Science.gov

Sample records for improving sewage degradation

  1. The use of biochar-amended composting to improve the humification and degradation of sewage sludge.

    PubMed

    Zhang, Jining; Lü, Fan; Shao, Liming; He, Pinjing

    2014-09-01

    Wood biochar (6%, 12% and 18% of fresh sludge weight) adding to a sludge-and-straw composting system was investigated to assess the potential of biochar as a composting amendment. Organic degradation efficiency, temporal humification profile of the water-extractable organic fraction and solid organic matter, through spectroscopic, microscopic and elementary analysis were monitored. Fluorescent excitation and emission matrix indicated that concentrations of aqueous fulvic-acid-like and humic-acid-like compounds were, respectively, 13-26% and 15-30% higher in the biochar-amended treatments, than those in the control without biochar-amended. On the first day of sludge aerobic incubation, the presence of biochar resulted in increased oxygen uptake rates of 21-37% due to its higher nano-porosity and surface area. SEM indicated that, in the biochar-amended sludge, the dense microstructure on the sludge surface disintegrated into fragments with organic fraction degraded and water lost. Results indicated that 12-18%w/w addition of wood biochar to sludge composting was recommended.

  2. Identification of Comamonas testosteroni as an androgen degrader in sewage

    PubMed Central

    Chen, Yi-Lung; Wang, Chia-Hsiang; Yang, Fu-Chun; Ismail, Wael; Wang, Po-Hsiang; Shih, Chao-Jen; Wu, Yu-Ching; Chiang, Yin-Ru

    2016-01-01

    Numerous studies have reported the masculinization of freshwater wildlife exposed to androgens in polluted rivers. Microbial degradation is a crucial mechanism for eliminating steroid hormones from contaminated ecosystems. The aerobic degradation of testosterone was observed in various bacterial isolates. However, the ecophysiological relevance of androgen-degrading microorganisms in the environment is unclear. Here, we investigated the biochemical mechanisms and corresponding microorganisms of androgen degradation in aerobic sewage. Sewage samples collected from the Dihua Sewage Treatment Plant (Taipei, Taiwan) were aerobically incubated with testosterone (1 mM). Androgen metabolite analysis revealed that bacteria adopt the 9, 10-seco pathway to degrade testosterone. A metagenomic analysis indicated the apparent enrichment of Comamonas spp. (mainly C. testosteroni) and Pseudomonas spp. in sewage incubated with testosterone. We used the degenerate primers derived from the meta-cleavage dioxygenase gene (tesB) of various proteobacteria to track this essential catabolic gene in the sewage. The amplified sequences showed the highest similarity (87–96%) to tesB of C. testosteroni. Using quantitative PCR, we detected a remarkable increase of the 16S rRNA and catabolic genes of C. testosteroni in the testosterone-treated sewage. Together, our data suggest that C. testosteroni, the model microorganism for aerobic testosterone degradation, plays a role in androgen biodegradation in aerobic sewage. PMID:27734937

  3. Modification to degradation of hexazinone in forest soils amended with sewage sludge.

    PubMed

    Wang, Huili; Wang, Chengjun; Chen, Fan; Ma, Meiping; Lin, Zhenkun; Wang, Wenwei; Xu, Zhengti; Wang, Xuedong

    2012-01-15

    Influences of one sewage sludge on degradation of hexazinone and formation of its major metabolites were investigated in four forest soils (A, B, C and D), collected in Zhejiang Province, China. In non-amended forest soils, the degradation half-life of hexazinone was 21.4, 30.4, 19.4 and 32.8 days in forest soil A, B, C and D, respectively. Degradation could start in soil A and C without lag period because the two soils had been contaminated by this herbicide for a long time, possibly leading to completion of acclimation period of hexazinone-degrading bacteria. In forest soils amended with sewage sludge, the degradation rate constant increased by 17.3% in soil A, 48.2% in soil B, 8.1% in soil C and 51.6% in soil D, respectively. The higher degradation rates (soil A and C) in non-amended soils accord with the lower rate increase in sewage sludge-amended soils. Under non-sterile conditions, biological mechanism accounted for 51.8-62.4% of hexazinone degradation in four soils. Under sterile conditions, the four soils had the similar chemical degradation capacity for hexazinone. In non-amended soil B, only one metabolite (B) was detected, while two metabolites (B and C) were found in sewage sludge-amended soil B. Similarly situated in agricultural soils, N-demethylation at 6-position of triazine ring, hydroxylation at the 4-positon of cyclohexyl group, and removal of the dimethylamino group with formation of a carbonyl group at 6-position of triazine ring appear to be the principal mechanism involved in hexazinone degradation in sewage sludge-amended forest soils. These data will improve understanding of the actual pollution risk as a result of forest soil fertilization with sewage sludge.

  4. Simulation of substrate degradation in composting of sewage sludge

    SciTech Connect

    Zhang Jun; Gao Ding; Chen Tongbin; Zheng Guodi; Chen Jun; Ma Chuang; Guo Songlin; Du Wei

    2010-10-15

    To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k{sub 20} (the first-order rate constant at 20 {sup o}C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k{sub 20}, k{sub 20s} (first-order rate coefficient of slow fraction of BVS at 20 {sup o}C) of the sewage sludge were estimated as 0.082 and 0.015 d{sup -1}, respectively.

  5. Simulation of substrate degradation in composting of sewage sludge.

    PubMed

    Zhang, Jun; Gao, Ding; Chen, Tong-Bin; Zheng, Guo-Di; Chen, Jun; Ma, Chuang; Guo, Song-Lin; Du, Wei

    2010-10-01

    To simulate the substrate degradation kinetics of the composting process, this paper develops a mathematical model with a first-order reaction assumption and heat/mass balance equations. A pilot-scale composting test with a mixture of sewage sludge and wheat straw was conducted in an insulated reactor. The BVS (biodegradable volatile solids) degradation process, matrix mass, MC (moisture content), DM (dry matter) and VS (volatile solid) were simulated numerically by the model and experimental data. The numerical simulation offered a method for simulating k (the first-order rate constant) and estimating k(20) (the first-order rate constant at 20 degrees C). After comparison with experimental values, the relative error of the simulation value of the mass of the compost at maturity was 0.22%, MC 2.9%, DM 4.9% and VS 5.2%, which mean that the simulation is a good fit. The k of sewage sludge was simulated, and k(20), k(20s) (first-order rate coefficient of slow fraction of BVS at 20 degrees C) of the sewage sludge were estimated as 0.082 and 0.015 d(-1), respectively.

