100 ml of the juice blend. At the start and the end of the camp the athletes performed a 300-m sprint running test on an outdoor track. Blood samples were taken before and immediately after the test and after 1 h of recovery. Blood antioxidant status was evaluated based on activities of antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px], glutathione reductase [GR]), concentrations of non-enzymatic antioxidants (reduced glutathione [GSH], uric acid), total plasma polyphenols, ferric reducing ability of plasma (FRAP), thiobarbituric acid reactive substances (TBARS) and activities of creatine kinase (CK) and lactate dehydrogenase (LDH) as muscle damage markers. In order to evaluate potential health benefits of the acai berry, the post-treatment changes in lipid profile parameters (triglycerides, cholesterol and its fractions) were analysed. Six weeks’ consumption of acai berry-based juice blend had no effect on sprint performance, but it led to a marked increase in the total antioxidant capacity of plasma, attenuation of the exercise-induced muscle damage, and a substantial improvement of serum lipid profile. These findings strongly support the view of the health benefits of supplementation with the acai berry-based juice blend, mainly attributed to its high total polyphenol content and the related high in vivo antioxidant and hypocholesterolaemic activities of this supplement. PMID:26060341

  3. Beetroot-based gel supplementation improves handgrip strength, forearm muscle O2 saturation but not exercise tolerance and blood volume in jiu-jitsu athletes.

    PubMed

    de Oliveira, Gustavo Vieira; Nascimento, Luiz; Volino-Souza, Mônica; Mesquita, Jacilene; Alvares, Thiago

    2018-03-22

    The ergogenic effect of beetroot on the exercise performance of trained cyclists, runners, kayakers, and swimmers has been demonstrated. However, whether or not beetroot supplementation presents a beneficial effect on the exercise performance of jiu-jitsu athletes (JJA) remains inconclusive. Therefore, present study assessed the effect of beetroot-based gel (BG) supplementation on maximal voluntary contraction (MVC), exercise time until fatigue (ETF), muscle O2 saturation (SmO2), blood volume (tHb), and plasma nitrate and lactate in response to handgrip isotonic exercise (HIE) in JJA. In a randomized, crossover, double-blind design, 12 JJA performed three sets of HIE at 40% of the MVC until fatigue after 8 days (8th dose was offered 120 min previous exercise) of BG supplementation or a nitrate-depleted gel (PLA), and forearm SmO2 and tHb were continuously monitored by using near-infrared spectroscopy. Blood samples were taken before, immediately after exercise, and 20 min after exercise recovery in PLA and BG condition. MVC was evaluated at baseline and 20 min after HIE. There was a significant reduction in ∆MVC decline after HIE in BG condition. Forearm SmO2 during exercise recovery was significantly greater only after BG supplementation. No significant difference in ETF and tHb were observed between both BG and PLA in response to HIE. Plasma nitrate increased only after BG, whereas the exercise-induced increase in plasma lactate was significantly lower in BG when compared to PLA. In conclusion, BG supplementation may be a good nutritional strategy to improve forearm SmO2 and prevent force decline in response to exercise in JJA.

  4. Studies for the Europagenic Plasma Source in Jupiter's Inner Magnetosphere during the Galileo Europa Mission

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2004-01-01

    Progress in research to understand the three-dimensional nature of the Europagenic plasma torus is summarized. Efforts to improve the plasma torus description near Europa's orbit have included a better understanding of Europa's orbit and an improved description of the planetary magnetic field. New plasma torus chemistry for molecular and atomic species has been introduced and implemented in Europa neutral cloud models. Preliminary three-dimensional model calculations for Europa's neutral clouds and their plasma sources are presented.

  5. MHD limits and plasma response in high-beta hybrid operations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Igochine, V.; Piovesan, P.; Classen, I. G. J.; Dunne, M.; Gude, A.; Lauber, P.; Liu, Y.; Maraschek, M.; Marrelli, L.; McDermott, R.; Reich, M.; Ryan, D.; Schneller, M.; Strumberger, E.; Suttrop, W.; Tardini, G.; Zohm, H.; The ASDEX Upgrade Team; The EUROfusion MST1 Team

    2017-11-01

    The improved H-mode scenario (or high β hybrid operations) is one of the main candidates for high-fusion performance tokamak operation that offers a potential steady-state scenario. In this case, the normalized pressure {{β }N} must be maximized and pressure-driven instabilities will limit the plasma performance. These instabilities could have either resistive ((m  =  2, n  =  1) and (3,2) neoclassical tearing modes (NTMs)) or ideal character (n  =  1 ideal kink mode). In ASDEX Upgrade (AUG), the first limit for maximum achievable {{β }N} is set by the NTMs. The application of pre-emptive electron cyclotron current drive at the q  =  2 and q  =  1.5 resonant surfaces reduces this problem, so that higher values of {{β }N} can be reached. AUG experiments have shown that, in spite of the fact that hybrids are mainly limited by NTMs, the proximity to the no-wall limit leads to amplification of the external fields that strongly influence the plasma profiles. For example, rotation braking is observed throughout the plasma and peaks in the core. In this situation, even small external fields are amplified and their effect becomes visible. To quantify these effects, the plasma response to the magnetic fields produced by B-coils is measured as {{β }N} approaches the no-wall limit. These experiments and corresponding modeling allow the identification of the main limiting factors, which depend on the stabilizing influence of the conducting components facing the plasma surface, the existence of external actuators, and the kinetic interaction between the plasma and the marginally stable ideal modes. Analysis of the plasma reaction to external perturbations allowed us to identify optimal correction currents for compensating the intrinsic error field in the device. Such correction, together with the analysis of kinetic effects, will help to increase {{β }N} further in future experiments.

  6. Effect of human chorionic gonadotropin on luteal function and reproductive performance of high-producing lactating Holstein dairy cows.

    PubMed

    Santos, J E; Thatcher, W W; Pool, L; Overton, M W

    2001-11-01

    The objectives were to evaluate effects of human chorionic gonadotropin (hCG) (3,300 IU i.m.) administered on d 5 after AI on CL number, plasma progesterone concentration, conception rate, and pregnancy loss in high-producing dairy cows. Following the synchronization of estrus and AI, 406 cows were injected with either hCG or saline on d 5 after AI in a randomized complete block design. Blood sampling and ovarian ultrasonography were conducted once between d 11 and 16 after AI. Pregnancy diagnoses were performed on d 28 by ultrasonography and on d 45 and 90 after AI by rectal palpation. Treatment with hCG on d 5 resulted in 86.2% of the cows with more than one CL compared with 23.2% in controls. Plasma progesterone concentrations were increased by 5.0 ng/mL in hCG-treated cows. The presence of more than one CL increased progesterone concentration in hCG-treated cows but not in controls. Conception rates were higher for hCG-treated cows on d 28 (45.8 > 38.7%), 45 (40.4 > 36.3%), and 90 (38.4 > 31.9%) after AI. Treatment with hCG improved conception rate in cows losing body condition between AI and d 28 after Al. Pregnancy losses were similar between treatment groups. Treatment with hCG on d 5 after AI induces accessory CL, enhances plasma progesterone concentration, and improves conception rate of high-producing dairy cows.

  7. Effect of β-hydroxy-β-methylbutyrate (HMB) administration on volumetric bone mineral density, and morphometric and mechanical properties of tibia in male turkeys.

    PubMed

    Tatara, M R

    2009-12-01

    This study was performed to investigate the effects of β-hydroxy-β-methylbutyrate (HMB) administration on skeletal system properties in turkeys. Thirty-two males were randomly divided into two groups at the age of 35 days of life. The first group included control turkeys (n = 16) treated with placebo, while the second group of birds (HMB group; n = 16) was administered orally with calcium salt of HMB during the last 15 weeks of life. The turkeys were sacrificed at the age of 20 weeks and tibia was isolated for analysis of bone geometrical parameters, volumetric bone mineral density (vBMD) and mechanical properties. Furthermore, assessment of free amino acid concentrations in plasma was performed. The results showed a 6.3% increase of vBMD of tibia in response to HMB treatment (p < 0.01). Cross-sectional area, second moment of inertia, maximum elastic strength and ultimate strength of tibia were significantly increased in HMB-treated turkeys by 21.3%, 49.0%, 27.2% and 28.3%, respectively (p ≤ 0.01). β-hydroxy-β-methylbutyrate administration increased plasma concentrations of proline,glutamate, leucine, isoleucine, valine, alanine, aspartate, phenylalanine and cysteic acid (p < 0.05). These results indicate that long-term administration of HMB improves vBMD, and geometrical and mechanical properties of skeletal system in turkeys, and that these effects are associated with improved plasma amino acid concentrations.

  8. Improved Recovery and Identification of Membrane Proteins from Rat Hepatic Cells using a Centrifugal Proteomic Reactor*

    PubMed Central

    Zhou, Hu; Wang, Fangjun; Wang, Yuwei; Ning, Zhibin; Hou, Weimin; Wright, Theodore G.; Sundaram, Meenakshi; Zhong, Shumei; Yao, Zemin; Figeys, Daniel

    2011-01-01

    Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism. PMID:21749988

  9. Modelisation numerique d'un actionneur plasma de type decharge a barriere dielectrique par la methode de derive-diffusion

    NASA Astrophysics Data System (ADS)

    Xing, Jacques

    Dielectric barrier discharge (DBD) plasma actuator is a proposed device for active for control in order to improve the performances of aircraft and turbomachines. Essentially, these actuators are made of two electrodes separated by a layer of dielectric material and convert electricity directly into flow. Because of the high costs associated with experiences in realistic operating conditions, there is a need to develop a robust numerical model that can predict the plasma body force and the effects of various parameters on it. Indeed, this plasma body force can be affected by atmospheric conditions (temperature, pressure, and humidity), velocity of the neutral flow, applied voltage (amplitude, frequency, and waveform), and by the actuator geometry. In that respect, the purpose of this thesis is to implement a plasma model for DBD actuator that has the potential to consider the effects of these various parameters. In DBD actuator modelling, two types of approach are commonly proposed, low-order modelling (or phenomenological) and high-order modelling (or scientific). However a critical analysis, presented in this thesis, showed that phenomenological models are not robust enough to predict the plasma body force without artificial calibration for each specific case. Moreover, there are based on erroneous assumptions. Hence, the selected approach to model the plasma body force is a scientific drift-diffusion model with four chemical species (electrons, positive ions, negative ions, and neutrals). This model was chosen because it gives consistent numerical results comparatively with experimental data. Moreover, this model has great potential to include the effect of temperature, pressure, and humidity on the plasma body force and requires only a reasonable computational time. This model was independently implemented in C++ programming language and validated with several test cases. This model was later used to simulate the effect of the plasma body force on the laminar-turbulent transition on airfoil in order to validate the performance of this model in practical CFD simulation. Numerical results show that this model gives a better prediction of the effect of the plasma on the fluid flow for a practical case in aerospace than a phenomenological model.

