Science.gov

Sample records for improving prefrontal cortex

  1. Electrical stimulation of the dorsolateral prefrontal cortex improves memory monitoring.

    PubMed

    Chua, Elizabeth F; Ahmed, Rifat

    2016-05-01

    The ability to accurately monitor one's own memory is an important feature of normal memory function. Converging evidence from neuroimaging and lesion studies have implicated the dorsolateral prefrontal cortex (DLPFC) in memory monitoring. Here we used high definition transcranial direct stimulation (HD-tDCS), a non-invasive form of brain stimulation, to test whether the DLPFC has a causal role in memory monitoring, and the nature of that role. We used a metamemory monitoring task, in which participants first attempted to recall the answer to a general knowledge question, then gave a feeling-of-knowing (FOK) judgment, followed by a forced choice recognition task. When participants received DLPFC stimulation, their feeling-of-knowing judgments were better predictors of memory performance, i.e., they had better memory monitoring accuracy, compared to stimulation of a control site, the anterior temporal lobe (ATL). Effects of DLPFC stimulation were specific to monitoring accuracy, as there was no significant increase in memory performance, and if anything, there was poorer memory performance with DLPFC stimulation. Thus we have demonstrated a causal role for the DLPFC in memory monitoring, and showed that electrically stimulating the left DLPFC led people to more accurately monitor and judge their own memory. PMID:26970142

  2. Acute Exercise Improves Prefrontal Cortex but not Hippocampal Function in Healthy Adults.

    PubMed

    Basso, Julia C; Shang, Andrea; Elman, Meredith; Karmouta, Ryan; Suzuki, Wendy A

    2015-11-01

    The effects of acute aerobic exercise on cognitive functions in humans have been the subject of much investigation; however, these studies are limited by several factors, including a lack of randomized controlled designs, focus on only a single cognitive function, and testing during or shortly after exercise. Using a randomized controlled design, the present study asked how a single bout of aerobic exercise affects a range of frontal- and medial temporal lobe-dependent cognitive functions and how long these effects last. We randomly assigned 85 subjects to either a vigorous intensity acute aerobic exercise group or a video watching control group. All subjects completed a battery of cognitive tasks both before and 30, 60, 90, or 120 min after the intervention. This battery included the Hopkins Verbal Learning Test-Revised, the Modified Benton Visual Retention Test, the Stroop Color and Word Test, the Symbol Digit Modalities Test, the Digit Span Test, the Trail Making Test, and the Controlled Oral Word Association Test. Based on these measures, composite scores were formed to independently assess prefrontal cortex- and hippocampal-dependent cognition. A three-way mixed Analysis of Variance was used to determine whether differences existed between groups in the change in cognitive function from pre- to post-intervention testing. Acute exercise improved prefrontal cortex- but not hippocampal-dependent functioning, with no differences found between delay groups. Vigorous acute aerobic exercise has beneficial effects on prefrontal cortex-dependent cognition and these effects can last for up to 2 hr after exercise.

  3. Training improves multitasking performance by increasing the speed of information processing in human prefrontal cortex.

    PubMed

    Dux, Paul E; Tombu, Michael N; Harrison, Stephenie; Rogers, Baxter P; Tong, Frank; Marois, René

    2009-07-16

    Our ability to multitask is severely limited: task performance deteriorates when we attempt to undertake two or more tasks simultaneously. Remarkably, extensive training can greatly reduce such multitasking costs. While it is not known how training alters the brain to solve the multitasking problem, it likely involves the prefrontal cortex given this brain region's purported role in limiting multitasking performance. Here, we show that the reduction of multitasking interference with training is not achieved by diverting the flow of information processing away from the prefrontal cortex or by segregating prefrontal cells into independent task-specific neuronal ensembles, but rather by increasing the speed of information processing in this brain region, thereby allowing multiple tasks to be processed in rapid succession. These results not only reveal how training leads to efficient multitasking, they also provide a mechanistic account of multitasking limitations, namely the poor speed of information processing in human prefrontal cortex.

  4. Language and Memory Improvements following tDCS of Left Lateral Prefrontal Cortex.

    PubMed

    Hussey, Erika K; Ward, Nathan; Christianson, Kiel; Kramer, Arthur F

    2015-01-01

    Recent research demonstrates that performance on executive-control measures can be enhanced through brain stimulation of lateral prefrontal regions. Separate psycholinguistic work emphasizes the importance of left lateral prefrontal cortex executive-control resources during sentence processing, especially when readers must override early, incorrect interpretations when faced with temporary ambiguity. Using transcranial direct current stimulation, we tested whether stimulation of left lateral prefrontal cortex had discriminate effects on language and memory conditions that rely on executive-control (versus cases with minimal executive-control demands, even in the face of task difficulty). Participants were randomly assigned to receive Anodal, Cathodal, or Sham stimulation of left lateral prefrontal cortex while they (1) processed ambiguous and unambiguous sentences in a word-by-word self-paced reading task and (2) performed an n-back memory task that, on some trials, contained interference lure items reputed to require executive-control. Across both tasks, we parametrically manipulated executive-control demands and task difficulty. Our results revealed that the Anodal group outperformed the remaining groups on (1) the sentence processing conditions requiring executive-control, and (2) only the most complex n-back conditions, regardless of executive-control demands. Together, these findings add to the mounting evidence for the selective causal role of left lateral prefrontal cortex for executive-control tasks in the language domain. Moreover, we provide the first evidence suggesting that brain stimulation is a promising method to mitigate processing demands encountered during online sentence processing.

  5. Language and Memory Improvements following tDCS of Left Lateral Prefrontal Cortex

    PubMed Central

    Hussey, Erika K.; Ward, Nathan; Christianson, Kiel; Kramer, Arthur F.

    2015-01-01

    Recent research demonstrates that performance on executive-control measures can be enhanced through brain stimulation of lateral prefrontal regions. Separate psycholinguistic work emphasizes the importance of left lateral prefrontal cortex executive-control resources during sentence processing, especially when readers must override early, incorrect interpretations when faced with temporary ambiguity. Using transcranial direct current stimulation, we tested whether stimulation of left lateral prefrontal cortex had discriminate effects on language and memory conditions that rely on executive-control (versus cases with minimal executive-control demands, even in the face of task difficulty). Participants were randomly assigned to receive Anodal, Cathodal, or Sham stimulation of left lateral prefrontal cortex while they (1) processed ambiguous and unambiguous sentences in a word-by-word self-paced reading task and (2) performed an n-back memory task that, on some trials, contained interference lure items reputed to require executive-control. Across both tasks, we parametrically manipulated executive-control demands and task difficulty. Our results revealed that the Anodal group outperformed the remaining groups on (1) the sentence processing conditions requiring executive-control, and (2) only the most complex n-back conditions, regardless of executive-control demands. Together, these findings add to the mounting evidence for the selective causal role of left lateral prefrontal cortex for executive-control tasks in the language domain. Moreover, we provide the first evidence suggesting that brain stimulation is a promising method to mitigate processing demands encountered during online sentence processing. PMID:26528814

  6. MRI volumetry of prefrontal cortex

    NASA Astrophysics Data System (ADS)

    Sheline, Yvette I.; Black, Kevin J.; Lin, Daniel Y.; Pimmel, Joseph; Wang, Po; Haller, John W.; Csernansky, John G.; Gado, Mokhtar; Walkup, Ronald K.; Brunsden, Barry S.; Vannier, Michael W.

    1995-05-01

    Prefrontal cortex volumetry by brain magnetic resonance (MR) is required to estimate changes postulated to occur in certain psychiatric and neurologic disorders. A semiautomated method with quantitative characterization of its performance is sought to reliably distinguish small prefrontal cortex volume changes within individuals and between groups. Stereological methods were tested by a blinded comparison of measurements applied to 3D MR scans obtained using an MPRAGE protocol. Fixed grid stereologic methods were used to estimate prefrontal cortex volumes on a graphic workstation, after the images are scaled from 16 to 8 bits using a histogram method. In addition images were resliced into coronal sections perpendicular to the bicommissural plane. Prefrontal cortex volumes were defined as all sections of the frontal lobe anterior to the anterior commissure. Ventricular volumes were excluded. Stereological measurement yielded high repeatability and precision, and was time efficient for the raters. The coefficient of error was prefrontal cortex boundaries on 3D images was critical to obtaining accurate measurements. MR prefrontal cortex volumetry by stereology can yield accurate and repeatable measurements. Small frontal lobe volume reductions in patients with brain disorders such as depression and schizophrenia can be efficiently assessed using this method.

  7. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study.

    PubMed

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients. PMID:24339807

  8. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study.

    PubMed

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer's patients.

  9. Music improves verbal memory encoding while decreasing prefrontal cortex activity: an fNIRS study

    PubMed Central

    Ferreri, Laura; Aucouturier, Jean-Julien; Muthalib, Makii; Bigand, Emmanuel; Bugaiska, Aurelia

    2013-01-01

    Listening to music engages the whole brain, thus stimulating cognitive performance in a range of non-purely musical activities such as language and memory tasks. This article addresses an ongoing debate on the link between music and memory for words. While evidence on healthy and clinical populations suggests that music listening can improve verbal memory in a variety of situations, it is still unclear what specific memory process is affected and how. This study was designed to explore the hypothesis that music specifically benefits the encoding part of verbal memory tasks, by providing a richer context for encoding and therefore less demand on the dorsolateral prefrontal cortex (DLPFC). Twenty-two healthy young adults were subjected to functional near-infrared spectroscopy (fNIRS) imaging of their bilateral DLPFC while encoding words in the presence of either a music or a silent background. Behavioral data confirmed the facilitating effect of music background during encoding on subsequent item recognition. fNIRS results revealed significantly greater activation of the left hemisphere during encoding (in line with the HERA model of memory lateralization) and a sustained, bilateral decrease of activity in the DLPFC in the music condition compared to silence. These findings suggest that music modulates the role played by the DLPFC during verbal encoding, and open perspectives for applications to clinical populations with prefrontal impairments, such as elderly adults or Alzheimer’s patients. PMID:24339807

  10. Emotion recognition deficits associated with ventromedial prefrontal cortex lesions are improved by gaze manipulation.

    PubMed

    Wolf, Richard C; Pujara, Maia; Baskaya, Mustafa K; Koenigs, Michael

    2016-09-01

    Facial emotion recognition is a critical aspect of human communication. Since abnormalities in facial emotion recognition are associated with social and affective impairment in a variety of psychiatric and neurological conditions, identifying the neural substrates and psychological processes underlying facial emotion recognition will help advance basic and translational research on social-affective function. Ventromedial prefrontal cortex (vmPFC) has recently been implicated in deploying visual attention to the eyes of emotional faces, although there is mixed evidence regarding the importance of this brain region for recognition accuracy. In the present study of neurological patients with vmPFC damage, we used an emotion recognition task with morphed facial expressions of varying intensities to determine (1) whether vmPFC is essential for emotion recognition accuracy, and (2) whether instructed attention to the eyes of faces would be sufficient to improve any accuracy deficits. We found that vmPFC lesion patients are impaired, relative to neurologically healthy adults, at recognizing moderate intensity expressions of anger and that recognition accuracy can be improved by providing instructions of where to fixate. These results suggest that vmPFC may be important for the recognition of facial emotion through a role in guiding visual attention to emotionally salient regions of faces. PMID:27423116

  11. Informal Face-to-Face Interaction Improves Mood State Reflected in Prefrontal Cortex Activity

    PubMed Central

    Watanabe, Jun-ichiro; Atsumori, Hirokazu; Kiguchi, Masashi

    2016-01-01

    Recent progress with wearable sensors has enabled researchers to capture face-to-face interactions quantitatively and given great insight into human dynamics. One attractive field for applying such sensors is the workplace, where the relationship between the face-to-face behaviors of employees and the productivity of the organization has been investigated. One interesting result of previous studies showed that informal face-to-face interaction among employees, captured by wearable sensors that the employees wore, significantly affects their performance. However, the mechanism behind this relationship has not yet been adequately explained, though experiences at the job scene might qualitatively support the finding. We hypothesized that informal face-to-face interaction improves mood state, which in turn affects the task performance. To test this hypothesis, we evaluated the change of mood state before and after break time for two groups of participants, one that spent their breaks alone and one that spent them with other participants, by administering questionnaires and taking brain activity measurements. Recent neuroimaging studies have suggested a significant relationship between mood state and brain activity. Here, we show that face-to-face interaction during breaks significantly improved mood state, which was measured by Profiles of Mood States (POMS). We also observed that the verbal working memory (WM) task performance of participants who did not have face-to-face interaction during breaks decreased significantly. In this paper, we discuss how the change of mood state was evidenced in the prefrontal cortex (PFC) activity accompanied by WM tasks measured by near-infrared spectroscopy (NIRS). PMID:27199715

  12. Mapping Prefrontal Cortex Functions in Human Infancy

    ERIC Educational Resources Information Center

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  13. Functional compensation in the ventromedial prefrontal cortex improves memory-dependent decisions in older adults.

    PubMed

    Lighthall, Nichole R; Huettel, Scott A; Cabeza, Roberto

    2014-11-19

    Everyday consumer choices frequently involve memory, as when we retrieve information about consumer products when making purchasing decisions. In this context, poor memory may affect decision quality, particularly in individuals with memory decline, such as older adults. However, age differences in choice behavior may be reduced if older adults can recruit additional neural resources that support task performance. Although such functional compensation is well documented in other cognitive domains, it is presently unclear whether it can support memory-guided decision making and, if so, which brain regions play a role in compensation. The current study engaged younger and older humans in a memory-dependent choice task in which pairs of consumer products from a popular online-shopping site were evaluated with different delays between the first and second product. Using functional imaging (fMRI), we found that the ventromedial prefrontal cortex (vmPFC) supports compensation as defined by three a priori criteria: (1) increased vmPFC activation was observed in older versus younger adults; (2) age-related increases in vmPFC activity were associated with increased retrieval demands; and (3) increased vmPFC activity was positively associated with performance in older adults-evidence of successful compensation. Extending these results, we observed evidence for compensation in connectivity between vmPFC and the dorsolateral PFC during memory-dependent choice. In contrast, we found no evidence for age differences in value-related processing or age-related compensation for choices without delayed retrieval. Together, these results converge on the conclusion that age-related decline in memory-dependent choice performance can be minimized via functional compensation in vmPFC. PMID:25411493

  14. Blockade of IP[subscript 3]-Mediated SK Channel Signaling in the Rat Medial Prefrontal Cortex Improves Spatial Working Memory

    ERIC Educational Resources Information Center

    Brennan, Avis R.; Dolinsky, Beth; Vu, Mai-Anh T.; Stanley, Marion; Yeckel, Mark F.; Arnsten, Amy F. T.

    2008-01-01

    Planning and directing thought and behavior require the working memory (WM) functions of prefrontal cortex. WM is compromised by stress, which activates phosphatidylinositol (PI)-mediated IP[subscript 3]-PKC intracellular signaling. PKC overactivation impairs WM operations and in vitro studies indicate that IP[subscript 3] receptor (IP[subscript…

  15. Auditory connections and functions of prefrontal cortex

    PubMed Central

    Plakke, Bethany; Romanski, Lizabeth M.

    2014-01-01

    The functional auditory system extends from the ears to the frontal lobes with successively more complex functions occurring as one ascends the hierarchy of the nervous system. Several areas of the frontal lobe receive afferents from both early and late auditory processing regions within the temporal lobe. Afferents from the early part of the cortical auditory system, the auditory belt cortex, which are presumed to carry information regarding auditory features of sounds, project to only a few prefrontal regions and are most dense in the ventrolateral prefrontal cortex (VLPFC). In contrast, projections from the parabelt and the rostral superior temporal gyrus (STG) most likely convey more complex information and target a larger, widespread region of the prefrontal cortex. Neuronal responses reflect these anatomical projections as some prefrontal neurons exhibit responses to features in acoustic stimuli, while other neurons display task-related responses. For example, recording studies in non-human primates indicate that VLPFC is responsive to complex sounds including vocalizations and that VLPFC neurons in area 12/47 respond to sounds with similar acoustic morphology. In contrast, neuronal responses during auditory working memory involve a wider region of the prefrontal cortex. In humans, the frontal lobe is involved in auditory detection, discrimination, and working memory. Past research suggests that dorsal and ventral subregions of the prefrontal cortex process different types of information with dorsal cortex processing spatial/visual information and ventral cortex processing non-spatial/auditory information. While this is apparent in the non-human primate and in some neuroimaging studies, most research in humans indicates that specific task conditions, stimuli or previous experience may bias the recruitment of specific prefrontal regions, suggesting a more flexible role for the frontal lobe during auditory cognition. PMID:25100931

  16. A Selective Dopamine Reuptake Inhibitor Improves Prefrontal Cortex-Dependent Cognitive Function: Potential Relevance to Attention Deficit Hyperactivity Disorder

    PubMed Central

    Schmeichel, Brooke E.; Zemlan, Frank P.; Berridge, Craig W.

    2012-01-01

    Drugs used to treat attention deficit hyperactivity disorder (ADHD) improve prefrontal cortex (PFC)-dependent cognitive function. The majority of ADHD-related treatments act either as dual norepinephrine (NE) and dopamine (DA) reuptake inhibitors (psychostimulants) or selective NE reuptake inhibitors (SNRIs). Certain benztropine analogs act as highly selective DA reuptake inhibitors while lacking the reinforcing actions, and thus abuse potential, of psychostimulants. To assess the potential use of these compounds in the treatment of ADHD, we examined the effects of a well-characterized benztropine analog, AHN 2-005, on performance of rats in a PFC-dependent delayed-alternation task of spatial working memory. Similar to that seen with all drugs currently approved for ADHD, AHN 2-005 dose-dependently improved performance in this task. Clinically-relevant doses of psychostimulants and SNRIs elevate NE and DA preferentially in the PFC. Despite the selectivity of this compound for the DA transporter, additional microdialysis studies demonstrated that a cognition-enhancing dose of AHN 2-005 that lacked locomotor activating effects increased extracellular levels of both DA and NE in the PFC. AHN 2-005 produced a larger increase in extracellular DA in the nucleus accumbens, although the magnitude of this was well below that seen with motor activating doses of psychostimulants. Collectively, these observations suggest that benztropine analogs may be efficacious in the treatment of ADHD or other disorders associated with PFC dysfunction. These studies provide a strong rationale for future research focused on the neural mechanisms contributing to the cognition-enhancing actions and the potential clinical utility of AHN 2-005 and related compounds. PMID:22796428

  17. Developmental Outcomes after Early Prefrontal Cortex Damage

    ERIC Educational Resources Information Center

    Eslinger, Paul J.; Flaherty-Craig, Claire V.; Benton, Arthur L.

    2004-01-01

    The neuropsychological bases of cognitive, social, and moral development are minimally understood, with a seemingly wide chasm between developmental theories and brain maturation models. As one approach to bridging ideas in these areas, we review 10 cases of early prefrontal cortex damage from the clinical literature, highlighting overall clinical…

  18. The role of prefrontal cortex in psychopathy

    PubMed Central

    Koenigs, Michael

    2014-01-01

    Psychopathy is a personality disorder characterized by remorseless and impulsive antisocial behavior. Given the significant societal costs of the recidivistic criminal activity associated with the disorder, there is a pressing need for more effective treatment strategies, and hence, a better understanding of the psychobiological mechanisms underlying the disorder. The prefrontal cortex (PFC) is likely to play an important role in psychopathy. In particular, the ventromedial and anterior cingulate sectors of PFC are theorized to mediate a number of social and affective decision-making functions that appear to be disrupted in psychopathy. This article provides a critical summary of human neuroimaging data implicating prefrontal dysfunction in psychopathy. A growing body of evidence associates psychopathy with structural and functional abnormalities in ventromedial PFC and anterior cingulate cortex. Although this burgeoning field still faces a number of methodological challenges and outstanding questions that will need to be resolved by future studies, the research to date has established a link between psychopathy and PFC. PMID:22752782

  19. Amodal processing in human prefrontal cortex.

    PubMed

    Tamber-Rosenau, Benjamin J; Dux, Paul E; Tombu, Michael N; Asplund, Christopher L; Marois, René

    2013-07-10

    Information enters the cortex via modality-specific sensory regions, whereas actions are produced by modality-specific motor regions. Intervening central stages of information processing map sensation to behavior. Humans perform this central processing in a flexible, abstract manner such that sensory information in any modality can lead to response via any motor system. Cognitive theories account for such flexible behavior by positing amodal central information processing (e.g., "central executive," Baddeley and Hitch, 1974; "supervisory attentional system," Norman and Shallice, 1986; "response selection bottleneck," Pashler, 1994). However, the extent to which brain regions embodying central mechanisms of information processing are amodal remains unclear. Here we apply multivariate pattern analysis to functional magnetic resonance imaging (fMRI) data to compare response selection, a cognitive process widely believed to recruit an amodal central resource across sensory and motor modalities. We show that most frontal and parietal cortical areas known to activate across a wide variety of tasks code modality, casting doubt on the notion that these regions embody a central processor devoid of modality representation. Importantly, regions of anterior insula and dorsolateral prefrontal cortex consistently failed to code modality across four experiments. However, these areas code at least one other task dimension, process (instantiated as response selection vs response execution), ensuring that failure to find coding of modality is not driven by insensitivity of multivariate pattern analysis in these regions. We conclude that abstract encoding of information modality is primarily a property of subregions of the prefrontal cortex.

  20. [Role of the prefrontal cortex in human behavioral adaptation].

    PubMed

    Volle, Emmanuelle; Levy, Richard

    2014-02-01

    Behavioral adaptation to complex or new situations depends on the anatomical, physiological and functional properties of the prefrontal cortex, and on its interaction with other regions. These properties allow distinguishing two main prefrontal regions: the lateral part involved in cognitive aspects of goal-directed behaviors, and the ventral part involved in its affective aspects. Damage to these two regions is associated with two distinct clinical syndromes. Cognitive deficits in planning dominate in the lateral syndrome, behavioral regulation and motivation disorders in the ventral syndrome. Beyond this distinction, the question of how the systems that enable cognitive and behavioral aspects of adaptation are organized in prefrontal subregions, and can be best assessed, is not fully understood. This question is an essential issue in cognitive neuroscience and is crucial to improve clinical practice.

  1. Amodal Processing in Human Prefrontal Cortex

    PubMed Central

    Dux, Paul E.; Tombu, Michael N.; Asplund, Christopher L.; Marois, René

    2013-01-01

    Information enters the cortex via modality-specific sensory regions, whereas actions are produced by modality-specific motor regions. Intervening central stages of information processing map sensation to behavior. Humans perform this central processing in a flexible, abstract manner such that sensory information in any modality can lead to response via any motor system. Cognitive theories account for such flexible behavior by positing amodal central information processing (e.g., “central executive,” Baddeley and Hitch, 1974; “supervisory attentional system,” Norman and Shallice, 1986; “response selection bottleneck,” Pashler, 1994). However, the extent to which brain regions embodying central mechanisms of information processing are amodal remains unclear. Here we apply multivariate pattern analysis to functional magnetic resonance imaging (fMRI) data to compare response selection, a cognitive process widely believed to recruit an amodal central resource across sensory and motor modalities. We show that most frontal and parietal cortical areas known to activate across a wide variety of tasks code modality, casting doubt on the notion that these regions embody a central processor devoid of modality representation. Importantly, regions of anterior insula and dorsolateral prefrontal cortex consistently failed to code modality across four experiments. However, these areas code at least one other task dimension, process (instantiated as response selection vs response execution), ensuring that failure to find coding of modality is not driven by insensitivity of multivariate pattern analysis in these regions. We conclude that abstract encoding of information modality is primarily a property of subregions of the prefrontal cortex. PMID:23843526

  2. Plasticity in the prefrontal cortex of adult rats

    PubMed Central

    Kolb, Bryan; Gibb, Robbin

    2015-01-01

    We review the plastic changes of the prefrontal cortex of the rat in response to a wide range of experiences including sensory and motor experience, gonadal hormones, psychoactive drugs, learning tasks, stress, social experience, metaplastic experiences, and brain injury. Our focus is on synaptic changes (dendritic morphology and spine density) in pyramidal neurons and the relationship to behavioral changes. The most general conclusion we can reach is that the prefrontal cortex is extremely plastic and that the medial and orbital prefrontal regions frequently respond very differently to the same experience in the same brain and the rules that govern prefrontal plasticity appear to differ for those of other cortical regions. PMID:25691857

  3. Effects of Physical Exercise on Working Memory and Prefrontal Cortex Function in Post-Stroke Patients.

    PubMed

    Moriya, M; Aoki, C; Sakatani, K

    2016-01-01

    Physical exercise enhances prefrontal cortex activity and improves working memory performance in healthy older adults, but it is not clear whether this remains the case in post-stroke patients. Therefore, the aim of this study was to examine the acute effect of physical exercise on prefrontal cortex activity in post-stroke patients using near-infrared spectroscopy (NIRS). We studied 11 post-stroke patients. The patients performed Sternberg-type working memory tasks before and after moderate intensity aerobic exercise (40 % of maximal oxygen uptake) with a cycling ergometer for 15 min. We measured the NIRS response at the prefrontal cortex during the working memory task. We evaluated behavioral performance (response time and accuracy) of the working memory task. It was found that physical exercise improved behavioral performance of the working memory task compared with the control condition (p < 0.01). In addition, NIRS analysis indicated that physical exercise enhanced prefrontal cortex activation, particularly in the right prefrontal cortex (p < 0.05), during the working memory task compared with the control condition. These findings suggest that the moderate-intensity aerobic exercise enhances prefrontal cortex activity and improves working memory performance in post-stroke patients. PMID:27526144

  4. Effects of Physical Exercise on Working Memory and Prefrontal Cortex Function in Post-Stroke Patients.

    PubMed

    Moriya, M; Aoki, C; Sakatani, K

    2016-01-01

    Physical exercise enhances prefrontal cortex activity and improves working memory performance in healthy older adults, but it is not clear whether this remains the case in post-stroke patients. Therefore, the aim of this study was to examine the acute effect of physical exercise on prefrontal cortex activity in post-stroke patients using near-infrared spectroscopy (NIRS). We studied 11 post-stroke patients. The patients performed Sternberg-type working memory tasks before and after moderate intensity aerobic exercise (40 % of maximal oxygen uptake) with a cycling ergometer for 15 min. We measured the NIRS response at the prefrontal cortex during the working memory task. We evaluated behavioral performance (response time and accuracy) of the working memory task. It was found that physical exercise improved behavioral performance of the working memory task compared with the control condition (p < 0.01). In addition, NIRS analysis indicated that physical exercise enhanced prefrontal cortex activation, particularly in the right prefrontal cortex (p < 0.05), during the working memory task compared with the control condition. These findings suggest that the moderate-intensity aerobic exercise enhances prefrontal cortex activity and improves working memory performance in post-stroke patients.

  5. Optogenetic dissection of medial prefrontal cortex circuitry

    PubMed Central

    Riga, Danai; Matos, Mariana R.; Glas, Annet; Smit, August B.; Spijker, Sabine; Van den Oever, Michel C.

    2014-01-01

    The medial prefrontal cortex (mPFC) is critically involved in numerous cognitive functions, including attention, inhibitory control, habit formation, working memory and long-term memory. Moreover, through its dense interconnectivity with subcortical regions (e.g., thalamus, striatum, amygdala and hippocampus), the mPFC is thought to exert top-down executive control over the processing of aversive and appetitive stimuli. Because the mPFC has been implicated in the processing of a wide range of cognitive and emotional stimuli, it is thought to function as a central hub in the brain circuitry mediating symptoms of psychiatric disorders. New optogenetics technology enables anatomical and functional dissection of mPFC circuitry with unprecedented spatial and temporal resolution. This provides important novel insights in the contribution of specific neuronal subpopulations and their connectivity to mPFC function in health and disease states. In this review, we present the current knowledge obtained with optogenetic methods concerning mPFC function and dysfunction and integrate this with findings from traditional intervention approaches used to investigate the mPFC circuitry in animal models of cognitive processing and psychiatric disorders. PMID:25538574

  6. The medial prefrontal cortex exhibits money illusion

    PubMed Central

    Weber, Bernd; Rangel, Antonio; Wibral, Matthias; Falk, Armin

    2009-01-01

    Behavioral economists have proposed that money illusion, which is a deviation from rationality in which individuals engage in nominal evaluation, can explain a wide range of important economic and social phenomena. This proposition stands in sharp contrast to the standard economic assumption of rationality that requires individuals to judge the value of money only on the basis of the bundle of goods that it can buy—its real value—and not on the basis of the actual amount of currency—its nominal value. We used fMRI to investigate whether the brain's reward circuitry exhibits money illusion. Subjects received prizes in 2 different experimental conditions that were identical in real economic terms, but differed in nominal terms. Thus, in the absence of money illusion there should be no differences in activation in reward-related brain areas. In contrast, we found that areas of the ventromedial prefrontal cortex (vmPFC), which have been previously associated with the processing of anticipatory and experienced rewards, and the valuation of goods, exhibited money illusion. We also found that the amount of money illusion exhibited by the vmPFC was correlated with the amount of money illusion exhibited in the evaluation of economic transactions. PMID:19307555

  7. The medial prefrontal cortex exhibits money illusion.

    PubMed

    Weber, Bernd; Rangel, Antonio; Wibral, Matthias; Falk, Armin

    2009-03-31

    Behavioral economists have proposed that money illusion, which is a deviation from rationality in which individuals engage in nominal evaluation, can explain a wide range of important economic and social phenomena. This proposition stands in sharp contrast to the standard economic assumption of rationality that requires individuals to judge the value of money only on the basis of the bundle of goods that it can buy-its real value-and not on the basis of the actual amount of currency-its nominal value. We used fMRI to investigate whether the brain's reward circuitry exhibits money illusion. Subjects received prizes in 2 different experimental conditions that were identical in real economic terms, but differed in nominal terms. Thus, in the absence of money illusion there should be no differences in activation in reward-related brain areas. In contrast, we found that areas of the ventromedial prefrontal cortex (vmPFC), which have been previously associated with the processing of anticipatory and experienced rewards, and the valuation of goods, exhibited money illusion. We also found that the amount of money illusion exhibited by the vmPFC was correlated with the amount of money illusion exhibited in the evaluation of economic transactions.

  8. Sexual experience enhances cognitive flexibility and dendritic spine density in the medial prefrontal cortex.

    PubMed

    Glasper, Erica R; LaMarca, Elizabeth A; Bocarsly, Miriam E; Fasolino, Maria; Opendak, Maya; Gould, Elizabeth

    2015-11-01

    The medial prefrontal cortex is important for cognitive flexibility, a capability that is affected by environmental conditions and specific experiences. Aversive experience, such as chronic restraint stress, is known to impair performance on a task of cognitive flexibility, specifically attentional set-shifting, in rats. Concomitant with this performance decrement, chronic stress reduces the number of dendritic spines on pyramidal neurons in the medial prefrontal cortex. No previous studies have examined whether a rewarding experience, namely mating, affects cognitive flexibility and dendritic spines in the medial prefrontal cortex of male rats. To test this possibility, we exposed adult male rats to sexual receptive females once daily for one week, assessed attentional set-shifting performance, and then analyzed their brains for changes in dendritic spines. We found that sexual experience improved performance on extradimensional set-shifting, which is known to require the medial prefrontal cortex. Additionally, we observed increased dendritic spine density on apical and basal dendrites of pyramidal neurons in the medial prefrontal cortex, but not the orbitofrontal cortex, after sexual experience. We also found that sexual experience enhanced dendritic spine density on granule neurons of the dentate gyrus. The ventral hippocampus sends a direct projection to the medial prefrontal cortex, raising the possibility that experience-dependent changes in the hippocampus are necessary for alterations in medial prefrontal cortex structure and function. As a first attempt at investigating this, we inactivated the ventral hippocampus with the GABA agonist muscimol, after each daily bout of sexual experience to observe whether the beneficial effects on cognitive flexibility were abolished. Contrary to our hypothesis, blocking hippocampal activity after sexual experience had no impact on enhanced cognitive flexibility. Taken together, these findings indicate that sexual

  9. Medial Prefrontal Cortex Lesions Abolish Contextual Control of Competing Responses

    PubMed Central

    Haddon, J.E; Killcross, A.S

    2005-01-01

    There is much debate as to the extent and nature of functional specialization within the different subregions of the prefrontal cortex. The current study was undertaken to investigate the effect of damage to medial prefrontal cortex subregions in the rat. Rats were trained on two biconditional discrimination tasks, one auditory and one visual, in two different contexts. At test, they received presentations of audiovisual compounds of these training stimuli in extinction. These compounds had dictated either the same (congruent trials) or different (incongruent trials) responses during training. In sham-operated controls, contextual cues came to control responding to conflicting information provided by incongruent stimulus compounds. Experiment 1 demonstrated that this contextual control of responding was not evident in individual rats with large amounts of damage that included the prelimbic and cingulate subregions of the prefrontal cortex. Experiment 2 further dissociated the result of Experiment 1, demonstrating that lesions specific to the anterior cingulate cortex were sufficient to produce a deficit early on during presentation of an incongruent stimulus compound but that performance was unimpaired as presentation progressed. This early deficit suggests a role for the anterior cingulate cortex in the detection of response conflict, and for the medial prefrontal cortex in the contextual control of competing responses, providing evidence for functional specialization within the rat prefrontal cortex. PMID:16596976

  10. Inhibitory transcranial magnetic theta burst stimulation attenuates prefrontal cortex oxygenation.

    PubMed

    Tupak, Sara V; Dresler, Thomas; Badewien, Meike; Hahn, Tim; Ernst, Lena H; Herrmann, Martin J; Deckert, Jürgen; Ehlis, Ann-Christine; Fallgatter, Andreas J

    2013-01-01

    Recent studies highlighted the great potential of newly established theta burst stimulation (TBS) protocols for non-invasive human brain stimulation studies using transcranial magnetic stimulation (TMS). While intermittent TBS over the primary motor cortex was found to potentiate motor evoked potentials, continuous TBS led to profound attenuations. Although numerous studies investigated the impact of TBS on motor cortex function, yet, only few imaging studies focused on its effects in other brain areas. Particularly for the prefrontal cortex, it is unclear whether TBS has similar effects compared to application over motor areas. In the current study continuous TBS was applied to either the left or right dorsolateral prefrontal cortex in a sample of healthy subjects. Changes in prefrontal oxygenation were measured during an emotional Stroop task by means of functional multi-channel near-infrared spectroscopy (fNIRS) before and after stimulation. Results showed bilaterally decreased prefrontal oxygenation following inhibitory stimulation of the left prefrontal cortex but no behavioral effect. No such alterations were observed following right-hemispheric or sham stimulation. The results of the current study are in line with earlier findings and additionally demonstrate that also prefrontal oxygenation can be impaired by continuous TBS.

  11. Dissociation in prefrontal cortex of affective and attentional shifts.

    PubMed

    Dias, R; Robbins, T W; Roberts, A C

    1996-03-01

    The prefrontal cortex is implicated in such human characteristics as volition, planning, abstract reasoning and affect. Frontal-lobe damage can cause disinhibition such that the behaviour of a subject is guided by previously acquired responses that are inappropriate to the current situation. Here we demonstrate that disinhibition, or a loss of inhibitory control, can be selective for particular cognitive functions and that different regions of the prefrontal cortex provide inhibitory control in different aspects of cognitive processing. Thus, whereas damage to the lateral prefrontal cortex (Brodmann's area 9) in monkeys causes a loss of inhibitory control in attentional selection, damage to the orbito-frontal cortex in monkeys causes a loss of inhibitory control in 'affective' processing, thereby impairing the ability to alter behaviour in response to fluctuations in the emotional significance of stimuli. These findings not only support the view that the prefrontal cortex has multiple functions, but also provide evidence for the distribution of different cognitive functions within specific regions of prefrontal cortex.

  12. Dissociation in prefrontal cortex of affective and attentional shifts.

    PubMed

    Dias, R; Robbins, T W; Roberts, A C

    1996-03-01

    The prefrontal cortex is implicated in such human characteristics as volition, planning, abstract reasoning and affect. Frontal-lobe damage can cause disinhibition such that the behaviour of a subject is guided by previously acquired responses that are inappropriate to the current situation. Here we demonstrate that disinhibition, or a loss of inhibitory control, can be selective for particular cognitive functions and that different regions of the prefrontal cortex provide inhibitory control in different aspects of cognitive processing. Thus, whereas damage to the lateral prefrontal cortex (Brodmann's area 9) in monkeys causes a loss of inhibitory control in attentional selection, damage to the orbito-frontal cortex in monkeys causes a loss of inhibitory control in 'affective' processing, thereby impairing the ability to alter behaviour in response to fluctuations in the emotional significance of stimuli. These findings not only support the view that the prefrontal cortex has multiple functions, but also provide evidence for the distribution of different cognitive functions within specific regions of prefrontal cortex. PMID:8598908

  13. Context-dependent computation by recurrent dynamics in prefrontal cortex

    PubMed Central

    Mante, Valerio; Sussillo, David; Shenoy, Krishna V.; Newsome, William T.

    2014-01-01

    Summary Prefrontal cortex is thought to play a fundamental role in flexible, context-dependent behavior, but the exact nature of the computations underlying this role remains largely mysterious. In particular, individual prefrontal neurons often generate remarkably complex responses that defy deep understanding of their contribution to behavior. Here we study prefrontal cortex in monkeys trained to flexibly select and integrate noisy sensory inputs towards a choice. We find that the observed complexity and functional roles of single neurons are readily understood in the framework of a dynamical process unfolding at the level of the population. The population dynamics can be reproduced by a trained recurrent neural network, which suggests a previously unknown mechanism for selection and integration of task-relevant inputs. This mechanism implies that selection and integration are two aspects of a single dynamical process unfolding within the same prefrontal circuits, and potentially provides a novel, general framework for understanding context-dependent computations. PMID:24201281

  14. Interplay of hippocampus and prefrontal cortex in memory.

    PubMed

    Preston, Alison R; Eichenbaum, Howard

    2013-09-01

    Recent studies on the hippocampus and the prefrontal cortex have considerably advanced our understanding of the distinct roles of these brain areas in the encoding and retrieval of memories, and of how they interact in the prolonged process by which new memories are consolidated into our permanent storehouse of knowledge. These studies have led to a new model of how the hippocampus forms and replays memories and how the prefrontal cortex engages representations of the meaningful contexts in which related memories occur, as well as how these areas interact during memory retrieval. Furthermore, they have provided new insights into how interactions between the hippocampus and prefrontal cortex support the assimilation of new memories into pre-existing networks of knowledge, called schemas, and how schemas are modified in this process as the foundation of memory consolidation.

  15. Valuation of uncertain and delayed rewards in primate prefrontal cortex.

    PubMed

    Kim, Soyoun; Hwang, Jaewon; Seo, Hyojung; Lee, Daeyeol

    2009-04-01

    Humans and animals often must choose between rewards that differ in their qualities, magnitudes, immediacy, and likelihood, and must estimate these multiple reward parameters from their experience. However, the neural basis for such complex decision making is not well understood. To understand the role of the primate prefrontal cortex in determining the subjective value of delayed or uncertain reward, we examined the activity of individual prefrontal neurons during an inter-temporal choice task and a computer-simulated competitive game. Consistent with the findings from previous studies in humans and other animals, the monkey's behaviors during inter-temporal choice were well accounted for by a hyperbolic discount function. In addition, the activity of many neurons in the lateral prefrontal cortex reflected the signals related to the magnitude and delay of the reward expected from a particular action, and often encoded the difference in temporally discounted values that predicted the animal's choice. During a computerized matching pennies game, the animals approximated the optimal strategy, known as Nash equilibrium, using a reinforcement learning algorithm. We also found that many neurons in the lateral prefrontal cortex conveyed the signals related to the animal's previous choices and their outcomes, suggesting that this cortical area might play an important role in forming associations between actions and their outcomes. These results show that the primate lateral prefrontal cortex plays a central role in estimating the values of alternative actions based on multiple sources of information.

  16. Choice, uncertainty and value in prefrontal and cingulate cortex.

    PubMed

    Rushworth, Matthew F S; Behrens, Timothy E J

    2008-04-01

    Reinforcement learning models that focus on the striatum and dopamine can predict the choices of animals and people. Representations of reward expectation and of reward prediction errors that are pertinent to decision making, however, are not confined to these regions but are also found in prefrontal and cingulate cortex. Moreover, decisions are not guided solely by the magnitude of the reward that is expected. Uncertainty in the estimate of the reward expectation, the value of information that might be gained by taking a course of action and the cost of an action all influence the manner in which decisions are made through prefrontal and cingulate cortex.

  17. Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts.

    PubMed

    Jimura, Koji; Locke, Hannah S; Braver, Todd S

    2010-05-11

    Increasing the reward value of behavioral goals can facilitate cognitive processes required for goal achievement. This facilitation may be accomplished by the dynamic and flexible engagement of cognitive control mechanisms operating in distributed brain regions. It is still not clear, however, what are the characteristics of individuals, situations, and neural activation dynamics that optimize motivation-linked cognitive enhancement. Here we show that highly reward-sensitive individuals exhibited greater improvement of working memory performance in rewarding contexts, but exclusively on trials that were not rewarded. This effect was mediated by a shift in the temporal dynamics of activation within right lateral prefrontal cortex, from a transient to predominantly tonic mode, with an additional anticipatory transient boost. In contexts with intermittent rewards, a strategy of proactive cognitive control may enable globally optimal performance to facilitate reward attainment. Reward-sensitive individuals appear preferentially motivated to adopt this resource-demanding strategy, resulting in paradoxical benefits selectively for nonrewarded events.

  18. Prefrontal connections of the parabelt auditory cortex in macaque monkeys.

    PubMed

    Hackett, T A; Stepniewska, I; Kaas, J H

    1999-01-30

    In the present study, we determined connections of three newly defined regions of auditory cortex with regions of the frontal lobe, and how two of these regions in the frontal lobe interconnect and connect to other portions of frontal cortex and the temporal lobe in macaque monkeys. We conceptualize auditory cortex as including a core of primary areas, a surrounding belt of auditory areas, a lateral parabelt of two divisions, and adjoining regions of temporal cortex with parabelt connections. Injections of several different fluorescent tracers and wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) were placed in caudal (CPB) and rostral (RPB) divisions of the parabelt, and in cortex of the superior temporal gyrus rostral to the parabelt with parabelt connections (STGr). Injections were also placed in two regions of the frontal lobe that were labeled by a parabelt injection in the same case. The results lead to several major conclusions. First, CPB injections label many neurons in dorsal prearcuate cortex in the region of the frontal eye field and neurons in dorsal prefrontal cortex of the principal sulcus, but few or no neurons in orbitofrontal cortex. Fine-grain label in these same regions as a result of a WGA-HRP injection suggests that the connections are reciprocal. Second, RPB injections label overlapping prearcuate and principal sulcus locations, as well as more rostral cortex of the principal sulcus, and several locations in orbitofrontal cortex. Third, STGr injections label locations in orbitofrontal cortex, some of which overlap those of RPB injections, but not prearcuate or principal sulcus locations. Fourth, injections in prearcuate and principal sulcus locations labeled by a CPB injection labeled neurons in CPB and RPB, with little involvement of the auditory belt and no involvement of the core. In addition, the results indicated that the two frontal lobe regions are densely interconnected. They also connect with largely separate

  19. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    PubMed

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings. PMID:23366983

  20. Development of Rostral Prefrontal Cortex and Cognitive and Behavioural Disorders

    ERIC Educational Resources Information Center

    Dumontheil, Iroise; Burgess, Paul W.; Blakemore, Sarah-Jayne

    2008-01-01

    Information on the development and functions of rostral prefrontal cortex (PFC), or Brodmann area 10, has been gathered from different fields, from anatomical development to functional neuroimaging in adults, and put forward in relation to three particular cognitive and behavioural disorders. Rostral PFC is larger and has a lower cell density in…

  1. Prefrontal Cortex Contributions to Episodic Retrieval Monitoring and Evaluation

    ERIC Educational Resources Information Center

    Cruse, Damian; Wilding, Edward L.

    2009-01-01

    Although the prefrontal cortex (PFC) plays roles in episodic memory judgments, the specific processes it supports are not understood fully. Event-related potential (ERP) studies of episodic retrieval have revealed an electrophysiological modulation--the right-frontal ERP old/new effect--which is thought to reflect activity in PFC. The functional…

  2. Extinction Circuits for Fear and Addiction Overlap in Prefrontal Cortex

    ERIC Educational Resources Information Center

    Peters, Jamie; Kalivas, Peter W.; Quirk, Gregory J.

    2009-01-01

    Extinction is a form of inhibitory learning that suppresses a previously conditioned response. Both fear and drug seeking are conditioned responses that can lead to maladaptive behavior when expressed inappropriately, manifesting as anxiety disorders and addiction, respectively. Recent evidence indicates that the medial prefrontal cortex (mPFC) is…

  3. Social cognition in patients following surgery to the prefrontal cortex.

    PubMed

    Jenkins, Lisanne Michelle; Andrewes, David Gordon; Nicholas, Christian Luke; Drummond, Katharine Jann; Moffat, Bradford Armstrong; Phal, Pramit; Desmond, Patricia; Kessels, Roy Peter Caspar

    2014-12-30

    Impaired social cognition, including emotion recognition, may explain dysfunctional emotional and social behaviour in patients with lesions to the ventromedial prefrontal cortex (VMPFC). However, the VMPFC is a large, poorly defined area that can be sub-divided into orbital and medial sectors. We sought to investigate social cognition in patients with discrete, surgically circumscribed prefrontal lesions. Twenty-seven patients between 1 and 12 months post-neurosurgery were divided into groups based on Brodmann areas resected, determined by post-surgical magnetic resonance imaging. We hypothesised that patients with lesions to the VMPFC (n=5), anterior cingulate cortex (n=4), orbitofrontal cortex (n=7) and dorsolateral prefrontal cortex (DLPFC, n=11) would perform worse than a control group of 26 extra-cerebral neurosurgery patients on measures of dynamic facial emotion recognition, theory of mind (ToM) and empathy. Results indicated the VMPFC-lesioned group performed significantly worse than the control group on the facial emotion recognition task overall, and for fear specifically, and performed worse on the ToM measure. The DLPFC group also performed worse on the ToM and empathy measures, but DLPFC lesion location was not a predictor of performance in hierarchical multiple regressions that accounted for other variables, including the reduced estimated verbal IQ in this group. It was concluded that isolated orbital or medial prefrontal lesions are not sufficient to produce impairments in social cognition. This is the first study to demonstrate that it is the combination of lesions to both areas that affect social cognition, irrespective of lesion volume. While group sizes were similar to other comparable studies that included patients with discrete, surgically circumscribed lesions to the prefrontal cortex, future large, multi-site studies are needed to collect larger samples and confirm these results. PMID:25284626

  4. The prefrontal cortex and hybrid learning during iterative competitive games.

    PubMed

    Abe, Hiroshi; Seo, Hyojung; Lee, Daeyeol

    2011-12-01

    Behavioral changes driven by reinforcement and punishment are referred to as simple or model-free reinforcement learning. Animals can also change their behaviors by observing events that are neither appetitive nor aversive when these events provide new information about payoffs available from alternative actions. This is an example of model-based reinforcement learning and can be accomplished by incorporating hypothetical reward signals into the value functions for specific actions. Recent neuroimaging and single-neuron recording studies showed that the prefrontal cortex and the striatum are involved not only in reinforcement and punishment, but also in model-based reinforcement learning. We found evidence for both types of learning, and hence hybrid learning, in monkeys during simulated competitive games. In addition, in both the dorsolateral prefrontal cortex and orbitofrontal cortex, individual neurons heterogeneously encoded signals related to actual and hypothetical outcomes from specific actions, suggesting that both areas might contribute to hybrid learning.

  5. Keynote Address: Revaluing the Orbital Prefrontal Cortex

    PubMed Central

    DOLAN, R. J.

    2010-01-01

    The importance of orbitofrontal cortex (OFC) in human behavioral regulation is no longer a matter of dispute, though its precise role remains a matter of ongoing investigation. It is ironic that this revaluation of OFC required a major departure from a historical nadir, during which it was viewed as redundant or “silent cortex,” a situation that prevailed even up to the latter half of the 20th century. The increasing wealth of data from diverse fields within neuroscience now provides an unambiguous testament to the importance of this cortical region in behavioral regulation and cognition in general. PMID:17846153

  6. A dorsolateral prefrontal cortex semi-automatic segmenter

    NASA Astrophysics Data System (ADS)

    Al-Hakim, Ramsey; Fallon, James; Nain, Delphine; Melonakos, John; Tannenbaum, Allen

    2006-03-01

    Structural, functional, and clinical studies in schizophrenia have, for several decades, consistently implicated dysfunction of the prefrontal cortex in the etiology of the disease. Functional and structural imaging studies, combined with clinical, psychometric, and genetic analyses in schizophrenia have confirmed the key roles played by the prefrontal cortex and closely linked "prefrontal system" structures such as the striatum, amygdala, mediodorsal thalamus, substantia nigra-ventral tegmental area, and anterior cingulate cortices. The nodal structure of the prefrontal system circuit is the dorsal lateral prefrontal cortex (DLPFC), or Brodmann area 46, which also appears to be the most commonly studied and cited brain area with respect to schizophrenia. 1, 2, 3, 4 In 1986, Weinberger et. al. tied cerebral blood flow in the DLPFC to schizophrenia.1 In 2001, Perlstein et. al. demonstrated that DLPFC activation is essential for working memory tasks commonly deficient in schizophrenia. 2 More recently, groups have linked morphological changes due to gene deletion and increased DLPFC glutamate concentration to schizophrenia. 3, 4 Despite the experimental and clinical focus on the DLPFC in structural and functional imaging, the variability of the location of this area, differences in opinion on exactly what constitutes DLPFC, and inherent difficulties in segmenting this highly convoluted cortical region have contributed to a lack of widely used standards for manual or semi-automated segmentation programs. Given these implications, we developed a semi-automatic tool to segment the DLPFC from brain MRI scans in a reproducible way to conduct further morphological and statistical studies. The segmenter is based on expert neuroanatomist rules (Fallon-Kindermann rules), inspired by cytoarchitectonic data and reconstructions presented by Rajkowska and Goldman-Rakic. 5 It is semi-automated to provide essential user interactivity. We present our results and provide details on

  7. ANTIDEPRESSANT EFFECT OF OPTOGENETIC STIMULATION OF THE MEDIAL PREFRONTAL CORTEX

    PubMed Central

    Covington, Herbert E.; Lobo, Mary Kay; Maze, Ian; Vialou, Vincent; Hyman, James M; Zaman, Samir; LaPlant, Quincey; Mouzon, Ezekiel; Ghose, Subroto; Tamminga, Carol A.; Neve, Rachael L.; Deisseroth, Karl; Nestler, Eric J.

    2010-01-01

    Brain stimulation and imaging studies in humans have highlighted a key role for the prefrontal cortex in clinical depression, however, it remains unknown whether excitation or inhibition of prefrontal cortical neuronal activity is associated with antidepressant responses. Here, we examined cellular indicators of functional activity, including the immediate early genes (IEG), zif268 (egr1), c-fos and arc, in the prefrontal cortex of clinically depressed humans obtained postmortem. We also examined these genes in the ventral portion of the medial prefrontal cortex (mPFC) of mice after chronic social defeat stress, a mouse model of depression. In addition, we used viral vectors to overexpress channel rhodopsin 2 (a light-activated cation channel) in mouse mPFC in order to optogenetically drive “burst” patterns of cortical firing in-vivo and examine the behavioral consequences. Prefrontal cortical tissue derived from clinically depressed humans displayed significant reductions in IEG expression, consistent with a deficit in neuronal activity within this brain region. Mice subjected to chronic social defeat stress exhibited similar reductions in levels of IEG expression in mPFC. Interestingly, some of these changes were not observed in defeated mice that escape the deleterious consequences of the stress, i.e., resilient animals. In those mice that expressed a strong depressive-like phenotype, i.e., susceptible animals, optogenetic stimulation of mPFC exerted potent antidepressant-like effects, without affecting general locomotor activity, anxiety-like behaviors, or social memory. These results indicate that the activity of the mPFC is a key determinant of depression-like behavior, as well as antidepressant responses. PMID:21123555

  8. Visual categorization and the primate prefrontal cortex: neurophysiology and behavior.

    PubMed

    Freedman, David J; Riesenhuber, Maximilian; Poggio, Tomaso; Miller, Earl K

    2002-08-01

    The ability to group stimuli into meaningful categories is a fundamental cognitive process. To explore its neuronal basis, we trained monkeys to categorize computer-generated stimuli as "cats" and "dogs." A morphing system was used to systematically vary stimulus shape and precisely define a category boundary. Psychophysical testing and analysis of eye movements suggest that the monkeys categorized the stimuli by attending to multiple stimulus features. Neuronal activity in the lateral prefrontal cortex reflected the category of visual stimuli and changed with learning when a monkey was retrained with the same stimuli assigned to new categories. Further, many neurons showed activity that appeared to reflect the monkey's decision about whether two stimuli were from the same category or not. These results suggest that the lateral prefrontal cortex is an important part of the neuronal circuitry underlying category learning and category-based behaviors.

  9. Prefrontal Cortex and Social Cognition in Mouse and Man

    PubMed Central

    Bicks, Lucy K.; Koike, Hiroyuki; Akbarian, Schahram; Morishita, Hirofumi

    2015-01-01

    Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD) and Schizophrenia (SCZ). Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC) as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio) within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain. PMID:26635701

  10. Acute effects of physical exercise on prefrontal cortex activity in older adults: a functional near-infrared spectroscopy study.

    PubMed

    Tsujii, Takeo; Komatsu, Kazutoshi; Sakatani, Kaoru

    2013-01-01

    We examined the acute effect of physical exercise on prefrontal cortex activity in older adults using functional near-infrared spectroscopy (NIRS). Fourteen older adults visited our laboratory twice: once for exercise and once for the control condition. On each visit, subjects performed working memory tasks before and after moderate intensity exercise with a cycling ergo-meter. We measured the NIRS response at the prefrontal cortex during the working memory task. We found that physical exercise improved behavioral performance of the working memory task compared with the control condition. Moreover, NIRS analysis showed that physical exercise enhanced the prefrontal cortex activity, especially in the left hemisphere, during the working memory task. These findings suggest that the moderate intensity exercise enhanced the prefrontal cortex activity associated with working memory performance in older adults.

  11. Authoritarianism, religious fundamentalism, and the human prefrontal cortex

    PubMed Central

    Asp, Erik; Ramchandran, Kanchna; Tranel, Daniel

    2012-01-01

    Objective The psychological processes of doubting and skepticism have recently become topics of neuroscientific investigation. In this context, we developed the False Tagging Theory, a neurobiological model of the belief and doubt process, which proposes that the prefrontal cortex is critical for normative doubt regarding properly comprehended cognitive representations. Here, we put our theory to an empirical test, hypothesizing that patients with prefrontal cortex damage would have a doubt deficit that would manifest as higher authoritarianism and religious fundamentalism. Method Ten patients with bilateral damage to the ventromedial prefrontal cortex (vmPFC), ten patients with damage to areas outside the vmPFC, and sixteen medical comparison patients, who experienced life-threatening (but non-neurological) medical events, completed a series of scales measuring authoritarianism, religious fundamentalism, and specific religious beliefs. Results VMPFC patients reported significantly higher authoritarianism and religious fundamentalism than the other groups. The degrees of authoritarianism and religious fundamentalism in the vmPFC group were significantly higher than normative values, as well; by contrast, the comparison groups did not differ from normative values. Moreover, vmPFC patients reported increased specific religious beliefs after brain injury. Conclusions The findings support the False Tagging Theory, and suggest that the vmPFC is critical for psychological doubt and resistance to authoritarian persuasion. PMID:22612576

  12. Characterization of empathy deficits following prefrontal brain damage: the role of the right ventromedial prefrontal cortex.

    PubMed

    Shamay-Tsoory, S G; Tomer, R; Berger, B D; Aharon-Peretz, J

    2003-04-01

    Impaired empathic response has been described in patients following brain injury, suggesting that empathy may be a fundamental aspect of the social behavior disturbed by brain damage. However, the neuroanatomical basis of impaired empathy has not been studied in detail. The empathic response of patients with localized lesions in the prefrontal cortex (n = 25) was compared to responses of patients with posterior (n = 17) and healthy control subjects (n = 19). To examine the cognitive processes that underlie the empathic ability, the relationships between empathy scores and the performance on tasks that assess processes of cognitive flexibility, affect recognition, and theory of mind (TOM) were also examined. Patients with prefrontal lesions, particularly when their damage included the ventromedial prefrontal cortex, were significantly impaired in empathy as compared to patients with posterior lesions and healthy controls. However, among patients with posterior lesions, those with damage to the right hemisphere were impaired, whereas those with left posterior lesions displayed empathy levels similar to healthy controls. Seven of nine patients with the most profound empathy deficit had a right ventromedial lesion. A differential pattern regarding the relationships between empathy and cognitive performance was also found: Whereas among patients with dorsolateral prefrontal damage empathy was related to cognitive flexibility but not to TOM and affect recognition, empathy scores in patients with ventromedial lesions were related to TOM but not to cognitive flexibility. Our findings suggest that prefrontal structures play an important part in a network mediating the empathic response and specifically that the right ventromedial cortex has a unique role in integrating cognition and affect to produce the empathic response. PMID:12729486

  13. Nature experience reduces rumination and subgenual prefrontal cortex activation.

    PubMed

    Bratman, Gregory N; Hamilton, J Paul; Hahn, Kevin S; Daily, Gretchen C; Gross, James J

    2015-07-14

    Urbanization has many benefits, but it also is associated with increased levels of mental illness, including depression. It has been suggested that decreased nature experience may help to explain the link between urbanization and mental illness. This suggestion is supported by a growing body of correlational and experimental evidence, which raises a further question: what mechanism(s) link decreased nature experience to the development of mental illness? One such mechanism might be the impact of nature exposure on rumination, a maladaptive pattern of self-referential thought that is associated with heightened risk for depression and other mental illnesses. We show in healthy participants that a brief nature experience, a 90-min walk in a natural setting, decreases both self-reported rumination and neural activity in the subgenual prefrontal cortex (sgPFC), whereas a 90-min walk in an urban setting has no such effects on self-reported rumination or neural activity. In other studies, the sgPFC has been associated with a self-focused behavioral withdrawal linked to rumination in both depressed and healthy individuals. This study reveals a pathway by which nature experience may improve mental well-being and suggests that accessible natural areas within urban contexts may be a critical resource for mental health in our rapidly urbanizing world.

  14. Nature experience reduces rumination and subgenual prefrontal cortex activation.

    PubMed

    Bratman, Gregory N; Hamilton, J Paul; Hahn, Kevin S; Daily, Gretchen C; Gross, James J

    2015-07-14

    Urbanization has many benefits, but it also is associated with increased levels of mental illness, including depression. It has been suggested that decreased nature experience may help to explain the link between urbanization and mental illness. This suggestion is supported by a growing body of correlational and experimental evidence, which raises a further question: what mechanism(s) link decreased nature experience to the development of mental illness? One such mechanism might be the impact of nature exposure on rumination, a maladaptive pattern of self-referential thought that is associated with heightened risk for depression and other mental illnesses. We show in healthy participants that a brief nature experience, a 90-min walk in a natural setting, decreases both self-reported rumination and neural activity in the subgenual prefrontal cortex (sgPFC), whereas a 90-min walk in an urban setting has no such effects on self-reported rumination or neural activity. In other studies, the sgPFC has been associated with a self-focused behavioral withdrawal linked to rumination in both depressed and healthy individuals. This study reveals a pathway by which nature experience may improve mental well-being and suggests that accessible natural areas within urban contexts may be a critical resource for mental health in our rapidly urbanizing world. PMID:26124129

  15. Action planning in a virtual context after prefrontal cortex damage.

    PubMed

    Zalla, T; Plassiart, C; Pillon, B; Grafman, J; Sirigu, A

    2001-01-01

    Patients with frontal lobe lesions are known to encounter severe problems in the organisation of their behaviour in everyday life. Script generation tasks assess the subject's conceptual ability to formulate and evaluate a coherent and structured plan of action. In the present study, we investigated to what extent neuropsychological deficits observed at the conceptual level of action knowledge lead to impairments in action execution. We examined seven patients with prefrontal cortex damage and sixteen normal subjects. Subjects were first asked to verbally formulate a plan of action and then to use this knowledge for 'executing' the actions in a virtual 3-dimensional interactive apartment presented on a computer screen. The results indicated that the presence of the realistic context improved patients' performance. However, specific impairments were observed in patients in the execution condition, namely actions slips, omissions, failure in initiating actions and purposeless displacements. Moreover, an analysis of planning time showed that, differently of the patients group, normal subjects spent more time during plan execution as compared to plan generation. These results suggest that after a frontal lobe lesion a defective formulation of a routine plan might affect the execution of the corresponding course of actions. PMID:11369400

  16. Nature experience reduces rumination and subgenual prefrontal cortex activation

    PubMed Central

    Bratman, Gregory N.; Hamilton, J. Paul; Hahn, Kevin S.; Daily, Gretchen C.; Gross, James J.

    2015-01-01

    Urbanization has many benefits, but it also is associated with increased levels of mental illness, including depression. It has been suggested that decreased nature experience may help to explain the link between urbanization and mental illness. This suggestion is supported by a growing body of correlational and experimental evidence, which raises a further question: what mechanism(s) link decreased nature experience to the development of mental illness? One such mechanism might be the impact of nature exposure on rumination, a maladaptive pattern of self-referential thought that is associated with heightened risk for depression and other mental illnesses. We show in healthy participants that a brief nature experience, a 90-min walk in a natural setting, decreases both self-reported rumination and neural activity in the subgenual prefrontal cortex (sgPFC), whereas a 90-min walk in an urban setting has no such effects on self-reported rumination or neural activity. In other studies, the sgPFC has been associated with a self-focused behavioral withdrawal linked to rumination in both depressed and healthy individuals. This study reveals a pathway by which nature experience may improve mental well-being and suggests that accessible natural areas within urban contexts may be a critical resource for mental health in our rapidly urbanizing world. PMID:26124129

  17. Capturing the temporal evolution of choice across prefrontal cortex.

    PubMed

    Hunt, Laurence T; Behrens, Timothy E J; Hosokawa, Takayuki; Wallis, Jonathan D; Kennerley, Steven W

    2015-12-11

    Activity in prefrontal cortex (PFC) has been richly described using economic models of choice. Yet such descriptions fail to capture the dynamics of decision formation. Describing dynamic neural processes has proven challenging due to the problem of indexing the internal state of PFC and its trial-by-trial variation. Using primate neurophysiology and human magnetoencephalography, we here recover a single-trial index of PFC internal states from multiple simultaneously recorded PFC subregions. This index can explain the origins of neural representations of economic variables in PFC. It describes the relationship between neural dynamics and behaviour in both human and monkey PFC, directly bridging between human neuroimaging data and underlying neuronal activity. Moreover, it reveals a functionally dissociable interaction between orbitofrontal cortex, anterior cingulate cortex and dorsolateral PFC in guiding cost-benefit decisions. We cast our observations in terms of a recurrent neural network model of choice, providing formal links to mechanistic dynamical accounts of decision-making.

  18. Subcircuit-specific neuromodulation in the prefrontal cortex

    PubMed Central

    Dembrow, Nikolai; Johnston, Daniel

    2014-01-01

    During goal-directed behavior, the prefrontal cortex (PFC) exerts top-down control over numerous cortical and subcortical regions. PFC dysfunction has been linked to many disorders that involve deficits in cognitive performance, attention, motivation, and/or impulse control. A common theme among these disorders is that neuromodulation of the PFC is disrupted. Anatomically, the PFC is reciprocally connected with virtually all neuromodulatory centers. Recent studies of PFC neurons, both in vivo and ex vivo, have found that subpopulations of prefrontal projection neurons can be segregated into distinct subcircuits based on their long-range projection targets. These subpopulations differ in their connectivity, intrinsic properties, and responses to neuromodulators. In this review we outline the evidence for subcircuit-specific neuromodulation in the PFC, and describe some of the functional consequences of selective neuromodulation on behavioral states during goal-directed behavior. PMID:24926234

  19. Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex.

    PubMed

    Del Arco, Alberto; Mora, Francisco

    2008-08-01

    Previous experimental studies have shown that the prefrontal cortex (PFC) regulates the activity of the nucleus accumbens (NAc), and in particular the release of dopamine in this area of the brain. In the present report we review recent microinjections/microdialysis studies from our laboratory on the effects of stimulation/blockade of dopamine and glutamate receptors in the PFC that modulate dopamine, and also acetylcholine release in the NAc. Stimulation of prefrontal D2 dopamine receptors, but not group I mGlu glutamate receptors, reduces the release of dopamine and acetylcholine in the NAc and spontaneous motor activity. This inhibitory role of prefrontal D2 receptors is not changed by acute systemic injections of the NMDA antagonist phencyclidine. On the other hand, the blockade of NMDA receptors in the PFC increases the release of dopamine and acetylcholine in the NAc as well as motor activity which suggests that the hypofunction of prefrontal NMDA receptors is able to produce the neurochemical and behavioural changes associated with a dysfunction of the corticolimbic circuit. We suggest here that dopamine and glutamate receptors are, in part, segregated in specific cellular circuits in the PFC. Thus, the stimulation/blockade of these receptors would have a different net impact on PFC output projections to regulate dopamine and acetylcholine release in the NAc and in guided behaviour. Finally, it is speculated that environmental enrichment might produce plastic changes that modify the functional interaction between the PFC and the NAc in both physiological and pathological conditions.

  20. Task-Specific Facilitation of Cognition by Anodal Transcranial Direct Current Stimulation of the Prefrontal Cortex

    PubMed Central

    Pope, Paul A.; Brenton, Jonathan W.; Miall, R. Chris

    2015-01-01

    We previously speculated that depression of cerebellar excitability using cathodal transcranial direct current stimulation (tDCS) might release extra cognitive resources via the disinhibition of activity in prefrontal cortex. The objective of the present study was to investigate whether anodal tDCS over the prefrontal cortex could similarly improve performance when cognitive demands are high. Sixty-three right-handed participants in 3 separate groups performed the Paced Auditory Serial Addition Task (PASAT) and the more difficult Paced Auditory Serial Subtraction Task (PASST), before and after 20 min of anodal, cathodal, or sham stimulation over the left dorsolateral prefrontal cortex (DLPFC). Performance was assessed in terms of the accuracy, latency, and variability of correct verbal responses. All behavioral measures significantly improved for the PASST after anodal DLPFC stimulation, but not the PASAT. There were smaller practice effects after cathodal and sham stimulation. Subjective ratings of attention and mental fatigue were unchanged by tDCS over time. We conclude that anodal stimulation over the left DLPFC can selectively improve performance on a difficult cognitive task involving arithmetic processing, verbal working memory, and attention. This result might be achieved by focally improving executive functions and/or cognitive capacity when tasks are difficult, rather than by improving levels of arousal/alertness. PMID:25979089

  1. Connectivity between ventromedial prefrontal cortex and posterior superior temporal sulcus.

    PubMed

    Vallesi, Antonino

    2016-01-01

    The well-articulated Self Attention Network (SAN) framework accounts for a great portion of the available evidence on neurocognitive interactions between self-bias phenomena and attention. I argue that more work is necessary to refine our understanding about the effective and functional connectivity of the different nodes of the proposed network. In particular, the nature of the control of ventro-medial prefrontal cortex over posterior superior temporal sulcus has to be worked out further. Simple excitatory connections between these two nodes, as proposed by the SAN model, do not satisfactorily account for existing neuropsychological dissociations and are not fully warranted by neuroimaging evidence. PMID:26273997

  2. Medial Prefrontal Cortex: Adding Value to Imagined Scenarios.

    PubMed

    Lin, Wen-Jing; Horner, Aidan J; Bisby, James A; Burgess, Neil

    2015-10-01

    The medial prefrontal cortex (mPFC) is consistently implicated in the network supporting autobiographical memory. Whereas more posterior regions in this network have been related to specific processes, such as the generation of visuospatial imagery or the association of items and contexts, the functional contribution of the mPFC remains unclear. However, the involvement of mPFC in estimation of value during decision-making suggests that it might play a similar role in memory. We investigated whether mPFC activity reflects the subjective value of elements in imagined scenarios. Participants in an MRI scanner imagined scenarios comprising a spatial context, a physiological state of need (e.g., thirst), and two items that could be congruent (e.g., drink) or incongruent (e.g., food) with the state of need. Memory for the scenarios was tested outside the scanner. Our manipulation of subjective value by imagined need was verified by increased subjective ratings of value for congruent items and improved subsequent memory for them. Consistent with our hypothesis, fMRI signal in mPFC reflected the modulation of an item's subjective value by the imagined physiological state, suggesting the mPFC selectively tracked subjective value within our imagination paradigm. Further analyses showed uncorrected effects in non-mPFC regions, including increased activity in the insula when imagining states of need, the caudate nucleus when imagining congruent items, and the anterior hippocampus/amygdala when imagining subsequently remembered items. We therefore provide evidence that the mPFC plays a role in constructing the subjective value of the components of imagined scenarios and thus potentially in reconstructing the value of components of autobiographical recollection.