  6. Modeling organic micro pollutant degradation kinetics during sewage sludge composting.

    PubMed

    Sadef, Yumna; Poulsen, Tjalfe Gorm; Bester, Kai

    2014-11-01

    Degradation of 13 different organic micro-pollutants in sewage sludge during aerobic composting at 5 different temperatures over a 52 day period was investigated. Adequacy of two kinetic models: a single first order, and a dual first order expression (using an early (first 7 days) and a late-time (last 45 days) degradation coefficient), for describing micro-pollutant degradation, and kinetic constant dependency on composting temperature were evaluated. The results showed that both models provide relatively good descriptions of the degradation process, with the dual first order model being most accurate. The single first order degradation coefficient was 0.025 d(-1) on average across all compounds and temperatures. At early times, degradation was about three times faster than at later times. Average values of the early and late time degradation coefficients for the dual first order model were 0.066 d(-1) and 0.022 d(-1), respectively. On average 30% of the initial micro-pollutant mass present in the compost was degraded rapidly during the early stages of the composting process. Single first order and late time dual first order kinetic constants were strongly dependent on composting temperature with maximum values at temperatures of 35-65°C. In contrast the early time degradation coefficients were relatively independent of composting temperature.

  7. [Monitoring the sewage degradation by analyzing optic fiber SPR spectrum character].

    PubMed

    Zhang, Xiao-Li; Liang, Da-Kai; Zeng, Jie; Zhao, Zhi-Yuan; Zeng, Jian-Min

    2010-02-01

    The working principle of the optic fiber SPR sensor was discussed in the present paper at first. The feasibility of using it to monitor the degradation process of the environmental sewage represented by the methyl orange was studied. Finally, the optic fiber SPR sensor was adopted to monitor the change in degradation concentration represented by the original methyl orange solution on the base of 50 mL initial concentration 30 mg x L(-1), and the optic fiber SPR spectrum character of degradation process was analyzed in detail. Meanwhile the UV spectrophotometer was used to measure the change in concentration in the course of the degradation. The measurement data were analyzed and compared at large. The research work indicates that both the methods have consistent results, as the degradation time increases, the absorbance and concentration of the environmental sewage represented by the methyl orange solution decrease by and by, and the resonant wavelength of the optic fiber SPR sensor blue shifts step by step, as compared to the original standardization methyl orange solution resonant spectrum. It was shown that the methyl orange solution was degraded, and the rate of degradation was up to about 73 percent within two hours. The comparative results illustrate that it is feasible to use the optic fiber SPR sensor to monitor the environmental sewage degradation. The research result not only provides a new monitoring method for the degradation process of the environmental sewage, but also promotes the technique of the SPR sensor combined to the environment monitor by a long way.

  8. Improving the growth of Rubrivivax gelatinosus cultivated in sewage environment.

    PubMed

    Wu, Pan; Li, Jian-zheng; Wang, Yan-ling; Tong, Qing-yue; Liu, Xian-shu; Du, Cong; Li, Ning

    2015-01-01

    Rubrivivax gelatinosus cultivated in wastewater environment can combine the biomass resource recycling for generating chemicals with sewage purification. However, low biomass accumulation restricts the exertion of this advantage. Thus, this paper investigated Fe(3+) advancement for biomass production in starch wastewater under light-anaerobic condition. Results showed that addition of Fe(3+) was successful in enhancing biomass production, which certainly improved the feasibility of biomass recycling in R. gelatinosus starch wastewater treatment. With optimal Fe(3+) dosage (20 mg/L), biomass production reached 4,060 mg/L, which was 1.63 times that of control group. Amylase activity was improved by 48 %. Both COD removal and starch removal reached 90 %. Hydraulic retention time was shortened by 25 %. Proper Fe(3+) dosage enhanced biomass production, but excess Fe(3+) was harmful for biomass accumulation.

  9. Adsorption and Fenton-like degradation of naphthalene dye intermediate on sewage sludge derived porous carbon.

    PubMed

    Gu, Lin; Zhu, Nanwen; Guo, Huaqing; Huang, Shouqiang; Lou, Ziyang; Yuan, Haiping

    2013-02-15

    A sewage sludge derived porous carbon (SC), which was prepared by physicochemical activation and carbonization (600°C), was applied for the adsorption and degradation of 1-diazo-2-naphthol-4-sulfonic acid (1,2,4-Acid) in the presence of H(2)O(2) and the performance was compared to that of pure Fe(3)O(4) magnetic nanoparticles (MNPs). The prepared SC showed mesoporous structure with magnetic property, which made it favorable for solid-liquid separation application. Further experiments revealed that SC had a higher adsorption capacity and degradation efficiency of 1,2,4-Acid than bare Fe(3)O(4). The Langmuir and Freundlich model fitted the isotherm data and illustrated that the equilibrium adsorption amount of 1,2,4-Acid onto SC (95.1 mg g(-1)) was quadruple as large as that on Fe(3)O(4) (26.4 mg g(-1)). The subsequent degradation experiments were conducted at conditions (pH 5.0 in the presence of 15 mM H(2)O(2)) with regard to 1,2,4-Acid degradation efficiency and metal ions leach. The 120 min's treatment in SC/H(2)O(2) system achieved 94% of 1,2,4-Acid (from 150 mg L(-1) after adsorption equilibrium to 9 mg L(-1)) and 48.1% TOC reduction, far higher than the efficiency of 46% and 24.3% by using Fe(3)O(4) MNPs. Further analysis evidenced the co-catalytic effect of iron, carbon, silicon and aluminum, which existed in large quantities in sludge derived SC. The carbonaceous phase along with silica contributes to an increase in the dispersion of catalytic centers and an adsorbent to concentrate organic pollutant whereas the iron oxide as well as alumina provides the catalytic centers for a Haber-Weiss initiated reactions.

  10. Re-inoculation strategies enhance the degradation of emerging pollutants in fungal bioaugmentation of sewage sludge.

    PubMed

    Rodríguez-Rodríguez, Carlos E; Lucas, Daniel; Barón, Enrique; Gago-Ferrero, Pablo; Molins-Delgado, Daniel; Rodríguez-Mozaz, Sara; Eljarrat, Ethel; Díaz-Cruz, M Silvia; Barceló, Damià; Caminal, Glòria; Vicent, Teresa

    2014-09-01

    The use of Trametes versicolor has been partially successful in the removal of some pharmaceuticals from sewage sludge in laboratory-scale biopile systems. The application of two strategies for the re-inoculation of biomass was assessed during the fungal bioaugmentation of non-sterile sludge (42-d treatment) as an approach to improve the elimination of pharmaceuticals and other groups of emerging pollutants. Globally, the re-inoculation of biopiles with blended mycelium exerted a major effect on the removal of pharmaceuticals (86%), brominated-flame-retardants (81%) and UV filters (80%) with respect to the re-inoculation with additional lignocellulosic substrate colonized by the fungus (69-67-22%). The performance was better than that of the analogous non-re-inoculated systems that were assayed previously for the removal of pharmaceuticals. The results demonstrate the ability of T. versicolor to remove a wide spectrum of emerging micropollutants under non-sterile conditions, while re-inoculation appears to be a useful step to improve the fungal treatment of sludge.