  10. Diagnostic for Plasma Enhanced Chemical Vapor Deposition and Etch Systems

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1999-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies ion the processing of semiconductor materials arising from understanding etch chemistries are being developed through a research collaboration between Stanford University and NASA-Ames Research Center, Although a great deal of laboratory-scale research has been performed on many of materials processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. In addition, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. The research described involves the study of plasmas used in semiconductor processes. An inductively coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics and chemistries. This ICP source generates plasmas with higher electron densities (approximately 10(exp 12)/cu cm) and lower operating pressures (approximately 7 mTorr) than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The motivation for this study is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental parameters, such as gas-phase and surface reaction rates. species concentration, temperature, ion energy distribution, and electron number density. A wide variety of diagnostic techniques are under development through this consortium grant to measure these parameters. including molecular beam mass spectrometry (MBMS). Fourier transform infrared (FTIR) spectroscopy, broadband ultraviolet (UV) absorption spectroscopy, a compensated Langmuir probe. Additional diagnostics. Such as microwave interferometry and microwave absorption for measurements of plasma density and radical concentrations are also planned.

  11. Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material

    PubMed Central

    Luo, Laima; Shi, Jing; Lin, Jinshan; Zan, Xiang; Zhu, Xiaoyong; Xu, Qiu; Wu, Yucheng

    2016-01-01

    Pure W and W-(2%, 5%, 10%) Lu alloys were manufactured via mechanical alloying for 20 h and a spark plasma sintering process at 1,873 K for 2 min. The effects of Lu doping on the microstructure and performance of W were investigated using various techniques. For irradiation performance analysis, thermal desorption spectroscopy (TDS) measurements were performed from room temperature to 1,000 K via infrared irradiation with a heating rate of 1 K/s after implantations of He+ and D+ ions. TDS measurements were conducted to investigate D retention behavior. Microhardness was dramatically enhanced, and the density initially increased and then decreased with Lu content. The D retention performance followed the same trend as the density. Second-phase particles identified as Lu2O3 particles were completely distributed over the W grain boundaries and generated an effective grain refinement. Transgranular and intergranular fracture modes were observed on the fracture surface of the sintered W-Lu samples, indicating some improvement of strength and toughness. The amount and distribution of Lu substantially affected the properties of W. Among the investigated alloy compositions, W-5%Lu exhibited the best overall performance. PMID:27596002

  12. Studies on the coupling transformer to improve the performance of microwave ion source.

    PubMed

    Misra, Anuraag; Pandit, V S

    2014-06-01

    A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on the transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.

  13. Studies on the coupling transformer to improve the performance of microwave ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misra, Anuraag, E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com, E-mail: anuraag@vecc.gov.in; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com, E-mail: anuraag@vecc.gov.in

    A 2.45 GHz microwave ion source has been developed and installed at the Variable Energy Cyclotron Centre to produce high intensity proton beam. It is operational and has already produced more than 12 mA of proton beam with just 350 W of microwave power. In order to optimize the coupling of microwave power to the plasma, a maximally flat matching transformer has been used. In this paper, we first describe an analytical method to design the matching transformer and then present the results of rigorous simulation performed using ANSYS HFSS code to understand the effect of different parameters on themore » transformed impedance and reflection and transmission coefficients. Based on the simulation results, we have chosen two different coupling transformers which are double ridged waveguides with ridge widths of 24 mm and 48 mm. We have fabricated these transformers and performed experiments to study the influence of these transformers on the coupling of microwave to plasma and extracted beam current from the ion source.« less

  14. Effect of switching to risperidone after unsuccessful treatment with aripiprazole on plasma monoamine metabolites level in the treatment of acute schizophrenia.

    PubMed

    Miura, Itaru; Takeuchi, Satoshi; Katsumi, Akihiko; Kanno, Keiko; Watanabe, Kenya; Mashiko, Hirobumi; Niwa, Shin-Ichi

    2012-09-01

    In the treatment of acute schizophrenia, risperidone and aripiprazole are both placed the first line antipsychotics. These two antipsychotics have different pharmacological effects. We investigated the effects of risperidone on plasma levels of homovanillic acid (HVA) and 3-methoxy-4hydroxyphenylglycol after unsuccessful aripiprazole treatment in acute schizophrenia. Ten Japanese patients with acute schizophrenia were enrolled to this study. Plasma levels of monoamine metabolites were analyzed with high-performance liquid chromatography with electrochemical detection. Risperidone improved the symptoms and 4 of 10 patients were responders. Risperidone showed a tendency to decrease plasma HVA (pHVA) levels in responders (p = 0.068), but not in non-responders (p = 1.0). At baseline, pHVA levels of responders were significantly higher than that of non-responders (p = 0.033). A trend for negative correlation was found between pHVA at baseline and the changes in Positive and Negative Syndrome Scale-Total (p = 0.061, r = -0.61). Our results suggest that high pHVA level before switching may predict good response to the second line antipsychotics after unsuccessful first antipsychotic treatment. If aripiprazole is not effective in acute schizophrenia, switching to risperidone may be effective and reasonable strategy for improving symptoms. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  16. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2011-11-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  17. Knee osteoarthritis, dyslipidemia syndrome and exercise.

    PubMed

    Păstrăiguş, Carmen; Ancuţa, Codrina; Miu, Smaranda; Ancuţa, E; Chirieac, Rodica

    2012-01-01

    The aim of our study was to evaluate the influence of aerobic training on the dyslipedemia in patients with knee osteoarthritis (KOA). Prospective observational six-month study performed on 40 patients with KOA, fulfilling the inclusion criteria, classified according to their participation in specific aerobic training program (30 minutes/day, 5 days/ week) in two subgroups. A standard evaluation protocol was followed assessing lipid parameters (total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol levels) at baseline, three and six months. Statistical analysis was performed in SPSS 16.0, p < 0.05. Subgroup analysis has demonstrated a statistical significant improvement in plasma lipids levels in all patients performing regular aerobic training (cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol) (p < 0.05). Although the difference reported for total cholesterol, triglycerides and LDL-cholesterol after six months between subgroups was not significant (p > 0.05), the mean level of HDL-cholesterol was significantly higher in patients performing aerobic training, reaching the cardio-vascular protective levels. Regular aerobic exercise has a positive effect on plasma lipoprotein concentrations; further research is needed for the assessment of long-term effects of physical exercises for both KOA and lipid pattern.

  18. Effect of applied magnetic nozzle on an MPD Thruster

    NASA Astrophysics Data System (ADS)

    Ando, Akira; Izawa, Yuki; Okawa, Kohei; Hashima, Yoko; Watanabe, Hiroshi; Tanaka, Nozomi

    2012-10-01

    Electric propulsion systems are suitable for long-term mission in space due to its higher specific impulse. An Magneto-Plasma-Dynamic Thruster (MPDT) is one of the promising thrusters of high power electric propulsion systems. It has been reported that the thrust performance of an MPDT can be improved by applying an axial magnetic field on it. In order to investigate the effect of applied field on an MPDT, we have investigated plume plasma parameters and thrust performance in an applied field MPDT. Different types of divergent magnetic nozzle were applied to an MPDT, and thrust was measured using a pendulum type thrust target. Experiments were performed with hydrogen, helium, and argon as propellant gas. Thrust increased with a discharge current up to 6kA and applied magnetic field up to 0.4T. Maximum thrust of 7N was obtained when the peak position of the applied magnetic field was set upstream of the muzzle of the MPDT. The highest thrust performance was obtained with hydrogen gas with divergent magnetic nozzle applied to the MPDT.

  19. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men.

    PubMed

    Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Bezrati, Ikram; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2017-12-01

    To examine the effects of short high-intensity interval training (HIIT) on body composition, physical performance and plasma lipids in overweight/obese compared to normal-weight young men. Nine overweight/obese and nine normal-weight men (control group) aged 17 to 20 years underwent a HIIT programme three times per week for eight weeks. Body composition, indices of aerobic [maximal aerobic velocity (MAV) and maximal oxygen uptake (VO 2max )] and anaerobic [squat jump (SJ), counter-movement jump (CMJ), five-jump test (FJT), 10-m and 30-m sprint] performances, as well as fasting plasma lipids, were assessed in the two groups at PRE and POST HIIT. The HIIT programme resulted in significant reductions in body mass (-1.62%, P=0.016, ES=0.11) and fat mass (-1.59%, P=0.021, ES=0.23) in obese, but not in normal-weight subjects. MAV (+5.55%, P=0.005, ES=0.60 and +2.96%, P=0.009, ES=0.82), VO 2max (+5.27%, P=0.006, ES=0.63 and +2.88%, P=0.009, ES=0.41), FJT (+3.63%, P=0.005, ES=0.28 and +2.94%, P=0.009, ES=0.52), SJ (+4.92%, P=0.009, ES=0.25 and +6.94%, P=0.009, ES=0.70) and CMJ (+6.84%, P=0.014, ES=0.30 and +6.69%, P=0.002, ES=0.64) significantly increased in overweight/obese and normal-weight groups, respectively. 30-m sprint time significantly decreased in both groups (-1.77%, P=0.038, ES=0.12 and -0.72%, P=0.030, ES=0.16). Plasma total cholesterol (-11.8%, P=0.026, ES=0.96), LDL cholesterol (-11.9%, P=0.050, ES=0.77) and triglycerides (-21.3%, P=0.023, ES=1.08) significantly decreased in the obese group, but not in the normal-weight group. The eight-week HIIT programme resulted in a slight improvement in physical fitness and a significant decrease in plasma lipids in the obese. Short duration HIIT may contribute to an improved cardiometabolic profile in the obese.