  3. Ventromedial prefrontal cortex activation is critical for preference judgments.

    PubMed

    Paulus, Martin P; Frank, Lawrence R

    2003-07-18

    Preference judgment, the process of selecting a response from several alternatives based on which alternative the subject likes best, is an important aspect of daily life. The current study examined whether neural substrates that are thought to be critical for generating somatic markers are involved in preference judgments. Fifteen healthy, right-handed subjects performed a preference judgment task during functional magnetic resonance imaging. The medial frontal gyrus was significantly more activated during the preference judgment trials, relative to visual discrimination trials. Other areas that were also differentially activated included the posterior parietal cortex, the anterior cingulate and the left anterior insula. These findings are consistent with the role of the ventromedial prefrontal cortex in the representation of complex appetitive states. PMID:12876463

  4. Medial prefrontal cortex as an action-outcome predictor.

    PubMed

    Alexander, William H; Brown, Joshua W

    2011-10-01

    The medial prefrontal cortex (mPFC) and especially anterior cingulate cortex is central to higher cognitive function and many clinical disorders, yet its basic function remains in dispute. Various competing theories of mPFC have treated effects of errors, conflict, error likelihood, volatility and reward, using findings from neuroimaging and neurophysiology in humans and monkeys. No single theory has been able to reconcile and account for the variety of findings. Here we show that a simple model based on standard learning rules can simulate and unify an unprecedented range of known effects in mPFC. The model reinterprets many known effects and suggests a new view of mPFC, as a region concerned with learning and predicting the likely outcomes of actions, whether good or bad. Cognitive control at the neural level is then seen as a result of evaluating the probable and actual outcomes of one's actions.

  5. Neuropsychological assessment of the orbital and ventromedial prefrontal cortex.

    PubMed

    Zald, David H; Andreotti, Charissa

    2010-10-01

    Assessment of the functions of the orbitofrontal cortex and ventromedial prefrontal cortex has proven to be a unique challenge for neuropsychologists. Orbitomedial damage occurs in a range of disorders including traumatic brain injury, ruptured aneurysms, surgical resection, and frontotemporal dementia. We review the effects of orbitomedial damage on a range of neuropsychological tasks, including tasks measuring object alternation and reversal learning, decision-making (gambling), facial emotion recognition, theory of mind, olfactory recognition, autobiographical memory and behavioral rating measures. At present, there is no singular gold standard measure of orbitomedial dysfunction, and assessment requires an integrative approach that reflects the heterogeneity of the region. The heterogeneous neuropsychological deficits arising from orbitomedial damage are difficult to ascribe to a unitary function or process, but appear to reflect a set of processes necessary for monitoring and adapting to changing reinforcement contingencies.

  6. Cholinergic synaptic circuitry in the macaque prefrontal cortex.

    PubMed

    Mrzljak, L; Pappy, M; Leranth, C; Goldman-Rakic, P S

    1995-07-10

    Surprisingly little is known about the synaptic architecture of the cholinergic innervation in the primate cerebral cortex in spite of its acknowledged relevance to cognitive processing and Alzheimer's disease. To address this knowledge gap, we examined serially sectioned cholinergic axons in supra- and infragranular layers of the macaque prefrontal cortex by using an antibody against the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT). The tissue bound antibody was visualized with both immunoperoxidase and silver-enhanced diaminobenzidine sulfide (SEDS) techniques. Both methods revealed that cholinergic axons make synapses in all cortical layers and that these synapses are exclusively symmetric. Cholinergic axons formed synapses primarily on dendritic shafts (70.5%), dendritic spines (25%), and, to a lesser extent, cell bodies (4.5%). Both pyramidal neurons and cells exhibiting the morphological features of GABAergic cells were targets of the cholinergic innervation. Some spiny dendritic shafts received multiple, closely spaced synapses, suggesting that a subset of pyramidal neurons may be subject to a particularly strong cholinergic influence. Analysis of synaptic incidence of cholinergic profiles in the supragranular layers of the prefrontal cortex by the SEDS technique revealed that definitive synaptic junctions were formed by 44% of the cholinergic boutons. An unexpected finding was that cholinergic boutons were frequently apposed to spines and small dendrites without making any visible synaptic specializations. These same spines and dendrites often received asymmetric synapses, presumably of thalamocortical or corticocortical origin. Present ultrastructural findings suggest that acetylcholine may have a dual modulatory effect in the neocortex: one through classical synaptic junctions on dendritic shafts and spines, and the other through nonsynaptic appositions in close vicinity to asymmetric synapses. Further physiological studies are

  7. Synaptic Cytoskeletal Plasticity in the Prefrontal Cortex Following Psychostimulant Exposure.

    PubMed

    DePoy, Lauren M; Gourley, Shannon L

    2015-09-01

    Addiction is characterized by maladaptive decision-making, a loss of control over drug consumption and habit-like drug seeking despite adverse consequences. These cognitive changes may reflect the effects of drugs of abuse on prefrontal cortical neurobiology. Here, we review evidence that amphetamine and cocaine fundamentally remodel the structure of excitatory neurons in the prefrontal cortex. We summarize evidence in particular that these psychostimulants have opposing effects in the medial and orbital prefrontal cortices ('mPFC' and 'oPFC', respectively). For example, amphetamine and cocaine increase dendrite length and spine density in the mPFC, while dendrites are impoverished and dendritic spines are eliminated in the oPFC. We will discuss evidence that certain cytoskeletal regulatory proteins expressed in the oPFC and implicated in postnatal (adolescent) neural development also regulate behavioral sensitivity to cocaine. These findings potentially open a window of opportunity for the identification of novel pharmacotherapeutic targets in the treatment of drug abuse disorders in adults, as well as in drug-vulnerable adolescent populations. Finally, we will discuss the behavioral implications of drug-related dendritic spine elimination in the oPFC, with regard to reversal learning tasks and tasks that assess the development of reward-seeking habits, both used to model aspects of addiction in rodents.

  8. Synaptic cytoskeletal plasticity in the prefrontal cortex following psychostimulant exposure

    PubMed Central

    DePoy, Lauren M.; Gourley, Shannon L.

    2016-01-01

    Addiction is characterized by maladaptive decision-making, a loss of control over drug consumption, and habit-like drug seeking despite adverse consequences. These cognitive changes likely reflect the effects of drugs of abuse on prefrontal cortical neurobiology. Here we review evidence that amphetamine and cocaine fundamentally remodel the structure of excitatory neurons in the prefrontal cortex. We summarize evidence in particular that these psychostimulants have opposing effects in the medial and orbital prefrontal cortices (“mPFC” and “oPFC,” respectively). For example, amphetamine and cocaine increase dendrite length and spine density in the mPFC, while dendrites are impoverished and dendritic spines are eliminated in the oPFC. We will discuss evidence that certain cytoskeletal regulatory proteins expressed in the oPFC and implicated in postnatal (adolescent) neural development also regulate behavioral sensitivity to cocaine. These findings potentially open a window of opportunity for the identification of novel pharmacotherapeutic targets in the treatment of drug abuse disorders in adults, as well as in drug-vulnerable adolescent populations. Finally, we will discuss the behavioral implications of drug-related dendritic spine elimination in the oPFC, with regards to reversal learning tasks and tasks that assess the development of reward-seeking habits, both used to model aspects of addiction in rodents. PMID:25951902

  9. Synaptic Cytoskeletal Plasticity in the Prefrontal Cortex Following Psychostimulant Exposure.

    PubMed

    DePoy, Lauren M; Gourley, Shannon L

    2015-09-01

    Addiction is characterized by maladaptive decision-making, a loss of control over drug consumption and habit-like drug seeking despite adverse consequences. These cognitive changes may reflect the effects of drugs of abuse on prefrontal cortical neurobiology. Here, we review evidence that amphetamine and cocaine fundamentally remodel the structure of excitatory neurons in the prefrontal cortex. We summarize evidence in particular that these psychostimulants have opposing effects in the medial and orbital prefrontal cortices ('mPFC' and 'oPFC', respectively). For example, amphetamine and cocaine increase dendrite length and spine density in the mPFC, while dendrites are impoverished and dendritic spines are eliminated in the oPFC. We will discuss evidence that certain cytoskeletal regulatory proteins expressed in the oPFC and implicated in postnatal (adolescent) neural development also regulate behavioral sensitivity to cocaine. These findings potentially open a window of opportunity for the identification of novel pharmacotherapeutic targets in the treatment of drug abuse disorders in adults, as well as in drug-vulnerable adolescent populations. Finally, we will discuss the behavioral implications of drug-related dendritic spine elimination in the oPFC, with regard to reversal learning tasks and tasks that assess the development of reward-seeking habits, both used to model aspects of addiction in rodents. PMID:25951902

  10. Prefrontal cortex self-stimulation and energy balance.

    PubMed

    McGregor, I S; Atrens, D M

    1991-12-01

    The relation between sulcal prefrontal cortex (SPC) and medial prefrontal cortex (MPC) self-stimulation and energy balance was investigated in rats. SPC but not MPC self-stimulation induced feeding but not the gnawing of wooden blocks. SPC but not MPC self-stimulation enhanced weight gain over several weeks of exposure to stimulation. Food deprivation (48 hr but not 24 hr) increased SPC self-stimulation rates under a 5-s fixed-interval reinforcement schedule and decreased current thresholds for SPC self-stimulation. MPC self-stimulation was unaffected by food deprivation. Insulin (4 U/kg) and 2-deoxy-D-glucose (300 mg/kg) inhibited both SPC and MPC self-stimulation, probably through interfering with performance. Satiety induced by prolonged intake of a sweetened solution or deprivation-induced feeding moderately facilitated SPC self-stimulation. Overall, it appears that SPC but not MPC self-stimulation modulates, and is modulated by, energy balance. PMID:1777106

  11. Medial prefrontal cortex role in recognition memory in rodents.

    PubMed

    Morici, Juan Facundo; Bekinschtein, Pedro; Weisstaub, Noelia V

    2015-10-01

    The study of the neurobiology of recognition memory, defined by the integration of the different components of experiences that support recollection of past experiences have been a challenge for memory researches for many years. In the last twenty years, with the development of the spontaneous novel object recognition task and all its variants this has started to change. The features of recognition memory include a particular object or person ("what"), the context in which the experience took place, which can be the arena itself or the location within a particular arena ("where") and the particular time at which the event occurred ("when"). This definition instead of the historical anthropocentric one allows the study of this type of episodic memory in animal models. Some forms of recognition memory that require integration of different features recruit the medial prefrontal cortex. Focusing on findings from spontaneous recognition memory tasks performed by rodents, this review concentrates on the description of previous works that have examined the role that the medial prefrontal cortex has on the different steps of recognition memory. We conclude that this structure, independently of the task used, is required at different memory stages when the task cannot be solved by a single item strategy. PMID:26115848

  12. Medial prefrontal cortex role in recognition memory in rodents.

    PubMed

    Morici, Juan Facundo; Bekinschtein, Pedro; Weisstaub, Noelia V

    2015-10-01

    The study of the neurobiology of recognition memory, defined by the integration of the different components of experiences that support recollection of past experiences have been a challenge for memory researches for many years. In the last twenty years, with the development of the spontaneous novel object recognition task and all its variants this has started to change. The features of recognition memory include a particular object or person ("what"), the context in which the experience took place, which can be the arena itself or the location within a particular arena ("where") and the particular time at which the event occurred ("when"). This definition instead of the historical anthropocentric one allows the study of this type of episodic memory in animal models. Some forms of recognition memory that require integration of different features recruit the medial prefrontal cortex. Focusing on findings from spontaneous recognition memory tasks performed by rodents, this review concentrates on the description of previous works that have examined the role that the medial prefrontal cortex has on the different steps of recognition memory. We conclude that this structure, independently of the task used, is required at different memory stages when the task cannot be solved by a single item strategy.

  13. Ventromedial prefrontal cortex, adding value to autobiographical memories

    PubMed Central

    Lin, Wen-Jing; Horner, Aidan J.; Burgess, Neil

    2016-01-01

    The medial prefrontal cortex (mPFC) has been consistently implicated in autobiographical memory recall and decision making. Its function in decision making tasks is believed to relate to value representation, but its function in autobiographical memory recall is not yet clear. We hypothesised that the mPFC represents the subjective value of elements during autobiographical memory retrieval. Using functional magnetic resonance imaging during an autobiographical memory recall task, we found that the blood oxygen level dependent (BOLD) signal in ventromedial prefrontal cortex (vmPFC) was parametrically modulated by the affective values of items in participants’ memories when they were recalling and evaluating these items. An unrelated modulation by the participant’s familiarity with the items was also observed. During retrieval of the event, the BOLD signal in the same region was modulated by the personal significance and emotional intensity of the memory, which was correlated with the values of the items within them. These results support the idea that vmPFC processes self-relevant information, and suggest that it is involved in representing the personal emotional values of the elements comprising autobiographical memories. PMID:27338616

  14. Mental task classifications using prefrontal cortex electroencephalograph signals.

    PubMed

    Chai, Rifai; Ling, Sai Ho; Hunter, Gregory P; Nguyen, Hung T

    2012-01-01

    For an electroencephalograph (EEG)-based brain computer interface (BCI) application, the use of gel on the hair area of the scalp is needed for low impedance electrical contact. This causes the set up procedure to be time consuming and inconvenient for a practical BCI system. Moreover, studies of other cortical areas are useful for BCI development. As a more convenient alternative, this paper presents the EEG based-BCI using the prefrontal cortex non-hair area to classify mental tasks at three electrodes position: Fp1, Fpz and Fp2. The relevant mental tasks used are mental arithmetic, ringtone, finger tapping and words composition with additional tasks which are baseline and eyes closed. The feature extraction is based on the Hilbert Huang Transform (HHT) energy method and the classification algorithm is based on an artificial neural network (ANN) with genetic algorithm (GA) optimization. The results show that the dominant alpha wave during eyes closed can still clearly be detected in the prefrontal cortex. The classification accuracy for five subjects, mental tasks vs. baseline task resulted in average accuracy is 73% and the average accuracy for pairs of mental task combinations is 72%.

  15. Ventromedial prefrontal cortex, adding value to autobiographical memories.

    PubMed

    Lin, Wen-Jing; Horner, Aidan J; Burgess, Neil

    2016-01-01

    The medial prefrontal cortex (mPFC) has been consistently implicated in autobiographical memory recall and decision making. Its function in decision making tasks is believed to relate to value representation, but its function in autobiographical memory recall is not yet clear. We hypothesised that the mPFC represents the subjective value of elements during autobiographical memory retrieval. Using functional magnetic resonance imaging during an autobiographical memory recall task, we found that the blood oxygen level dependent (BOLD) signal in ventromedial prefrontal cortex (vmPFC) was parametrically modulated by the affective values of items in participants' memories when they were recalling and evaluating these items. An unrelated modulation by the participant's familiarity with the items was also observed. During retrieval of the event, the BOLD signal in the same region was modulated by the personal significance and emotional intensity of the memory, which was correlated with the values of the items within them. These results support the idea that vmPFC processes self-relevant information, and suggest that it is involved in representing the personal emotional values of the elements comprising autobiographical memories. PMID:27338616

  16. Dopaminergic Modulation of Medial Prefrontal Cortex Deactivation in Parkinson Depression

    PubMed Central

    Andersen, Anders H.; Smith, Charles D.; Slevin, John T.; Kryscio, Richard J.; Martin, Catherine A.; Schmitt, Frederick A.; Blonder, Lee X.

    2015-01-01

    Parkinson's disease (PD) is associated with emotional abnormalities. Dopaminergic medications ameliorate Parkinsonian motor symptoms, but less is known regarding the impact of dopaminergic agents on affective processing, particularly in depressed PD (dPD) patients. The aim of this study was to examine the effects of dopaminergic pharmacotherapy on brain activation to emotional stimuli in depressed versus nondepressed Parkinson disease (ndPD) patients. Participants included 18 ndPD patients (11 men, 7 women) and 10 dPD patients (7 men, 3 women). Patients viewed photographs of emotional faces during functional MRI. Scans were performed while the patient was taking anti-Parkinson medication and the day after medication had been temporarily discontinued. Results indicate that dopaminergic medications have opposite effects in the prefrontal cortex depending upon depression status. DPD patients show greater deactivation in the ventromedial prefrontal cortex (VMPFC) on dopaminergic medications than off, while ndPD patients show greater deactivation in this region off drugs. The VMPFC is in the default-mode network (DMN). DMN activity is negatively correlated with activity in brain systems used for external visual attention. Thus dopaminergic medications may promote increased attention to external visual stimuli among dPD patients but impede normal suppression of DMN activity during external stimulation among ndPD patients. PMID:26793404

  17. Williams Syndrome Hypersociability: A Neuropsychological Study of the Amygdala and Prefrontal Cortex Hypotheses

    ERIC Educational Resources Information Center

    Capitao, Liliana; Sampaio, Adriana; Fernandez, Montse; Sousa, Nuno; Pinheiro, Ana; Goncalves, Oscar F.

    2011-01-01

    Individuals with Williams syndrome display indiscriminate approach towards strangers. Neuroimaging studies conducted so far have linked this social profile to structural and/or functional abnormalities in WS amygdala and prefrontal cortex. In this study, the neuropsychological hypotheses of amygdala and prefrontal cortex involvement in WS…

  18. Behavioral response inhibition and maturation of goal representation in prefrontal cortex after puberty

    PubMed Central

    Zhou, Xin; Zhu, Dantong; King, Samson G.; Lees, Cynthia J.; Bennett, Allyson J.; Salinas, Emilio; Stanford, Terrence R.; Constantinidis, Christos

    2016-01-01

    Executive functions including behavioral response inhibition mature after puberty, in tandem with structural changes in the prefrontal cortex. Little is known about how activity of prefrontal neurons relates to this profound cognitive development. To examine this, we tracked neuronal responses of the prefrontal cortex in monkeys as they transitioned from puberty into adulthood and compared activity at different developmental stages. Performance of the antisaccade task greatly improved in this period. Among neural mechanisms that could facilitate it, reduction of stimulus-driven activity, increased saccadic activity, or enhanced representation of the opposing goal location, only the latter was evident in adulthood. Greatly accentuated in adults, this neural correlate of vector inversion may be a prerequisite to the formation of a motor plan to look away from the stimulus. Our results suggest that the prefrontal mechanisms that underlie mature performance on the antisaccade task are more strongly associated with forming an alternative plan of action than with suppressing the neural impact of the prepotent stimulus. PMID:26951656

  19. Capturing the temporal evolution of choice across prefrontal cortex

    PubMed Central

    Hunt, Laurence T; Behrens, Timothy EJ; Hosokawa, Takayuki; Wallis, Jonathan D; Kennerley, Steven W

    2015-01-01

    Activity in prefrontal cortex (PFC) has been richly described using economic models of choice. Yet such descriptions fail to capture the dynamics of decision formation. Describing dynamic neural processes has proven challenging due to the problem of indexing the internal state of PFC and its trial-by-trial variation. Using primate neurophysiology and human magnetoencephalography, we here recover a single-trial index of PFC internal states from multiple simultaneously recorded PFC subregions. This index can explain the origins of neural representations of economic variables in PFC. It describes the relationship between neural dynamics and behaviour in both human and monkey PFC, directly bridging between human neuroimaging data and underlying neuronal activity. Moreover, it reveals a functionally dissociable interaction between orbitofrontal cortex, anterior cingulate cortex and dorsolateral PFC in guiding cost-benefit decisions. We cast our observations in terms of a recurrent neural network model of choice, providing formal links to mechanistic dynamical accounts of decision-making. DOI: http://dx.doi.org/10.7554/eLife.11945.001 PMID:26653139

  20. On parsing the neural code in the prefrontal cortex of primates using principal dynamic modes.

    PubMed

    Marmarelis, V Z; Shin, D C; Song, D; Hampson, R E; Deadwyler, S A; Berger, T W

    2014-06-01

    Nonlinear modeling of multi-input multi-output (MIMO) neuronal systems using Principal Dynamic Modes (PDMs) provides a novel method for analyzing the functional connectivity between neuronal groups. This paper presents the PDM-based modeling methodology and initial results from actual multi-unit recordings in the prefrontal cortex of non-human primates. We used the PDMs to analyze the dynamic transformations of spike train activity from Layer 2 (input) to Layer 5 (output) of the prefrontal cortex in primates performing a Delayed-Match-to-Sample task. The PDM-based models reduce the complexity of representing large-scale neural MIMO systems that involve large numbers of neurons, and also offer the prospect of improved biological/physiological interpretation of the obtained models. PDM analysis of neuronal connectivity in this system revealed "input-output channels of communication" corresponding to specific bands of neural rhythms that quantify the relative importance of these frequency-specific PDMs across a variety of different tasks. We found that behavioral performance during the Delayed-Match-to-Sample task (correct vs. incorrect outcome) was associated with differential activation of frequency-specific PDMs in the prefrontal cortex.

  1. Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats

    PubMed Central

    Liu, Albert; Jain, Neeraj; Vyas, Ajai; Lim, Lee Wei

    2015-01-01

    Memory dysfunction is a key symptom of age-related dementia. Although recent studies have suggested positive effects of electrical stimulation for memory enhancement, its potential targets remain largely unknown. In this study, we hypothesized that spatially targeted deep brain stimulation of ventromedial prefrontal cortex enhanced memory functions in a middle-aged rat model. Our results show that acute stimulation enhanced the short-, but not the long-term memory in the novel-object recognition task. Interestingly, after chronic high-frequency stimulation, both the short- and long-term memories were robustly improved in the novel-object recognition test and Morris water-maze spatial task compared to sham. Our results also demonstrated that chronic ventromedial prefrontal cortex high-frequency stimulation upregulated neurogenesis-associated genes along with enhanced hippocampal cell proliferation. Importantly, these memory behaviors were strongly correlated with the hippocampal neurogenesis. Overall, these findings suggest that chronic ventromedial prefrontal cortex high-frequency stimulation may serve as a novel effective therapeutic target for dementia-related disorders. DOI: http://dx.doi.org/10.7554/eLife.04803.001 PMID:25768425

  2. The relationship between brain cortical activity and brain oxygenation in the prefrontal cortex during hypergravity exposure.

    PubMed

    Smith, Craig; Goswami, Nandu; Robinson, Ryan; von der Wiesche, Melanie; Schneider, Stefan

    2013-04-01

    Artificial gravity has been proposed as a method to counteract the physiological deconditioning of long-duration spaceflight; however, the effects of hypergravity on the central nervous system has had little study. The study aims to investigate whether there is a relationship between prefrontal cortex brain activity and prefrontal cortex oxygenation during exposure to hypergravity. Twelve healthy participants were selected to undergo hypergravity exposure aboard a short-arm human centrifuge. Participants were exposed to hypergravity in the +Gz axis, starting from 0.6 +Gz for women, and 0.8 +Gz for men, and gradually increasing by 0.1 +Gz until the participant showed signs of syncope. Brain cortical activity was measured using electroencephalography (EEG) and localized to the prefrontal cortex using standard low-resolution brain electromagnetic tomography (LORETA). Prefrontal cortex oxygenation was measured using near-infrared spectroscopy (NIRS). A significant increase in prefrontal cortex activity (P < 0.05) was observed during hypergravity exposure compared with baseline. Prefrontal cortex oxygenation was significantly decreased during hypergravity exposure, with a decrease in oxyhemoglobin levels (P < 0.05) compared with baseline and an increase in deoxyhemoglobin levels (P < 0.05) with increasing +Gz level. No significant correlation was found between prefrontal cortex activity and oxy-/deoxyhemoglobin. It is concluded that the increase in prefrontal cortex activity observed during hypergravity was most likely not the result of increased +Gz values resulting in a decreased oxygenation produced through hypergravity exposure. No significant relationship between prefrontal cortex activity and oxygenation measured by NIRS concludes that brain activity during exposure to hypergravity may be difficult to measure using NIRS. Instead, the increase in prefrontal cortex activity might be attributable to psychological stress, which could pose a problem for the use of a

  3. Control of the superior colliculus by the lateral prefrontal cortex

    PubMed Central

    Everling, Stefan; Johnston, Kevin

    2013-01-01

    Several decades of patient, functional imaging and neurophysiological studies have supported a model in which the lateral prefrontal cortex (PFC) acts to suppress unwanted saccades by inhibiting activity in the oculomotor system. However, recent results from combined PFC deactivation and neural recordings of the superior colliculus in monkeys demonstrate that the primary influence of the PFC on the oculomotor system is excitatory, and stands in direct contradiction to the inhibitory model of PFC function. Although erroneous saccades towards a visual stimulus are commonly labelled reflexive in patients with PFC damage or dysfunction, the latencies of most of these saccades are outside of the range of express saccades, which are triggered directly by the visual stimulus. Deactivation and pharmacological manipulation studies in monkeys suggest that response errors following PFC damage or dysfunction are not the result of a failure in response suppression but can best be understood in the context of a failure to maintain and implement the proper task set. PMID:24018729

  4. Maternal prefrontal cortex activation by newborn infant odors.

    PubMed

    Nishitani, Shota; Kuwamoto, Saori; Takahira, Asuka; Miyamura, Tsunetake; Shinohara, Kazuyuki

    2014-03-01

    Mothers are attracted by infant cues of a variety of different modalities. To clarify the possible neural mechanisms underlying maternal attraction to infant odor cues, we used near-infrared spectroscopy to examine prefrontal cortex (PFC) activity during odor detection tasks in which 19 mothers and 19 nulliparous females (nonmothers) were presented with infant or adult male odors. They were instructed to make a judgment about whether they smelled an odor during each task. We estimated the PFC activity by measuring the relative oxyhemoglobin (oxyHb) concentrations. The results showed that while detecting the infant odors, bilateral PFC activities were increased in mothers but not in nonmothers. In contrast, adult male odors activated the PFC similarly in mothers and nonmothers. These findings suggest that maternal activation of the PFC in response to infant odors explains a part of the neural mechanisms for maternal attraction to infant odors.

  5. Global connectivity of prefrontal cortex predicts cognitive control and intelligence

    PubMed Central

    Cole, Michael W.; Yarkoni, Tal; Repovs, Grega; Anticevic, Alan; Braver, Todd S.

    2012-01-01

    Control of thought and behavior is fundamental to human intelligence. Evidence suggests a fronto-parietal brain network implements such cognitive control across diverse contexts. We identify a mechanism – global connectivity – by which components of this network might coordinate control of other networks. A lateral prefrontal cortex (LPFC) region’s activity was found to predict performance in a high control demand working memory task, and also to exhibit high global connectivity. Critically, global connectivity in this LPFC region, involving connections both within and outside the fronto-parietal network, showed a highly selective relationship with individual differences in fluid intelligence. These findings suggest LPFC is a global hub with a brain-wide influence that facilitates the ability to implement control processes central to human intelligence. PMID:22745498

  6. Behavioral effects of congenital ventromedial prefrontal cortex malformation

    PubMed Central

    2011-01-01

    Background A detailed behavioral profile associated with focal congenital malformation of the ventromedial prefrontal cortex (vmPFC) has not been reported previously. Here we describe a 14 year-old boy, B.W., with neurological and psychiatric sequelae stemming from focal cortical malformation of the left vmPFC. Case Presentation B.W.'s behavior has been characterized through extensive review Patience of clinical and personal records along with behavioral and neuropsychological testing. A central feature of the behavioral profile is severe antisocial behavior. He is aggressive, manipulative, and callous; features consistent with psychopathy. Other problems include: egocentricity, impulsivity, hyperactivity, lack of empathy, lack of respect for authority, impaired moral judgment, an inability to plan ahead, and poor frustration tolerance. Conclusions The vmPFC has a profound contribution to the development of human prosocial behavior. B.W. demonstrates how a congenital lesion to this cortical region severely disrupts this process. PMID:22136635

  7. The role of the anterior prefrontal cortex in human cognition.

    PubMed

    Koechlin, E; Basso, G; Pietrini, P; Panzer, S; Grafman, J

    1999-05-13

    Complex problem-solving and planning involve the most anterior part of the frontal lobes including the fronto-polar prefrontal cortex (FPPC), which is especially well developed in humans compared with other primates. The specific role of this region in human cognition, however, is poorly understood. Here we show, using functional magnetic resonance imaging, that bilateral regions in the FPPC alone are selectively activated when subjects have to keep in mind a main goal while performing concurrent (sub)goals. Neither keeping in mind a goal over time (working memory) nor successively allocating attentional resources between alternative goals (dual-task performance) could by themselves activate these regions. Our results indicate that the FPPC selectively mediates the human ability to hold in mind goals while exploring and processing secondary goals, a process generally required in planning and reasoning.

  8. Medial prefrontal cortex predicts internally driven strategy shifts

    PubMed Central

    Schuck, Nicolas W.; Gaschler, Robert; Wenke, Dorit; Heinzle, Jakob; Frensch, Peter A.; Haynes, John-Dylan; Reverberi, Carlo

    2015-01-01

    Summary Many daily behaviors require us to actively focus on the current task and ignore all other distractions. Yet, ignoring everything else might hinder the ability to discover new ways to achieve the same goal. Here, we studied the neural mechanisms that support the spontaneous change to better strategies while an established strategy is executed. Multivariate neuroimaging analysis showed that before the spontaneous change to an alternative strategy, medial prefrontal cortex (MPFC) encoded information that was irrelevant for the current strategy but necessary for the later strategy. Importantly, this neural effect was related to future behavioral changes: information encoding in MPFC was changed only in participants who eventually switched their strategy and started before the actual strategy change. This allowed us to predict spontaneous strategy shifts ahead of time. These findings suggest that MPFC might internally simulate alternative strategies and sheds new light on the organization of PFC. PMID:25819613

  9. Involvement of prefrontal cortex in scalar implicatures: evidence from magnetoencephalography

    PubMed Central

    Politzer-Ahles, Stephen; Gwilliams, Laura

    2015-01-01

    The present study investigated the neural correlates of the realisation of scalar inferences, i.e., the interpretation of some as meaning some but not all. We used magnetoencephalography, which has high temporal resolution, to measure neural activity while participants heard stories that included the scalar inference trigger some in contexts that either provide strong cues for a scalar inference or provide weaker cues. The middle portion of the lateral prefrontal cortex (Brodmann area 46) showed an increased response to some in contexts with fewer cues to the inference, suggesting that this condition elicited greater effort. While the results are not predicted by traditional all-or-nothing accounts of scalar inferencing that assume the process is always automatic or always effortful, they are consistent with more recent gradient accounts which predict that the speed and effort of scalar inferences is strongly modulated by numerous contextual factors. PMID:26247054

  10. Multiple component networks support working memory in prefrontal cortex.

    PubMed

    Markowitz, David A; Curtis, Clayton E; Pesaran, Bijan

    2015-09-01

    Lateral prefrontal cortex (PFC) is regarded as the hub of the brain's working memory (WM) system, but it remains unclear whether WM is supported by a single distributed network or multiple specialized network components in this region. To investigate this problem, we recorded from neurons in PFC while monkeys made delayed eye movements guided by memory or vision. We show that neuronal responses during these tasks map to three anatomically specific modes of persistent activity. The first two modes encode early and late forms of information storage, whereas the third mode encodes response preparation. Neurons that reflect these modes are concentrated at different anatomical locations in PFC and exhibit distinct patterns of coordinated firing rates and spike timing during WM, consistent with distinct networks. These findings support multiple component models of WM and consequently predict distinct failures that could contribute to neurologic dysfunction. PMID:26283366

  11. Abstract Context Representations in Primate Amygdala and Prefrontal Cortex.

    PubMed

    Saez, A; Rigotti, M; Ostojic, S; Fusi, S; Salzman, C D

    2015-08-19

    Neurons in prefrontal cortex (PFC) encode rules, goals, and other abstract information thought to underlie cognitive, emotional, and behavioral flexibility. Here we show that the amygdala, a brain area traditionally thought to mediate emotions, also encodes abstract information that could underlie this flexibility. Monkeys performed a task in which stimulus-reinforcement contingencies varied between two sets of associations, each defining a context. Reinforcement prediction required identifying a stimulus and knowing the current context. Behavioral evidence indicated that monkeys utilized this information to perform inference and adjust their behavior. Neural representations in both amygdala and PFC reflected the linked sets of associations implicitly defining each context, a process requiring a level of abstraction characteristic of cognitive operations. Surprisingly, when errors were made, the context signal weakened substantially in the amygdala. These data emphasize the importance of maintaining abstract cognitive information in the amygdala to support flexible behavior.

  12. Increased prefrontal cortex neurogranin enhances plasticity and extinction learning.

    PubMed

    Zhong, Ling; Brown, Joshua; Kramer, Audra; Kaleka, Kanwardeep; Petersen, Amber; Krueger, Jamie N; Florence, Matthew; Muelbl, Matthew J; Battle, Michelle; Murphy, Geoffrey G; Olsen, Christopher M; Gerges, Nashaat Z

    2015-05-13

    Increasing plasticity in neurons of the prefrontal cortex (PFC) has been proposed as a possible therapeutic tool to enhance extinction, a process that is impaired in post-traumatic stress disorder, schizophrenia, and addiction. To test this hypothesis, we generated transgenic mice that overexpress neurogranin (a calmodulin-binding protein that facilitates long-term potentiation) in the PFC. Neurogranin overexpression in the PFC enhanced long-term potentiation and increased the rates of extinction learning of both fear conditioning and sucrose self-administration. Our results indicate that elevated neurogranin function within the PFC can enhance local plasticity and increase the rate of extinction learning across different behavioral tasks. Thus, neurogranin can provide a molecular link between enhanced plasticity and enhanced extinction.

  13. Abstract Context Representations in Primate Amygdala and Prefrontal Cortex.

    PubMed

    Saez, A; Rigotti, M; Ostojic, S; Fusi, S; Salzman, C D

    2015-08-19

    Neurons in prefrontal cortex (PFC) encode rules, goals, and other abstract information thought to underlie cognitive, emotional, and behavioral flexibility. Here we show that the amygdala, a brain area traditionally thought to mediate emotions, also encodes abstract information that could underlie this flexibility. Monkeys performed a task in which stimulus-reinforcement contingencies varied between two sets of associations, each defining a context. Reinforcement prediction required identifying a stimulus and knowing the current context. Behavioral evidence indicated that monkeys utilized this information to perform inference and adjust their behavior. Neural representations in both amygdala and PFC reflected the linked sets of associations implicitly defining each context, a process requiring a level of abstraction characteristic of cognitive operations. Surprisingly, when errors were made, the context signal weakened substantially in the amygdala. These data emphasize the importance of maintaining abstract cognitive information in the amygdala to support flexible behavior. PMID:26291167

  14. Insights into Human Behavior from Lesions to the Prefrontal Cortex

    PubMed Central

    Szczepanski, Sara M.; Knight, Robert T.

    2014-01-01

    SUMMARY The prefrontal cortex (PFC), a cortical region that was once thought to be functionally insignificant, is now known to play an essential role in the organization and control of goal-directed thought and behavior. Neuroimaging, neurophysiological, and modeling techniques have lead to tremendous advances in our understanding of PFC functions over the last few decades. It should be noted, however, that neurological, neuropathological, and neuropsychological studies have contributed some of the most essential, historical, and often prescient, conclusions regarding the functions of this region. Importantly, examination of patients with brain damage allows one to draw conclusions about whether a brain area is necessary for a particular function. Here, we provide a broad overview of PFC functions based upon behavioral and neural changes resulting from damage to PFC in both human patients and non-human primates. PMID:25175878

  15. Diminishing reciprocal fairness by disrupting the right prefrontal cortex.

    PubMed

    Knoch, Daria; Pascual-Leone, Alvaro; Meyer, Kaspar; Treyer, Valerie; Fehr, Ernst

    2006-11-01

    Humans restrain self-interest with moral and social values. They are the only species known to exhibit reciprocal fairness, which implies the punishment of other individuals' unfair behaviors, even if it hurts the punisher's economic self-interest. Reciprocal fairness has been demonstrated in the Ultimatum Game, where players often reject their bargaining partner's unfair offers. Despite progress in recent years, however, little is known about how the human brain limits the impact of selfish motives and implements fair behavior. Here we show that disruption of the right, but not the left, dorsolateral prefrontal cortex (DLPFC) by low-frequency repetitive transcranial magnetic stimulation substantially reduces subjects' willingness to reject their partners' intentionally unfair offers, which suggests that subjects are less able to resist the economic temptation to accept these offers. Importantly, however, subjects still judge such offers as very unfair, which indicates that the right DLPFC plays a key role in the implementation of fairness-related behaviors.

  16. Intact discourse cohesion and coherence following bilateral ventromedial prefrontal cortex.

    PubMed

    Kurczek, Jake; Duff, Melissa C

    2012-12-01

    Discourse cohesion and coherence give communication its continuity providing the grammatical and lexical links that hold an utterance or text together and give it meaning. Researchers often link cohesion and coherence deficits to the frontal lobes by drawing attention to frontal lobe dysfunction in populations where discourse cohesion and coherence deficits are reported and through attribution of these deficits to underlying cognitive impairments putatively associated with the frontal lobes. We examined the distinct contribution of a region of the frontal lobes, the ventromedial prefrontal cortex (vmPFC), to discourse cohesion and coherence across a range of discourse tasks. We found that bilateral vmPFC damage does not impair cohesion and coherence in spoken discourse. This study provides insights into the contribution of the major anatomical subdivisions of the frontal lobes to language use and furthers our understanding of the neural and cognitive underpinnings of discourse cohesion and coherence.

  17. Abstract context representations in primate amygdala and prefrontal cortex

    PubMed Central

    Saez, A.; Rigotti, M.; Ostojic, S.; Fusi, S.; Salzman, C. D.

    2015-01-01

    Summary Neurons in prefrontal cortex (PFC) encode rules, goals and other abstract information thought to underlie cognitive, emotional, and behavioral flexibility. Here we show that the amygdala, a brain area traditionally thought to mediate emotions, also encodes abstract information that could underlie this flexibility. Monkeys performed a task in which stimulus-reinforcement contingencies varied between two sets of associations, each defining a context. Reinforcement prediction required identifying a stimulus and knowing the current context. Behavioral evidence indicated that monkeys utilized this information to perform inference and adjust their behavior. Neural representations in both amygdala and PFC reflected the linked sets of associations implicitly defining each context, a process requiring a level of abstraction characteristic of cognitive operations. Surprisingly, when errors were made, the context signal weakened substantially in the amygdala. These data emphasize the importance of maintaining abstract cognitive information in the amygdala to support flexible behavior. PMID:26291167

  18. Response of dorsomedial prefrontal cortex predicts altruistic behavior

    PubMed Central

    Waytz, Adam; Zaki, Jamil; Mitchell, Jason P.

    2012-01-01

    Human beings have an unusual proclivity for altruistic behavior, and recent commentators have suggested that these prosocial tendencies arise from our unique capacity to understand the minds of others (i.e., to mentalize). The current studies test this hypothesis by examining the relation between altruistic behavior and the reflexive engagement of a neural system reliably associated with mentalizing. Results indicated that activity in the dorsomedial prefrontal cortex (dorsal MPFC)—a region consistently involved in understanding others’ mental states—predicts both monetary donations to others and time spent helping others. These findings address long-standing questions about the proximate source of human altruism by suggesting that prosocial behavior results, in part, from our broader tendency for social-cognitive thought. PMID:22649243

  19. Damage to the ventromedial prefrontal cortex reduces interpersonal disgust

    PubMed Central

    Ciaramelli, Elisa; Sperotto, Rebecca G.; Mattioli, Flavia

    2013-01-01

    Disgust for contaminating objects (core disgust), immoral behaviors (moral disgust) and unsavory others (interpersonal disgust), have been assumed to be closely related. It is not clear, however, whether different forms of disgust are mediated by overlapping or specific neural substrates. We report that 10 patients with damage to the ventromedial prefrontal cortex (vmPFC) avoided behaviors that normally elicit interpersonal disgust (e.g. using the scarf of a busker) less frequently than healthy and brain-damaged controls, whereas they avoided core and moral disgust elicitors at normal rates. These results indicate that different forms of disgust are dissociated neurally. We propose that the vmPFC is causally (and selectively) involved in mediating interpersonal disgust, shaping patterns of social avoidance and approach. PMID:22842816

  20. Diminished appetitive startle modulation following targeted inhibition of prefrontal cortex.

    PubMed

    Hurlemann, René; Arndt, Stephan; Schlaepfer, Thomas E; Reul, Juergen; Maier, Wolfgang; Scheele, Dirk

    2015-01-01

    From an evolutionary perspective the startle eye-blink response forms an integral part of the human avoidance behavioral repertoire and is typically diminished by pleasant emotional states. In major depressive disorder (MDD) appetitive motivation is impaired, evident in a reduced interference of positive emotion with the startle response. Given the pivotal role of frontostriatal neurocircuitry in orchestrating appetitive motivation, we hypothesized that inhibitory transcranial magnetic stimulation (TMS) would reduce appetitive neuromodulation in a manner similar to MDD. Based on a pre-TMS functional MRI (fMRI) experiment we selected the left dorsolateral and dorsomedial prefrontal cortices as target regions for subsequent sham-controlled inhibitory theta-burst TMS (TBS) in 40 healthy male volunteers. Consistent with our hypothesis, between-group comparisons revealed a TBS-induced inhibition of appetitive neuromodulation, manifest in a diminished startle response suppression by hedonic stimuli. Collectively, our results suggest that functional integrity of left dorsolateral and dorsomedial prefrontal cortex is critical for mediating a pleasure-induced down-regulation of avoidance responses which may protect the brain from a depressogenic preponderance of defensive stress. PMID:25752944

  1. Prefrontal Cortex and Drug Abuse Vulnerability: Translation to Prevention and Treatment Interventions

    PubMed Central

    Perry, Jennifer L.; Joseph, Jane E.; Jiang, Yang; Zimmerman, Rick S.; Kelly, Thomas H.; Darna, Mahesh; Huettl, Peter; Dwoskin, Linda P.; Bardo, Michael T.

    2010-01-01

    Vulnerability to drug abuse is related to both reward seeking and impulsivity, two constructs thought to have a biological basis in the prefrontal cortex (PFC). This review addresses similarities and differences in neuroanatomy, neurochemistry and behavior associated with PFC function in rodents and primates. Emphasis is placed on monoamine and amino acid neurotransmitter systems located in anatomically distinct subregions: medial prefrontal cortex (mPFC); lateral prefrontal cortex (lPFC); anterior cingulate cortex (ACC); and orbitofrontal cortex (OFC). While there are complex interconnections and overlapping functions among these regions, each is thought to be involved in various functions related to health-related risk behaviors and drug abuse vulnerability. Among the various functions implicated, evidence suggests that mPFC is involved in reward processing, attention and drug reinstatement; lPFC is involved in decision-making, behavioral inhibition and attentional gating; ACC is involved in attention, emotional processing and self-monitoring; and OFC is involved in behavioral inhibition, signaling of expected outcomes and reward/punishment sensitivity. Individual differences factors (e.g., age and sex) influence functioning of these regions, which, in turn, impacts drug abuse vulnerability. Implications for the development of drug abuse prevention and treatment strategies aimed at engaging PFC inhibitory processes that may reduce risk-related behaviors are discussed, including the design of effective public service announcements, cognitive exercises, physical activity, direct current stimulation, feedback control training and pharmacotherapies. A major challenge in drug abuse prevention and treatment rests with improving intervention strategies aimed at strengthening PFC inhibitory systems among at-risk individuals. PMID:20837060

  2. Working memory training is associated with lower prefrontal cortex activation in a divergent thinking task.

    PubMed

    Vartanian, O; Jobidon, M-E; Bouak, F; Nakashima, A; Smith, I; Lam, Q; Cheung, B

    2013-04-16

    Working memory (WM) training has been shown to lead to improvements in WM capacity and fluid intelligence. Given that divergent thinking loads on WM and fluid intelligence, we tested the hypothesis that WM training would improve performance and moderate neural function in the Alternate Uses Task (AUT)-a classic test of divergent thinking. We tested this hypothesis by administering the AUT in the functional magnetic resonance imaging scanner following a short regimen of WM training (experimental condition), or engagement in a choice reaction time task not expected to engage WM (active control condition). Participants in the experimental group exhibited significant improvement in performance in the WM task as a function of training, as well as a significant gain in fluid intelligence. Although the two groups did not differ in their performance on the AUT, activation was significantly lower in the experimental group in ventrolateral prefrontal and dorsolateral prefrontal cortices-two brain regions known to play dissociable and critical roles in divergent thinking. Furthermore, gain in fluid intelligence mediated the effect of training on brain activation in ventrolateral prefrontal cortex. These results indicate that a short regimen of WM training is associated with lower prefrontal activation-a marker of neural efficiency-in divergent thinking.

  3. Prefrontal cortex modulates desire and dread generated by nucleus accumbens glutamate disruption

    PubMed Central

    Richard, Jocelyn M.; Berridge, Kent. C

    2012-01-01

    Background Corticolimbic circuits, including direct projections from prefrontal cortex to nucleus accumbens (NAc), permit “top-down” control of intense motivations generated by subcortical circuits. In rats, localized disruptions of glutamate signaling within medial shell of NAc generate desire or dread, anatomically organized along a rostrocaudal gradient analogous to a limbic “keyboard”. At rostral locations in shell these disruptions generate appetitive eating, but at caudal locations the disruptions generate progressively fearful behaviors (distress vocalizations, escape attempts and antipredator reactions). Here we asked whether medial prefrontal cortex can modulate intense motivations generated by subcortical NAc disruptions. Methods We used simultaneous microinjections in medial prefrontal cortex regions and in NAc shell to examine whether the desire or dread generated by NAc shell disruptions is modulated by activation/inhibition of three specific regions of prefrontal cortex: medial orbitofrontal cortex, infralimbic cortex (homologous to area 25 or subgenual anterior cingulate in the human), or prelimbic cortex (midventral anterior cingulate). Results We found that activation of medial orbitofrontal cortex biased intense bivalent motivation in an appetitive direction by amplifying generation of eating behavior by middle to caudal NAc disruptions, without altering fear. In contrast, activation of infralimbic prefrontal cortex powerfully and generally suppressed both appetitive eating and fearful behaviors generated by NAc shell disruptions. Conclusions These results suggest that corticolimbic projections from discrete prefrontal regions can either bias motivational valence or generally suppress subcortically-generated intense motivations of desire or fear. PMID:22981656

  4. A hierarchy for relational reasoning in the prefrontal cortex.

    PubMed

    Krawczyk, Daniel C; Michelle McClelland, M; Donovan, Colin M

    2011-05-01

    The human brain possesses a unique capacity to reason about abstract relationships among items in our environment. The neural organization of reasoning abilities has remained elusive. Two approaches toward investigating human reasoning have involved studying visuo-spatial reasoning abilities and studying analogical reasoning. These approaches have both revealed anterior prefrontal cortex (PFC) involvement, but no prior studies have jointly investigated these two forms of reasoning to understand any potential convergence of activation within the PFC. Using fMRI, we tested the extent to which these two forms of reasoning (visuo-spatial and analogical) overlap in PFC activation. We conducted a visuo-spatial reasoning task that required processing multiple changes across three abstract pictures. This task activated a progressively anterior series of PFC regions when multiple relations had to be integrated. We also conducted a four-term analogy task in a stage-wise manner and compared results from this task to semantic and perceptual control conditions that did not require integrating relations across the problems. We found greater activation for analogical reasoning in the series of PFC regions that were sequentially involved in the visuo-spatial reasoning task. These findings indicate that stages of neural processing overlap for different domains within human reasoning. The pattern of differences across the analogy task suggests a hierarchical organization for relational reasoning across domains in which posterior frontal cortex is active across concrete reasoning tasks, while progressively more anterior regions are recruited to process increasingly abstract representations in reasoning.

  5. The role of the ventromedial prefrontal cortex in memory consolidation.

    PubMed

    Nieuwenhuis, Ingrid L C; Takashima, Atsuko

    2011-04-15

    "System-level memory consolidation theory" posits that the hippocampus an initially links the neocortical representations, followed by a shift to a hippocampus-independent neocortical network. With consolidation, an increase in activity in the human subgenual ventromedial prefrontal cortex (vmPFC) has repeatedly been shown. Previously we and others have proposed that this area might link the neocortical representational areas in remote memory, similarly as has been proposed for the rodent anterior cingulate cortex (ACC). Here, we review literature involving the human vmPFC to investigate if the results in other cognitive domains are in line with this proposal. We have taken into account reports on patients with lesions in this area, findings in reward and valuation, fear extinction, and confabulation studies, and integrated these with findings in consolidation studies. We conclude: Firstly, it is unlikely that the rodent ACC is homolog to the human subgenual vmPFC. It is more likely that the rodent infralimbic cortex is, as proposed in the fear extinction literature. Secondly, we propose that the function of the subgenual vmPFC is to integrate information which is represented in separate parts of the limbic system (the hippocampus, the amygdala, and the ventral striatum) and that the integrated representation in the subgenual vmPFC might subsequently be used to suppress irrelevant representations in the limbic system. With the progression of time, the importance of the integrated representation in the subgenual vmPFC increases, because it may replace some direct connectivity across the limbic areas which decays with time.

  6. The role of the ventromedial prefrontal cortex in memory consolidation.

    PubMed

    Nieuwenhuis, Ingrid L C; Takashima, Atsuko

    2011-04-15

    "System-level memory consolidation theory" posits that the hippocampus an initially links the neocortical representations, followed by a shift to a hippocampus-independent neocortical network. With consolidation, an increase in activity in the human subgenual ventromedial prefrontal cortex (vmPFC) has repeatedly been shown. Previously we and others have proposed that this area might link the neocortical representational areas in remote memory, similarly as has been proposed for the rodent anterior cingulate cortex (ACC). Here, we review literature involving the human vmPFC to investigate if the results in other cognitive domains are in line with this proposal. We have taken into account reports on patients with lesions in this area, findings in reward and valuation, fear extinction, and confabulation studies, and integrated these with findings in consolidation studies. We conclude: Firstly, it is unlikely that the rodent ACC is homolog to the human subgenual vmPFC. It is more likely that the rodent infralimbic cortex is, as proposed in the fear extinction literature. Secondly, we propose that the function of the subgenual vmPFC is to integrate information which is represented in separate parts of the limbic system (the hippocampus, the amygdala, and the ventral striatum) and that the integrated representation in the subgenual vmPFC might subsequently be used to suppress irrelevant representations in the limbic system. With the progression of time, the importance of the integrated representation in the subgenual vmPFC increases, because it may replace some direct connectivity across the limbic areas which decays with time. PMID:21147169

  7. Segregation of the human medial prefrontal cortex in social cognition

    PubMed Central

    Bzdok, Danilo; Langner, Robert; Schilbach, Leonhard; Engemann, Denis A.; Laird, Angela R.; Fox, Peter T.; Eickhoff, Simon B.

    2013-01-01

    While the human medial prefrontal cortex (mPFC) is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region's brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained (“resting”) cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in bottom-up-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in top–down-driven, probabilistic-scene-informed, and metacognition-related processing in social cognition. PMID:23755001

  8. Prefrontal cortex white matter tracts in prodromal Huntington disease

    PubMed Central

    Matsui, Joy T.; Vaidya, Jatin G.; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A.; Johnson, Hans J.; Paulsen, Jane S.

    2015-01-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e. prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATR), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. PMID:26179962

  9. Prefrontal cortex white matter tracts in prodromal Huntington disease.

    PubMed

    Matsui, Joy T; Vaidya, Jatin G; Wassermann, Demian; Kim, Regina Eunyoung; Magnotta, Vincent A; Johnson, Hans J; Paulsen, Jane S

    2015-10-01

    Huntington disease (HD) is most widely known for its selective degeneration of striatal neurons but there is also growing evidence for white matter (WM) deterioration. The primary objective of this research was to conduct a large-scale analysis using multisite diffusion-weighted imaging (DWI) tractography data to quantify diffusivity properties along major prefrontal cortex WM tracts in prodromal HD. Fifteen international sites participating in the PREDICT-HD study collected imaging and neuropsychological data on gene-positive HD participants without a clinical diagnosis (i.e., prodromal) and gene-negative control participants. The anatomical prefrontal WM tracts of the corpus callosum (PFCC), anterior thalamic radiations (ATRs), inferior fronto-occipital fasciculi (IFO), and uncinate fasciculi (UNC) were identified using streamline tractography of DWI. Within each of these tracts, tensor scalars for fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity coefficients were calculated. We divided prodromal HD subjects into three CAG-age product (CAP) groups having Low, Medium, or High probabilities of onset indexed by genetic exposure. We observed significant differences in WM properties for each of the four anatomical tracts for the High CAP group in comparison to controls. Additionally, the Medium CAP group presented differences in the ATR and IFO in comparison to controls. Furthermore, WM alterations in the PFCC, ATR, and IFO showed robust associations with neuropsychological measures of executive functioning. These results suggest long-range tracts essential for cross-region information transfer show early vulnerability in HD and may explain cognitive problems often present in the prodromal stage. Hum Brain Mapp 36:3717-3732, 2015. © 2015 Wiley Periodicals, Inc.

  10. Lesions to right prefrontal cortex impair real-world planning through premature commitments.

    PubMed

    Goel, Vinod; Vartanian, Oshin; Bartolo, Angela; Hakim, Lila; Ferraro, Anna Maria; Isella, Valeria; Appollonio, Ildebrando; Drei, Silvia; Nichelli, Paolo

    2013-03-01

    While it is well accepted that the left prefrontal cortex plays a critical role in planning and problem-solving tasks, very little is known about the role of the right prefrontal cortex. We addressed this issue by testing five neurological patients with focal lesions to right prefrontal cortex on a real-world travel planning task, and compared their performance with the performance of five neurological patients with focal lesions to left prefrontal cortex, five neurological patients with posterior lesions, and five normal controls. Only patients with lesions to right prefrontal cortex generated substandard solutions compared to normal controls. Examination of the underlying cognitive processes and strategies revealed that patients with lesions to right prefrontal cortex approached the task at an excessively precise, concrete level compared to normal controls, and very early locked themselves into substandard solutions relative to the comparison group. In contrast, the behavior of normal controls was characterized by a judicious interplay of concrete and abstract levels/modes of representations. We suggest that damage to the right prefrontal system impairs the encoding and processing of more abstract and vague representations that facilitate lateral transformations, resulting in premature commitment to precise concrete patterns, and hasty albeit substandard conclusions (because the space of possibilities has not been properly explored).

  11. Lesions to right prefrontal cortex impair real-world planning through premature commitments.

    PubMed

    Goel, Vinod; Vartanian, Oshin; Bartolo, Angela; Hakim, Lila; Ferraro, Anna Maria; Isella, Valeria; Appollonio, Ildebrando; Drei, Silvia; Nichelli, Paolo

    2013-03-01

    While it is well accepted that the left prefrontal cortex plays a critical role in planning and problem-solving tasks, very little is known about the role of the right prefrontal cortex. We addressed this issue by testing five neurological patients with focal lesions to right prefrontal cortex on a real-world travel planning task, and compared their performance with the performance of five neurological patients with focal lesions to left prefrontal cortex, five neurological patients with posterior lesions, and five normal controls. Only patients with lesions to right prefrontal cortex generated substandard solutions compared to normal controls. Examination of the underlying cognitive processes and strategies revealed that patients with lesions to right prefrontal cortex approached the task at an excessively precise, concrete level compared to normal controls, and very early locked themselves into substandard solutions relative to the comparison group. In contrast, the behavior of normal controls was characterized by a judicious interplay of concrete and abstract levels/modes of representations. We suggest that damage to the right prefrontal system impairs the encoding and processing of more abstract and vague representations that facilitate lateral transformations, resulting in premature commitment to precise concrete patterns, and hasty albeit substandard conclusions (because the space of possibilities has not been properly explored). PMID:23266766

  12. Prefrontal Cortex Activation and Young Driver Behaviour: A fNIRS Study

    PubMed Central

    Foy, Hannah J.; Runham, Patrick; Chapman, Peter

    2016-01-01

    Road traffic accidents consistently show a significant over-representation for young, novice and particularly male drivers. This research examines the prefrontal cortex activation of young drivers and the changes in activation associated with manipulations of mental workload and inhibitory control. It also considers the explanation that a lack of prefrontal cortex maturation is a contributing factor to the higher accident risk in this young driver population. The prefrontal cortex is associated with a number of factors including mental workload and inhibitory control, both of which are also related to road traffic accidents. This experiment used functional near infrared spectroscopy to measure prefrontal cortex activity during five simulated driving tasks: one following task and four overtaking tasks at varying traffic densities which aimed to dissociate workload and inhibitory control. Age, experience and gender were controlled for throughout the experiment. The results showed that younger drivers had reduced prefrontal cortex activity compared to older drivers. When both mental workload and inhibitory control increased prefrontal cortex activity also increased, however when inhibitory control alone increased there were no changes in activity. Along with an increase in activity during overtaking manoeuvres, these results suggest that prefrontal cortex activation is more indicative of workload in the current task. There were no differences in the number of overtakes completed by younger and older drivers but males overtook significantly more than females. We conclude that prefrontal cortex activity is associated with the mental workload required for overtaking. We additionally suggest that the reduced activation in younger drivers may be related to a lack of prefrontal maturation which could contribute to the increased crash risk seen in this population. PMID:27227990

  13. Prefrontal cortex: role in acquisition of overlapping associations and transitive inference.

    PubMed

    DeVito, Loren M; Lykken, Christine; Kanter, Benjamin R; Eichenbaum, Howard

    2010-03-01

    "Transitive inference" refers to the ability to judge from memory the relationships between indirectly related items that compose a hierarchically organized series, and this capacity is considered a fundamental feature of relational memory. Here we explored the role of the prefrontal cortex in transitive inference by examining the performance of mice with selective damage to the medial prefrontal cortex. Damage to the infralimbic and prelimbic regions resulted in significant impairment in the acquisition of a series of overlapping odor discrimination problems, such that animals with prefrontal lesions required twice as many trials to learn compared to sham-operated controls. Following eventually successful acquisition, animals with medial prefrontal lesions were severely impaired on a transitive inference probe test, whereas they performed as well as controls on a test that involved a nontransitive judgment from a novel odor pairing. These results suggest that the prefrontal cortex is part of an integral hippocampal-cortical network essential for relational memory organization.

  14. Integrating orbitofrontal cortex into prefrontal theory: common processing themes across species and subdivisions.

    PubMed

    Schoenbaum, G; Setlow, B

    2001-01-01

    Currently, many theories highlight either representational memory or rule representation as the hallmark of prefrontal function. Neurophysiological findings in the primate dorsolateral prefrontal cortex indicate that both features may characterize prefrontal processing. Neurons in the dorsolateral prefrontal cortex encode information in working memory, and this information is represented when relevant to the rules governing performance in a task. In this review, we discuss recent reports of encoding in primate and rat orbitofrontal regions indicating that these features also characterize activity in the orbitofrontal subdivision of the prefrontal cortex. These data indicate that (1) neural activity in the orbitofrontal cortex links the current incentive value of reinforcers to cues, rather than representing the physical features of cues or associated reinforcers; (2) this incentive-based information is represented in the orbitofrontal cortex when it is relevant to the rules guiding performance in a task; and (3) incentive information is also represented in the orbitofrontal cortex in working memory during delays when neither the cues nor reinforcers are present. Therefore, although the orbitofrontal cortex appears to be uniquely specialized to process incentive or motivational information, it may be integrated into a more global framework of prefrontal function characterized by representational encoding of performance-relevant information.

  15. Dissociable regulation of instrumental action within mouse prefrontal cortex.

    PubMed

    Gourley, Shannon L; Lee, Anni S; Howell, Jessica L; Pittenger, Christopher; Taylor, Jane R

    2010-11-01

    Evaluation of the behavioral 'costs', such as effort expenditure relative to the benefits of obtaining reward, is a major determinant of goal-directed action. Neuroimaging evidence suggests that the human medial orbitofrontal cortex (mOFC) is involved in this calculation and thereby guides goal-directed and choice behavior, but this region's functional significance in rodents is unknown despite extensive work characterizing the role of the lateral OFC in cue-related response inhibition processes. We first tested mice with mOFC lesions in an instrumental reversal task lacking discrete cues signaling reinforcement; here, animals were required to shift responding based on the location of the reinforced aperture within the chamber. Mice with mOFC lesions acquired the reversal but failed to inhibit responding on the previously reinforced aperture, while mice with prelimbic prefrontal cortex lesions were unaffected. When tested on a progressive ratio schedule of reinforcement, mice with prelimbic cortical lesions were unable to maintain responding, resulting in declining response levels. Mice with mOFC lesions, by contrast, escalated responding. Neither lesion affected sensitivity to satiety-specific outcome devaluation or non-reinforcement (i.e. extinction), and neither had effects when placed after animals were trained on a progressive ratio response schedule. Lesions of the ventral hippocampus, which projects to the mOFC, resulted in similar response patterns, while lateral OFC and dorsal hippocampus lesions resulted in response acquisition, though not inhibition, deficits in an instrumental reversal. Our findings thus selectively implicate the rodent mOFC in braking reinforced goal-directed action when reinforcement requires the acquisition of novel response contingencies.

  16. Tractography Activation Patterns in Dorsolateral Prefrontal Cortex Suggest Better Clinical Responses in OCD DBS

    PubMed Central

    Hartmann, Christian J.; Lujan, J. Luis; Chaturvedi, Ashutosh; Goodman, Wayne K.; Okun, Michael S.; McIntyre, Cameron C.; Haq, Ihtsham U.

    2016-01-01

    Background: Medication resistant obsessive-compulsive disorder (OCD) patients can be successfully treated with Deep Brain Stimulation (DBS) which targets the anterior limb of the internal capsule (ALIC) and the nucleus accumbens (NA). Growing evidence suggests that in patients who respond to DBS, axonal fiber bundles surrounding the electrode are activated, but it is currently unknown which discrete pathways are critical for optimal benefit. Our aim was to identify axonal pathways mediating clinical effects of ALIC-NA DBS. Methods: We created computational models of ALIC-NA DBS to simulate the activation of fiber tracts and to identify connected cerebral regions. The pattern of activated axons and their cortical targets was investigated in six OCD patients who underwent ALIC-NA DBS. Results: Modulation of the right anterior middle frontal gyrus (dorsolateral prefrontal cortex) was associated with an excellent response. In contrast, non-responders showed high activation in the orbital part of the right inferior frontal gyrus (lateral orbitofrontal cortex/anterior ventrolateral prefrontal cortex). Factor analysis followed by step-wise linear regression indicated that YBOCS improvement was inversely associated with factors that were predominantly determined by gray matter activation results. Discussion: Our findings support the hypothesis that optimal therapeutic results are associated with the activation of distinct fiber pathways. This suggests that in DBS for OCD, focused stimulation of specific fiber pathways, which would allow for stimulation with lower amplitudes, may be superior to activation of a wide array of pathways, typically associated with higher stimulation amplitudes. PMID:26834544

  17. Prefrontal Cortex Cognitive Deficits in Children Treated Early and Continuously for PKU.

    ERIC Educational Resources Information Center

    Diamond, Adele; Prevor, Meredith B.; Druin, Donald P.; Callender, Glenda

    1997-01-01

    Hypothesized that elevated ratio of phenylalanine to tyrosine in blood of children with phenylketonuria uniquely affects cognitive functions dependent on prefrontal cortex because of the special sensitivity of prefrontally projecting dopamine neurons to small decreases in tyrosine. Found that children whose phenylalanine levels were three to five…

  18. Disrupting the right prefrontal cortex alters moral judgement

    PubMed Central

    Tassy, Sébastien; Oullier, Olivier; Duclos, Yann; Coulon, Olivier; Mancini, Julien; Deruelle, Christine; Attarian, Sharam; Felician, Olivier

    2012-01-01

    Humans daily face social situations involving conflicts between competing moral decision. Despite a substantial amount of studies published over the past 10 years, the respective role of emotions and reason, their possible interaction, and their behavioural expression during moral evaluation remains an unresolved issue. A dualistic approach to moral evaluation proposes that the right dorsolateral prefrontal cortex (rDLPFc) controls emotional impulses. However, recent findings raise the possibility that the right DLPFc processes emotional information during moral decision making. We used repetitive transcranial magnetic stimulation (rTMS) to transiently disrupt rDLPFc activity before measuring decision making in the context of moral dilemmas. Results reveal an increase of the probability of utilitarian responses during objective evaluation of moral dilemmas in the rTMS group (compared to a SHAM one). This suggests that the right DLPFc function not only participates to a rational cognitive control process, but also integrates emotions generated by contextual information appraisal, which are decisive for response selection in moral judgements. PMID:21515641

  19. The hierarchical organization of the lateral prefrontal cortex

    PubMed Central

    Nee, Derek Evan; D'Esposito, Mark

    2016-01-01

    Higher-level cognition depends on the lateral prefrontal cortex (LPFC), but its functional organization has remained elusive. An influential proposal is that the LPFC is organized hierarchically whereby progressively rostral areas of the LPFC process/represent increasingly abstract information facilitating efficient and flexible cognition. However, support for this theory has been limited. Here, human fMRI data revealed rostral/caudal gradients of abstraction in the LPFC. Dynamic causal modeling revealed asymmetrical LPFC interactions indicative of hierarchical processing. Contrary to dominant assumptions, the relative strength of efferent versus afferent connections positioned mid LPFC as the apex of the hierarchy. Furthermore, cognitive demands induced connectivity modulations towards mid LPFC consistent with a role in integrating information for control operations. Moreover, the strengths of these dynamics were related to trait-measured higher-level cognitive ability. Collectively, these results suggest that the LPFC is hierarchically organized with the mid LPFC positioned to synthesize abstract and concrete information to control behavior. DOI: http://dx.doi.org/10.7554/eLife.12112.001 PMID:26999822

  20. Susceptibility to social pressure following ventromedial prefrontal cortex damage.

    PubMed

    Chen, Kuan-Hua; Rusch, Michelle L; Dawson, Jeffrey D; Rizzo, Matthew; Anderson, Steven W

    2015-11-01

    Social pressure influences human behavior including risk taking, but the psychological and neural underpinnings of this process are not well understood. We used the human lesion method to probe the role of ventromedial prefrontal cortex (vmPFC) in resisting adverse social pressure in the presence of risk. Thirty-seven participants (11 with vmPFC damage, 12 with brain damage outside the vmPFC and 14 without brain damage) were tested in driving simulator scenarios requiring left-turn decisions across oncoming traffic with varying time gaps between the oncoming vehicles. Social pressure was applied by a virtual driver who honked aggressively from behind. Participants with vmPFC damage were more likely to select smaller and potentially unsafe gaps under social pressure, while gap selection by the comparison groups did not change under social pressure. Participants with vmPFC damage also showed prolonged elevated skin conductance responses (SCR) under social pressure. Comparison groups showed similar initial elevated SCR, which then declined prior to making left-turn decisions. The findings suggest that the vmPFC plays an important role in resisting explicit and immediately present social pressure with potentially negative consequences. The vmPFC appears to contribute to the regulation of emotional responses and the modulation of decision making to optimize long-term outcomes.

  1. DHA deficiency and prefrontal cortex neuropathology in recurrent affective disorders.

    PubMed

    McNamara, Robert K

    2010-04-01

    Increasing evidence suggests that docosahexaenoic acid [DHA, 22:6(n-3)], the principal (n-3) fatty acid in brain gray matter, has neurotrophic and neuroprotective properties. Preliminary clinical evidence also suggests that the perinatal accrual, and the subsequent dietary maintenance of, cortical DHA is positively associated with cortical gray matter volumes. The pathophysiology of recurrent affective disorders, including unipolar and bipolar depression, is associated with (n-3) fatty acid deficiency, DHA deficits, impaired astrocyte mediated vascular coupling, neuronal shrinkage, and reductions in gray matter volume in the prefrontal cortex (PFC). Preclinical studies have also observed neuronal shrinkage and indices of astrocyte pathology in the DHA-deficient rat brain. Together, this body of evidence supports the proposition that DHA deficiency increases vulnerability to neuronal atrophy in the PFC of patients with affective disorders. Because projections from the PFC modulate multiple limbic structures involved in affective regulation, this represents one plausible mechanism by which (n-3) fatty acid deficiency may increase vulnerability to recurrent affective disorders.

  2. Lateral Prefrontal Cortex Contributes to Fluid Intelligence Through Multinetwork Connectivity

    PubMed Central

    Ito, Takuya; Braver, Todd S.

    2015-01-01

    Abstract Our ability to effectively adapt to novel circumstances—as measured by general fluid intelligence—has recently been tied to the global connectivity of lateral prefrontal cortex (LPFC). Global connectivity is a broad measure that summarizes both within-network connectivity and across-network connectivity. We used additional graph theoretical measures to better characterize the nature of LPFC connectivity and its relationship with fluid intelligence. We specifically hypothesized that LPFC is a connector hub with an across-network connectivity that contributes to fluid intelligence independent of within-network connectivity. We verified that LPFC was in the top 10% of brain regions in terms of across-network connectivity, suggesting it is a strong connector hub. Importantly, we found that the LPFC across-network connectivity predicted individuals' fluid intelligence and this correlation remained statistically significant when controlling for global connectivity (which includes within-network connectivity). This supports the conclusion that across-network connectivity independently contributes to the relationship between LPFC connectivity and intelligence. These results suggest that LPFC contributes to fluid intelligence by being a connector hub with a truly global multisystem connectivity throughout the brain. PMID:26165732

  3. Susceptibility to social pressure following ventromedial prefrontal cortex damage

    PubMed Central

    Rusch, Michelle L.; Dawson, Jeffrey D.; Rizzo, Matthew; Anderson, Steven W.