  11. Development of an analytical procedure to study linear alkylbenzenesulphonate (LAS) degradation in sewage sludge-amended soils.

    PubMed

    Comellas, L; Portillo, J L; Vaquero, M T

    1993-12-24

    A procedure for determining linear alkylbenzenesulphonates (LASs) in sewage sludge and amended soils has been developed. Extraction by sample treatment with 0.5 M potassium hydroxide in methanol and reflux was compared with a previously described extraction procedure in Soxhlet with methanol and solid sodium hydroxide in the sample. Repeatability results were similar with savings in extraction time, solvents and evaporation time. A clean-up method involving a C18 cartridge has been developed. Analytes were quantified by a reversed-phase HPLC method with UV and fluorescence detectors. Recoveries obtained were higher than 84%. The standing procedure was applied to high doses of sewage sludge-amended soils (15%) with increasing quantities of added LASs. Degradation data for a 116-day period are presented.

  12. Durability Improvements Through Degradation Mechanism Studies

    SciTech Connect

    Borup, Rodney L.; Mukundan, Rangachary; Spernjak, Dusan; Baker, Andrew M.; Lujan, Roger W.; Langlois, David Alan; Ahluwalia, Rajesh; Papadia, D. D.; Weber, Adam Z.; Kusoglu, Ahmet; Shi, Shouwnen; More, K. L.; Grot, Steve

    2015-08-03

    The durability of polymer electrolyte membrane (PEM) fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. By investigating cell component degradation modes and defining the fundamental degradation mechanisms of components and component interactions, new materials can be designed to improve durability. To achieve a deeper understanding of PEM fuel cell durability and component degradation mechanisms, we utilize a multi-institutional and multi-disciplinary team with significant experience investigating these phenomena.

  13. Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment.

    PubMed

    Serrano, A; Siles, J A; Martín, M A; Chica, A F; Estévez-Pastor, F S; Toro-Baptista, E

    2016-07-15

    Sewage sludge generated in the activated sludge process is a polluting waste that must be treated adequately to avoid important environmental impacts. Traditional management methods, such as landfill disposal or incineration, are being ruled out due to the high content in heavy metal, pathogens, micropolluting compounds of the sewage sludge and the lack of use of resources. Anaerobic digestion could be an interesting treatment, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A microwave pre-treatment at pilot scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. The operational variables of microwave pre-treatment (power and specific energy applied) were optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) under different pre-treatment conditions. According to the variation in the sCOD and TN concentration, the optimal operation variables of the pre-treatment were fixed at 20,000 J/g TS and 700 W. A subsequent anaerobic digestion test was carried out with raw and pre-treated sewage sludge under different conditions (20,000 J/g TS and 700 W; 20,000 J/g TS and 400 W; and 30,000 J/g TS and 400 W). Although stability was maintained throughout the process, the enhancement in the total methane yield was not high (up to 17%). Nevertheless, very promising improvements were determined for the kinetics of the process, where the rG and the OLR increased by 43% and 39%, respectively, after carrying out a pre-treatment at 20,000 J/g TS and 700 W.

  14. Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge.

    PubMed

    Martín, María Ángeles; González, Inmaculada; Serrano, Antonio; Siles, José Ángel

    2015-01-01

    Sewage sludge is a polluting and hazardous waste generated in wastewater treatment plants with severe management problems. The high content in heavy metal, pathogens and micropolluting compounds limit the implementation of the available management methods. Anaerobic digestion could be an interesting treatment method, but must be improved since the biomethanisation of sewage sludge entails low biodegradability and low methane production. A sonication pre-treatment at lab scale is proposed to increase the organic matter solubilisation of sewage sludge and enhance the biomethanisation yield. Sonication time was optimised by analysing the physicochemical characteristics of sewage sludge (both total and soluble fraction) at different pre-treatment times. The pre-treatment time was fixed at 45 min under the study conditions given that the solubilisation of organic matter did not increase significantly at lower sonication times, whereas the concentration of total nitrogen increased markedly at higher times. The volatile fatty acids generation rate was also evaluated for the pre-treatment conditions. The anaerobic digestion of untreated and pre-treated sewage sludge was subsequently compared and promising results were obtained for loads of 1.0 g VS/L (VS, total volatile solids). The methane yield coefficient increased from 88 to 172 mLSTP/g VS (STP, 0 °C, 1 atm) after the pre-treatment, while biodegradability was found to be around 81% (in VS). Moreover, the allowed organic loading rate and methane production rate observed for the sewage sludge reached values of up to 4.1 kg VS/m(3)·d and 1270 LSTP/m(3)·d, respectively.

  15. Methanogenic degradation of toilet-paper cellulose upon sewage treatment in an anaerobic membrane bioreactor at room temperature.

    PubMed

    Chen, Rong; Nie, Yulun; Kato, Hiroyuki; Wu, Jiang; Utashiro, Tetsuya; Lu, Jianbo; Yue, Shangchao; Jiang, Hongyu; Zhang, Lu; Li, Yu-You

    2017-03-01

    Toilet-paper cellulose with rich but refractory carbon sources, are the main insoluble COD fractions in sewage. An anaerobic membrane bioreactor (AnMBR) was configured for sewage treatment at room temperature and its performance on methanogenic degradation of toilet paper was highlighted. The results showed, high organic removal (95%), high methane conversion (90%) and low sludge yield (0.08gVSS/gCOD) were achieved in the AnMBR. Toilet-paper cellulose was fully biodegraded without accumulation in the mixed liquor and membrane cake layer. Bioconversion efficiency of toilet paper approached 100% under a high organic loading rate (OLR) of 2.02gCOD/L/d and it could provide around 26% of total methane generation at most of OLRs. Long sludge retention time and co-digestion of insoluble/soluble COD fractions achieving mutualism of functional microorganisms, contributed to biodegradation of toilet-paper cellulose. Therefore the AnMBR successfully implemented simultaneously methanogenic bioconversion of toilet-paper cellulose and soluble COD in sewage at room temperature.

  16. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge.

    PubMed

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination.

  17. Improving the phytoremediation of heavy metals contaminated soil by use of sewage sludge

    PubMed Central

    Placek, Agnieszka; Grobelak, Anna; Kacprzak, Malgorzata

    2016-01-01

    ABSTRACT Sewage sludge, in particular from the food industry, is characterized by fertilizing properties, due to the high content of organic matter and nutrients. The application of sewage sludge causes an improvement of soil parameters as well as increase in cation exchange capacity, and thus stronger binding of cations in the soil environment, which involves the immobilization of nutrients and greater resistance to contamination. In a field experiment sewage sludge has been used as an additive to the soil supporting the phytoremediation process of land contaminated with heavy metals (Cd, Zn, and Pb) using trees species: Scots pine (Pinus silvestris L.), Norway spruce (Picea abies L.), and oak (Quercus robur L.). The aim of the research was to determine how the application of sewage sludge into the soil surface improves the phytoremediation process. The conducted field experiment demonstrated that selected trees like Scots pine and Norway spruce, because of its excellent adaptability, can be used in the remediation of soil. Oak should not be used in the phytoremediation process of soils contaminated with high concentrations of trace elements in the soil, because a significant amount of heavy metals was accumulated in the leaves of oak causing a risk of recontamination. PMID:26368503

  18. Improvement of the sediment ecosystem following diversion of an intertidal sewage outfall at the Fraser river estuary, Canada, with emphasis on Corophium salmonis (Amphipoda).