  20. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men

    PubMed Central

    Fradj, Mohamed Kacem Ben; Bezrati, Ikram; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2017-01-01

    To examine the effects of short high-intensity interval training (HIIT) on body composition, physical performance and plasma lipids in overweight/obese compared to normal-weight young men. Nine overweight/obese and nine normal-weight men (control group) aged 17 to 20 years underwent a HIIT programme three times per week for eight weeks. Body composition, indices of aerobic [maximal aerobic velocity (MAV) and maximal oxygen uptake (VO2max)] and anaerobic [squat jump (SJ), counter-movement jump (CMJ), five-jump test (FJT), 10-m and 30-m sprint] performances, as well as fasting plasma lipids, were assessed in the two groups at PRE and POST HIIT. The HIIT programme resulted in significant reductions in body mass (-1.62%, P=0.016, ES=0.11) and fat mass (-1.59%, P=0.021, ES=0.23) in obese, but not in normal-weight subjects. MAV (+5.55%, P=0.005, ES=0.60 and +2.96%, P=0.009, ES=0.82), VO2max (+5.27%, P=0.006, ES=0.63 and +2.88%, P=0.009, ES=0.41), FJT (+3.63%, P=0.005, ES=0.28 and +2.94%, P=0.009, ES=0.52), SJ (+4.92%, P=0.009, ES=0.25 and +6.94%, P=0.009, ES=0.70) and CMJ (+6.84%, P=0.014, ES=0.30 and +6.69%, P=0.002, ES=0.64) significantly increased in overweight/obese and normal-weight groups, respectively. 30-m sprint time significantly decreased in both groups (-1.77%, P=0.038, ES=0.12 and -0.72%, P=0.030, ES=0.16). Plasma total cholesterol (-11.8%, P=0.026, ES=0.96), LDL cholesterol (-11.9%, P=0.050, ES=0.77) and triglycerides (-21.3%, P=0.023, ES=1.08) significantly decreased in the obese group, but not in the normal-weight group. The eight-week HIIT programme resulted in a slight improvement in physical fitness and a significant decrease in plasma lipids in the obese. Short duration HIIT may contribute to an improved cardiometabolic profile in the obese. PMID:29472742

  1. Advantages and Challenges of Radiative Liquid Lithium Divertor

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    2017-10-01

    Steady-state fusion power plant designs present major divertor technology challenges, including high divertor heat flux both in steady-state and during transients. In addition to these concerns, there are the unresolved technology issues of long term dust accumulation and associated tritium inventory and safety issues. The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid Li divertor (RLLD) concept and its variant, the active liquid Li divertor concept (ARLLD), taking advantage of the enhanced Li radiation in relatively poorly confined divertor plasmas. It has been suggested that radiation-based liquid lithium (LL) divertor concepts with a modest Li-loop could provide a possible solution for the outstanding fusion reactor technology issues such as divertor heat flux mitigation and real time dust removal, while potentially improving the reactor plasma performance. Laboratory tests are also planned to investigate the Li-T recover efficiency and other relevant research topics of the RLLD. This work supported by DoE Contract No. DE-AC02-09CH11466.

  2. Progress in diagnostics of the COMPASS tokamak

    NASA Astrophysics Data System (ADS)

    Weinzettl, V.; Adamek, J.; Berta, M.; Bilkova, P.; Bogar, O.; Bohm, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Ficker, O.; Fridrich, D.; Grover, O.; Hacek, P.; Havlicek, J.; Havranek, A.; Horacek, J.; Hron, M.; Imrisek, M.; Komm, M.; Kovarik, K.; Krbec, J.; Markovic, T.; Matveeva, E.; Mitosinkova, K.; Mlynar, J.; Naydenkova, D.; Panek, R.; Paprok, R.; Peterka, M.; Podolnik, A.; Seidl, J.; Sos, M.; Stockel, J.; Tomes, M.; Varavin, M.; Varju, J.; Vlainic, M.; Vondracek, P.; Zajac, J.; Zacek, F.; Stano, M.; Anda, G.; Dunai, D.; Krizsanoczi, T.; Refy, D.; Zoletnik, S.; Silva, A.; Gomes, R.; Pereira, T.; Popov, Tsv.; Sarychev, D.; Ermak, G. P.; Zebrowski, J.; Jakubowski, M.; Rabinski, M.; Malinowski, K.; Nanobashvili, S.; Spolaore, M.; Vianello, N.; Gauthier, E.; Gunn, J. P.; Devitre, A.

    2017-12-01

    The COMPASS tokamak at IPP Prague is a small-size device with an ITER-relevant plasma geometry and operating in both the Ohmic as well as neutral beam assisted H-modes since 2012. A basic set of diagnostics installed at the beginning of the COMPASS operation has been gradually broadened in type of diagnostics, extended in number of detectors and collected channels and improved by an increased data acquisition speed. In recent years, a significant progress in diagnostic development has been motivated by the improved COMPASS plasma performance and broadening of its scientific programme (L-H transition and pedestal scaling studies, magnetic perturbations, runaway electron control and mitigation, plasma-surface interaction and corresponding heat fluxes, Alfvenic and edge localized mode observations, disruptions, etc.). In this contribution, we describe major upgrades of a broad spectrum of the COMPASS diagnostics and discuss their potential for physical studies. In particular, scrape-off layer plasma diagnostics will be represented by a new concept for microsecond electron temperature and heat flux measurements - we introduce a new set of divertor Langmuir and ball-pen probe arrays, newly constructed probe heads for reciprocating manipulators as well as several types of standalone probes. Among optical tools, an upgraded high-resolution edge Thomson scattering diagnostic for pedestal studies and a set of new visible light and infrared (plasma-surface interaction investigations) cameras will be described. Particle and beam diagnostics will be covered by a neutral particle analyzer, diagnostics on a lithium beam, Cherenkov detectors (for a direct detection of runaway electrons) and neutron detectors. We also present new modifications of the microwave reflectometer for fast edge density profile measurements.

  3. Toward Worldwide Hepcidin Assay Harmonization: Identification of a Commutable Secondary Reference Material.

    PubMed

    van der Vorm, Lisa N; Hendriks, Jan C M; Laarakkers, Coby M; Klaver, Siem; Armitage, Andrew E; Bamberg, Alison; Geurts-Moespot, Anneke J; Girelli, Domenico; Herkert, Matthias; Itkonen, Outi; Konrad, Robert J; Tomosugi, Naohisa; Westerman, Mark; Bansal, Sukhvinder S; Campostrini, Natascia; Drakesmith, Hal; Fillet, Marianne; Olbina, Gordana; Pasricha, Sant-Rayn; Pitts, Kelly R; Sloan, John H; Tagliaro, Franco; Weykamp, Cas W; Swinkels, Dorine W

    2016-07-01

    Absolute plasma hepcidin concentrations measured by various procedures differ substantially, complicating interpretation of results and rendering reference intervals method dependent. We investigated the degree of equivalence achievable by harmonization and the identification of a commutable secondary reference material to accomplish this goal. We applied technical procedures to achieve harmonization developed by the Consortium for Harmonization of Clinical Laboratory Results. Eleven plasma hepcidin measurement procedures (5 mass spectrometry based and 6 immunochemical based) quantified native individual plasma samples (n = 32) and native plasma pools (n = 8) to assess analytical performance and current and achievable equivalence. In addition, 8 types of candidate reference materials (3 concentrations each, n = 24) were assessed for their suitability, most notably in terms of commutability, to serve as secondary reference material. Absolute hepcidin values and reproducibility (intrameasurement procedure CVs 2.9%-8.7%) differed substantially between measurement procedures, but all were linear and correlated well. The current equivalence (intermeasurement procedure CV 28.6%) between the methods was mainly attributable to differences in calibration and could thus be improved by harmonization with a common calibrator. Linear regression analysis and standardized residuals showed that a candidate reference material consisting of native lyophilized plasma with cryolyoprotectant was commutable for all measurement procedures. Mathematically simulated harmonization with this calibrator resulted in a maximum achievable equivalence of 7.7%. The secondary reference material identified in this study has the potential to substantially improve equivalence between hepcidin measurement procedures and contributes to the establishment of a traceability chain that will ultimately allow standardization of hepcidin measurement results. © 2016 American Association for Clinical Chemistry.

  4. Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement.

    PubMed

    Ito, Yuki; Okawa, Takahisa; Fukumoto, Takahiro; Tsurumi, Akiko; Tatsuta, Mitsuhiro; Fujii, Takamasa; Tanaka, Junko; Tanaka, Masahiro

    2016-10-01

    Zirconia exhibits excellent strength and high biocompatibility in technological applications and it is has therefore been investigated for clinical applications and research. Before setting prostheses, a crown prosthesis inner surface is sandblasted with alumina to remove contaminants and form small cavities. This alumina sandblasting causes stress-induced phase transition of zirconia. Atmospheric-pressure low-temperature plasma has been applied in the dental industry, particularly for adhesives, as a surface treatment to activate the surface energy and remove contaminants. The purpose of this study was to examine the influence of atmospheric-pressure low-temperature plasma treatment on the shear bond strength between zirconia and adhesive resin cement. The surface treatment method was classified into three groups: untreated (Cont group), alumina sandblast treatment (Sb group), and atmospheric-pressure low-temperature plasma treatment (Ps group). Adhesive resin cement was applied to stainless steel and bonded to zirconia. Shear adhesion tests were performed after complete hardening of the cement. Multiple comparisons were performed using a one-way analysis of variance and the Bonferroni method. X-ray diffractometry was used to examine the change in zirconia crystal structure. Statistically significant differences were noted between the control and Sb groups and between the control and Ps groups. In contrast, no statistically significant differences were noted for the Ps and Sb bond strength. Atmospheric-pressure low-temperature plasma treatment did not affect the zirconia crystal structure. Atmospheric-pressure low-temperature plasma treatment improves the bonding strength of adhesive resin cement as effectively as alumina sandblasting, and does not alter the zirconia crystal structure. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  5. The Effects of Temperature and Oxidation on Deuterium Retention in Solid and Liquid Lithium Films on Molybdenum Plasma-Facing Components

    NASA Astrophysics Data System (ADS)

    Capece, Angela

    2014-10-01

    Liquid metal plasma-facing components (PFCs) enable in-situ renewal of the surface, thereby offering a solution to neutron damage, erosion, and thermal fatigue experienced by solid PFCs. Lithium in particular has a high chemical affinity for hydrogen, which has resulted in reduced recycling and enhanced plasma performance on many fusion devices including TFTR, T11-M, FTU, CDX-U, LTX, TJ-II, and NSTX. A key component to the improvement in plasma performance is deuterium retention in Li; however, this process is not well understood in the complex tokamak environment. Recent surface science experiments conducted at the Princeton Plasma Physics Laboratory have used electron spectroscopy and temperature programmed desorption to understand the mechanisms for D retention in Li coatings on Mo substrates. The experiments were designed to give monolayer-control of Li films and were conducted in ultrahigh vacuum under controlled environments. An electron cyclotron resonance plasma source was used to deliver a beam of deuterium ions to the surface over a range of ion energies. Our work shows that D is retained as LiD in metallic Li films. However, when oxygen is present in the film, either by diffusion from the subsurface at high temperature or as a contaminant during the deposition process, Li oxides are formed that retain D as LiOD. Experiments indicate that LiD is more thermally stable than LiOD, which decomposes to liberate D2 gas and D2O at temperatures 100 K lower than the LiD decomposition temperature. Other experiments show how D retention varies with substrate temperature to provide insight into the differences between solid and liquid lithium films. This work was supported by DOE Contract No. DE AC02-09CH11466.