    2015-01-01

    Social pressure influences human behavior including risk taking, but the psychological and neural underpinnings of this process are not well understood. We used the human lesion method to probe the role of ventromedial prefrontal cortex (vmPFC) in resisting adverse social pressure in the presence of risk. Thirty-seven participants (11 with vmPFC damage, 12 with brain damage outside the vmPFC and 14 without brain damage) were tested in driving simulator scenarios requiring left-turn decisions across oncoming traffic with varying time gaps between the oncoming vehicles. Social pressure was applied by a virtual driver who honked aggressively from behind. Participants with vmPFC damage were more likely to select smaller and potentially unsafe gaps under social pressure, while gap selection by the comparison groups did not change under social pressure. Participants with vmPFC damage also showed prolonged elevated skin conductance responses (SCR) under social pressure. Comparison groups showed similar initial elevated SCR, which then declined prior to making left-turn decisions. The findings suggest that the vmPFC plays an important role in resisting explicit and immediately present social pressure with potentially negative consequences. The vmPFC appears to contribute to the regulation of emotional responses and the modulation of decision making to optimize long-term outcomes. PMID:25816815

  4. Disrupting the right prefrontal cortex alters moral judgement.

    PubMed

    Tassy, Sébastien; Oullier, Olivier; Duclos, Yann; Coulon, Olivier; Mancini, Julien; Deruelle, Christine; Attarian, Sharam; Felician, Olivier; Wicker, Bruno

    2012-03-01

    Humans daily face social situations involving conflicts between competing moral decision. Despite a substantial amount of studies published over the past 10 years, the respective role of emotions and reason, their possible interaction, and their behavioural expression during moral evaluation remains an unresolved issue. A dualistic approach to moral evaluation proposes that the right dorsolateral prefrontal cortex (rDLPFc) controls emotional impulses. However, recent findings raise the possibility that the right DLPFc processes emotional information during moral decision making. We used repetitive transcranial magnetic stimulation (rTMS) to transiently disrupt rDLPFc activity before measuring decision making in the context of moral dilemmas. Results reveal an increase of the probability of utilitarian responses during objective evaluation of moral dilemmas in the rTMS group (compared to a SHAM one). This suggests that the right DLPFc function not only participates to a rational cognitive control process, but also integrates emotions generated by contextual information appraisal, which are decisive for response selection in moral judgements.

  5. Thalamic control of layer 1 circuits in prefrontal cortex

    PubMed Central

    Cruikshank, Scott J.; Ahmed, Omar J.; Stevens, Tanya R.; Patrick, Saundra L.; Gonzalez, Amalia N.; Elmaleh, Margot; Connors, Barry W.

    2012-01-01

    Knowledge of thalamocortical (TC) processing comes mainly from studying core thalamic systems that project to middle layers of primary sensory cortices. However, most thalamic relay neurons comprise a matrix of cells that are densest in the “nonspecific” thalamic nuclei and usually target layer 1 of multiple cortical areas. A longstanding hypothesis is that matrix TC systems are crucial for regulating neocortical excitability during changing behavioral states, yet we know almost nothing about the mechanisms of such regulation. It is also unclear whether synaptic and circuit mechanisms that are well established for core sensory TC systems apply to matrix TC systems. Here we describe studies of thalamic matrix influences on mouse prefrontal cortex using optogenetic and in vitro electrophysiology techniques. Channelrhodopsin-2 was expressed in midline and paralaminar (matrix) thalamic neurons, and their layer 1-projecting TC axons were activated optically. Contrary to conventional views, we found that matrix TC projections to layer 1 could transmit relatively strong, fast, high-fidelity synaptic signals. Layer 1 TC projections preferentially drove inhibitory interneurons of layer 1, especially those of the late-spiking subtype, and often triggered feedforward inhibition in both layer 1 interneurons and pyramidal cells of layers 2/3. Responses during repetitive stimulation were far more sustained for matrix than for core sensory TC pathways. Thus, matrix TC circuits appear to be specialized for robust transmission over relatively extended periods, consistent with the sort of persistent activation observed during working memory and potentially applicable to state-dependent regulation of excitability. PMID:23223300

  6. Architecture of Explanatory Inference in the Human Prefrontal Cortex

    PubMed Central

    Barbey, Aron K.; Patterson, Richard

    2011-01-01

    Causal reasoning is a ubiquitous feature of human cognition. We continuously seek to understand, at least implicitly and often explicitly, the causal scenarios in which we live, so that we may anticipate what will come next, plan a potential response and envision its outcome, decide among possible courses of action in light of their probable outcomes, make midstream adjustments in our goal-related activities as our situation changes, and so on. A considerable body of research shows that the lateral prefrontal cortex (PFC) is crucial for causal reasoning, but also that there are significant differences in the manner in which ventrolateral PFC, dorsolateral PFC, and anterolateral PFC support causal reasoning. We propose, on the basis of research on the evolution, architecture, and functional organization of the lateral PFC, a general framework for understanding its roles in the many and varied sorts of causal reasoning carried out by human beings. Specifically, the ventrolateral PFC supports the generation of basic causal explanations and inferences; dorsolateral PFC supports the evaluation of these scenarios in light of some given normative standard (e.g., of plausibility or correctness in light of real or imagined causal interventions); and anterolateral PFC supports explanation and inference at an even higher level of complexity, coordinating the processes of generation and evaluation with further cognitive processes, and especially with computations of hedonic value and emotional implications of possible behavioral scenarios – considerations that are often critical both for understanding situations causally and for deciding about our own courses of action. PMID:21845182

  7. Regulation of prefrontal cortex myelination by the microbiota

    PubMed Central

    Hoban, A E; Stilling, R M; Ryan, F J; Shanahan, F; Dinan, T G; Claesson, M J; Clarke, G; Cryan, J F

    2016-01-01

    The prefrontal cortex (PFC) is a key region implicated in a range of neuropsychiatric disorders such as depression, schizophrenia and autism. In parallel, the role of the gut microbiota in contributing to these disorders is emerging. Germ-free (GF) animals, microbiota-deficient throughout life, have been instrumental in elucidating the role of the microbiota in many aspects of physiology, especially the role of the microbiota in anxiety-related behaviours, impaired social cognition and stress responsivity. Here we aim to further elucidate the mechanisms of the microbial influence by investigating changes in the homeostatic regulation of neuronal transcription of GF mice within the PFC using a genome-wide transcriptome profiling approach. Our results reveal a marked, concerted upregulation of genes linked to myelination and myelin plasticity. This coincided with upregulation of neural activity-induced pathways, potentially driving myelin plasticity. Subsequent investigation at the ultrastructural level demonstrated the presence of hypermyelinated axons within the PFC of GF mice. Notably, these changes in myelin and activity-related gene expression could be reversed by colonization with a conventional microbiota following weaning. In summary, we believe we demonstrate for the first time that the microbiome is necessary for appropriate and dynamic regulation of myelin-related genes with clear implications for cortical myelination at an ultrastructural level. The microbiota is therefore a potential therapeutic target for psychiatric disorders involving dynamic myelination in the PFC. PMID:27045844

  8. Behavioral control, the medial prefrontal cortex, and resilience

    PubMed Central

    Maier, Steven F.; Amat, Jose; Baratta, Michael V.; Paul, Evan; Watkins, Linda R.

    2006-01-01

    The degree of control that an organism has over a stressor potently modulates the impact of the stressor, with uncontrollable stressors producing a constellation of outcomes that do not occur if the stressor is behaviorally controllable. It has generally been assumed that this occurs because uncontrollability actively potentiates the effects of stressors. Here it will be suggested that in addition, or instead, the presence of control actively inhibits the impact of stressors. At least in part this occurs because (i) the presence of control is detected by regions of the ventral medial prefrontal cortex (mPFCv); and (ii) detection of control activates mPFCv output to stress-responsive brain stem and limbic structures that actively inhibit stress-induced activation of these structures, Furthermore, an initial experience with control over stress alters the mPFCv response to subsequent stressors so that mPFCv output is activated even if the subsequent stressor is uncontrollable, thereby making the organism resilient. The general implications of these results for understanding resilience in the face of adversity are discussed. PMID:17290798

  9. Lie-specific involvement of dorsolateral prefrontal cortex in deception.

    PubMed

    Priori, Alberto; Mameli, F; Cogiamanian, F; Marceglia, S; Tiriticco, M; Mrakic-Sposta, S; Ferrucci, R; Zago, S; Polezzi, D; Sartori, G

    2008-02-01

    Lies are intentional distortions of event knowledge. No experimental data are available on manipulating lying processes. To address this issue, we stimulated the dorsolateral prefrontal cortex (DLPFC) using transcranial direct current stimulation (tDCS). Fifteen healthy volunteers were tested before and after tDCS (anodal, cathodal, and sham). Two types of truthful (truthful selected: TS; truthful unselected: TU) and deceptive (lie selected: LS; lie unselected: LU) responses were evaluated using a computer-controlled task. Reaction times (RTs) and accuracy were collected and used as dependent variables. In the baseline task, the RT was significantly longer for lie responses than for true responses ([mean +/- standard error] 1153.4 +/- 42.0 ms vs. 1039.6 +/- 36.6 ms; F(1,14) = 27.25, P = 0.00013). At baseline, RT for selected pictures was significantly shorter than RT for unselected pictures (1051.26 +/- 39.0 ms vs. 1141.76 +/- 41.1 ms; F(1,14) = 34.85, P = 0.00004). Whereas after cathodal and sham stimulation, lie responses remained unchanged (cathodal 5.26 +/- 2.7%; sham 5.66 +/- 3.6%), after anodal tDCS, RTs significantly increased but did so only for LS responses (16.86 +/- 5.0%; P = 0.002). These findings show that manipulation of brain function with DLPFC tDCS specifically influences experimental deception and that distinctive neural mechanisms underlie different types of lies.

  10. Regulation of prefrontal cortex myelination by the microbiota.

    PubMed

    Hoban, A E; Stilling, R M; Ryan, F J; Shanahan, F; Dinan, T G; Claesson, M J; Clarke, G; Cryan, J F

    2016-04-05

    The prefrontal cortex (PFC) is a key region implicated in a range of neuropsychiatric disorders such as depression, schizophrenia and autism. In parallel, the role of the gut microbiota in contributing to these disorders is emerging. Germ-free (GF) animals, microbiota-deficient throughout life, have been instrumental in elucidating the role of the microbiota in many aspects of physiology, especially the role of the microbiota in anxiety-related behaviours, impaired social cognition and stress responsivity. Here we aim to further elucidate the mechanisms of the microbial influence by investigating changes in the homeostatic regulation of neuronal transcription of GF mice within the PFC using a genome-wide transcriptome profiling approach. Our results reveal a marked, concerted upregulation of genes linked to myelination and myelin plasticity. This coincided with upregulation of neural activity-induced pathways, potentially driving myelin plasticity. Subsequent investigation at the ultrastructural level demonstrated the presence of hypermyelinated axons within the PFC of GF mice. Notably, these changes in myelin and activity-related gene expression could be reversed by colonization with a conventional microbiota following weaning. In summary, we believe we demonstrate for the first time that the microbiome is necessary for appropriate and dynamic regulation of myelin-related genes with clear implications for cortical myelination at an ultrastructural level. The microbiota is therefore a potential therapeutic target for psychiatric disorders involving dynamic myelination in the PFC.

  11. Rapid Plasticity in the Prefrontal Cortex during Affective Associative Learning

    PubMed Central

    Rehbein, Maimu A.; Steinberg, Christian; Wessing, Ida; Pastor, María Carmen; Zwitserlood, Pienie; Keuper, Kati; Junghöfer, Markus

    2014-01-01

    MultiCS conditioning is an affective associative learning paradigm, in which affective categories consist of many similar and complex stimuli. Comparing visual processing before and after learning, recent MultiCS conditioning studies using time-sensitive magnetoencephalography (MEG) revealed enhanced activation of prefrontal cortex (PFC) regions towards emotionally paired versus neutral stimuli already during short-latency processing stages (i.e., 50 to 80 ms after stimulus onset). The present study aimed at showing that this rapid differential activation develops as a function of the acquisition and not the extinction of the emotional meaning associated with affectively paired stimuli. MEG data of a MultiCS conditioning study were analyzed with respect to rapid changes in PFC activation towards aversively (electric shock) paired and unpaired faces that occurred during the learning of stimulus-reinforcer contingencies. Analyses revealed an increased PFC activation towards paired stimuli during 50 to 80 ms already during the acquisition of contingencies, which emerged after a single pairing with the electric shock. Corresponding changes in stimulus valence could be observed in ratings of hedonic valence, although participants did not seem to be aware of contingencies. These results suggest rapid formation and access of emotional stimulus meaning in the PFC as well as a great capacity for adaptive and highly resolving learning in the brain under challenging circumstances. PMID:25333631

  12. Flexible neural mechanisms of cognitive control within human prefrontal cortex.

    PubMed

    Braver, Todd S; Paxton, Jessica L; Locke, Hannah S; Barch, Deanna M

    2009-05-01

    A major challenge in research on executive control is to reveal its functional decomposition into underlying neural mechanisms. A typical assumption is that this decomposition occurs solely through anatomically based dissociations. Here we tested an alternative hypothesis that different cognitive control processes may be implemented within the same brain regions, with fractionation and dissociation occurring on the basis of temporal dynamics. Regions within lateral prefrontal cortex (PFC) were examined that, in a prior study, exhibited contrasting temporal dynamics between older and younger adults during performance of the AX-CPT cognitive control task. The temporal dynamics in younger adults fit a proactive control pattern (primarily cue-based activation), whereas in older adults a reactive control pattern was found (primarily probe-based activation). In the current study, we found that following a period of task-strategy training, these older adults exhibited a proactive shift within a subset of the PFC regions, normalizing their activity dynamics toward young adult patterns. Conversely, under conditions of penalty-based monetary incentives, the younger adults exhibited a reactive shift some of the same regions, altering their temporal dynamics toward the older adult baseline pattern. These experimentally induced crossover patterns of temporal dynamics provide strong support for dual modes of cognitive control that can be flexibly shifted within PFC regions, via modulation of neural responses to changing task conditions or behavioral goals. PMID:19380750

  13. Lateral Prefrontal Cortex Contributes to Fluid Intelligence Through Multinetwork Connectivity.

    PubMed

    Cole, Michael W; Ito, Takuya; Braver, Todd S

    2015-10-01

    Our ability to effectively adapt to novel circumstances--as measured by general fluid intelligence--has recently been tied to the global connectivity of lateral prefrontal cortex (LPFC). Global connectivity is a broad measure that summarizes both within-network connectivity and across-network connectivity. We used additional graph theoretical measures to better characterize the nature of LPFC connectivity and its relationship with fluid intelligence. We specifically hypothesized that LPFC is a connector hub with an across-network connectivity that contributes to fluid intelligence independent of within-network connectivity. We verified that LPFC was in the top 10% of brain regions in terms of across-network connectivity, suggesting it is a strong connector hub. Importantly, we found that the LPFC across-network connectivity predicted individuals' fluid intelligence and this correlation remained statistically significant when controlling for global connectivity (which includes within-network connectivity). This supports the conclusion that across-network connectivity independently contributes to the relationship between LPFC connectivity and intelligence. These results suggest that LPFC contributes to fluid intelligence by being a connector hub with a truly global multisystem connectivity throughout the brain.

  14. Anterior medial prefrontal cortex implements social priming of mimicry.

    PubMed

    Wang, Yin; Hamilton, Antonia F de C

    2015-04-01

    The neural and cognitive mechanisms by which primed constructs can impact on social behavior are poorly understood. In the present study, we used functional magnetic resonance imaging (fMRI) to explore how scrambled sentence priming can impact on mimicry behavior. Sentences involving pro/antisocial events from a first/third-person point of view were presented in short blocks, followed by a reaction-time assessment of mimicry. Behavioral results showed that both prosociality and viewpoint impact on mimicry, and fMRI analysis showed this effect is implemented by anterior medial prefrontal cortex (amPFC). We suggest that social primes may subtly modulate processing in amPFC in a manner linked to the later behavior, and that this same region also implements the top-down control of mimicry responses. This priming may be linked to processing of self-schemas in amPFC. Our findings demonstrate how social priming can be studied with fMRI, and have important implications for our understanding of the underlying mechanisms of prime-to-behavior effects as well as for current theories in social psychology.

  15. Increased firing irregularity as an emergent property of neural-state transition in monkey prefrontal cortex.

    PubMed

    Sakamoto, Kazuhiro; Katori, Yuichi; Saito, Naohiro; Yoshida, Shun; Aihara, Kazuyuki; Mushiake, Hajime

    2013-01-01

    Flexible behaviors are organized by complex neural networks in the prefrontal cortex. Recent studies have suggested that such networks exhibit multiple dynamical states, and can switch rapidly from one state to another. In many complex systems such as the brain, the early-warning signals that may predict whether a critical threshold for state transitions is approaching are extremely difficult to detect. We hypothesized that increases in firing irregularity are a crucial measure for predicting state transitions in the underlying neuronal circuits of the prefrontal cortex. We used both experimental and theoretical approaches to test this hypothesis. Experimentally, we analyzed activities of neurons in the prefrontal cortex while monkeys performed a maze task that required them to perform actions to reach a goal. We observed increased firing irregularity before the activity changed to encode goal-to-action information. Theoretically, we constructed theoretical generic neural networks and demonstrated that changes in neuronal gain on functional connectivity resulted in a loss of stability and an altered state of the networks, accompanied by increased firing irregularity. These results suggest that assessing the temporal pattern of neuronal fluctuations provides important clues regarding the state stability of the prefrontal network. We also introduce a novel scheme that the prefrontal cortex functions in a metastable state near the critical point of bifurcation. According to this scheme, firing irregularity in the prefrontal cortex indicates that the system is about to change its state and the flow of information in a flexible manner, which is essential for executive functions. This metastable and/or critical dynamical state of the prefrontal cortex may account for distractibility and loss of flexibility in the prefrontal cortex in major mental illnesses such as schizophrenia. PMID:24349020

  16. TMS-induced neural noise in sensory cortex interferes with short-term memory storage in prefrontal cortex.

    PubMed

    Bancroft, Tyler D; Hogeveen, Jeremy; Hockley, William E; Servos, Philip

    2014-01-01

    In a previous study, Harris et al. (2002) found disruption of vibrotactile short-term memory after applying single-pulse transcranial magnetic stimulation (TMS) to primary somatosensory cortex (SI) early in the maintenance period, and suggested that this demonstrated a role for SI in vibrotactile memory storage. While such a role is compatible with recent suggestions that sensory cortex is the storage substrate for working memory, it stands in contrast to a relatively large body of evidence from human EEG and single-cell recording in primates that instead points to prefrontal cortex as the storage substrate for vibrotactile memory. In the present study, we use computational methods to demonstrate how Harris et al.'s results can be reproduced by TMS-induced activity in sensory cortex and subsequent feedforward interference with memory traces stored in prefrontal cortex, thereby reconciling discordant findings in the tactile memory literature.

  17. Somatosensory and visual deprivation each decrease the density of parvalbumin neurons and their synapse terminals in the prefrontal cortex and hippocampus of mice.

    PubMed

    Ueno, Hiroshi; Shoshi, Chikafumi; Suemitsu, Shunsuke; Usui, Shinichi; Sujiura, Hiroko; Okamoto, Motoi

    2013-01-01

    In the phenomenon known as cross-modal plasticity, the loss of one sensory system is followed by improved functioning of other intact sensory systems. MRI and functional MRI studies suggested a role of the prefrontal cortex and the temporal lobe in cross-modal plasticity. We used a mouse model to examine the effects of sensory deprivation achieved by whisker trimming and visual deprivation achieved by dark rearing in neonatal mice on the appearance of parvalbumin (PV) neurons and the formation of glutamic acid decarboxylase 67 (GAD67)-positive puncta around pyramidal neurons in the prefrontal cortex and hippocampus. Whisker trimming, but not dark rearing, decreased the density of PV neurons in the hippocampus at postnatal day 28 (P28). In the prefrontal cortex, whisker trimming and dark rearing decreased the density of PV neurons in layer 5/6 (L5/6) at P28 and in L2/3 at P56, respectively, whereas dark rearing increased the density of PV neurons in L5/6 at P56. Whisker trimming decreased the density of GAD67-positive puncta in CA1 of the hippocampus at both P28 and P56 and in L5/6 of the prefrontal cortex at P28. Dark rearing decreased the density of GAD67-positive puncta in CA1 of the hippocampus and in both L2/3 and L5/6 of the prefrontal cortex at P28, and in L2/3 of the prefrontal cortex at P56. These results demonstrate that somatosensory or visual deprivation causes changes in the PV-interneuronal network in the mouse prefrontal cortex and hippocampus. The results also suggest that the alteration of the PV-interneuronal network, especially in the prefrontal cortex, may contribute to cross-modal plasticity.

  18. Medial prefrontal cortex depressor response: role of the solitary tract nucleus in the rat.

    PubMed

    Owens, N C; Sartor, D M; Verberne, A J

    1999-01-01

    The depressor response elicited by unilateral low intensity electrical stimulation of the rat ventral medial prefrontal cortex may be mediated by a connection with the solitary tract nucleus. We tested this hypothesis by (i) examining the influence of medial prefrontal cortex stimulation on the induction of Fos-like immunoreactivity in neurons in the medulla oblongata, and (ii) by testing the effect of inhibition of solitary tract nucleus neurons on the medial prefrontal cortex stimulation-evoked depressor response. Depressor responses (>10 mmHg) were elicited by electrical stimulation of the medial prefrontal cortex every minute for 1 h ('Stimulated' group). Control animals were treated identically but did not receive electrical stimulation ('Unstimulated' group). Neurons exhibiting Fos-like immunoreactivity were abundant at the stimulation site which included the infralimbic area, and dorsal peduncular cortex. Medullary Fos-like immunoreactivity observed in the 'Stimulated' and 'Unstimulated' groups exceeded levels observed in untreated rats and was detected in the rostral, caudal and intermediate areas of the ventrolateral medulla, and the commissural, intermediate, medial and lateral regions of the solitary tract nucleus, as well as the medial vestibular nucleus, and the dorsal motor nucleus of the vagus. The number of neurons displaying Fos-like immunoreactivity in the ipsilateral solitary tract nucleus and caudal ventrolateral medulla of the 'Stimulated' group was found to be significantly elevated compared to the contralateral side (P<0.05), and the 'Unstimulated' group bilaterally. Inhibition of solitary tract nucleus neurons using bilateral injections of the GABA(A) receptor agonist muscimol (44 pmol/25 nl) inhibited the sympathetic vasomotor baroreflex and attenuated the depressor and sympathoinhibitory response to medial prefrontal cortex stimulation by 62% and 65%, respectively. These findings suggest that the projection from the medial prefrontal

  19. The role of rat dorsomedial prefrontal cortex in spatial working memory

    PubMed Central

    Horst, Nicole K.; Laubach, Mark

    2009-01-01

    We used an operant delayed spatial alternation task to examine the role of the dorsomedial prefrontal cortex (dmPFC) in spatial working memory. The task was designed to restrict movements during the delay period to minimize use of motor-mediating strategies. Inactivation of dmPFC (muscimol) resulted in increased errors and increased the temporal variability of responding. Animals did not show perseveration after errors (i.e., responding again at the erroneous location). Under control conditions, the time between spatial responses was greater and more variable prior to errors as compared to correct responses. These effects were eliminated when muscimol was infused into dorsomedial prefrontal cortex. Trial outcome also affected movement and delay times in the next trial. This effect was diminished with muscimol in dorsomedial prefrontal cortex. By contrast, when muscimol was infused in dorsal agranular insular cortex – a region that is strongly interconnected with dorsomedial prefrontal regions – there was no effect on delayed spatial alternation performance. These experiments confirm that dorsomedial prefrontal cortex is necessary for successful delayed spatial alternation and establish that there is a relationship between response time variability and trial outcome that depends on dorsomedial prefrontal function. PMID:19665526

  20. Thinning of the lateral prefrontal cortex during adolescence predicts emotion regulation in females.

    PubMed

    Vijayakumar, Nandita; Whittle, Sarah; Yücel, Murat; Dennison, Meg; Simmons, Julian; Allen, Nicholas B

    2014-11-01

    Adolescence is a crucial period for the development of adaptive emotion regulation strategies. Despite the fact that structural maturation of the prefrontal cortex during adolescence is often assumed to underlie the maturation of emotion regulation strategies, no longitudinal studies have directly assessed this relationship. This study examined whether use of cognitive reappraisal strategies during late adolescence was predicted by (i) absolute prefrontal cortical thickness during early adolescence and (ii) structural maturation of the prefrontal cortex between early and mid-adolescence. Ninety-two adolescents underwent baseline and follow-up magnetic resonance imaging scans when they were aged approximately 12 and 16 years, respectively. FreeSurfer software was used to obtain cortical thickness estimates for three prefrontal regions [anterior cingulate cortex; dorsolateral prefrontal cortex (dlPFC); ventrolateral prefrontal cortex (vlPFC)]. The Emotion Regulation Questionnaire was completed when adolescents were aged approximately 19 years. Results showed that greater cortical thinning of the left dlPFC and left vlPFC during adolescence was significantly associated with greater use of cognitive reappraisal in females, though no such relationship was evident in males. Furthermore, baseline left dlPFC thickness predicted cognitive reappraisal at trend level. These findings suggest that cortical maturation may play a role in the development of adaptive emotion regulation strategies during adolescence.

  1. Noradrenergic control of error perseveration in medial prefrontal cortex

    PubMed Central

    Caetano, Marcelo S.; Jin, Lu E.; Harenberg, Linda; Stachenfeld, Kimberly L.; Arnsten, Amy F. T.; Laubach, Mark

    2013-01-01

    The medial prefrontal cortex (mPFC) plays a key role in behavioral variability, action monitoring, and inhibitory control. The functional role of mPFC may change over the lifespan due to a number of aging-related issues, including dendritic regression, increased cAMP signaling, and reductions in the efficacy of neuromodulators to influence mPFC processing. A key neurotransmitter in mPFC is norepinephrine. Previous studies have reported aging-related changes in the sensitivity of mPFC-dependent tasks to noradrenergic agonist drugs, such as guanfacine. Here, we assessed the effects of yohimbine, an alpha-2 noradrenergic antagonist, in cohorts of younger and older rats in a classic test of spatial working memory (using a T-maze). Older rats (23–29 mo.) were impaired by a lower dose of yohimbine compared to younger animals (5–10 mo.). To determine if the drug acts on alpha-2 noradrenergic receptors in mPFC and if its effects are specific to memory-guided performance, we made infusions of yohimbine into mPFC of a cohort of young rats (6 mo.) using an operant delayed response task. The task involved testing rats in blocks of trials with memory- and stimulus-guided performance. Yohimbine selectively impaired memory-guided performance and was associated with error perseveration. Infusions of muscimol (a GABA-A agonist) at the same sites also selectively impaired memory-guided performance, but did not lead to error perseveration. Based on these results, we propose several potential interpretations for the role for the noradrenergic system in the performance of delayed response tasks, including the encoding of previous response locations, task rules (i.e., using a win-stay strategy instead of a win-shift strategy), and performance monitoring (e.g., prospective encoding of outcomes). PMID:23293590

  2. Involvement of the prefrontal cortex in problem solving.

    PubMed

    Mushiake, Hajime; Sakamoto, Kazuhiro; Saito, Naohiro; Inui, Toshiro; Aihara, Kazuyuki; Tanji, Jun

    2009-01-01

    To achieve a behavioral goal in a complex environment, such as problem-solving situations, we must plan multiple steps of action. On planning a series of actions, we anticipate future events that will occur as a result of each action, and mentally organize the temporal sequence of events. To investigate the involvement of the lateral prefrontal cortex (PFC) in such multistep planning, we examined neuronal activity in the PFC while monkeys performed a maze path-finding task. In this task, we set monkeys the job of capturing a goal in the maze by moving a cursor on the screen. Cursor movement was linked to movements of each wrist. To dissociate the outcomes of the intended action from the motor commands, we trained the monkeys to use three different hand-cursor assignments. We found that monkeys were able to perform this task in a flexible manner. This report first introduces a problem-solving framework for studying the function of the PFC, from the view point of cognitive science. Then, this chapter will cover the neuronal representation of a series of actions, goal subgoal transformation, and synchrony of PFC neurons. We reported PFC neurons reflected final goals and immediate goals during the preparatory period. We also found some PFC neurons reflected each of all forthcoming steps of actions during the preparatory period and increased their activity step by step during the execution period. Recently, we found that the transient increase in synchronous activity of PFC neurons was involved in goal subgoal transformations. Our data suggest that the PFC is involved primarily in the dynamic representation of multiple future events that occur as a consequence of behavioral actions in problem-solving situations. PMID:19607957

  3. Prefrontal cortex stroke induces delayed impairment in spatial memory.

    PubMed

    Zhou, Lisa Y Y; Wright, Tim E; Clarkson, Andrew N

    2016-01-01

    Stroke is the leading cause of long-term disability. Little is known about the effects of stroke on cognitive deficits. The subtle nature of cognition and its respective domains in areas such as working memory and attention can make this difficult to diagnose and treat. We aimed to establish a model of focal ischemia that targets the prefrontal cortex (PFC) and induce memory impairments. Stroke and sham mice were assessed at one and four-weeks post-stroke on various tests: open-field task to assess activity; grid-walk and cylinder task to assess motor impairments; elevated plus maze to assess anxiety; novel-object and object-location recognition tasks to assess memory impairment. Stroke mice in the open-field showed a small increase in activity with no effects on gross motor tasks or anxiety levels (P ≥ 0.05) at one and four-weeks post-stroke. Assessment of stroke mice on the novel object task showed no differences at either one or four-weeks compared to sham mice (P ≥ 0.05). However, assessment of stroke mice on the object-location recognition task revealed a significant (P ≥ 0.05) impairment in spatial memory by four-weeks compared to controls. Further, we show that stroke results in a small decrease in volume of the medial dorsal nucleus of the thalamus (P ≥ 0.05). This is the first evidence that demonstrates stroke to the PFC results in delayed onset impairment in spatial memory, similar to findings in human epidemiological data. We suggest that this model may be a useful tool in assessing potential rehabilitative/cognitive therapies after stroke.

  4. Ventromedial Prefrontal Cortex Thinning in Preschool-Onset Depression

    PubMed Central

    Marrus, Natasha; Belden, Andrew; Nishino, Tomoyuki; Handler, Ted; Ratnanather, J Tilak; Miller, Michael; Barch, Deanna; Luby, Joan; Botteron, Kelly

    2016-01-01

    Background The ventromedial prefrontal cortex (VMPFC) is a key center of affect regulation and processing, fundamental aspects of emotional competence which are disrupted in mood disorders. Structural alterations of VMPFC have consistently been observed in adult major depression and are associated with depression severity, yet it is unknown whether young children with depression demonstrate similar abnormalities. We investigated cortical thickness differences in the VMPFC of children with a history of preschool-onset depression (PO-MDD). Methods Participants in a longitudinal study of PO-MDD underwent structural brain imaging between the ages of 7 to 12 years. Using local cortical distance metrics, cortical thickness of the VMPFC was compared in children with and without a history of PO-MDD. Results Children previously diagnosed with PO-MDD (n=34) had significantly thinner right VMPFC versus children without a history of PO-MDD [(n=95); F(1,126)=5.97, p=0.016)]. This effect was specific to children with a history of PO-MDD vs. other psychiatric conditions and was independent of comorbid anxiety or externalizing disorders. Decreases in right VMPFC thickness were predicted by preschool depressive symptoms independent of depressive symptoms in school age. Limitations Results are cross-sectional and cannot distinguish whether thinner right VMPFC represents a vulnerability marker of MDD, consequence of MDD, or marker of remitted MDD. Longitudinal imaging is needed to contextualize how this difference relates to normative VMPFC structural development. Conclusions Onset of depression at preschool age was associated with decreased cortical thickness of right VMPFC. This finding implicates the VMPFC in depression from very early stages of brain development. PMID:25881284

  5. Prefrontal cortex neurons reflecting reports of a visual illusion.

    PubMed

    Lebedev, M A; Douglass, D K; Moody, S L; Wise, S P

    2001-04-01

    When a small, focally attended visual stimulus and a larger background frame shift location at the same time, the frame's new location can affect spatial perception. For horizontal displacements on the order of 1--2 degrees, when the frame moves more than the attended stimulus, human subjects may perceive that the attended stimulus has shifted to the right or left when it has not done so. However, that misapprehension does not disable accurate eye movements to the same stimulus. We trained a rhesus monkey to report the direction that an attended stimulus had shifted by making an eye movement to one of the two report targets. Then, using conditions that induce displacement illusions in human subjects, we tested the hypothesis that neuronal activity in the prefrontal cortex (PF) would reflect the displacement directions reported by the monkey, even when they conflicted with the actual displacement, if any, of the attended stimulus. We also predicted that these cells would have directional selectivity for movements used to make those reports, but not for similar eye movements made to fixate the attended stimulus. A population of PF neurons showed the predicted properties, which could not be accounted for on the basis of either eye-movement or frame-shift parameters. This activity, termed report-related, began approximately 150 ms before the onset of the reporting saccade. Another population of PF neurons showed greater directional selectivity for saccadic eye movements made to fixate the attended stimulus than for similar saccades made to report its displacement. In view of the evidence that PF functions to integrate inputs and actions occurring at different times and places, the present findings support the idea that such integration involves movements to acquire response targets, directly, as well as actions guided by less direct response rules, such as perceptual reports. PMID:11287464

  6. Differential Effects of Insular and Ventromedial Prefrontal Cortex Lesions on Risky Decision-Making

    ERIC Educational Resources Information Center

    Clark, L.; Bechara, A.; Damasio, H.; Aitken, M. R. F.; Sahakian, B. J.; Robbins, T. W.

    2008-01-01

    The ventromedial prefrontal cortex (vmPFC) and insular cortex are implicated in distributed neural circuitry that supports emotional decision-making. Previous studies of patients with vmPFC lesions have focused primarily on decision-making under uncertainty, when outcome probabilities are ambiguous (e.g. the Iowa Gambling Task). It remains unclear…

  7. Increased GABA Levels in Medial Prefrontal Cortex of Young Adults with Narcolepsy

    PubMed Central

    Kim, Seog Ju; Lyoo, In Kyoon; Lee, Yujin S.; Sung, Young Hoon; Kim, Hengjun J.; Kim, Jihyun H.; Kim, Kye Hyun; Jeong, Do-Un

    2008-01-01

    Study Objectives: To explore absolute concentrations of brain metabolites including gamma amino-butyric acid (GABA) in the medial prefrontal cortex and basal ganglia of young adults with narcolepsy. Design: Proton magnetic resonance (MR) spectroscopy centered on the medial prefrontal cortex and the basal ganglia was acquired. The absolute concentrations of brain metabolites including GABA and glutamate were assessed and compared between narcoleptic patients and healthy comparison subjects. Setting: Sleep and Chronobiology Center at Seoul National University Hospital; A high strength 3.0 Tesla MR scanner in the Department of Radiology at Seoul National University Hospital. Patients or Participants: Seventeen young adults with a sole diagnosis of HLA DQB1 0602 positive narcolepsy with cataplexy (25.1 ± 4.6 years old) and 17 healthy comparison subjects (26.8 ± 4.8 years old). Interventions: N/A. Measurements and Results: Relative to comparison subjects, narcoleptic patients had higher GABA concentration in the medial prefrontal cortex (t = 4.10, P <0.001). Narcoleptic patients with nocturnal sleep disturbance had higher GABA concentration in the medial prefrontal cortex than those without nocturnal sleep disturbance (t = 2.45, P= 0.03), but had lower GABA concentration than comparison subjects (t = 2.30, P = 0.03). Conclusions: The current study reports that young adults with narcolepsy had a higher GABA concentration in the medial prefrontal cortex, which was more prominent in patients without nocturnal sleep disturbance. Our findings suggest that the medial prefrontal GABA level may be increased in narcolepsy, and the increased medial prefrontal GABA might be a compensatory mechanism to reduce nocturnal sleep disturbances in narcolepsy. Citation: Kim SJ; Lyoo IK; Lee YS; Sung YH; Kim HJ; Kim JH; Kim KH; Jeong DU. Increased GABA levels in medial prefrontal cortex of young adults with narcolepsy. SLEEP 2008;31(3):342-347. PMID:18363310

  8. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise

    PubMed Central

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G.; Heintz, Ryan; Holschneider, Daniel P.

    2015-01-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson’s disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4 weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [14C]-iodoantipyrine 1 week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function. PMID:25747184

  9. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise.

    PubMed

    Wang, Zhuo; Guo, Yumei; Myers, Kalisa G; Heintz, Ryan; Holschneider, Daniel P

    2015-05-01

    Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function.

  10. Representation of remembered stimuli and task information in the monkey dorsolateral prefrontal and posterior parietal cortex.

    PubMed

    Qi, Xue-Lian; Elworthy, Anthony C; Lambert, Bryce C; Constantinidis, Christos

    2015-01-01

    Both dorsolateral prefrontal and posterior parietal cortex have been implicated in spatial working memory and representation of task information. Prior experiments training animals to recall the first of a sequence of stimuli and examining the effect of subsequent distractors have identified increased ability of the prefrontal cortex to represent remembered stimuli and filter distractors. It is unclear, however, if this prefrontal functional specialization extends to stimuli appearing earlier in a sequence, when subjects are cued to remember subsequent ones. It is also not known how task information interacts with persistent activity representing remembered stimuli and distractors in the two areas. To address these questions, we trained monkeys to remember either the first or second of two stimuli presented in sequence and recorded neuronal activity from the posterior parietal and dorsolateral prefrontal cortex. The prefrontal cortex was better able to represent the actively remembered stimulus, whereas the posterior parietal cortex was more modulated by distractors; however, task effects interfered with this representation. As a result, large proportions of neurons with persistent activity and task effects exhibited a preference for a stimulus when it appeared as a distractor in both areas. Additionally, prefrontal neurons were modulated to a greater extent by task factors during the delay period of the task. The results indicate that the prefrontal cortex is better able than the posterior parietal cortex to differentiate between distractors and actively remembered stimuli and is more modulated by the task; however, this relative preference is highly context dependent and depends on the specific requirements of the task. PMID:25298389

  11. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex

    PubMed Central

    Romanski, L. M.; Tian, B.; Fritz, J.; Mishkin, M.; Goldman-Rakic, P. S.; Rauschecker, J. P.

    2009-01-01

    ‘What’ and ‘where’ visual streams define ventrolateral object and dorsolateral spatial processing domains in the prefrontal cortex of nonhuman primates. We looked for similar streams for auditory–prefrontal connections in rhesus macaques by combining microelectrode recording with anatomical tract-tracing. Injection of multiple tracers into physiologically mapped regions AL, ML and CL of the auditory belt cortex revealed that anterior belt cortex was reciprocally connected with the frontal pole (area 10), rostral principal sulcus (area 46) and ventral prefrontal regions (areas 12 and 45), whereas the caudal belt was mainly connected with the caudal principal sulcus (area 46) and frontal eye fields (area 8a). Thus separate auditory streams originate in caudal and rostral auditory cortex and target spatial and non-spatial domains of the frontal lobe, respectively. PMID:10570492

  12. Hemodynamic responses on prefrontal cortex related to meditation and attentional task

    PubMed Central

    Deepeshwar, Singh; Vinchurkar, Suhas Ashok; Visweswaraiah, Naveen Kalkuni; Nagendra, Hongasandra RamaRao

    2015-01-01

    Recent neuroimaging studies state that meditation increases regional cerebral blood flow (rCBF) in the prefrontal cortex (PFC). The present study employed functional near infrared spectroscopy (fNIRS) to evaluate the relative hemodynamic changes in PFC during a cognitive task. Twenty-two healthy male volunteers with ages between 18 and 30 years (group mean age ± SD; 22.9 ± 4.6 years) performed a color-word stroop task before and after 20 min of meditation and random thinking. Repeated measures ANOVA was performed followed by a post hoc analysis with Bonferroni adjustment for multiple comparisons between the mean values of “During” and “Post” with “Pre” state. During meditation there was an increased in oxy-hemoglobin (ΔHbO) and total hemoglobin (ΔTHC) concentration with reduced deoxy-hemoglobin (ΔHbR) concentration over the right prefrontal cortex (rPFC), whereas in random thinking there was increased ΔHbR with reduced total hemoglobin concentration on the rPFC. The mean reaction time (RT) was shorter during stroop color word task with concomitant reduction in ΔTHC after meditation, suggestive of improved performance and efficiency in task related to attention. Our findings demonstrated that meditation increased cerebral oxygenation and enhanced performance, which was associated with activation of the PFC. PMID:25741245

  13. Cognitive and behavioural deficits associated with the orbitomedial prefrontal cortex in amyotrophic lateral sclerosis.

    PubMed

    Meier, Sandra L; Charleston, Alison J; Tippett, Lynette J

    2010-11-01

    Amyotrophic lateral sclerosis, a progressive disease affecting motor neurons, may variably affect cognition and behaviour. We tested the hypothesis that functions associated with orbitomedial prefrontal cortex are affected by evaluating the behavioural and cognitive performance of 18 participants with amyotrophic lateral sclerosis without dementia and 18 healthy, matched controls. We measured Theory of Mind (Faux Pas Task), emotional prosody recognition (Aprosodia Battery), reversal of behaviour in response to changes in reward (Probabilistic Reversal Learning Task), decision making without risk (Holiday Apartment Task) and aberrant behaviour (Neuropsychiatric Inventory). We also assessed dorsolateral prefrontal function, using verbal and written fluency and planning (One-touch Stockings of Cambridge), to determine whether impairments in tasks sensitive to these two prefrontal regions co-occur. The patient group was significantly impaired at identifying social faux pas, recognizing emotions and decision-making, indicating mild, but consistent impairment on most measures sensitive to orbitomedial prefrontal cortex. Significant levels of aberrant behaviour were present in 50% of patients. Patients were also impaired on verbal fluency and planning. Individual subject analyses involved computing classical dissociations between tasks sensitive to different prefrontal regions. These revealed heterogeneous patterns of impaired and spared cognitive abilities: 33% of participants had classical dissociations involving orbitomedial prefrontal tasks, 17% had classical dissociations involving dorsolateral prefrontal tasks, 22% had classical dissociations between tasks of both regions, and 28% had no classical dissociations. These data indicate subtle changes in behaviour, emotional processing, decision-making and altered social awareness, associated with orbitomedial prefrontal cortex, may be present in a significant proportion of individuals with amyotrophic lateral sclerosis

  14. Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex.

    PubMed

    Swaminathan, Sruthi K; Freedman, David J

    2012-02-01

    The ability to recognize the behavioral relevance, or category membership, of sensory stimuli is critical for interpreting the meaning of events in our environment. Neurophysiological studies of visual categorization have found categorical representations of stimuli in prefrontal cortex (PFC), an area that is closely associated with cognitive and executive functions. Recent studies have also identified neuronal category signals in parietal areas that are typically associated with visual-spatial processing. It has been proposed that category-related signals in parietal cortex and other visual areas may result from 'top-down' feedback from PFC. We directly compared neuronal activity in the lateral intraparietal (LIP) area and PFC in monkeys performing a visual motion categorization task. We found that LIP showed stronger, more reliable and shorter latency category signals than PFC. These findings suggest that LIP is strongly involved in visual categorization and argue against the idea that parietal category signals arise as a result of feedback from PFC during this task. PMID:22246435

  15. Effects of Mandibular Retrusive Deviation on Prefrontal Cortex Activation: A Functional Near-Infrared Spectroscopy Study

    PubMed Central

    Otsuka, Takero; Yamasaki, Ryuichi; Shimazaki, Tateshi; Sasaguri, Kenichi; Kawata, Toshitsugu

    2015-01-01

    The objective of this study was to evaluate occlusal condition by assessing brain activity in the prefrontal cortex, which is associated with emotion. Functional near-infrared spectroscopy (fNIRS) was used to detect changes in cerebral blood flow in the prefrontal cortex of 12 healthy volunteers. The malocclusion model was a custom-made splint that forced the mandible into retrusion. A splint with no modification was used as a control. The cortical activation during clenching was compared between the retrusive position condition and the control condition. A visual analog scale score for discomfort was also obtained during clenching and used to evaluate the interaction between fNIRS data and psychiatric changes. Activation of the prefrontal cortex was significantly greater during clenching in the mandibular retrusive condition than during clenching in the control condition. Furthermore, Spearman rank-correlation coefficient revealed a parallel relation between prefrontal cortex activation and visual analog scale score for discomfort. These results indicate that fNIRS can be used to objectively evaluate the occlusal condition by evaluating activity in the prefrontal cortex. PMID:26075235

  16. Oxidant/antioxidant effects of chronic exposure to predator odor in prefrontal cortex, amygdala, and hypothalamus.

    PubMed

    Mejia-Carmona, G E; Gosselink, K L; Pérez-Ishiwara, G; Martínez-Martínez, A

    2015-08-01

    The incidence of anxiety-related diseases is increasing these days, hence there is a need to understand the mechanisms that underlie its nature and consequences. It is known that limbic structures, mainly the prefrontal cortex and amygdala, are involved in the processing of anxiety, and that projections from prefrontal cortex and amygdala can induce activity of the hypothalamic-pituitary-adrenal axis with consequent cardiovascular changes, increase in oxygen consumption, and ROS production. The compensatory reaction can include increased antioxidant enzymes activities, overexpression of antioxidant enzymes, and genetic shifts that could include the activation of antioxidant genes. The main objective of this study was to evaluate the oxidant/antioxidant effect that chronic anxiogenic stress exposure can have in prefrontal cortex, amygdala, and hypothalamus by exposition to predator odor. Results showed (a) sensitization of the HPA axis response, (b) an enzymatic phase 1 and 2 antioxidant response to oxidative stress in amygdala, (c) an antioxidant stability without elevation of oxidative markers in prefrontal cortex, (d) an elevation in phase 1 antioxidant response in hypothalamus. Chronic exposure to predator odor has an impact in the metabolic REDOX state in amygdala, prefrontal cortex, and hypothalamus, with oxidative stress being prevalent in amygdala as this is the principal structure responsible for the management of anxiety.

  17. Study the left prefrontal cortex activity of Chinese children with dyslexia in phonological processing by NIRS

    NASA Astrophysics Data System (ADS)

    Zhang, Zhili; Li, Ting; Zheng, Yi; Luo, Qingming; Song, Ranran; Gong, Hui

    2006-02-01

    Developmental dyslexia, a kind of prevalent psychological disease, represents that dyslexic children have unexpected difficulties in phonological processing and recognition test of Chinese characters. Some functional imaging technologies, such as fMRI and PET, have been used to study the brain activities of the children with dyslexia whose first language is English. In this paper, a portable, 16-channel, continuous-wave (CW) NIRS instrument was used to monitor the concentration changes of each hemoglobin species when Chinese children did the task of phonological processing and recognition test. The NIRS recorded the hemodynamic changes in the left prefrontal cortex of the children. 20 dyslexia-reading children (10~12 years old) and 20 normal-reading children took part in the phonological processing of Chinese characters including the phonological awareness section and the phonological decoding section. During the phonological awareness section, the changed concentration of deoxy-hemoglobin in dyslexia-reading children were significantly higher (p<0.05) than normal-reading children in the left ventrolateral prefrontal cortex (VLPFC). While in the phonological decoding section, both normal and dyslexic reading children had more activity in the left VLPFC, but only normal-reading children had activity in the left middorsal prefrontal cortex. In conclusion, both dyslexic and normal-reading children have activity in the left prefrontal cortex, but the degree and the areas of the prefrontal cortex activity are different between them when they did phonological processing.

  18. Enhancing vigilance in operators with prefrontal cortex transcranial direct current stimulation (tDCS).

    PubMed

    Nelson, Jeremy T; McKinley, R Andy; Golob, Edward J; Warm, Joel S; Parasuraman, Raja

    2014-01-15

    Sustained attention, often referred to as vigilance in humans, is the ability to maintain goal-directed behavior for extended periods of time and respond to intermittent targets in the environment. With greater time-on-task the ability to detect targets decreases and reaction time increases-a phenomenon termed the vigilance decrement. The purpose of this study was to examine the role of dorsolateral prefrontal cortex in the vigilance decrement. Subjects (n=19) received prefrontal transcranial direct current stimulation (tDCS) at one of two different time points during a vigilance task (early or late). The impact of tDCS was examined using measures of behavior, hemispheric blood flow velocity, and regional blood oxygenation relative to sham stimulation. In the sham condition greater time-on-task was accompanied by fewer target detections and slower reaction times, indicating a vigilance decrement, and decreased blood flow velocity. tDCS significantly altered baseline task-induced physiologic and behavioral changes, dependent on the time of stimulation administration and electrode configuration (determining polarity of stimulation). Compared to the sham condition, with more time-on-task blood flow velocity decreased less and cerebral oxygenation increased more in the tDCS condition. Behavioral measures showed a significant improvement in target detection performance with tDCS compared to the sham stimulation. Signal detection analysis revealed a significant change in operator discriminability and response bias with increased time-on-task, as well as interactions between time of stimulation administration and electrode configuration. Current density modeling of tDCS showed high densities in the medial prefrontal cortex and anterior cingulate cortex. These findings confirm that cerebral hemodynamic measures provide an index of resource utilization and point to the central role of the frontal cortex in vigilance. Further, they suggest that modulation of the frontal

  19. Interactions Between the Prefrontal Cortex and Amygdala During Delay Discounting and Reversal

    PubMed Central

    Churchwell, John C.; Morris, Andrea M.; Heurtelou, Nila M.; Kesner, Raymond P.

    2010-01-01

    Interactions between the prefrontal cortex and amygdala are thought to be critical for reward anticipation. Alterations in reward anticipation that lead to an inability to wait for rewards or a diminished capacity to change behavior when doing so would be optimal is often termed impulsivity and compulsivity, respectively. Distinct regions of the prefrontal cortex may support decreased impulsivity through self-control and decreased compulsivity through flexibility. However, both self-control and flexibility appear to involve the amygdala. Using a delay discounting paradigm, the present investigation found that inactivation and disconnection of the medial prefrontal cortex and basolateral amygdala led rats to become more impulsive by affecting preference for smaller immediate over larger delayed rewards. Conversely, inactivation and disconnection of the orbitofrontal cortex and amygdala led rats to become more compulsive as demonstrated by an inability to flexibly reverse stimulus reward relationships in an odor reversal task. The present findings support a double dissociation between orbitofrontal cortex - amygdala interactions for odor reversal and medial prefrontal cortex - amygdala interactions for delay discounting. PMID:20001103

  20. Making sense: Dopamine activates conscious self-monitoring through medial prefrontal cortex.

    PubMed

    Joensson, Morten; Thomsen, Kristine Rømer; Andersen, Lau M; Gross, Joachim; Mouridsen, Kim; Sandberg, Kristian; Østergaard, Leif; Lou, Hans C

    2015-05-01

    When experiences become meaningful to the self, they are linked to synchronous activity in a paralimbic network of self-awareness and dopaminergic activity. This network includes medial prefrontal and medial parietal/posterior cingulate cortices, where transcranial magnetic stimulation may transiently impair self-awareness. Conversely, we hypothesize that dopaminergic stimulation may improve self-awareness and metacognition (i.e., the ability of the brain to consciously monitor its own cognitive processes). Here, we demonstrate improved noetic (conscious) metacognition by oral administration of 100 mg dopamine in minimal self-awareness. In a separate experiment with extended self-awareness dopamine improved the retrieval accuracy of memories of self-judgment (autonoetic, i.e., explicitly self-conscious) metacognition. Concomitantly, magnetoencephalography (MEG) showed increased amplitudes of oscillations (power) preferentially in the medial prefrontal cortex. Given that electromagnetic activity in this region is instrumental in self-awareness, this explains the specific effect of dopamine on explicit self-awareness and autonoetic metacognition.

  1. Making sense: Dopamine activates conscious self‐monitoring through medial prefrontal cortex

    PubMed Central

    Joensson, Morten; Thomsen, Kristine Rømer; Andersen, Lau M.; Gross, Joachim; Mouridsen, Kim; Sandberg, Kristian; Østergaard, Leif

    2015-01-01

    Abstract When experiences become meaningful to the self, they are linked to synchronous activity in a paralimbic network of self‐awareness and dopaminergic activity. This network includes medial prefrontal and medial parietal/posterior cingulate cortices, where transcranial magnetic stimulation may transiently impair self‐awareness. Conversely, we hypothesize that dopaminergic stimulation may improve self‐awareness and metacognition (i.e., the ability of the brain to consciously monitor its own cognitive processes). Here, we demonstrate improved noetic (conscious) metacognition by oral administration of 100 mg dopamine in minimal self‐awareness. In a separate experiment with extended self‐awareness dopamine improved the retrieval accuracy of memories of self‐judgment (autonoetic, i.e., explicitly self‐conscious) metacognition. Concomitantly, magnetoencephalography (MEG) showed increased amplitudes of oscillations (power) preferentially in the medial prefrontal cortex. Given that electromagnetic activity in this region is instrumental in self‐awareness, this explains the specific effect of dopamine on explicit self‐awareness and autonoetic metacognition. Hum Brain Mapp 36:1866–1877, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.. PMID:25627861

  2. Magnetic Field Homogenization of the Human Prefrontal Cortex with a Set of Localized Electrical Coils

    PubMed Central

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.

    2011-01-01

    The prefrontal cortex is a common target brain structure in psychiatry and neuroscience due to its role in working memory and cognitive control. Large differences in magnetic susceptibility between the air-filled sinuses and the tissue/bone in the frontal part of the human head cause a strong and highly localized magnetic field focus in the prefrontal cortex. As a result, image distortion and signal dropout are observed in MR imaging. A set of external, electrical coils is presented that provides localized and high amplitude shim fields in the prefrontal cortex with minimum impact on the rest of the brain when combined with regular zero-to-second order spherical harmonics shimming. The experimental realization of the new shim method strongly minimized or even eliminated signal dropout in gradient-echo images acquired at settings typically used in functional magnetic resonance at 4 Tesla. PMID:19918909

  3. Impairment of learning and memory after photothrombosis of the prefrontal cortex in rat brain: effects of Noopept.

    PubMed

    Romanova, G A; Shakova, F M; Gudasheva, T A; Ostrovskaya, R U

    2002-12-01

    Experiments were performed on rats trained conditioned passive avoidance response. Acquisition and retention of memory traces were impaired after photothrombosis of the prefrontal cortex. The acyl-prolyl-containing dipeptide Noopept facilitated retention and retrieval of a conditioned passive avoidance response, normalized learning capacity in animals with ischemic damage to the cerebral cortex, and promoted finish training in rats with hereditary learning deficit. These results show that Noopept improves all three stages of memory. It should be emphasized that the effect of Noopept was most pronounced in animals with impaired mnesic function. PMID:12660828

  4. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity.

    PubMed

    Doll, Anselm; Hölzel, Britta K; Mulej Bratec, Satja; Boucard, Christine C; Xie, Xiyao; Wohlschläger, Afra M; Sorg, Christian

    2016-07-01

    Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice. PMID:27033686

  5. Recency gets larger as lesions move from anterior to posterior locations within the ventromedial prefrontal cortex.

    PubMed

    Hochman, Guy; Yechiam, Eldad; Bechara, Antoine

    2010-11-12

    In the past two decades neuroimaging research has substantiated the important role of the prefrontal cortex (PFC) in decision-making. In the current study, we use the complementary lesion based approach to deepen our knowledge concerning the specific cognitive mechanisms modulated by prefrontal activity. Specifically, we assessed the brain substrates implicated in two decision making dimensions in a sample of prefrontal cortex patients: (a) the tendency to differently weigh recent compared to past experience; and (b) the tendency to differently weigh gains compared to losses. The participants performed the Iowa Gambling Task, a complex experience-based decision-making task, which was analyzed with a formal cognitive model (the Expectancy-Valance model). The results indicated that decisions become influenced by more recent, as opposed to older, events when the damage reaches the posterior sectors of the ventromedial prefrontal cortex (VMPC). Furthermore, the degree of this recency deficit was related to the size of the lesion. These results suggest that the posterior area of the prefrontal cortex directly modulates the capacity to use time-delayed information. In contrast, we did not find similar modulation for the sensitivity to gains versus losses. PMID:20412820

  6. Recency gets larger as lesions move from anterior to posterior locations within the ventromedial prefrontal cortex.

    PubMed

    Hochman, Guy; Yechiam, Eldad; Bechara, Antoine

    2010-11-12

    In the past two decades neuroimaging research has substantiated the important role of the prefrontal cortex (PFC) in decision-making. In the current study, we use the complementary lesion based approach to deepen our knowledge concerning the specific cognitive mechanisms modulated by prefrontal activity. Specifically, we assessed the brain substrates implicated in two decision making dimensions in a sample of prefrontal cortex patients: (a) the tendency to differently weigh recent compared to past experience; and (b) the tendency to differently weigh gains compared to losses. The participants performed the Iowa Gambling Task, a complex experience-based decision-making task, which was analyzed with a formal cognitive model (the Expectancy-Valance model). The results indicated that decisions become influenced by more recent, as opposed to older, events when the damage reaches the posterior sectors of the ventromedial prefrontal cortex (VMPC). Furthermore, the degree of this recency deficit was related to the size of the lesion. These results suggest that the posterior area of the prefrontal cortex directly modulates the capacity to use time-delayed information. In contrast, we did not find similar modulation for the sensitivity to gains versus losses.

  7. Biological and social influences on cognitive control processes dependent on prefrontal cortex.

    PubMed

    Diamond, Adele

    2011-01-01

    Cognitive control functions ("executive functions" [EFs] such as attentional control, self-regulation, working memory, and inhibition) that depend on prefrontal cortex (PFC) are critical for success in school and in life. Many children begin school lacking needed EF skills. Disturbances in EFs occur in many mental health disorders, such as ADHD and depression. This chapter addresses modulation of EFs by biology (genes and neurochemistry) and the environment (including school programs) with implications for clinical disorders and for education. Unusual properties of the prefrontal dopamine system contribute to PFC's vulnerability to environmental and genetic variations that have little effect elsewhere. EFs depend on a late-maturing brain region (PFC), yet they can be improved even in infants and preschoolers, without specialists or fancy equipment. Research shows that activities often squeezed out of school curricula (play, physical education, and the arts) rather than detracting from academic achievement help improve EFs and enhance academic outcomes. Such practices may also head off problems before they lead to diagnoses of EF impairments, including ADHD. Many issues are not simply education issues or health issues; they are both. PMID:21489397

  8. Mechanisms of reinforcement learning and decision making in the primate dorsolateral prefrontal cortex.

    PubMed

    Lee, Daeyeol; Seo, Hyojung

    2007-05-01

    To a first approximation, decision making is a process of optimization in which the decision maker tries to maximize the desirability of the outcomes resulting from chosen actions. Estimates of desirability are referred to as utilities or value functions, and they must be continually revised through experience according to the discrepancies between the predicted and obtained rewards. Reinforcement learning theory prescribes various algorithms for updating value functions and can parsimoniously account for the results of numerous behavioral, neurophysiological, and imaging studies in humans and other primates. In this article, we first discuss relative merits of various decision-making tasks used in neurophysiological studies of decision making in nonhuman primates. We then focus on how reinforcement learning theory can shed new light on the function of the primate dorsolateral prefrontal cortex. Similar to the findings from other brain areas, such as cingulate cortex and basal ganglia, activity in the dorsolateral prefrontal cortex often signals the value of expected reward and actual outcome. Thus, the dorsolateral prefrontal cortex is likely to be a part of the broader network involved in adaptive decision making. In addition, reward-related activity in the dorsolateral prefrontal cortex is influenced by the animal's choices and other contextual information, and therefore may provide a neural substrate by which the animals can flexibly modify their decision-making strategies according to the demands of specific tasks.

  9. Transcranial direct current stimulation over prefrontal cortex diminishes degree of risk aversion.

    PubMed

    Ye, Hang; Chen, Shu; Huang, Daqiang; Wang, Siqi; Jia, Yongmin; Luo, Jun

    2015-06-26

    Previous studies have established that transcranial direct current stimulation (tDCS) is a powerful technique for manipulating the activity of the human cerebral cortex. Many studies have found that weighing the risks and benefits in decision-making involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC). We studied whether participants change the balance of risky and safe responses after receiving tDCS applied over the right and left prefrontal cortex. A total of 60 healthy volunteers performed a risk task while they received either anodal tDCS over the right prefrontal cortex, with cathodal over the left; anodal tDCS over the left prefrontal cortex, with cathodal over the right; or sham stimulation. The participants tended to choose less risky options after receiving sham stimulation, demonstrating that the task might be highly influenced by the "wealth effect". There was no statistically significant change after either right anodal/left cathodal or left anodal/right cathodal tDCS, indicating that both types of tDCS impact the participants' degrees of risk aversion, and therefore, counteract the wealth effect. We also found gender differences in the participants' choices. These findings extend the notion that DLPFC activity is critical for risk decision-making. Application of tDCS to the right/left DLPFC may impact a person's attitude to taking risks.

  10. Transcranial direct current stimulation over prefrontal cortex diminishes degree of risk aversion.

    PubMed

    Ye, Hang; Chen, Shu; Huang, Daqiang; Wang, Siqi; Jia, Yongmin; Luo, Jun

    2015-06-26

    Previous studies have established that transcranial direct current stimulation (tDCS) is a powerful technique for manipulating the activity of the human cerebral cortex. Many studies have found that weighing the risks and benefits in decision-making involves a complex neural network that includes the dorsolateral prefrontal cortex (DLPFC). We studied whether participants change the balance of risky and safe responses after receiving tDCS applied over the right and left prefrontal cortex. A total of 60 healthy volunteers performed a risk task while they received either anodal tDCS over the right prefrontal cortex, with cathodal over the left; anodal tDCS over the left prefrontal cortex, with cathodal over the right; or sham stimulation. The participants tended to choose less risky options after receiving sham stimulation, demonstrating that the task might be highly influenced by the "wealth effect". There was no statistically significant change after either right anodal/left cathodal or left anodal/right cathodal tDCS, indicating that both types of tDCS impact the participants' degrees of risk aversion, and therefore, counteract the wealth effect. We also found gender differences in the participants' choices. These findings extend the notion that DLPFC activity is critical for risk decision-making. Application of tDCS to the right/left DLPFC may impact a person's attitude to taking risks. PMID:25956033

  11. Mindfulness training modulates value signals in ventromedial prefrontal cortex through input from insular cortex.

    PubMed

    Kirk, Ulrich; Gu, Xiaosi; Harvey, Ann H; Fonagy, Peter; Montague, P Read

    2014-10-15

    Neuroimaging research has demonstrated that ventromedial prefrontal cortex (vmPFC) encodes value signals that can be modulated by top-down cognitive input such as semantic knowledge, price incentives, and monetary favors suggesting that such biases may have an identified biological basis. It has been hypothesized that mindfulness training (MT) provides one path for gaining control over such top-down influences; yet, there have been no direct tests of this hypothesis. Here, we probe the behavioral and neural effects of MT on value signals in vmPFC in a randomized longitudinal design of 8 weeks of MT on an initially naïve subject cohort. The impact of this within-subject training was assessed using two paradigms: one that employed primary rewards (fruit juice) in a simple conditioning task and another that used a well-validated art-viewing paradigm to test bias of monetary favors on preference. We show that MT behaviorally censors the top-down bias of monetary favors through a measurable influence on value signals in vmPFC. MT also modulates value signals in vmPFC to primary reward delivery. Using a separate cohort of subjects we show that 8 weeks of active control training (ACT) generates the same behavioral impact also through an effect on signals in the vmPFC. Importantly, functional connectivity analyses show that value signals in vmPFC are coupled with bilateral posterior insula in the MT groups in both paradigms, but not in the ACT groups. These results suggest that MT integrates interoceptive input from insular cortex in the context of value computations of both primary and secondary rewards.

  12. Mindfulness training modulates value signals in ventromedial prefrontal cortex through input from insular cortex

    PubMed Central

    Kirk, Ulrich; Gu, Xiaosi; Harvey, Ann H.; Fonagy, Peter; Montague, P. Read

    2014-01-01

    Neuroimaging research has demonstrated that ventromedial prefrontal cortex (vmPFC) encodes value signals that can be modulated by top-down cognitive input such as semantic knowledge, price incentives, and monetary favors suggesting that such biases may have an identified biological basis. It has been hypothesized that mindfulness training (MT) provides one path for gaining control over such top-down influences; yet, there have been no direct tests of this hypothesis. Here, we probe the behavioral and neural effects of MT on value signals in vmPFC in a randomized longitudinal design of 8 weeks of MT on an initially naïve subject cohort. The impact of this within-subject training was assessed using two paradigms: one that employed primary rewards (fruit juice) in a simple conditioning task and another that used a well-validated art-viewing paradigm to test bias of monetary favors on preference. We show that MT behaviorally censors the top-down bias of monetary favors through a measurable influence on value signals in vmPFC. MT also modulates value signals in vmPFC to primary reward delivery. Using a separate cohort of subjects we show that 8 weeks of active control training (ACT) generates the same behavioral impact also through an effect on signals in the vmPFC. Importantly, functional connectivity analyses show that value signals in vmPFC are coupled with bilateral posterior insula in the MT groups in both paradigms, but not in the ACT groups. These results suggest that MT integrates interoceptive input from insular cortex in the context of value computations of both primary and secondary rewards. PMID:24956066

  13. Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory.

    PubMed

    Bagherzadeh, Yasaman; Khorrami, Anahita; Zarrindast, Mohammad Reza; Shariat, Seyed Vahid; Pantazis, Dimitrios

    2016-07-01

    Neuroimaging and electrophysiological studies have unequivocally identified the dorsolateral prefrontal cortex (DLPFC) as a crucial structure for top-down control of working memory (WM) processes. By modulating the excitability of neurons in a targeted cortical area, transcranial magnetic stimulation (TMS) offers a unique way to modulate DLPFC function, opening the possibility of WM facilitation. Even though TMS neuromodulation effects over the left DLPFC have successfully improved WM performance in patients with depression and schizophrenia in a multitude of studies, raising the potential of TMS as a safe efficacious treatment for WM deficits, TMS interventions in healthy individuals have produced mixed and inconclusive results. Here, we stimulated the left DLPFC of healthy individuals using a high-frequency repetitive TMS protocol and evaluated behavioral performance in a battery of cognitive tasks. We found that TMS treatment enhanced WM performance in a verbal digit span and a visuospatial 2-back task.

  14. Functional organization and visual representations of human ventral lateral prefrontal cortex

    PubMed Central

    Chan, Annie W.-Y.

    2013-01-01

    Recent neuroimaging studies in both human and non-human primates have identified face selective activation in the ventral lateral prefrontal cortex (VLPFC) even in the absence of working memory (WM) demands. Further, research has suggested that this face-selective response is largely driven by the presence of the eyes. However, the nature and origin of visual category responses in the VLPFC remain unclear. In a broader sense, how do these findings relate to our current understandings of lateral prefrontal cortex? What do these findings tell us about the underlying function and organization principles of the VLPFC? What is the future direction for investigating visual representations in this cortex? This review focuses on the function, topography, and circuitry of the VLPFC to enhance our understanding of the evolution and development of this cortex. PMID:23847558

  15. Too Little and Too Much: Hypoactivation and Disinhibition of Medial Prefrontal Cortex Cause Attentional Deficits

    PubMed Central

    McGarrity, Stephanie; Mason, Rob; Fone, Kevin C.

    2014-01-01

    Attentional deficits are core symptoms of schizophrenia, contributing strongly to disability. Prefrontal dysfunction has emerged as a candidate mechanism, with clinical evidence for prefrontal hypoactivation and disinhibition (reduced GABAergic inhibition), possibly reflecting different patient subpopulations. Here, we tested in rats whether imbalanced prefrontal neural activity impairs attention. To induce prefrontal hypoactivation or disinhibition, we microinfused the GABA-A receptor agonist muscimol (C4H6N2O2; 62.5, 125, 250 ng/side) or antagonist picrotoxin (C30H34O13; 75, 150, 300 ng/side), respectively, into the medial prefrontal cortex. Using the five-choice serial reaction time (5CSRT) test, we showed that both muscimol and picrotoxin impaired attention (reduced accuracy, increased omissions). Muscimol also impaired response control (increased premature responses). In addition, muscimol dose dependently reduced open-field locomotor activity, whereas 300 ng of picrotoxin caused locomotor hyperactivity; sensorimotor gating (startle prepulse inhibition) was unaffected. Therefore, infusion effects on the 5CSRT test can be dissociated from sensorimotor effects. Combining microinfusions with in vivo electrophysiology, we showed that muscimol inhibited prefrontal firing, whereas picrotoxin increased firing, mainly within bursts. Muscimol reduced and picrotoxin enhanced bursting and both drugs changed the temporal pattern of bursting. Picrotoxin also markedly enhanced prefrontal LFP power. Therefore, prefrontal hypoactivation and disinhibition both cause attentional deficits. Considering the electrophysiological findings, this suggests that attention requires appropriately tuned prefrontal activity. Apart from attentional deficits, prefrontal disinhibition caused additional neurobehavioral changes that may be relevant to schizophrenia pathophysiology, including enhanced prefrontal bursting and locomotor hyperactivity, which have been linked to psychosis

  16. Atrophy of the left dorsolateral prefrontal cortex is associated with poor performance in verbal fluency in elderly poststroke women.

    PubMed

    Chen, Yang-Kun; Xiao, Wei-Min; Wang, Defeng; Shi, Lin; Chu, Winnie Cw; Mok, Vincent Ct; Wong, Ka Sing; Ungvari, Gabor S; Tang, Wai Kwong

    2013-02-01

    This study aimed to investigate the association between atrophy in the prefrontal cortex with executive function and verbal fluency in elderly male and female patients poststroke. Thirty elderly female patients with non-aphasic ischemic stroke aged ≥ 60 years and 30 age-matched non-aphasic male patients with ischemic stroke were recruited. Automatic magnetic resonance imaging segmentation was used to assess the volume of the whole prefrontal cortex, along with its subdivisions: anterior cingulate cortex, orbitofrontal cortex and dorsolateral prefrontal cortex. The Semantic Verbal Fluency Test was administered at 3 and 15 months poststroke. At 3 months poststroke, left dorsolateral prefrontal cortex volume was significantly correlated with Verbal Fluency Test score in female patients only (partial coefficient = 0.453, P = 0.045), after controlling for age, education, diabetes, neurological deficit, white matter lesions volume, as well as the location and volume of infarcts. At 15 months poststroke, there remained a significant association between the left dorsolateral prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.661, P = 0.001) and between the left prefrontal cortex volume and Verbal Fluency Test (partial coefficient = 0.573, P = 0.004) in female patients after the same adjustments. These findings indicate that atrophy of the left dorsolateral prefrontal cortex contributes to the impairment of verbal fluency in elderly female patients with stroke. Sex differences may be present in the neuropsychological mechanisms of verbal fluency impairment in patients with stroke.