    PubMed

    Arvai, J L; Levings, C D; Harrison, P J; Neill, W E

    2002-06-01

    Primary treated sewage effluent from the city of Vancouver, Canada was deposited directly onto the intertidal ecosystem of Sturgeon bank, Fraser river estuary between 1962 and 1988. In response to the degraded sediment conditions an azoic zone developed near the discharge outfall. Effluent discharges into the intertidal zone were almost completely stopped in 1988 with the construction of a submerged outfall. Our studies, conducted between 1994 and 1996, showed considerable improvement in the environment of the mudflat ecosystem, including increased dissolved oxygen, decreased sediment chlorophyll, decreased organic material in the sediment, reduced heavy metals in surficial sediment and increased grain size. The amphipod Corophium salmonis, important in the food web for juvenile salmon and other fish species, recolonized the previously azoic location. At reference stations, C. salmonis density was similar to that observed in previous surveys two decades earlier. Our data strongly suggest that improvement or sediment conditions near the former sewage outfall was a major factor enabling colonization by C. salmonis.

  19. Feasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterability.

    PubMed

    Liu, Changgeng; Zhang, Panyue; Zeng, Chenghua; Zeng, Guangming; Xu, Guoyin; Huang, Yi

    2015-02-01

    A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45×10(10) to 2.07×10(10) s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditioned with Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43×10(8) s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioning mechanisms by bioleaching-Fenton oxidation might mainly include the flocculation effects and the releases of extracellular polymeric substances-bound water and intercellular water.

  20. Efficiency of sewage sludge biochar in improving urban soil properties and promoting grass growth.

    PubMed

    Yue, Yan; Cui, Liu; Lin, Qimei; Li, Guitong; Zhao, Xiaorong

    2017-04-01

    It is meaningful to quickly improve poor urban soil fertility in order to establish the green land vegetation. In this study, a series rates (0%, 1%, 5%, 10%, 20% and 50%, in mass ratio) of biochar derived from municipal sewage sludge was applied into an urban soil and then turf grass was grown in pots. The results showed that biochar amendment induced significant increases in soil total nitrogen, organic carbon, black carbon, and available phosphorus and potassium by more than 1.5, 1.9, 4.5, 5.6 and 0.4 times, respectively. Turf grass dry matter increased proportionally with increasing amount of added biochar (by an average of 74%), due to the improvement in plant mineral nutrition. Biochar amendment largely increased the total amounts of soil heavy metals. However, 43-97% of the heavy metals in the amended soil were concentrated in the residual fraction with low bioavailability. So the accumulation of heavy metals in turf grass aboveground biomass was highly reduced by the addition of biochar. These results indicated that sewage sludge biochar could be recommended in the poor urban raw soil as a soil conditioner at a rate of 50%. However, the environmental risk of heavy metal accumulation in soil amended with sewage sludge biochar should be carefully considered.

  1. Understanding the distribution, degradation and fate of organophosphate esters in an advanced municipal sewage treatment plant based on mass flow and mass balance analysis.

    PubMed

    Liang, Kang; Liu, Jingfu

    2016-02-15

    Although organophosphate esters (OPEs) in the ambient environment are from sewage treatment plants due to the discharge of effluent and application of sludge, the distribution, degradation and fate of OPEs in advanced municipal sewage treatment plants remain unclear. This work focused on the use of mass flow and mass balance analysis to understand the behaviors and fate of 14 OPEs in an advanced municipal sewage treatment plant. OPEs were detected in all sewage water and sludge samples with total OPEs (ΣOPEs) concentrations of 1399 ± 263 ng/L in raw sewage aqueous phase, 833 ± 175 ng/L in tertiary effluent aqueous phase, and 315 ± 89 ng/g dry weight in dewatered sludge. The dissolved concentrations of ΣOPEs significantly decreased during biological treatment, whereas negligible decrease was observed in mechanical and physical-chemical treatments. For individual OPE, the chlorinated tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloroisopropyl) phosphate (TCPP) did not decrease but increased during both biological treatment and physical-chemical treatment. Mass flow analysis indicated the total removal efficiency of ΣOPEs in aqueous phase was 40.5%, and the polarity-specific removal efficiencies for individual OPE were positively related to their solid-water partition coefficients (Kd). Furthermore, mass balance results showed that 53.1% and 6.3% of the initial OPE mass flow were eventually transferred to the effluents and dewatered sludge, respectively, while the remaining 39.9% and 0.7% were lost due to biodegradation and physical-chemical treatment, respectively. It was indicated that the activated sludge treatment system with anaerobic/anoxic/aerobic bioreactors was a major factor in the removal of OPEs from the raw sewage, while transfer to dewatered sludge governed by hydrophobic interactions was limited during the sewage treatment. Meanwhile, the degradation difference of OPEs in activated sludge treatment was more related with their molecular

  2. Simplified mechanistic model for the two-stage anaerobic degradation of sewage sludge.

    PubMed

    Donoso-Bravo, Andrés; Pérez-Elvira, Sara; Fdz-Polanco, Fernando

    2015-01-01

    Two-phase anaerobic systems are being increasingly implemented for the treatment of both sewage sludge and organic fraction of municipal solid waste. Despite the good amount of mathematical models in anaerobic digestion, few have been applied in two-phase systems. In this study, a three-reaction mechanistic model has been developed, implemented and validated by using experimental data from a long-term anaerobic two-phase (TPAD) digester treating sewage sludge. A sensitivity analysis shows that the most influential parameters of the model are the ones related to the hydrolysis reaction and the activity of methanogens in the thermophilic reactor. The calibration procedure highlights a noticeable growth rate of the thermophilic methanogens throughout the evaluation period. Overall, all the measured variables are properly predicted by the model during both the calibration and the cross-validation periods. The model's representation of the organic matter behaviour is quite good. The most important disagreements are observed for the biogas production especially during the validation period. The whole application procedure underlines the ability of the model to properly predict the behaviour of this bioprocess.

  3. [Degradation Characteristics of Three Aniline Compounds in Simulated Aerobic Sewage Treat System].