  6. Performance improvement of doped TFET by using plasma formation concept

    NASA Astrophysics Data System (ADS)

    Soni, Deepak; Sharma, Dheeraj; Yadav, Shivendra; Aslam, Mohd.; Sharma, Neeraj

    2018-01-01

    Formation of abrupt doping profile at tunneling junction for the nanoscale tunnel field effect transistor (TFET) is a critical issue for attaining improved electrical behaviour. The realization of abrupt doping profile is more difficult in the case of physically doped TFETs due to material solubility limit. In this concern, we propose a novel design of TFET. For this, P+ (source)-I (channel)-N (drain) type structure has been considered, wherein a metal electrode is deposited over the source region. In addition to this, a negative voltage is applied to the source electrode (SE). It induces the surface plasma layer of holes in the source region, which is responsible for steepness in the bands at source/channel junction and provides the advantage of higher doping in source region without any addition of the physical impurity. The proposed modification is helpful for achieving steeper band bending at the source/channel interface, which enables higher tunneling generation rate of charge carriers at this interface and overcomes the issue of low ON-state current. Thus, the proposed device shows the increment of 2 decades in drain current and 252 mV reduction in threshold voltage compared with conventional device. The optimization of spacer length (LSG) between source/gate (LSG) and applied negative voltage (Vpg) over source electrode have been performed to obtain optimum drain current and threshold voltage (Vth). Further, for the suppression of ambipolar current, drain region is kept lightly doped, which reduces the ambipolar current up to level of Off state current. Moreover, in the proposed device gate electrode is underlapped for improving RF performance. It also reduces gate to drain capacitances (Cgd) and increases cut-off-frequency (fT), fmax, GBP, TFP. In addition to these, linearity analysis has been performed to validate the applicability of the device.

  7. Fuel selection and cycling endurance performance with ingestion of [13C]glucose: evidence for a carbohydrate dose response.

    PubMed

    Smith, JohnEric W; Zachwieja, Jeffrey J; Péronnet, François; Passe, Dennis H; Massicotte, Denis; Lavoie, Carole; Pascoe, David D

    2010-06-01

    Endurance performance and fuel selection while ingesting glucose (15, 30, and 60 g/h) was studied in 12 cyclists during a 2-h constant-load ride [approximately 77% peak O2 uptake] followed by a 20-km time trial. Total fat and carbohydrate (CHO) oxidation and oxidation of exogenous glucose, plasma glucose, glucose released from the liver, and muscle glycogen were computed using indirect respiratory calorimetry and tracer techniques. Relative to placebo (210+/-36 W), glucose ingestion increased the time trial mean power output (%improvement, 90% confidence limits: 7.4, 1.4 to 13.4 for 15 g/h; 8.3, 1.4 to 15.2 for 30 g/h; and 10.7, 1.8 to 19.6 for 60 g/h glucose ingested; effect size=0.46). With 60 g/h glucose, mean power was 2.3, 0.4 to 4.2% higher, and 3.1, 0.5 to 5.7% higher than with 30 and 15 g/h, respectively, suggesting a relationship between the dose of glucose ingested and improvements in endurance performance. Exogenous glucose oxidation increased with ingestion rate (0.17+/-0.04, 0.33+/-0.04, and 0.52+/-0.09 g/min for 15, 30, and 60 g/h glucose), but endogenous CHO oxidation was reduced only with 30 and 60 g/h due to the progressive inhibition of glucose released from the liver (probably related to higher plasma insulin concentration) with increasing ingestion rate without evidence for muscle glycogen sparing. Thus ingestion of glucose at low rates improved cycling time trial performance in a dose-dependent manner. This was associated with a small increase in CHO oxidation without any reduction in muscle glycogen utilization.

  8. Ion Bernstein wave heating research

    NASA Astrophysics Data System (ADS)

    Ono, Masayuki

    1993-02-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat the tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low perpendicular phase velocity (ω/k⊥≊VTi≪Vα) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α particles. In addition, the property of IBW's that k⊥ρi≊1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. IBW's can be excited with loop antennas or with a lower-hybrid-like waveguide launcher at the plasma edge, the latter structure being one that is especially compatible with reactor application. In either case, the mode at the plasma edge is an electron plasma wave (EPW). Deeper in the plasma, the EPW is mode transformed into an IBW. Such launching and mode transformation of IBW's were first demonstrated in experiments in the Advanced Concepts Torus-1 (ACT-1) [Phys. Rev. Lett. 45, 1105 (1980)] plasma torus and in particle simulation calculations. These and other aspects of IBW heating physics have been investigated through a number of experiments performed on ACT-1, the Japanese Institute of Plasma Physics Tokamak II-Upgrade (JIPPTII-U) [Phys. Rev. Lett. 54, 2339 (1985)], the Tokyo University Non-Circular Tokamak (TNT) [Nucl. Fusion 26, 1097 (1986)], the Princeton Large Tokamak (PLT) [Phys. Rev. Lett. 60, 294 (1988)], and Alcator-C [Phys. Rev. Lett. 60, 298 (1988)]. In these experiments both linear and nonlinear heating processes have been observed. Interestingly, improvement of plasma confinement was also observed in the PLT and Alcator-C experiments, opening up the possible use of IBW's for the active control of plasma transport. Two theoretical explanations have been proposed: one based on four-wave mixing of IBW with low-frequency turbulence, the other on the nonlinear generation of a velocity-shear layer. Both models are consistent with the observed threshold power level of a few hundred kW in the experiments. Experiments on lower field plasmas on JFTII-M [Eighth Topical Conference on Radio-Frequency Power in Plasmas, Irvine, CA, 1989 (American Institute of Physics, New York, 1989), p. 350] and DIII-D [Eighth Topical Conference on Radio-Frequency Power in Plasmas, Irvine, CA, 1989 (American Institute of Physics, New York, 1989), p. 314] have raised some concern with the IBW wave-launching process. The experiments showed serious impurity release from the walls but little or no core heating, a combination of circumstances strongly suggestive of edge heating. Possible parasitic channels could include the excitation of short wavelength modes by the Faraday shield's fringing fields, antenna-sheath-wave excitation, an axial-convective loss channel, and nonlinear processes such as parametric instability and ponderomotive effects. Suggested remedies include changes in the antenna phasing, the use of low-Z insulators, operating at higher frequencies, positioning the plasma differently with respect to the antenna, eliminating the Faraday shields, and using a waveguide launcher. The recent JIPPTII-U experiment, employing a 0-π phased antenna array with a higher frequency 130 MHz source, demonstrated that those remedies can indeed work. Looking to the future, one seeks additional ways in which IBWH can improve tokamak performance. The strong ponderomotive potential of the IBWH antenna may be used to stabilize external kinks and, acting as an rf limiter, to control the plasma edge. Control of the plasma pressure profile with local IBWH heating is already an important part of the Princeton Beta Experiment-Modified (PBX-M) [Ninth Topical Conference on Radio-Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] program in its exploration of the second-stability regime. Application of IBWH may also improve the performance of neutral beam heating and the efficiency and localization of lower-hybrid current drive for current profile control. Used with pellet injection, IBWH may also prolong the period of good confinement. The three planned high-power IBWH experiments covering vastly different parameters: f=40-80 MHz for PBX-M; f=130 MHz for JIPPT-II-U; and f=430 MHz for the Frascati Tokamak-Upgrade (FT-U) [16th European Physical Society Conference on Controlled Fusion and Plasma Physics, Venice, Italy, 1989 (European Physical Society, Amsterdam, 1989), Vol. III, p. 1069] appear to be well positioned to explore these possibilities and to clarify other issues including the physics of wave launching and associated nonlinear processes.

  9. Effects of the current boundary conditions at the plasma-gun gap on density in SSPX

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Roman; Lodestro, L. L.; Meyer, W. H.

    2012-10-01

    The Sustained Spheromak Physics Experiment (SSPX) was a toroidal magnetic-confinement device without toroidal magnetic-field coils or a central transformer but which generated core-plasma currents by dynamo processes driven by coaxial plasma-gun injection into a flux-conserving vessel. Record electron temperatures in a spheromak (Te˜500eV) were achieved, and final results of the SSPX program were reported in [1]. Plasma density, which depended strongly on wall conditions, was an important parameter in SSPX. It was observed that density rises with Igun and that confinement improved as the density was lowered. Shortly after the last experiments, a new feature was added to the Corsica code's solver used to reconstruct SSPX equilibria. Motivated by n=0 fields observed in NIMROD simulations of SSPX, an insulating boundary condition was implemented at the plasma-gun gap. Using this option we will perform new reconstructions of SSPX equilibria and look for correlations between the location of the separatrix (which moves up the gun wall and onto the insulating gap as Igun increases) and plasma density and magnetic-flux amplification [2].[4pt] [1] H. S. McLean, APS, DPP, Dallas, TX, 2008.[0pt] [2] E. B. Hooper et al., Nucl. Fusion 47, 1064 (2007).

  10. Hematology, plasma biochemistry, and tissue enzyme activities of invasive red lionfish captured off North Carolina, USA.