  17. Effects of blood flow to the prefrontal cortex on high-intensity exercise combined with high-decibel music.

    PubMed

    Chang, Hyukki; Kim, Kyungae; Jung, Yu-Jin; Ahn, Na-Ri; So, Wi-Young; Kato, Morimasa

    2013-12-01

    We studied the effects of high-intensity exercise (70-75% of VO2 max) combined with high-decibel music (100 dB) on cognitive function (measured by the Stroop test) and related blood flow changes to the prefrontal cortex (measured by Oxy-hemoglobin (Hb), Deoxy-Hb, tissue oxygen index (TOI), and normalized tissue hemoglobin index (nTHI)). The subjects of the study were 28 healthy female university students in their early 20s. Subjects were categorized into control group (CG), music group (MG), exercise group (Ex), and music and exercise group (MnEx). A crossover design was implemented so that all subjects participated in all test groups. We found no significant difference in reaction time between CG and MG for the neutral and incongruent tasks of Stroop test. However, there were significant improvements in the neutral and incongruent tasks for both the Ex (p < 0.01) and MnEx (p < 0.01) groups. Oxy-Hb measurements in the prefrontal cortex of the brain supported the Stroop test data. We found no difference between Ex and MnEx in the TOI; however, there was a significant decrease (p < 0.05) in MnEx compared to Ex. In addition, Ex resulted in a significant increase (p < 0.05) in nTHI as compared to CG. These results indicate that high decibel music could negatively affect prefrontal cortex activation of the brain during exercise. PMID:25566422

  18. Conditional self-discrimination enhances dendritic spine number and dendritic length at prefrontal cortex and hippocampal neurons of rats.

    PubMed

    Penagos-Corzo, Julio C; Bonilla, Andrea; Rodríguez-Moreno, Antonio; Flores, Gonzalo; Negrete-Díaz, José V

    2015-11-01

    We studied conditional self-discrimination (CSD) in rats and compared the neuronal cytoarchitecture of untrained animals and rats that were trained in self-discrimination. For this purpose, we used thirty 10-week-old male rats were randomized into three groups: one control group and two conditioning groups: a comparison group (associative learning) and an experimental group (self-discrimination). At the end of the conditioning process, the experimental group managed to discriminate their own state of thirst. After the conditioning process, dendritic morphological changes in the pyramidal neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus were evaluated using Golgi-Cox stain method and then analyzed by the Sholl method. Differences were found in total dendritic length and spine density. Animals trained in self-discrimination showed an increase in the dendritic length and the number of dendritic spines of neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus. Our data suggest that conditional self-discrimination improves the connectivity of the prefrontal cortex and dorsal CA1, which has implications for memory and learning processes.

  19. Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex

    PubMed Central

    Bloss, Erik B.; Janssen, William G.; Ohm, Daniel T.; Yuk, Frank J.; Wadsworth, Shannon; Saardi, Karl M.; McEwen, Bruce S.; Morrison, John H.

    2011-01-01

    Cognitive functions that require the prefrontal cortex are highly sensitive to aging in humans, non-human primates, and rodents, although the neurobiological correlates of this vulnerability remain largely unknown. It has been proposed that dendritic spines represent the primary site of structural plasticity in the adult brain, and recent data have supported the hypothesis that aging is associated with alterations of dendritic spine morphology and plasticity in prefrontal cortex. However, no study to date has directly examined whether aging alters the capacity for experience-dependent spine plasticity in aging prefrontal neurons. To address this possibility we used young, middle-aged, and aged rats in a behavioral stress paradigm known to produce spine remodeling in prefrontal cortical neurons. In young rats, stress resulted in dendritic spine loss and altered patterns of spine morphology; in contrast, spines from middle-aged and aged animals were remarkably stable and did not show evidence of remodeling. The loss of stress-induced spine plasticity observed in aging rats occurred alongside robust age-related reductions in spine density and shifts in remaining spine morphology. Taken together, the data presented here provide the first evidence that experience-dependent spine plasticity is altered by aging in prefrontal cortex, and support a model in which dendritic spines become progressively less plastic in the aging brain. PMID:21613496

  20. Early detection and late cognitive control of emotional distraction by the prefrontal cortex

    PubMed Central

    García-Pacios, Javier; Garcés, Pilar; Del Río, David; Maestú, Fernando

    2015-01-01

    Unpleasant emotional distraction can impair the retention of non-emotional information in working memory (WM). Research links the prefrontal cortex with the successful control of such biologically relevant distractors, although the temporal changes in this brain mechanism remain unexplored. We use magnetoencephalography to investigate the temporal dynamics of the cognitive control of both unpleasant and pleasant distraction, in the millisecond (ms) scale. Behavioral results demonstrate that pleasant events do not affect WM maintenance more than neutral ones. Neuroimaging results show that prefrontal cortices are recruited for the rapid detection of emotional distraction, at early latencies of the processing (70-130 ms). Later in the processing (360-450 ms), the dorsolateral, the medial and the orbital sections of the prefrontal cortex mediate the effective control of emotional distraction. In accordance with the behavioral performance, pleasant distractors do not require higher prefrontal activity than neutral ones. These findings extend our knowledge about the brain mechanisms of coping with emotional distraction in WM. In particular, they show for the first time that overriding the attentional capture triggered by emotional distractors, while maintaining task-relevant elements in mind, is based on the early detection of such linked-to-survival information and on its later cognitive control by the prefrontal cortex. PMID:26067780

  1. Lower neuronal variability in the monkey dorsolateral prefrontal than posterior parietal cortex.

    PubMed

    Qi, Xue-Lian; Constantinidis, Christos

    2015-10-01

    The dorsolateral prefrontal and posterior parietal cortex are two brain areas involved in cognitive functions such as spatial attention and working memory. When tested with identical tasks, only subtle differences in firing rate are present between neurons recorded in the two areas. In this article we report that major differences in neuronal variability characterize the two areas during working memory. The Fano factors of spike counts in dorsolateral prefrontal neurons were consistently lower than those of the posterior parietal cortex across a range of tasks, epochs, and conditions in the same monkeys. Variability differences were observed despite minor differences in firing rates between the two areas in the tasks tested and higher overall firing rate in the prefrontal than in the posterior parietal sample. Other measures of neuronal discharge variability, such as the coefficient of variation of the interspike interval, displayed the same pattern of lower prefrontal variability. Fano factor values were negatively correlated with performance in the working memory task, suggesting that higher neuronal variability was associated with diminished task performance. The results indicate that information involving remembered stimuli is more reliably represented in the prefrontal than the posterior parietal cortex based on the variability of neuronal responses, and suggest functional differentiation between the two areas beyond differences in firing rate. PMID:26269556

  2. Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood.

    PubMed

    Pascual-Leone, A; Catalá, M D; Pascual-Leone Pascual, A

    1996-02-01

    We studied the effects of rapid-rate transcranial magnetic stimulation (rTMS) of different scalp positions on mood. Ten normal volunteers rated themselves before and after rTMS on five analog scales labeled "Tristeza" (Sadness), "Ansiedad" (Anxiety), "Alegria" (Happiness), "Cansancio" (Tiredness), and "Dolor/Malestar" (Pain/Discomfort). rTMS was applied to the right lateral prefrontal, left prefrontal, or midline frontal cortex in trains of 5 seconds' duration at 10 Hz and 110% of the subject's motor threshold intensity. Each stimulation position received 10 trains separated by a 25-second pause. No clinically apparent mood changes were evoked by rTMS to any of the scalp positions in any subject. However, left prefrontal rTMS resulted in a significant increase in the Sadness ratings (Tristeza) and a significant decrease in the Happiness ratings ("Alegria") as compared with right prefrontal and midfrontal cortex stimulation. These results show differential effects of rTMS of left and right prefrontal cortex stimulation on mood and illustrate the lateralized control of mood in normal volunteers. PMID:8614521

  3. Combined administration of cerebrolysin and donepezil induces plastic changes in prefrontal cortex in aged mice.

    PubMed

    Alcántara-González, Faviola; Mendoza-Perez, Claudia Rebeca; Zaragoza, Néstor; Juarez, Ismael; Arroyo-García, Luis Enrique; Gamboa, Citlalli; De La Cruz, Fidel; Zamudio, Sergio; Garcia-Dolores, Fernando; Flores, Gonzalo

    2012-11-01

    Cerebrolysin (Cbl) shows neurotrophic and neuroprotective properties while donepezil (Dnp) is a potent acetylcholinesterase (AChE) inhibitor, both drugs are prescribed for Alzheimer's disease (AD) treatment. Previous studies have shown that the Dnp and Cbl administered separately, modify dendritic morphology of neurons in the prefrontal cortex and hippocampus in senile rodents. Since the deficit of neurotrophic factor activity is implicated in the degeneration of cholinergic neurons of basal forebrain, a combination therapy of Dnp and Cbl has been tested recently in Alzheimer's patients. However, the plastic changes that may underlie this combined treatment have not yet been explored. We present here the effect of the combined administration of Cbl and Dnp on dendritic morphology in brain regions related to learning and memory in aged mice. The Golgi-Cox staining protocol and Sholl analysis were used for studying dendritic changes. Cbl and Dnp were administrated daily for 2 months to 9-months-old mice. Locomotor activity was assessed, as well as the dendritic morphology of neurons in several limbic regions was analyzed. Results showed that Cbl and Dnp induced an increase in locomotor activity without synergistic effect. The Cbl or Dnp treatment modified the dendritic morphology of neurons from prefrontal cortex (PFC), dorsal hippocampus (DH), dentate gyrus (DG), and the shell of nucleus accumbens (NAcc). These changes show an increase in the total dendritic length and spine density, resulting in an improvement of dendritic arborization. Prominently, a synergistic effect of Cbl and Dnp was observed on branching order and total dendritic length of pyramidal neurons from PFC. These results suggest that Dnp and Cbl may induce plastic changes in a manner independent of each other, but could enhance their effect in target cells from PFC.

  4. Medial prefrontal cortex supports source memory for self-referenced materials in young and older adults.

    PubMed

    Leshikar, Eric D; Duarte, Audrey

    2014-03-01

    Behavioral evidence suggests that young and older adults show a benefit in source memory accuracy when processing materials in reference to the self. In the young, activity within the medial prefrontal cortex supports this source memory benefit at study. In this investigation, we examined whether the same neural regions support this memory benefit in both age groups. Using fMRI, we scanned participants while they studied and retrieved pictures of objects paired with one of three scenes (source) under self-reference and other-reference conditions. At the time of study, half of the items were presented once and half twice, allowing us to match behavioral performance between the groups. Both groups showed equivalent source accuracy benefits for objects encoded self-referentially. Activity in the left dorsal medial prefrontal cortex supported subsequent source memory in both age groups for the self-referenced relative to the other-referenced items. At the time of test, source accuracy for both the self- and other-referenced items was supported by a network of regions including the precuneus in both age groups. At both study and test, little in the way of age differences emerged, suggesting that when they are matched on behavioral performance, young and older adults engage similar regions in support of source memory when processing materials in reference to the self; however, when we did not match performance, age differences in functional recruitment were prevalent. These results suggest that by capitalizing on preserved processes (self-referential encoding), older adults can show improvement in memory for source details that they would typically not remember well, relative to the young.

  5. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    NASA Technical Reports Server (NTRS)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  6. Prefrontal cortex and executive function in young children: a review of NIRS studies

    PubMed Central

    Moriguchi, Yusuke; Hiraki, Kazuo

    2013-01-01

    Executive function (EF) refers to the higher-order cognitive control process for the attainment of a specific goal. There are several subcomponents of EF, such as inhibition, cognitive shifting, and working memory. Extensive neuroimaging research in adults has revealed that the lateral prefrontal cortex plays an important role in EF. Developmental studies have reported behavioral evidence showing that EF changes significantly during preschool years. However, the neural mechanism of EF in young children is still unclear. This article reviews recent near-infrared spectroscopy (NIRS) research that examined the relationship between the development of EF and the lateral prefrontal cortex. Specifically, this review focuses on inhibitory control, cognitive shifting, and working memory in young children. Research has consistently shown significant prefrontal activation during tasks in typically developed children, but this activation may be abnormal in children with developmental disorders. Finally, methodological issues and future directions are discussed. PMID:24381551

  7. Remote sensing of prefrontal cortex function with diffusive light

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongyao; Wang, Xin C.; Chance, Britton

    2004-12-01

    A data bank on prefrontal imaging under stressful conditions including deceit, has been gathered over several years on National and International populations using a contact imager pad consisting of 16 detectors and 4 sources, validating the concept of imaging prefrontal responses to stress, not only following the response of the PFC to imaging stress but especially of precognitive activations. We designed a new portable and non-invasive optical detecting system for remote sensing of deceit at 1~2m distance. The signals of pre- and post-cognitive function in deceit can be detected with very high sensitivity for blood volume and blood oxygenation detection at depths sufficient for PFC imaging and sensitivities of sub-micromolar oxy-hemoglobin and blood concentration detection. Thus, remote imaging of the process of decision making seems possible and examples will be presented using both contact and flying spot remote sensing.

  8. Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release.

    PubMed

    Lecourtier, Lucas; Defrancesco, Alicia; Moghaddam, Bita

    2008-04-01

    Conditions of increased cognitive or emotional demand activate dopamine release in a regionally selective manner. Whereas the brief millisecond response of dopamine neurons to salient stimuli suggests that dopamine's influence on behaviour may be limited to signalling certain cues, the prolonged availability of dopamine in regions such as the prefrontal cortex and nucleus accumbens is consistent with the well described role of dopamine in maintaining motivation states, associative learning and working memory. The behaviourally elicited terminal release of dopamine is generally attributed to increased excitatory drive on dopamine neurons. Our findings here, however, indicate that this increase may involve active removal of a tonic inhibitory control on dopamine neurons exerted by the lateral habenula (LHb). Inhibition of LHb in behaving animals transiently increased dopamine release in the prefrontal cortex, nucleus accumbens and dorsolateral striatum. The inhibitory influence was more pronounced in the nucleus accumbens and striatum than in the prefrontal cortex. This pattern of regional dopamine activation after LHb inhibition mimicked conditions of reward availability but not increased cognitive demand. Electrical or chemical stimulation of LHb produced minimal reduction of extracellular dopamine, suggesting that in an awake brain the inhibition associated with tonic LHb activity represents a near-maximal influence on dopamine neurotransmission. These data indicate that LHb may be critical for functional differences in dopamine neurons by preferentially modulating dopamine neurons that project to the nucleus accumbens over those neurons that primarily project to the prefrontal cortex.

  9. Orbital and Ventromedial Prefrontal Cortex Functioning in Parkinson's Disease: Neuropsychological Evidence

    ERIC Educational Resources Information Center

    Poletti, Michele; Bonuccelli, Ubaldo

    2012-01-01

    A recent paper (Zald & Andreotti, 2010) reviewed neuropsychological tasks that assess the function of the orbital and ventromedial portions of the prefrontal cortex (OMPFC). Neuropathological studies have shown that the function of the OMPFC should be preserved in the early stages of Parkinson's disease (PD) but becomes affected in the advanced…

  10. Attention, Emotion, and Deactivation of Default Activity in Inferior Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Geday, Jacob; Gjedde, Albert

    2009-01-01

    Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC with positron emission tomography (PET) of labeled water…

  11. Abnormal Amygdala and Prefrontal Cortex Activation to Facial Expressions in Pediatric Bipolar Disorder

    ERIC Educational Resources Information Center

    Garrett, Amy S.; Reiss, Allan L.; Howe, Meghan E.; Kelley, Ryan G.; Singh, Manpreet K.; Adleman, Nancy E.; Karchemskiy, Asya; Chang, Kiki D.

    2012-01-01

    Objective: Previous functional magnetic resonance imaging (fMRI) studies in pediatric bipolar disorder (BD) have reported greater amygdala and less dorsolateral prefrontal cortex (DLPFC) activation to facial expressions compared to healthy controls. The current study investigates whether these differences are associated with the early or late…

  12. Prefrontal Cortex: Role in Acquisition of Overlapping Associations and Transitive Inference

    ERIC Educational Resources Information Center

    DeVito, Loren M.; Lykken, Christine; Kanter, Benjamin R.; Eichenbaum, Howard

    2010-01-01

    "Transitive inference" refers to the ability to judge from memory the relationships between indirectly related items that compose a hierarchically organized series, and this capacity is considered a fundamental feature of relational memory. Here we explored the role of the prefrontal cortex in transitive inference by examining the performance of…

  13. Selection for Position: The Role of Left Ventrolateral Prefrontal Cortex in Sequencing Language

    ERIC Educational Resources Information Center

    Thothathiri, Malathi; Schwartz, Myrna F.; Thompson-Schill, Sharon L.

    2010-01-01

    Patients with damage involving left ventrolateral prefrontal cortex (left VLPFC) often show syntactic deficits. They also show exaggerated interference effects during a variety of non-syntactic tasks, including picture naming and working memory. Conceivably, both deficits could arise from inadequate biasing of competitive interactions during…

  14. Medial Prefrontal Cortex Is Selectively Involved in Response Selection Using Visual Context in the Background

    ERIC Educational Resources Information Center

    Lee, Inah; Shin, Ji Yun

    2012-01-01

    The exact roles of the medial prefrontal cortex (mPFC) in conditional choice behavior are unknown and a visual contextual response selection task was used for examining the issue. Inactivation of the mPFC severely disrupted performance in the task. mPFC inactivations, however, did not disrupt the capability of perceptual discrimination for visual…

  15. Hippocampus and Medial Prefrontal Cortex Contributions to Trace and Contextual Fear Memory Expression over Time

    ERIC Educational Resources Information Center

    Beeman, Christopher L.; Bauer, Philip S.; Pierson, Jamie L.; Quinn, Jennifer J.

    2013-01-01

    Previous work has shown that damage to the dorsal hippocampus (DH) occurring at recent, but not remote, timepoints following acquisition produces a deficit in trace conditioned fear memory expression. The opposite pattern has been observed with lesions to the medial prefrontal cortex (mPFC). The present studies address: (1) whether these lesion…

  16. Effect of Prefrontal Cortex Damage on Resolving Lexical Ambiguity in Text

    ERIC Educational Resources Information Center

    Frattali, Carol; Hanna, Rebecca; McGinty, Anita Shukla; Gerber, Lynn; Wesley, Robert; Grafman, Jordan; Coelho, Carl

    2007-01-01

    The function of suppression of context-inappropriate meanings during lexical ambiguity resolution was examined in 25 adults with prefrontal cortex damage (PFCD) localized to the left (N = 8), right (N = 6), or bilaterally (N = 11); and 21 matched Controls. Results revealed unexpected inverse patterns of suppression between PFCD and Control groups,…

  17. Prefrontal Cortex and Hippocampus Subserve Different Components of Working Memory in Rats

    ERIC Educational Resources Information Center

    Yoon, Taejib; Okada, Jeffrey; Jung, Min W.; Kim, Jeansok J.

    2008-01-01

    Both the medial prefrontal cortex (mPFC) and hippocampus are implicated in working memory tasks in rodents. Specifically, it has been hypothesized that the mPFC is primarily engaged in the temporary storage and processing of information lasting from a subsecond to several seconds, while the hippocampal function becomes more critical as the working…

  18. Cellular pathology in the dorsolateral prefrontal cortex distinguishes schizophrenia from bipolar disorder.

    PubMed

    Selemon, L D; Rajkowska, G

    2003-08-01

    The classification of schizophrenia and bipolar disorder as two separate disease entities has been hotly debated almost from the moment of its inception with Kraepelin's descriptions of "dementia praecox" and "manic-depressive insanity" in 1896. Kraepelin's nosologic distinction was based on clinical observation of symptomatology and outcome, and even today, despite major advances in science and technology, differential diagnosis of psychosis relies on the clinical course of illness. However, new evidence from diverse fields, e.g., genetics, neuropsychology, and brain imaging, have refueled the debate about whether or not schizophrenia and bipolar disorder represent distinct diseases, leading some to postulate that schizophrenia and bipolar disorder represent different manifestations of psychosis along a continuum with schizoaffective disorder representing an intermediate subtype. To this discourse, we add our own recent postmortem anatomic findings indicating that cellular pathology in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder differs not just in magnitude but also in direction, in laminar scope, and in relative involvement of neuronal and glial cell types. Thus, distinct morphometric alterations in the dorsolateral prefrontal cortex underlie what appear on neuroimaging analysis to be similar abnormalities in structural and metabolic function in the prefrontal cortex, and the diverse cellular pathology in the dorsolateral prefrontal cortex in these two disorders may account for the greater deficit in schizophrenia on cognitive tasks involving memory, problem solving and abstraction.

  19. The Medial Prefrontal Cortex Is Critical for Memory Retrieval and Resolving Interference

    ERIC Educational Resources Information Center

    Peters, Gregory J.; David, Christopher N.; Marcus, Madison D.; Smith, David M.

    2013-01-01

    The prefrontal cortex (PFC) is known to be critically involved in strategy switching, attentional set shifting, and inhibition of prepotent responses. A central feature of this kind of behavioral flexibility is the ability to resolve conflicting response tendencies, suggesting a general role of the PFC in resolving interference. If so, the PFC…

  20. Role of Medial Prefrontal Cortex Narp in the Extinction of Morphine Conditioned Place Preference

    ERIC Educational Resources Information Center

    Blouin, Ashley M.; Han, Sungho; Pearce, Anne M.; Cheng, KaiLun; Lee, JongAh J.; Johnson, Alexander W.; Wang, Chuansong; During, Matthew J.; Holland, Peter C.; Shaham, Yavin; Baraban, Jay M.; Reti, Irving M.

    2013-01-01

    Narp knockout (KO) mice demonstrate an impaired extinction of morphine conditioned place preference (CPP). Because the medial prefrontal cortex (mPFC) has been implicated in extinction learning, we tested whether Narp cells in this region play a role in the extinction of morphine CPP. We found that intracranial injections of adenoassociated virus…

  1. Reduced Prefrontal Cortex Hemodynamic Response in Adults with Methamphetamine Induced Psychosis: Relevance for Impulsivity

    PubMed Central

    Yamamuro, Kazuhiko; Kimoto, Sohei; Iida, Junzo; Kishimoto, Naoko; Nakanishi, Yoko; Tanaka, Shohei; Ota, Toyosaku; Makinodan, Manabu; Kishimoto, Toshifumi

    2016-01-01

    Patients with methamphetamine abuse/dependence often exhibit high levels of impulsivity, which may be associated with the structural abnormalities and functional hypoactivities observed in the frontal cortex of these subjects. Although near-infrared spectroscopy (NIRS) is a simple and non-invasive method for characterizing the clinical features of various psychiatric illnesses, few studies have used NIRS to directly investigate the association between prefrontal cortical activity and inhibitory control in patients with methamphetamine-induced psychosis (MAP). Using a 24-channel NIRS system, we compared hemodynamic responses during the Stroop color-word task in 14 patients with MAP and 21 healthy controls matched for age, sex and premorbid IQ. In addition, we used the Barrett Impulsivity Scale-11 (BIS-11) to assess impulsivity between subject groups. The MAP group exhibited significantly less activation in the anterior and frontopolar prefrontal cortex accompanied by lower Stroop color-word task performance, compared with controls. Moreover, BIS-11 scores were significantly higher in the MAP group, and were negatively correlated with the hemodynamic responses in prefrontal cortex. Our data suggest that reduced hemodynamic responses in the prefrontal cortex might reflect higher levels of impulsivity in patients with MAP, providing new insights into disrupted inhibitory control observed in MAP. PMID:27050450

  2. The Neuropsychology of Ventral Prefrontal Cortex: Decision-Making and Reversal Learning

    ERIC Educational Resources Information Center

    Clark, L.; Cools, R.; Robbins, T. W.

    2004-01-01

    Converging evidence from human lesion, animal lesion, and human functional neuroimaging studies implicates overlapping neural circuitry in ventral prefrontal cortex in decision-making and reversal learning. The ascending 5-HT and dopamine neurotransmitter systems have a modulatory role in both processes. There is accumulating evidence that…

  3. Performance-Related Activity in Medial Rostral Prefrontal Cortex (Area 10) during Low-Demand Tasks

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Simons, Jon S.; Frith, Christopher D.; Burgess, Paul W.

    2006-01-01

    Neuroimaging studies have frequently observed relatively high activity in medial rostral prefrontal cortex (PFC) during rest or baseline conditions. Some accounts have attributed this high activity to the occurrence of unconstrained stimulus-independent and task-unrelated thought processes during baseline conditions. Here, the authors investigated…

  4. Social and Nonsocial Functions of Rostral Prefrontal Cortex: Implications for Education

    ERIC Educational Resources Information Center

    Gilbert, Sam J.; Burgess, Paul W.

    2008-01-01

    In this article, we discuss the role of rostral prefrontal cortex (approximating Brodmann Area 10) in two domains relevant to education: executive function (particularly prospective memory, our ability to realize delayed intentions) and social cognition (particularly our ability to reflect on our own mental states and the mental states of others).…

  5. Brain Activation Gradients in Ventrolateral Prefrontal Cortex Related to Persistence of ADHD in Adolescent Boys

    ERIC Educational Resources Information Center

    Schulz, Kurt P.; Newcorn, Jeffrey H.; Fan, Jin; Tang, Cheuk Y.; Halperin, Jeffrey M.

    2005-01-01

    Objective: To explore the possible role that functional abnormalities of the prefrontal cortex and basal ganglia play in the persistence of attention-deficit/hyperactivity disorder (ADHD) in adolescents aged 15 to 19 years. Method: Ten male adolescents who were diagnosed with ADHD during childhood were grouped into those who continued to meet full…

  6. Prefrontal Cortex Is Critical for Contextual Processing: Evidence from Brain Lesions

    ERIC Educational Resources Information Center

    Fogelson, Noa; Shah, Mona; Scabini, Donatella; Knight, Robert T.

    2009-01-01

    We investigated the role of prefrontal cortex (PFC) in local contextual processing using a combined event-related potentials and lesion approach. Local context was defined as the occurrence of a short predictive series of visual stimuli occurring before delivery of a target event. Targets were preceded by either randomized sequences of standards…

  7. Prefrontal Cortex Lesions and Sex Differences in Fear Extinction and Perseveration

    ERIC Educational Resources Information Center

    Baran, Sarah E.; Armstrong, Charles E.; Niren, Danielle C.; Conrad, Cheryl D.

    2010-01-01

    Electrolytic lesions of the medial prefrontal cortex (PFCX) were examined using fear conditioning to assess the recall of fear extinction and performance in the Y-maze, open field, and object location/recognition in male and female Sprague-Dawley rats. Rats were conditioned to seven tone/footshocks, followed by extinction after 1-h and 24-h…

  8. Hippocampal Train Stimulation Modulates Recall of Fear Extinction Independently of Prefrontal Cortex Synaptic Plasticity and Lesions

    ERIC Educational Resources Information Center

    Garcia, Rene; Farinelli, Melissa; Deschaux, Olivier; Hugues, Sandrine; Thevenet, Aurelie

    2006-01-01

    It has been shown that long-term potentiation (LTP) develops in the connection between the mediodorsal thalamus (MD) and the medial prefrontal cortex (mPFC) and between the hippocampus (HPC) and the mPFC following fear extinction, and correlates with extinction retention. However, recent lesion studies have shown that combined lesions of the MD…

  9. Neuronal activity in the primate dorsomedial prefrontal cortex contributes to strategic selection of response tactics.

    PubMed

    Matsuzaka, Yoshiya; Akiyama, Tetsuya; Tanji, Jun; Mushiake, Hajime

    2012-03-20

    The functional roles of the primate posterior medial prefrontal cortex have remained largely unknown. Here, we show that this region participates in the regulation of actions in the presence of multiple response tactics. Monkeys performed a forelimb task in which a visual cue required prompt decision of reaching to a left or a right target. The location of the cue was either ipsilateral (concordant) or contralateral (discordant) to the target. As a result of extensive training, the reaction times for the concordant and discordant trials were indistinguishable, indicating that the monkeys developed tactics to overcome the cue-response conflict. Prefrontal neurons exhibited prominent activity when the concordant and discordant trials were randomly presented, requiring rapid selection of a response tactic (reach toward or away from the cue). The following findings indicate that these neurons are involved in the selection of tactics, rather than the selection of action or monitoring of response conflict: (i) The response period activity of neurons in this region disappeared when the monkeys performed the task under the behavioral condition that required a single tactic alone, whereas the action varied across trials. (ii) The neuronal activity was found in the dorsomedial prefrontal cortex but not in the anterior cingulate cortex that has been implicated for the response conflict monitoring. These results suggest that the medial prefrontal cortex participates in the selection of a response tactic that determines an appropriate action. Furthermore, the observation of dynamic, task-dependent neuronal activity necessitates reconsideration of the conventional concept of cortical motor representation.

  10. Noradrenergic Action in Prefrontal Cortex in the Late Stage of Memory Consolidation

    ERIC Educational Resources Information Center

    Tronel, Sophie; Feenstra, Matthijs G. P.; Sara, Susan J.

    2004-01-01

    These experiments investigated the role of the noradrenergic system in the late stage of memory consolidation and in particular its action at beta receptors in the prelimbic region (PL) of the prefrontal cortex in the hours after training. Rats were trained in a rapidly acquired, appetitively motivated foraging task based on olfactory…

  11. Disruption of the Perineuronal Net in the Hippocampus or Medial Prefrontal Cortex Impairs Fear Conditioning

    ERIC Educational Resources Information Center

    Hylin, Michael J.; Orsi, Sara A.; Moore, Anthony N.; Dash, Pramod K.

    2013-01-01

    The perineuronal net (PNN) surrounds neurons in the central nervous system and is thought to regulate developmental plasticity. A few studies have shown an involvement of the PNN in hippocampal plasticity and memory storage in adult animals. In addition to the hippocampus, plasticity in the medial prefrontal cortex (mPFC) has been demonstrated to…

  12. Exercise-induced stress resistance is independent of exercise controllability and the medial prefrontal cortex.

    PubMed

    Greenwood, Benjamin N; Spence, Katie G; Crevling, Danielle M; Clark, Peter J; Craig, Wendy C; Fleshner, Monika

    2013-02-01

    Exercise increases resistance against stress-related disorders such as anxiety and depression. Similarly, the perception of control is a powerful predictor of neurochemical and behavioral responses to stress, but whether the experience of choosing to exercise, and exerting control over that exercise, is a critical factor in producing exercise-induced stress resistance is unknown. The current studies investigated whether the protective effects of exercise against the anxiety- and depression-like consequences of stress are dependent on exercise controllability and a brain region implicated in the protective effects of controllable experiences, the medial prefrontal cortex. Adult male Fischer 344 rats remained sedentary, were forced to run on treadmills or motorised running wheels, or had voluntary access to wheels for 6 weeks. Three weeks after exercise onset, rats received sham surgery or excitotoxic lesions of the medial prefrontal cortex. Rats were exposed to home cage or uncontrollable tail shock treatment three weeks later. Shock-elicited fear conditioning and shuttle box escape testing occurred the next day. Both forced and voluntary wheel running, but not treadmill training, prevented the exaggerated fear conditioning and interference with escape learning produced by uncontrollable stress. Lesions of the medial prefrontal cortex failed to eliminate the protective effects of forced or voluntary wheel running. These data suggest that exercise controllability and the medial prefrontal cortex are not critical factors in conferring the protective effects of exercise against the affective consequences of stressor exposure, and imply that exercise perceived as forced may still benefit affect and mental health.

  13. [Is the prefrontal cortex the center of the universe?].

    PubMed

    Garcia-Molina, A; Ensenat, A

    2015-10-16

    Introduccion. Actualmente, cuando reflexionamos sobre cual es la estructura mas relevante del encefalo humano invariablemente pensamos en las regiones anteriores de la corteza cerebral, concretamente en la corteza prefrontal. Si bien este ha sido el dogma predominante a lo largo de mas de 150 años, investigadores de reconocido prestigio han cuestionado abiertamente tal supuesto. Desarrollo. A caballo entre los siglos XIX y XX, diversos investigadores consideraron que las regiones corticales posteriores son la sede neuroanatomica de las mas altas facultades intelectuales. Entre todos ellos destaco, por la elaboracion de sus propuestas e impacto en la comunidad cientifica, el neuroanatomista aleman Paul Emil Flechsig (1847-1929). Wilder Graves Penfield (1891-1976) fue otro detractor del dogma que considera la corteza prefrontal el sustrato anatomico de los procesos mentales mas complejos y sublimes del ser humano. A mediados del siglo XX, Penfield mantuvo la hipotesis de la existencia de lo que denomino el sistema de integracion centrencefalico, responsable del nivel mas elevado de integracion del sistema nervioso central. Conclusiones. Las concepciones corticocentricas otorgan el preciado cetro de 'estructura mas importante del encefalo' a la corteza prefrontal. Sin embargo, no han faltado propuestas alternativas que, con mayor o menor exito, han intentado arrebatarselo en favor de otras estructuras encefalicas.

  14. Improved multitasking following prefrontal tDCS.

    PubMed

    Filmer, Hannah L; Mattingley, Jason B; Dux, Paul E

    2013-01-01

    We have a limited capacity for mapping sensory information onto motor responses. This processing bottleneck is thought to be a key factor in determining our ability to make two decisions simultaneously - i.e., to multitask (Pashler, 1984, 1994; Welford, 1952). Previous functional imaging research (Dux, Ivanoff, Asplund, & Marois, 2006; Dux et al., 2009) has localised this bottleneck to the posterior lateral prefrontal cortex (pLPFC) of the left hemisphere. Currently, however, it is unknown whether this region is causally involved in multitasking performance. We investigated the role of the left pLPFC in multitasking using transcranial direct current stimulation (tDCS). The behavioural paradigm included single- and dual-task trials, each requiring a speeded discrimination of visual stimuli alone, auditory stimuli alone, or both visual and auditory stimuli. Reaction times for single- and dual-task trials were compared before, immediately after, and 20 min after anodal stimulation (excitatory), cathodal stimulation (inhibitory), or sham stimulation. The cost of responding to the two tasks (i.e., the reduction in performance for dual- vs single-task trials) was significantly reduced by cathodal stimulation, but not by anodal or sham stimulation. Overall, the results provide direct evidence that the left pLPFC is a key neural locus of the central bottleneck that limits an individual's ability to make two simple decisions simultaneously.

  15. Does stimulus complexity determine whether working memory storage relies on prefrontal or sensory cortex?

    PubMed

    Bancroft, Tyler D; Hockley, William E; Servos, Philip

    2014-10-01

    Traditionally, working and short-term memory (WM/STM) have been believed to rely on storage systems located in prefrontal cortex (PFC). However, recent experimental and theoretical efforts have suggested that, in many cases, sensory or other task-relevant cortex is the actual storage substrate for WM/STM. What factors determine whether a given WM/STM task relies on PFC or sensory cortex? In the present article, we outline recent experimental findings and suggest that the dimensionality or complexity of the to-be-remembered property or properties of a stimulus can be a determining factor.

  16. Neural mechanisms of economic commitment in the human medial prefrontal cortex.

    PubMed

    Tsetsos, Konstantinos; Wyart, Valentin; Shorkey, S Paul; Summerfield, Christopher

    2014-01-01

    Neurobiologists have studied decisions by offering successive, independent choices between goods or gambles. However, choices often have lasting consequences, as when investing in a house or choosing a partner. Here, humans decided whether to commit (by acceptance or rejection) to prospects that provided sustained financial return. BOLD signals in the rostral medial prefrontal cortex (rmPFC) encoded stimulus value only when acceptance or rejection was deferred into the future, suggesting a role in integrating value signals over time. By contrast, the dorsal anterior cingulate cortex (dACC) encoded stimulus value only when participants rejected (or deferred accepting) a prospect. dACC BOLD signals reflected two decision biases-to defer commitments to later, and to weight potential losses more heavily than gains-that (paradoxically) maximised reward in this task. These findings offer fresh insights into the pressures that shape economic decisions, and the computation of value in the medial prefrontal cortex. PMID:25333687

  17. Is the self special in the dorsomedial prefrontal cortex? An fMRI study.

    PubMed

    Yaoi, Ken; Osaka, Naoyuki; Osaka, Mariko

    2009-01-01

    In recent years, several neuroimaging studies have suggested that the neural basis of the self-referential process1 is special, especially in the medial prefrontal cortex (MPFC). However, it remains controversial whether activity of the MPFC (and other related brain regions) appears only during the self-referential process. We investigated the neural correlates during the processing of references to the self, close other (friend), and distant other (prime minister) using fMRI. In comparison with baseline findings, referential processing to the three kinds of persons defined above showed common activation patterns in the dorsomedial prefrontal cortex (DMPFC), left middle temporal gyrus, left angular gyrus, posterior cingulate cortex and right cerebellum. Additionally, percent changes in BOLD signal in five regions of interest demonstrated the same findings. The result indicated that DMPFC was not special for the self-referential process, while there are common neural bases for evaluating the personalities of the self and others. PMID:19588282

  18. Multitasking of attention and memory functions in the primate prefrontal cortex.

    PubMed

    Messinger, Adam; Lebedev, Mikhail A; Kralik, Jerald D; Wise, Steven P

    2009-04-29

    In motor and sensory areas of cortex, neuronal activity often depends on the location of a movement target or a sensory stimulus, with each neuron tuned to a single part of space called a preferred direction (when motor) or a receptive field (when sensory). As we previously reported, some neurons in the monkey prefrontal cortex are tuned to two parts of space, which we interpreted as reflecting attention and working memory, respectively. Monkeys performed a behavioral task in which they attended to a visual stimulus at one location while remembering a second place, and these locations were varied from trial to trial to assess spatial tuning. Most spatially tuned neurons specialized in either attentional or mnemonic processing, but about one-third of the cells showed tuning for both. Here, we show that the latter population, called multitasking neurons, improves the encoding of both the attended and remembered locations. These neurons do so for three reasons: (1) the preferred directions for attention and for working memory usually differ (and often diametrically oppose one another), (2) they have stronger tuning than specialized cells, and (3) pairs of multitasking neurons represent these cognitive parameters more efficiently than pairs that include even a single specialized cell. These findings suggest that multitasking neurons provide a computational advantage for behaviors that place simultaneous demands on two or more cognitive processes.

  19. Visual space is compressed in prefrontal cortex before eye movements.

    PubMed

    Zirnsak, Marc; Steinmetz, Nicholas A; Noudoost, Behrad; Xu, Kitty Z; Moore, Tirin

    2014-03-27

    We experience the visual world through a series of saccadic eye movements, each one shifting our gaze to bring objects of interest to the fovea for further processing. Although such movements lead to frequent and substantial displacements of the retinal image, these displacements go unnoticed. It is widely assumed that a primary mechanism underlying this apparent stability is an anticipatory shifting of visual receptive fields (RFs) from their presaccadic to their postsaccadic locations before movement onset. Evidence of this predictive 'remapping' of RFs has been particularly apparent within brain structures involved in gaze control. However, critically absent among that evidence are detailed measurements of visual RFs before movement onset. Here we show that during saccade preparation, rather than remap, RFs of neurons in a prefrontal gaze control area massively converge towards the saccadic target. We mapped the visual RFs of prefrontal neurons during stable fixation and immediately before the onset of eye movements, using multi-electrode recordings in monkeys. Following movements from an initial fixation point to a target, RFs remained stationary in retinocentric space. However, in the period immediately before movement onset, RFs shifted by as much as 18 degrees of visual angle, and converged towards the target location. This convergence resulted in a threefold increase in the proportion of RFs responding to stimuli near the target region. In addition, like in human observers, the population of prefrontal neurons grossly mislocalized presaccadic stimuli as being closer to the target. Our results show that RF shifts do not predict the retinal displacements due to saccades, but instead reflect the overriding perception of target space during eye movements. PMID:24670771

  20. Dopaminergic Dysregulation in Prefrontal Cortex of Rhesus Monkeys Following Cocaine Self-Administration

    PubMed Central

    McIntosh, Scot; Howell, Leonard; Hemby, Scott E.

    2013-01-01

    Chronic cocaine administration regulates the expression of several proteins related to dopaminergic signaling and synaptic function in the mesocorticolimbic pathway, including the prefrontal cortex. Functional abnormalities in the prefrontal cortex are hypothesized to be due in part to the expression of proteins involved in dopamine signaling and plasticity. Adult male rhesus monkeys self-administered cocaine (i.v.) under limited (n = 4) and extended access conditions (n = 6). The abundance of surrogate markers of dopamine signaling and plasticity in the dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC) were examined: glycosylated and non-glycosylated forms of the dopamine transporter (efficiency of dopamine transport), tyrosine hydroxylase (TH; marker of dopamine synthesis) and phosphorylated TH at Serine 30 and 40 (markers of enzyme activity), extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK 2), and phosphorylated ERK1 and ERK2 (phosphorylates TH Serine 31; markers of synaptic plasticity), and markers of synaptic integrity, spinophilin and post-synaptic density protein 95 (roles in dopamine signaling and response to cocaine). Extended cocaine access increased non-glycosylated and glycosylated DAT in DLPFC and OFC. While no differences in TH expression were observed between groups for any of the regions, extended access induced significant elevations in pTHSer31 in all regions. In addition, a slight but significant reduction in phosphorylated pTHSer40 was found in the DLPFC. Phosphorylated ERK2 was increased in all regions; however, pERK1 was decreased in ACC and OFC but increased in DLPFC. PSD-95 was increased in the OFC but not in DLPFC or ACC. Furthermore, extended cocaine self-administration elicited significant increases in spinophilin protein expression in all regions. Results from the study provide insight into the biochemical alterations occurring in primate prefrontal cortex. PMID

  1. Dopaminergic dysregulation in prefrontal cortex of rhesus monkeys following cocaine self-administration.

    PubMed

    McIntosh, Scot; Howell, Leonard; Hemby, Scott E

    2013-01-01

    Chronic cocaine administration regulates the expression of several proteins related to dopaminergic signaling and synaptic function in the mesocorticolimbic pathway, including the prefrontal cortex. Functional abnormalities in the prefrontal cortex are hypothesized to be due in part to the expression of proteins involved in dopamine signaling and plasticity. Adult male rhesus monkeys self-administered cocaine (i.v.) under limited (n = 4) and extended access conditions (n = 6). The abundance of surrogate markers of dopamine signaling and plasticity in the dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC) were examined: glycosylated and non-glycosylated forms of the dopamine transporter (efficiency of dopamine transport), tyrosine hydroxylase (TH; marker of dopamine synthesis) and phosphorylated TH at Serine 30 and 40 (markers of enzyme activity), extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK 2), and phosphorylated ERK1 and ERK2 (phosphorylates TH Serine 31; markers of synaptic plasticity), and markers of synaptic integrity, spinophilin and post-synaptic density protein 95 (roles in dopamine signaling and response to cocaine). Extended cocaine access increased non-glycosylated and glycosylated DAT in DLPFC and OFC. While no differences in TH expression were observed between groups for any of the regions, extended access induced significant elevations in pTH(Ser31) in all regions. In addition, a slight but significant reduction in phosphorylated pTH(Ser40) was found in the DLPFC. Phosphorylated ERK2 was increased in all regions; however, pERK1 was decreased in ACC and OFC but increased in DLPFC. PSD-95 was increased in the OFC but not in DLPFC or ACC. Furthermore, extended cocaine self-administration elicited significant increases in spinophilin protein expression in all regions. Results from the study provide insight into the biochemical alterations occurring in primate prefrontal cortex

  2. Anterior prefrontal cortex contributes to action selection through tracking of recent reward trends.

    PubMed

    Kovach, Christopher K; Daw, Nathaniel D; Rudrauf, David; Tranel, Daniel; O'Doherty, John P; Adolphs, Ralph

    2012-06-20

    The functions of prefrontal cortex remain enigmatic, especially for its anterior sectors, putatively ranging from planning to self-initiated behavior, social cognition, task switching, and memory. A predominant current theory regarding the most anterior sector, the frontopolar cortex (FPC), is that it is involved in exploring alternative courses of action, but the detailed causal mechanisms remain unknown. Here we investigated this issue using the lesion method, together with a novel model-based analysis. Eight patients with anterior prefrontal brain lesions including the FPC performed a four-armed bandit task known from neuroimaging studies to activate the FPC. Model-based analyses of learning demonstrated a selective deficit in the ability to extrapolate the most recent trend, despite an intact general ability to learn from past rewards. Whereas both brain-damaged and healthy controls used comparisons between the two most recent choice outcomes to infer trends that influenced their decision about the next choice, the group with anterior prefrontal lesions showed a complete absence of this component and instead based their choice entirely on the cumulative reward history. Given that the FPC is thought to be the most evolutionarily recent expansion of primate prefrontal cortex, we suggest that its function may reflect uniquely human adaptations to select and update models of reward contingency in dynamic environments.

  3. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  4. Anterior prefrontal cortex contributes to action selection through tracking of recent reward trends.

    PubMed

    Kovach, Christopher K; Daw, Nathaniel D; Rudrauf, David; Tranel, Daniel; O'Doherty, John P; Adolphs, Ralph

    2012-06-20

    The functions of prefrontal cortex remain enigmatic, especially for its anterior sectors, putatively ranging from planning to self-initiated behavior, social cognition, task switching, and memory. A predominant current theory regarding the most anterior sector, the frontopolar cortex (FPC), is that it is involved in exploring alternative courses of action, but the detailed causal mechanisms remain unknown. Here we investigated this issue using the lesion method, together with a novel model-based analysis. Eight patients with anterior prefrontal brain lesions including the FPC performed a four-armed bandit task known from neuroimaging studies to activate the FPC. Model-based analyses of learning demonstrated a selective deficit in the ability to extrapolate the most recent trend, despite an intact general ability to learn from past rewards. Whereas both brain-damaged and healthy controls used comparisons between the two most recent choice outcomes to infer trends that influenced their decision about the next choice, the group with anterior prefrontal lesions showed a complete absence of this component and instead based their choice entirely on the cumulative reward history. Given that the FPC is thought to be the most evolutionarily recent expansion of primate prefrontal cortex, we suggest that its function may reflect uniquely human adaptations to select and update models of reward contingency in dynamic environments. PMID:22723683

  5. Prefrontal Cortex Haemodynamics and Affective Responses during Exercise: A Multi-Channel Near Infrared Spectroscopy Study

    PubMed Central

    Tempest, Gavin D.; Eston, Roger G.; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  6. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise.

  7. Remote effects of hypothalamic lesions in the prefrontal cortex of craniopharygioma patients.

    PubMed

    Ozyurt, Jale; Lorenzen, Anna; Gebhardt, Ursel; Warmuth-Metz, Monika; Müller, Hermann L; Thiel, Christiane M

    2014-05-01

    Albeit histologically low grade (WHO I(o)) brain tumors, craniopharyngiomas and/or their surgical removal frequently affect the hypothalamus, amongst other brain regions at risk. Due to rich hypothalamic connections with prefrontal and limbic regions, hypothalamic injury may adversely affect neural substrates of emotion processing and higher cognitive control, including memory and executive functions. The current study is the first to investigate the consequences of hypothalamic involvement on neural substrates of emotional and cognitive functioning. Ten patients with childhood craniopharyngioma and known hypothalamic involvement and fifteen age- and intelligence matched control subjects (median age: 17.8 and 17.3 yrs.) were studied with functional magnetic resonance imaging and an emotional face recognition task. During encoding, participants were asked to classify neutral and emotional faces. In a subsequent recognition phase, participants had to recognize these old faces within a set of new faces. Behavioral performance was comparable between patients and controls. Neural activity revealed, however, differential recruitment of fronto-limbic brain regions during recognition. Patients exhibited an abnormal pattern of task-induced activation and deactivation in the anterior and posterior rostral medial prefrontal cortex and a higher functional coupling between anterior rostral medial prefrontal cortex and the thalamus. Additionally, we found a higher reactivity in the patients' amygdala to emotional relative to neutral faces when compared to healthy controls. Our data provide first evidence that hypothalamic damage impacts neural correlates of memory retrieval in medial prefrontal cortex, indicating a less efficient use of an area involved in executive control processes. We propose that the deactivation failure in the patients' anterior rostral medial prefrontal cortex is related to an increased coupling with the thalamus and reflects a reduced efficiency to

  8. Relationship between changes in rat behavior and integral biochemical indexes determined by laser correlation spectroscopy after photothrombosis of the prefrontal cortex.

    PubMed

    Romanova, G A; Shakova, F M; Kovaleva, O I; Pivovarov, V V; Khlebnikova, N N; Karganov, M Yu

    2004-02-01

    Experiments on rats showed that Noopept improved retention and retrieval of conditioned passive avoidance response after phototrombosis of the prefrontal cortex (a procedure impairing retention of memory traces). The impairment of mnesic functions was accompanied by changes in integral biochemical indexes of the plasma determined by laser correlation spectroscopy. Treatment of behavioral disorders with Noopepet normalized biochemical indexes. PMID:15273757

  9. Perseverative Interference with Object-in-Place Scene Learning in Rhesus Monkeys with Bilateral Ablation of Ventrolateral Prefrontal Cortex

    ERIC Educational Resources Information Center

    Baxter, Mark G.; Browning, Philip G. F.; Mitchell, Anna S.

    2008-01-01

    Surgical disconnection of the frontal cortex and inferotemporal cortex severely impairs many aspects of visual learning and memory, including learning of new object-in-place scene memory problems, a monkey model of episodic memory. As part of a study of specialization within prefrontal cortex in visual learning and memory, we tested monkeys with…

  10. Multisynaptic projections from the ventrolateral prefrontal cortex to hand and mouth representations of the monkey primary motor cortex.

    PubMed

    Miyachi, Shigehiro; Hirata, Yoshihiro; Inoue, Ken-ichi; Lu, Xiaofeng; Nambu, Atsushi; Takada, Masahiko

    2013-07-01

    Different sectors of the prefrontal cortex have distinct neuronal connections with higher-order sensory areas and/or limbic structures and are related to diverse aspects of cognitive functions, such as visual working memory and reward-based decision-making. Recent studies have revealed that the prefrontal cortex (PF), especially the lateral PF, is also involved in motor control. Hence, different sectors of the PF may contribute to motor behaviors with distinct body parts. To test this hypothesis anatomically, we examined the patterns of multisynaptic projections from the PF to regions of the primary motor cortex (MI) that represent the arm, hand, and mouth, using retrograde transsynaptic transport of rabies virus. Four days after rabies injections into the hand or mouth region, particularly dense neuron labeling was observed in the ventrolateral PF, including the convexity part of ventral area 46. After the rabies injections into the mouth region, another dense cluster of labeled neurons was seen in the orbitofrontal cortex (area 13). By contrast, rabies labeling of PF neurons was rather sparse in the arm-injection cases. The present results suggest that the PF-MI multisynaptic projections may be organized such that the MI hand and mouth regions preferentially receive cognitive information for execution of elaborate motor actions. PMID:23664864

  11. Working memory coding of analog stimulus properties in the human prefrontal cortex.

    PubMed

    Spitzer, Bernhard; Gloel, Matthias; Schmidt, Timo T; Blankenburg, Felix

    2014-08-01

    Building on evidence for working memory (WM) coding of vibrotactile frequency information in monkey prefrontal cortex, recent electroencephalography studies found frequency processing in human WM to be reflected by quantitative modulations of prefrontal upper beta activity (20-30 Hz) as a function of the to-be-maintained stimulus attribute. This kind of stimulus-dependent activity has been observed across different sensory modalities, suggesting a generalized role of prefrontal beta during abstract WM processing of quantitative magnitude information. However, until now the available empirical evidence for such quantitative WM representation remains critically limited to the retention of periodic stimulus frequencies. In the present experiment, we used retrospective cueing to examine the quantitative WM processing of stationary (intensity) and temporal (duration) attributes of a previously presented tactile stimulus. We found parametric modulations of prefrontal beta activity during cued WM processing of each type of quantitative information, in a very similar manner as had before been observed only for periodic frequency information. In particular, delayed prefrontal beta modulations systematically reflected the magnitude of the retrospectively selected stimulus attribute and were functionally linked to successful behavioral task performance. Together, these findings converge on a generalized role of stimulus-dependent prefrontal beta-band oscillations during abstract scaling of analog quantity information in human WM. PMID:23547134

  12. Impaired executive function following ischemic stroke in the rat medial prefrontal cortex.

    PubMed

    Cordova, Chris A; Jackson, Danielle; Langdon, Kristopher D; Hewlett, Krista A; Corbett, Dale

    2014-01-01

    Small (lacunar) infarcts frequently arise in frontal and midline thalamic regions in the absence of major stroke. Damage to these areas often leads to impairment of executive function likely as a result of interrupting connections of the prefrontal cortex. Thus, patients experience frontal-like symptoms such as impaired ability to shift ongoing behavior and attention. In contrast, executive dysfunction has not been demonstrated in rodent models of stroke, thereby limiting the development of potential therapies for human executive dysfunction. Male Sprague-Dawley rats (n=40) underwent either sham surgery or bilateral endothelin-1 injections in the mediodorsal nucleus of the thalamus or in the medial prefrontal cortex. Executive function was assessed using a rodent attention set shifting test that requires animals to shift attention to stimuli in different stimulus dimensions. Medial prefrontal cortex ischemia impaired attention shift performance between different stimulus dimensions while sparing stimulus discrimination and attention shifts within a stimulus dimension, indicating a selective attention set-shift deficit. Rats with mediodorsal thalamic lacunar damage did not exhibit a cognitive impairment relative to sham controls. The selective attention set shift impairment observed in this study is consistent with clinical data demonstrating selective executive disorders following stroke within specific sub-regions of frontal cortex. These data contribute to the development and validation of a preclinical animal model of executive dysfunction, that can be employed to identify potential therapies for ameliorating cognitive deficits following stroke.

  13. The time course of ventrolateral prefrontal cortex involvement in memory formation.

    PubMed

    Machizawa, Maro G; Kalla, Roger; Walsh, Vincent; Otten, Leun J

    2010-03-01

    Human neuroimaging studies have implicated a number of brain regions in long-term memory formation. Foremost among these is ventrolateral prefrontal cortex. Here, we used double-pulse transcranial magnetic stimulation (TMS) to assess whether the contribution of this part of cortex is crucial for laying down new memories and, if so, to examine the time course of this process. Healthy adult volunteers performed an incidental encoding task (living/nonliving judgments) on sequences of words. In separate series, the task was performed either on its own or while TMS was applied to one of two sites of experimental interest (left/right anterior inferior frontal gyrus) or a control site (vertex). TMS pulses were delivered at 350, 750, or 1,150 ms following word onset. After a delay of 15 min, memory for the items was probed with a recognition memory test including confidence judgments. TMS to all three sites nonspecifically affected the speed and accuracy with which judgments were made during the encoding task. However, only TMS to prefrontal cortex affected later memory performance. Stimulation of left or right inferior frontal gyrus at all three time points reduced the likelihood that a word would later be recognized by a small, but significant, amount (approximately 4%). These findings indicate that bilateral ventrolateral prefrontal cortex plays an essential role in memory formation, exerting its influence between > or = 350 and 1,150 ms after an event is encountered. PMID:20089812

  14. Does transcranial direct current stimulation to prefrontal cortex affect mood and emotional memory retrieval in healthy individuals?

    PubMed

    Morgan, Helen M; Davis, Nick J; Bracewell, R Martyn

    2014-01-01

    Studies using transcranial direct current stimulation (tDCS) of prefrontal cortex to improve symptoms of depression have had mixed results. We examined whether using tDCS to change the balance of activity between left and right dorsolateral prefrontal cortex (DLPFC) can alter mood and memory retrieval of emotional material in healthy volunteers. Participants memorised emotional images, then tDCS was applied bilaterally to DLPFC while they performed a stimulus-response compatibility task. Participants were then presented with a set of images for memory retrieval. Questionnaires to examine mood and motivational state were administered at the beginning and end of each session. Exploratory data analyses showed that the polarity of tDCS to DLPFC influenced performance on a stimulus-response compatibility task and this effect was dependent on participants' prior motivational state. However, tDCS polarity had no effect on the speed or accuracy of memory retrieval of emotional images and did not influence positive or negative affect. These findings suggest that the balance of activity between left and right DLPFC does not play a critical role in the mood state of healthy individuals. We suggest that the efficacy of prefrontal tDCS depends on the initial activation state of neurons and future work should take this into account.

  15. Physical Exercise Enhances Cognitive Flexibility as Well as Astrocytic and Synaptic Markers in the Medial Prefrontal Cortex

    PubMed Central

    Brockett, Adam T.; LaMarca, Elizabeth A.; Gould, Elizabeth

    2015-01-01

    Physical exercise enhances a wide range of cognitive functions in humans. Running-induced cognitive enhancement has also been demonstrated in rodents but with a strong emphasis on tasks that require the hippocampus. Additionally, studies designed to identify mechanisms that underlie cognitive enhancement with physical exercise have focused on running-induced changes in neurons with little attention paid to such changes in astrocytes. To further our understanding of how the brain changes with physical exercise, we investigated whether running alters performance on cognitive tasks that require the prefrontal cortex and whether any such changes are associated with astrocytic, as well as neuronal, plasticity. We found that running enhances performance on cognitive tasks known to rely on the prefrontal cortex. By contrast, we found no such improvement on a cognitive task known to rely on the perirhinal cortex. Moreover, we found that running enhances synaptic, dendritic and astrocytic measures in several brain regions involved in cognition but that changes in the latter measures were more specific to brain regions associated with cognitive improvements. These findings suggest that physical exercise induces widespread plasticity in both neuronal and nonneuronal elements and that both types of changes may be involved in running-induced cognitive enhancement. PMID:25938418

  16. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    PubMed

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects.

  17. Motor learning and modulation of prefrontal cortex: an fNIRS assessment

    NASA Astrophysics Data System (ADS)

    Ono, Yumie; Noah, Jack Adam; Zhang, Xian; Nomoto, Yasunori; Suzuki, Tatsuya; Shimada, Sotaro; Tachibana, Atsumichi; Bronner, Shaw; Hirsch, Joy

    2015-12-01

    Objective. Prefrontal hemodynamic responses are observed during performance of motor tasks. Using a dance video game (DVG), a complex motor task that requires temporally accurate footsteps with given visual and auditory cues, we investigated whether 20 h of DVG training modified hemodynamic responses of the prefrontal cortex in six healthy young adults. Approach. Fronto-temporal activity during actual DVG play was measured using functional near-infrared spectroscopy (fNIRS) pre- and post-training. To evaluate the training-induced changes in the time-courses of fNIRS signals, we employed a regression analysis using the task-specific template fNIRS signals that were generated from alternate well-trained and/or novice DVG players. The HRF was also separately incorporated as a template to construct an alternate regression model. Change in coefficients for template functions at pre- and post- training were determined and compared among different models. Main results. Training significantly increased the motor performance using the number of temporally accurate steps in the DVG as criteria. The mean oxygenated hemoglobin (ΔoxyHb) waveform changed from an activation above baseline pattern to that of a below baseline pattern. Participants showed significantly decreased coefficients for regressors of the ΔoxyHb response of novice players and HRF. The model using ΔoxyHb responses from both well-trained and novice players of DVG as templates showed the best fit for the ΔoxyHb responses of the participants at both pre- and post-training when analyzed with Akaike information criteria. Significance. These results suggest that the coefficients for the template ΔoxyHb responses of the novice players are sensitive indicators of motor learning during the initial stage of training and thus clinically useful to determine the improvement in motor performance when patients are engaged in a specific rehabilitation program.

  18. Implicitly perceived vocal attractiveness modulates prefrontal cortex activity.

    PubMed

    Bestelmeyer, Patricia E G; Latinus, Marianne; Bruckert, Laetitia; Rouger, Julien; Crabbe, Frances; Belin, Pascal

    2012-06-01

    Social interactions involve more than "just" language. As important is a more primitive nonlinguistic mode of communication acting in parallel with linguistic processes and driving our decisions to a much higher degree than is generally suspected. Amongst the "honest signals" that influence our behavior is perceived vocal attractiveness. Not only does vocal attractiveness reflect important biological characteristics of the speaker, it also influences our social perceptions according to the "what sounds beautiful is good" phenomenon. Despite the widespread influence of vocal attractiveness on social interactions revealed by behavioral studies, its neural underpinnings are yet unknown. We measured brain activity while participants listened to a series of vocal sounds ("ah") and performed an unrelated task. We found that voice-sensitive auditory and inferior frontal regions were strongly correlated with implicitly perceived vocal attractiveness. While the involvement of auditory areas reflected the processing of acoustic contributors to vocal attractiveness ("distance to mean" and spectrotemporal regularity), activity in inferior prefrontal regions (traditionally involved in speech processes) reflected the overall perceived attractiveness of the voices despite their lack of linguistic content. These results suggest the strong influence of hidden nonlinguistic aspects of communication signals on cerebral activity and provide an objective measure of this influence.

  19. Distinct control networks for cognition and emotion in the prefrontal cortex.

    PubMed

    Kompus, Kristiina; Hugdahl, Kenneth; Ohman, Arne; Marklund, Petter; Nyberg, Lars

    2009-12-25

    The activation of dorsolateral prefrontal cortex (dlPFC) has been suggested to reflect the engagement of a control mechanism for top-down biasing of context processing in resource-demanding memory tasks. Here we tested the hypothesis that the dlPFC subserves a similar function also in attention and emotion tasks. 18 healthy young adults were tested in a functional magnetic resonance imaging (fMRI) study where the demands for context processing were manipulated in three different cognitive domains: auditory attention, episodic retrieval, and emotion regulation. We found that the right dlPFC was jointly sensitive to increased cognitive demands in the attention and memory tasks. By contrast, increased demands in the emotion task (reappraisal) were associated with increased activity in ventromedial PFC along with decreased amygdala activity. Our findings of divergent prefrontal control networks for cognitive and emotional control extend previous separations of cognition and emotion in the anterior cingulate cortex.

  20. Theta coupling between V4 and prefrontal cortex predicts visual short-term memory performance.

    PubMed

    Liebe, Stefanie; Hoerzer, Gregor M; Logothetis, Nikos K; Rainer, Gregor

    2012-01-29

    Short-term memory requires communication between multiple brain regions that collectively mediate the encoding and maintenance of sensory information. It has been suggested that oscillatory synchronization underlies intercortical communication. Yet, whether and how distant cortical areas cooperate during visual memory remains elusive. We examined neural interactions between visual area V4 and the lateral prefrontal cortex using simultaneous local field potential (LFP) recordings and single-unit activity (SUA) in monkeys performing a visual short-term memory task. During the memory period, we observed enhanced between-area phase synchronization in theta frequencies (3-9 Hz) of LFPs together with elevated phase locking of SUA to theta oscillations across regions. In addition, we found that the strength of intercortical locking was predictive of the animals' behavioral performance. This suggests that theta-band synchronization coordinates action potential communication between V4 and prefrontal cortex that may contribute to the maintenance of visual short-term memories.

  1. Identification of prefrontal cortex (BA10) activation while performing Stroop test using diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Khadka, Sabin; Chityala, Srujan R.; Tian, Fenghua; Liu, Hanli

    2011-03-01

    Stroop test is commonly used as a behavior-testing tool for psychological examinations that are related to attention and cognitive control of the human brain. Studies have shown activations in Broadmann area 10 (BA10) of prefrontal cortex (PFC) during attention and cognitive process. The use of diffuse optical tomography (DOT) for human brain mapping is becoming more prevalent. In this study we expect to find neural correlates between the performed cognitive tasks and hemodynamic signals detected by a DOT system. Our initial observation showed activation of oxy-hemoglobin concentration in BA 10, which is consistent with some results seen by positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). Our study demonstrates the possibility of combining DOT with Stroop test to quantitatively investigate cognitive functions of the human brain at the prefrontal cortex.

  2. Virtual reality and the role of the prefrontal cortex in adults and children.

    PubMed

    Jäncke, Lutz; Cheetham, Marcus; Baumgartner, Thomas

    2009-05-01

    In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences. PMID:19753097

  3. Virtual reality and the role of the prefrontal cortex in adults and children.

    PubMed

    Jäncke, Lutz; Cheetham, Marcus; Baumgartner, Thomas

    2009-05-01

    In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences.

  4. Benefit of the doubt: a new view of the role of the prefrontal cortex in executive functioning and decision making

    PubMed Central

    Asp, Erik; Manzel, Kenneth; Koestner, Bryan; Denburg, Natalie L.; Tranel, Daniel

    2013-01-01

    The False Tagging Theory (FTT) is a neuroanatomical model of belief and doubt processes that proposes a single, unique function for the prefrontal cortex. Here, we review evidence pertaining to the FTT, the implications of the FTT regarding fractionation of the prefrontal cortex, and the potential benefits of the FTT for new neuroanatomical conceptualizations of executive functions. The FTT provides a parsimonious account that may help overcome theoretical problems with prefrontal cortex mediated executive control such as the homunculus critique. Control in the FTT is examined via the “heuristics and biases” psychological framework for human judgment. The evidence indicates that prefrontal cortex mediated doubting is at the core of executive functioning and may explain some biases of intuitive judgments. PMID:23745103

  5. Benefit of the doubt: a new view of the role of the prefrontal cortex in executive functioning and decision making.

    PubMed

    Asp, Erik; Manzel, Kenneth; Koestner, Bryan; Denburg, Natalie L; Tranel, Daniel

    2013-01-01

    The False Tagging Theory (FTT) is a neuroanatomical model of belief and doubt processes that proposes a single, unique function for the prefrontal cortex. Here, we review evidence pertaining to the FTT, the implications of the FTT regarding fractionation of the prefrontal cortex, and the potential benefits of the FTT for new neuroanatomical conceptualizations of executive functions. The FTT provides a parsimonious account that may help overcome theoretical problems with prefrontal cortex mediated executive control such as the homunculus critique. Control in the FTT is examined via the "heuristics and biases" psychological framework for human judgment. The evidence indicates that prefrontal cortex mediated doubting is at the core of executive functioning and may explain some biases of intuitive judgments. PMID:23745103

  6. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    PubMed

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience. PMID:26831102

  7. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex

    PubMed Central

    Kostopoulos, Penelope; Petrides, Michael

    2016-01-01

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top–down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience. PMID:26831102

  8. Adaptation to Conflict via Context-Driven Anticipatory Signals in the Dorsomedial Prefrontal Cortex

    PubMed Central

    Horga, Guillermo; Maia, Tiago V.; Wang, Pengwei; Wang, Zhishun; Marsh, Rachel; Peterson, Bradley S.

    2011-01-01

    Behavioral interference elicited by competing response tendencies adapts to contextual changes. Recent nonhuman primate research suggests a key mnemonic role of distinct prefrontal cells in supporting such context-driven behavioral adjustments by maintaining conflict information across trials, but corresponding prefrontal functions have yet to be probed in humans. Using event-related functional magnetic resonance imaging (fMRI), we investigated the human neural substrates of contextual adaptations to conflict. We found that a neural system comprising the rostral dorsomedial prefrontal cortex and portions of the dorsolateral prefrontal cortex specifically encodes the history of previously experienced conflict and influences subsequent adaptation to conflict on a trial-by-trial basis. This neural system became active in anticipation of stimulus onsets during preparatory periods and interacted with a second neural system engaged during the processing of conflict. Our findings suggest that a dynamic interaction between a system that represents conflict history and a system that resolves conflict underlies the contextual adaptation to conflict. PMID:22072672

  9. Selective memory retrieval of auditory what and auditory where involves the ventrolateral prefrontal cortex.

    PubMed

    Kostopoulos, Penelope; Petrides, Michael

    2016-02-16

    There is evidence from the visual, verbal, and tactile memory domains that the midventrolateral prefrontal cortex plays a critical role in the top-down modulation of activity within posterior cortical areas for the selective retrieval of specific aspects of a memorized experience, a functional process often referred to as active controlled retrieval. In the present functional neuroimaging study, we explore the neural bases of active retrieval for auditory nonverbal information, about which almost nothing is known. Human participants were scanned with functional magnetic resonance imaging (fMRI) in a task in which they were presented with short melodies from different locations in a simulated virtual acoustic environment within the scanner and were then instructed to retrieve selectively either the particular melody presented or its location. There were significant activity increases specifically within the midventrolateral prefrontal region during the selective retrieval of nonverbal auditory information. During the selective retrieval of information from auditory memory, the right midventrolateral prefrontal region increased its interaction with the auditory temporal region and the inferior parietal lobule in the right hemisphere. These findings provide evidence that the midventrolateral prefrontal cortical region interacts with specific posterior cortical areas in the human cerebral cortex for the selective retrieval of object and location features of an auditory memory experience.