    PubMed

    Gu, Wen; Zhou, Lin-jun; Liu, Ji-ning; Chen, Guo-song; Shi, Li-li; Xu, Yan-hua

    2016-01-15

    The removal rates of 4-nitroaniline, 4-isopropyl aniline and 2-chloro-4-nitroaniline under different hydraulic retention time (HRT) were tested by employing a simulation method of aerobic biochemical sewage treatment technology in this study. The results showed that when HRT was 6 h, 12 h, and 24 h, the removal rates of dissolved organic carbon (DOC) were 70.2%, 80.3% and 88.3%, the removal rates of 4-nitroaniline were 48%, 64.7% and 75%; and the removal rates of 4-isopropyl aniline were 66%, 76% and 91%, respectively. It was concluded that increasing HRT could promote the removal rates of DOC and aniline chemicals. In contrast, 2-chloro-4-nitroaniline was difficult to be removed. The removal rates were less than 20% under all tested conditions. The kinetics analysis showed that the biodegradation of 4-nitroaniline, 4-isopropyl aniline and 2-chloro-4-nitroaniline in aerobic activated sewage (3 g x L(-1)) accorded with the first order kinetics and the regression coefficients were > 0.95. The half-life time of biodegradation was 6.01 h, 16.16 h, 123.75 h, respectively. In general, functional groups such as isopropyl had a positive effect on the biodegradation of aniline chemicals, whereas substituents such as nitro group and chlorine atom had an inhibitory effect.

  4. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil

    PubMed Central

    Al-Kindi, Sumaiya; Abed, Raeid M. M.

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils. PMID:26973618

  5. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil.

    PubMed

    Al-Kindi, Sumaiya; Abed, Raeid M M

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography-mass spectrometry (GC-MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2-3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC-MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7-1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5-86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95-98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils.

  6. Accelerated degradation of PAHs using edaphic biostimulants obtained from sewage sludge and chicken feathers.

    PubMed

    Rodríguez-Morgado, Bruno; Gómez, Isidoro; Parrado, Juan; García, Carlos; Hernández, Teresa; Tejada, Manuel

    2015-12-30

    We studied in the laboratory the bioremediation effects over a 100-day period of three edaphic biostimulants (BS) obtained from sewage sludge (SS) and from two different types of chicken feathers (CF1 and CF2), in a soil polluted with three polycyclic aromatic hydrocarbons (PAH) (phenanthrene, Phe; pyrene, Py; and benzo(a)pyrene, BaP), at a concentration of 100 mg kg(-1) soil. We determined their effects on enzymatic activities and on soil microbial community. Those BS with larger amounts of proteins and a higher proportion of peptides (<300 daltons), exerted a greater stimulation on the soil biochemical properties and microbial community, possibly because low molecular weight proteins can be easily assimilated by soil microorganisms. The soil dehydrogenase, urease, β-glucosidase and phosphatase activities and microbial community decreased in PAH-polluted soil. This decrease was more pronounced in soils contaminated with BaP than with Py and Phe. The application of the BS to PAH-polluted soils decreased the inhibition of the soil biological properties, principally at 7 days into the experiment. This decrease was more pronounced in soils contaminated with BaP than with Py and Phe and was higher in polluted soils amended with CF2, followed by SS and CF1, respectively.

  7. [Effect of microbial nutrient concentration on improvement of municipal sewage sludge dewaterability through bioleaching].

    PubMed

    Song, Yong-wei; Liu, Fen-wu; Zhou, Li-xiang

    2012-08-01

    In this study, shaking flask batch experiments and practical engineering application tests were performed to investigate the effect of microbial nutrient concentration on the dewaterability of municipal sewage sludge with 2%, 3%, 4% and 5% solid contents via bioleaching. Meanwhile, the changes of pH value and the utilization efficiency of microbial nutrients during bioleaching were analyzed in this study. The results showed that the pH value decreased gradually at the beginning and then maintained a stable state in the treatments with different solid contents, and the nutrients were completely used up by the microorganisms after 2 days of bioleaching. It was found that the SRF of 2%, 3%, 4%, 5% sludges decreased quickly and then rose gradually with the extension of bioleaching time. In addition, the higher solid content the greater the increase. It was determined that the optimum microbial nutrient dosage for sludge with solid content of 2%, 3%, 4% and 5% were 3.0 g x L(-1), 4.5 g x L(-1), 8.3 g x L(-1) and 12.8 g x L(-1) respectively. At this point, the lowest SRF of sludge with each solid content were 0.61 x 10(12) m x kg(-1), 1.22 x 10(12) m x kg(-1), 3.09 x 10(12) m x kg(-1) and 4.83 x 10(12) m x kg(-1), respectively. Through the engineering application, it was showed that diluting the solid content of sewage sludge from 5% to 3% before bioleaching was feasible. It could not only improve the dewaterability of bioleached sewage sludge (the SRF declined from 3.29 x 10(12) m x kg(-1) to 1.10 x 10(12) m x kg(-1)), but also shorten the sludge nutrient time (shortened from 4 days to 2.35 days) and reduce the operation costs. Therefore, the results of this study have important significance for the engineering application of bioleaching of municipal sewage sludge with high solid content.

  8. Freezing/thawing effect on sewage sludge degradation and electricity generation in microbial fuel cell.

    PubMed

    Chen, Yuejia; Jiang, Junqiu; Zhao, Qingliang

    2014-01-01

    The effect of sludge freezing/thawing on its disintegration and subsequent use as substrate in a microbial fuel cell (MFC) was investigated to enhance organic matter degradation and electricity generation. Experimental results indicated that long freezing time (more than 48 h) was effective in disintegrating the sludge collected from the secondary sedimentation tank of a wastewater treatment plant. Freezing/thawing pretreatment could enhance the degradation of total chemical oxygen demand (COD) and electricity generation in MFC due to the higher concentration of soluble COD and ammonium nitrogen available in the pretreated sludge. The removal efficiency of total COD was increased from 25.3% (raw sludge as substrate) to 66.2% and the maximum power output was increased from 8.9 (raw sludge as substrate) to 10.2 W/m³ in MFC.

  9. Anaerobic bioprocessing of sewage sludge, focusing on degradation of linear alkylbenzene sulfonates (LAS).

    PubMed

    Angelidaki, I; Toräng, L; Waul, C M; Schmidt, J E

    2004-01-01

    Anaerobic degradation of sludge amended with linear alkylbenzene sulfonates (LAS) was tested in a one stage continuous stirred tank reactor (CSTR) and a two stage reactor system consisting of a CSTR as first step and upflow anaerobic sludge bed (UASB) reactor as the second step. Anaerobic removal of LAS was only observed at the second step but not at the first step. Removal of LAS in the UASB reactors was approx. 80% where half was due to absorption and the other half was apparently due to biological removal as shown from the LAS mass balance. At the end of the experiment the reactors were spiked with 14C-LAS which resulted in 5.6% 14CO2 in the produced gas. Total mass balance of the radioactivity was however not achieved. In batch experiments it was found that LAS at concentrations higher than 50 mg/l is inhibitory for most microbial groups of the anaerobic process. Therefore, low initial LAS concentration is a prerequisite for successful LAS degradation. The results from the present study suggest that anaerobic degradation of LAS is possible in UASB reactors when the concentration of LAS is low enough to avoid inhibition of microorganisms active in the anaerobic process.