    PubMed

    Anderson, E T; Stoskopf, M K; Morris, J A; Clarke, E O; Harms, C A

    2010-12-01

    The red lionfish Pterois volitans is important not only in the aquarium trade but also as an invasive species in the western Atlantic. Introduced to waters off the southeastern coast of the United States, red lionfish have rapidly spread along much of the East Coast and throughout Bermuda, the Bahamas, and much of the Caribbean. Hematology and plasma biochemistry were evaluated in red lionfish captured from the offshore waters of North Carolina to establish baseline parameters for individual and population health assessment. Blood smears were evaluated for total and differential white blood cell counts, and routine clinical biochemical profiles were performed on plasma samples. To improve the interpretive value of routine plasma biochemistry profiles, tissue enzyme activities (alkaline phosphatase [ALP], alanine aminotransferase [ALT], aspartate aminotransferase [AST], gamma-glutamyl transferase [GGT], lactate dehydrogenase [LD], and creatine kinase [CK]) were analyzed from liver, kidney, skeletal muscle, gastrointestinal tract, and heart tissues from five fish. The hematological and plasma biochemical values were similar to those of other marine teleosts except that the estimated white blood cell counts were much lower than those routinely found in many species. The tissue enzyme activity findings suggest that plasma LD, CK, and AST offer clinical relevance in the assessment of red lionfish.

  11. Magnetic Fluctuation-Driven Intrinsic Flow in a Toroidal Plasma

    NASA Astrophysics Data System (ADS)

    Brower, D. L.; Ding, W. X.; Lin, L.; Almagri, A. F.; den Hartog, D. J.; Sarff, J. S.

    2012-10-01

    Magnetic fluctuations have been long observed in various magnetic confinement configurations. These perturbations may arise naturally from plasma instabilities such as tearing modes and energetic particle driven modes, but they can also be externally imposed by error fields or external magnetic coils. It is commonly observed that large MHD modes lead to plasma locking (no rotation) due to torque produced by eddy currents on the wall, and it is predicted that stochastic field induces flow damping where the radial electric field is reduced. Flow generation is of great importance to fusion plasma research, especially low-torque devices like ITER, as it can act to improve performance. Here we describe new measurements in the MST reversed field pinch (RFP) showing that the coherent interaction of magnetic and particle density fluctuations can produce a turbulent fluctuation-induced kinetic force, which acts to drive intrinsic plasma rotation. Key observations include; (1) the average kinetic force resulting from density fluctuations, ˜ 0.5 N/m^3, is comparable to the intrinsic flow acceleration, and (2) between sawtooth crashes, the spatial distribution of the kinetic force is directed to create a sheared parallel flow profile that is consistent with the measured flow profile in direction and amplitude, suggesting the kinetic force is responsible for intrinsic plasma rotation.

  12. Surface Passivation of Silicon Using HfO2 Thin Films Deposited by Remote Plasma Atomic Layer Deposition System.

    PubMed

    Zhang, Xiao-Ying; Hsu, Chia-Hsun; Lien, Shui-Yang; Chen, Song-Yan; Huang, Wei; Yang, Chih-Hsiang; Kung, Chung-Yuan; Zhu, Wen-Zhang; Xiong, Fei-Bing; Meng, Xian-Guo

    2017-12-01

    Hafnium oxide (HfO 2 ) thin films have attracted much attention owing to their usefulness in equivalent oxide thickness scaling in microelectronics, which arises from their high dielectric constant and thermodynamic stability with silicon. However, the surface passivation properties of such films, particularly on crystalline silicon (c-Si), have rarely been reported upon. In this study, the HfO 2 thin films were deposited on c-Si substrates with and without oxygen plasma pretreatments, using a remote plasma atomic layer deposition system. Post-annealing was performed using a rapid thermal processing system at different temperatures in N 2 ambient for 10 min. The effects of oxygen plasma pretreatment and post-annealing on the properties of the HfO 2 thin films were investigated. They indicate that the in situ remote plasma pretreatment of Si substrate can result in the formation of better SiO 2 , resulting in a better chemical passivation. The deposited HfO 2 thin films with oxygen plasma pretreatment and post-annealing at 500 °C for 10 min were effective in improving the lifetime of c-Si (original lifetime of 1 μs) to up to 67 μs.

  13. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    PubMed Central

    2012-01-01

    Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC) Superfamily and Major Facilitator Superfamily (MFS) in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to improve alcoholic fermentation performance for sustainable bio-ethanol production. PMID:22839110

  14. Associations between five-factor model of the Positive and Negative Syndrome Scale and plasma levels of monoamine metabolite in patients with schizophrenia.

    PubMed

    Watanabe, Kenya; Miura, Itaru; Kanno-Nozaki, Keiko; Horikoshi, Sho; Mashiko, Hirobumi; Niwa, Shin-Ichi; Yabe, Hirooki

    2015-12-15

    The five-factor model of the Positive and Negative Syndrome Scale (PANSS) for schizophrenia symptoms is the most common multiple-factor model used in analyses; its use may improve evaluation of symptoms in schizophrenia patients. Plasma monoamine metabolite levels are possible indicators of clinical symptoms or response to antipsychotics in schizophrenia. We investigated the association between five-factor model components and plasma monoamine metabolites levels to explore the model's biological basis. Plasma levels of homovanillic acid (HVA), 3-methoxy-4-hydroxyphenylglycol (MHPG), and 5-hydroxyindoleacetic acid (5-HIAA) were measured using high-performance liquid chromatography in 65 Japanese patients with schizophrenia. Significant negative correlation between plasma 5-HIAA levels and the depression/anxiety component was found. Furthermore, significant positive correlation was found between plasma MHPG levels and the excitement component. Plasma HVA levels were not correlated with any five-factor model component. These results suggest that the five-factor model of the PANSS may have a biological basis, and may be useful for elucidating the psychopathology of schizophrenia. Assessment using the five-factor model may enable understanding of monoaminergic dysfunction, possibly allowing more appropriate medication selection. Further studies of a larger number of first-episode schizophrenia patients are needed to confirm and extend these results. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Relationship between seminal plasma levels of anandamide congeners palmitoylethanolamide and oleoylethanolamide and semen quality.

    PubMed

    Amoako, Akwasi Atakora; Marczylo, Timothy Hywel; Elson, Janine; Taylor, Anthony Henry; Willets, Jonathon M; Konje, Justin Chi

    2014-11-01

    To determine whether changes in seminal plasma concentrations of the endogenous lipid signaling molecules palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) have significant effects on sperm quality. Biochemical and physiological studies of human seminal plasma and spermatozoa. Academic tertiary care medical center. Ninety men attending an infertility clinic for semen analysis. Palmitoylethanolamide and OEA extracted from seminal plasma were quantified by ultra high-performance liquid chromatography (HPLC)-tandem mass spectrometry. Patient sperm from semen with normal parameters were exposed in vitro to PEA or OEA to determine effects on sperm motility, viability, and mitochondrial activity. The relationship between seminal plasma concentrations of PEA and OEA and sperm quality and the effect of these compounds on sperm motility, viability, and mitochondria activity in vitro. Palmitoylethanolamide and OEA concentrations in seminal plasma were lower in men with asthenozoospermia and oligoasthenoteratozospermia compared with men with normal semen parameters. Palmitoylethanolamide and OEA rapidly and significantly improved sperm motility and maintained viability without affecting mitochondria activity in vitro. Maintenance of normal PEA and OEA tone in human seminal plasma may be necessary for the preservation of normal sperm function and male fertility. Exocannabinoids found in Cannabis, such as delta-9-tetrahydrocannabinol and cannabidiol, could compete with these endocannabinoids upsetting their finely balanced, normal functioning and resulting in male reproductive failure. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Effect of Mucuna pruriens on semen profile and biochemical parameters in seminal plasma of infertile men.

    PubMed

    Ahmad, Mohammad Kaleem; Mahdi, Abbas Ali; Shukla, Kamla Kant; Islam, Najmul; Jaiswar, Shyam Pyari; Ahmad, Sohail

    2008-09-01

    To investigate the impact of Mucuna pruriens seeds on semen profiles and biochemical levels in seminal plasma of infertile men. Prospective study. Departments of Biochemistry and Obstetrics and Gynecology, King George's Medical University, Lucknow, India. Sixty normal healthy fertile men (controls) and 60 men undergoing infertility screening. High-performance liquid chromatography assay procedure for quantitation of vitamin A and E in seminal plasma. Biochemical parameters in seminal plasma, namely lipids, fructose, and vitamin C, were estimated by standard spectrophotometric procedures. Before and after the treatment, seminal plasma lipid profile, lipid peroxide, fructose, and antioxidant vitamin levels were measured. Treatment with M. pruriens significantly inhibited lipid peroxidation, elevated spermatogenesis, and improved sperm motility. Treatment also recovered the levels of total lipids, triglycerides, cholesterol, phospholipids, and vitamin A, C, and E and corrected fructose in seminal plasma of infertile men. Treatment with M. pruriens increased sperm concentration and motility in all the infertile study groups. Oligozoospermic patients recovered sperm concentration significantly, but sperm motility was not restored to normal levels in asthenozoospermic men. Furthermore, in the seminal plasma of all the infertile groups, the levels of lipids, antioxidant vitamins, and corrected fructose were recovered after a decrease in lipid peroxides after treatment. The present study is likely to open new vistas on the possible role of M. pruriens seed powder as a restorative and invigorating agent for infertile men.

  17. Demonstration of plasma start-up by Coaxial Helicity Injection

    NASA Astrophysics Data System (ADS)

    Raman, Roger

    2003-10-01

    Experimental results on the first successful transfer of a Coaxial-Helicity-Injection- (CHI)-produced discharge to inductive operation are reported. CHI assisted plasma start-up is more robust than inductive-only operation and reduces volt-seconds consumption. After hand-off for inductive operation, the initial 100 kA of CHI-produced current drops to 44 kA, then ramps up to 180 kA, using only 30 mVs, more than 30induction alone. Coupling a CHI-produced discharge to induction from a pre-charged central solenoid has produced record plasma currents of 265kA in HIT-II. CHI discharges can also be generated while the central transformer is in the process of being pre-charged, during which period it induces a negative loop voltage on the CHI discharge. Such capability is believed to be important for a short pulse burning plasma experiment that could contain a solenoid. In the latest results, which improve upon the earlier work (Raman et. al., Phys. Rev. Lett., 90, (2003) 075005-1), no transient coil currents are necessary for the CHI produced closed flux generation. This is particularly important for a reactor in which the poloidal field coils would be located outside blanket structures. Three important results are reported. First, CHI is shown to produce closed flux plasma. Second, it is shown that electrode-based CHI plasmas can be sufficiently clean for fusion research purposes. Finally, it is shown that CHI discharges, in addition to generating useful startup current, improve the performance of inductive discharges. This work was motivated by earlier experiments on HIT-II and NSTX that showed coupling of the inductive drive to the external CHI power supply circuit, instead of to the main plasma discharge. These important results were obtained on the HIT-II spherical torus experiment (R/a of 0.3/0.2m, elongation of 1.5).