  10. Transcranial direct current stimulation of the prefrontal cortex: a means to modulate fear memories.

    PubMed

    Mungee, Aditya; Kazzer, Philipp; Feeser, Melanie; Nitsche, Michael A; Schiller, Daniela; Bajbouj, Malek

    2014-05-01

    Targeting memory processes by noninvasive interventions is a potential gateway to modulate fear memories as shown by animal and human studies in recent years. Modulation of fear memories by noninvasive brain stimulation techniques might be an attractive approach, which, however, has not been examined so far. We investigated the effect of transcranial direct current stimulation (tDCS) applied to the right dorsolateral prefrontal cortex and left supraorbital region on fear memories in humans. Seventy-four young, healthy individuals were assigned randomly to two groups, which underwent fear conditioning with mild electric stimuli paired with a visual stimulus. Twenty-four hours later, both groups were shown a reminder of the conditioned fearful stimulus. Shortly thereafter, they received either tDCS (right prefrontal--anodal, left supraorbital--cathodal) for 20 min at 1 mA current intensity or sham stimulation. A day later, fear responses of both groups were compared by monitoring skin conductance. On day 3, during fear response assessment, the tDCS group had a significantly (P<0.05) higher mean skin conductance in comparison with the sham group. These results suggest that tDCS (right prefrontal--anodal, left supraorbital--cathodal) enhanced fear memories, possibly by influencing the prefrontal cortex-amygdala circuit underlying the memory for fear.

  11. Localization of dysfunction in major depressive disorder: Prefrontal cortex and amygdala

    PubMed Central

    Murray, Elisabeth A.; Wise, Steven P.; Drevets, Wayne C.

    2010-01-01

    Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of ‘self’ underlies the core disorder in MDD; the medial frontal cortex represents ‘self’; interactions between the amygdala and cortical representations update their valuation; and inefficiency in using positive feedback by orbital prefrontal cortex contributes to MDD. PMID:21111403

  12. Role of the prefrontal cortex in the cognitive control of reaching movements: near-infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Goto, Kotaro; Hoshi, Yoko; Sata, Masashi; Kawahara, Masatoshi; Takahashi, Makoto; Murohashi, Harumitsu

    2011-12-01

    To elucidate the role of the prefrontal cortex in cognitive control of reaching movements, by multichannel near-infrared spectroscopy we examine changes in oxygenated hemoglobin (oxy-Hb) as an indicator of changes in regional cerebral blood flow in the bilateral dorsolateral (DLPFC), ventrolateral prefrontal cortex (VLPFC), and frontopolar cortex (FPC) during a reaching task with normal visual feedback (a consistent task) and a reaching task with flipped horizontal visual feedback (an inconsistent task). Subjects first perform 12 trials of the consistent task, and then perform six blocks of the inconsistent task, each of which consists of six trials. During the consistent task, oxy-Hb is increased only in the right VLPFC. During the first block of the inconsistent task, increases in oxy-Hb are observed in the bilateral DLPFC and the right VLPFC, whereas the increased oxy-Hb was gradually reduced as the block proceeded, which was accompanied by an improvement in the task performance. Eventually, there were no differences in the degree of change in oxy-Hb between the consistent and inconsistent tasks in the DLPFC and VLPFC. These findings suggest that the DLPFC is engaged in higher order cognitive control, while the right VLPFC is engaged in both higher and lower order cognitive controls.

  13. Inactivation of Primate Prefrontal Cortex Impairs Auditory and Audiovisual Working Memory

    PubMed Central

    Hwang, Jaewon; Romanski, Lizabeth M.

    2015-01-01

    The prefrontal cortex is associated with cognitive functions that include planning, reasoning, decision-making, working memory, and communication. Neurophysiology and neuropsychology studies have established that dorsolateral prefrontal cortex is essential in spatial working memory while the ventral frontal lobe processes language and communication signals. Single-unit recordings in nonhuman primates has shown that ventral prefrontal (VLPFC) neurons integrate face and vocal information and are active during audiovisual working memory. However, whether VLPFC is essential in remembering face and voice information is unknown. We therefore trained nonhuman primates in an audiovisual working memory paradigm using naturalistic face-vocalization movies as memoranda. We inactivated VLPFC, with reversible cortical cooling, and examined performance when faces, vocalizations or both faces and vocalization had to be remembered. We found that VLPFC inactivation impaired subjects' performance in audiovisual and auditory-alone versions of the task. In contrast, VLPFC inactivation did not disrupt visual working memory. Our studies demonstrate the importance of VLPFC in auditory and audiovisual working memory for social stimuli but suggest a different role for VLPFC in unimodal visual processing. SIGNIFICANCE STATEMENT The ventral frontal lobe, or inferior frontal gyrus, plays an important role in audiovisual communication in the human brain. Studies with nonhuman primates have found that neurons within ventral prefrontal cortex (VLPFC) encode both faces and vocalizations and that VLPFC is active when animals need to remember these social stimuli. In the present study, we temporarily inactivated VLPFC by cooling the cortex while nonhuman primates performed a working memory task. This impaired the ability of subjects to remember a face and vocalization pair or just the vocalization alone. Our work highlights the importance of the primate VLPFC in the processing of faces and

  14. Human Choice Strategy Varies with Anatomical Projections from Ventromedial Prefrontal Cortex to Medial Striatum.

    PubMed

    Piray, Payam; Toni, Ivan; Cools, Roshan

    2016-03-01

    Two distinct systems, goal-directed and habitual, support decision making. It has recently been hypothesized that this distinction may arise from two computational mechanisms, model-based and model-free reinforcement learning, neuronally implemented in frontostriatal circuits involved in learning and behavioral control. Here, we test whether the relative strength of anatomical connectivity within frontostriatal circuits accounts for variation in human individuals' reliance on model-based and model-free control. This hypothesis was tested by combining diffusion tensor imaging with a multistep decision task known to distinguish model-based and model-free control in humans. We found large interindividual differences in the degree of model-based control, and those differences are predicted by the structural integrity of white-matter tracts from the ventromedial prefrontal cortex to the medial striatum. Furthermore, an analysis based on masking out of bottom-up tracts suggests that this effect is driven by top-down influences from ventromedial prefrontal cortex to medial striatum. Our findings indicate that individuals with stronger afferences from the ventromedial prefrontal cortex to the medial striatum are more likely to rely on a model-based strategy to control their instrumental actions. These findings suggest a mechanism for instrumental action control through which medial striatum determines, at least partly, the relative contribution of model-based and model-free systems during decision-making according to top-down model-based information from the ventromedial prefrontal cortex. These findings have important implications for understanding the neural circuitry that might be susceptible to pathological computational processes in impulsive/compulsive psychiatric disorders. PMID:26961942

  15. Temperament type specific metabolite profiles of the prefrontal cortex and serum in cattle.

    PubMed

    Brand, Bodo; Hadlich, Frieder; Brandt, Bettina; Schauer, Nicolas; Graunke, Katharina L; Langbein, Jan; Repsilber, Dirk; Ponsuksili, Siriluk; Schwerin, Manfred

    2015-01-01

    In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response.

  16. Temperament Type Specific Metabolite Profiles of the Prefrontal Cortex and Serum in Cattle

    PubMed Central

    Brand, Bodo; Hadlich, Frieder; Brandt, Bettina; Schauer, Nicolas; Graunke, Katharina L.; Langbein, Jan; Repsilber, Dirk; Ponsuksili, Siriluk; Schwerin, Manfred

    2015-01-01

    In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response

  17. Impaired adult myelination in the prefrontal cortex of socially isolated mice

    PubMed Central

    Liu, Jia; Dietz, Karen; DeLoyht, Jacqueline M; Pedre, Xiomara; Kelkar, Dipti; Kaur, Jasbir; Vialou, Vincent; Lobo, Mary Kay; Dietz, David M; Nestler, Eric J; Dupree, Jeffrey; Casaccia, Patrizia

    2013-01-01

    Protracted social isolation of adult mice induced behavioral, transcriptional and ultrastructural changes in oligodendrocytes of the prefrontal cortex (PFC) and impaired adult myelination. Social re-integration was sufficient to normalize behavioral and transcriptional changes. Short periods of isolation affected chromatin and myelin, but did not induce behavioral changes. Thus, myelinating oligodendrocytes in the adult PFC respond to social interaction with chromatin changes, suggesting that myelination acts as a form of adult plasticity. PMID:23143512

  18. Activation of AMPA Receptors Mediates the Antidepressant Action of Deep Brain Stimulation of the Infralimbic Prefrontal Cortex.

    PubMed

    Jiménez-Sánchez, Laura; Castañé, Anna; Pérez-Caballero, Laura; Grifoll-Escoda, Marc; López-Gil, Xavier; Campa, Leticia; Galofré, Mireia; Berrocoso, Esther; Adell, Albert

    2016-06-01

    Although deep brain stimulation (DBS) has been used with success in treatment-resistant depression, little is known about its mechanism of action. We examined the antidepressant-like activity of short (1 h) DBS applied to the infralimbic prefrontal cortex in the forced swim test (FST) and the novelty-suppressed feeding test (NSFT). We also used in vivo microdialysis to evaluate the release of glutamate, γ-aminobutyric acid, serotonin, dopamine, and noradrenaline in the prefrontal cortex and c-Fos immunohistochemistry to determine the brain regions activated by DBS. One hour of DBS of the infralimbic prefrontal cortex has antidepressant-like effects in FST and NSFT, and increases prefrontal efflux of glutamate, which would activate AMPA receptors (AMPARs). This effect is specific of the infralimbic area since it is not observed after DBS of the prelimbic subregion. The activation of prefrontal AMPARs would result in a stimulation of prefrontal output to the brainstem, thus increasing serotonin, dopamine, and noradrenaline in the prefrontal cortex. Further, the activation of prefrontal AMPARs is necessary and sufficient condition for the antidepressant response of 1 h DBS.

  19. Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample.

    PubMed

    Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg

    2015-08-30

    Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility.

  20. Gender moderates the association between dorsal medial prefrontal cortex volume and depressive symptoms in a subclinical sample.

    PubMed

    Carlson, Joshua M; Depetro, Emily; Maxwell, Joshua; Harmon-Jones, Eddie; Hajcak, Greg

    2015-08-30

    Major depressive disorder is associated with lower medial prefrontal cortex volumes. The role that gender might play in moderating this relationship and what particular medial prefrontal cortex subregion(s) might be implicated is unclear. Magnetic resonance imaging was used to assess dorsal, ventral, and anterior cingulate regions of the medial prefrontal cortex in a normative sample of male and female adults. The Depression, Anxiety, and Stress Scale (DASS) was used to measure these three variables. Voxel-based morphometry was used to test for correlations between medial prefrontal gray matter volume and depressive traits. The dorsal medial frontal cortex was correlated with greater levels of depression, but not anxiety and stress. Gender moderates this effect: in males greater levels of depression were associated with lower dorsal medial prefrontal volumes, but in females no relationship was observed. The results indicate that even within a non-clinical sample, male participants with higher levels of depressive traits tend to have lower levels of gray matter volume in the dorsal medial prefrontal cortex. Our finding is consistent with low dorsal medial prefrontal volume contributing to the development of depression in males. Future longitudinal work is needed to substantiate this possibility. PMID:26166620

  1. Evidence for Mediodorsal Thalamus and Prefrontal Cortex Interactions during Cognition in Macaques

    PubMed Central

    Browning, Philip G. F.; Chakraborty, Subhojit; Mitchell, Anna S.

    2015-01-01

    It is proposed that mediodorsal thalamus contributes to cognition via interactions with prefrontal cortex. However, there is relatively little evidence detailing the interactions between mediodorsal thalamus and prefrontal cortex linked to cognition in primates. This study investigated these interactions during learning, memory, and decision-making tasks in rhesus monkeys using a disconnection lesion approach. Preoperatively, monkeys learned object-in-place scene discriminations embedded within colorful visual backgrounds. Unilateral neurotoxic lesions to magnocellular mediodorsal thalamus (MDmc) impaired the ability to learn new object-in-place scene discriminations. In contrast, unilateral ablations to ventrolateral and orbital prefrontal cortex (PFv+o) left learning intact. A second unilateral MDmc or PFv+o lesion in the contralateral hemisphere to the first operation, causing functional MDmc–PFv+o disconnection across hemispheres, further impaired learning object-in-place scene discriminations, although object discrimination learning remained intact. Adaptive decision-making after reward satiety devaluation was also reduced. These data highlight the functional importance of interactions between MDmc and PFv+o during learning object-in-place scene discriminations and adaptive decision-making but not object discrimination learning. Moreover, learning deficits observed after unilateral removal of MDmc but not PFv+o provide direct behavioral evidence of the MDmc role influencing more widespread regions of the frontal lobes in cognition. PMID:25979086

  2. NMDA receptor blockade alters stress-induced dendritic remodeling in medial prefrontal cortex.

    PubMed

    Martin, Kathryn P; Wellman, Cara L

    2011-10-01

    The development and relapse of many psychopathologies can be linked to both stress and prefrontal cortex dysfunction. Glucocorticoid stress hormones target medial prefrontal cortex (mPFC) and either chronic stress or chronic administration of glucocorticoids produces dendritic remodeling in prefrontal pyramidal neurons. Exposure to stress also causes an increase in the release of the excitatory amino acid glutamate, which binds to N-methyl-D-aspartate (NMDA) receptors, which are plentiful in mPFC. NMDA receptor activation is crucial for producing hippocampal dendritic remodeling due to stress and for dendritic reorganization in frontal cortex after cholinergic deafferentation. Thus, NMDA receptors could mediate stress-induced dendritic retraction in mPFC. To test this hypothesis, dendritic morphology of pyramidal cells in mPFC was assessed after blocking NMDA receptors with the competitive NMDA antagonist ±3-(2-carboxypiperazin-4yl)propyl-1-phosphonic acid (CPP) during restraint stress. Administration of CPP prevented stress-induced dendritic atrophy. Instead, CPP-injected stressed rats showed hypertrophy of apical dendrites compared with controls. These results suggest that NMDA activation is crucial for stress-induced dendritic atrophy in mPFC. Furthermore, NMDA receptor blockade uncovers a new pattern of stress-induced dendritic changes, suggesting that other neurohormonal changes in concert with NMDA receptor activation underlie the net dendritic retraction seen after chronic stress.

  3. Evidence for Mediodorsal Thalamus and Prefrontal Cortex Interactions during Cognition in Macaques.

    PubMed

    Browning, Philip G F; Chakraborty, Subhojit; Mitchell, Anna S

    2015-11-01

    It is proposed that mediodorsal thalamus contributes to cognition via interactions with prefrontal cortex. However, there is relatively little evidence detailing the interactions between mediodorsal thalamus and prefrontal cortex linked to cognition in primates. This study investigated these interactions during learning, memory, and decision-making tasks in rhesus monkeys using a disconnection lesion approach. Preoperatively, monkeys learned object-in-place scene discriminations embedded within colorful visual backgrounds. Unilateral neurotoxic lesions to magnocellular mediodorsal thalamus (MDmc) impaired the ability to learn new object-in-place scene discriminations. In contrast, unilateral ablations to ventrolateral and orbital prefrontal cortex (PFv+o) left learning intact. A second unilateral MDmc or PFv+o lesion in the contralateral hemisphere to the first operation, causing functional MDmc-PFv+o disconnection across hemispheres, further impaired learning object-in-place scene discriminations, although object discrimination learning remained intact. Adaptive decision-making after reward satiety devaluation was also reduced. These data highlight the functional importance of interactions between MDmc and PFv+o during learning object-in-place scene discriminations and adaptive decision-making but not object discrimination learning. Moreover, learning deficits observed after unilateral removal of MDmc but not PFv+o provide direct behavioral evidence of the MDmc role influencing more widespread regions of the frontal lobes in cognition. PMID:25979086

  4. Preferential decrease in dopamine utilization in prefrontal cortex by zopiclone, diazepam and zolpidem in unstressed rats.

    PubMed

    Boireau, A; Dubedat, P; Laduron, P M; Doble, A; Blanchard, J C

    1990-08-01

    This study has compared the effects of a cyclopyrrolone, zopiclone, a benzodiazepine, diazepam, and an imidazopyridine, zolpidem, on dopamine (DA) and DOPAC levels, and DA utilization (DOPAC/DA ratio) in rat striatum and prefrontal cortex. The endogenous levels of DA were significantly increased by both zopiclone (2.5, 10 and 40 mg kg-1 p.o.) and diazepam (10 and 40 mg kg-1 p.o.) in the prefrontal cortex, whereas striatal DA content was significantly increased only with the highest dose of diazepam (40 mg kg-1 p.o.). Diazepam (10 and 40 mg kg-1 p.o.) decreased cortical level of DOPAC more markedly than striatal levels, whereas zopiclone (40 mg kg-1 p.o.) only slightly decreased striatal DOPAC levels. Zopiclone and diazepam dose-dependently decreased DA utilization, an effect which was more marked in prefrontal cortex than in striatum. This result was confirmed with zolpidem, another benzodiazepine ligand. Zopiclone was most potent at decreasing DA utilization at the cortical level. The diazepam-induced decreases in DA metabolism and utilization were antagonized by Ro 15-1788, suggesting that the effects seen were mediated by specific benzodiazepine receptors. Thus, our results clearly show that ligands acting on the benzodiazepine receptor GABA receptor chloride ionophore complex can decrease the utilization of dopamine in unstressed rats. The preferential decrease in cortical DA utilization induced by benzodiazepine ligands may be compared to the well-known activation by stress of the mesocortical DAergic system. PMID:1981584

  5. Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex.

    PubMed

    Rubino, Tiziana; Prini, Pamela; Piscitelli, Fabiana; Zamberletti, Erica; Trusel, Massimo; Melis, Miriam; Sagheddu, Claudia; Ligresti, Alessia; Tonini, Raffaella; Di Marzo, Vincenzo; Parolaro, Daniela

    2015-01-01

    Current concepts suggest that exposure to THC during adolescence may act as a risk factor for the development of psychiatric disorders later in life. However, the molecular underpinnings of this vulnerability are still poorly understood. To analyze this, we investigated whether and how THC exposure in female rats interferes with different maturational events occurring in the prefrontal cortex during adolescence through biochemical, pharmacological and electrophysiological means. We found that the endocannabinoid system undergoes maturational processes during adolescence and that THC exposure disrupts them, leading to impairment of both endocannabinoid signaling and endocannabinoid-mediated LTD in the adult prefrontal cortex. THC also altered the maturational fluctuations of NMDA subunits, leading to larger amounts of gluN2B at adulthood. Adult animals exposed to THC during adolescence also showed increased AMPA gluA1 with no changes in gluA2 subunits. Finally, adolescent THC exposure altered cognition at adulthood. All these effects seem to be triggered by the disruption of the physiological role played by the endocannabinoid system during adolescence. Indeed, blockade of CB1 receptors from early to late adolescence seems to prevent the occurrence of pruning at glutamatergic synapses. These results suggest that vulnerability of adolescent female rats to long-lasting THC adverse effects might partly reside in disruption of the pivotal role played by the endocannabinoid system in the prefrontal cortex maturation.

  6. The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear

    PubMed Central

    Giustino, Thomas F.; Maren, Stephen

    2015-01-01

    Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD). As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL) and infralimbic (IL) subdivisions of the medial prefrontal cortex (mPFC) regulate the expression and suppression of fear in rodents, respectively. Here, we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression. PMID:26617500

  7. Predicting Treatment Outcomes from Prefrontal Cortex Activation for Self-Harming Patients with Borderline Personality Disorder: A Preliminary Study

    PubMed Central

    Ruocco, Anthony C.; Rodrigo, Achala H.; McMain, Shelley F.; Page-Gould, Elizabeth; Ayaz, Hasan; Links, Paul S.

    2016-01-01

    Self-harm is a potentially lethal symptom of borderline personality disorder (BPD) that often improves with dialectical behavior therapy (DBT). While DBT is effective for reducing self-harm in many patients with BPD, a small but significant number of patients either does not improve in treatment or ends treatment prematurely. Accordingly, it is crucial to identify factors that may prospectively predict which patients are most likely to benefit from and remain in treatment. In the present preliminary study, 29 actively self-harming patients with BPD completed brain-imaging procedures probing activation of the prefrontal cortex (PFC) during impulse control prior to beginning DBT and after 7 months of treatment. Patients that reduced their frequency of self-harm the most over treatment displayed lower levels of neural activation in the bilateral dorsolateral prefrontal cortex (DLPFC) prior to beginning treatment, and they showed the greatest increases in activity within this region after 7 months of treatment. Prior to starting DBT, treatment non-completers demonstrated greater activation than treatment-completers in the medial PFC and right inferior frontal gyrus. Reductions in self-harm over the treatment period were associated with increases in activity in right DLPFC even after accounting for improvements in depression, mania, and BPD symptom severity. These findings suggest that pre-treatment patterns of activation in the PFC underlying impulse control may be prospectively associated with improvements in self-harm and treatment attrition for patients with BPD treated with DBT. PMID:27242484

  8. Neural correlates of rules and conflict in medial prefrontal cortex during decision and feedback epochs

    PubMed Central

    Bissonette, Gregory B.; Roesch, Matthew R.

    2015-01-01

    The ability to properly adjust behavioral responses to cues in a changing environment is crucial for survival. Activity in the medial Prefrontal Cortex (mPFC) is thought to both represent rules to guide behavior as well as detect and resolve conflicts between rules in changing contingencies. However, while lesion and pharmacological studies have supported a crucial role for mPFC in this type of set-shifting, an understanding of how mPFC represents current rules or detects and resolves conflict between different rules is unclear. Here, we directly address the role of rat mPFC in shifting rule based behavioral strategies using a novel behavioral task designed to tease apart neural signatures of rules, conflict and direction. We demonstrate that activity of single neurons in rat mPFC represent distinct rules. Further, we show increased firing on high conflict trials in a separate population of mPFC neurons. Reduced firing in both populations of neurons was associated with poor performance. Moreover, activity in both populations increased and decreased firing during the outcome epoch when reward was and was not delivered on correct and incorrect trials, respectively. In addition, outcome firing was modulated by the current rule and the degree of conflict associated with the previous decision. These results promote a greater understanding of the role that mPFC plays in switching between rules, signaling both rule and conflict to promote improved behavioral performance. PMID:26500516

  9. Methamphetamine Self-Administration and Voluntary Exercise Have Opposing Effects on Medial Prefrontal Cortex Gliogenesis

    PubMed Central

    Mandyam, Chitra D.; Wee, Sunmee; Eisch, Amelia J.; Richardson, Heather N.; Koob, George F.

    2009-01-01

    Psychostimulant abuse produces deficits in prefrontal cortex (PFC) function, whereas physical activity improves PFC-dependent cognition and memory. The present study explored the vulnerability of medial PFC (mPFC) precursor proliferation and survival to methamphetamine self-administration and voluntary exercise, factors that may have opposing effects on mPFC plasticity to facilitate functional consequences. Intermittent 1 h access to methamphetamine (I-ShA) increased, but daily 1 and 6 h access decreased, proliferation and survival, with dose-dependent effects on mature cell phenotypes. All groups showed increased cell death. Voluntary exercise enhanced proliferation and survival but, in contrast to methamphetamine exposure, did not alter cell death or mature phenotypes. Furthermore, enhanced cell survival by I-ShA and voluntary exercise had profound effects on gliogenesis with differential regulation of oligodendrocytes versus astrocytes. In addition, new cells in the adult mPFC stain for the neuronal marker neuronal nuclear protein, although enhanced cell survival by I-ShA and voluntary exercise did not result in increased neurogenesis. Our findings demonstrate that mPFC gliogenesis is vulnerable to psychostimulant abuse and physical activity with distinct underlying mechanisms. The susceptibility of mPFC gliogenesis to even modest doses of methamphetamine could account for the pronounced pathology linked to psychostimulant abuse. PMID:17942739

  10. Causal role of prefrontal cortex in strengthening of episodic memories through reconsolidation.

    PubMed

    Sandrini, Marco; Censor, Nitzan; Mishoe, Jonathan; Cohen, Leonardo G

    2013-11-01

    Memory consolidation is a dynamic process. Reactivation of consolidated memories triggers reconsolidation, a time-limited period during which memories can be modified. Episodic memory refers to our ability to recall specific past events about what happened, including where and when. However, it is unknown whether noninvasive stimulation of the neocortex during reconsolidation might strengthen existing episodic memories in humans. To modify these memories, we applied repetitive transcranial magnetic stimulation (rTMS) over right lateral prefrontal cortex (PFC), a region involved in the reactivation of episodic memories. We report that rTMS of PFC after memory reactivation strengthened verbal episodic memories, an effect documented by improved recall 24 hr postreactivation compared to stimulation of PFC without reactivation and vertex (control site) after reactivation. In contrast, there was no effect of stimulation 1 hr postreactivation (control experiment), showing that memory strengthening is time dependent, consistent with the reconsolidation theory. Thus, we demonstrated that right lateral PFC plays a causal role in strengthening of episodic memories through reconsolidation in humans. Reconsolidation may serve as an opportunity to modify existing memories with noninvasive stimulation of a critical brain region, an issue of fundamental importance for memory research and clinical applications. PMID:24206845

  11. Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex.

    PubMed

    Enel, Pierre; Procyk, Emmanuel; Quilodran, René; Dominey, Peter Ford

    2016-06-01

    Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a

  12. Reservoir Computing Properties of Neural Dynamics in Prefrontal Cortex

    PubMed Central

    Procyk, Emmanuel; Dominey, Peter Ford

    2016-01-01

    Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a

  13. Forming a negative impression of another person correlates with activation in medial prefrontal cortex and amygdala.

    PubMed

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2011-09-01

    Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion. PMID:20693390

  14. Forming a negative impression of another person correlates with activation in medial prefrontal cortex and amygdala.

    PubMed

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2011-09-01

    Neural correlates involved in the formation of negative impression from face were investigated using event-related functional magnetic resonance imaging and a partial conditioning paradigm. Eighteen normal volunteers underwent imaging while they viewed the faces of two unfamiliar individuals: one individual's face was partially accompanied by negative emotion but the other's was not. After the volunteers learned the relationship between the faces and the emotion, they formed a more negative impression of the person's face when the emotion was presented. Subtraction analysis of the individuals' neutral faces revealed activation in the dorsal anterior cingulate cortex and superior temporal sulcus, but this activity did not correlate with the change of impression from face. On the other hand, the response in the left amygdala negatively correlated with the change of impression from face in the first run. Time modulation analysis revealed that activity in the dorsomedial prefrontal cortex associated with negative emotion was the largest in the initial part of the acquisition. These results suggest that a negative impression from face may be formed by orchestrated activity in the dorsomedial prefrontal cortex, dorsal anterior cingulate cortex and amygdala, and that the activity has a prominent role in the initial acquisition of negative emotion.

  15. Decreased chloride channel expression in the dorsolateral prefrontal cortex in schizophrenia.

    PubMed

    Sullivan, Courtney R; Funk, Adam J; Shan, Dan; Haroutunian, Vahram; McCullumsmith, Robert E

    2015-01-01

    Alterations in GABAergic neurotransmission are implicated in several psychiatric illnesses, including schizophrenia. The Na-K-Cl and K-Cl cotransporters regulate intracellular chloride levels. Abnormalities in cotransporter expression levels could shift the chloride electrochemical gradient and impair GABAergic transmission. In this study, we performed Western blot analysis to investigate whether the Na-K-Cl and K-Cl cotransporter protein is abnormally expressed in the dorsal lateral prefrontal cortex and the anterior cingulate cortex in patients with schizophrenia versus a control group. We found decreased K-Cl cotransporter protein expression in the dorsal lateral prefrontal cortex, but not the anterior cingulate cortex, in subjects with schizophrenia, supporting the hypothesis of region level abnormal GABAergic function in the pathophysiology of schizophrenia. Subjects with schizophrenia off antipsychotic medication at the time of death had decreased K-Cl cotransporter protein expression compared to both normal controls and subjects with schizophrenia on antipsychotics. Our results provide evidence for KCC2 protein abnormalities in schizophrenia and suggest that antipsychotic medications might reverse deficits of this protein in the illness. PMID:25826365

  16. Distinct lncRNA expression profiles in the prefrontal cortex of SD rats after exposure to methylphenidate.

    PubMed

    Wu, Tianqi; Chen, Chunxiao; Yang, Lei; Zhang, Min; Zhang, Xin; Jia, Jia; Wang, Jing; Fu, Ziyi; Cui, Xianwei; Ji, Chenbo; Guo, Xirong; Tong, Meiling; Chen, Ronghua; Hong, Qin; Chi, Xia

    2015-03-01

    Methylphenidate (MPH) is a central nervous system stimulant that is widely used to treat attention deficit hyperactivity disorder (ADHD) and has been shown to improve attention, cognitive function and behaviors in both patients and animal models of ADHD. Even among normal healthy people, MPH can facilitate the consolidation of memories and improve declarative memory. Using microarray techniques, we aimed to find new pharmacology profile of MPH. A Làt maze experiment showed that locomotor activity and non-selective attention were affected by 2 weeks of exposure to MPH. Then, we identified long non-coding RNA (lncRNA) signatures in the prefrontal cortex of rats; 461 up-regulated lncRNAs and 97 down-regulated lncRNAs were found in the MPH-exposed group compared with the control group using fold-change >1.5. GO and KEGG pathway analyses indicated biological functions related to the metabolism of neural chemical compounds and nerve cell development. Furthermore, we reported changes in uc.173+ related to the UBE2B gene, which may affect neurite outgrowth and axonal regeneration. At the same time, MRAK081997 associated with the DHFR gene may be involved in axon regeneration in the rodent central nervous system through DNA methylation. Our study showed distinct expression profiles of lncRNAs in the normal rat prefrontal cortex after exposure to MPH, offering information for further research of MPH and may suggesting a new therapeutic target for ADHD. PMID:25776507

  17. Medial prefrontal cortex supports recollection, but not familiarity, in the rat.

    PubMed

    Farovik, Anja; Dupont, Laura M; Arce, Miguel; Eichenbaum, Howard

    2008-12-10

    There is continuing controversy about the extent to which the rodent medial prefrontal cortical area (mPFC) is functionally homologous to the dorsolateral prefrontal cortex in humans and nonhuman primates. Previous studies have compared the effects of mPFC lesions in rats to those of dorsolateral prefrontal lesions in working memory, strategy switching, and temporal ordering. None, however, has examined the role of the rodent mPFC in recognition memory, wherein, in humans, dorsolateral prefrontal damage results in a deficit in source monitoring resulting in impaired recollection. In the present study, we examined recognition memory in rats with bilateral mPFC lesions (prelimbic/infralimbic regions; ibotenic acid) using a variant of a non-match-to-sample task with manipulations of response bias that allowed for a signal detection analysis that distinguishes recollection and familiarity contributions to recognition memory. Animals with medial prefrontal lesions had a modest overall deficit in recognition with no general change in their tendency to elicit "old" or "new" responses. Signal detection analyses indicated that rats with mPFC damage had a curvilinear and symmetrical receiver operating characteristic (ROC) curve, compared with a curvilinear and asymmetrical ROC curve in control subjects, indicating that mPFC damage severely reduced recollection-based performance, while sparing familiarity. The recollection failure was associated with an impaired ability to reject new items (increased false alarm rate), whereas the identification of old items (hit rate) was normal. This pattern of findings is similar to that observed in humans with dorsolateral prefrontal damage and is complementary to the selective deficit in hit rate observed after hippocampal damage.

  18. Anterior cingulate cortex instigates adaptive switches in choice by integrating immediate and delayed components of value in ventromedial prefrontal cortex.

    PubMed

    Economides, Marcos; Guitart-Masip, Marc; Kurth-Nelson, Zeb; Dolan, Raymond J

    2014-02-26

    Actions can lead to an immediate reward or punishment and a complex set of delayed outcomes. Adaptive choice necessitates the brain track and integrate both of these potential consequences. Here, we designed a sequential task whereby the decision to exploit or forego an available offer was contingent on comparing immediate value and a state-dependent future cost of expending a limited resource. Crucially, the dynamics of the task demanded frequent switches in policy based on an online computation of changing delayed consequences. We found that human subjects choose on the basis of a near-optimal integration of immediate reward and delayed consequences, with the latter computed in a prefrontal network. Within this network, anterior cingulate cortex (ACC) was dynamically coupled to ventromedial prefrontal cortex (vmPFC) when adaptive switches in choice were required. Our results suggest a choice architecture whereby interactions between ACC and vmPFC underpin an integration of immediate and delayed components of value to support flexible policy switching that accommodates the potential delayed consequences of an action.

  19. Development of temperamental effortful control mediates the relationship between maturation of the prefrontal cortex and psychopathology during adolescence: a 4-year longitudinal study.

    PubMed

    Vijayakumar, Nandita; Whittle, Sarah; Dennison, Meg; Yücel, Murat; Simmons, Julian; Allen, Nicholas B

    2014-07-01

    This study investigated the relationship between the development of effortful control (EC), a temperamental measure of self-regulation, and concurrent development of three regions of the prefrontal cortex (anterior cingulate cortex, ACC; dorsolateral prefrontal cortex, dlPFC; ventrolateral prefrontal cortex, vlPFC) between early- and mid-adolescence. It also examined whether development of EC mediated the relationship between cortical maturation and emotional and behavioral symptoms. Ninety-two adolescents underwent baseline assessments when they were approximately 12 years old and follow-up assessments approximately 4 years later. At each assessment, participants had MRI scans and completed the Early Adolescent Temperament Questionnaire-Revised, as well as measures of depressive and anxious symptoms, and aggressive and risk taking behavior. Cortical thicknesses of the ACC, dlPFC and vlPFC, estimated using the FreeSurfer software, were found to decrease over time. EC also decreased over time in females. Greater thinning of the left ACC was associated with less reduction in EC. Furthermore, change in effortful control mediated the relationship between greater thinning of the left ACC and improvements in socioemotional functioning, including reductions in psychopathological symptoms. These findings highlight the dynamic association between EC and the maturation of the anterior cingulate cortex, and the importance of this relationship for socioemotional functioning during adolescence.

  20. Medial Prefrontal Cortex Plays a Critical and Selective Role in "Feeling of Knowing" Meta-Memory Judgments

    ERIC Educational Resources Information Center

    Modirrousta, Mandana; Fellows, Lesley K.

    2008-01-01

    The frontal lobes are thought to play a role in the monitoring of memory performance, or "meta-memory," but the specific circuits involved have yet to be definitively established. Medial prefrontal cortex in general and the anterior cingulate cortex in particular, have been implicated in other forms of monitoring, such as error and conflict…

  1. Treadmill exercise induces age and protocol-dependent epigenetic changes in prefrontal cortex of Wistar rats.

    PubMed

    Cechinel, Laura Reck; Basso, Carla Giovana; Bertoldi, Karine; Schallenberger, Bruna; de Meireles, Louisiana Carolina Ferreira; Siqueira, Ionara Rodrigues

    2016-10-15

    Some studies have linked age-related beneficial effects of exercise and epigenetic mechanisms. Although, the impact of treadmill exercise on histone acetylation, histone and DNA methylation marks in aged cortices yet remains poorly understood. Considering the role of frontal cortex on brain functions, we investigated the potential of different exercise protocols, single session and daily exercise, to modulate epigenetic marks, namely global H4 acetylation, histone methyltransferase activity (HMT H3K27) and levels of DNA methytransferase (DNMT1 and DNMT3b) in prefrontal cortices from 3 and 21-months aged Wistar rats. The animals were submitted to two treadmill exercise protocols, single session (20min) or daily moderate (20min/day during 14days). The daily exercise protocol induced an increased in histone H4 acetylation levels in prefrontal cortices of 21-months-old rats, without any effects in young adult group. DNMT3b levels were increased in aged cortices of animals submitted to single session of exercise. These results indicate that prefrontal cortex is susceptible to epigenetic changes in a protocol dependent-manner and that H4 acetylation levels and DNMT3b content changes might be linked at least in part to exercise-induced effects on brain functions. PMID:27418438

  2. Spatial and temporal distribution of visual information coding in lateral prefrontal cortex

    PubMed Central

    Kadohisa, Mikiko; Kusunoki, Makoto; Petrov, Philippe; Sigala, Natasha; Buckley, Mark J; Gaffan, David; Duncan, John

    2015-01-01

    Prefrontal neurons code many kinds of behaviourally relevant visual information. In behaving monkeys, we used a cued target detection task to address coding of objects, behavioural categories and spatial locations, examining the temporal evolution of neural activity across dorsal and ventral regions of the lateral prefrontal cortex (encompassing parts of areas 9, 46, 45A and 8A), and across the two cerebral hemispheres. Within each hemisphere there was little evidence for regional specialisation, with neurons in dorsal and ventral regions showing closely similar patterns of selectivity for objects, categories and locations. For a stimulus in either visual field, however, there was a strong and temporally specific difference in response in the two cerebral hemispheres. In the first part of the visual response (50–250 ms from stimulus onset), processing in each hemisphere was largely restricted to contralateral stimuli, with strong responses to such stimuli, and selectivity for both object and category. Later (300–500 ms), responses to ipsilateral stimuli also appeared, many cells now responding more strongly to ipsilateral than to contralateral stimuli, and many showing selectivity for category. Activity on error trials showed that late activity in both hemispheres reflected the animal's final decision. As information is processed towards a behavioural decision, its encoding spreads to encompass large, bilateral regions of prefrontal cortex. PMID:25307044

  3. Interactions of the hippocampal system and the prefrontal cortex in learning language-like rules.

    PubMed

    Opitz, Bertram; Friederici, Angela D

    2003-08-01

    One of the most influential views on the hippocampal function suggests that this brain region is critically involved in relational memory processing, that is, binding converging inputs to mediate the representation of relationships among the constituents of episodes. It has been proposed that this binding is automatic and obligatory during learning and remembering In addition, neuroimaging studies have highlighted the importance of the prefrontal cortex, in learning, memory, and language processing. However, the posited importance of hippocampal-prefrontal interaction remains to be empirically tested. In the present study we used functional magnetic resonance imaging to examine in detail this interaction by assessing learning-related changes in hemodynamic activity during artificial language acquisition. It has been shown previously that artificial grammar systems might be learned by evaluating pattern-based relations in word sequences and generalizing beyond specific word order, that is, rule abstraction. During scanning, participants learned an artificial language whose miniature grammar meets the universal principles of a natural language. Increased proficiency level of the artificial language is associated with decreased left hippocampal activity. In contrast, we observed an increased recruitment of the left inferior frontal gyrus (Broca's area), a region that contributes to syntax processing in natural language. The present results, therefore, indicate a learning-related change in brain circuitry underlying relational processes of language learning, with a transition from a similarity-based learning system in the medial temporal lobes to a language-related processing system in the left prefrontal cortex.

  4. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia.

    PubMed

    O'Reilly, Randall C; Frank, Michael J

    2006-02-01

    The prefrontal cortex has long been thought to subserve both working memory (the holding of information online for processing) and executive functions (deciding how to manipulate working memory and perform processing). Although many computational models of working memory have been developed, the mechanistic basis of executive function remains elusive, often amounting to a homunculus. This article presents an attempt to deconstruct this homunculus through powerful learning mechanisms that allow a computational model of the prefrontal cortex to control both itself and other brain areas in a strategic, task-appropriate manner. These learning mechanisms are based on subcortical structures in the midbrain, basal ganglia, and amygdala, which together form an actor-critic architecture. The critic system learns which prefrontal representations are task relevant and trains the actor, which in turn provides a dynamic gating mechanism for controlling working memory updating. Computationally, the learning mechanism is designed to simultaneously solve the temporal and structural credit assignment problems. The model's performance compares favorably with standard backpropagation-based temporal learning mechanisms on the challenging 1-2-AX working memory task and other benchmark working memory tasks. PMID:16378516

  5. Distinct regions of prefrontal cortex are associated with the controlled retrieval and selection of social information.

    PubMed

    Satpute, Ajay B; Badre, David; Ochsner, Kevin N

    2014-05-01

    Research in social neuroscience has uncovered a social knowledge network that is particularly attuned to making social judgments. However, the processes that are being performed by both regions within this network and those outside of this network that are nevertheless engaged in the service of making a social judgment remain unclear. To help address this, we drew upon research in semantic memory, which suggests that making a semantic judgment engages 2 distinct control processes: A controlled retrieval process, which aids in bringing goal-relevant information to mind from long-term stores, and a selection process, which aids in selecting the information that is goal-relevant from the information retrieved. In a neuroimaging study, we investigated whether controlled retrieval and selection for social information engage distinct portions of both the social knowledge network and regions outside this network. Controlled retrieval for social information engaged an anterior ventrolateral portion of the prefrontal cortex, whereas selection engaged both the dorsomedial prefrontal cortex and temporoparietal junction within the social knowledge network. These results suggest that the social knowledge network may be more involved with the selection of social information than the controlled retrieval of it and incorporates lateral prefrontal regions in accessing memory for making social judgments.

  6. Task-relevant modulation of primary somatosensory cortex suggests a prefrontal-cortical sensory gating system.

    PubMed

    Schaefer, Michael; Heinze, Hans-Jochen; Rotte, Michael

    2005-08-01

    Increasing evidence suggests that somatosensory information is modulated cortically for task-specific sensory inflow: Several studies report short-term adaptation of representational maps in primary somatosensory cortex (SI) due to attention or induced by task-related motor activity such as handwriting. Recently, it has been hypothesized that the frontal or prefrontal cortex may modulate SI. In order to test this hypothesis, we studied the functional organization of SI while subjects performed the Tower of Hanoi task. This task is known to be related to activation of frontal or prefrontal areas. The functional organization of SI while performing the Tower of Hanoi task was compared to the organization of SI during performing the same movements but without the Tower of Hanoi task and with rest. Topography of SI was assessed using neuromagnetic source imaging based on tactile stimulation of the first (D1) and fifth digits (D5). Performing the Tower of Hanoi task was accompanied by plastic changes in SI as indicated by significant shifts in the cortical representations of D1 and D5: They moved further apart during the Tower of Hanoi task compared to the control task containing the same movements but without the cognitive characteristic. Thus, we conclude that SI maps undergo dynamic modulation depending on motor tasks with different cognitive demands. The results suggest that this short-term plasticity may be regulated by a prefrontal-cortical sensory gating system. PMID:15886021

  7. Treadmill exercise induces age and protocol-dependent epigenetic changes in prefrontal cortex of Wistar rats.

    PubMed

    Cechinel, Laura Reck; Basso, Carla Giovana; Bertoldi, Karine; Schallenberger, Bruna; de Meireles, Louisiana Carolina Ferreira; Siqueira, Ionara Rodrigues

    2016-10-15

    Some studies have linked age-related beneficial effects of exercise and epigenetic mechanisms. Although, the impact of treadmill exercise on histone acetylation, histone and DNA methylation marks in aged cortices yet remains poorly understood. Considering the role of frontal cortex on brain functions, we investigated the potential of different exercise protocols, single session and daily exercise, to modulate epigenetic marks, namely global H4 acetylation, histone methyltransferase activity (HMT H3K27) and levels of DNA methytransferase (DNMT1 and DNMT3b) in prefrontal cortices from 3 and 21-months aged Wistar rats. The animals were submitted to two treadmill exercise protocols, single session (20min) or daily moderate (20min/day during 14days). The daily exercise protocol induced an increased in histone H4 acetylation levels in prefrontal cortices of 21-months-old rats, without any effects in young adult group. DNMT3b levels were increased in aged cortices of animals submitted to single session of exercise. These results indicate that prefrontal cortex is susceptible to epigenetic changes in a protocol dependent-manner and that H4 acetylation levels and DNMT3b content changes might be linked at least in part to exercise-induced effects on brain functions.

  8. Interactive effects of stress and aging on structural plasticity in the prefrontal cortex

    PubMed Central

    Bloss, Erik B.; Janssen, William G.; McEwen, Bruce S.; Morrison, John H.

    2010-01-01

    Neuronal networks in the prefrontal cortex mediate the highest levels of cognitive processing and decision making, and the capacity to perform these functions is among the cognitive features most vulnerable to aging. Despite much research, the neurobiological basis of age-related compromised prefrontal function remains elusive. Many investigators have hypothesized that exposure to stress may accelerate cognitive aging, though few studies have directly tested this hypothesis and even fewer have investigated a neuronal basis for such effects. It is known that in young animals, stress causes morphological remodeling of prefrontal pyramidal neurons that is reversible. The present studies sought to determine whether age influences the reversibility of stress-induced morphological plasticity in rat prefrontal neurons. We hypothesized that neocortical structural resilience is compromised in normal aging. To directly test this hypothesis we utilized a well-characterized chronic restraint stress paradigm, with an additional group allowed to recover from the stress paradigm, in 3, 12 and 20-month old male rats. In young animals, stress induced reductions of apical dendritic length and branch number, which were reversed with recovery; in contrast, middle-aged and aged rats failed to show reversible morphological remodeling when subjected to the same stress and recovery paradigm. The data presented here provide evidence that aging is accompanied by selective impairments in long-term neocortical morphological plasticity. PMID:20463234

  9. IS THE PREFRONTAL CORTEX IMPORTANT FOR FLUID INTELLIGENCE? A NEUROPSYCHOLOGICAL STUDY USING MATRIX REASONING

    PubMed Central

    Tranel, Daniel; Manzel, Kenneth; Anderson, Steven W.

    2008-01-01

    Patients with prefrontal damage and severe defects in decision making and emotional regulation often have a remarkable absence of intellectual impairment, as measured by conventional IQ tests such as the WAIS/WAIS-R. This enigma might be explained by shortcomings in the tests, which tend to emphasize measures of “crystallized” (e.g., vocabulary, fund of information) more than “fluid” (e.g., novel problem solving) intelligence. The WAIS-III added the Matrix Reasoning subtest to enhance measurement of fluid reasoning. In a set of four studies, we investigated Matrix Reasoning performances in 80 patients with damage to various sectors of the prefrontal cortex, and contrasted these with the performances of 80 demographically matched patients with damage outside the frontal lobes. The results failed to support the hypothesis that prefrontal damage would disproportionately impair fluid intelligence, and every prefrontal subgroup we studied (dorsolateral, ventromedial, dorsolateral + ventromedial) had Matrix Reasoning scores (as well as IQ scores more generally) that were indistinguishable from those of the brain-damaged comparison groups. Our findings do not support a connection between fluid intelligence and the frontal lobes, although a viable alternative interpretation is that the Matrix Reasoning subtest lacks construct validity as a measure of fluid intelligence. PMID:17853146

  10. Activation of the prefrontal cortex in the human visual aesthetic perception

    PubMed Central

    Cela-Conde, Camilo J.; Marty, Gisèle; Maestú, Fernando; Ortiz, Tomás; Munar, Enric; Fernández, Alberto; Roca, Miquel; Rosselló, Jaume; Quesney, Felipe

    2004-01-01

    Visual aesthetic perception (“aesthetics”) or the capacity to visually perceive a particular attribute added to other features of objects, such as form, color, and movement, was fixed during human evolutionary lineage as a trait not shared with any great ape. Although prefrontal brain expansion is mentioned as responsible for the appearance of such human trait, no current knowledge exists on the role of prefrontal areas in the aesthetic perception. The visual brain consists of “several parallel multistage processing systems, each specialized in a given task such as, color or motion” [Bartels, A. & Zeki, S. (1999) Proc. R. Soc. London Ser. B 265, 2327–2332]. Here we report the results of an experiment carried out with magnetoencephalography which shows that the prefrontal area is selectively activated in humans during the perception of objects qualified as “beautiful” by the participants. Therefore, aesthetics can be hypothetically considered as an attribute perceived by means of a particular brain processing system, in which the prefrontal cortex seems to play a key role. PMID:15079079

  11. Increased Functional Connectivity between Prefrontal Cortex and Reward System in Pathological Gambling

    PubMed Central

    Koehler, Saskia; Ovadia-Caro, Smadar; van der Meer, Elke; Villringer, Arno; Heinz, Andreas

    2013-01-01

    Pathological gambling (PG) shares clinical characteristics with substance-use disorders and is thus discussed as a behavioral addiction. Recent neuroimaging studies on PG report functional changes in prefrontal structures and the mesolimbic reward system. While an imbalance between these structures has been related to addictive behavior, whether their dysfunction in PG is reflected in the interaction between them remains unclear. We addressed this question using functional connectivity resting-state fMRI in male subjects with PG and controls. Seed-based functional connectivity was computed using two regions-of-interest, based on the results of a previous voxel-based morphometry study, located in the prefrontal cortex and the mesolimbic reward system (right middle frontal gyrus and right ventral striatum). PG patients demonstrated increased connectivity from the right middle frontal gyrus to the right striatum as compared to controls, which was also positively correlated with nonplanning aspect of impulsiveness, smoking and craving scores in the PG group. Moreover, PG patients demonstrated decreased connectivity from the right middle frontal gyrus to other prefrontal areas as compared to controls. The right ventral striatum demonstrated increased connectivity to the right superior and middle frontal gyrus and left cerebellum in PG patients as compared to controls. The increased connectivity to the cerebellum was positively correlated with smoking in the PG group. Our results provide further evidence for alterations in functional connectivity in PG with increased connectivity between prefrontal regions and the reward system, similar to connectivity changes reported in substance use disorder. PMID:24367675

  12. The cognition-enhancing effects of psychostimulants involve direct action in the prefrontal cortex.

    PubMed

    Spencer, Robert C; Devilbiss, David M; Berridge, Craig W

    2015-06-01

    Psychostimulants are highly effective in the treatment of attention-deficit/hyperactivity disorder. The clinical efficacy of these drugs is strongly linked to their ability to improve cognition dependent on the prefrontal cortex (PFC) and extended frontostriatal circuit. The procognitive actions of psychostimulants are only associated with low doses. Surprisingly, despite nearly 80 years of clinical use, the neurobiology of the procognitive actions of psychostimulants has only recently been systematically investigated. Findings from this research unambiguously demonstrate that the cognition-enhancing effects of psychostimulants involve the preferential elevation of catecholamines in the PFC and the subsequent activation of norepinephrine α2 and dopamine D1 receptors. In contrast, while the striatum is a critical participant in PFC-dependent cognition, where examined, psychostimulant action within the striatum is not sufficient to enhance cognition. At doses that moderately exceed the clinical range, psychostimulants appear to improve PFC-dependent attentional processes at the expense of other PFC-dependent processes (e.g., working memory, response inhibition). This differential modulation of PFC-dependent processes across dose appears to be associated with the differential involvement of noradrenergic α2 versus α1 receptors. Collectively, this evidence indicates that at low, clinically relevant doses, psychostimulants are devoid of the behavioral and neurochemical actions that define this class of drugs and instead act largely as cognitive enhancers (improving PFC-dependent function). This information has potentially important clinical implications as well as relevance for public health policy regarding the widespread clinical use of psychostimulants and for the development of novel pharmacologic treatments for attention-deficit/hyperactivity disorder and other conditions associated with PFC dysregulation.

  13. The cognition-enhancing effects of psychostimulants involve direct action in the prefrontal cortex.

    PubMed

    Spencer, Robert C; Devilbiss, David M; Berridge, Craig W

    2015-06-01

    Psychostimulants are highly effective in the treatment of attention-deficit/hyperactivity disorder. The clinical efficacy of these drugs is strongly linked to their ability to improve cognition dependent on the prefrontal cortex (PFC) and extended frontostriatal circuit. The procognitive actions of psychostimulants are only associated with low doses. Surprisingly, despite nearly 80 years of clinical use, the neurobiology of the procognitive actions of psychostimulants has only recently been systematically investigated. Findings from this research unambiguously demonstrate that the cognition-enhancing effects of psychostimulants involve the preferential elevation of catecholamines in the PFC and the subsequent activation of norepinephrine α2 and dopamine D1 receptors. In contrast, while the striatum is a critical participant in PFC-dependent cognition, where examined, psychostimulant action within the striatum is not sufficient to enhance cognition. At doses that moderately exceed the clinical range, psychostimulants appear to improve PFC-dependent attentional processes at the expense of other PFC-dependent processes (e.g., working memory, response inhibition). This differential modulation of PFC-dependent processes across dose appears to be associated with the differential involvement of noradrenergic α2 versus α1 receptors. Collectively, this evidence indicates that at low, clinically relevant doses, psychostimulants are devoid of the behavioral and neurochemical actions that define this class of drugs and instead act largely as cognitive enhancers (improving PFC-dependent function). This information has potentially important clinical implications as well as relevance for public health policy regarding the widespread clinical use of psychostimulants and for the development of novel pharmacologic treatments for attention-deficit/hyperactivity disorder and other conditions associated with PFC dysregulation. PMID:25499957

  14. Negative emotions impact lateral prefrontal cortex activation during theory of mind: An fNIRS study.

    PubMed

    Himichi, Toshiyuki; Fujita, Hiroyo; Nomura, Michio

    2015-01-01

    The lateral prefrontal cortex (lPFC) plays a critical role in inhibiting self-perspective information, which is necessary for theory of mind (ToM) processing. Additionally, previous research has indicated that negative emotions interfere with lPFC activation during executive tasks. In this study, we hypothesized that negative emotions would inhibit lPFC activation during a ToM task. While female participants performed the director task following the observation of emotionally laden movies (neutral/negative/positive), their prefrontal hemodynamic activity was measured using near-infrared spectroscopy. After viewing the neutral movie, bilateral lPFC activity was significantly enhanced during ToM process compared to the control condition. In contrast, after viewing the negative movie, left lPFC activity during ToM process was significantly impaired. These results were interpreted to support the idea that negative emotions interfere with inhibition of self-perspective information through inactivation of the lPFC.

  15. Stress-induced cognitive dysfunction: hormone-neurotransmitter interactions in the prefrontal cortex.

    PubMed

    Shansky, Rebecca M; Lipps, Jennifer

    2013-01-01

    The mechanisms and neural circuits that drive emotion and cognition are inextricably linked. Activation of the hypothalamic-pituitary-adrenal (HPA) axis as a result of stress or other causes of arousal initiates a flood of hormone and neurotransmitter release throughout the brain, affecting the way we think, decide, and behave. This review will focus on factors that influence the function of the prefrontal cortex (PFC), a brain region that governs higher-level cognitive processes and executive function. The PFC becomes markedly impaired by stress, producing measurable deficits in working memory. These deficits arise from the interaction of multiple neuromodulators, including glucocorticoids, catecholamines, and gonadal hormones; here we will discuss the non-human primate and rodent literature that has furthered our understanding of the circuitry, receptors, and signaling cascades responsible for stress-induced prefrontal dysfunction.

  16. Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility

    PubMed Central

    Murray, Andrew J.; Woloszynowska-Fraser, Marta U.; Ansel-Bollepalli, Laura; Cole, Katy L. H.; Foggetti, Angelica; Crouch, Barry; Riedel, Gernot; Wulff, Peer

    2015-01-01

    Dysfunction of parvalbumin (PV)-positive GABAergic interneurons (PVIs) within the prefrontal cortex (PFC) has been implicated in schizophrenia pathology. It is however unclear, how impaired signaling of these neurons may contribute to PFC dysfunction. To identify how PVIs contribute to PFC-dependent behaviors we inactivated PVIs in the PFC in mice using region- and cell-type-selective expression of tetanus toxin light chain (TeLC) and compared the functional consequences of this manipulation with non-cell-type-selective perturbations of the same circuitry. By sampling for behavioral alterations that map onto distinct symptom categories in schizophrenia, we show that dysfunction of PVI signaling in the PFC specifically produces deficits in the cognitive domain, but does not give rise to PFC-dependent correlates of negative or positive symptoms. Our results suggest that distinct aspects of the complex symptomatology of PFC dysfunction in schizophrenia can be attributed to specific prefrontal circuit elements. PMID:26608841

  17. Coping Behavior Causes Asymmetric Changes in Neuronal Activation in the Prefrontal Cortex and Amygdala

    PubMed Central

    Stalnaker, Thomas A.; España, Rodrigo A.; Berridge, Craig W.

    2011-01-01

    When faced with an inescapable stressor, animals may engage in ‘coping’ behaviors, such as chewing inedible objects, that attenuate some physiological responses to the stressor. Previous evidence indicates that dopamine neurotransmission in the right prefrontal cortex is modulated by coping processes. Here we tested whether medial prefrontal cortical (mPFC) neuronal activation, as measured by Fos-immunoreactivity (Fos-ir), was altered in rats chewing inedible objects during exposure to novelty stress. We found that chewing caused an increase in Fos-ir that was selective for the right hemisphere of the mPFC along with a decrease in Fos-ir that was selective for the right central nucleus of the amygdala (CeA), a region that may regulate dopamine neurotransmission in mPFC. These observations suggest that coping during stress engages mPFC and CeA neuronal activity asymmetrically. PMID:18932226

  18. Damage to the left ventromedial prefrontal cortex impacts affective theory of mind

    PubMed Central

    Leopold, Anne; dal Monte, Olga; Pardini, Matteo; Pulaski, Sarah J.; Solomon, Jeffrey; Grafman, Jordan

    2012-01-01

    Studies investigating theory of mind (ToM) abilities (i.e. ability to understand and predict others’ mental states) have revealed that affective and cognitive functions play a significant role and that each of those functions are associated with distinct neural networks. Cognitive facets of ToM have implicated the medial prefrontal cortex, temporo-parietal junction and the anterior paracingulate cortex, whereas affective facets have implicated the ventromedial prefrontal cortex (vmPFC). Although the vmPFC has repeatedly shown to be critical for affective functions, knowledge regarding the exact role of the left and right vmPFC in affective ToM is still obscure. Here, we compared performances of 30 patients with left, right and bilateral vmPFC lesions to two comparison groups (one without and one with brain injuries) on the Faux Pas Recognition task measuring the facets of ToM. We also investigated whether any deficits may be associated with other emotional measures, namely emotional empathy and emotional intelligence. Our results extend earlier findings by showing that the vmPFC is associated with abilities in affective ToM. More importantly, our results revealed that the left, and not the right vmPFC as indicated previously, is involved in affective ToM and that this deficit is associated with emotional intelligence. PMID:22021651

  19. Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving

    PubMed Central

    Hayashi, Takuya; Ko, Ji Hyun; Strafella, Antonio P.; Dagher, Alain

    2013-01-01

    Drug-related cues induce craving, which may perpetuate drug use or trigger relapse in addicted individuals. Craving is also under the influence of other factors in daily life, such as drug availability and self-control. Neuroimaging studies using drug cue paradigms have shown frontal lobe involvement in this contextual influence on cue reactivity, but have not clarified how and which frontal area accounts for this phenomenon. We explored frontal lobe contributions to cue-induced drug craving under different intertemporal drug availability conditions by combining transcranial magnetic stimulation and functional magnetic resonance imaging in smokers. We hypothesized that the dorsolateral prefrontal cortex (DLPFC) regulates craving during changes in intertemporal availability. Subjective craving was greater when cigarettes were immediately available, and this effect was eliminated by transiently inactivating the DLPFC with transcranial magnetic stimulation. Functional magnetic resonance imaging demonstrated that the signal most proportional to subjective craving was located in the medial orbitofrontal cortex across all contexts, whereas the DLPFC most strongly encoded intertemporal availability information. The craving-related signal in the medial orbitofrontal cortex was attenuated by inactivation of the DLPFC, particularly when cigarettes were immediately available. Inactivation of the DLPFC also reduced craving-related signals in the anterior cingulate and ventral striatum, areas implicated in transforming value signals into action. These findings indicate that DLPFC builds up value signals based on knowledge of drug availability, and support a model wherein aberrant circuitry linking dorsolateral prefrontal and orbitofrontal cortices may underlie addiction. PMID:23359677

  20. Neural mechanisms of economic commitment in the human medial prefrontal cortex

    PubMed Central

    Tsetsos, Konstantinos; Wyart, Valentin; Shorkey, S Paul; Summerfield, Christopher

    2014-01-01

    Neurobiologists have studied decisions by offering successive, independent choices between goods or gambles. However, choices often have lasting consequences, as when investing in a house or choosing a partner. Here, humans decided whether to commit (by acceptance or rejection) to prospects that provided sustained financial return. BOLD signals in the rostral medial prefrontal cortex (rmPFC) encoded stimulus value only when acceptance or rejection was deferred into the future, suggesting a role in integrating value signals over time. By contrast, the dorsal anterior cingulate cortex (dACC) encoded stimulus value only when participants rejected (or deferred accepting) a prospect. dACC BOLD signals reflected two decision biases–to defer commitments to later, and to weight potential losses more heavily than gains–that (paradoxically) maximised reward in this task. These findings offer fresh insights into the pressures that shape economic decisions, and the computation of value in the medial prefrontal cortex. DOI: http://dx.doi.org/10.7554/eLife.03701.001 PMID:25333687

  1. Cocaine cue–induced dopamine release in the human prefrontal cortex

    PubMed Central

    Milella, Michele S.; Fotros, Aryandokht; Gravel, Paul; Casey, Kevin F.; Larcher, Kevin; Verhaeghe, Jeroen A.J.; Cox, Sylvia M.L.; Reader, Andrew J.; Dagher, Alain; Benkelfat, Chawki; Leyton, Marco

    2016-01-01

    Background Accumulating evidence indicates that drug-related cues can induce dopamine (DA) release in the striatum of substance abusers. Whether these same cues provoke DA release in the human prefrontal cortex remains unknown. Methods We used high-resolution positron emission tomography with [18F]fallypride to measure cortical and striatal DA D2/3 receptor availability in the presence versus absence of drug-related cues in volunteers with current cocaine dependence. Results Twelve individuals participated in our study. Among participants reporting a craving response (9 of 12), exposure to the cocaine cues significantly decreased [18F]fallypride binding potential (BPND) values in the medial orbitofrontal cortex and striatum. In all 12 participants, individual differences in the magnitude of craving correlated with BPND changes in the medial orbitofrontal cortex, dorsolateral prefrontal cortex, anterior cingulate, and striatum. Consistent with the presence of autoreceptors on mesostriatal but not mesocortical DA cell bodies, midbrain BPND values were significantly correlated with changes in BPND within the striatum but not the cortex. The lower the midbrain D2 receptor levels, the greater the striatal change in BPND and self-reported craving. Limitations Limitations of this study include its modest sample size, with only 2 female participants. Newer tracers might have greater sensitivity to cortical DA release. Conclusion In people with cocaine use disorders, the presentation of drug-related cues induces DA release within cortical and striatal regions. Both effects are associated with craving, but only the latter is regulated by midbrain autoreceptors. Together, the results suggest that cortical and subcortical DA responses might both influence drug-focused incentive motivational states, but with separate regulatory mechanisms. PMID:26900792

  2. Disrupting prefrontal cortex prevents performance gains from sensory-motor training.

    PubMed

    Filmer, Hannah L; Mattingley, Jason B; Marois, René; Dux, Paul E

    2013-11-20

    Humans show large and reliable performance impairments when required to make more than one simple decision simultaneously. Such multitasking costs are thought to largely reflect capacity limits in response selection (Welford, 1952; Pashler, 1984, 1994), the information processing stage at which sensory input is mapped to a motor response. Neuroimaging has implicated the left posterior lateral prefrontal cortex (pLPFC) as a key neural substrate of response selection (Dux et al., 2006, 2009; Ivanoff et al., 2009). For example, activity in left pLPFC tracks improvements in response selection efficiency typically observed following training (Dux et al., 2009). To date, however, there has been no causal evidence that pLPFC contributes directly to sensory-motor training effects, or the operations through which training occurs. Moreover, the left hemisphere lateralization of this operation remains controversial (Jiang and Kanwisher, 2003; Sigman and Dehaene, 2008; Verbruggen et al., 2010). We used anodal (excitatory), cathodal (inhibitory), and sham transcranial direct current stimulation (tDCS) to left and right pLPFC and measured participants' performance on high and low response selection load tasks after different amounts of training. Both anodal and cathodal stimulation of the left pLPFC disrupted training effects for the high load condition relative to sham. No disruption was found for the low load and right pLPFC stimulation conditions. The findings implicate the left pLPFC in both response selection and training effects. They also suggest that training improves response selection efficiency by fine-tuning activity in pLPFC relating to sensory-motor translations.

  3. Methylphenidate has long-lasting metaplastic effects in the prefrontal cortex of adolescent rats.

    PubMed

    Burgos, H; Cofré, C; Hernández, A; Sáez-Briones, P; Agurto, R; Castillo, A; Morales, B; Zeise, M L

    2015-09-15

    Methylphenidate (MPH) is widely used as a "nootropic" agent and in the treatment of disorders of attention, and has been shown to modulate synaptic plasticity in vitro. Here we present in vivo evidence that this MPH-induced metaplasticity can last long after the end of treatment. MPH (0, 0.2, 1 and 5mg/kg) was administered daily to male rats from postnatal day 42 for 15 days. The animals were tested daily in a radial maze. Long-term potentiation (LTP), a marker of neural plasticity, was induced in vivo in the prefrontal cortex after 2-3h, 15-18 days or 5 months without treatment. The behavioral performance of the 1mg/kg group improved, while that of animals that had received 5mg/kg deteriorated. In the 1 and 5mg/kg groups LTP induced 2-3h after the last MPH treatment was twice as large as in the controls. Further, 15-18 days after the last MPH administration, in groups receiving 1 and 5mg/kg, LTP was about fourfold higher than in controls. However, 5 months later, LTP in the 1mg/kg group was similar to controls and in the 5mg/kg group LTP could not be induced at all. No significant changes of LTP were seen in the low-dose group of animals (0.2mg/kg). Thus, firstly, doses of MPH that improve learning coincide approximately with those that augment LTP. Secondly, MPH-induced increases in LTP can last for several weeks, but these may disappear over longer periods or deteriorate at high doses.

  4. Effect of exercise on synaptophysin and calcium/calmodulin-dependent protein kinase levels in prefrontal cortex and hippocampus of a rat model of developmental stress

    PubMed Central

    Hescham, Sarah; Grace, Laurian; Kellaway, Lauriston A; Bugarith, Kishor; Russell, Vivienne A

    2010-01-01

    Stress affects the brain differently depending on the timing, duration and intensity of the stressor. Separation from the dam for 3 hours per day is a potent stressor for rat pups which causes activation of the hypothalamic-pituitary-adrenal (HPA) axis, evidenced by increased plasma levels of adrenocorticotropin (ACTH) and glucocorticoids. Behaviourally, animals display anxiety-like behaviour while structurally, changes occur in neuronal dendrites and spines in the hippocampus and prefrontal regions involved in emotion and behaviour control. The aim of the present study was to determine whether maternal separation alters expression of synaptic markers, synaptophysin and calcium/calmodulin-dependent protein kinase II, CaMKII, in rat hippocampus and prefrontal cortex. A second aim was to determine whether voluntary exercise had a beneficial effect on the expression of these proteins in rat brain. Maternal separation occurred from postnatal day 2 (P2) to P14 for 3 hours per day. Exercised rats were housed in cages with attached running wheels from P29 to P49. At P65, the prefrontal cortex and hippocampus were removed for protein quantification. Maternal separation did not have any effect while exercise increased synaptophysin and CaMKII in the ventral hippocampus but not in the dorsal hippocampus or prefrontal cortex. Since the ventral hippocampus is associated with anxiety-related behaviour, these findings are consistent with the fact that voluntary exercise increases anxiety-like behaviour and improves learning and memory. PMID:19821017

  5. Effect of exercise on synaptophysin and calcium/calmodulin-dependent protein kinase levels in prefrontal cortex and hippocampus of a rat model of developmental stress.

    PubMed

    Hescham, Sarah; Grace, Laurian; Kellaway, Lauriston A; Bugarith, Kishor; Russell, Vivienne A

    2009-12-01

    Stress affects the brain differently depending on the timing, duration and intensity of the stressor. Separation from the dam for 3 h per day is a potent stressor for rat pups which causes activation of the hypothalamic-pituitary-adrenal (HPA) axis, evidenced by increased plasma levels of adrenocorticotropin (ACTH) and glucocorticoids. Behaviourally, animals display anxiety-like behaviour while structurally, changes occur in neuronal dendrites and spines in the hippocampus and prefrontal regions involved in emotion and behaviour control. The aim of the present study was to determine whether maternal separation alters expression of synaptic markers, synaptophysin and calcium/calmodulin-dependent protein kinase II (CaMKII), in rat hippocampus and prefrontal cortex. A second aim was to determine whether voluntary exercise had a beneficial effect on the expression of these proteins in rat brain. Maternal separation occurred from postnatal day 2 (P2) to P14 for 3 h per day. Exercised rats were housed in cages with attached running wheels from P29 to P49. At P65, the prefrontal cortex and hippocampus were removed for protein quantification. Maternal separation did not have any effect while exercise increased synaptophysin and CaMKII in the ventral hippocampus but not in the dorsal hippocampus or prefrontal cortex. Since the ventral hippocampus is associated with anxiety-related behaviour, these findings are consistent with the fact that voluntary exercise increases anxiety-like behaviour and improves learning and memory.

  6. Unilateral deactivation of macaque dorsolateral prefrontal cortex induces biases in stimulus selection.

    PubMed

    Johnston, Kevin; Lomber, Stephen G; Everling, Stefan

    2016-03-01

    Following unilateral brain injury, patients are often unable to detect a stimulus presented in the contralesional field when another is presented simultaneously ipsilesionally. This phenomenon has been referred to as extinction and has been conceptualized as a deficit in selective attention. Although most commonly observed following damage to posterior parietal areas, extinction has been observed following lesions of prefrontal cortex (PFC) in both humans and nonhuman primates. To date, most studies in nonhuman primates have examined lesions of multiple PFC subregions, including the frontal eye fields (FEF). Theoretical accounts of attentional disturbances from human patients, however, also implicate other PFC areas, including the middle frontal gyrus. Here, we investigated the effects of deactivating PFC areas anterior to the FEF on stimulus selection using a free-choice task. Macaque monkeys were presented with two peripheral stimuli appearing either simultaneously, or at varying stimulus onset asynchronies, and their performance was evaluated during unilateral cryogenic deactivation of part of dorsolateral prefrontal cortex or the cortex lining the caudal principal sulcus, the likely homologue of the human middle frontal gyrus. A decreased proportion of saccades was made to stimuli presented in the hemifield contralateral to the deactivated PFC. We also observed increases in reaction times to contralateral stimuli and decreases for stimuli presented in the hemifield ipsilateral to the deactivated hemisphere. In both cases, these results were greatest when both PFC subregions were deactivated. These findings demonstrate that selection biases result from PFC deactivation and support a role of dorsolateral prefrontal subregions anterior to FEF in stimulus selection. PMID:26792881

  7. Divergent responses of inflammatory mediators within the amygdala and medial prefrontal cortex to acute psychological stress.