  10. Bioaugmentation of sewage sludge with Trametes versicolor in solid-phase biopiles produces degradation of pharmaceuticals and affects microbial communities.

    PubMed

    Rodríguez-Rodríguez, Carlos E; Jelić, Aleksandra; Pereira, M Alcina; Sousa, Diana Z; Petrović, Mira; Alves, M Madalena; Barceló, Damià; Caminal, Glòria; Vicent, Teresa

    2012-11-06

    The use of sludge (biosolids) in land application may contribute to the spread of organic micropollutants as wastewater treatments do not completely remove these compounds. Therefore, the development of alternative strategies for sludge treatment is a matter of recent concern. The elimination of pharmaceuticals at pre-existent concentrations from sewage sludge was assessed, for the first time, in nonsterile biopiles by means of fungal bioaugmentation with Trametes versicolor (BTV-systems) and compared with the effect of autochthonous microbiota (NB-systems). The competition between the autochthonous fungal/bacterial communities and T. versicolor was studied using denaturing gradient gel electrophoresis (DGGE) and the cloning/sequencing approach. An inhibitory effect exerted by T. versicolor over bacterial populations was suggested. However, after 21 days, T. versicolor was no longer the main taxon in the fungal communities. The elimination profiles revealed an enhanced removal of atorvastatin-diclofenac-hydrochlorothiazide (during the whole treatment) and ranitidine-fenofibrate (at short periods) in the BTV biopiles in respect to NB biopiles, coincident with the presence of the fungus. For ibuprofen-clarithromycin-furosemide, the elimination profiles were similar irrespective of the system, and with carbamazepine no significant degradation was obtained. The results suggest that a fungal treatment with T. versicolor could be a promising process for the remediation of some pharmaceuticals in complex matrices such as biosolids.

  11. Soil improvement with coal ash and sewage sludge: a field experiment

    NASA Astrophysics Data System (ADS)

    Shen, Junfeng; Zhou, Xuewu; Sun, Daisheng; Fang, Jianguo; Liu, Zhijun; Li, Zhongmin

    2008-02-01

    A field experimental study was carried out successfully to improve the quality of the sandy soil by adding coal ash and sewage sludge. One ha of barren sandy soil field was chosen for the experiment in Shanghe County, Shandong Province, China. For soil amelioration and tree planting, two formulas of the mixture:coal ash, sewage sludge and soil, in ratios of 20:10:70 and 20:20:60, respectively, were used. Poplar trees were planted in pits filled with soils with additives (mixture of ash and sludge) as well as in the original sandy soil. In the 19th months after the trees were planted, the soils with additives were sampled and analyzed. The results show that the barren sandy soil was greatly improved after mixing with coal ash and sludge. The improved soils have remarkably higher nutrient concentrations, better texture, smaller bulk density, higher porosity and mass moisture content, and higher content of fine-grained minerals. During the first 22 months after planting, the annual increase in height of the trees grown in the soil with additives (4.78 m per year) was 55% higher than that of the control group (3.07 m per year), and the annual increase in diameter at the breast height (1.3 m) was 33 % higher (43.03 vs. 32.36 mm). Trees planted in soils with additives appeared healthier and shed leaves later than those in the control group. As the volume of the additives (30-40% in both formulas) is less than that of the sandy soil in and around the tree pits, it appears that the use of coal ash and sludge for tree planting and soil amelioration is environmentally safe even though the additives have relatively high heavy metal concentrations.

  12. Simultaneous heavy metals removal and municipal sewage sludge dewaterability improvement in bioleaching processes by various inoculums.

    PubMed

    Shi, Chaohong; Zhu, Nengwu; Shang, Ru; Kang, Naixin; Wu, Pingxiao

    2015-11-01

    The heavy metals content and dewaterability of municipal sewage sludge (MSS) are important parameters affecting its subsequent disposal and land application. Six kinds of inoculums were prepared to examine the characteristics of heavy metals removal and MSS dewaterability improvement in bioleaching processes. The results showed that Cu, Zn and Cd bioleaching efficiencies (12 days) were 81-91, 87-93 and 81-89%, respectively, which were significantly higher than those of Fe-S control (P < 0.05) and blank control (P < 0.01). The bioleaching boosted by the prepared inoculums could also significantly enhance MSS dewaterability (P < 0.01). The centrifugal dehydration efficiency of MSS rose from 73.00 to 90.00% at day 12. Microscopic observations and energy dispersive spectrum analysis demonstrated that the dewaterability improvement might be attributed to the changes of sludge structure from flocculent to obvious granular and the formation of secondary minerals mainly consisting of iron, oxygen and sulfur elements. The results above demonstrated that bacterial consortium enriched from acid mine drainage (AMD) was suitable to boost sludge bioleaching for heavy metals removal and dewaterability improvement. It also suggested that the synergy of sulfur/ferrous-oxidizing bacteria (SFOB) enriched from AMD and the cooperation of exogenous and indigenous SFOB significantly promoted bioleaching efficiencies.

  13. Improvement of dewatering characteristics by co-digestion of rice straw with sewage sludge.

    PubMed

    Gu, Tingting; Yamamoto-Ikemoto, Ryoko; Tsuchiya-Nakakihara, Eri; Watanabe, Haruki; Suetsugu, Yasutaka; Yanai, Atsushi

    2016-12-01

    A continuous mesophilic co-digestion of sewage sludge and softened rice straw was conducted and the dewatering characteristics of digested sludge were evaluated by a dewatering experiment using a belt press. The digestion was operated with solid retention time (SRT) of 25 days, and the feeding ratio of sludge to rice straw was 1:0.5 (total solids base). After 129 days of stable operation, the properties of digested sludge were analysed; then five kinds of cationic coagulants were tested to select the optimal coagulants for dewatering, and two coagulants were selected and used in the dewatering experiment because of lower doses and lower moisture of sludge cakes. Sludge property analysis showed that by the addition of rice straw, the fibrous materials in the digested sludge increased remarkably and the normalized capillary suction time (CST) decreased significantly, indicating that the dewatering properties was improved. The results of dewatering experiment showed that by the addition of rice straw, specific filtration rate of digested sludge increased by 81.2% and 174.6%, respectively; water content of dewatered sludge cakes decreased by 8.2% and 13.4%, respectively. The dewaterability of digested sludge was suggested to be improved due to rice straw addition.