  18. Improved Fast, Deep Record Length, Time-Resolved Visible Spectroscopy of Plasmas Using Fiber Grids

    NASA Astrophysics Data System (ADS)

    Brockington, S.; Case, A.; Cruz, E.; Williams, A.; Witherspoon, F. D.; Horton, R.; Klauser, R.; Hwang, D.

    2017-10-01

    HyperV Technologies is developing a fiber-coupled, deep record-length, low-light camera head for performing high time resolution spectroscopy on visible emission from plasma events. By coupling the output of a spectrometer to an imaging fiber bundle connected to a bank of amplified silicon photomultipliers, time-resolved spectroscopic imagers of 100 to 1,000 pixels can be constructed. A second generation prototype 32-pixel spectroscopic imager employing this technique was constructed and successfully tested at the University of California at Davis Compact Toroid Injection Experiment (CTIX). Pixel performance of 10 Megaframes/sec with record lengths of up to 256,000 frames ( 25.6 milliseconds) were achieved. Pixel resolution was 12 bits. Pixel pitch can be refined by using grids of 100 μm to 1000 μm diameter fibers. Experimental results will be discussed, along with future plans for this diagnostic. Work supported by USDOE SBIR Grant DE-SC0013801.

  19. Regulation of Nutritional Metabolism in Transition Dairy Cows: Energy Homeostasis and Health in Response to Post-Ruminal Choline and Methionine

    PubMed Central

    Sun, Feifei; Cao, Yangchun; Cai, Chuanjiang; Li, Shengxiang; Yu, Chao; Yao, Junhu

    2016-01-01

    This study investigated the effects of rumen-protected methionine (RPM) and rumen-protected choline (RPC) on energy balance, postpartum lactation performance, antioxidant capacity and immune response in transition dairy cows. Forty-eight multiparous transition cows were matched and divided into four groups: control, 15 g/d RPC, 15 g/d RPM or 15 g/d RPC + 15 g/d RPM. Diet samples were collected daily before feeding, and blood samples were collected weekly from the jugular vein before morning feeding from 21 days prepartum to 21 days postpartum. Postpartum dry matter intake (DMI) was increased by both additives (P < 0.05), and energy balance values in supplemented cows were improved after parturition (P < 0.05). Both RPC and RPM decreased the plasma concentrations of non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (P < 0.05), but increased the plasma levels of glucose, very-low-density lipoprotein (VLDL) and apolipoprotein B100 (ApoB 100, P < 0.05). The supplements improved milk production (P < 0.05), and increased (P < 0.05) or tended to increase (0.05 < P < 0.10) the contents of milk fat and protein. The post-ruminal choline and methionine elevated the blood antioxidant status, as indicated by total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) activity and the vitamin E concentration (P < 0.05), and reduced the plasma malondialdehyde (MDA) level (P < 0.05). Furthermore, RPM and RPC elevated the plasma interleukin 2 (IL-2) concentration and the CD4+/CD8+ T lymphocyte ratio in peripheral blood (P < 0.05). Alternatively, the levels of tumor necrosis factor-α (TNF-α) and IL-6 were decreased by RPM and RPC (P < 0.05). Overall, the regulatory responses of RPC and RPM were highly correlated with time and were more effective in the postpartum cows. The results demonstrated that dietary supplementation with RPC and RPM promoted energy balance by increasing postpartal DMI and regulating hepatic lipid metabolism, improved postpartum lactation performance and enhanced antioxidant capacity and immune function of transition dairy cows. PMID:27501393

  20. Regulation of Nutritional Metabolism in Transition Dairy Cows: Energy Homeostasis and Health in Response to Post-Ruminal Choline and Methionine.

    PubMed

    Sun, Feifei; Cao, Yangchun; Cai, Chuanjiang; Li, Shengxiang; Yu, Chao; Yao, Junhu

    2016-01-01

    This study investigated the effects of rumen-protected methionine (RPM) and rumen-protected choline (RPC) on energy balance, postpartum lactation performance, antioxidant capacity and immune response in transition dairy cows. Forty-eight multiparous transition cows were matched and divided into four groups: control, 15 g/d RPC, 15 g/d RPM or 15 g/d RPC + 15 g/d RPM. Diet samples were collected daily before feeding, and blood samples were collected weekly from the jugular vein before morning feeding from 21 days prepartum to 21 days postpartum. Postpartum dry matter intake (DMI) was increased by both additives (P < 0.05), and energy balance values in supplemented cows were improved after parturition (P < 0.05). Both RPC and RPM decreased the plasma concentrations of non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) (P < 0.05), but increased the plasma levels of glucose, very-low-density lipoprotein (VLDL) and apolipoprotein B100 (ApoB 100, P < 0.05). The supplements improved milk production (P < 0.05), and increased (P < 0.05) or tended to increase (0.05 < P < 0.10) the contents of milk fat and protein. The post-ruminal choline and methionine elevated the blood antioxidant status, as indicated by total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) activity and the vitamin E concentration (P < 0.05), and reduced the plasma malondialdehyde (MDA) level (P < 0.05). Furthermore, RPM and RPC elevated the plasma interleukin 2 (IL-2) concentration and the CD4+/CD8+ T lymphocyte ratio in peripheral blood (P < 0.05). Alternatively, the levels of tumor necrosis factor-α (TNF-α) and IL-6 were decreased by RPM and RPC (P < 0.05). Overall, the regulatory responses of RPC and RPM were highly correlated with time and were more effective in the postpartum cows. The results demonstrated that dietary supplementation with RPC and RPM promoted energy balance by increasing postpartal DMI and regulating hepatic lipid metabolism, improved postpartum lactation performance and enhanced antioxidant capacity and immune function of transition dairy cows.

  1. Outcome measures to evaluate new technology for tonsillectomy: preliminary experience with Coblation

    NASA Astrophysics Data System (ADS)

    Shah, Udayan K.; Puchalski, Robert; Briggs, Marianne; Chiavacci, Rosetta; Galinkin, Jeffrey

    2001-05-01

    Evaluating the benefits of new surgical technologies does not end with the observation of successful instrument-to- tissue interaction. The impact of new technologies in medicine today is also gauged by improvements in patients' daily activities and performance. We present our outcomes assessment tool for judging the value of applying a novel tonsillectomy technique, plasma- mediated ablation using Coblation technology. Plasma- mediated ablation (PMA) achieves soft tissue resection in the oropharynx by energizing protons to break bonds. Less heat is released, allowing for less thermal injury, and possibly less pain, than with tonsillectomy performed using electrocautery alone. Children undergoing tonsillectomy by PMA, were evaluated using our outcomes-based scale, which asked families to report the degree of interruption of normal activities for the patient and their family during the post-tonsillectomy recovery period. A preliminary review of several outcomes assessments exemplify the benefits and limitations of this tool. The tracking of valuable data is weighed against the limitations of a short time course relative to the duration of disability, and a poor response rate. Future work aims to improve this data collection tool to allow application to other new technologies in otolaryngology.

  2. At-Home Application of Autologous Platelet Rich Plasma as Treatment for Pressure Sore and Related Anemia.

    PubMed

    Tendas, Andrea; Niscola, Pasquale; Giovannini, Marco; Costa, Adriana; Venditti, Daniela; Volta, Laura; Malandruccolo, Luigi; Sabbadini, Stefania; Lasorella, Rosa; Fabritiis, Paolo de; Cassetta, Rita; Perrotti, Alessio P

    2017-01-01

    Pressure sores are a major complication in the bed-ridden older patient. In this report, we present the case of platelet rich plasma (PRP) application for the treatment of a pressure sore in an 88-year-old female affected by transfusion-dependent chronic inflammatory disease anemia associated with the congenital and inherited condition of thalassemic trait carrier. A weekly application schedule was planned athome, given the patient's debilitation and her decreased performance status as well as personal and family difficulties to go as outpatients at our treatment center. After 9 PRP applications, a remarkable sore improvement was achieved so that PRP was discontinued; nevertheless, sore rapidly improved until the full resolution and the complete closing after 4 months from the start of PRP treatment. Noteworthy, transfusion support was interrupted and a significant recovery and a sustained stabilization of hemoglobin (Hb) level at 1 year after ulcer healing were observed. The present case suggests that PRP application, performed athome in our case, is a feasible and effective treatment for pressure sores and related complications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Sandia technology: Engineering and science applications

    NASA Astrophysics Data System (ADS)

    Maydew, M. C.; Parrot, H.; Dale, B. C.; Floyd, H. L.; Leonard, J. A.; Parrot, L.

    1990-12-01

    This report discusses: protecting environment, safety, and health; Sandia's quality initiative; Sandia vigorously pursues technology transfer; scientific and technical education support programs; nuclear weapons development; recognizing battlefield targets with trained artificial neural networks; battlefield robotics: warfare at a distance; a spinning shell sizes up the enemy; thwarting would-be nuclear terrorists; unattended video surveillance system for nuclear facilities; making the skies safer for travelers; onboard instrumentation system to evaluate performance of stockpile bombs; keeping track with lasers; extended-life lithium batteries; a remote digital video link acquires images securely; guiding high-performance missiles with laser gyroscopes; nonvolatile memory chips for space applications; initiating weapon explosives with lasers; next-generation optoelectronics and microelectronics technology developments; chemometrics: new methods for improving chemical analysis; research team focuses ion beam to record-breaking intensities; standardizing the volt to quantum accuracy; new techniques improve robotic software development productivity; a practical laser plasma source for generating soft x-rays; exploring metal grain boundaries; massively parallel computing; modeling the amount of desiccant needed for moisture control; attacking pollution with sunshine; designing fuel-conversion catalysts with computers; extending a nuclear power plant's useful life; plasma-facing components for the International Thermonuclear Experimental Reactor.