    PubMed

    Vecchiarelli, Haley A; Gandhi, Chaitanya P; Gray, J Megan; Morena, Maria; Hassan, Kowther I; Hill, Matthew N

    2016-01-01

    There is now a growing body of literature that indicates that stress can initiate inflammatory processes, both in the periphery and brain; however, the spatiotemporal nature of this response is not well characterized. The aim of this study was to examine the effects of an acute psychological stress on changes in mRNA and protein levels of a wide range of inflammatory mediators across a broad temporal range, in key corticolimbic brain regions involved in the regulation of the stress response (amygdala, hippocampus, hypothalamus, medial prefrontal cortex). mRNA levels of inflammatory mediators were analyzed immediately following 30min or 120min of acute restraint stress and protein levels were examined 0h through 24h post-termination of 120min of acute restraint stress using both multiplex and ELISA methods. Our data demonstrate, for the first time, that exposure to acute psychological stress results in an increase in the protein level of several inflammatory mediators in the amygdala while concomitantly producing a decrease in the protein level of multiple inflammatory mediators within the medial prefrontal cortex. This pattern of changes seemed largely restricted to the amygdala and medial prefrontal cortex, with stress producing few changes in the mRNA or protein levels of inflammatory mediators within the hippocampus or hypothalamus. Consistent with previous research, stress resulted in a general elevation in multiple inflammatory mediators within the circulation. These data indicate that neuroinflammatory responses to stress do not appear to be generalized across brain structures and exhibit a high degree of spatiotemporal specificity. Given the impact of inflammatory signaling on neural excitability and emotional behavior, these data may provide a platform with which to explore the importance of inflammatory signaling within the prefrontocortical-amygdala circuit in the regulation of the neurobehavioral responses to stress.

  8. Clemastine Enhances Myelination in the Prefrontal Cortex and Rescues Behavioral Changes in Socially Isolated Mice.

    PubMed

    Liu, Jia; Dupree, Jeffrey L; Gacias, Mar; Frawley, Rebecca; Sikder, Tamjeed; Naik, Payal; Casaccia, Patrizia

    2016-01-20

    Altered myelin structure and oligodendrocyte function have been shown to correlate with cognitive and motor dysfunction and deficits in social behavior. We and others have previously demonstrated that social isolation in mice induced behavioral, transcriptional, and ultrastructural changes in oligodendrocytes of the prefrontal cortex (PFC). However, whether enhancing myelination and oligodendrocyte differentiation could be beneficial in reversing such changes remains unexplored. To test this hypothesis, we orally administered clemastine, an antimuscarinic compound that has been shown to enhance oligodendrocyte differentiation and myelination in vitro, for 2 weeks in adult mice following social isolation. Clemastine successfully reversed social avoidance behavior in mice undergoing prolonged social isolation. Impaired myelination was rescued by oral clemastine treatment, and was associated with enhanced oligodendrocyte progenitor differentiation and epigenetic changes. Clemastine induced higher levels of repressive histone methylation (H3K9me3), a marker for heterochromatin, in oligodendrocytes, but not neurons, of the PFC. This was consistent with the capability of clemastine in elevating H3K9 histone methyltransferases activity in cultured primary mouse oligodendrocytes, an effect that could be antagonized by cotreatment with muscarine. Our data suggest that promoting adult myelination is a potential strategy for reversing depressive-like social behavior. Significance statement: Oligodendrocyte development and myelination are highly dynamic processes influenced by experience and neuronal activity. However, whether enhancing myelination and oligodendrocyte differentiation is beneficial to treat depressive-like behavior has been unexplored. Mice undergoing prolonged social isolation display impaired myelination in the prefrontal cortex. Clemastine, a Food and Drug Administration-approved antimuscarinic compound that has been shown to enhance myelination under

  9. Transcranial Electrical Stimulation over Dorsolateral Prefrontal Cortex Modulates Processing of Social Cognitive and Affective Information.

    PubMed

    Conson, Massimiliano; Errico, Domenico; Mazzarella, Elisabetta; Giordano, Marianna; Grossi, Dario; Trojano, Luigi

    2015-01-01

    Recent neurofunctional studies suggested that lateral prefrontal cortex is a domain-general cognitive control area modulating computation of social information. Neuropsychological evidence reported dissociations between cognitive and affective components of social cognition. Here, we tested whether performance on social cognitive and affective tasks can be modulated by transcranial direct current stimulation (tDCS) over dorsolateral prefrontal cortex (DLPFC). To this aim, we compared the effects of tDCS on explicit recognition of emotional facial expressions (affective task), and on one cognitive task assessing the ability to adopt another person's visual perspective. In a randomized, cross-over design, male and female healthy participants performed the two experimental tasks after bi-hemispheric tDCS (sham, left anodal/right cathodal, and right anodal/left cathodal) applied over DLPFC. Results showed that only in male participants explicit recognition of fearful facial expressions was significantly faster after anodal right/cathodal left stimulation with respect to anodal left/cathodal right and sham stimulations. In the visual perspective taking task, instead, anodal right/cathodal left stimulation negatively affected both male and female participants' tendency to adopt another's point of view. These findings demonstrated that concurrent facilitation of right and inhibition of left lateral prefrontal cortex can speed-up males' responses to threatening faces whereas it interferes with the ability to adopt another's viewpoint independently from gender. Thus, stimulation of cognitive control areas can lead to different effects on social cognitive skills depending on the affective vs. cognitive nature of the task, and on the gender-related differences in neural organization of emotion processing. PMID:25951227

  10. Medial Prefrontal Cortex Activation Is Commonly Invoked by Reputation of Self and Romantic Partners

    PubMed Central

    Kawamichi, Hiroaki; Sasaki, Akihiro T.; Matsunaga, Masahiro; Yoshihara, Kazufumi; Takahashi, Haruka K.; Tanabe, Hiroki C.; Sadato, Norihiro

    2013-01-01

    The reputation of others influences partner selection in human cooperative behaviors through verbal reputation representation. Although the way in which humans represent the verbal reputations of others is a pivotal issue for social neuroscience, the neural correlates underlying the representation of verbal reputations of others are unclear. Humans primarily depend on self-evaluation when assessing reputation of self. Likewise, humans might primarily depend on self-evaluation of others when representing their reputation. As interaction promotes the formation of more nuanced, individualized impressions of an interaction partner, humans tend to form self-evaluations of persons with whom they are intimate in their daily life. Thus, we hypothesized that the representation of reputation of others is modulated by intimacy due to one’s own evaluation formation of that person. To test this hypothesis, we conducted a functional magnetic resonance imaging experiment with 11 pairs of romantic partners while they viewed an evaluation of a target person (self, partner [intimate other], or stranger [non-intimate other]), made by other evaluators. When compared with strangers, viewing evaluations of self and partner activated overlapping regions in the medial prefrontal cortex. Verbal reputation of self-specific activation was found in the precuneus, which represents self-related processing. The data suggest that midline structures represent reputation of self. In addition, intimacy-modulated activation in the medial prefrontal cortex suggests that the verbal reputation of intimate others is represented similarly to reputation of self. These results suggest that the reputation representation in the medial prefrontal cortex is engaged by verbal reputation of self and intimate others stemming from both own and other evaluators’ judgments. PMID:24086409

  11. Clemastine Enhances Myelination in the Prefrontal Cortex and Rescues Behavioral Changes in Socially Isolated Mice

    PubMed Central

    Dupree, Jeffrey L.; Gacias, Mar; Frawley, Rebecca; Sikder, Tamjeed; Naik, Payal; Casaccia, Patrizia

    2016-01-01

    Altered myelin structure and oligodendrocyte function have been shown to correlate with cognitive and motor dysfunction and deficits in social behavior. We and others have previously demonstrated that social isolation in mice induced behavioral, transcriptional, and ultrastructural changes in oligodendrocytes of the prefrontal cortex (PFC). However, whether enhancing myelination and oligodendrocyte differentiation could be beneficial in reversing such changes remains unexplored. To test this hypothesis, we orally administered clemastine, an antimuscarinic compound that has been shown to enhance oligodendrocyte differentiation and myelination in vitro, for 2 weeks in adult mice following social isolation. Clemastine successfully reversed social avoidance behavior in mice undergoing prolonged social isolation. Impaired myelination was rescued by oral clemastine treatment, and was associated with enhanced oligodendrocyte progenitor differentiation and epigenetic changes. Clemastine induced higher levels of repressive histone methylation (H3K9me3), a marker for heterochromatin, in oligodendrocytes, but not neurons, of the PFC. This was consistent with the capability of clemastine in elevating H3K9 histone methyltransferases activity in cultured primary mouse oligodendrocytes, an effect that could be antagonized by cotreatment with muscarine. Our data suggest that promoting adult myelination is a potential strategy for reversing depressive-like social behavior. SIGNIFICANCE STATEMENT Oligodendrocyte development and myelination are highly dynamic processes influenced by experience and neuronal activity. However, whether enhancing myelination and oligodendrocyte differentiation is beneficial to treat depressive-like behavior has been unexplored. Mice undergoing prolonged social isolation display impaired myelination in the prefrontal cortex. Clemastine, a Food and Drug Administration-approved antimuscarinic compound that has been shown to enhance myelination under

  12. The role of the medial prefrontal cortex in trace fear extinction

    PubMed Central

    Kwapis, Janine L.; Jarome, Timothy J.

    2015-01-01

    The extinction of delay fear conditioning relies on a neural circuit that has received much attention and is relatively well defined. Whether this established circuit also supports the extinction of more complex associations, however, is unclear. Trace fear conditioning is a better model of complex relational learning, yet the circuit that supports extinction of this memory has received very little attention. Recent research has indicated that trace fear extinction requires a different neural circuit than delay extinction; trace extinction requires the participation of the retrosplenial cortex, but not the amygdala, as noted in a previous study. Here, we tested the roles of the prelimbic and infralimbic regions of the medial prefrontal cortex in trace and delay fear extinction by blocking NMDA receptors during extinction learning. We found that the prelimbic cortex is necessary for trace, but not for delay fear extinction, whereas the infralimbic cortex is involved in both types of extinction. These results are consistent with the idea that trace fear associations require plasticity in multiple cortical areas for successful extinction. Further, the infralimbic cortex appears to play a role in extinction regardless of whether the animal was initially trained in trace or delay conditioning. Together, our results provide new information about how the neural circuits supporting trace and delay fear extinction differ. PMID:25512576

  13. The role of the medial prefrontal cortex in trace fear extinction.

    PubMed

    Kwapis, Janine L; Jarome, Timothy J; Helmstetter, Fred J

    2014-01-01

    The extinction of delay fear conditioning relies on a neural circuit that has received much attention and is relatively well defined. Whether this established circuit also supports the extinction of more complex associations, however, is unclear. Trace fear conditioning is a better model of complex relational learning, yet the circuit that supports extinction of this memory has received very little attention. Recent research has indicated that trace fear extinction requires a different neural circuit than delay extinction; trace extinction requires the participation of the retrosplenial cortex, but not the amygdala, as noted in a previous study. Here, we tested the roles of the prelimbic and infralimbic regions of the medial prefrontal cortex in trace and delay fear extinction by blocking NMDA receptors during extinction learning. We found that the prelimbic cortex is necessary for trace, but not for delay fear extinction, whereas the infralimbic cortex is involved in both types of extinction. These results are consistent with the idea that trace fear associations require plasticity in multiple cortical areas for successful extinction. Further, the infralimbic cortex appears to play a role in extinction regardless of whether the animal was initially trained in trace or delay conditioning. Together, our results provide new information about how the neural circuits supporting trace and delay fear extinction differ. PMID:25512576

  14. The role of the medial prefrontal cortex in trace fear extinction.

    PubMed

    Kwapis, Janine L; Jarome, Timothy J; Helmstetter, Fred J

    2014-01-01

    The extinction of delay fear conditioning relies on a neural circuit that has received much attention and is relatively well defined. Whether this established circuit also supports the extinction of more complex associations, however, is unclear. Trace fear conditioning is a better model of complex relational learning, yet the circuit that supports extinction of this memory has received very little attention. Recent research has indicated that trace fear extinction requires a different neural circuit than delay extinction; trace extinction requires the participation of the retrosplenial cortex, but not the amygdala, as noted in a previous study. Here, we tested the roles of the prelimbic and infralimbic regions of the medial prefrontal cortex in trace and delay fear extinction by blocking NMDA receptors during extinction learning. We found that the prelimbic cortex is necessary for trace, but not for delay fear extinction, whereas the infralimbic cortex is involved in both types of extinction. These results are consistent with the idea that trace fear associations require plasticity in multiple cortical areas for successful extinction. Further, the infralimbic cortex appears to play a role in extinction regardless of whether the animal was initially trained in trace or delay conditioning. Together, our results provide new information about how the neural circuits supporting trace and delay fear extinction differ.

  15. Involvement of the medial prefrontal cortex in central cardiovascular modulation in the rat.

    PubMed

    Resstel, L B M; Corrêa, F M A

    2006-06-30

    The medial prefrontal cortex (MPFC) and specifically its ventral portion (vMPFC) have been reported to modulate autonomic responses. On the cardiovascular system, this modulation is characterized by an influence on arterial blood pressure, regional blood flow as well as cardiac sympathetic and parasympathetic responses. The vMPFC also modulates baroreflex activity. Several neurotransmitters are present in the vMPFC. Among them L-glutamate, acetylcholine and noradrenaline are involved with cardiovascular modulation. In the present review, we describe evidences on the mechanisms involved in the vMPFC-related cardiovascular modulation. PMID:16603420

  16. Demonstration of synaptic input from prefrontal cortex to the habenula i the rat.

    PubMed

    Greatrex, R M; Phillipson, O T

    1982-04-22

    Using lesion-degeneration techniques at the EM level, it is confirmed that a pathway from prefrontal cortex projects to the lateral habenula, and further that it makes synaptic contacts predominantly with dendrites of neurons in the medial sector of the lateral nucleus. The available neuroanatomical evidence points to a role for habenula as a regulator of the activity of the meso-cortical dopamine pathway by the interaction of this cortico-habenular pathway with a wide variety of limbic inputs in the medial sector of lateral habenula.

  17. NIRS-based neurofeedback learning systems for controlling activity of the prefrontal cortex.

    PubMed

    Sakatani, Kaoru; Takemoto, N; Tsujii, T; Yanagisawa, K; Tsunashima, H

    2013-01-01

    The aim of this study was to develop a NIRS-based neurofeedback system to modulate activity in the prefrontal cortex (PFC). We evaluated the effectiveness of the system in terms of separability of changes in oxy-Hb and its derivative. Training with neurofeedback resulted in higher separability than training without neurofeedback or no training, suggesting that the neurofeedback system could enhance self-control of PFC activity. Interestingly, the dorsolateral PFC exhibited enhanced activity and high separability after neurofeedback training. These observations suggest that the neurofeedback system might be useful for training subjects to regulate emotions by self-control of dorsolateral PFC activity.

  18. Dorsal medial prefrontal cortex contributes to conditioned taste aversion memory consolidation and retrieval.

    PubMed

    Gonzalez, Maria Carolina; Villar, Maria Eugenia; Igaz, Lionel M; Viola, Haydée; Medina, Jorge H

    2015-12-01

    The medial prefrontal cortex (mPFC) is known for its role in decision making and memory processing, including the participation in the formation of extinction memories. However, little is known regarding its contribution to aversive memory consolidation. Here we demonstrate that neural activity and protein synthesis are required in the dorsal mPFC for memory formation of a conditioned taste aversion (CTA) task and that this region is involved in the retrieval of recent and remote long-term CTA memory. In addition, both NMDA receptor and CaMKII activity in dorsal mPFC are needed for CTA memory consolidation, highlighting the complexity of mPFC functions.

  19. Response inhibition or salience detection in the right ventrolateral prefrontal cortex?

    PubMed

    Walther, Stephan; Friederich, Hans-Christoph; Stippich, Christoph; Weisbrod, Matthias; Kaiser, Stefan

    2011-10-26

    This study addresses the question of whether frontal activation in response-inhibition tasks is specifically associated with the suppression of a motor response. An alternative model suggests a role in the detection of behaviorally relevant or salient events. For this purpose, we used functional MRI with an auditory go/no-go paradigm. This paradigm allowed the disentangling of inhibition-related from salience-related effects, which were associated with different frontal regions. Importantly, the right ventrolateral prefrontal cortex consistently showed sensitivity for salience but not for inhibition requirements. This reflects a more general salience-detection mechanism, which is not specific for response-inhibition tasks.

  20. Prefrontal cortex and sensory cortices during working memory: quantity and quality.

    PubMed

    Ku, Yixuan; Bodner, Mark; Zhou, Yong-Di

    2015-04-01

    The activity in sensory cortices and the prefrontal cortex (PFC) throughout the delay interval of working memory (WM) tasks reflect two aspects of WM-quality and quantity, respectively. The delay activity in sensory cortices is fine-tuned to sensory information and forms the neural basis of the precision of WM storage, while the delay activity in the PFC appears to represent behavioral goals and filters out irrelevant distractions, forming the neural basis of the quantity of task-relevant information in WM. The PFC and sensory cortices interact through different frequency bands of neuronal oscillation (theta, alpha, and gamma) to fulfill goal-directed behaviors.

  1. Sleep loss alters synaptic and intrinsic neuronal properties in mouse prefrontal cortex

    PubMed Central

    Winters, Bradley D.; Huang, Yanhua H.; Dong, Yan; Krueger, James M.

    2011-01-01

    Despite sleep-loss-induced cognitive deficits, little is known about the cellular adaptations that occur with sleep loss. We used brain slices obtained from mice that were sleep deprived for 8 h to examine the electrophysiological effects of sleep deprivation (SD). We employed a modified pedestal (flowerpot) over water method for SD that eliminated rapid eye movement sleep and greatly reduced non-rapid eye movement sleep. In layer V/VI pyramidal cells of the medial prefrontal cortex, miniature excitatory post synaptic current amplitude was slightly reduced, miniature inhibitory post synaptic currents were unaffected, and intrinsic membrane excitability was increased after SD. PMID:21962531

  2. The Importance of the Lateral Prefrontal Cortex for Strategic Decision Making in the Prisoner's Dilemma.

    PubMed

    Soutschek, Alexander; Sauter, Marian; Schubert, Torsten

    2015-12-01

    Previous functional imaging studies investigating the neural basis of strategic decision making in the prisoner's dilemma reported a correlation between cooperative behavior and dorsolateral prefrontal cortex (DLPFC) activity; however, the precise function of the DLPFC in establishing cooperation remains unclear so far. The present study investigated the causal role of the DLPFC in an iterative prisoner's dilemma game with transcranial magnetic stimulation (TMS). We discovered that disrupting the DLPFC with TMS decreased cooperation rates in comparison to control conditions, with this effect being most pronounced when the partner had defected previously. Thus, the current results suggest that the DLPFC contributes to strategic decision making in the prisoner's dilemma game.

  3. Glutamatergic plasticity in medial prefrontal cortex and ventral tegmental area following extended-access cocaine self-administration

    PubMed Central

    Ghasemzadeh, M. Behnam; Vasudevan, Preethi; Giles, Chad; Purgianto, Anthony; Seubert, Chad; Mantsch, John R.

    2013-01-01

    Glutamate signaling in prefrontal cortex and ventral tegmental area plays an important role in the molecular and behavioral plasticity associated with addiction to drugs of abuse. The current study investigated the expression and postsynaptic density redistribution of glutamate receptors and synaptic scaffolding proteins in dorsomedial and ventromedial prefrontal cortex and ventral tegmental area after cocaine self-administration. After 14 days of extended-access (6hr/day) cocaine self-administration, rats were exposed to one of three withdrawal regimen for 10 days. Animals either stayed in home cages (Home), returned to self-administration boxes with the levers withdrawn (Box), or underwent extinction training (Extinction). Extinction training was associated with significant glutamatergic plasticity. In dorsomedial prefrontal cortex of the Extinction group, there was an increase in postsynaptic density GluR1, PSD95, and actin proteins; while postsynaptic content of mGluR5 receptor protein decreased and there was no change in NMDAR1, Homer1b/c, or PICK1 proteins. These changes were not observed in ventromedial prefrontal cortex or ventral tegmental area. In ventral tegmental area, Extinction training reversed the decreased postsynaptic density NMDAR1 protein in the Home and Box withdrawal groups. These data suggest that extinction of drug seeking is associated with selective glutamatergic plasticity in prefrontal cortex and ventral tegmental area that include modulation of receptor trafficking to postsynaptic density. PMID:21855055

  4. Dopamine’s Actions in Primate Prefrontal Cortex: Challenges for Treating Cognitive Disorders

    PubMed Central

    Wang, Min; Paspalas, Constantinos D.

    2015-01-01

    The prefrontal cortex (PFC) elaborates and differentiates in primates, and there is a corresponding elaboration in cortical dopamine (DA). DA cells that fire to both aversive and rewarding stimuli likely project to the dorsolateral PFC (dlPFC), signaling a salient event. Since 1979, we have known that DA has an essential influence on dlPFC working memory functions. DA has differing effects via D1 (D1R) versus D2 receptor (D2R) families. D1R are concentrated on dendritic spines, and D1/5R stimulation produces an inverted U-shaped dose response on visuospatial working memory performance and Delay cell firing, the neurons that generate representations of visual space. Optimal levels of D1R stimulation gate out “noise,” whereas higher levels, e.g., during stress, suppress Delay cell firing. These effects likely involve hyperpolarization-activated cyclic nucleotide-gated channel opening, activation of GABA interneurons, and reduced glutamate release. Dysregulation of D1R has been related to cognitive deficits in schizophrenia, and there is a need for new, lower-affinity D1R agonists that may better mimic endogenous DA to enhance mental representations and improve cognition. In contrast to D1R, D2R are primarily localized on layer V pyramidal cell dendrites, and D2/3R stimulation speeds and magnifies the firing of Response cells, including Response Feedback cells. Altered firing of Feedback neurons may relate to positive symptoms in schizophrenia. Emerging research suggests that DA may have similar effects in the ventrolateral PFC and frontal eye fields. Research on the orbital PFC in monkeys is just beginning and could be a key area for future discoveries. PMID:26106146

  5. Chronic administration of resveratrol prevents morphological changes in prefrontal cortex and hippocampus of aged rats.

    PubMed

    Monserrat Hernández-Hernández, Elizabeth; Serrano-García, Carolina; Antonio Vázquez-Roque, Rubén; Díaz, Alfonso; Monroy, Elibeth; Rodríguez-Moreno, Antonio; Florán, Benjamin; Flores, Gonzalo

    2016-05-01

    Resveratrol may induce its neuroprotective effects by reducing oxidative damage and chronic inflammation apart from improving vascular function and activating longevity genes, it also has the ability to promote the activity of neurotrophic factors. Morphological changes in dendrites of the pyramidal neurons of the prefrontal cortex (PFC) and hippocampus have been reported in the brain of aging humans, or in humans with neurodegenerative diseases such as Alzheimer's disease. These changes are reflected particularly in the decrement of both the dendritic tree and spine density. Here we evaluated the effect of resveratrol on the dendrites of pyramidal neurons of the PFC (Layers 3 and 5), CA1- and CA3-dorsal hippocampus (DH) as well as CA1-ventral hippocampus, dentate gyrus (DG), and medium spiny neurons of the nucleus accumbens of aged rats. 18-month-old rats were administered resveratrol (20 mg/kg, orally) daily for 60 days. Dendritic morphology was studied by the Golgi-Cox stain procedure, followed by Sholl analysis on 20-month-old rats. In all resveratrol-treated rats, a significant increase in dendritic length and spine density in pyramidal neurons of the PFC, CA1, and CA3 of DH was observed. Interestingly, the enhancement in dendritic length was close to the soma in pyramidal neurons of the PFC, whereas in neurons of the DH and DG, the increase in dendritic length was further from the soma. Our results suggest that resveratrol induces modifications of dendritic morphology in the PFC, DH, and DG. These changes may explain the therapeutic effect of resveratrol in aging and in Alzheimer's disease. PMID:26789275

  6. Von Economo neurons are present in the dorsolateral (dysgranular) prefrontal cortex of humans.

    PubMed

    Fajardo, C; Escobar, M I; Buriticá, E; Arteaga, G; Umbarila, J; Casanova, M F; Pimienta, H

    2008-04-25

    Von Economo neurons (VENs), also known as spindle cells, have been described in layer V of the anterior cingulate (BA 24) and frontoinsular cortex (FI) of humans and other great apes. In the present study we used immunohistochemistry against two specific neuronal markers (NeuN and MAP2) in order to establish the presence of these cell types in Brodmann area 9 (BA 9) of the human prefrontal cortex. We evaluated tissue samples of eight human postmortem brains (age range 26-50) from BAs 9, 24, 4, 46, 45, 10 and 17. We identified a group of cells with similar morphology to that previously described for VENs in all specimens of BA 9 examined, albeit less frequently than in BA 24. This is the first description of this cell type in a human brain area with well developed granular layers (BA 9).

  7. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies.

  8. Reward Sensitivity Modulates Brain Activity in the Prefrontal Cortex, ACC and Striatum during Task Switching

    PubMed Central

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C.; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  9. A Source for Feature-Based Attention in the Prefrontal Cortex.

    PubMed

    Bichot, Narcisse P; Heard, Matthew T; DeGennaro, Ellen M; Desimone, Robert

    2015-11-18

    In cluttered scenes, we can use feature-based attention to quickly locate a target object. To understand how feature attention is used to find and select objects for action, we focused on the ventral prearcuate (VPA) region of prefrontal cortex. In a visual search task, VPA cells responded selectively to search cues, maintained their feature selectivity throughout the delay and subsequent saccades, and discriminated the search target in their receptive fields with a time course earlier than in FEF or IT cortex. Inactivation of VPA impaired the animals' ability to find targets, and simultaneous recordings in FEF revealed that the effects of feature attention were eliminated while leaving the effects of spatial attention in FEF intact. Altogether, the results suggest that VPA neurons compute the locations of objects with the features sought and send this information to FEF to guide eye movements to those relevant stimuli. PMID:26526392

  10. Reward sensitivity modulates brain activity in the prefrontal cortex, ACC and striatum during task switching.

    PubMed

    Fuentes-Claramonte, Paola; Ávila, César; Rodríguez-Pujadas, Aina; Ventura-Campos, Noelia; Bustamante, Juan C; Costumero, Víctor; Rosell-Negre, Patricia; Barrós-Loscertales, Alfonso

    2015-01-01

    Current perspectives on cognitive control acknowledge that individual differences in motivational dispositions may modulate cognitive processes in the absence of reward contingencies. This work aimed to study the relationship between individual differences in Behavioral Activation System (BAS) sensitivity and the neural underpinnings involved in processing a switching cue in a task-switching paradigm. BAS sensitivity was hypothesized to modulate brain activity in frontal regions, ACC and the striatum. Twenty-eight healthy participants underwent fMRI while performing a switching task, which elicited activity in fronto-striatal regions during the processing of the switch cue. BAS sensitivity was negatively associated with activity in the lateral prefrontal cortex, anterior cingulate cortex and the ventral striatum. Combined with previous results, our data indicate that BAS sensitivity modulates the neurocognitive processes involved in task switching in a complex manner depending on task demands. Therefore, individual differences in motivational dispositions may influence cognitive processing in the absence of reward contingencies. PMID:25875640

  11. Effects of imidazoline antihypertensive drugs on sympathetic tone and noradrenaline release in the prefrontal cortex

    PubMed Central

    Szabo, Bela; Fritz, Thomas; Wedzony, Krzysztof

    2001-01-01

    The aim of the present study was to compare the effects of the centrally acting antihypertensive drugs rilmenidine, moxonidine, clonidine and guanabenz on sympathetic tone with their effects on noradrenaline release in the cerebral cortex. In particular, the hypothesis was tested that rilmenidine and moxonidine, due to their high affinity for sympatho-inhibitory imidazoline I1 receptors and low affinity for α2-adrenoceptors, lower sympathetic tone without causing an α2-adrenoceptor-mediated inhibition of cerebrocortical noradrenaline release.In rats anaesthetized with urethane, blood pressure and heart rate were measured and the concentration of noradrenaline in arterial blood plasma was determined. The release of noradrenaline in the medial prefrontal cortex was estimated by microdialysis. Intravenous administration of rilmenidine (30, 100, 300 and 1000 μg kg−1), moxonidine (10, 30, 100 and 300 μg kg−1), clonidine (1, 3, 10 and 30 μg kg−1) and guanabenz (1, 3, 10 and 30 μg kg−1) led to dose-dependent hypotension and bradycardia; the plasma noradrenaline concentration also decreased. After the two highest doses, all four drugs lowered noradrenaline release in the prefrontal cortex. At doses eliciting equal hypotensive and sympatho-inhibitory responses, rilmenidine and moxonidine inhibited cerebral cortical noradrenaline release at least as much as clonidine and guanabenz.The results show that rilmenidine and moxonidine lower cerebrocortical noradrenaline release at doses similar to those which cause sympatho-inhibition. This effect was probably due to an α2-adrenoceptor-mediated inhibition of the firing of locus coeruleus neurons and, in addition, to presynaptic inhibition of noradrenaline release at the level of the axon terminals in the cortex. The results argue against the hypothesis that rilmenidine and moxonidine, due to their selectivity for sympatho-inhibitory I1 imidazoline receptors, do not suppress noradrenergic neurons in

  12. Complex regional pain syndrome type I affects brain structure in prefrontal and motor cortex.

    PubMed

    Pleger, Burkhard; Draganski, Bogdan; Schwenkreis, Peter; Lenz, Melanie; Nicolas, Volkmar; Maier, Christoph; Tegenthoff, Martin

    2014-01-01

    The complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder that mostly occurs after injuries to the upper limb. A number of studies indicated altered brain function in CRPS, whereas possible influences on brain structure remain poorly investigated. We acquired structural magnetic resonance imaging data from CRPS type I patients and applied voxel-by-voxel statistics to compare white and gray matter brain segments of CRPS patients with matched controls. Patients and controls were statistically compared in two different ways: First, we applied a 2-sample ttest to compare whole brain white and gray matter structure between patients and controls. Second, we aimed to assess structural alterations specifically of the primary somatosensory (S1) and motor cortex (M1) contralateral to the CRPS affected side. To this end, MRI scans of patients with left-sided CRPS (and matched controls) were horizontally flipped before preprocessing and region-of-interest-based group comparison. The unpaired ttest of the "non-flipped" data revealed that CRPS patients presented increased gray matter density in the dorsomedial prefrontal cortex. The same test applied to the "flipped" data showed further increases in gray matter density, not in the S1, but in the M1 contralateral to the CRPS-affected limb which were inversely related to decreased white matter density of the internal capsule within the ipsilateral brain hemisphere. The gray-white matter interaction between motor cortex and internal capsule suggests compensatory mechanisms within the central motor system possibly due to motor dysfunction. Altered gray matter structure in dorsomedial prefrontal cortex may occur in response to emotional processes such as pain-related suffering or elevated analgesic top-down control.

  13. Lesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates.

    PubMed

    Pears, Andrew; Parkinson, John A; Hopewell, Lucy; Everitt, Barry J; Roberts, Angela C

    2003-12-01

    The ventromedial prefrontal cortex (PFC) is implicated in affective and motivated behaviors. Damage to this region, which includes the orbitofrontal cortex as well as ventral sectors of medial PFC, causes profound changes in emotional and social behavior, including impairments in certain aspects of decision making. One reinforcement mechanism that may well contribute to these behaviors is conditioned reinforcement, whereby previously neutral stimuli in the environment, by virtue of their association with primary rewards, take on reinforcing value and come to support instrumental action. Conditioned reinforcers are powerful determinants of behavior and can maintain responding over protracted periods of time in the absence of and potentially in conflict with primary reinforcers. It has already been shown that conditioned reinforcement is dependent on the amygdala, and because the amygdala projects to both the orbitofrontal cortex and the medial PFC, the present study determined whether conditioned reinforcement was also dependent on one or the other of these prefrontal regions. Comparison of the behavioral effects of selective excitotoxic lesions of the PFC in the common marmoset revealed that orbitofrontal but not medial PFC lesions disrupted two distinct measures of conditioned reinforcement: (1) acquisition of a new response and (2) sensitivity to conditioned stimulus omission on a second-order schedule. In contrast, the orbitofrontal lesion did not affect sensitivity to primary reinforcement as measured by responding on a progressive-ratio schedule and a home cage consumption test. Together, these findings demonstrate the critical and specific involvement of the orbitofrontal cortex but not the medial PFC in conditioned reinforcement. PMID:14657178

  14. Extrapunitive and intropunitive individuals activate different parts of the prefrontal cortex under an ego-blocking frustration.

    PubMed

    Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki

    2014-01-01

    Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9) showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9) showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation. PMID:24454951

  15. Extrapunitive and Intropunitive Individuals Activate Different Parts of the Prefrontal Cortex under an Ego-Blocking Frustration

    PubMed Central

    Minamoto, Takehiro; Osaka, Mariko; Yaoi, Ken; Osaka, Naoyuki

    2014-01-01

    Different people make different responses when they face a frustrating situation: some punish others (extrapunitive), while others punish themselves (intropunitive). Few studies have investigated the neural structures that differentiate extrapunitive and intropunitive individuals. The present fMRI study explored these neural structures using two different frustrating situations: an ego-blocking situation which blocks a desire or goal, and a superego-blocking situation which blocks self-esteem. In the ego-blocking condition, the extrapunitive group (n = 9) showed greater activation in the bilateral ventrolateral prefrontal cortex, indicating that these individuals prefer emotional processing. On the other hand, the intropunitive group (n = 9) showed greater activation in the left dorsolateral prefrontal cortex, possibly reflecting an effortful control for anger reduction. Such patterns were not observed in the superego-blocking condition. These results indicate that the prefrontal cortex is the source of individual differences in aggression direction in the ego-blocking situation. PMID:24454951

  16. Responses of medial and ventrolateral prefrontal cortex to interpersonal conflict for resources

    PubMed Central

    Koban, Leonie; Pichon, Swann; Vuilleumier, Patrik

    2014-01-01

    Little is known about brain mechanisms recruited during the monitoring and appraisal of social conflicts—for instance, when individuals compete with each other for the same resources. We designed a novel experimental task inducing resource conflicts between two individuals. In an event-related functional magnetic resonance imaging (fMRI) design, participants played with another human participant or against a computer, who across trials chose either different (no-conflict) or the same tokens (conflict trials) in order to obtain monetary gains. In conflict trials, the participants could decide whether they would share the token, and the resulting gain, with the other person or instead keep all points for themselves. Behaviorally, participants shared much more often when playing with a human partner than with a computer. fMRI results demonstrated that the dorsal mediofrontal cortex was selectively activated during human conflicts. This region might play a key role in detecting situations in which self- and social interest are incompatible and require behavioral adjustment. In addition, we found a conflict-related response in the right ventrolateral prefrontal cortex that correlated with measures of social relationship and individual sharing behavior. Taken together, these findings reveal a key role of these prefrontal areas for the appraisal and resolution of interpersonal resource conflicts. PMID:23460073

  17. Motivation and Affective Judgments Differentially Recruit Neurons in the Primate Dorsolateral Prefrontal and Anterior Cingulate Cortex

    PubMed Central

    Amemori, Ken-ichi; Amemori, Satoko

    2015-01-01

    The judgment of whether to accept or to reject an offer is determined by positive and negative affect related to the offer, but affect also induces motivational responses. Rewarding and aversive cues influence the firing rates of many neurons in primate prefrontal and cingulate neocortical regions, but it still is unclear whether neurons in these regions are related to affective judgment or to motivation. To address this issue, we recorded simultaneously the neuronal spike activities of single units in the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate cortex (ACC) of macaque monkeys as they performed approach–avoidance (Ap–Av) and approach–approach (Ap–Ap) decision-making tasks that can behaviorally dissociate affective judgment and motivation. Notably, neurons having activity correlated with motivational condition could be distinguished from neurons having activity related to affective judgment, especially in the Ap–Av task. Although many neurons in both regions exhibited similar, selective patterns of task-related activity, we found a larger proportion of neurons activated in low motivational conditions in the dlPFC than in the ACC, and the onset of this activity was significantly earlier in the dlPFC than in the ACC. Furthermore, the temporal onsets of affective judgment represented by neuronal activities were significantly slower in the low motivational conditions than in the other conditions. These findings suggest that motivation and affective judgment both recruit dlPFC and ACC neurons but with differential degrees of involvement and timing. PMID:25653353

  18. Cortical thickness of the dorsolateral prefrontal cortex predicts strategic choices in economic games.

    PubMed

    Yamagishi, Toshio; Takagishi, Haruto; Fermin, Alan de Souza Rodrigues; Kanai, Ryota; Li, Yang; Matsumoto, Yoshie

    2016-05-17

    Human prosociality has been traditionally explained in the social sciences in terms of internalized social norms. Recent neuroscientific studies extended this traditional view of human prosociality by providing evidence that prosocial choices in economic games require cognitive control of the impulsive pursuit of self-interest. However, this view is challenged by an intuitive prosociality view emphasizing the spontaneous and heuristic basis of prosocial choices in economic games. We assessed the brain structure of 411 players of an ultimatum game (UG) and a dictator game (DG) and measured the strategic reasoning ability of 386. According to the reflective norm-enforcement view of prosociality, only those capable of strategically controlling their selfish impulses give a fair share in the UG, but cognitive control capability should not affect behavior in the DG. Conversely, we support the intuitive prosociality view by showing for the first time, to our knowledge, that strategic reasoning and cortical thickness of the dorsolateral prefrontal cortex were not related to giving in the UG but were negatively related to giving in the DG. This implies that the uncontrolled choice in the DG is prosocial rather than selfish, and those who have a thicker dorsolateral prefrontal cortex and are capable of strategic reasoning (goal-directed use of the theory of mind) control this intuitive drive for prosociality as a means to maximize reward when there are no future implications of choices. PMID:27140622

  19. Responses of medial and ventrolateral prefrontal cortex to interpersonal conflict for resources.

    PubMed

    Koban, Leonie; Pichon, Swann; Vuilleumier, Patrik

    2014-05-01

    Little is known about brain mechanisms recruited during the monitoring and appraisal of social conflicts--for instance, when individuals compete with each other for the same resources. We designed a novel experimental task inducing resource conflicts between two individuals. In an event-related functional magnetic resonance imaging (fMRI) design, participants played with another human participant or against a computer, who across trials chose either different (no-conflict) or the same tokens (conflict trials) in order to obtain monetary gains. In conflict trials, the participants could decide whether they would share the token, and the resulting gain, with the other person or instead keep all points for themselves. Behaviorally, participants shared much more often when playing with a human partner than with a computer. fMRI results demonstrated that the dorsal mediofrontal cortex was selectively activated during human conflicts. This region might play a key role in detecting situations in which self- and social interest are incompatible and require behavioral adjustment. In addition, we found a conflict-related response in the right ventrolateral prefrontal cortex that correlated with measures of social relationship and individual sharing behavior. Taken together, these findings reveal a key role of these prefrontal areas for the appraisal and resolution of interpersonal resource conflicts.

  20. The role of prefrontal cortex in visuo-spatial planning: A repetitive TMS study.

    PubMed

    Basso, Demis; Lotze, Martin; Vitale, Lavinia; Ferreri, Florinda; Bisiacchi, Patrizia; Olivetti Belardinelli, Marta; Rossini, Paolo Maria; Birbaumer, Niels

    2006-05-01

    The visuo-spatial planning process is based on an "opportunistic" combination of heuristics and strategies, carried out in small units during the execution of plans. In order to investigate the functional role of the prefrontal cortex in heuristic switching, 42 healthy controls performed a labyrinth crossing task (the Maps Test). During this computerized version of the Travelling Salesperson Problem, subjects had to decide which order of locations optimizes total travel time and distance. This task was performed with and without 1 Hz repetitive transcranial magnetic stimulation (rTMS), which exerts an inhibitory action on the targeted area, applied during the task over bilateral frontal sites (active stimulation) and parieto-occipital site (sham stimulation). Only repetitive bilateral rTMS over F3 and F4 significantly decreased the number of strategies with changes of heuristics, and increased the number of movements required to solve the task. This behaviour contrasts with the performance of healthy subjects in the planning task, but is consistent with the performance of frontal traumatic brain injury patients. The results indicate that, in a visuo-spatial problem-solving task, the prefrontal cortex is involved in the switching between heuristics during the execution of a plan.

  1. Prefrontal cortex and decision making in a mixed-strategy game.

    PubMed

    Barraclough, Dominic J; Conroy, Michelle L; Lee, Daeyeol

    2004-04-01

    In a multi-agent environment, where the outcomes of one's actions change dynamically because they are related to the behavior of other beings, it becomes difficult to make an optimal decision about how to act. Although game theory provides normative solutions for decision making in groups, how such decision-making strategies are altered by experience is poorly understood. These adaptive processes might resemble reinforcement learning algorithms, which provide a general framework for finding optimal strategies in a dynamic environment. Here we investigated the role of prefrontal cortex (PFC) in dynamic decision making in monkeys. As in reinforcement learning, the animal's choice during a competitive game was biased by its choice and reward history, as well as by the strategies of its opponent. Furthermore, neurons in the dorsolateral prefrontal cortex (DLPFC) encoded the animal's past decisions and payoffs, as well as the conjunction between the two, providing signals necessary to update the estimates of expected reward. Thus, PFC might have a key role in optimizing decision-making strategies.

  2. Behavioral Regulation and the Modulation of Information Coding in the Lateral Prefrontal and Cingulate Cortex.

    PubMed

    Khamassi, Mehdi; Quilodran, René; Enel, Pierre; Dominey, Peter F; Procyk, Emmanuel

    2015-09-01

    To explain the high level of flexibility in primate decision-making, theoretical models often invoke reinforcement-based mechanisms, performance monitoring functions, and core neural features within frontal cortical regions. However, the underlying biological mechanisms remain unknown. In recent models, part of the regulation of behavioral control is based on meta-learning principles, for example, driving exploratory actions by varying a meta-parameter, the inverse temperature, which regulates the contrast between competing action probabilities. Here we investigate how complementary processes between lateral prefrontal cortex (LPFC) and dorsal anterior cingulate cortex (dACC) implement decision regulation during exploratory and exploitative behaviors. Model-based analyses of unit activity recorded in these 2 areas in monkeys first revealed that adaptation of the decision function is reflected in a covariation between LPFC neural activity and the control level estimated from the animal's behavior. Second, dACC more prominently encoded a reflection of outcome uncertainty useful for control regulation based on task monitoring. Model-based analyses also revealed higher information integration before feedback in LPFC, and after feedback in dACC. Overall the data support a role of dACC in integrating reinforcement-based information to regulate decision functions in LPFC. Our results thus provide biological evidence on how prefrontal cortical subregions may cooperate to regulate decision-making.

  3. Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex

    PubMed Central

    Ianov, Lara; Rani, Asha; Beas, Blanca S.; Kumar, Ashok; Foster, Thomas C.

    2016-01-01

    Cognitive function depends on transcription; however, there is little information linking altered gene expression to impaired prefrontal cortex function during aging. Young and aged F344 rats were characterized on attentional set shift and spatial memory tasks. Transcriptional differences associated with age and cognition were examined using RNA sequencing to construct transcriptomic profiles for the medial prefrontal cortex (mPFC), white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging. Age-related gene expression in the mPFC was similar to, though less robust than, changes in the dorsolateral PFC of aging humans suggesting that aging processes may be similar. Importantly, the pattern of transcription associated with aging did not predict cognitive decline. Rather, increased mPFC expression of genes involved in regulation of transcription, including transcription factors that regulate the strength of excitatory and inhibitory inputs, and neural activity-related immediate-early genes was observed in aged animals that exhibit delayed set shift behavior. The specificity of impairment on a mPFC-dependent task, associated with a particular mPFC transcriptional profile indicates that impaired executive function involves altered transcriptional regulation and neural activity/plasticity processes that are distinct from that described for impaired hippocampal function. PMID:27242522

  4. Transcranial magnetic stimulation of the ventromedial prefrontal cortex impairs theory of mind learning.

    PubMed

    Lev-Ran, S; Shamay-Tsoory, S G; Zangen, A; Levkovitz, Y

    2012-05-01

    Imaging and lesion studies indicate that the prefrontal cortex plays a prominent role in mediating theory of mind (ToM) functioning. Particularly, the ventromedial prefrontal cortex (VMPFC) appears to be involved in mediating ToM functioning. This study utilized slow repetitive transcranial magnetic stimulation (rTMS) over the VMPFC in 13 healthy subjects in order to test whether normal functioning of the VMPFC is necessary for ToM functioning. We found that rTMS to the VMPFC, but not sham-rTMS, significantly disrupted ToM learning. Performance on a control task, not involving affective ToM functioning, was not significantly altered after applying rTMS to the VMPFC or sham-rTMS. In an additional experiment, rTMS to the vertex did not significantly affect ToM learning, confirming specificity of the VMPFC region. These findings indicate that the VMPFC is critical for intact ToM learning and shed further light on the concept and localization of ToM in particular and empathic functioning in general. PMID:21324655

  5. Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats.

    PubMed

    Lima, A; Sardinha, V M; Oliveira, A F; Reis, M; Mota, C; Silva, M A; Marques, F; Cerqueira, J J; Pinto, L; Sousa, N; Oliveira, J F

    2014-07-01

    Interest in astroglial cells is rising due to recent findings supporting dynamic neuron-astrocyte interactions. There is increasing evidence of astrocytic dysfunction in several brain disorders such as depression, schizophrenia or bipolar disorder; importantly these pathologies are characterized by the involvement of the prefrontal cortex and by significant cognitive impairments. Here, to model astrocyte pathology, we injected animals with the astrocyte specific toxin L-α-aminoadipate (L-AA) in the medial prefrontal cortex (mPFC); a behavioral and structural characterization two and six days after the injection was performed. Behavioral data shows that the astrocyte pathology in the mPFC affects the attentional set-shifting, the working memory and the reversal learning functions. Histological analysis of brain sections of the L-AA-injected animals revealed a pronounced loss of astrocytes in the targeted region. Interestingly, analysis of neurons in the lesion sites showed a progressive neuronal loss that was accompanied with dendritic atrophy in the surviving neurons. These results suggest that the L-AA-induced astrocytic loss in the mPFC triggers subsequent neuronal damage leading to cognitive impairment in tasks depending on the integrity of this brain region. These findings are of relevance to better understand the pathophysiological mechanisms underlying disorders that involve astrocytic loss/dysfunction in the PFC.

  6. The lateral prefrontal cortex mediates the hyperalgesic effects of negative cognitions in chronic pain patients

    PubMed Central

    Loggia, Marco L.; Berna, Chantal; Kim, Jieun; Cahalan, Christine M.; Martel, Marc-Olivier; Gollub, Randy L.; Wasan, Ajay D.; Napadow, Vitaly; Edwards, Robert R.

    2015-01-01

    While high levels of negative affect and cognitions have been associated in chronic pain conditions with greater pain sensitivity, the neural mechanisms mediating the hyperalgesic effect of psychological factors in patients with pain disorders are largely unknown. In this cross-sectional study, we hypothesized that 1) catastrophizing modulates brain responses to pain anticipation, and that 2) anticipatory brain activity mediates the hyperalgesic effect of different levels of catastrophizing, in fibromyalgia (FM) patients. Using functional Magnetic Resonance Imaging, we scanned the brains of 31 FM patients exposed to visual cues anticipating the onset of moderately intense deep-tissue pain stimuli. Our results indicated the existence of a negative association between catastrophizing and pain-anticipatory brain activity, including in the right lateral prefrontal cortex (IPFC). A bootstrapped mediation analysis revealed that pain-anticipatory activity in lateral prefrontal cortex (IPFC) mediates the association between catastrophizing and pain sensitivity. These findings highlight the role of IPFC in the pathophysiology of FM related hyperalgesia, and suggest that deficits in the recruitment of pain-inhibitory brain circuitry during pain-anticipatory periods may play an important contributory role in the association between various degrees of widespread hyperalgesia in FM and levels of catastrophizing, a well validated measure of negative cognitions and psychological distress. Perspective This article highlights the presence of alterations in pain-anticipatory brain activity in FM. These findings provide the rationale for the development of psychological or neurofeedback-based techniques aimed at modifying patients' negative affect and cognitions towards pain. PMID:25937162

  7. Cathodal tDCS over the left prefrontal cortex diminishes choice-induced preference change.

    PubMed

    Mengarelli, Flavia; Spoglianti, Silvia; Avenanti, Alessio; di Pellegrino, Giuseppe

    2015-05-01

    In everyday life, people often find themselves facing difficult decisions between options that are equally attractive. Cognitive dissonance theory states that after making a difficult choice between 2 equally preferred options, individuals no longer find the alternatives similarly desirable. Rather, they often change their existing preferences to align more closely with the choice they have just made. Despite the relevance of cognitive dissonance in modulating behavior, little is known about the brain processes crucially involved in choice-induced preference change. In the present study, we applied cathodal transcranial Direct Current Stimulation (tDCS) with the aim of downregulating the activity of the left or the right dorsolateral prefrontal cortex (DLPFC) during a revised version of Brehm's (in 1956. Post-decision changes in the desirability of alternatives. J Abnorm Soc Psychol. 52:384-389) free-choice paradigm. We found that cathodal tDCS over the left, but not over the right, DLPFC caused a reduction of the typical behavior-induced preference change relative to sham stimulation. Our findings highlight the role of prefrontal cortex in cognitive dissonance and provide evidence that left DLPFC plays a necessary role in the implementation of choice-induced preference change.

  8. Responses of medial and ventrolateral prefrontal cortex to interpersonal conflict for resources.

    PubMed

    Koban, Leonie; Pichon, Swann; Vuilleumier, Patrik

    2014-05-01

    Little is known about brain mechanisms recruited during the monitoring and appraisal of social conflicts--for instance, when individuals compete with each other for the same resources. We designed a novel experimental task inducing resource conflicts between two individuals. In an event-related functional magnetic resonance imaging (fMRI) design, participants played with another human participant or against a computer, who across trials chose either different (no-conflict) or the same tokens (conflict trials) in order to obtain monetary gains. In conflict trials, the participants could decide whether they would share the token, and the resulting gain, with the other person or instead keep all points for themselves. Behaviorally, participants shared much more often when playing with a human partner than with a computer. fMRI results demonstrated that the dorsal mediofrontal cortex was selectively activated during human conflicts. This region might play a key role in detecting situations in which self- and social interest are incompatible and require behavioral adjustment. In addition, we found a conflict-related response in the right ventrolateral prefrontal cortex that correlated with measures of social relationship and individual sharing behavior. Taken together, these findings reveal a key role of these prefrontal areas for the appraisal and resolution of interpersonal resource conflicts. PMID:23460073

  9. Reduced pCREB in Alzheimer's disease prefrontal cortex is reflected in peripheral blood mononuclear cells

    PubMed Central

    Bartolotti, N; Bennett, D A; Lazarov, O

    2016-01-01

    Cyclic-AMP response element-binding protein (CREB) signaling has a critical role in the formation of memories. CREB signaling is dysfunctional in the brains of mouse models of Alzheimer's disease (AD), and evidence suggests that CREB signaling may be disrupted in human AD brains as well. Here, we show that both CREB and its activated form pCREB-Ser133 (pCREB) are reduced in the prefrontal cortex of AD patients. Similarly, the transcription cofactors CREB-binding protein (CBP) and p300 are reduced in the prefrontal cortex of AD patients, indicating additional dysfunction of CREB signaling in AD. Importantly, we show that pCREB expression is reduced in peripheral blood mononuclear cells (PBMC) of AD subjects. In addition, pCREB levels in PBMC positively correlated with pCREB expression in the postmortem brain of persons with AD. These results suggest that pCREB expression in PBMC may be indicative of its expression in the brain, and thus offers the intriguing possibility of pCREB as a biomarker of cognitive function and disease progression in AD. PMID:27480489

  10. Medial prefrontal cortex and striatum mediate the influence of social comparison on the decision process.

    PubMed

    Bault, Nadège; Joffily, Mateus; Rustichini, Aldo; Coricelli, Giorgio

    2011-09-20

    We compared private and social decision making to investigate the neural underpinnings of the effect of social comparison on risky choices. We measured brain activity using functional MRI while participants chose between two lotteries: in the private condition, they observed the outcome of the unchosen lottery, and in the social condition, the outcome of the lottery chosen by another person. The striatum, a reward-related brain structure, showed higher activity when participants won more than their counterpart (social gains) compared with winning in isolation and lower activity when they won less than their counterpart (social loss) compared with private loss. The medial prefrontal cortex, implicated in social reasoning, was more activated by social gains than all other events. Sensitivity to social gains influenced both brain activity and behavior during subsequent choices. Specifically, striatal activity associated with social gains predicted medial prefrontal cortex activity during social choices, and experienced social gains induced more risky and competitive behavior in later trials. These results show that interplay between reward and social reasoning networks mediates the influence of social comparison on the decision process.

  11. Transcranial magnetic stimulation of the ventromedial prefrontal cortex impairs theory of mind learning.

    PubMed

    Lev-Ran, S; Shamay-Tsoory, S G; Zangen, A; Levkovitz, Y

    2012-05-01

    Imaging and lesion studies indicate that the prefrontal cortex plays a prominent role in mediating theory of mind (ToM) functioning. Particularly, the ventromedial prefrontal cortex (VMPFC) appears to be involved in mediating ToM functioning. This study utilized slow repetitive transcranial magnetic stimulation (rTMS) over the VMPFC in 13 healthy subjects in order to test whether normal functioning of the VMPFC is necessary for ToM functioning. We found that rTMS to the VMPFC, but not sham-rTMS, significantly disrupted ToM learning. Performance on a control task, not involving affective ToM functioning, was not significantly altered after applying rTMS to the VMPFC or sham-rTMS. In an additional experiment, rTMS to the vertex did not significantly affect ToM learning, confirming specificity of the VMPFC region. These findings indicate that the VMPFC is critical for intact ToM learning and shed further light on the concept and localization of ToM in particular and empathic functioning in general.

  12. ``Seeing'' electroencephalogram through the skull: imaging prefrontal cortex with fast optical signal

    NASA Astrophysics Data System (ADS)

    Medvedev, Andrei V.; Kainerstorfer, Jana M.; Borisov, Sergey V.; Gandjbakhche, Amir H.; Vanmeter, John

    2010-11-01

    Near-infrared spectroscopy is a novel imaging technique potentially sensitive to both brain hemodynamics (slow signal) and neuronal activity (fast optical signal, FOS). The big challenge of measuring FOS noninvasively lies in the presumably low signal-to-noise ratio. Thus, detectability of the FOS has been controversially discussed. We present reliable detection of FOS from 11 individuals concurrently with electroencephalogram (EEG) during a Go-NoGo task. Probes were placed bilaterally over prefrontal cortex. Independent component analysis (ICA) was used for artifact removal. Correlation coefficient in the best correlated FOS-EEG ICA pairs was highly significant (p < 10-8), and event-related optical signal (EROS) was found in all subjects. Several EROS components were similar to the event-related potential (ERP) components. The most robust ``optical N200'' at t = 225 ms coincided with the N200 ERP; both signals showed significant difference between targets and nontargets, and their timing correlated with subject's reaction time. Correlation between FOS and EEG even in single trials provides further evidence that at least some FOS components ``reflect'' electrical brain processes directly. The data provide evidence for the early involvement of prefrontal cortex in rapid object recognition. EROS is highly localized and can provide cost-effective imaging tools for cortical mapping of cognitive processes.

  13. Development of wearable optical topography system for mapping the prefrontal cortex activation

    NASA Astrophysics Data System (ADS)

    Atsumori, Hirokazu; Kiguchi, Masashi; Obata, Akiko; Sato, Hiroki; Katura, Takusige; Funane, Tsukasa; Maki, Atsushi

    2009-04-01

    Optical topography (OT) based on near infrared spectroscopy is effective for measuring changes in the concentrations of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) in the brain. It can be used to investigate brain functions of subjects of all ages because it is noninvasive and less constraining for subjects. Conventional OT systems use optical fibers to irradiate the scalp and detect light transmitted through the tissue in the human head, but optical fibers limit the subject's head position, so some small systems have been developed without using optical fibers. These systems, however, have a small number of measurement channels. We developed a prototype of a small, light, and wearable OT system that covers the entire forehead. We measured changes in the concentrations of oxy-Hb and deoxy-Hb in the prefrontal cortex while a subject performed a word fluency task. The results show typical changes in oxy-Hb and deoxy-Hb during the task and suggest that the prototype of our system can be used to investigate functions in the prefrontal cortex.

  14. Behavioral Regulation and the Modulation of Information Coding in the Lateral Prefrontal and Cingulate Cortex.

    PubMed

    Khamassi, Mehdi; Quilodran, René; Enel, Pierre; Dominey, Peter F; Procyk, Emmanuel

    2015-09-01

    To explain the high level of flexibility in primate decision-making, theoretical models often invoke reinforcement-based mechanisms, performance monitoring functions, and core neural features within frontal cortical regions. However, the underlying biological mechanisms remain unknown. In recent models, part of the regulation of behavioral control is based on meta-learning principles, for example, driving exploratory actions by varying a meta-parameter, the inverse temperature, which regulates the contrast between competing action probabilities. Here we investigate how complementary processes between lateral prefrontal cortex (LPFC) and dorsal anterior cingulate cortex (dACC) implement decision regulation during exploratory and exploitative behaviors. Model-based analyses of unit activity recorded in these 2 areas in monkeys first revealed that adaptation of the decision function is reflected in a covariation between LPFC neural activity and the control level estimated from the animal's behavior. Second, dACC more prominently encoded a reflection of outcome uncertainty useful for control regulation based on task monitoring. Model-based analyses also revealed higher information integration before feedback in LPFC, and after feedback in dACC. Overall the data support a role of dACC in integrating reinforcement-based information to regulate decision functions in LPFC. Our results thus provide biological evidence on how prefrontal cortical subregions may cooperate to regulate decision-making. PMID:24904073

  15. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior

    PubMed Central

    Gacias, Mar; Gaspari, Sevasti; Santos, Patricia-Mae G; Tamburini, Sabrina; Andrade, Monica; Zhang, Fan; Shen, Nan; Tolstikov, Vladimir; Kiebish, Michael A; Dupree, Jeffrey L; Zachariou, Venetia; Clemente, Jose C; Casaccia, Patrizia

    2016-01-01

    Gene-environment interactions impact the development of neuropsychiatric disorders, but the relative contributions are unclear. Here, we identify gut microbiota as sufficient to induce depressive-like behaviors in genetically distinct mouse strains. Daily gavage of vehicle (dH2O) in nonobese diabetic (NOD) mice induced a social avoidance behavior that was not observed in C57BL/6 mice. This was not observed in NOD animals with depleted microbiota via oral administration of antibiotics. Transfer of intestinal microbiota, including members of the Clostridiales, Lachnospiraceae and Ruminococcaceae, from vehicle-gavaged NOD donors to microbiota-depleted C57BL/6 recipients was sufficient to induce social avoidance and change gene expression and myelination in the prefrontal cortex. Metabolomic analysis identified increased cresol levels in these mice, and exposure of cultured oligodendrocytes to this metabolite prevented myelin gene expression and differentiation. Our results thus demonstrate that the gut microbiota modifies the synthesis of key metabolites affecting gene expression in the prefrontal cortex, thereby modulating social behavior. DOI: http://dx.doi.org/10.7554/eLife.13442.001 PMID:27097105

  16. Nitrergic neurons during early postnatal development of the prefrontal cortex in the rat: histochemical study.

    PubMed

    Hvizdosova, Natalia; Tomasova, Lenka; Bolekova, Adriana; Kolesar, Dalibor; Kluchova, Darina

    2014-06-01

    The presence of nitrergic cells in the prefrontal cortex has been confirmed, however little is known about the postnatal development of these cells. Nitrergic neurons were studied histochemically by using NADPH-diaphorase staining in the prefrontal cortex of male Wistar rats from postnatal day 7-21 (P7-21). Neuronal NADPH-diaphorase is a nitric oxide synthase that provides a specific histochemical marker for neurons producing nitric oxide (NO). NO acts as a neurotransmitter and intracellular signaling molecule in the nervous system. We observed in 7 day old rats NADPH-d containing neurons that were intensely stained. These neurons were bipolar with a short dendrite with average length of 23 μm. During the second postnatal week, the neurons were mainly bipolar and were rarely multipolar. By P14 the cells were located primarily in cortical layers III-VI. Nitrergic neurons of the 21 day old rats were histochemically identified as multipolar cells with long radial extending dendrites. Dendrites of neurons in 14 and 21 day old rats were a similar length with an average of 57 μm. These results suggest that nitrergic neurons differentiate during a relatively short period of time and reach their structural maturity by the end of the second week of postnatal development.

  17. Domain expertise insulates against judgment bias by monetary favors through a modulation of ventromedial prefrontal cortex

    PubMed Central

    Kirk, Ulrich; Harvey, Ann; Montague, P. Read

    2011-01-01

    Recent work using an art-viewing paradigm shows that monetary sponsorship of the experiment by a company (a favor) increases the valuation of paintings placed next to the sponsoring corporate logo, an effect that correlates with modulation of the ventromedial prefrontal cortex (VMPFC). We used the same art-viewing paradigm to test a prevailing idea in the domain of conflict-of-interest: that expertise in a domain insulates against judgment bias even in the presence of a monetary favor. Using a cohort of art experts, we show that monetary favors do not bias the experts’ valuation of art, an effect that correlates with a lack of modulation of the VMPFC across sponsorship conditions. The lack of sponsorship effect in the VMPFC suggests the hypothesis that their brains remove the behavioral sponsorship effect by censoring sponsorship-dependent modulation of VMPFC activity. We tested the hypothesis that prefrontal regions play a regulatory role in mediating the sponsorship effect. We show that the dorsolateral prefrontal cortex (DLPFC) is recruited in the expert group. Furthermore, we tested the hypothesis in nonexpert controls by contrasting brain responses in controls who did not show a sponsorship effect to controls who did. Changes in effective connectivity between the DLPFC and VMPFC were greater in nonexpert controls, with an absence of the sponsorship effect relative to those with a presence of the sponsorship effect. The role of the DLPFC in cognitive control and emotion regulation suggests that it removes the influence of a monetary favor by controlling responses in known valuation regions of the brain including the the VMPFC. PMID:21646526

  18. Shared and distinct contributions of rostrolateral prefrontal cortex to analogical reasoning and episodic memory retrieval.

    PubMed

    Westphal, Andrew J; Reggente, Nicco; Ito, Kaori L; Rissman, Jesse

    2016-03-01

    Rostrolateral prefrontal cortex (RLPFC) is widely appreciated to support higher cognitive functions, including analogical reasoning and episodic memory retrieval. However, these tasks have typically been studied in isolation, and thus it is unclear whether they involve common or distinct RLPFC mechanisms. Here, we introduce a novel functional magnetic resonance imaging (fMRI) task paradigm to compare brain activity during reasoning and memory tasks while holding bottom-up perceptual stimulation and response demands constant. Univariate analyses on fMRI data from twenty participants identified a large swath of left lateral prefrontal cortex, including RLPFC, that showed common engagement on reasoning trials with valid analogies and memory trials with accurately retrieved source details. Despite broadly overlapping recruitment, multi-voxel activity patterns within left RLPFC reliably differentiated these two trial types, highlighting the presence of at least partially distinct information processing modes. Functional connectivity analyses demonstrated that while left RLPFC showed consistent coupling with the fronto-parietal control network across tasks, its coupling with other cortical areas varied in a task-dependent manner. During the memory task, this region strengthened its connectivity with the default mode and memory retrieval networks, whereas during the reasoning task it coupled more strongly with a nearby left prefrontal region (BA 45) associated with semantic processing, as well as with a superior parietal region associated with visuospatial processing. Taken together, these data suggest a domain-general role for left RLPFC in monitoring and/or integrating task-relevant knowledge representations and showcase how its function cannot solely be attributed to episodic memory or analogical reasoning computations.

  19. Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex.

    PubMed

    Woo, T U; Pucak, M L; Kye, C H; Matus, C V; Lewis, D A

    1997-10-01

    The peripubertal elimination of axospinous synapses and dendritic spines in monkey prefrontal cortex suggests that this region undergoes substantial reorganization during late postnatal development. Understanding the functional impact of these maturational refinements requires knowledge of the specific presynaptic elements involved in these changes. Two potential sources of these presynaptic terminals are the intrinsic axon collaterals furnished by pyramidal cells within a region and the associational axons that arise from pyramidal neurons in other cortical regions in the same hemisphere. In the adult, both of these types of axon terminals form synapses predominantly with dendritic spines on other pyramidal neurons, and thus they may be preferentially involved in the peripubertal pruning of axospinous synapses and dendritic spines. In order to test this hypothesis, iontophoretic injections of the anterograde tracer biotinylated dextran amine were made into the superficial layers of areas 9 or 46 of the prefrontal cortex of four prepubertal juvenile (14.9-21.5 months old) and three young adult macaque monkeys. Tangential reconstructions revealed a stripe-like pattern of labeled terminals for intrinsic and associational projections in both juvenile and adult animals. During puberty, the intrinsic circuitry underwent extensive topographic refinement, as demonstrated by a 42.7% decrease in stripe area and a 28.0% increase in gap distance between stripes. Furthermore, the mediolateral tangential spread of labeled stripes around the injection site decreased by 27.0%. In contrast, topographic refinement was not evident in the associational circuitry. In both layers 1 and 3, the densities of varicosities and branch points on labeled axons decreased by about 50% in intrinsic stripes during puberty, but only by approximately 30% in associational stripes. These findings suggest that the spatial form and magnitude of peripubertal refinements in prefrontal cortical

  20. Mapping of functionally characterized cell classes onto canonical circuit operations in primate prefrontal cortex.

    PubMed

    Ardid, Salva; Vinck, Martin; Kaping, Daniel; Marquez, Susanna; Everling, Stefan; Womelsdorf, Thilo

    2015-02-18

    Microcircuits are composed of multiple cell classes that likely serve unique circuit operations. But how cell classes map onto circuit functions is largely unknown, particularly for primate prefrontal cortex during actual goal-directed behavior. One difficulty in this quest is to reliably distinguish cell classes in extracellular recordings of action potentials. Here we surmount this issue and report that spike shape and neural firing variability provide reliable markers to segregate seven functional classes of prefrontal cells in macaques engaged in an attention task. We delineate an unbiased clustering protocol that identifies four broad spiking (BS) putative pyramidal cell classes and three narrow spiking (NS) putative inhibitory cell classes dissociated by how sparse, bursty, or regular they fire. We speculate that these functional classes map onto canonical circuit functions. First, two BS classes show sparse, bursty firing, and phase synchronize their spiking to 3-7 Hz (theta) and 12-20 Hz (beta) frequency bands of the local field potential (LFP). These properties make cells flexibly responsive to network activation at varying frequencies. Second, one NS and two BS cell classes show regular firing and higher rate with only marginal synchronization preference. These properties are akin to setting tonically the excitation and inhibition balance. Finally, two NS classes fired irregularly and synchronized to either theta or beta LFP fluctuations, tuning them potentially to frequency-specific subnetworks. These results suggest that a limited set of functional cell classes emerges in macaque prefrontal cortex (PFC) during attentional engagement to not only represent information, but to subserve basic circuit operations. PMID:25698735

  1. Domain expertise insulates against judgment bias by monetary favors through a modulation of ventromedial prefrontal cortex.

    PubMed

    Kirk, Ulrich; Harvey, Ann; Montague, P Read

    2011-06-21

    Recent work using an art-viewing paradigm shows that monetary sponsorship of the experiment by a company (a favor) increases the valuation of paintings placed next to the sponsoring corporate logo, an effect that correlates with modulation of the ventromedial prefrontal cortex (VMPFC). We used the same art-viewing paradigm to test a prevailing idea in the domain of conflict-of-interest: that expertise in a domain insulates against judgment bias even in the presence of a monetary favor. Using a cohort of art experts, we show that monetary favors do not bias the experts' valuation of art, an effect that correlates with a lack of modulation of the VMPFC across sponsorship conditions. The lack of sponsorship effect in the VMPFC suggests the hypothesis that their brains remove the behavioral sponsorship effect by censoring sponsorship-dependent modulation of VMPFC activity. We tested the hypothesis that prefrontal regions play a regulatory role in mediating the sponsorship effect. We show that the dorsolateral prefrontal cortex (DLPFC) is recruited in the expert group. Furthermore, we tested the hypothesis in nonexpert controls by contrasting brain responses in controls who did not show a sponsorship effect to controls who did. Changes in effective connectivity between the DLPFC and VMPFC were greater in nonexpert controls, with an absence of the sponsorship effect relative to those with a presence of the sponsorship effect. The role of the DLPFC in cognitive control and emotion regulation suggests that it removes the influence of a monetary favor by controlling responses in known valuation regions of the brain including the the VMPFC.

  2. Domain expertise insulates against judgment bias by monetary favors through a modulation of ventromedial prefrontal cortex.