  14. Improving material and energy recovery from the sewage sludge and biomass residues

    SciTech Connect

    Kliopova, Irina Makarskienė, Kristina

    2015-02-15

    Highlights: • SRF production from 10–40 mm fraction of pre-composted sludge and biomass residues. • The material and energy balance of compost and SRF production. • Characteristics of raw materials and classification of produced SRF. • Results of the efficiency of energy recovery, comparison analysis with – sawdust. - Abstract: Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10–40 mm) of pre-composted materials – sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg{sup −1} of the net calorific value, about 23% were composted, the rest – evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning

  15. Improving material and energy recovery from the sewage sludge and biomass residues.

    PubMed

    Kliopova, Irina; Makarskienė, Kristina

    2015-02-01

    Sewage sludge management is a big problem all over the world because of its large quantities and harmful impact on the environment. Energy conversion through fermentation, compost production from treated sludge for agriculture, especially for growing energetic plants, and treated sludge use for soil remediation are widely used alternatives of sewage sludge management. Recently, in many EU countries the popularity of these methods has decreased due to the sewage sludge content (heavy metals, organic pollutions and other hazards materials). This paper presents research results where the possibility of solid recovered fuel (SRF) production from the separate fraction (10-40 mm) of pre-composted materials--sewage sludge from municipal waste water treatment plant and biomass residues has been evaluated. The remaining fractions of pre-composted materials can be successfully used for compost or fertiliser production, as the concentration of heavy metals in the analysed composition is reduced in comparison with sewage sludge. During the experiment presented in this paper the volume of analysed biodegradable waste was reduced by 96%: about 20% of input biodegradable waste was recovered to SRF in the form of pellets with 14.25 MJ kg(-1) of the net calorific value, about 23% were composted, the rest--evaporated and discharged in a wastewater. The methods of material-energy balances and comparison analysis of experiment data have been chosen for the environmental impact assessment of this biodegradable waste management alternative. Results of the efficiency of energy recovery from sewage sludge by SRF production and burning, comparison analysis with widely used bio-fuel-sawdust and conclusions made are presented.

  16. Standard and new faecal indicators and pathogens in sewage treatment plants, microbiological parameters for improving the control of reclaimed water.

    PubMed

    Rodriguez-Manzano, J; Alonso, J L; Ferrús, M A; Moreno, Y; Amorós, I; Calgua, B; Hundesa, A; Guerrero-Latorre, L; Carratala, A; Rusiñol, M; Girones, R

    2012-01-01

    This study involved collaboration between three centres with expertise in viruses, bacteria and protozoa. The focus of the research was the study of the dissemination and removal of pathogens and faecal indicators in two sewage treatment plants (STP1 and STP2) using tertiary treatments. Samples were collected over a period of five months through the sewage treatment processes. Analysis of the samples revealed that the plants were not efficient at removing the faecal indicators and pathogens tested during the study. From entry point (raw sewage) to effluent level (tertiary treatment effluent water), the experimental results showed that the reduction ratios of human adenoviruses were 1.2 log₁₀ in STP1 and 1.9 log₁₀ in STP2. Whereas for Giardia spp. and Cryptosporidium spp. the reduction ratios were 2.3 log₁₀ for both pathogens in STP1, and 3.0 and 1.7 log₁₀ in STP2, respectively. Furthermore, the presence of faecal indicators and pathogens at different sampling points was evaluated revealing that the tested pathogens were present in reclaimed water. Human adenovirus and Arcobacter spp. showed positive results in infectivity assays for most of the tertiary effluent water samples that comply with current legislation in Spain. The pathogens detected must be evaluated using a risk assessment model, which will be essential for the development of improved guidelines for the re-use of reclaimed water.

  17. Legume-Cereal Intercropping Improves Forage Yield, Quality and Degradability.

    PubMed

    Zhang, Jie; Yin, Binjie; Xie, Yuhuai; Li, Jing; Yang, Zaibin; Zhang, Guiguo

    2015-01-01

    forage production potential, and could be applied as forage supply source for ruminants. The improved effective degradability of harvest mixture material could be attributed to greater degradable components involving the rapidly degradable fractions (a), potentially degradable (b) fractions, and degradable rate constant

  18. Magnesium ions improving the growth and organics reduction of Rhodospirillum rubrum cultivated in sewage through regulating energy metabolism pathways.

    PubMed

    Xu, Chang-Ru; Wu, Pan; Lang, Lang; Liu, Ri-Jia; Li, Jian-Zheng; Ji, Yu-Bin

    2015-01-01

    Rhodospirillum rubrum has the potential for biomass resource recycling combined with sewage purification. However, low biomass production and yield restricts the potential for sewage purification. This research investigated the improvement of biomass production, yield and organics reduction by Mg²⁺ in R. rubrum wastewater treatment. Results showed that with optimal dosage (120 mg/L), biomass production reached 4,000 mg/L, which was 1.5 times of that of the control group. Biomass yield was improved by 43.3%. Chemical oxygen demand (COD) removal reached over 90%. Hydraulic retention time was shortened by 25%. Mechanism analysis indicated that Mg²⁺ enhanced the isocitrate dehydrogenase and Ca²⁺/Mg²⁺-ATPase activities, bacteriochlorophyll content on respiration and photophosphorylation. These effects then enhanced ATP production, which led to more biomass accumulation and COD removal. With 120 mg/L Mg²⁺ dosage, the isocitrate dehydrogenase and Ca²⁺/Mg²⁺-ATPase activities, bacteriochlorophyll content, ATP production were improved, respectively, by 33.3%, 50%, 67%, 41.3% compared to those of the control group.

  19. Increased temperature in the thermophilic stage in temperature phased anaerobic digestion (TPAD) improves degradability of waste activated sludge.

    PubMed

    Ge, Huoqing; Jensen, Paul D; Batstone, Damien J

    2011-03-15

    Two-stage temperature phased anaerobic digestion (TPAD) is an increasingly popular method to improve stabilisation of sewage waste activated sludge, which normally has inherently poor and slow degradation. However, there has been limited systematic analysis of the impact of the initial thermophilic stage (temperature, pH and retention time) on performance in the main mesophilic stage. In this study, we demonstrate a novel two-stage batch test method for TPAD processes, and use it to optimize operating conditions of the thermophilic stage in terms of degradation extent and methane production. The method determines overall degradability and apparent hydrolysis coefficient in both stages. The overall process was more effective with short pre-treatment retention times (1-2 days) and neutral pH compared to longer retention time (4 days) and low pH (4-5). Degradabilities and apparent hydrolysis coefficients were 0.3-0.5 (fraction degradable) and 0.1-0.4d(-1), respectively, with a margin of error in each measurement of approximately 20% relative (95% confidence). Pre-treatment temperature had a strong impact on the whole process, increasing overall degradability from 0.3 to 0.5 as temperature increased from 50 to 65 °C, with apparent hydrolysis coefficient increasing from 0.1 to 0.4d(-1).

  20. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates.