  4. The acute phase reactant, fibrinogen, as a guide to plasma exchange therapy for acute Guillain-Barré syndrome.

    PubMed

    Sanjay, Rashmi; Flanagan, Janice; Sodano, Donata; Gorson, Kenneth C; Ropper, Allan H; Weinstein, Robert

    2006-07-01

    The Guillian Barré syndrome is an acute inflammatory disorder for which plasma exchange is effective treatment. Up to 10% relapse after plasma exchange suggesting that treatment sometimes finishes before disease activity has resolved. We studied whether plasma fibrinogen, an inflammatory marker, might be used to determine when to discontinue plasma exchange in patients with acute Guillain-Barré syndrome. We conducted a post-hoc analysis of apheresis database and hospital records of patients treated with plasma exchange for acute Guillain-Barré syndrome during 1999-2004. Data were analyzed from 28 patients who underwent a total of 29 courses of plasma exchange for acute Guillain-Barré syndrome. The mean (+/-SD) plasma fibrinogen concentration was 422.5 (+/-96.4) mg/dl at the time of presentation and, in 17 of the 29, it was above 400 mg/dl (reference range 200-400). Twenty of the 21 patients whose fibrinogen fell by more than 30% from baseline by the time of the final plasma exchange treatment had neurological improvement. There was improvement in only 3 of the 8 instances where fibrinogen decreased by less than 30% by the end of plasma exchange therapy. A > or =30% decrease in fibrinogen by the conclusion of plasma exchange was significantly associated with sustained neurological improvement (P = 0.0025). The plasma fibrinogen level appears to reflect disease activity in acute Guillain-Barré syndrome. A <30% fall in fibrinogen level despite plasma exchange may indicate the need to continue plasma exchange to maximize the benefit of treatment or minimize the risk of relapse. Therapeutic plasma exchange need not be extended when plasma fibrinogen remains > or =30% below its level at presentation by the time of the final planned plasma exchange procedure.

  5. Effect of O2 plasma treatment on density-of-states in a-IGZO thin film transistors

    NASA Astrophysics Data System (ADS)

    Ding, Xingwei; Huang, Fei; Li, Sheng; Zhang, Jianhua; Jiang, Xueyin; Zhang, Zhilin

    2017-01-01

    This work reports an efficient route for enhancing the performance of amorphous InGaZnO (a-IGZO) thin film transistors (TFT). The mobility was greatly improved by about 38% by means of O2 plasma treatment. Temperature-stress was carried out to investigate the stability and extract the parameters related to activation energy ( E a) and density-of-states (DOS). The DOS was calculated on the basis of the experimentally obtained E a, which can explain the experimental observation. A lower activation energy ( E a, 0.72 eV) and a smaller DOS were obtained in the O2 plasma treatment TFT based on the temperature-dependent transfer curves. The results showed that temperature stability and electrical properties enhancements in a-IGZO thin film transistors were attributed to the smaller DOS. [Figure not available: see fulltext.

  6. Improvement in surface hydrophilicity and resistance to deformation of natural leather through O2/H2O low-temperature plasma treatment

    NASA Astrophysics Data System (ADS)

    You, Xuewei; Gou, Li; Tong, Xingye

    2016-01-01

    The natural leather was modified through O2/H2O low-temperature plasma treatment. Surface morphology was characterized by scanning electron microscopy (SEM) and the results showed that the pores on the leather surface became deeper and larger with enhanced permeability of water and vapor. XPS and FTIR-ATR was performed to determine the chemical composition of natural leather surface. Oxygen-containing groups were successfully grafted onto the surface of natural leather and oxygen content increased with longer treatment time. After O2/H2O plasma treatment, initial water contact angle was about 21° and water contact angles were not beyond 55° after being stored for 3 days. Furthermore, the tensile test indicated that the resistance to deformation had a prominent transform without sacrificing the tensile strength.

  7. Compatibility of internal transport barrier with steady-state operation in the high bootstrap fraction regime on DIII-D

    DOE PAGES

    Garofalo, Andrea M.; Gong, Xianzu; Grierson, Brian A.; ...

    2015-11-16

    Recent EAST/DIII-D joint experiments on the high poloidal beta tokamak regime in DIII-D have demonstrated fully noninductive operation with an internal transport barrier (ITB) at large minor radius, at normalized fusion performance increased by ≥30% relative to earlier work. The advancement was enabled by improved understanding of the “relaxation oscillations”, previously attributed to repetitive ITB collapses, and of the fast ion behavior in this regime. It was found that the “relaxation oscillations” are coupled core-edge modes 2 amenable to wall-stabilization, and that fast ion losses which previously dictated a large plasma-wall separation to avoid wall over-heating, can be reduced tomore » classical levels with sufficient plasma density. By using optimized waveforms of the plasma-wall separation and plasma density, fully noninductive plasmas have been sustained for long durations with excellent energy confinement quality, bootstrap fraction ≥ 80%, β N ≤ 4 , β P ≥ 3 , and β T ≥ 2%. Finally, these results bolster the applicability of the high poloidal beta tokamak regime toward the realization of a steady-state fusion reactor.« less

  8. Surface morphology changes to tungsten under exposure to He ions from an electron cyclotron resonance plasma source

    NASA Astrophysics Data System (ADS)

    Donovan, David; Maan, Anurag; Duran, Jonah; Buchenauer, Dean; Whaley, Josh

    2015-11-01

    Exposure of tungsten to low energy (<100 eV) helium plasmas at temperatures between 900-1900 K in both laboratory experiments and tokamaks has been shown to cause severe nanoscale modification of the near surface resulting the growth of tungsten tendrils. We used a relatively low flux (2.5x1019 ions m-2 s-1) compact ECR plasma source at Sandia-California to investigate the early stages of helium induced tungsten damage. Exposures of polished tungsten discs were performed and characterized using SEM, AFM, and FIB cross section imaging. Bubbles have been seen on the exposed tungsten surface and in sub-surface cross sections growing to up to 150 nm in diameter. Comparisons were made between exposures of warm rolled Plansee tungsten discs and ALMT ITER grade tungsten samples. A similar He plasma exposure stage has now been developed at the University of Tennessee-Knoxville with an improved compact ECR plasma source. Status of the new UTK exposure stage will be discussed as well as planned experiments and new material characterization techniques (EBSD, GIXRD). Work supported by US DOE Contract DE-AC04-94AL85000 and the PSI Science Center.

  9. Modeling of surface temperature effects on mixed material migration in NSTX-U

    NASA Astrophysics Data System (ADS)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2016-10-01

    NSTX-U will initially operate with graphite walls, periodically coated with thin lithium films to improve plasma performance. However, the spatial and temporal evolution of these films during and after plasma exposure is poorly understood. The WallDYN global mixed-material surface evolution model has recently been applied to the NSTX-U geometry to simulate the evolution of poloidally inhomogenous mixed C/Li/O plasma-facing surfaces. The WallDYN model couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. Temperature-dependent sputtering of lithium has been added to WallDYN, utilizing an adatom sputtering model developed from test stand experimental data. Additionally, a simplified temperature-dependent diffusion model has been added to WallDYN so as to capture the intercalation of lithium into a graphite bulk matrix. The sensitivity of global lithium migration patterns to changes in surface temperature magnitude and distribution will be examined. The effect of intra-discharge increases in surface temperature due to plasma heating, such as those observed during NSTX Liquid Lithium Divertor experiments, will also be examined. Work supported by US DOE contract DE-AC02-09CH11466.

  10. Fluorescence imaging as a diagnostic of M-band x-ray drive condition in hohlraum with fluorescent Si targets

    NASA Astrophysics Data System (ADS)

    Li, Qi; Hu, Zhimin; Yao, Li; Huang, Chengwu; Yuan, Zheng; Zhao, Yang; Xiong, Gang; Qing, Bo; Lv, Min; Zhu, Tuo; Deng, Bo; Li, Jin; Wei, Minxi; Zhan, Xiayu; Li, Jun; Yang, Yimeng; Su, Chunxiao; Yang, Guohong; Zhang, Jiyan; Li, Sanwei; Yang, Jiamin; Ding, Yongkun

    2017-01-01

    Fluorescence imaging of surrogate Si-doped CH targets has been used to provide a measurement for drive condition of high-energy x-ray (i.e. M-band x-ray) drive symmetry upon the capsule in hohlraum on Shenguang-II laser facility. A series of experiments dedicated to the study of photo-pumping and fluorescence effect in Si-plasma are presented. To investigate the feasibility of fluorescence imaging in Si-plasma, an silicon plasma in Si-foil target is pre-formed at ground state by the soft x-ray from a half-hohlraum, which is then photo-pumped by the K-shell lines from a spatially distinct laser-produced Si-plasma. The resonant Si photon pump is used to improve the fluorescence signal and cause visible image in the Si-foil. Preliminary fluorescence imaging of Si-ball target is performed in both Si-doped and pure Au hohlraum. The usual capsule at the center of the hohlraum is replaced with a solid Si-doped CH-ball (Si-ball). Since the fluorescence is proportional to the photon pump upon the Si-plasma, high-energy x-ray drive symmetry is equal to the fluorescence distribution of the Si-ball.

  11. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  12. Study and optimization of lower hybrid wave coupling in advanced scenario plasmas in JET

    NASA Astrophysics Data System (ADS)

    Pericoli Ridolfini, V.; Ekedahl, A.; Erents, S. K.; Mailloux, J.; Podda, S.; Sarazin, Y.; Tuccillo, A. A.; Workprogramme contributors, EFDA-JET

    2004-02-01

    Active current drive with lower hybrid (LH) waves in the advanced scenario plasmas at JET-EFDA was successful after a systematic study of the coupling problems that derive from the H-mode features of the edge plasma, namely very low density and ELM activity. The LH coupling has been improved compared to the past, by making the edge plasma in front of the LH launcher denser and more uniform. Injecting deuterated methane (CD4) from a nearby gas pipe increases the density in front of the LH launcher at least by a factor of 1.5, above the cut-off value for the LH frequency. A better matching of the plasma shape to that of the LH antenna makes the plasma ahead of the LH launcher more regular along the poloidal angle. These two techniques together have permitted a balanced supply of the three LH grills, with an average reflection below 4%, as in the previous L-mode operation. CD4 does not affect the performances nor does it contaminate the main plasma up to the maximum flow rate so far used, \\Phi_{CD_4}>10^{22}el\\,s^{-1} and now it is routinely applied in JET (up to 4 MW have been injected for longer than 8 s) with very encouraging results for LHCD. Even though CD4 is not suitable for ITER for tritium retention, the possibility of controlling locally and safely the scrape-off plasma density has been demonstrated.