    PubMed

    Kirk, Ulrich; Harvey, Ann; Montague, P Read

    2011-06-21

    Recent work using an art-viewing paradigm shows that monetary sponsorship of the experiment by a company (a favor) increases the valuation of paintings placed next to the sponsoring corporate logo, an effect that correlates with modulation of the ventromedial prefrontal cortex (VMPFC). We used the same art-viewing paradigm to test a prevailing idea in the domain of conflict-of-interest: that expertise in a domain insulates against judgment bias even in the presence of a monetary favor. Using a cohort of art experts, we show that monetary favors do not bias the experts' valuation of art, an effect that correlates with a lack of modulation of the VMPFC across sponsorship conditions. The lack of sponsorship effect in the VMPFC suggests the hypothesis that their brains remove the behavioral sponsorship effect by censoring sponsorship-dependent modulation of VMPFC activity. We tested the hypothesis that prefrontal regions play a regulatory role in mediating the sponsorship effect. We show that the dorsolateral prefrontal cortex (DLPFC) is recruited in the expert group. Furthermore, we tested the hypothesis in nonexpert controls by contrasting brain responses in controls who did not show a sponsorship effect to controls who did. Changes in effective connectivity between the DLPFC and VMPFC were greater in nonexpert controls, with an absence of the sponsorship effect relative to those with a presence of the sponsorship effect. The role of the DLPFC in cognitive control and emotion regulation suggests that it removes the influence of a monetary favor by controlling responses in known valuation regions of the brain including the the VMPFC. PMID:21646526

  3. Guanfacine Modulates the Influence of Emotional Cues on Prefrontal Cortex Activation for Cognitive Control

    PubMed Central

    Clerkin, Suzanne M.; Fan, Jin; Halperin, Jeffrey M.; Newcorn, Jeffrey H.

    2012-01-01

    Rationale Functional interactions between limbic regions that process emotions and frontal networks that guide response functions provide a substrate for emotional cues to influence behavior. Stimulation of postsynaptic α2 adrenoceptors enhances the function of prefrontal regions in these networks. However, the impact of this stimulation on the emotional biasing of behavior has not been established. Objectives This study tested the effect of the postsynaptic α2 adrenoceptor agonist guanfacine on the emotional biasing of response execution and inhibition in prefrontal cortex. Methods Fifteen healthy young adults were scanned twice with functional magnetic resonance imaging while performing a face emotion go/no-go task following counterbalanced administration of single doses of oral guanfacine (1 mg) and placebo in a double-blind, crossover design. Results Lower perceptual sensitivity and less response bias for sad faces resulted in fewer correct responses compared to happy and neutral faces, but had no effect on correct inhibitions. Guanfacine increased the sensitivity and bias selectively for sad faces, resulting in response accuracy comparable to happy and neutral faces, and reversed the valence-dependent variation in response-related activation in left dorsolateral prefrontal cortex (DLPFC), resulting in enhanced activation for response execution cued by sad faces relative to happy and neutral faces, in line with other frontoparietal regions. Conclusions These results provide evidence that guanfacine stimulation of postsynaptic α2 adrenoceptors moderates DLPFC activation associated with the emotional biasing of response execution processes. The findings have implications for the α2 adrenoceptor agonist treatment of attention-deficit hyperactivity disorder (ADHD). PMID:23086020

  4. Interareal Spike-Train Correlations of Anterior Cingulate and Dorsal Prefrontal Cortex during Attention Shifts.

    PubMed

    Oemisch, Mariann; Westendorff, Stephanie; Everling, Stefan; Womelsdorf, Thilo

    2015-09-23

    The anterior cingulate cortex (ACC) and prefrontal cortex (PFC) are believed to coactivate during goal-directed behavior to identify, select, and monitor relevant sensory information. Here, we tested whether coactivation of neurons across macaque ACC and PFC would be evident at the level of pairwise neuronal correlations during stimulus selection in a spatial attention task. We found that firing correlations emerged shortly after an attention cue, were evident for 50-200 ms time windows, were strongest for neuron pairs in area 24 (ACC) and areas 8 and 9 (dorsal PFC), and were independent of overall firing rate modulations. For a subset of cell pairs from ACC and dorsal PFC, the observed functional spike-train connectivity carried information about the direction of the attention shift. Reliable firing correlations were evident across area boundaries for neurons with broad spike waveforms (putative excitatory neurons) as well as for pairs of putative excitatory neurons and neurons with narrow spike waveforms (putative interneurons). These findings reveal that stimulus selection is accompanied by slow time scale firing correlations across those ACC/PFC subfields implicated to control and monitor attention. This functional coupling was informative about which stimulus was selected and thus indexed possibly the exchange of task-relevant information. We speculate that interareal, transient firing correlations reflect the transient coordination of larger, reciprocally interacting brain networks at a characteristic 50-200 ms time scale. Significance statement: Our manuscript identifies interareal spike-train correlations between primate anterior cingulate and dorsal prefrontal cortex during a period where attentional stimulus selection is likely controlled by these very same circuits. Interareal correlations emerged during the covert attention shift to one of two peripheral stimuli, proceeded on a slow 50-200 ms time scale, and occurred between putative pyramidal and

  5. Interareal Spike-Train Correlations of Anterior Cingulate and Dorsal Prefrontal Cortex during Attention Shifts.

    PubMed

    Oemisch, Mariann; Westendorff, Stephanie; Everling, Stefan; Womelsdorf, Thilo

    2015-09-23

    The anterior cingulate cortex (ACC) and prefrontal cortex (PFC) are believed to coactivate during goal-directed behavior to identify, select, and monitor relevant sensory information. Here, we tested whether coactivation of neurons across macaque ACC and PFC would be evident at the level of pairwise neuronal correlations during stimulus selection in a spatial attention task. We found that firing correlations emerged shortly after an attention cue, were evident for 50-200 ms time windows, were strongest for neuron pairs in area 24 (ACC) and areas 8 and 9 (dorsal PFC), and were independent of overall firing rate modulations. For a subset of cell pairs from ACC and dorsal PFC, the observed functional spike-train connectivity carried information about the direction of the attention shift. Reliable firing correlations were evident across area boundaries for neurons with broad spike waveforms (putative excitatory neurons) as well as for pairs of putative excitatory neurons and neurons with narrow spike waveforms (putative interneurons). These findings reveal that stimulus selection is accompanied by slow time scale firing correlations across those ACC/PFC subfields implicated to control and monitor attention. This functional coupling was informative about which stimulus was selected and thus indexed possibly the exchange of task-relevant information. We speculate that interareal, transient firing correlations reflect the transient coordination of larger, reciprocally interacting brain networks at a characteristic 50-200 ms time scale. Significance statement: Our manuscript identifies interareal spike-train correlations between primate anterior cingulate and dorsal prefrontal cortex during a period where attentional stimulus selection is likely controlled by these very same circuits. Interareal correlations emerged during the covert attention shift to one of two peripheral stimuli, proceeded on a slow 50-200 ms time scale, and occurred between putative pyramidal and

  6. Modulating Memory Performance in Healthy Subjects with Transcranial Direct Current Stimulation Over the Right Dorsolateral Prefrontal Cortex

    PubMed Central

    Smirni, Daniela; Turriziani, Patrizia; Mangano, Giuseppa Renata; Cipolotti, Lisa; Oliveri, Massimiliano

    2015-01-01

    Objective The role of the Dorsolateral Prefrontal Cortex (DLPFC) in recognition memory has been well documented in lesion, neuroimaging and repetitive Transcranial Magnetic Stimulation (rTMS) studies. The aim of the present study was to investigate the effects of transcranial Direct Current Stimulation (tDCS) over the left and the right DLPFC during the delay interval of a non-verbal recognition memory task. Method 36 right-handed young healthy subjects participated in the study. The experimental task was an Italian version of Recognition Memory Test for unknown faces. Study included two experiments: in a first experiment, each subject underwent one session of sham tDCS and one session of left or right cathodal tDCS; in a second experiment each subject underwent one session of sham tDCS and one session of left or right anodal tDCS. Results Cathodal tDCS over the right DLPFC significantly improved non verbal recognition memory performance, while cathodal tDCS over the left DLPFC had no effect. Anodal tDCS of both the left and right DLPFC did not modify non verbal recognition memory performance. Conclusion Complementing the majority of previous studies, reporting long term memory facilitations following left prefrontal anodal tDCS, the present findings show that cathodal tDCS of the right DLPFC can also improve recognition memory in healthy subjects. PMID:26679936

  7. Fatty acid composition of the postmortem prefrontal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder.

    PubMed

    Hamazaki, Kei; Maekawa, Motoko; Toyota, Tomoko; Dean, Brian; Hamazaki, Tomohito; Yoshikawa, Takeo

    2015-06-30

    Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism.

  8. What might have been? The role of the ventromedial prefrontal cortex and lateral orbitofrontal cortex in counterfactual emotions and choice

    PubMed Central

    Levens, Sara M.; Larsen, Jeff T.; Bruss, Joel; Tranel, Daniel; Bechara, Antoine; Mellers, Barbara

    2015-01-01

    Counterfactual feelings of regret occur when people make comparisons between an actual outcome and a better outcome that would have occurred under a different choice. We investigated the choices of individuals with damage to the ventral medial prefrontal cortex (VMPFC) and the lateral orbital frontal cortex (LOFC) to see whether their emotional responses were sensitive to regret. Participants made choices between gambles, each with monetary outcomes. After every choice, subjects learned the consequences of both gambles and rated their emotional response to the outcome. Normal subjects and lesion control subjects tended to make better choices and reported post-decision emotions that were sensitive to regret comparisons. VMPFC patients tended to make worse choices, and, contrary to our predictions, they reported emotions that were sensitive to regret comparisons. In contrast, LOFC patients made better choices, but reported emotional reactions that were insensitive to regret comparisons. We suggest the VMPFC is involved in the association between choices and anticipated emotions that guide future choices, while the LOFC is involved in experienced emotions that follow choices, emotions that may signal the need for behavioral change. PMID:24333168

  9. Correlation between Ventromedial Prefrontal Cortex Activation to Food Aromas and Cue-driven Eating: An fMRI Study.

    PubMed

    Eiler, William J A; Dzemidzic, Mario; Case, K Rose; Considine, Robert V; Kareken, David A

    2012-03-01

    Food aromas are signals associated with both food's availability and pleasure. Previous research from this laboratory has shown that food aromas under fasting conditions evoke robust activation of medial prefrontal brain regions thought to reflect reward value (Bragulat, et al. 2010). In the current study, eighteen women (eleven normal-weight and seven obese) underwent a two-day imaging study (one after being fed, one while fasting). All were imaged on a 3T Siemens Trio-Tim scanner while sniffing two food (F; pasta and beef) odors, one non-food (NF; Douglas fir) odor, and an odorless control (CO). Prior to imaging, participants rated hunger and perceived odor qualities, and completed the Dutch Eating Behavior Questionnaire (DEBQ) to assess "Externality" (the extent to which eating is driven by external food cues). Across all participants, both food and non-food odors (compared to CO) elicited large blood oxygenation level dependent (BOLD) responses in olfactory and reward-related areas, including the medial prefrontal and anterior cingulate cortex, bilateral orbitofrontal cortex, and bilateral piriform cortex, amygdala, and hippocampus. However, food odors produced greater activation of medial prefrontal cortex, left lateral orbitofrontal cortex and inferior insula than non-food odors. Moreover, there was a significant correlation between the [F > CO] BOLD response in ventromedial prefrontal cortex and "Externality" sub-scale scores of the DEBQ, but only under the fed condition; no such correlation was present with the [NF > CO] response. This suggests that in those with high Externality, ventromedial prefrontal cortex may inappropriately valuate external food cues in the absence of internal hunger.

  10. Correlation between Ventromedial Prefrontal Cortex Activation to Food Aromas and Cue-driven Eating: An fMRI Study

    PubMed Central

    Eiler, William J.A.; Dzemidzic, Mario; Case, K. Rose; Considine, Robert V.; Kareken, David A.

    2014-01-01

    Food aromas are signals associated with both food's availability and pleasure. Previous research from this laboratory has shown that food aromas under fasting conditions evoke robust activation of medial prefrontal brain regions thought to reflect reward value (Bragulat, et al. 2010). In the current study, eighteen women (eleven normal-weight and seven obese) underwent a two-day imaging study (one after being fed, one while fasting). All were imaged on a 3T Siemens Trio-Tim scanner while sniffing two food (F; pasta and beef) odors, one non-food (NF; Douglas fir) odor, and an odorless control (CO). Prior to imaging, participants rated hunger and perceived odor qualities, and completed the Dutch Eating Behavior Questionnaire (DEBQ) to assess “Externality” (the extent to which eating is driven by external food cues). Across all participants, both food and non-food odors (compared to CO) elicited large blood oxygenation level dependent (BOLD) responses in olfactory and reward-related areas, including the medial prefrontal and anterior cingulate cortex, bilateral orbitofrontal cortex, and bilateral piriform cortex, amygdala, and hippocampus. However, food odors produced greater activation of medial prefrontal cortex, left lateral orbitofrontal cortex and inferior insula than non-food odors. Moreover, there was a significant correlation between the [F > CO] BOLD response in ventromedial prefrontal cortex and “Externality” sub-scale scores of the DEBQ, but only under the fed condition; no such correlation was present with the [NF > CO] response. This suggests that in those with high Externality, ventromedial prefrontal cortex may inappropriately valuate external food cues in the absence of internal hunger. PMID:25485031

  11. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    PubMed

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering. PMID:26720411

  12. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    PubMed

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering.

  13. Dorsomedial prefrontal cortex activity predicts the accuracy in estimating others' preferences.

    PubMed

    Kang, Pyungwon; Lee, Jongbin; Sul, Sunhae; Kim, Hackjin

    2013-01-01

    The ability to accurately estimate another person's preferences is crucial for a successful social life. In daily interactions, we often do this on the basis of minimal information. The aims of the present study were (a) to examine whether people can accurately judge others based only on a brief exposure to their appearances, and (b) to reveal the underlying neural mechanisms with functional magnetic resonance imaging (fMRI). Participants were asked to make guesses about unfamiliar target individuals' preferences for various items after looking at their faces for 3 s. The behavioral results showed that participants estimated others' preferences above chance level. The fMRI data revealed that higher accuracy in preference estimation was associated with greater activity in the dorsomedial prefrontal cortex (DMPFC) when participants were guessing the targets' preferences relative to thinking about their own preferences. These findings suggest that accurate estimations of others' preferences may require increased activity in the DMPFC. A functional connectivity analysis revealed that higher accuracy in preference estimation was related to increased functional connectivity between the DMPFC and the brain regions that are known to be involved in theory of mind processing, such as the temporoparietal junction (TPJ) and the posterior cingulate cortex (PCC)/precuneus, during correct vs. incorrect guessing trials. On the contrary, the tendency to refer to self-preferences when estimating others' preference was related to greater activity in the ventromedial prefrontal cortex. These findings imply that the DMPFC may be a core region in estimating the preferences of others and that higher accuracy may require stronger communication between the DMPFC and the TPJ and PCC/precuneus, part of a neural network known to be engaged in mentalizing.

  14. Increased Low- and High-Frequency Oscillatory Activity in the Prefrontal Cortex of Fibromyalgia Patients

    PubMed Central

    Lim, Manyoel; Kim, June Sic; Kim, Dajung J.; Chung, Chun Kee

    2016-01-01

    Recent human neuroimaging studies have suggested that fibromyalgia (FM), a chronic widespread pain disorder, exhibits altered thalamic structure and function. Since the thalamus has extensive reciprocal connection with the cortex, structural and functional thalamic alterations in FM might be linked to aberrant thalamocortical oscillation. This study investigated the presence of abnormal brain rhythmicity in low- and high-frequency bands during resting state in patients with FM and their relationship to clinical pain symptom. Spontaneous magnetoencephalography (MEG) activity was recorded in 18 females with FM and 18 age- and sex-matched healthy control (HC) subjects. The most remarkable finding was that FM patients had general increases in theta, beta and gamma power along with a slowing of the dominant alpha peak. Increased spectral powers in the theta-band were primarily localized to the left dorsolateral prefrontal (DLPFC) and orbitofrontal cortex (OFC). Beta and gamma over-activation were localized to insular, primary motor and primary and secondary somatosensory (S2) cortices, as well as the DLPFC and OFC. Furthermore, enhanced high-frequency oscillatory activities in the DLPFC and OFC were associated with higher affective pain scores in patients with FM. Our results demonstrate that FM patients feature enhanced low- and high-frequency oscillatory activity in the brain areas related to cognitive and emotional modulation of pain. Increased low- and high-frequency activity of the prefrontal cortex may contribute to persistent perception of pain in FM. Therapeutic intervention based on manipulating neural oscillation to restore normal thalamocortical rhythmicity may be beneficial to pain relief in FM. PMID:27014041

  15. Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia

    PubMed Central

    Vallortigara, Julie; Rangarajan, Sindhoo; Whitfield, David; Alghamdi, Amani; Howlett, David; Hortobágyi, Tibor; Johnson, Mary; Attems, Johannes; Ballard, Clive; Thomas, Alan; O’Brien, John; Aarsland, Dag; Francis, Paul

    2014-01-01

    Dementia with Lewy Bodies (DLB) and Parkinson’s Disease Dementia (PDD) together, represent the second most common cause of dementia, after Alzheimer’s disease (AD). The synaptic dysfunctions underlying the cognitive decline and psychiatric symptoms observed throughout the development of PDD and DLB are still under investigation. In this study we examined the expression level of Dynamin1 and phospho-CaMKII, key proteins of endocytosis and synaptic plasticity respectively, as potential markers of molecular processes specifically deregulated with DLB and/or PDD. In order to measure the levels of these proteins, we isolated grey matter from post-mortem prefrontal cortex area (BA9), anterior cingulated gyrus (BA24) and parietal cortex (BA40) from DLB and PDD patients in comparison to age-matched controls and a group of AD cases. Clinical and pathological data available included the MMSE score, neuropsychiatric history, and semi-quantitative scores for AD pathology (plaques - tangles) and for α-synuclein (Lewy bodies). Changes in the expression of the synaptic markers, and correlates with neuropathological features and cognitive decline were predominantly found in the prefrontal cortex. On one hand, levels of Dynamin1 were significantly reduced, and correlated with a higher rate of cognitive decline observed in cases from three dementia groups. On the other hand, the fraction of phospho-CaMKII was decreased, and correlated with a high score of plaques and tangles in BA9. Interestingly, the correlation between the rate of cognitive decline and the level of Dynamin1 remained when the analysis was restricted to the PDD and DLB cases, highlighting an association of Dynamin1 with cognitive decline in people with Lewy Body dementia. PMID:25671083

  16. Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs

    PubMed Central

    Peyrache, Adrien; Battaglia, Francesco P.; Destexhe, Alain

    2011-01-01

    During light slow-wave sleep, the thalamo-cortical network oscillates in waxing-and-waning patterns at about 7 to 14 Hz and lasting for 500 ms to 3 s, called spindles, with the thalamus rhythmically sending strong excitatory volleys to the cortex. Concurrently, the hippocampal activity is characterized by transient and strong excitatory events, Sharp-Waves-Ripples (SPWRs), directly affecting neocortical activity—in particular the medial prefrontal cortex (mPFC)—which receives monosynaptic fibers from the ventral hippocampus and subiculum. Both spindles and SPWRs have been shown to be strongly involved in memory consolidation. However, the dynamics of the cortical network during natural sleep spindles and how prefrontal circuits simultaneously process hippocampal and thalamo-cortical activity remain largely undetermined. Using multisite neuronal recordings in rat mPFC, we show that during sleep spindles, oscillatory responses of cortical cells are different for different cell types and cortical layers. Superficial neurons are more phase-locked and tonically recruited during spindle episodes. Moreover, in a given layer, interneurons were always more modulated than pyramidal cells, both in firing rate and phase, suggesting that the dynamics are dominated by inhibition. In the deep layers, where most of the hippocampal fibers make contacts, pyramidal cells respond phasically to SPWRs, but not during spindles. Similar observations were obtained when analyzing γ-oscillation modulation in the mPFC. These results demonstrate that during sleep spindles, the cortex is functionnaly “deafferented” from its hippocampal inputs, based on processes of cortical origin, and presumably mediated by the strong recruitment of inhibitory interneurons. The interplay between hippocampal and thalamic inputs may underlie a global mechanism involved in the consolidation of recently formed memory traces. PMID:21949372

  17. Human Dorsolateral Prefrontal Cortex Is Not Necessary for Spatial Working Memory

    PubMed Central

    Mackey, Wayne E.; Devinsky, Orrin; Doyle, Werner K.; Meager, Michael R.

    2016-01-01

    A dominant theory, based on electrophysiological and lesion evidence from nonhuman primate studies, posits that the dorsolateral prefrontal cortex (dlPFC) stores and maintains working memory (WM) representations. Yet, neuroimaging studies have consistently failed to translate these results to humans; these studies normally find that neural activity persists in the human precentral sulcus (PCS) during WM delays. Here, we attempt to resolve this discrepancy. To test the degree to which dlPFC is necessary for WM, we compared the performance of patients with dlPFC lesions and neurologically healthy controls on a memory-guided saccade task that was used in the monkey studies to measure spatial WM. We found that dlPFC damage only impairs the accuracy of memory-guided saccades if the damage impacts the PCS; lesions to dorsolateral dlPFC that spare the PCS have no effect on WM. These results identify the necessary subregion of the frontal cortex for WM and specify how this influential animal model of human cognition must be revised. SIGNIFICANCE STATEMENT High-level cognition depends on working memory (WM) as a critical building block, and many symptoms of psychiatric disorders may be the direct result of impaired WM. Canonical theory posits a critical role for the dorsolateral prefrontal cortex (dlPFC) in WM based on studies of nonhuman primates. However, we find that spatial WM in humans is intact after dlPFC damage unless it impacts the more caudal PCS. Therefore, the human dlPFC is not necessary for spatial WM and highlights the need for careful translation of animal models of human cognition. PMID:26961941

  18. Lateralized Contribution of Prefrontal Cortex in Controlling Task-Irrelevant Information during Verbal and Spatial Working Memory Tasks: rTMS Evidence

    ERIC Educational Resources Information Center

    Sandrini, Marco; Rossini, Paolo Maria; Miniussi, Carlo

    2008-01-01

    The functional organization of working memory (WM) in the human prefrontal cortex remains unclear. The present study used repetitive transcranial magnetic stimulation (rTMS) to clarify the role of the dorsolateral prefrontal cortex (dlPFC) both in the types of information (verbal vs. spatial), and the types of processes (maintenance vs.…

  19. Monogamous and promiscuous rodent species exhibit discrete variation in the size of the medial prefrontal cortex.

    PubMed

    Kingsbury, Marcy A; Gleason, Erin D; Ophir, Alexander G; Phelps, Steven M; Young, Larry J; Marler, Catherine A

    2012-01-01

    Limbic-associated cortical areas, such as the medial prefrontal and retrosplenial cortex (mPFC and RS, respectively), are involved in the processing of emotion, motivation, and various aspects of working memory and have been implicated in mating behavior. To determine whether the independent evolution of mating systems is associated with a convergence in cortical mechanisms, we compared the size of mPFC and RS between the monogamous prairie vole (Microtus ochrogaster) and the promiscuous meadow vole (Microtus pennsylvanicus), and between the monogamous California mouse (Peromyscus californicus) and the promiscuous white-footed mouse (Peromyscus leucopus). For both promiscuous mice and voles, the mPFC occupied a significantly larger percentage of total cortex than in the monogamous species. No significant differences were observed for the RS or overall cortex size with respect to mating system, supporting the convergent evolution of mPFC size, specifically. Individual differences in the mating behavior of male prairie voles (wandering versus pair-bonding), presumably facultative tactics, were not reflected in the relative size of the mPFC, which is likely a heritable trait. Given the importance of the mPFC for complex working memory, particularly object-place and temporal order memory, we hypothesize that the relatively greater size of the mPFC in promiscuous species reflects a greater need to remember multiple individuals and the times and locations in which they have been encountered in the home range. PMID:22759599

  20. Specializations of the granular prefrontal cortex of primates: implications for cognitive processing.

    PubMed

    Elston, Guy N; Benavides-Piccione, Ruth; Elston, Alejandra; Zietsch, Bendan; Defelipe, Javier; Manger, Paul; Casagrande, Vivien; Kaas, Jon H

    2006-01-01

    The biological underpinnings of human intelligence remain enigmatic. There remains the greatest confusion and controversy regarding mechanisms that enable humans to conceptualize, plan, and prioritize, and why they are set apart from other animals in their cognitive abilities. Here we demonstrate that the basic neuronal building block of the cerebral cortex, the pyramidal cell, is characterized by marked differences in structure among primate species. Moreover, comparison of the complexity of neuron structure with the size of the cortical area/region in which the cells are located revealed that trends in the granular prefrontal cortex (gPFC) were dramatically different to those in visual cortex. More specifically, pyramidal cells in the gPFC of humans had a disproportionately high number of spines. As neuron structure determines both its biophysical properties and connectivity, differences in the complexity in dendritic structure observed here endow neurons with different computational abilities. Furthermore, cortical circuits composed of neurons with distinguishable morphologies will likely be characterized by different functional capabilities. We propose that 1. circuitry in V1, V2, and gPFC within any given species differs in its functional capabilities and 2. there are dramatic differences in the functional capabilities of gPFC circuitry in different species, which are central to the different cognitive styles of primates. In particular, the highly branched, spinous neurons in the human gPFC may be a key component of human intelligence.

  1. Medial prefrontal cortex acetylcholine injection-induced hypotension: the role of hindlimb vasodilation

    NASA Technical Reports Server (NTRS)

    Crippa, G. E.; Lewis, S. J.; Johnson, A. K.; Correa, F. M.

    2000-01-01

    The injection of acetylcholine (ACh) into the cingulate region of the medial prefrontal cortex (MPFC) causes a marked fall in arterial blood pressure which is not accompanied by changes in heart rate. The purpose of the present study was to investigate the hemodynamic basis for this stimulus-induced hypotension in Sprague-Dawley rats. The study was designed to determine whether a change in the vascular resistance of hindlimb, renal or mesenteric vascular beds contributes to the fall in arterial pressure in response to ACh injection into the cingulate cortex. Miniature pulsed-Doppler flow probes were used to measure changes in regional blood flow and vascular resistance. The results indicated that the hypotensive response was largely due to a consistent and marked vasodilation in the hindlimb vascular bed. On this basis, an additional experiment was then undertaken to determine the mechanisms that contribute to hindlimb vasodilation. The effect of interrupting the autonomic innervation of one leg on the hindlimb vasodilator response was tested. Unilateral transection of the lumbar sympathetic chain attenuated the cingulate ACh-induced vasodilation in the ipsilateral, but not in the contralateral hindlimb. These results suggest that the hypotensive response to cingulate cortex-ACh injection is caused by skeletal muscle vasodilation mediated by a sympathetic chain-related vasodilator system.

  2. Reward-related activity in the medial prefrontal cortex is driven by consumption

    PubMed Central

    Horst, Nicole K.; Laubach, Mark

    2013-01-01

    An emerging literature suggests that the medial prefrontal cortex (mPFC) is crucial for the ability to track behavioral outcomes over time and has a critical role in successful foraging. Here, we examine this issue by analyzing changes in neuronal spike activity and local field potentials in the rat mPFC in relation to the consumption of rewarding stimuli. Using multi-electrode recording methods, we simultaneously recorded from ensembles of neurons and field potentials in the mPFC during the performance of an operant-delayed alternation task and a variable-interval licking procedure. In both tasks, we found that consummatory behavior (licking) activates many mPFC neurons and is associated with theta-band phase locking by mPFC field potentials. Many neurons that were modulated by the delivery of reward were also modulated when rats emitted bouts of licks during the period of consumption. The majority of these licking-modulated neurons were found in the rostral part of the prelimbic cortex, a region that is heavily interconnected with the gustatory insular cortex and projects to subcortical feeding-related centers. Based on the tight coupling between spike activity, theta-band phase locking, and licking behavior, we suggest that reward-related activity in the mPFC is driven by consummatory behavior. PMID:23596384

  3. Respiratory, metabolic and cardiac functions are altered by disinhibition of subregions of the medial prefrontal cortex

    PubMed Central

    Hassan, Sarah F; Cornish, Jennifer L; Goodchild, Ann K

    2013-01-01

    The prefrontal cortex (PFC) is referred to as the visceral motor cortex; however, little is known about whether this region influences respiratory or metabolic outflows. The aim of this study was to describe simultaneous changes in respiratory, metabolic and cardiovascular functions evoked by disinhibition of the medial PFC (mPFC) and adjacent lateral septal nucleus (LSN). In urethane-anaesthetized rats, bicuculline methiodide was microinjected (2 mm; GABA-A receptor antagonist) into 90 sites in the mPFC at 0.72–4.00 mm from bregma. Phrenic nerve amplitude and frequency, arterial pressure, heart rate, splanchnic and lumbar sympathetic nerve activities (SNA), expired CO2, and core and brown adipose tissue temperatures were measured. Novel findings included disturbances to respiratory rhythm evoked from all subregions of the mPFC. Injections into the cingulate cortex evoked reductions in central respiratory function exclusively, whereas in ventral sites, particularly the infralimbic region, increases in respiratory drive and frequency, and metabolic and cardiac outflows were evoked. Disinhibition of sites in surrounding regions revealed that the LSN could evoke cardiovascular changes accompanied by distinct oscillations in SNA, as well as increases in respiratory amplitude. We show that activation of neurons within the mPFC and LSN influence respiratory, metabolic and cardiac outflows in a site-dependent manner. This study has implications with respect to the altered PFC neuronal activity seen in stress-related and mental health disorders, and suggests how basic physiological systems may be affected. PMID:24042503

  4. The role of rostral prefrontal cortex in prospective memory: a voxel-based lesion study.

    PubMed

    Volle, Emmanuelle; Gonen-Yaacovi, Gil; Costello, Angela de Lacy; Gilbert, Sam J; Burgess, Paul W

    2011-07-01

    Patients with lesions in rostral prefrontal cortex (PFC) often experience problems in everyday-life situations requiring multitasking. A key cognitive component that is critical in multitasking situations is prospective memory, defined as the ability to carry out an intended action after a delay period filled with unrelated activity. The few functional imaging studies investigating prospective memory have shown consistent activation in both medial and lateral rostral PFC but also in more posterior prefrontal regions and non-frontal regions. The aim of this study was to determine regions that are necessary for prospective memory performance, using the human lesion approach. We designed an experimental paradigm allowing us to assess time-based (remembering to do something at a particular time) and event-based (remembering to do something in a particular situation) prospective memory, using two types of material, words and pictures. Time estimation tasks and tasks controlling for basic attention, inhibition and multiple instructions processing were also administered. We examined brain-behaviour relationships with a voxelwise lesion method in 45 patients with focal brain lesions and 107 control subjects using this paradigm. The results showed that lesions in the right polar prefrontal region (in Brodmann area 10) were specifically associated with a deficit in time-based prospective memory tasks for both words and pictures. This deficit could not be explained by impairments in basic attention, detection, inhibition or multiple instruction processing, and there was also no deficit in event-based prospective memory conditions. In addition to their prospective memory difficulties, these polar prefrontal patients were significantly impaired in time estimation ability compared to other patients. The same region was found to be involved using both words and pictures, suggesting that right rostral PFC plays a material nonspecific role in prospective memory. This is the first

  5. Brain networks of affective mentalizing revealed by the tear effect: The integrative role of the medial prefrontal cortex and precuneus.

    PubMed

    Takahashi, Haruka K; Kitada, Ryo; Sasaki, Akihiro T; Kawamichi, Hiroaki; Okazaki, Shuntaro; Kochiyama, Takanori; Sadato, Norihiro

    2015-12-01

    Affective mentalizing involves the integration of various social signals in order to infer the affective states of others. Previous neuroimaging studies have shown that the medial prefrontal cortex, the precuneus/posterior cingulate cortex, and the temporo-parietal junction constitute the core affective mentalizing network. However, the relative contributions of these regions to affective mentalizing remain unclear. We used functional magnetic resonance imaging to investigate which of these nodes are involved in the integration of two social signals: emotional tears and facial expressions. We assumed that this integration would produce a supra-additive effect, indicated by greater activity than the sum of the effects of the individual social signals. Female subjects rated the sadness of faces with either tears or tear-like circles, and either sad or neutral expressions. We observed the supra-additive effect in the medial prefrontal cortex and precuneus/posterior cingulate cortex but not in the temporo-parietal junction. These results indicate that the medial prefrontal cortex and precuneus/posterior cingulate cortex play an important role in integrating tears and facial expressions during affective mentalizing.

  6. Role of the Ventral Medial Prefrontal Cortex in Mediating Behavioral Control-Induced Reduction of Later Conditioned Fear

    ERIC Educational Resources Information Center

    Baratta, Michael V.; Lucero, Thomas R.; Amat, Jose; Watkins, Linda R.; Maier, Steven F.

    2008-01-01

    A prior experience of behavioral control over a stressor interferes with subsequent Pavlovian fear conditioning, and this effect is dependent on the activation of the ventral medial prefrontal cortex (mPFCv) at the time of the initial experience with control. It is unknown whether mPFCv activity is necessary during fear learning and/or testing for…

  7. Infralimbic Prefrontal Cortex Interacts with Nucleus Accumbens Shell to Unmask Expression of Outcome-Selective Pavlovianto- Instrumental Transfer

    ERIC Educational Resources Information Center

    Keistler, Colby; Barker, Jacqueline M.; Taylor, Jane R.

    2015-01-01

    Although several studies have examined the subcortical circuitry underlying Pavlovian-to-instrumental transfer (PIT), the role of medial prefrontal cortex in this behavior is largely unknown. Elucidating the cortical contributions to PIT will be key for understanding how reward-paired cues control behavior in both adaptive and maladaptive context…

  8. Electrolytic Lesions of the Medial Prefrontal Cortex Do Not Interfere with Long-Term Memory of Extinction of Conditioned Fear

    ERIC Educational Resources Information Center

    Garcia, Rene; Chang, Chun-hui; Maren, Stephen

    2006-01-01

    Lesion studies indicate that rats without the medial prefrontal cortex (mPFC) have difficulty recalling fear extinction acquired the previous day. Several electrophysiological studies have also supported this observation by demonstrating that extinction-related increases in neuronal activity in the mPFC participate in expression of fear…

  9. Tuning the Engine of Cognition: A Focus on NMDA/D1 Receptor Interactions in Prefrontal Cortex

    ERIC Educational Resources Information Center

    Castner, Stacy A.; Williams, Graham V.

    2007-01-01

    The prefrontal cortex of the primate frontal lobes provides the capacity for judgment which can constantly adapt behavior in order to optimize its outcome. Adjudicating between long-term memory programs and prepotent responses, this capacity reviews all incoming information and provides an interpretation dependent on the events that have just…

  10. Distinct Contributions of the Basolateral Amygdala and the Medial Prefrontal Cortex to Learning and Relearning Extinction of Context Conditioned Fear

    ERIC Educational Resources Information Center

    Laurent, Vincent; Westbrook, R. Frederick

    2008-01-01

    We studied the roles of the basolateral amygdala (BLA) and the medial prefrontal cortex (mPFC) in learning and relearning to inhibit context conditioned fear (freezing) in extinction. In Experiment 1, pre-extinction BLA infusion of the NMDA receptor (NMDAr) antagonist, ifenprodil, impaired the development and retention of inhibition but…

  11. Trace and Contextual Fear Conditioning Require Neural Activity and NMDA Receptor-Dependent Transmission in the Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Gilmartin, Marieke R.; Helmstetter, Fred J.

    2010-01-01

    The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a…

  12. Failure to respond autonomically to anticipated future outcomes following damage to prefrontal cortex.

    PubMed

    Bechara, A; Tranel, D; Damasio, H; Damasio, A R

    1996-01-01

    Following damage to specific sectors of the prefrontal cortex, humans develop a defect in real-life decision making, in spite of otherwise normal intellectual performance. The patients so affected may even realize the consequences of their actions but fail to act accordingly, thus appearing oblivious to the future. The neural basis of this defect has resisted explanation. Here we identify a physiological correlate for the defect and discuss its possible significance. We measured the skin conductance responses (SCRs) of 7 patients with prefrontal damage, and 12 normal controls, during the performance of a novel task, a card game that simulates real-life decision making in the way it factors uncertainty, rewards, and penalties. Both patients and controls generated SCRs after selecting cards that were followed by penalties or by reward. However, after a number of trials, controls also began to generate SCRs prior to their selection of a card, while they pondered from which deck to choose, but no patients showed such anticipatory SCRs. The absence of anticipatory SCRs in patients with prefrontal damage is a correlate of their insensitivity to future outcomes. It is compatible with the idea that these patients fail to activate biasing signals that would serve as value markers in the distinction between choices with good or bad future outcomes; that these signals also participate in the enhancement of attention and working memory relative to representations pertinent to the decision process; and that the signals hail from the bioregulatory machinery that sustains somatic homeostasis and can be expressed in emotion and feeling.

  13. Amphetamine Exerts Dose-Dependent Changes in Prefrontal Cortex Attractor Dynamics during Working Memory

    PubMed Central

    Balaguer-Ballester, Emili; Seamans, Jeremy K.; Phillips, Anthony G.; Durstewitz, Daniel

    2015-01-01

    Modulation of neural activity by monoamine neurotransmitters is thought to play an essential role in shaping computational neurodynamics in the neocortex, especially in prefrontal regions. Computational theories propose that monoamines may exert bidirectional (concentration-dependent) effects on cognition by altering prefrontal cortical attractor dynamics according to an inverted U-shaped function. To date, this hypothesis has not been addressed directly, in part because of the absence of appropriate statistical methods required to assess attractor-like behavior in vivo. The present study used a combination of advanced multivariate statistical, time series analysis, and machine learning methods to assess dynamic changes in network activity from multiple single-unit recordings from the medial prefrontal cortex (mPFC) of rats while the animals performed a foraging task guided by working memory after pretreatment with different doses of d-amphetamine (AMPH), which increases monoamine efflux in the mPFC. A dose-dependent, bidirectional effect of AMPH on neural dynamics in the mPFC was observed. Specifically, a 1.0 mg/kg dose of AMPH accentuated separation between task-epoch-specific population states and convergence toward these states. In contrast, a 3.3 mg/kg dose diminished separation and convergence toward task-epoch-specific population states, which was paralleled by deficits in cognitive performance. These results support the computationally derived hypothesis that moderate increases in monoamine efflux would enhance attractor stability, whereas high frontal monoamine levels would severely diminish it. Furthermore, they are consistent with the proposed inverted U-shaped and concentration-dependent modulation of cortical efficiency by monoamines. PMID:26180194

  14. Amphetamine Exerts Dose-Dependent Changes in Prefrontal Cortex Attractor Dynamics during Working Memory.

    PubMed

    Lapish, Christopher C; Balaguer-Ballester, Emili; Seamans, Jeremy K; Phillips, Anthony G; Durstewitz, Daniel

    2015-07-15

    Modulation of neural activity by monoamine neurotransmitters is thought to play an essential role in shaping computational neurodynamics in the neocortex, especially in prefrontal regions. Computational theories propose that monoamines may exert bidirectional (concentration-dependent) effects on cognition by altering prefrontal cortical attractor dynamics according to an inverted U-shaped function. To date, this hypothesis has not been addressed directly, in part because of the absence of appropriate statistical methods required to assess attractor-like behavior in vivo. The present study used a combination of advanced multivariate statistical, time series analysis, and machine learning methods to assess dynamic changes in network activity from multiple single-unit recordings from the medial prefrontal cortex (mPFC) of rats while the animals performed a foraging task guided by working memory after pretreatment with different doses of d-amphetamine (AMPH), which increases monoamine efflux in the mPFC. A dose-dependent, bidirectional effect of AMPH on neural dynamics in the mPFC was observed. Specifically, a 1.0 mg/kg dose of AMPH accentuated separation between task-epoch-specific population states and convergence toward these states. In contrast, a 3.3 mg/kg dose diminished separation and convergence toward task-epoch-specific population states, which was paralleled by deficits in cognitive performance. These results support the computationally derived hypothesis that moderate increases in monoamine efflux would enhance attractor stability, whereas high frontal monoamine levels would severely diminish it. Furthermore, they are consistent with the proposed inverted U-shaped and concentration-dependent modulation of cortical efficiency by monoamines. PMID:26180194

  15. Muscarinic and Nicotinic Modulation of Thalamo-Prefrontal Cortex Synaptic Pasticity In Vivo

    PubMed Central

    Bueno-Junior, Lezio Soares; Lopes-Aguiar, Cleiton; Ruggiero, Rafael Naime; Romcy-Pereira, Rodrigo Neves; Leite, João Pereira

    2012-01-01

    The mediodorsal nucleus of the thalamus (MD) is a rich source of afferents to the medial prefrontal cortex (mPFC). Dysfunctions in the thalamo-prefrontal connections can impair networks implicated in working memory, some of which are affected in Alzheimer disease and schizophrenia. Considering the importance of the cholinergic system to cortical functioning, our study aimed to investigate the effects of global cholinergic activation of the brain on MD-mPFC synaptic plasticity by measuring the dynamics of long-term potentiation (LTP) and depression (LTD) in vivo. Therefore, rats received intraventricular injections either of the muscarinic agonist pilocarpine (PILO; 40 nmol/µL), the nicotinic agonist nicotine (NIC; 320 nmol/µL), or vehicle. The injections were administered prior to either thalamic high-frequency (HFS) or low-frequency stimulation (LFS). Test pulses were applied to MD for 30 min during baseline and 240 min after HFS or LFS, while field postsynaptic potentials were recorded in the mPFC. The transient oscillatory effects of PILO and NIC were monitored through recording of thalamic and cortical local field potentials. Our results show that HFS did not affect mPFC responses in vehicle-injected rats, but induced a delayed-onset LTP with distinct effects when applied following PILO or NIC. Conversely, LFS induced a stable LTD in control subjects, but was unable to induce LTD when applied after PILO or NIC. Taken together, our findings show distinct modulatory effects of each cholinergic brain activation on MD-mPFC plasticity following HFS and LFS. The LTP-inducing action and long-lasting suppression of cortical LTD induced by PILO and NIC might implicate differential modulation of thalamo-prefrontal functions under low and high input drive. PMID:23118873

  16. Listen, learn, like! Dorsolateral prefrontal cortex involved in the mere exposure effect in music.

    PubMed

    Green, Anders C; Bærentsen, Klaus B; Stødkilde-Jørgensen, Hans; Roepstorff, Andreas; Vuust, Peter

    2012-01-01

    We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen. PMID:22548168

  17. Listen, Learn, Like! Dorsolateral Prefrontal Cortex Involved in the Mere Exposure Effect in Music

    PubMed Central

    Green, Anders C.; Bærentsen, Klaus B.; Stødkilde-Jørgensen, Hans; Roepstorff, Andreas; Vuust, Peter

    2012-01-01

    We used functional magnetic resonance imaging to investigate the neural basis of the mere exposure effect in music listening, which links previous exposure to liking. Prior to scanning, participants underwent a learning phase, where exposure to melodies was systematically varied. During scanning, participants rated liking for each melody and, later, their recognition of them. Participants showed learning effects, better recognising melodies heard more often. Melodies heard most often were most liked, consistent with the mere exposure effect. We found neural activations as a function of previous exposure in bilateral dorsolateral prefrontal and inferior parietal cortex, probably reflecting retrieval and working memory-related processes. This was despite the fact that the task during scanning was to judge liking, not recognition, thus suggesting that appreciation of music relies strongly on memory processes. Subjective liking per se caused differential activation in the left hemisphere, of the anterior insula, the caudate nucleus, and the putamen. PMID:22548168

  18. Representation of economic preferences in the structure and function of the amygdala and prefrontal cortex

    PubMed Central

    Fermin, Alan S. R.; Sakagami, Masamichi; Kiyonari, Toko; Li, Yang; Matsumoto, Yoshie; Yamagishi, Toshio

    2016-01-01

    Social value orientations (SVOs) are economic preferences for the distribution of resources – prosocial individuals are more cooperative and egalitarian than are proselfs. Despite the social and economic implications of SVOs, no systematic studies have examined their neural correlates. We investigated the amygdala and dorsolateral prefrontal cortex (DLPFC) structures and functions in prosocials and proselfs by functional magnetic resonance imaging and evaluated cooperative behavior in the Prisoner’s Dilemma game. We found for the first time that amygdala volume was larger in prosocials and positively correlated with cooperation, while DLPFC volume was larger in proselfs and negatively correlated with cooperation. Proselfs’ decisions were marked by strong DLPFC and weak amygdala activity, and prosocials’ decisions were marked by strong amygdala activity, with the DLPFC signal increasing only in defection. Our findings suggest that proselfs’ decisions are controlled by DLPFC-mediated deliberative processes, while prosocials’ decisions are initially guided by automatic amygdala processes. PMID:26876988

  19. Testing the involvement of the prefrontal cortex in lucid dreaming: a tDCS study.

    PubMed

    Stumbrys, Tadas; Erlacher, Daniel; Schredl, Michael

    2013-12-01

    Recent studies suggest that lucid dreaming (awareness of dreaming while dreaming) might be associated with increased brain activity over frontal regions during rapid eye movement (REM) sleep. By applying transcranial direct current stimulation (tDCS), we aimed to manipulate the activation of the dorsolateral prefrontal cortex (DLPFC) during REM sleep to increase dream lucidity. Nineteen participants spent three consecutive nights in a sleep laboratory. On the second and third nights they randomly received either 1 mA tDCS for 10 min or sham stimulation during each REM period starting with the second one. According to the participants' self-ratings, tDCS over the DLPFC during REM sleep increased lucidity in dreams. The effects, however, were not strong and found only in frequent lucid dreamers. While this indicates some preliminary support for the involvement of the DLPFC in lucid dreaming, further research, controlling for indirect effects of stimulation and including other brain regions, is needed. PMID:24021850

  20. Amygdala and dorsomedial prefrontal cortex responses to appearance-based and behavior-based person impressions.

    PubMed

    Baron, Sean G; Gobbini, M I; Engell, Andrew D; Todorov, Alexander

    2011-10-01

    We explored the neural correlates of learning about people when the affective value of both facial appearance and behavioral information is manipulated. Participants were presented with faces that were either rated as high or low on trustworthiness. Subsequently, we paired these faces with positive, negative, or no behavioral information. Prior to forming face-behavior associations, a cluster in the right amygdala responded more strongly to untrustworthy than to trustworthy faces. During learning, a cluster in the dorsomedial prefrontal cortex (dmPFC) responded more strongly to faces paired with behaviors than faces not paired with behaviors. We also observed that the activity in the dmPFC was correlated with behavioral learning performance assessed after scanning. Interestingly, individual differences in the initial amygdala response to face trustworthiness prior to learning modulated the relationship between dmPFC activity and learning. This finding suggests that the activity of the amygdala can affect the interaction between dmPFC activity and learning.

  1. Generalisation benefits of output gating in a model of prefrontal cortex

    NASA Astrophysics Data System (ADS)

    Kriete, Trent; Noelle, David C.

    2011-06-01

    The prefrontal cortex (PFC) plays a central role in flexible cognitive control, including the suppression of habitual responding in favour of situation-appropriate behaviours that can be quite novel. PFC provides a kind of working memory, maintaining the rules, goals, and/or actions that are to control behaviour in the current context. For flexible control, these PFC representations must be sufficiently componential to support systematic generalisation to novel situations. The anatomical structure of PFC can be seen as implementing a componential 'slot-filler' structure, with different components encoded over isolated pools of neurons. Previous PFC models have highlighted the importance of a dynamic gating mechanism to selectively update individual 'slot' contents. In this article, we present simulation results that suggest that systematic generalisation also requires an 'output gating' mechanism that limits the influence of PFC on more posterior brain areas to reflect a small number of representational components at any one time.

  2. Brain On Stress: Vulnerability and Plasticity of the Prefrontal Cortex Over the Life Course

    PubMed Central

    McEwen, Bruce S.; Morrison, John H.

    2013-01-01

    The prefrontal cortex (PFC) is involved in working memory, self-regulatory and goal-directed behaviors and displays remarkable structural and functional plasticity over the life course. Neural circuitry, molecular profiles and neurochemistry can be changed by experiences, which influences behavior as well as neuroendocrine and autonomic function. Such effects have a particular impact during infancy and in adolescence. Behavioral stress affects both the structure and function of PFC, though such effects are not necessarily permanent, as young animals show remarkable neuronal resilience if the stress is discontinued. During aging, neurons within the PFC become less resilient to stress. There are also sex differences in the PFC response to stressors. While such stress- and sex-hormone related alterations occur in regions mediating the highest levels of cognitive function and self regulatory control, the fact that they are not necessarily permanent has implications for future behavior-based therapies that harness neural plasticity for recovery. PMID:23849196

  3. Specifying the role of the left prefrontal cortex in word selection

    PubMed Central

    Ries, S. K; Karzmark, C. R.; Navarrete, E.; Knight, R. T.; Dronkers, N. F.

    2015-01-01

    Word selection allows us to choose words during language production. This is often viewed as a competitive process wherein a lexical representation is retrieved among semantically-related alternatives. The left prefrontal cortex (LPFC) is thought to help overcome competition for word selection through top-down control. However, whether the LPFC is always necessary for word selection remains unclear. We tested 6 LPFC-injured patients and controls in two picture naming paradigms varying in terms of item repetition. Both paradigms elicited the expected semantic interference effects (SIE), reflecting interference caused by semantically-related representations in word selection. However, LPFC patients as a group showed a larger SIE than controls only in the paradigm involving item repetition. We argue that item repetition increases interference caused by semantically-related alternatives, resulting in increased LPFC-dependent cognitive control demands. The remaining network of brain regions associated with word selection appears to be sufficient when items are not repeated. PMID:26291289

  4. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories

    PubMed Central

    Gonzalez, María C.; Kramar, Cecilia P.; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H.

    2014-01-01

    Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus. PMID:25506318

  5. Rapid Transfer of Abstract Rules to Novel Contexts in Human Lateral Prefrontal Cortex

    PubMed Central

    Cole, Michael W.; Etzel, Joset A.; Zacks, Jeffrey M.; Schneider, Walter; Braver, Todd S.

    2011-01-01

    Flexible, adaptive behavior is thought to rely on abstract rule representations within lateral prefrontal cortex (LPFC), yet it remains unclear how these representations provide such flexibility. We recently demonstrated that humans can learn complex novel tasks in seconds. Here we hypothesized that this impressive mental flexibility may be possible due to rapid transfer of practiced rule representations within LPFC to novel task contexts. We tested this hypothesis using functional MRI and multivariate pattern analysis, classifying LPFC activity patterns across 64 tasks. Classifiers trained to identify abstract rules based on practiced task activity patterns successfully generalized to novel tasks. This suggests humans can transfer practiced rule representations within LPFC to rapidly learn new tasks, facilitating cognitive performance in novel circumstances. PMID:22125519

  6. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications

    PubMed Central

    Goldstein, Rita Z.; Volkow, Nora D.

    2012-01-01

    The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in the past decade that have expanded our understanding of the involvement of the PFC in drug addiction. Disruption of the PFC in addiction underlies not only compulsive drug taking but also accounts for the disadvantageous behaviours that are associated with addiction and the erosion of free will. PMID:22011681

  7. A dynamic code for economic object valuation in prefrontal cortex neurons

    PubMed Central

    Tsutsui, Ken-Ichiro; Grabenhorst, Fabian; Kobayashi, Shunsuke; Schultz, Wolfram

    2016-01-01

    Neuronal reward valuations provide the physiological basis for economic behaviour. Yet, how such valuations are converted to economic decisions remains unclear. Here we show that the dorsolateral prefrontal cortex (DLPFC) implements a flexible value code based on object-specific valuations by single neurons. As monkeys perform a reward-based foraging task, individual DLPFC neurons signal the value of specific choice objects derived from recent experience. These neuronal object values satisfy principles of competitive choice mechanisms, track performance fluctuations and follow predictions of a classical behavioural model (Herrnstein's matching law). Individual neurons dynamically encode both, the updating of object values from recently experienced rewards, and their subsequent conversion to object choices during decision-making. Decoding from unselected populations enables a read-out of motivational and decision variables not emphasized by individual neurons. These findings suggest a dynamic single-neuron and population value code in DLPFC that advances from reward experiences to economic object values and future choices. PMID:27618960

  8. A dynamic code for economic object valuation in prefrontal cortex neurons.

    PubMed

    Tsutsui, Ken-Ichiro; Grabenhorst, Fabian; Kobayashi, Shunsuke; Schultz, Wolfram

    2016-01-01

    Neuronal reward valuations provide the physiological basis for economic behaviour. Yet, how such valuations are converted to economic decisions remains unclear. Here we show that the dorsolateral prefrontal cortex (DLPFC) implements a flexible value code based on object-specific valuations by single neurons. As monkeys perform a reward-based foraging task, individual DLPFC neurons signal the value of specific choice objects derived from recent experience. These neuronal object values satisfy principles of competitive choice mechanisms, track performance fluctuations and follow predictions of a classical behavioural model (Herrnstein's matching law). Individual neurons dynamically encode both, the updating of object values from recently experienced rewards, and their subsequent conversion to object choices during decision-making. Decoding from unselected populations enables a read-out of motivational and decision variables not emphasized by individual neurons. These findings suggest a dynamic single-neuron and population value code in DLPFC that advances from reward experiences to economic object values and future choices. PMID:27618960

  9. Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex

    PubMed Central

    Xu, Min; Zhang, Si-yu; Dan, Yang; Poo, Mu-ming

    2014-01-01

    Perception of time interval on the order of seconds is an essential component of cognition, but the underlying neural mechanism remains largely unknown. In rats trained to estimate time intervals, we found that many neurons in the medial prefrontal cortex (PFC) exhibited sustained spiking activity with diverse temporal profiles of firing-rate modulation during the time-estimation period. Interestingly, in tasks involving different intervals, each neuron exhibited firing-rate modulation with the same profile that was temporally scaled by a factor linearly proportional to the instructed intervals. The behavioral variability across trials within each task also correlated with the intertrial variability of the temporal scaling factor. Local cooling of the medial PFC, which affects neural circuit dynamics, significantly delayed behavioral responses. Thus, PFC neuronal activity contributes to time perception, and temporally scalable firing-rate modulation may reflect a general mechanism for neural representation of interval timing. PMID:24367075

  10. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex.

    PubMed

    Wang, Fei; Zhu, Jun; Zhu, Hong; Zhang, Qi; Lin, Zhanmin; Hu, Hailan

    2011-11-01

    Dominance hierarchy has a profound impact on animals' survival, health, and reproductive success, but its neural circuit mechanism is virtually unknown. We found that dominance ranking in mice is transitive, relatively stable, and highly correlates among multiple behavior measures. Recording from layer V pyramidal neurons of the medial prefrontal cortex (mPFC) showed higher strength of excitatory synaptic inputs in mice with higher ranking, as compared with their subordinate cage mates. Furthermore, molecular manipulations that resulted in an increase and decrease in the synaptic efficacy in dorsal mPFC neurons caused an upward and downward movement in the social rank, respectively. These results provide direct evidence for mPFC's involvement in social hierarchy and suggest that social rank is plastic and can be tuned by altering synaptic strength in mPFC pyramidal cells.

  11. Dorso-Lateral Prefrontal Cortex MRI Measurements and Cognitive Performance in Autism

    PubMed Central

    Griebling, Jessica; Minshew, Nancy J.; Bodner, Kimberly; Libove, Robin; Bansal, Rahul; Konasale, Prasad; Keshavan, Matcheri S.; Hardan, Antonio

    2012-01-01

    This study examined the relationships between volumetric measurements of frontal lobe structures and performance on executive function tasks in individuals with autism. MRI scans were obtained from 38 individuals with autism and 40 matched controls between the ages of 8 and 45 years. Executive function was assessed using neuropsychological measures including the Wisconsin Card Sorting Test and Tower of Hanoi. Differences in performance on the neuropsychological tests were found between the two groups. However, no differences in dorsolateral prefrontal cortex volumes were observed between groups. No correlations between volumetric measurements and performance on the neuropsychological tests were found. Findings from this study suggest that executive function deficits observed in autism are related to functional but not anatomical abnormalities of the frontal lobe. The absence of correlations suggests that executive dysfunction is not the result of focal brain alterations but, rather, is the result of a distributed neural network dysfunction. PMID:20097663

  12. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders.

    PubMed

    Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo

    2016-01-01

    Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302

  13. Testing the involvement of the prefrontal cortex in lucid dreaming: a tDCS study.

    PubMed

    Stumbrys, Tadas; Erlacher, Daniel; Schredl, Michael

    2013-12-01

    Recent studies suggest that lucid dreaming (awareness of dreaming while dreaming) might be associated with increased brain activity over frontal regions during rapid eye movement (REM) sleep. By applying transcranial direct current stimulation (tDCS), we aimed to manipulate the activation of the dorsolateral prefrontal cortex (DLPFC) during REM sleep to increase dream lucidity. Nineteen participants spent three consecutive nights in a sleep laboratory. On the second and third nights they randomly received either 1 mA tDCS for 10 min or sham stimulation during each REM period starting with the second one. According to the participants' self-ratings, tDCS over the DLPFC during REM sleep increased lucidity in dreams. The effects, however, were not strong and found only in frequent lucid dreamers. While this indicates some preliminary support for the involvement of the DLPFC in lucid dreaming, further research, controlling for indirect effects of stimulation and including other brain regions, is needed.

  14. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    PubMed Central

    Negrón-Oyarzo, Ignacio; Aboitiz, Francisco; Fuentealba, Pablo

    2016-01-01

    Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders. PMID:26904302

  15. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories.

    PubMed

    Gonzalez, María C; Kramar, Cecilia P; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H

    2014-01-01

    Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus. PMID:25506318

  16. Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques.

    PubMed

    Balconi, Michela

    2013-06-01

    The ability to recall and recognize facts we experienced in the past is based on a complex mechanism in which several cerebral regions are implicated. Neuroimaging and lesion studies agree in identifying the frontal lobe as a crucial structure for memory processes, and in particular for working memory and episodic memory and their relationships. Furthermore, with the introduction of transcranial magnetic stimulation (TMS) a new way was proposed to investigate the relationships between brain correlates, memory functions and behavior. The aim of this review is to present the main findings that have emerged from experiments which used the TMS technique for memory analysis. They mainly focused on the role of the dorsolateral prefrontal cortex in memory process. Furthermore, we present state-of-the-art evidence supporting a possible use of TMS in the clinic. Specifically we focus on the treatment of memory deficits in depression and anxiety disorders. PMID:23385388

  17. Hemispheric dorsolateral prefrontal cortex lateralization in the regulation of empathy for pain.

    PubMed

    Rêgo, Gabriel G; Lapenta, Olívia M; Marques, Lucas M; Costa, Thiago L; Leite, Jorge; Carvalho, Sandra; Gonçalves, Óscar F; Brunoni, André R; Fregni, Felipe; Boggio, Paulo S

    2015-05-01

    The dorsolateral prefrontal cortex (DLPFC) is involved in the cognitive appraisal and modulation of the pain experience. In this sham-controlled study, with healthy volunteers, we used bi-hemispheric transcranial direct current stimulation (tDCS) over the DLPFC to assess emotional reactions elicited by pain observation. Left-cathodal/right-anodal tDCS decreased valence and arousal evaluations compared to other tDCS conditions. Compared to sham condition, both left-cathodal/right-anodal and left-anodal/right-cathodal tDCS decreased hostility, sadness and self-pain perception. These decreased sensations after both active tDCS suggest a common role for left and right DLPFC in personal distress modulation. However, the differences in arousal and valence evaluations point to distinct roles of lateralized DLPFC in cognitive empathy, probably through distinct emotion regulation mechanisms. PMID:25805457

  18. Prenatal protein malnutrition decreases KCNJ3 and 2DG activity in rat prefrontal cortex.

    PubMed

    Amaral, A C; Jakovcevski, M; McGaughy, J A; Calderwood, S K; Mokler, D J; Rushmore, R J; Galler, J R; Akbarian, S A; Rosene, D L

    2015-02-12

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in the PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with (14)C-2-deoxyglucose. Results showed decreased activation in the PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity. PMID:25446346

  19. Molecular Modulation of Prefrontal Cortex: Rational Development of Treatments for Psychiatric Disorders

    PubMed Central

    Gamo, Nao J.; Arnsten, Amy F.T.

    2011-01-01

    Dysfunction of the prefrontal cortex (PFC) is a central feature of many psychiatric disorders, such as attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), schizophrenia and bipolar disorder. Thus, understanding molecular influences on PFC function through basic research in animals is essential to rational drug development. In this review, we discuss the molecular signaling events initiated by norepinephrine and dopamine that strengthen working memory function mediated by the dorsolateral PFC under optimal conditions, and weaken working memory function during uncontrollable stress. We also discuss how these intracellular mechanisms can be compromised in psychiatric disorders, and how novel treatments based on these findings may restore a molecular environment conducive to PFC regulation of behavior, thought and emotion. Examples of successful translation from animals to humans include guanfacine for the treatment of ADHD and related PFC disorders, and prazosin for the treatment of PTSD. PMID:21480691

  20. A dynamic code for economic object valuation in prefrontal cortex neurons.

    PubMed

    Tsutsui, Ken-Ichiro; Grabenhorst, Fabian; Kobayashi, Shunsuke; Schultz, Wolfram

    2016-09-13

    Neuronal reward valuations provide the physiological basis for economic behaviour. Yet, how such valuations are converted to economic decisions remains unclear. Here we show that the dorsolateral prefrontal cortex (DLPFC) implements a flexible value code based on object-specific valuations by single neurons. As monkeys perform a reward-based foraging task, individual DLPFC neurons signal the value of specific choice objects derived from recent experience. These neuronal object values satisfy principles of competitive choice mechanisms, track performance fluctuations and follow predictions of a classical behavioural model (Herrnstein's matching law). Individual neurons dynamically encode both, the updating of object values from recently experienced rewards, and their subsequent conversion to object choices during decision-making. Decoding from unselected populations enables a read-out of motivational and decision variables not emphasized by individual neurons. These findings suggest a dynamic single-neuron and population value code in DLPFC that advances from reward experiences to economic object values and future choices.

  1. Theta-gamma coordination between anterior cingulate and prefrontal cortex indexes correct attention shifts.

    PubMed

    Voloh, Benjamin; Valiante, Taufik A; Everling, Stefan; Womelsdorf, Thilo

    2015-07-01

    Anterior cingulate and lateral prefrontal cortex (ACC/PFC) are believed to coordinate activity to flexibly prioritize the processing of goal-relevant over irrelevant information. This between-area coordination may be realized by common low-frequency excitability changes synchronizing segregated high-frequency activations. We tested this coordination hypothesis by recording in macaque ACC/PFC during the covert utilization of attention cues. We found robust increases of 5-10 Hz (theta) to 35-55 Hz (gamma) phase-amplitude correlation between ACC and PFC during successful attention shifts but not before errors. Cortical sites providing theta phases (i) showed a prominent cue-induced phase reset, (ii) were more likely in ACC than PFC, and (iii) hosted neurons with burst firing events that synchronized to distant gamma activity. These findings suggest that interareal theta-gamma correlations could follow mechanistically from a cue-triggered reactivation of rule memory that synchronizes theta across ACC/PFC.

  2. Dorsolateral prefrontal cortex magnetic resonance imaging measurements and cognitive performance in autism.

    PubMed

    Griebling, Jessica; Minshew, Nancy J; Bodner, Kimberly; Libove, Robin; Bansal, Rahul; Konasale, Prasad; Keshavan, Matcheri S; Hardan, Antonio

    2010-07-01

    This study examined the relationships between volumetric measurements of frontal lobe structures and performance on executive function tasks in individuals with autism. Magnetic resonance imaging (MRI) scans were obtained from 38 individuals with autism and 40 matched controls between the ages of 8 and 45 years. Executive function was assessed using neuropsychological measures including the Wisconsin Card Sorting Test and Tower of Hanoi. Differences in performance on the neuropsychological tests were found between the 2 groups. However, no differences in dorsolateral prefrontal cortex volumes were observed between groups. No correlations between volumetric measurements and performance on the neuropsychological tests were found. Findings from this study suggest that executive function deficits observed in autism are related to functional but not anatomical abnormalities of the frontal lobe. The absence of correlations suggests that executive dysfunction is not the result of focal brain alterations but, rather, is the result of a distributed neural network dysfunction. PMID:20097663

  3. Spatial Working Memory in Humans Depends on Theta and High Gamma Synchronization in the Prefrontal Cortex.

    PubMed

    Alekseichuk, Ivan; Turi, Zsolt; Amador de Lara, Gabriel; Antal, Andrea; Paulus, Walter

    2016-06-20

    Previous, albeit correlative, findings have shown that the neural mechanisms underlying working memory critically require cross-structural and cross-frequency coupling mechanisms between theta and gamma neural oscillations. However, the direct causality between cross-frequency coupling and working memory performance remains to be demonstrated. Here we externally modulated the interaction of theta and gamma rhythms in the prefrontal cortex using novel cross-frequency protocols of transcranial alternating current stimulation to affect spatial working memory performance in humans. Enhancement of working memory performance and increase of global neocortical connectivity were observed when bursts of high gamma oscillations (80-100 Hz) coincided with the peaks of the theta waves, whereas superimposition on the trough of the theta wave and low gamma frequency protocols were ineffective. Thus, our results demonstrate the sensitivity of working memory performance and global neocortical connectivity to the phase and rhythm of the externally driven theta-gamma cross-frequency synchronization.

  4. Dynamic routing of task-relevant signals for decision making in dorsolateral prefrontal cortex.

    PubMed

    Donahue, Christopher H; Lee, Daeyeol

    2015-02-01

    Neurons in the dorsolateral prefrontal cortex (DLPFC) encode a diverse array of sensory and mnemonic signals, but little is known about how this information is dynamically routed during decision making. We analyzed the neuronal activity in the DLPFC of monkeys performing a probabilistic reversal task where information about the probability and magnitude of reward was provided by the target color and numerical cues, respectively. The location of the target of a given color was randomized across trials and therefore was not relevant for subsequent choices. DLPFC neurons encoded signals related to both task-relevant and irrelevant features, but only task-relevant mnemonic signals were encoded congruently with choice signals. Furthermore, only the task-relevant signals related to previous events were more robustly encoded following rewarded outcomes. Thus, multiple types of neural signals are flexibly routed in the DLPFC so as to favor actions that maximize reward. PMID:25581364

  5. Indeterminacy tolerance as a basis of hemispheric asymmetry within prefrontal cortex

    PubMed Central

    Goel, Vinod

    2015-01-01

    There is an important hemispheric distinction in the functional organization of prefrontal cortex (PFC) that has not been fully recognized and explored. Research with split-brain patients provides considerable evidence for a left hemisphere (LH) “interpreter” that abhors indeterminacy and automatically draws inferences to complete patterns (real or imaginary). It is suggested that this “interpreter” function may be a byproduct of the linguistic capabilities of the LH. This same literature initially limited the role of the right hemisphere (RH) to little more than visual organization. Recent reviews have garnered evidence for several different roles for the right PFC in reasoning, problem solving, and decision-making. We here focus on the beneficial but neglected role of indeterminacy in real-world problem solving and argue that the right PFC complements the left PFC “interpreter” by maintaining, and even enhancing indeterminacy. Successful real-world functioning is a delicate balancing act between these two systems. PMID:26136673

  6. Prenatal Protein Malnutrition Decreases KCNJ3 and 2DG Activity in Rat Prefrontal Cortex

    PubMed Central

    Amaral, A.C.; Jakovcevski, M.; McGaughy, J.A.; Calderwood, S.K.; Mokler, D.J.; Rushmore, R.J.; Galler, J.R.; Akbarian, S.A.; Rosene, D.L.

    2014-01-01

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with 14C-2-deoxyglucose. Results showed decreased activation in PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity. PMID:25446346

  7. Prenatal protein malnutrition decreases KCNJ3 and 2DG activity in rat prefrontal cortex.

    PubMed

    Amaral, A C; Jakovcevski, M; McGaughy, J A; Calderwood, S K; Mokler, D J; Rushmore, R J; Galler, J R; Akbarian, S A; Rosene, D L

    2015-02-12

    Prenatal protein malnutrition (PPM) in rats causes enduring changes in brain and behavior including increased cognitive rigidity and decreased inhibitory control. A preliminary gene microarray screen of PPM rat prefrontal cortex (PFC) identified alterations in KCNJ3 (GIRK1/Kir3.1), a gene important for regulating neuronal excitability. Follow-up with polymerase chain reaction and Western blot showed decreased KCNJ3 expression in the PFC, but not hippocampus or brainstem. To verify localization of the effect to the PFC, baseline regional brain activity was assessed with (14)C-2-deoxyglucose. Results showed decreased activation in the PFC but not hippocampus. Together these findings point to the unique vulnerability of the PFC to the nutritional insult during early brain development, with enduring effects in adulthood on KCNJ3 expression and baseline metabolic activity.

  8. Theta burst stimulation of dorsolateral prefrontal cortex modulates pathological language switching: A case report.

    PubMed

    Nardone, Raffaele; De Blasi, Pierpaolo; Bergmann, Jürgen; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan; Trinka, Eugen

    2011-01-10

    Although different lesion and neuroimaging studies had highlighted the importance of the dorsolateral prefrontal cortex (DLPFC) in language switching, the nature of this higher cortical disorder of communication and its neural correlates have not been clearly established. To further investigate the functional involvement of the DLPFC, we used transcranial magnetic stimulation (TMS) given as theta burst stimulation (TBS) in a bilingual patient showing pathologic language switching after an ischemic stroke involving the left frontal lobe. Inhibitory and excitatory TBS were applied to the left DLPFC, to the right DLPFC, or to an occipital cortical control site. A short-lasting interruption of the pathological language switching occurred after excitatory left DLPFC stimulation, while inhibitory left DLPFC TBS transiently increased the number of utterances produced in the unwanted second language. Effects were non-significant after right DLPFC and occipital TBS. Our findings suggest that left DLPFC is actively involved in language switching. TMS techniques may help in understanding the neural bases of bilingualism.

  9. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories.

    PubMed

    Gonzalez, María C; Kramar, Cecilia P; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H

    2014-01-01

    Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus.