  13. Methylation analysis of plasma cell-free DNA for breast cancer early detection using bisulfite next-generation sequencing.

    PubMed

    Li, Zibo; Guo, Xinwu; Tang, Lili; Peng, Limin; Chen, Ming; Luo, Xipeng; Wang, Shouman; Xiao, Zhi; Deng, Zhongping; Dai, Lizhong; Xia, Kun; Wang, Jun

    2016-10-01

    Circulating cell-free DNA (cfDNA) has been considered as a potential biomarker for non-invasive cancer detection. To evaluate the methylation levels of six candidate genes (EGFR, GREM1, PDGFRB, PPM1E, SOX17, and WRN) in plasma cfDNA as biomarkers for breast cancer early detection, quantitative analysis of the promoter methylation of these genes from 86 breast cancer patients and 67 healthy controls was performed by using microfluidic-PCR-based target enrichment and next-generation bisulfite sequencing technology. The predictive performance of different logistic models based on methylation status of candidate genes was investigated by means of the area under the ROC curve (AUC) and odds ratio (OR) analysis. Results revealed that EGFR, PPM1E, and 8 gene-specific CpG sites showed significantly hypermethylation in cancer patients' plasma and significantly associated with breast cancer (OR ranging from 2.51 to 9.88). The AUC values for these biomarkers were ranging from 0.66 to 0.75. Combinations of multiple hypermethylated genes or CpG sites substantially improved the predictive performance for breast cancer detection. Our study demonstrated the feasibility of quantitative measurement of candidate gene methylation in cfDNA by using microfluidic-PCR-based target enrichment and bisulfite next-generation sequencing, which is worthy of further validation and potentially benefits a broad range of applications in clinical oncology practice. Quantitative analysis of methylation pattern of plasma cfDNA by next-generation sequencing might be a valuable non-invasive tool for early detection of breast cancer.

  14. The Influence of Plasma-Based Nitriding and Oxidizing Treatments on the Mechanical and Corrosion Properties of CoCrMo Biomedical Alloy

    NASA Astrophysics Data System (ADS)

    Noli, Fotini; Pichon, Luc; Öztürk, Orhan

    2018-04-01

    Plasma-based nitriding and/or oxidizing treatments were applied to CoCrMo alloy to improve its surface mechanical properties and corrosion resistance for biomedical applications. Three treatments were performed. A set of CoCrMo samples has been subjected to nitriding at moderate temperatures ( 400 °C). A second set of CoCrMo samples was oxidized at 395 °C in pure O2. The last set of CoCrMo samples was nitrided and subsequently oxidized under the experimental conditions of previous sets (double treatment). The microstructure and morphology of the layers formed on the CoCrMo alloy were investigated by X-ray diffraction, Atomic Force Microscopy, and Scanning Electron Microscopy. In addition, nitrogen and oxygen profiles were determined by Glow Discharge Optical Emission Spectroscopy, Rutherford Backscattering Spectroscopy, Energy-Dispersive X-ray, and Nuclear Reaction Analysis. Significant improvement of the Vickers hardness of the CoCrMo samples after plasma nitriding was observed due to the supersaturated nitrogen solution and the formation of an expanded FCC γ N phase and CrN precipitates. In the case of the oxidized samples, Vickers hardness improvement was minimal. The corrosion behavior of the samples was investigated in simulated body fluid (0.9 pct NaCl solution at 37 °C) using electrochemical techniques (potentiodynamic polarization and cyclic voltammetry). The concentration of metal ions released from the CoCrMo surfaces was determined by Instrumental Neutron Activation Analysis. The experimental results clearly indicate that the CoCrMo surface subjected to the double surface treatment consisting in plasma nitriding and plasma oxidizing exhibited lower deterioration and better resistance to corrosion compared to the nitrided, oxidized, and untreated samples. This enhancement is believed to be due to the formation of a thicker and more stable layer.

  15. Surface modification of argon/oxygen plasma treated vulcanized ethylene propylene diene polymethylene surfaces for improved adhesion with natural rubber

    NASA Astrophysics Data System (ADS)

    Basak, Ganesh C.; Bandyopadhyay, Abhijit; Neogi, Sudarsan; Bhowmick, Anil K.

    2011-01-01

    Vulcanized ethylene propylene diene polymethylene (EPDM) rubber surface was treated in a radio frequency capacitatively coupled low pressure argon/oxygen plasma to improve adhesion with compounded natural rubber (NR) during co-vulcanization. The plasma modified surfaces were analyzed by means of contact angle measurement, surface energy, attenuated total reflection-infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, energy dispersive X-ray sulfur mapping and atomic force microscopy. Several experimental variables such as plasma power, length of exposure time and composition of the argon-oxygen gas mixture were considered. It was delineated that plasma treatment changed both surface composition and roughness, and consequently increased peel strength. The change in surface composition was mainly ascribed to the formation of C-O and -Cdbnd O functional groups on the vulcanized surfaces. A maximum of 98% improvement in peel strength was observed after plasma treatment.

  16. Optimization of PCR for quantification of simian immunodeficiency virus (SIV) genomic RNA in plasma of rhesus macaques (Macaca mulatta) using armored RNA

    PubMed Central

    Monjure, C. J.; Tatum, C. D.; Panganiban, A. T.; Arainga, M.; Traina-Dorge, V.; Marx, P. A.; Didier, E. S.

    2014-01-01

    Introduction Quantification of plasma viral load (PVL) is used to monitor disease progression in SIV-infected macaques. This study was aimed at optimizing of performance characteristics of the quantitative PCR (qPCR) PVL assay. Methods The PVL quantification procedure was optimized by inclusion of an exogenous control Hepatitis C Virus armored RNA (aRNA), a plasma concentration step, extended digestion with proteinase K, and a second RNA elution step. Efficiency of viral RNA (vRNA) extraction was compared using several commercial vRNA extraction kits. Various parameters of qPCR targeting the gag region of SIVmac239, SIVsmE660 and the LTR region of SIVagmSAB were also optimized. Results Modifications of the SIV PVL qPCR procedure increased vRNA recovery, reduced inhibition and improved analytical sensitivity. The PVL values determined by this SIV PVL qPCR correlated with quantification results of SIV-RNA in the same samples using the “industry standard” method of branched-DNA (bDNA) signal amplification. Conclusions Quantification of SIV genomic RNA in plasma of rhesus macaques using this optimized SIV PVL qPCR is equivalent to the bDNA signal amplification method, less costly and more versatile. Use of heterologous aRNA as an internal control is useful for optimizing performance characteristics of PVL qPCRs. PMID:24266615

  17. Optimization of PCR for quantification of simian immunodeficiency virus genomic RNA in plasma of rhesus macaques (Macaca mulatta) using armored RNA.

    PubMed

    Monjure, C J; Tatum, C D; Panganiban, A T; Arainga, M; Traina-Dorge, V; Marx, P A; Didier, E S

    2014-02-01

    Quantification of plasma viral load (PVL) is used to monitor disease progression in SIV-infected macaques. This study was aimed at optimizing of performance characteristics of the quantitative PCR (qPCR) PVL assay. The PVL quantification procedure was optimized by inclusion of an exogenous control hepatitis C virus armored RNA (aRNA), a plasma concentration step, extended digestion with proteinase K, and a second RNA elution step. Efficiency of viral RNA (vRNA) extraction was compared using several commercial vRNA extraction kits. Various parameters of qPCR targeting the gag region of SIVmac239, SIVsmE660, and the LTR region of SIVagmSAB were also optimized. Modifications of the SIV PVL qPCR procedure increased vRNA recovery, reduced inhibition and improved analytical sensitivity. The PVL values determined by this SIV PVL qPCR correlated with quantification results of SIV RNA in the same samples using the 'industry standard' method of branched-DNA (bDNA) signal amplification. Quantification of SIV genomic RNA in plasma of rhesus macaques using this optimized SIV PVL qPCR is equivalent to the bDNA signal amplification method, less costly and more versatile. Use of heterologous aRNA as an internal control is useful for optimizing performance characteristics of PVL qPCRs. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Anti-gravity training improves walking capacity and postural balance in patients with muscular dystrophy.

    PubMed

    Berthelsen, Martin Peter; Husu, Edith; Christensen, Sofie Bouschinger; Prahm, Kira Philipsen; Vissing, John; Jensen, Bente Rona

    2014-06-01

    Recent studies in patients with muscular dystrophies suggest positive effects of aerobic and strength training. These studies focused training on using bicycle ergometers and conventional strength training, which precludes more severely affected patients from participating, because of their weakness. We investigated the functional effects of combined aerobic and strength training in patients with Becker and limb-girdle muscular dystrophies with knee muscle strength levels as low as 3% of normal strength. Eight patients performed 10 weeks of aerobic and strength training on an anti-gravity treadmill, which offered weight support up to 80% of their body weight. Six minute walking distance, dynamic postural balance, and plasma creatine kinase were assessed 10 weeks prior to training, immediately before training and after 10 weeks of training. Training elicited an improvement of walking distance by 8±2% and dynamic postural balance by 13±4%, indicating an improved physical function. Plasma creatine kinase remained unchanged. These results provide evidence that a combination of aerobic and strength training during anti-gravity has the potential to safely improve functional ability in severely affected patients with Becker and limb-girdle muscular dystrophies. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Open-air direct current plasma jet: Scaling up, uniformity, and cellular control

    NASA Astrophysics Data System (ADS)

    Wu, S.; Wang, Z.; Huang, Q.; Lu, X.; Ostrikov, K.

    2012-10-01

    Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasma glow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasma glow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.

  20. Influence of plasma modification on hygienic properties of textile fabrics with nonporous membrane coating

    NASA Astrophysics Data System (ADS)

    Voznesensky, E. F.; Ibragimov, R. G.; Vishnevskaya, O. V.; Sisoev, V. A.; Lutfullina, G. G.; Tihonova, N. V.

    2017-11-01

    The work investigated the possibility of using plasma modification to improve the hygienic properties of textile materials with nonporous membrane coating to improve vapor-, air-permeability and water-resistant. Determined that, after plasma modification changes degree of supramolecular orderliness of the polymers nonporous membrane coating and the base fabric.

Top