  10. Prefrontal cortex reactivity underlies trait vulnerability to chronic social defeat stress

    PubMed Central

    Kumar, Sunil; Hultman, Rainbo; Hughes, Dalton; Michel, Nadine; Katz, Brittany M.; Dzirasa, Kafui

    2014-01-01

    Psychological stress contributes to the onset and exacerbation of nearly all neuropsychiatric disorders. Individual differences in stress-regulatory circuits can therefore dramatically affect vulnerability to these illnesses. Here we identify neural circuit mechanisms underlying individual differences in vulnerability to stress using a murine model of chronic social defeat stress. In chronically stressed mice, we find that the degree of prefrontal cortex (PFC) control of amygdala activity predicts stress-susceptibility in individual mice. Critically, we also find that individual differences in PFC activation (i.e. reactivity) during exposure to an aggressor mouse predict the emergence stress-induced behavioral deficits in stress naïve mice. Finally, we show that naturally occurring differences in PFC reactivity directly correspond to the intrinsic firing rate of PFC neurons. This demonstrates that naturally occurring differences in PFC function underlie individual differences in vulnerability to stress, raising the hypothesis that PFC modulation may prevent stress-induced psychiatric disorders. PMID:25072279

  11. Similar or Different? The Role of the Ventrolateral Prefrontal Cortex in Similarity Detection

    PubMed Central

    Garcin, Béatrice; Volle, Emmanuelle; Dubois, Bruno; Levy, Richard

    2012-01-01

    Patients with frontal lobe syndrome can exhibit two types of abnormal behaviour when asked to place a banana and an orange in a single category: some patients categorize them at a concrete level (e.g., “both have peel”), while others continue to look for differences between these objects (e.g., “one is yellow, the other is orange”). These observations raise the question of whether abstraction and similarity detection are distinct processes involved in abstract categorization, and that depend on separate areas of the prefrontal cortex (PFC). We designed an original experimental paradigm for a functional magnetic resonance imaging (fMRI) study involving healthy subjects, confirming the existence of two distinct processes relying on different prefrontal areas, and thus explaining the behavioural dissociation in frontal lesion patients. We showed that: 1) Similarity detection involves the anterior ventrolateral PFC bilaterally with a right-left asymmetry: the right anterior ventrolateral PFC is only engaged in detecting physical similarities; 2) Abstraction per se activates the left dorsolateral PFC. PMID:22479551

  12. Disrupting the prefrontal cortex diminishes the human ability to build a good reputation

    PubMed Central

    Knoch, Daria; Schneider, Frédéric; Schunk, Daniel; Hohmann, Martin; Fehr, Ernst

    2009-01-01

    Reputation formation pervades human social life. In fact, many people go to great lengths to acquire a good reputation, even though building a good reputation is costly in many cases. Little is known about the neural underpinnings of this important social mechanism, however. In the present study, we show that disruption of the right, but not the left, lateral prefrontal cortex (PFC) with low-frequency repetitive transcranial magnetic stimulation (rTMS) diminishes subjects' ability to build a favorable reputation. This effect occurs even though subjects' ability to behave altruistically in the absence of reputation incentives remains intact, and even though they are still able to recognize both the fairness standards necessary for acquiring and the future benefits of a good reputation. Thus, subjects with a disrupted right lateral PFC no longer seem to be able to resist the temptation to defect, even though they know that this has detrimental effects on their future reputation. This suggests an important dissociation between the knowledge about one's own best interests and the ability to act accordingly in social contexts. These results link findings on the neural underpinnings of self-control and temptation with the study of human social behavior, and they may help explain why reputation formation remains less prominent in most other species with less developed prefrontal cortices. PMID:19948957

  13. Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. IV. Further evidence for regional and behavioral specificity

    SciTech Connect

    Berman, K.F.; Illowsky, B.P.; Weinberger, D.R.

    1988-07-01

    In previous studies we found that patients with chronic schizophrenia had lower regional cerebral blood flow (rCBF) in dorsolateral prefrontal cortex (DLPFC) than did normal subjects during performance of the Wisconsin Card Sort Test, an abstract reasoning task linked to DLPFC function. This was not the case during less complex tasks. To examine further whether this finding represented regionally circumscribed pathophysiology or a more general correlate of abstract cognition, 24 medication-free patients and 25 age- and sex-matched normal control subjects underwent rCBF measurements with the xenon 133 technique while they performed two tasks: Raven's Progressive Matrices (RPM) and an active baseline control task. While performing RPM, normal subjects activated posterior cortical areas over baseline, but did not activate DLPFC, as had been seen during the Wisconsin Card Sort Test. Like normal subjects, patients showed maximal rCBF elevations posteriorly and, moreover, they had no significant DLPFC or other cortical deficit while performing RPM. These results suggest that DLPFC dysfunction in schizophrenia is linked to pathophysiology of a regionally specific neural system rather than to global cortical dysfunction, and that this pathophysiology is most apparent under prefrontally specific cognitive demand.

  14. Prefrontal cortex atrophy predicts dementia over a six-year period.

    PubMed

    Burgmans, S; van Boxtel, M P J; Smeets, F; Vuurman, E F P M; Gronenschild, E H B M; Verhey, F R J; Uylings, H B M; Jolles, J

    2009-09-01

    The present study investigated prefrontal cortex (PFC) atrophy as a possible predictor of dementia. Eighty-eight older participants of the Maastricht Aging Study (MAAS) were administered for neuropsychological tests at baseline and after three years (t(3)). Magnetic resonance images were acquired at t(3) and nine years after baseline all participants were screened for dementia. Three groups were distinguished: (1) participants who did not develop dementia or cognitive decline, (2) participants who did not develop dementia but did show significant cognitive decline, and (3) participants who developed dementia. Gray matter volume of structures in the PFC and medial temporal lobe (MTL) was measured. Prefrontal volume was significantly smaller in group 3 than in the other two groups, and PFC volume was significantly better than MTL volume in distinguishing between groups 2 and 3. These findings suggest that PFC atrophy is highly associated with dementia and can be considered an important predictor of the disease. It may even be a better predictor than the MTL atrophy that has been found in earlier studies.

  15. Involvement of the Ventrolateral Prefrontal Cortex in Learning Others’ Bad Reputations and Indelible Distrust

    PubMed Central

    Suzuki, Atsunobu; Ito, Yuichi; Kiyama, Sachiko; Kunimi, Mitsunobu; Ohira, Hideki; Kawaguchi, Jun; Tanabe, Hiroki C.; Nakai, Toshiharu

    2016-01-01

    A bad reputation can persistently affect judgments of an individual even when it turns out to be invalid and ought to be disregarded. Such indelible distrust may reflect that the negative evaluation elicited by a bad reputation transfers to a person. Consequently, the person him/herself may come to activate this negative evaluation irrespective of the accuracy of the reputation. If this theoretical model is correct, an evaluation-related brain region will be activated when witnessing a person whose bad reputation one has learned about, regardless of whether the reputation is deemed valid or not. Here, we tested this neural hypothesis with functional magnetic resonance imaging (fMRI). Participants memorized faces paired with either a good or a bad reputation. Next, they viewed the faces alone and inferred whether each person was likely to cooperate, first while retrieving the reputations, and then while trying to disregard them as false. A region of the left ventrolateral prefrontal cortex (vlPFC), which may be involved in negative evaluation, was activated by faces previously paired with bad reputations, irrespective of whether participants attempted to retrieve or disregard these reputations. Furthermore, participants showing greater activity of the left ventrolateral prefrontal region in response to the faces with bad reputations were more likely to infer that these individuals would not cooperate. Thus, once associated with a bad reputation, a person may elicit evaluation-related brain responses on their own, thereby evoking distrust independently of their reputation. PMID:26869908

  16. Acute stress disorder modifies cerebral activity of amygdala and prefrontal cortex.

    PubMed

    Reynaud, Emmanuelle; Guedj, Eric; Trousselard, Marion; El Khoury-Malhame, Myriam; Zendjidjian, Xavier; Fakra, Eric; Souville, Marc; Nazarian, Bruno; Blin, Olivier; Canini, Frédéric; Khalfa, Stephanie

    2015-01-01

    The diagnosis constraint of acute stress disorder (ASD), consisting of testing individuals in the month following trauma exposure, limits research on the very early and initial stage of the disease. In this regard, this work aims to explore the cerebral mechanism of ASD in a population of fire-fighters before and after trauma exposure. Thirty-six healthy non-traumatized male fire-fighters were explored by an fMRI emotional face-matching task to evaluate the cerebral substrate of emotional recognition. During the two years of the follow-up, two subjects were traumatized, and thus retested, as were 10 non-traumatized subjects among the initial non-exposed ones. In comparison to non-exposed subjects, fire-fighters with ASD had enhanced amygdala, orbitofrontal, and dorsolateral prefrontal BOLD responses to fearful and angry faces (p < .05, FDR-corrected). These results shed new light on the cerebral mechanism associated with ASD. We observed for the first time the existence of an altered fear processing pathway in ASD that is mediated by amygdala and prefrontal cortex hyperactivity, which might be at the core of the disorder. PMID:25599382

  17. Involvement of the Ventrolateral Prefrontal Cortex in Learning Others' Bad Reputations and Indelible Distrust.

    PubMed

    Suzuki, Atsunobu; Ito, Yuichi; Kiyama, Sachiko; Kunimi, Mitsunobu; Ohira, Hideki; Kawaguchi, Jun; Tanabe, Hiroki C; Nakai, Toshiharu

    2016-01-01

    A bad reputation can persistently affect judgments of an individual even when it turns out to be invalid and ought to be disregarded. Such indelible distrust may reflect that the negative evaluation elicited by a bad reputation transfers to a person. Consequently, the person him/herself may come to activate this negative evaluation irrespective of the accuracy of the reputation. If this theoretical model is correct, an evaluation-related brain region will be activated when witnessing a person whose bad reputation one has learned about, regardless of whether the reputation is deemed valid or not. Here, we tested this neural hypothesis with functional magnetic resonance imaging (fMRI). Participants memorized faces paired with either a good or a bad reputation. Next, they viewed the faces alone and inferred whether each person was likely to cooperate, first while retrieving the reputations, and then while trying to disregard them as false. A region of the left ventrolateral prefrontal cortex (vlPFC), which may be involved in negative evaluation, was activated by faces previously paired with bad reputations, irrespective of whether participants attempted to retrieve or disregard these reputations. Furthermore, participants showing greater activity of the left ventrolateral prefrontal region in response to the faces with bad reputations were more likely to infer that these individuals would not cooperate. Thus, once associated with a bad reputation, a person may elicit evaluation-related brain responses on their own, thereby evoking distrust independently of their reputation.

  18. The functional architecture of the left posterior and lateral prefrontal cortex in humans.

    PubMed

    Volle, Emmanuelle; Kinkingnéhun, Serge; Pochon, Jean-Baptiste; Mondon, Karl; Thiebaut de Schotten, Michel; Seassau, Magali; Duffau, Hugues; Samson, Yves; Dubois, Bruno; Levy, Richard

    2008-10-01

    The anatomical and functional organization of the lateral prefrontal cortex (LPFC) is one of the most debated issues in cognitive and integrative neurosciences. The aim of this study is to determine whether the human LPFC is organized according to the domain of information, to the level of the processing or to both of these dimensions. In order to clarify this issue, we have designed an experimental protocol that combines a functional magnetic resonance imaging study in healthy subjects (n = 12) and a voxel-by-voxel lesion mapping study in patients with focal prefrontal lesions (n = 37) compared with normal controls (n = 48). Each method used the same original cognitive paradigm ("the domain n-back tasks") that tests by a cross-dimensional method the domain of information (verbal, spatial, faces) and the level of processing (from 1- to 3-back). Converging data from the 2 methods demonstrate that the left posterior LPFC is critical for the higher levels of cognitive control and is organized into functionally different subregions (Brodman's area 9/46, 6/8/9, and 44/45). These findings argue in favor of a hybrid model of organization of the left posterior LPFC in which domain-oriented (nonspatial and spatially oriented) and cross-domain executive-dependent regions coexist, reconciling previously divergent data.

  19. Closing the loop in primate prefrontal cortex: inter-laminar processing

    PubMed Central

    Opris, Ioan; Fuqua, Joshua L.; Huettl, Peter F.; Gerhardt, Greg A.; Berger, Theodore W.; Hampson, Robert E.; Deadwyler, Sam A.

    2012-01-01

    Prefrontal cortical (PFC) activity in the primate brain emerging from minicolumnar microcircuits plays a critical role in cognitive processes dealing with executive control of behavior. However, the specific operations of columnar laminar processing in prefrontal cortex (PFC) are not completely understood. Here we show via implementation of unique microanatomical recording and stimulating arrays, that minicolumns in PFC are involved in the executive control of behavior in rhesus macaque nonhuman primates (NHPs) performing a delayed-match-to-sample (DMS) task. PFC neurons demonstrate functional interactions between pairs of putative pyramidal cells within specified cortical layers via anatomically oriented minicolumns. Results reveal target-specific, spatially tuned firing between inter-laminar (layer 2/3 and layer 5) pairs of neurons participating in the gating of information during the decision making phase of the task with differential correlations between activity in layer 2/3 and layer 5 in the integration of spatial vs. object-specific information for correct task performance. Such inter-laminar processing was exploited by the interfacing of an online model which delivered stimulation to layer 5 locations in a pattern associated with successful performance thereby closing the columnar loop externally in a manner that mimicked normal processing in the same task. These unique technologies demonstrate that PFC neurons encode and process information via minicolumns which provides a closed loop form of “executive function,” hence disruption of such inter-laminar processing could form the bases for cognitive dysfunction in primate brain. PMID:23189041

  20. Rostral Prefrontal Cortex and the Focus of Attention in Prospective Memory

    PubMed Central

    Gilbert, Sam J.; Frith, Chris D.; Burgess, Paul W.

    2012-01-01

    Prospective memory (PM) denotes the function to realize intentions after a delay while being immersed in distracting ongoing (OG) activity. Here, we scrutinize the often-reported involvement of rostral prefrontal cortex (rPFC; approximating Brodmann area 10) in such situations: This region might mediate attention between external stimuli and the internally maintained intention, that is, between stimulus-oriented (SO) and stimulus-independent (SI) processing. Using functional magnetic resonance imaging (fMRI) we orthogonally crossed 1) PM versus OG activity only, with 2) SO versus SI attention. In support of the hypothesis, common regions of medial rPFC exhibited greater blood oxygen level–dependent (BOLD) signal for the contrasts of both OG task only versus PM and SO versus SI attending. However, activation related to the former contrast extended more superiorly, suggesting a functional gradient along a dorsal–ventral axis within this region. Moreover, region-of-interest analyses revealed that PM versus OG task only was associated with greater BOLD signal in left lateral rPFC, reflecting the requirement to maintain delayed intentions. Distinct aspects of this region were also transiently engaged at transitions between SO and SI conditions. These results are consistent with the hypothesis that some of the rostral prefrontal signal changes associated with PM performance reflect relative differences in SO versus SI processing. PMID:21976356

  1. Volumetric Analysis of Amygdala, Hippocampus, and Prefrontal Cortex in Therapy-Naive PTSD Participants

    PubMed Central

    Radojicic, Zoran; Milovanovic, Srdjan; Ilankovic, Andrej; Dimitrijevic, Ivan; Damjanovic, Aleksandar; Aksić, Milan; Radonjic, Vidosava

    2014-01-01

    Objective. In our study we have hypothesized that volume changes of amygdala, hippocampus, and prefrontal cortex are more pronounced in male posttraumatic stress disorder participants. Material and Methods. We have conducted a study of 79 male participants who underwent MRI brain scanning. PTSD diagnosis was confirmed in 49 participants. After MRI was taken all scans were software based volume computed and statistically processed. Results. We found that left amygdala is the most significant parameter for distinction between PTSD participants and participants without PTSD. There were no significant differences in volumes of hippocampi and prefrontal cortices. Roc curve method outlined left amygdala AUC = 0.898 (95% CI = 0.830–0.967) and right amygdala AUC = 0.882 (95% CI = 0.810–0.954) in the group of PTSD participants which makes both variables highly statistically significant. Conclusion. The present investigation revealed significant volume decrease of left amygdala in PTSD patients. Concerning important functions of the amygdala and her neuroanatomical connections with other brain structures, we need to increase number of participants to clarify the correlation between impared amygdala and possible other different brain structures in participants with PTSD. PMID:24745028

  2. Cannabinoids Potentiate Emotional Learning Plasticity in Neurons of the Medial Prefrontal Cortex through Basolateral Amygdala Inputs.

    PubMed

    Laviolette, Steven R; Grace, Anthony A

    2006-06-14

    Cannabinoids represent one of the most commonly used hallucinogenic drug classes. In addition, cannabis use is a primary risk factor for schizophrenia in susceptible individuals and can potently modulate the emotional salience of sensory stimuli. We report that systemic activation or blockade of cannabinoid CB1 receptors modulates emotional associative learning and memory formation in a subpopulation of neurons in the mammalian medial prefrontal cortex (mPFC) that receives functional input from the basolateral amygdala (BLA). Using in vivo single-unit recordings in rats, we found that a CB1 receptor agonist potentiated the response of medial prefrontal cortical neurons to olfactory cues paired previously with a footshock, whereas this associative responding was prevented by a CB1 receptor antagonist. In an olfactory fear-conditioning procedure, CB1 agonist microinfusions into the mPFC enabled behavioral responses to olfactory cues paired with normally subthreshold footshock, whereas the antagonist completely blocked emotional learning. These results are the first demonstration that cannabinoid signaling in the mPFC can modulate the magnitude of neuronal emotional learning plasticity and memory formation through functional inputs from the BLA.

  3. Altering risky decision-making: Influence of impulsivity on the neuromodulation of prefrontal cortex.

    PubMed

    Cheng, Gordon L F; Lee, Tatia M C

    2016-01-01

    The prefrontal cortex (PFC) subserves complex cognitive abilities, including risky decision-making; the modulation of this brain area is shown to alter the way people take risks. Yet, neuromodulation of the PFC in relation to risk-taking behavior remains relatively less well-studied. Moreover, the psychological variables that influence such neuromodulation remain poorly understood. To address these issues, 16 participants took part in 3 experimental sessions on separate days. They received: (i) left anodal-right cathodal transcranial direct current stimulation (tDCS); (ii) left cathodal-right anodal stimulation; or (iii) sham stimulation while they completed two risk-taking tasks. They also measured on several cognitive-affective abilities and personality traits. It was revealed that left cathodal-right anodal stimulation led to significantly reduced risk-taking under a context of haste. The reduction of risk-taking (relative to sham) correlated with state and trait impulsivity, such that the effect was larger in more impulsive individuals. For these individuals, the tDCS effect size was considered to be large (generalized partial η(2) > .17). The effect of prefrontal-neuromodulation in reducing risk-taking was influenced by baseline impulsivity, reflecting a state-dependent effect of neuromodulation on the PFC. The results of this study carry important insights into the use of neuromodulation to alter higher cognition.

  4. Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats

    PubMed Central

    2012-01-01

    Background There has been an increasing body of epidemiologic and biochemical evidence implying the role of cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the central nervous system, we performed microarray-based global gene expression profiling in the hippocampus, striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model animals for type 1 and type 2 diabetes, respectively. Results Following pathway analysis and validation of gene lists by real-time polymerase chain reaction, 30 genes from the hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2, and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase C gamma and epsilon, ABCA1 (ATP-Binding Cassette A1), CD47 (Cluster of Differentiation 47) and the RET (Rearranged During Transfection) protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to neurotransmission, lipid metabolism, neuronal development, insulin secretion, oxidative damage and DNA repair. On the other hand, no significant alterations were found in the transcriptomes of the corpus striatum in the same animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as no such alterations were found in streptozotocin-treated animals. Conclusions According to our knowledge this is the first characterization of the whole-genome expression changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently elaborated theory of type 3 diabetes. PMID:22369239

  5. Dose-Dependent Changes in Auditory Sensory Gating in the Prefrontal Cortex of the Cynomolgus Monkey

    PubMed Central

    Huang, Hui; Ya, Jinrong; Wu, Zhe; Wen, Chunmei; Zheng, Suyue; Tian, Chaoyang; Ren, Hui; Carlson, Synnöve; Yu, Hualin; Chen, Feng; Wang, Jianhong

    2016-01-01

    Background Sensory gating, often described as the ability to filter out irrelevant information that is repeated in close temporal proximity, is essential for the selection, processing, and storage of more salient information. This study aimed to test the effect of sensory gating under anesthesia in the prefrontal cortex (PFC) of monkeys following injection of bromocriptine, haloperidol, and phencyclidine (PCP). Material/Methods We used an auditory evoked potential that can be elicited by sound to examine sensory gating during treatment with haloperidol, bromocriptine, and PCP in the PFC in the cynomolgus monkey. Scalp electrodes were located in the bilateral PFC and bilateral temporal, bilateral parietal, and occipital lobes. Administration of bromocriptine (0.313 mg/kg, 0.625 mg/kg, and 1.25 mg/kg), haloperidol (0.001 mg/kg, 0.01 mg/kg, and 0.05 mg/kg), and the N-methyl-D-aspartic acid receptor antagonist PCP (0.3 mg/kg) influenced sensory gating. Results We demonstrated the following: (1) Administration of mid-dose bromocriptine disrupted sensory gating (N100) in the right temporal lobe, while neither low-dose nor high-dose bromocriptine impaired gating. (2) Low-dose haloperidol impaired gating in the right prefrontal cortex. Mid-dose haloperidol disrupted sensory gating in left occipital lobe. High-dose haloperidol had no obvious effect on sensory gating. (3) Gating was impaired by PCP in the left parietal lobe. Conclusions Our studies showed that information processing was regulated by the dopaminergic system, which might play an important role in the PFC. The dopaminergic system influenced sensory gating in a dose- and region-dependent pattern, which might modulate the different stages that receive further processing due to novel information. PMID:27218151

  6. Medial prefrontal cortex endocannabinoid system modulates baroreflex activity through CB(1) receptors.

    PubMed

    Ferreira-Junior, Nilson C; Fedoce, Alessandra G; Alves, Fernando H F; Corrêa, Fernando M A; Resstel, Leonardo B M

    2012-04-01

    Neural reflex mechanisms, such as the baroreflex, are involved in the regulation of cardiovascular system activity. Previous results from our group (Resstel LB, Correa FM. Medial prefrontal cortex NMDA receptors and nitric oxide modulate the parasympathetic component of the baroreflex. Eur J Neurosci 23: 481-488, 2006) have shown that glutamatergic synapses in the ventral portion of the medial prefrontal cortex (vMPFC) modulate baroreflex activity. Moreover, glutamatergic neurotransmission in the vMPFC can be modulated by the endocannabinoids system (eCBs), particularly the endocannabinoid anandamide, through presynaptic CB(1) receptor activation. Therefore, in the present study, we investigated eCBs receptors that are present in the vMPFC, and more specifically whether CB(1) receptors modulate baroreflex activity. We found that bilateral microinjection of the CB(1) receptor antagonist AM251 (100 or 300 pmol/200 nl) into the vMPFC increased baroreflex activity in unanesthetized rats. Moreover, bilateral microinjection of either the anandamide transporter inhibitor AM404 (100 pmol/200 nl) or the inhibitor of the enzyme fatty acid amide hydrolase that degrades anandamide, URB597 (100 pmol/200 nl), into the MPFC decreased baroreflex activity. Finally, pretreatment of the vMPFC with an ineffective dose of AM251 (10 pmol/200 nl) was able to block baroreflex effects of both AM404 and URB597. Taken together, our results support the view that the eCBs in the vMPFC is involved in the modulation of baroreflex activity through the activation of CB(1) receptors, which modulate local glutamate release. PMID:22204950

  7. Dose-Dependent Changes in Auditory Sensory Gating in the Prefrontal Cortex of the Cynomolgus Monkey.

    PubMed

    Huang, Hui; Ya, Jinrong; Wu, Zhe; Wen, Chunmei; Zheng, Suyue; Tian, Chaoyang; Ren, Hui; Carlson, Synnöve; Yu, Hualin; Chen, Feng; Wang, Jianhong

    2016-01-01

    BACKGROUND Sensory gating, often described as the ability to filter out irrelevant information that is repeated in close temporal proximity, is essential for the selection, processing, and storage of more salient information. This study aimed to test the effect of sensory gating under anesthesia in the prefrontal cortex (PFC) of monkeys following injection of bromocriptine, haloperidol, and phencyclidine (PCP). MATERIAL AND METHODS We used an auditory evoked potential that can be elicited by sound to examine sensory gating during treatment with haloperidol, bromocriptine, and PCP in the PFC in the cynomolgus monkey. Scalp electrodes were located in the bilateral PFC and bilateral temporal, bilateral parietal, and occipital lobes. Administration of bromocriptine (0.313 mg/kg, 0.625 mg/kg, and 1.25 mg/kg), haloperidol (0.001 mg/kg, 0.01 mg/kg, and 0.05 mg/kg), and the N-methyl-D-aspartic acid receptor antagonist PCP (0.3 mg/kg) influenced sensory gating. RESULTS We demonstrated the following: (1) Administration of mid-dose bromocriptine disrupted sensory gating (N100) in the right temporal lobe, while neither low-dose nor high-dose bromocriptine impaired gating. (2) Low-dose haloperidol impaired gating in the right prefrontal cortex. Mid-dose haloperidol disrupted sensory gating in left occipital lobe. High-dose haloperidol had no obvious effect on sensory gating. (3) Gating was impaired by PCP in the left parietal lobe. CONCLUSIONS Our studies showed that information processing was regulated by the dopaminergic system, which might play an important role in the PFC. The dopaminergic system influenced sensory gating in a dose- and region-dependent pattern, which might modulate the different stages that receive further processing due to novel information. PMID:27218151

  8. Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function.

    PubMed

    Elston, Guy N

    2003-11-01

    Arguably the most complex cortical functions are seated in human cognition, the how and why of which have been debated for centuries by theologians, philosophers and scientists alike. In his best-selling book, An Astonishing Hypothesis: A Scientific Search for the Soul, Francis Crick refined the view that these qualities are determined solely by cortical cells and circuitry. Put simply, cognition is nothing more, or less, than a biological function. Accepting this to be the case, it should be possible to identify the mechanisms that subserve cognitive processing. Since the pioneering studies of Lorent de Nó and Hebb, and the more recent studies of Fuster, Miller and Goldman-Rakic, to mention but a few, much attention has been focused on the role of persistent neural activity in cognitive processes. Application of modern technologies and modelling techniques has led to new hypotheses about the mechanisms of persistent activity. Here I focus on how regional variations in the pyramidal cell phenotype may determine the complexity of cortical circuitry and, in turn, influence neural activity. Data obtained from thousands of individually injected pyramidal cells in sensory, motor, association and executive cortex reveal marked differences in the numbers of putative excitatory inputs received by these cells. Pyramidal cells in prefrontal cortex have, on average, up to 23 times more dendritic spines than those in the primary visual area. I propose that without these specializations in the structure of pyramidal cells, and the circuits they form, human cognitive processing would not have evolved to its present state. I also present data from both New World and Old World monkeys that show varying degrees of complexity in the pyramidal cell phenotype in their prefrontal cortices, suggesting that cortical circuitry and, thus, cognitive styles are evolving independently in different species.

  9. Modulation of the action of stress by ethanol on dopaminergic activity in the rat prefrontal cortex

    SciTech Connect

    Hegarty, A.A.; Vogel, W.H. )

    1992-02-26

    Both stress and ethanol, when administered individually, have been shown to affect dopamine (DA) and its metabolite (DOPAC) in the central nervous system. Stress can increase DA efflux in several areas of the brain, whereas ethanol has been shown to have variable effects on extracellular DA, either increasing DA or having no apparent effect. Furthermore, ethanol has been shown in microdissection studies to antagonize the effect of stress on the dopaminergic system, indicating an anxiety-reducing property of ethanol. However, the influence of the combination of stress and ethanol on the dopaminergic system has not been studied extensively with the newer technique of microdialysis. In this study, microdialysis was again used to characterize the interaction of immobilization stress and ethanol in the prefrontal cortex. Two groups of rats received either ethanol or saline in the resting state. A third group was immobilization stress and ethanol in the prefrontal cortex. Two groups of rats received either ethanol or saline in the resting state. A third group was immobilization Saline-treated animals showed essentially no changes in levels of DA or DOPAC. Ethanol had no effect on DA overflow in resting animals and caused only a small increase in DOPAC levels. Immobilization caused marked increases in DA levels and smaller increases in DOPAC. Ethanol pretreatment strongly reduced and antagonized the stress-induced increases in DA. However, ethanol potentiated the stress-induced increase in extracellular DOPAC. The authors data add biochemical evidence to the tension-reduction hypothesis of ethanol by perhaps implicating a reduction in the DA stress response by ethanol as a contributing factor in the development of alcoholism.

  10. Altered gene expression in the dorsolateral prefrontal cortex of individuals with schizophrenia

    PubMed Central

    Guillozet-Bongaarts, A L; Hyde, T M; Dalley, R A; Hawrylycz, M J; Henry, A; Hof, P R; Hohmann, J; Jones, A R; Kuan, C L; Royall, J; Shen, E; Swanson, B; Zeng, H; Kleinman, J E

    2014-01-01

    The underlying pathology of schizophrenia (SZ) is likely as heterogeneous as its symptomatology. A variety of cortical and subcortical regions, including the prefrontal cortex, have been implicated in its pathology, and a number of genes have been identified as risk factors for disease development. We used in situ hybridization (ISH) to examine the expression of 58 genes in the dorsolateral prefrontal cortex (DLPFC, comprised of Brodmann areas 9 and 46) from 19 individuals with a premorbid diagnosis of SZ and 33 control individuals. Genes were selected based on: (1) previous identification as risk factors for SZ; (2) cell type markers or (3) laminar markers. Cell density and staining intensity were compared in the DLPFC, as well as separately in Brodmann areas 9 and 46. The expression patterns of a variety of genes, many of which are associated with the GABAergic system, were altered in SZ when compared with controls. Additional genes, including C8orf79 and NR4A2, showed alterations in cell density or staining intensity between the groups, highlighting the need for additional studies. Alterations were, with only a few exceptions, limited to Brodmann area 9, suggesting regional specificity of pathology in the DLPFC. Our results agree with previous studies on the GABAergic involvement in SZ, and suggest that areas 9 and 46 may be differentially affected in the disease. This study also highlights additional genes that may be altered in SZ, and indicates that these potentially interesting genes can be identified by ISH and high-throughput image analysis techniques. PMID:23528911

  11. Effect of fish oil intake on glucose levels in rat prefrontal cortex, as measured by microdialysis

    PubMed Central

    2013-01-01

    Background Brain glucose sensing may contribute to energy homeostasis control. The prefrontal cortex (PFC) participates in the hedonic component of feeding control. As high-fat diets may disrupt energy homeostasis, we evaluated in male Wistar rats whether intake of high-fat fish-oil diet modified cortical glucose extracellular levels and the feeding induced by intracerebroventricular glucose or PFC glucoprivation. Methods Glucose levels in PFC microdialysates were measured before and after a 30-min meal. Food intake was measured in animals receiving intracerebroventricular glucose followed, 30-min. later, by 2-deoxy-D-glucose injected into the PFC. Results The fish-oil group showed normal body weight and serum insulin while fat pads weight and glucose levels were increased. Baseline PFC glucose and 30-min. carbohydrates intake were similar between the groups. Feeding-induced PFC glucose levels increased earlier and more pronouncedly in fish-oil than in control rats. Intracerebroventricular glucose inhibited feeding consistently in the control but not in the fish-oil group. Local PFC glucoprivation with 2-DG attenuated glucose-induced hypophagia. Conclusions The present experiments have shown that, following food intake, more glucose reached the prefrontal cortex of the rats fed the high-fat fish-oil diet than of the rats fed the control diet. However, when administered directly into the lateral cerebral ventricle, glucose was able to consistently inhibit feeding only in the control rats. The findings indicate that, an impairment of glucose transport into the brain does not contribute to the disturbances induced by the high-fat fish-oil feeding. PMID:24369745

  12. A Microdialysis Study of the Medial Prefrontal Cortex of Adolescent and Adult Rats

    PubMed Central

    Staiti, Amanda M.; Morgane, Peter J.; Galler, Janina R.; Grivetti, Janice Y.; Bass, Donna C.; Mokler, David J.

    2011-01-01

    The medial prefrontal cortex (mPFC) of the rat has become a key focus of studies designed to elucidate the basis of behavior involving attention and decision making, i.e. executive functions. The adolescent mPFC is of particular interest given the role of the mPFC in impulsivity and attention, and disorders such as attentional deficit disorder. In the present study we have examined the basal extracellular concentrations of the neurotransmitters 5-hydroxytryptamine (5-HT), dopamine (DA) and norepinephrine (NE) in the ventral portion of the mPFC (vmPFC) in both adolescent (post-natal day 45–50) and adult, and male and female rats using in vivo microdialysis. We have also examined both the left and right vmPFCs given reports of laterality in function between the hemispheres. Basal extracellular concentrations of 5-HT differed significantly between male and female rats. Extracellular DA also differed significantly between male and female rats and between the left and the right vmPFC in adult males. No differences were seen in basal extracellular NE. There was a significant age difference between groups in the laterality of extracellular NE levels between right and left vmPFC. Infusion of 100 µM methamphetamine through the dialysis probe increased the extracellular concentration of all the monoamines although there were no differences between groups in methamphetamine stimulated release. The findings from this study demonstrate that there are differences in monoaminergic input to the mPFC of the rat based on age, gender and hemisphere. This work sets the neurochemical baseline for further investigations of the prefrontal cortex during development. PMID:21527264

  13. Delayed enhancement of multitasking performance: Effects of anodal transcranial direct current stimulation on the prefrontal cortex

    PubMed Central

    Hsu, Wan-Yu; Zanto, Theodore P.; Anguera, Joaquin A.; Lin, Yung-Yang; Gazzaley, Adam

    2015-01-01

    Background The dorsolateral prefrontal cortex (DLPFC) has been proposed to play an important role in neural processes that underlie multitasking performance. However, this claim is underexplored in terms of direct causal evidence. Objective The current study aimed to delineate the causal involvement of the DLPFC during multitasking by modulating neural activity with transcranial direct current stimulation (tDCS) prior to engagement in a demanding multitasking paradigm. Methods The study is a single-blind, crossover, sham-controlled experiment. Anodal tDCS or sham tDCS was applied over left DLPFC in forty-one healthy young adults (aged 18–35 years) immediately before they engaged in a 3-D video game designed to assess multitasking performance. Participants were separated into three subgroups: real-sham (i.e., real tDCS in the first session, followed by sham tDCS in the second session one hour later), sham-real (sham tDCS first session, real tDCS second session), and sham-sham (sham tDCS in both sessions). Results The real-sham group showed enhanced multitasking performance and decreased multitasking cost during the second session, compared to first session, suggesting delayed cognitive benefits of tDCS. Interestingly, performance benefits were observed only for multitasking and not on a single-task version of the game. No significant changes were found between the first and second sessions for either the sham-real or the sham-sham groups. Conclusions These results suggest a causal role of left prefrontal cortex in facilitating the simultaneous performance of more than one task, or multitasking. Moreover, these findings reveal that anodal tDCS may have delayed benefits that reflect an enhanced rate of learning. PMID:26073148

  14. Behavioral, neurochemical and molecular changes after acute deep brain stimulation of the infralimbic prefrontal cortex.

    PubMed

    Jiménez-Sánchez, Laura; Linge, Raquel; Campa, Leticia; Valdizán, Elsa M; Pazos, Ángel; Díaz, Álvaro; Adell, Albert

    2016-09-01

    Deep brain stimulation (DBS) is a treatment that has shown some efficacy in treatment-resistant depression. In particular, DBS of the subcallosal cingulate gyrus (Brodmann's area 25, Cg25) has been successfully applied to treat refractory depression. In the rat, we have demonstrated that DBS applied to infralimbic (IL) cortex elevates the levels of glutamate and monoamines in the prefrontal cortex, and requires the stimulation of cortical α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors for its antidepressant-like effects. However, the molecular targets of IL DBS are not fully known. To gain insight into these pathways, we have investigated whether IL DBS is able to reverse the behavioral, biochemical and molecular changes exhibited by the olfactory bulbectomized (OBX) rat. Our results revealed that 1 h IL DBS diminished hyperlocomotion, hyperemotionality and anhedonia, and increased social interaction shown by the OBX rats. Further, IL DBS increased prefrontal efflux of glutamate and serotonin in both sham-operated and OBX rats. With regard to molecular targets, IL DBS increases the synthesis of brain-derived neurotrophic factor (BDNF) and the GluA1 AMPA receptor subunit, and stimulates the Akt/mammalian target of rapamycin (mTOR) as well as the AMPA receptor/c-AMP response element binding (CREB) pathways. Temsirolimus, a known in vivo mTOR blocker, suppressed the antidepressant-like effect of IL DBS in naïve rats in the forced swim test, thus demonstrating for the first time that mTOR signaling is required for the antidepressant-like effects of IL DBS, which is in line with the antidepressant response of other rapid-acting antidepressant drugs.

  15. Role of NMDA receptors in noise-induced tau hyperphosphorylation in rat hippocampus and prefrontal cortex.

    PubMed

    Li, Kang; Jia, Hengchuan; She, Xiaojun; Cui, Bo; Zhang, Na; Chen, Xuewei; Xu, Chuanxiang; An, Gaihong; Ma, Qiang

    2014-05-15

    Chronic noise exposure has been associated with abnormalities in glutamate (Glu)-NMDAR signaling and tau hyperphosphorylation. However, further studies are necessary to clarify potential causal relationships. The aim of the present study was to evaluate the role of NMDA receptors in noise-induced tau hyperphosphorylation in the rat hippocampus and prefrontal cortex. Male Wistar rats were randomly divided into three groups in the present study: control with isotonic saline instillation (n=10); noise exposure (100 dB SPL white noise, 4h/d × 14d) and treated with saline (n=10); and noise exposure and treated with MK-801 (0.5mg/kg, intraperitoneally; n=10). The levels of tau phosphorylated at Ser202 and Ser396, and proteins involved in hyperphosphorylation, namely glycogen synthase kinase 3β (GSK3β) and protein phosphatase 2A (PP2A), were measured in the hippocampus and prefrontal cortex (PFC) after the last noise exposure. We showed that phosphorylated tau levels were enhanced in noise-exposed-rat hippocampus and PFC. MK-801 decreased the hyperphosphorylation of tau at Ser202 and Ser396 sites in the hippocampus and PFC. Furthermore, MK-801 reversed noise-induced GSK3β overexpression but had no significant effect on PP2A levels. This suggests that MK-801 protects against chronic-noise-induced tau hyperphosphorylation in the hippocampus and PFC. These findings demonstrate that Glu-NMDAR signaling may be involved in triggering aberrant tau hyperphosphorylation in the hippocampus and PFC after chronic noise exposure.

  16. Neuroligin-2 Expression in the Prefrontal Cortex is Involved in Attention Deficits Induced by Peripubertal Stress.

    PubMed

    Tzanoulinou, Stamatina; García-Mompó, Clara; Riccio, Orbicia; Grosse, Jocelyn; Zanoletti, Olivia; Dedousis, Panagiotis; Nacher, Juan; Sandi, Carmen

    2016-02-01

    Emerging evidence indicates that attention deficits, which are frequently observed as core symptoms of neuropsychiatric disorders, may be elicited by early life stress. However, the mechanisms mediating these stress effects remain unknown. The prefrontal cortex (PFC) has been implicated in the regulation of attention, including dysfunctions in GABAergic transmission, and it is highly sensitive to stress. Here, we investigated the involvement of neuroligin-2 (NLGN-2), a synaptic cell adhesion molecule involved in the stabilization and maturation of GABAergic synapses, in the PFC in the link between stress and attention deficits. First, we established that exposure of rats to stress during the peripubertal period impairs attention in the five-choice serial reaction time task and results in reductions in the GABA-synthesizing enzyme glutamic acid decarboxylase in different PFC subregions (ie, prelimbic (PL), infralimbic, and medial and ventral orbitofrontal (OFC) cortex) and in NLGN-2 in the PL cortex. In peripubertally stressed animals, NLGN-2 expression in the PL and OFC cortex correlated with attention measurements. Subsequently, we found that adeno-associated virus-induced rescue of NLGN-2 in the PFC reverses the stress-induced attention deficits regarding omitted trials. Therefore, our findings highlight peripuberty as a period that is highly vulnerable to stress, leading to the development of attention deficits and a dysfunction in the PFC GABAergic system and NLGN-2 expression. Furthermore, NLGN-2 is underscored as a promising target to treat stress-induced cognitive alterations, and in particular attentional deficits as manifested by augmented omissions in a continuous performance task.

  17. 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine.

    PubMed

    Roberts, A C; De Salvia, M A; Wilkinson, L S; Collins, P; Muir, J L; Everitt, B J; Robbins, T W

    1994-05-01

    The effects of 6-hydroxydopamine lesions of the prefrontal cortex in monkeys were investigated on two cognitive tests of prefrontal function, spatial delayed response, and attentional set shifting. The latter test provided a componential analysis of the Wisconsin Card Sort Test, a commonly used clinical test of frontal lobe function in man. Acquisition of a visual compound discrimination requiring a shift of attention from one dimension to another (extradimensional shift), for example, shapes to lines, was significantly improved. This enhancement was behaviorally specific in that there were no effects on acquisition of a discrimination that required the continued maintenance of an attentional set toward one particular dimension (intradimensional shift), nor any effects on a series of visual or spatial discrimination reversals that involved the repeated shifting of responding between two exemplars from the same dimension. In contrast, spatial delayed response performance was impaired, in agreement with previous results. Neurochemical measures showed a marked depletion of dopamine limited to the prefrontal cortex and a smaller loss of prefrontal noradrenaline. This was accompanied by a long-term adaptive change in the striatum such that extracellular dopamine in the caudate nucleus, as measured by in vivo microdialysis, was elevated in response to potassium stimulation as long as 18 months postsurgery. It is proposed that attentional set shifting is mediated by a balanced interaction between prefrontal and striatal dopamine, and that elevated dopamine contributes to the improvement in attentional set-shifting ability. This interpretation is consistent with the impairment in attentional set-shifting ability observed in patients with Parkinson's disease or with damage to the frontal lobes using the same test as used here for infrahuman primates.

  18. Down but not out in posterior cingulate cortex: Deactivation yet functional coupling with prefrontal cortex during demanding semantic cognition.

    PubMed

    Krieger-Redwood, Katya; Jefferies, Elizabeth; Karapanagiotidis, Theodoros; Seymour, Robert; Nunes, Adonany; Ang, Jit Wei Aaron; Majernikova, Vierra; Mollo, Giovanna; Smallwood, Jonathan

    2016-11-01

    The posterior cingulate cortex (pCC) often deactivates during complex tasks, and at rest is often only weakly correlated with regions that play a general role in the control of cognition. These observations led to the hypothesis that pCC contributes to automatic aspects of memory retrieval and cognition. Recent work, however, has suggested that the pCC may support both automatic and controlled forms of memory processing and may do so by changing its communication with regions that are important in the control of cognition across multiple domains. The current study examined these alternative views by characterising the functional coupling of the pCC in easy semantic decisions (based on strong global associations) and in harder semantic tasks (matching words on the basis of specific non-dominant features). Increasingly difficult semantic decisions led to the expected pattern of deactivation in the pCC; however, psychophysiological interaction analysis revealed that, under these conditions, the pCC exhibited greater connectivity with dorsolateral prefrontal cortex (PFC), relative to both easier semantic decisions and to a period of rest. In a second experiment using different participants, we found that functional coupling at rest between the pCC and the same region of dorsolateral PFC was stronger for participants who were more efficient at semantic tasks when assessed in a subsequent laboratory session. Thus, although overall levels of activity in the pCC are reduced during external tasks, this region may show greater coupling with executive control regions when information is retrieved from memory in a goal-directed manner. PMID:27485753

  19. Peripheral Neuropathy Induces HCN Channel Dysfunction in Pyramidal Neurons of the Medial Prefrontal Cortex.

    PubMed

    Cordeiro Matos, Steven; Zhang, Zizhen; Séguéla, Philippe

    2015-09-23

    Neuropathic pain is a debilitating condition for which the development of effective treatments has been limited by an incomplete understanding of its molecular basis. The cationic current Ih mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels plays an important role in pain by facilitating ectopic firing and hyperexcitability in DRG neurons, however little is known regarding the role of Ih in supraspinal pain pathways. The medial prefrontal cortex (mPFC), which is reported to be involved in the affective aspects of pain, exhibits high HCN channel expression. Using the spared nerve injury (SNI) model of neuropathic pain in Long-Evans rats and patch-clamp recordings in layer II/III pyramidal neurons of the contralateral mPFC, we observed a hyperpolarizing shift in the voltage-dependent activation of Ih in SNI neurons, whereas maximal Ih remained unchanged. Accordingly, SNI mPFC pyramidal neurons exhibited increased input resistance and excitability, as well as facilitated glutamatergic mGluR5-mediated persistent firing, compared with sham neurons. Moreover, intracellular application of bromo-cAMP abolished the hyperpolarizing shift in the voltage-dependent activation of Ih observed in SNI neurons, whereas protein kinase A (PKA) inhibition further promoted this shift in both SNI and sham neurons. Behaviorally, acute HCN channel blockade by local injection of ZD7288 in the mPFC of SNI rats induced a decrease in cold allodynia. These findings suggest that changes in the cAMP/PKA axis in mPFC neurons underlie alterations to HCN channel function, which can influence descending inhibition of pain pathways in neuropathic conditions. Significance statement: Recent studies investigating the role of the medial prefrontal cortex (mPFC) in neuropathic pain have led to an increased awareness of how affective and cognitive factors can influence pain perception. It is therefore imperative that we advance our understanding of the involvement of supraspinal

  20. The rostral prefrontal cortex underlies individual differences in working memory capacity: An approach from the hierarchical model of the cognitive control.

    PubMed

    Minamoto, Takehiro; Yaoi, Ken; Osaka, Mariko; Osaka, Naoyuki

    2015-10-01

    Neuroimaging and behavioral evidence has suggested that the lateral prefrontal cortex is involved in individual differences in working memory capacity (WMC). However, few studies have localized the neural structures that differentiate high and low WMC individuals, considering the functional architecture of the prefrontal cortex. The present study aimed to identify a frontal region that underlies individual differences from the perspective of the hierarchical architecture of the frontal cortex. By manipulating an episodic factor of cognitive control (control in selecting an appropriate task set according to a temporal context) and using a parametric modulation analysis, we found that both high- and low- WMC individuals have similar activation patterns in the premotor cortex (BA6, 8), caudal prefrontal cortex (BA44, 45), and frontopolar cortex (BA10, 11), but differed in the rostral part of the prefrontal cortex (BA46/47); high WMC individuals showed greater activation in the higher episodic control condition, whereas low WMC individuals showed reduced activation when episodic control was required. Similar patterns of activation were found in the right inferior parietal and middle/inferior temporal cortices. These results indicate that the rostral prefrontal cortex, which supports episodic cognitive control, possibly by sending a weighting signal toward the inferior parietal and middle/inferior temporal cortices that modulate saliency and sensory processing, underlies individual differences in WMC. Episodic control account, which considers the organization of the prefrontal cortex, fits well with previous findings of individual differences in WMC. PMID:26280275

  1. Cellular resolution optical access to brain regions in fissures: Imaging medial prefrontal cortex and grid cells in entorhinal cortex

    PubMed Central

    Low, Ryan J.; Gu, Yi; Tank, David W.

    2014-01-01

    In vivo two-photon microscopy provides the foundation for an array of powerful techniques for optically measuring and perturbing neural circuits. However, challenging tissue properties and geometry have prevented high-resolution optical access to regions situated within deep fissures. These regions include the medial prefrontal and medial entorhinal cortex (mPFC and MEC), which are of broad scientific and clinical interest. Here, we present a method for in vivo, subcellular resolution optical access to the mPFC and MEC using microprisms inserted into the fissures. We chronically imaged the mPFC and MEC in mice running on a spherical treadmill, using two-photon laser-scanning microscopy and genetically encoded calcium indicators to measure network activity. In the MEC, we imaged grid cells, a widely studied cell type essential to memory and spatial information processing. These cells exhibited spatially modulated activity during navigation in a virtual reality environment. This method should be extendable to other brain regions situated within deep fissures, and opens up these regions for study at cellular resolution in behaving animals using a rapidly expanding palette of optical tools for perturbing and measuring network structure and function. PMID:25503366

  2. The anterior cingulate cortex may enhance inhibition of lateral prefrontal cortex via m2 cholinergic receptors at dual synaptic sites.

    PubMed

    Medalla, Maria; Barbas, Helen

    2012-10-31

    The anterior cingulate cortex (ACC) and dorsolateral prefrontal cortices (DLPFC) share robust excitatory connections. However, during rapid eye movement (REM) sleep, when cortical activity is dominated by acetylcholine, the ACC is activated but DLPFC is suppressed. Using pathway tracing and electron microscopy in nonhuman primates (Macaca mulatta), we tested the hypothesis that the opposite states may reflect specific modulation by acetylcholine through strategic synaptic localization of muscarinic m2 receptors, which inhibit neurotransmitter release presynaptically, but are thought to be excitatory postsynaptically. In the ACC pathway to DLPFC (area 32 to area 9), m2 receptors predominated in ACC axon terminals and in more than half of the targeted dendrites of presumed inhibitory neurons, suggesting inhibitory cholinergic influence. In contrast, in a pathway linking the DLPFC area 46 to DLPFC area 9, postsynaptic m2 receptors predominated in targeted spines of presumed excitatory neurons, consistent with their mutual activation in working memory. These novel findings suggest that presynaptic and postsynaptic specificity of m2 cholinergic receptors may help explain the differential engagement of ACC and DLPFC areas in REM sleep for memory consolidation and synergism in awake states for cognitive control.

  3. Transcranial magnetic stimulation of medial prefrontal cortex modulates implicit attitudes towards food.

    PubMed

    Mattavelli, Giulia; Zuglian, Pablo; Dabroi, Elisa; Gaslini, Guia; Clerici, Massimo; Papagno, Costanza

    2015-06-01

    The medial prefrontal cortex (mPFC) is known to be associated with food representation and monitoring of eating behaviour, but the neural mechanisms underlying attitudes towards food are still unclear. Transcranial magnetic stimulation (TMS) was used in combination with the implicit association test (IAT) to investigate the causal role of mPFC in controlling implicit food evaluation in healthy volunteers. Participants performed an IAT on tasty and tasteless food to test TMS interaction with food evaluation. Moreover, IATs assessing self-related concepts and attitude towards flowers and insects were carried out to control whether TMS could also affect self-representation or, more in general, the cognitive mechanisms required by the IAT. TMS was applied over mPFC; the left parietal cortex (lPA) was also stimulated as control site. Results revealed that mPFC-TMS selectively affected IAT on food, increasing implicit preference for tasty than tasteless food, only in a subgroup of participants who did not show extreme explicit evaluation for tasty and tasteless food. This demonstrates that mPFC has a critical causal role in monitoring food preference and highlights the relevance of considering individual differences in studying food representation and neural mechanisms associated with eating behaviour.

  4. Adolescent earthquake survivors' show increased prefrontal cortex activation to masked earthquake images as adults.

    PubMed

    Du, Xue; Wei, Dongtao; Ganzel, Barbara L; Kim, Pilyoung; Zhang, Qinglin; Qiu, Jiang

    2015-03-01

    The great Sichuan earthquake in China on May 12, 2008 was a traumatic event to many who live near the earthquake area. However, at present, there are few studies that explore the long-term impact of the adolescent trauma exposure on adults' brain function. In the present study, we used functional magnetic resonance imaging (fMRI) to investigate the brain activation evoked by masked trauma-related stimuli (earthquake versus neutral images) in 14 adults who lived near the epicenter of the great Sichuan earthquake when they were adolescents (trauma-exposed group) and 14 adults who lived farther from the epicenter of the earthquake when they were adolescents (control group). Compared with the control group, the trauma-exposed group showed significant elevation of activation in the right anterior cingulate cortex (ACC) and the medial prefrontal cortex (MPFC) in response to masked earthquake-related images. In the trauma-exposed group, the right ACC activation was negatively correlated with the frequency of symptoms of post-traumatic stress disorder (PTSD). These findings differ markedly from the long-term effects of trauma exposure in adults. This suggests that trauma exposure during adolescence may have a unique long-term impact on ACC/MPFC function, top-down modulation of trauma-related information, and subsequent symptoms of PTSD.

  5. Different effects of low frequency stimulation to infralimbic prefrontal cortex on extinction of aversive memories.

    PubMed

    Shehadi, Kamilia; Maroun, Mouna

    2013-01-15

    Experimental extinction is a behavioral technique in which animals learn to extinguish previously learned fear responses. The infralimbic cortex (IL) of the medial prefrontal cortex has an important role in extinction of aversive memories. We have recently shown that electrical stimulation of the IL in a form of high-frequency stimulation (HFS), which induces potentiation in the IL, was associated with enhanced ability to extinguish aversive memory in two aversive paradigms, the fear conditioning and the conditioned taste aversion paradigms. These results suggest that the induction of potentiation in the IL is associated with better ability to extinguish. In the present study we examined the opposite hypothesis that inducing depression in the IL by the application of low-frequency stimulation (LFS) will result in impairments in extinction. Our results show that the application of LFS to the IL retards extinction of fear conditioning only, suggesting that the application of LFS to the IL results in impairments in extinction of conditioned fear. In the conditioned taste aversion paradigm (CTA), LFS to the IL was associated with delayed enhancement of extinction of CTA that was apparent 48 h following stimulation. These results suggest that localized electrical stimulation to the IL may be an effective method for manipulating learned fear and affecting the ability to extinguish aversive associations.

  6. [Active consciousness and the prefrontal cortex: a working-memory approach].

    PubMed

    Osaka, Naoyuki

    2007-02-01

    Biological studies of human consciousness based on recent neuroimaging experiments, i.e., functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), were reviewed from the viewpoint of different functions of consciousness. A biological hierarchy of consciousness structured in three levels, i.e., arousal, awareness and self-consciousness, was reviewed in connection with working memory. We found that the dorsolateral prefrontal cortex (PFC), anterior cingulate cortex, medial PFC, and parieto-temporal junction area play a crucial role in social cognition involving estimation of the mental states of other people. The ventrolateral PFC plays a role in language-based rehearsal/imitation in connection with a mirror system. Frontal pole and orbitofrontal areas are also likely to contribute to generation of self function, reward expectancy and internal planning of goal-directed behavior. Interestingly, we found that these various PFC and related areas strongly contribute to active consciousness based on the working memory system. Furthermore, we have shown that a theory-of-mind approach could be closely related to higher cognitive functions involved in working memory, which has a meta-recognition processes during mentalization.

  7. [Active consciousness and the prefrontal cortex: a working-memory approach].

    PubMed

    Osaka, Naoyuki

    2007-02-01

    Biological studies of human consciousness based on recent neuroimaging experiments, i.e., functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), were reviewed from the viewpoint of different functions of consciousness. A biological hierarchy of consciousness structured in three levels, i.e., arousal, awareness and self-consciousness, was reviewed in connection with working memory. We found that the dorsolateral prefrontal cortex (PFC), anterior cingulate cortex, medial PFC, and parieto-temporal junction area play a crucial role in social cognition involving estimation of the mental states of other people. The ventrolateral PFC plays a role in language-based rehearsal/imitation in connection with a mirror system. Frontal pole and orbitofrontal areas are also likely to contribute to generation of self function, reward expectancy and internal planning of goal-directed behavior. Interestingly, we found that these various PFC and related areas strongly contribute to active consciousness based on the working memory system. Furthermore, we have shown that a theory-of-mind approach could be closely related to higher cognitive functions involved in working memory, which has a meta-recognition processes during mentalization. PMID:17447465

  8. Reversible online control of habitual behavior by optogenetic perturbation of medial prefrontal cortex.

    PubMed

    Smith, Kyle S; Virkud, Arti; Deisseroth, Karl; Graybiel, Ann M

    2012-11-13

    Habits tend to form slowly but, once formed, can have great stability. We probed these temporal characteristics of habitual behaviors by intervening optogenetically in forebrain habit circuits as rats performed well-ingrained habitual runs in a T-maze. We trained rats to perform a maze habit, confirmed the habitual behavior by devaluation tests, and then, during the maze runs (ca. 3 s), we disrupted population activity in a small region in the medial prefrontal cortex, the infralimbic cortex. In accordance with evidence that this region is necessary for the expression of habits, we found that this cortical disruption blocked habitual behavior. Notably, however, this blockade of habitual performance occurred on line, within an average of three trials (ca. 9 s of inhibition), and as soon as during the first trial (<3 s). During subsequent weeks of training, the rats acquired a new behavioral pattern. When we again imposed the same cortical perturbation, the rats regained the suppressed maze-running that typified the original habit, and, simultaneously, the more recently acquired habit was blocked. These online changes occurred within an average of two trials (ca. 6 s of infralimbic inhibition). Measured changes in generalized performance ability and motivation to consume reward were unaffected. This immediate toggling between breaking old habits and returning to them demonstrates that even semiautomatic behaviors are under cortical control and that this control occurs online, second by second. These temporal characteristics define a framework for uncovering cellular transitions between fixed and flexible behaviors, and corresponding disturbances in pathologies. PMID:23112197

  9. Pyramidal Cells in Prefrontal Cortex of Primates: Marked Differences in Neuronal Structure Among Species

    PubMed Central

    Elston, Guy N.; Benavides-Piccione, Ruth; Elston, Alejandra; Manger, Paul R.; DeFelipe, Javier

    2010-01-01

    The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates. PMID:21347276

  10. Activation of dorsolateral prefrontal cortex in a dual neuropsychological screening test: An fMRI approach

    PubMed Central

    2012-01-01

    Background The Kana Pick-out Test (KPT), which uses Kana or Japanese symbols that represent syllables, requires parallel processing of discrete (pick-out) and continuous (reading) dual tasks. As a dual task, the KPT is thought to test working memory and executive function, particularly in the prefrontal cortex (PFC), and is widely used in Japan as a clinical screen for dementia. Nevertheless, there has been little neurological investigation into PFC activity during this test. Methods We used functional magnetic resonance imaging (fMRI) to evaluate changes in the blood oxygenation level-dependent (BOLD) signal in young healthy adults during performance of a computerized KPT dual task (comprised of reading comprehension and picking out vowels) and compared it to its single task components (reading or vowel pick-out alone). Results Behavioral performance of the KPT degraded compared to its single task components. Performance of the KPT markedly increased BOLD signal intensity in the PFC, and also activated sensorimotor, parietal association, and visual cortex areas. In conjunction analyses, bilateral BOLD signal in the dorsolateral PFC (Brodmann's areas 45, 46) was present only in the KPT. Conclusions Our results support the central bottleneck theory and suggest that the dorsolateral PFC is an important mediator of neural activity for both short-term storage and executive processes. Quantitative evaluation of the KPT with fMRI in healthy adults is the first step towards understanding the effects of aging or cognitive impairment on KPT performance. PMID:22640773

  11. Perceptual decision-making difficulty modulates feedforward effective connectivity to the dorsolateral prefrontal cortex

    PubMed Central

    Lamichhane, Bidhan; Dhamala, Mukesh

    2015-01-01

    Diverse cortical structures are known to coordinate activity as a network in relaying and processing of visual information to discriminate visual objects. However, how this discrimination is achieved is still largely unknown. To contribute to answering this question, we used face-house categorization tasks with three levels of noise in face and house images in functional magnetic resonance imaging (fMRI) experiments involving thirty-three participants. The behavioral performance error and response time (RT) were correlated with noise in face-house images. We then built dynamical causal models (DCM) of fMRI blood-oxygenation level dependent (BOLD) signals from the face and house category-specific regions in ventral temporal (VT) cortex, the fusiform face area (FFA) and parahippocampal place area (PPA), and the dorsolateral prefrontal cortex (dlPFC). We found a strong feed-forward intrinsic connectivity pattern from FFA and PPA to dlPFC. Importantly, the feed-forward connectivity to dlPFC was significantly modulated by the perception of both faces and houses. The dlPFC-BOLD activity, the connectivity from FFA and PPA to the dlPFC all increased with noise level. These results suggest that the FFA-PPA-dlPFC network plays an important role for relaying and integrating competing sensory information to arrive at perceptual decisions. PMID:26441596

  12. Progression of Cellular Adaptations in Medial Prefrontal and Orbitofrontal Cortex in Response to Repeated Amphetamine

    PubMed Central

    Homayoun, Houman; Moghaddam, Bita

    2010-01-01

    Recent theories on addiction implicate adaptive changes in prefrontal cortex (PFC) neurons in reinforcing and psychotomimetic properties of psychostimulants, yet little is known about how neuronal responses to these drugs change over time. Here we describe electrophysiological evidence for a progressive and sustained change in the response of PFC neurons to amphetamine during repeated exposure. In spontaneously behaving rats and in rats engaged in an instrumental responding task, we followed the activity of medial PFC (mPFC) and orbitofrontal cortex (OFC) neurons during daily exposure to amphetamine and after a post-withdrawal challenge. Repeated amphetamine increased the number of responsive neurons and the magnitude of responses and modified spontaneous burst patterns. These changes were apparent after a few exposures to amphetamine, were amplified after withdrawal, and were region specific in that repeated amphetamine increasingly produced inhibitory responses in mPFC and excitatory responses in OFC. In behaviorally engaged animals, the gradual enhancement in mPFC inhibition and OFC overactivation correlated with a progressive impairment of instrumental responding. Furthermore, these changes were evident predominately in neurons that displayed phasic responses during task-related events. These rapid-onset and sustained cellular adaptations suggest that even limited exposure to psychostimulants may reduce the influence of mPFC neurons on behavior while at the same time exaggerating information encoded by OFC neurons. PMID:16885216

  13. Comparison of abstract decision encoding in the monkey prefrontal cortex, the presupplementary, and cingulate motor areas.

    PubMed

    Merten, Katharina; Nieder, Andreas

    2013-07-01

    Deciding between alternatives is a critical element of flexible behavior. Perceptual decisions have been studied extensively in an action-based framework. Recently, we have shown that abstract perceptual decisions are encoded in prefrontal cortex (PFC) neurons (Merten and Nieder 2012). However, the role of other frontal cortex areas remained elusive. Here, we trained monkeys to perform a rule-based visual detection task that disentangled abstract perceptual decisions from motor preparation. We recorded the single-neuron activity in the presupplementary (preSMA) and the rostral part of the cingulate motor area (CMAr) and compared it to the results previously found in the PFC. Neurons in both areas traditionally identified with motor planning process the abstract decision independently of any motor preparatory activity by similar mechanisms as the PFC. A larger proportion of decision neurons and a higher strength of decision encoding was found in the preSMA than in the PFC. Neurons in both areas reliably predicted the monkeys' decisions. The fraction of CMAr decision neurons and their strength of the decision encoding were comparable to the PFC. Our findings highlight the role of both preSMA and CMAr in abstract cognitive processing and emphasize that both frontal areas encode decisions prior to the preparation of a motor output.

  14. Right ventromedial prefrontal cortex: a neuroanatomical correlate of impulse control in boys

    PubMed Central

    Bechara, Antoine; Tranel, Daniel; Anderson, Steve W.; Richman, Lynn; Nopoulos, Peg

    2009-01-01

    Emerging data on the neural mechanisms of impulse control highlight brain regions involved in emotion and decision making, including the ventromedial prefrontal cortex (vmPFC), anterior cingulate cortex (ACC) and amygdala. Variation in the development of these regions may influence one's propensity for impulsivity and, by extension, one's vulnerability to disorders involving low impulse control (e.g. substance abuse). Here we test the hypothesis that lower impulse control is associated with structural differences in these regions, particularly on the right side, in 61 normal healthy boys aged 7–17. We assessed parent- and teacher-reported behavioral ratings of impulse control (motor impulsivity and non-planning behavior) in relation to vmPFC, ACC and amygdala volume, measured using structural magnetic resonance imaging and FreeSurfer. A regression analysis showed that the right vmPFC was a significant predictor of impulse control ratings. Follow-up tests showed (i) a significant correlation between low impulse control and decreased right vmPFC volume, especially the medial sector of the vmPFC and (ii) significantly lower right vmPFC volume in a subgroup of 20 impulsive boys relative to 20 non-impulsive boys. These results are consistent with the notion that right vmPFC provides a neuroanatomical correlate of the normal variance in impulse control observed in boys. PMID:19015086

  15. Involvement of the medial prefrontal cortex in two alternation tasks using different environments.

    PubMed

    Le Marec, N; Ethier, K; Rompré, P P; Godbout, R

    2002-01-01

    Spatial alternation performance in rats is usually evaluated with the T-Maze. The first aim of this study was to analyze the effect of a selective lesion of medial prefrontal cortex (mPFC) on performance in a T-maze. Second, we wanted to validate a new test using alternation in a water maze (AWM). The mPFC of 21 male Sprague-Dawley rats was lesioned bilaterally using in situ microinjection of ibotenic acid. Thirteen control rats received injections of the vehicle only. Results show that mPFC lesioned rats were significantly impaired in the T-Maze as well as in the AWM compared to controls. These results validate the AWM as a frontal cortex dependent task probing working memory and/or behavioral flexibility. We suggest that the AWM may be more powerful than the T-maze as an investigational tool, given that is can be easily compared to other water maze tasks that evaluate other (nonfrontal) cognitive modules. PMID:12030483

  16. Recurrent Moderate Hypoglycemia Suppresses Brain-Derived Neurotrophic Factor Expression in the Prefrontal Cortex and Impairs Sensorimotor Gating in the Posthypoglycemic Period in Young Rats.

    PubMed

    Rao, Raghavendra; Ennis, Kathleen; Mitchell, Eugena P; Tran, Phu V; Gewirtz, Jonathan C

    2016-01-01

    Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, 3-week-old male rats were subjected to 5 episodes of moderate hypoglycemia (blood glucose concentration, approx. 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-Jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase receptor B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing the prepulse inhibition of the acoustic startle reflex on postnatal day 29 and 2 weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF/TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, the prepulse inhibition had recovered at 2 weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the posthypoglycemic period. PMID:26820887

  17. Anxiety Evokes Hypofrontality and Disrupts Rule-Relevant Encoding by Dorsomedial Prefrontal Cortex Neurons

    PubMed Central

    Park, Junchol; Wood, Jesse; Bondi, Corina; Del Arco, Alberto

    2016-01-01

    Anxiety is a debilitating symptom of most psychiatric disorders, including major depression, post-traumatic stress disorder, schizophrenia, and addiction. A detrimental aspect of anxiety is disruption of prefrontal cortex (PFC)-mediated executive functions, such as flexible decision making. Here we sought to understand how anxiety modulates PFC neuronal encoding of flexible shifting between behavioral strategies. We used a clinically substantiated anxiogenic treatment to induce sustained anxiety in rats and recorded from dorsomedial PFC (dmPFC) and orbitofrontal cortex (OFC) neurons while they were freely moving in a home cage and while they performed a PFC-dependent task that required flexible switches between rules in two distinct perceptual dimensions. Anxiety elicited a sustained background “hypofrontality” in dmPFC and OFC by reducing the firing rate of spontaneously active neuronal subpopulations. During task performance, the impact of anxiety was subtle, but, consistent with human data, behavior was selectively impaired when previously correct conditions were presented as conflicting choices. This impairment was associated with reduced recruitment of dmPFC neurons that selectively represented task rules at the time of action. OFC rule representation was not affected by anxiety. These data indicate that a neural substrate of the decision-making deficits in anxiety is diminished dmPFC neuronal encoding of task rules during conflict-related actions. Given the translational relevance of the model used here, the data provide a neuronal encoding mechanism for how anxiety biases decision making when the choice involves overcoming a conflict. They also demonstrate that PFC encoding of actions, as opposed to cues or outcome, is especially vulnerable to anxiety. SIGNIFICANCE STATEMENT A debilitating aspect of anxiety is its impact on decision making and flexible control of behavior. These cognitive constructs depend on proper functioning of the prefrontal cortex

  18. A Randomized Placebo-Controlled Trial of Targeted Prefrontal Cortex Modulation with Bilateral tDCS in Patients with Crack-Cocaine Dependence

    PubMed Central

    Batista, Edson Kruger; Klauss, Jaisa; Fregni, Felipe; Nitsche, Michael A.

    2015-01-01

    Background: Transcranial direct current stimulation over the dorsolateral prefrontal cortex has been shown to be clinically useful in the treatment of drug addiction. Methods: We conducted a double-blind randomized clinical trial aiming to assess the effects of bilateral dorsolateral prefrontal cortex transcranial direct current stimulation (left cathodal/right anodal) on crack-cocaine addiction. We defined craving as the primary outcome, and other clinical measurements, including depressive and anxiety symtoms, and quality of life, as secondary outcomes. Seventeen male crack-cocaine users (mean age 30.4±9.8 SD) were randomized to receive 5 sessions of active transcranial direct current stimulation (2 mA, 35cm2, for 20 minutes), every other day, and 19 males (mean age 30.3±8.4 SD) to receive sham-transcranial direct current stimulation (placebo) as control group. Results: Craving scores were significantly reduced in the transcranial direct current stimulation group after treatment when compared with sham-transcranial direct current stimulation (P=.028) and baseline values (P=.003), and decreased linearly over 4 weeks (before, during, and after treatment) in the transcranial direct current stimulation group only (P=.047). Changes of anxiety scores towards increase in the sham-transcranial direct current stimulation and decrease in the transcranial direct current stimulation group (P=.03), and of the overall perception of quality of life (P=.031) and of health (P=.048) towards decrease in the sham-transcranial direct current stimulation group and increas