    PubMed

    Villegas, Manuel; Huiliñir, Cesar

    2014-12-01

    This study focuses on the kinetics of the biodegradation of volatile solids (VS) of sewage sludge for biodrying under different initial moisture contents (Mc) and air-flow rates (AFR). For the study, a 3(2) factorial design, whose factors were AFR (1, 2 or 3L/minkgTS) and initial Mc (59%, 68% and 78% w.b.), was used. Using seven kinetic models and a nonlinear regression method, kinetic parameters were estimated and the models were analyzed with two statistical indicators. Initial Mc of around 68% increases the temperature matrix and VS consumption, with higher moisture removal at lower initial Mc values. Lower AFRs gave higher matrix temperatures and VS consumption, while higher AFRs increased water removal. The kinetic models proposed successfully simulate VS biodegradation, with root mean square error (RMSE) between 0.007929 and 0.02744, and they can be used as a tool for satisfactory prediction of VS in biodrying.

  1. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A million gallon-a-day sewage treatment plant in Huntington Beach, CA converts solid sewage to activated carbon which then treats incoming waste water. The plant is scaled up 100 times from a mobile unit NASA installed a year ago; another 100-fold scale-up will be required if technique is employed for widespread urban sewage treatment. This unique sewage-plant employed a serendipitous outgrowth of a need to manufacture activated carbon for rocket engine insulation. The process already exceeds new Environmental Protection Agency Standards Capital costs by 25% compared with conventional secondary treatment plants.

  2. Sewage Monitors

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Every U.S. municipality must determine how much waste water it is processing and more importantly, how much is going unprocessed into lakes and streams either because of leaks in the sewer system or because the city's sewage facilities were getting more sewer flow than they were designed to handle. ADS Environmental Services, Inc.'s development of the Quadrascan Flow Monitoring System met the need for an accurate method of data collection. The system consists of a series of monitoring sensors and microcomputers that continually measure water depth at particular sewer locations and report their findings to a central computer. This provides precise information to city managers on overall flow, flow in any section of the city, location and severity of leaks and warnings of potential overload. The core technology has been expanded upon in terms of both technical improvements, and functionality for new applications, including event alarming and control for critical collection system management problems.

  3. Use of Municipal Sewage Sludge for Improvement of Forest Sites in the Southeast

    SciTech Connect

    Charles R. Berry

    1987-09-01

    In eight field experiments dried municipal sewage sludge was applied to forest sites before planting of seedlings. In all cases, tree growth was faster on sludge-amended plots than on plots that received fertilizer and lime or no amendment. In all studies, concentrations of total nitrogen in the soil were higher on sludge plots than on control or fertilizer plots, even on good forest sites. In seven of the eight studies, concentrations of phosphorus also were higher on sludge plots than on control or fertilizer plots. Nitrogen and phosphorus tended to be higher in foliage from trees growing on sludge plots. Deep subsoiling was beneficial regardless of soil amendment. Where weeds were plentiful at the outset, they became serious competitors on plots receiving sludge.

  4. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1970's, National Space Technology Laboratories discovered that water hyacinths literally thrive on sewage; they absorb and digest nutrients and minerals from wastewater, converting sewage effluents to clean water. They offer a means of purifying water at a fraction of the cost of a conventional sewage treatment plant, and provide a bonus value in byproducts. Hyacinths must be harvested at intervals; the harvested plants are used as fertilizers, high-protein animal feed and a source of energy. Already serving a number of small towns, the "aquaculture" technique has significantly advanced with its adoption by a major U.S. city.

  5. Purification and Characterization of a Dimethoate-Degrading Enzyme of Aspergillus niger ZHY256, Isolated from Sewage

    PubMed Central

    Liu, Yu-Huan; Chung, Ying-Cheng; Xiong, Ya

    2001-01-01

    A dimethoate-degrading enzyme from Aspergillus niger ZHY256 was purified to homogeneity with a specific activity of 227.6 U/mg of protein. The molecular mass of the purified enzyme was estimated to be 66 kDa by gel filtration and 67 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was found to be 5.4, and the enzyme activity was optimal at 50°C and pH 7.0. The activity was inhibited by most of the metal ions and reagents, while it was induced by Cu2+. The Michaelis constant (Km) and Vmax for dimethoate were 1.25 mM and 292 μmol min−1 mg of protein−1, respectively. PMID:11472959

  6. Improvement in the degradation resistance of LDPE for radiochemical processing

    NASA Astrophysics Data System (ADS)

    Zaharescu, Traian; Pleşa, Ilona; Jipa, Silviu

    2014-01-01

    The effect of rosemary extract on radiochemical stability of low density polyethylene was studied by chemiluminescence, FT-IR spectroscopy and differential scanning calorimetry after γ(137Cs)-irradiation at processing low doses (10 and 20 kGy) in respect of pristine material. The additive concentrations (1, 2 and 5 wt%) induced a significant improvement in radiation stability, especially at high temperatures, for example 200 °C, which is proved chiefly by lower values of chemiluminescence intensities. The comparison of neat and rosemary-modified LDPE samples has revealed the protection action of this natural extract, which delays efficiently the propagation of oxidative degradation in γ-exposed polyethylene. The most evident proof for antioxidative protection efficiency promoted by rosemary is the smooth changes in hydroxyl and carbonyl indexes calculated on LDPE/5 wt% rosemary samples at all exposure doses.

  7. Can biochar in combination with compost improve degraded soils?

    NASA Astrophysics Data System (ADS)

    Friesl-Hanl, Wolfgang; Zehetner, Franz; Dunst, Gerald; Wagner, Mario; Puschenreiter, Markus; Karer, Jasmin; Soja, Gerhard

    2016-04-01

    As global demand for agricultural commodities is growing, the use and improvement of degraded land could at least partly meet this demand. Based on the Renewable Energy Directive 2009/28/EC (RED) which endorses the use of degraded land for biomass production on the one hand, and the emerging conflict of the 4 F's (food, feed, fiber and fuel production) on the other hand, the application of biochar to ameliorate degraded land could be a strategy to improve the productivity of soils on marginal agricultural land. The aim of our study was to investigate the effects of biochar/compost mixtures (w/w; 50/50) on two agricultural soils low in organic matter - one sandy, the other clayey. The suitability of the biochar/compost-amended (BC) soils for renewable biomass production using maize or Miscanthus was tested in the field. We conducted two field experiments with different treatments based on the results of previous pot experiments with the same soils. The following treatments were applied: • Co … Control (no BC but fertilized with (NH4)2SO4 corresponding to T3) • T1 … 1 % BC • T2 … 0.5 % BC + 175 kg N ha-1 • T3 … 1 % BC + 350 kg N ha-1 The treatments influenced water holding capacity (WHC), organic carbon content (Corg) in soil and biomass productivity (BM). WHC increased significantly upon 3 % BC addition in the previous pot experiment, but not significantly upon 1 % addition in the field (T1, T3). Due to heterogeneity in the field Corg did not show significant differences between treatments. The two test soils responded differently for BM productivity. Miscanthus (perennial) grown on sandy Eschenau soil was not influenced by the treatments in 2013 but showed a positive reaction trend in 2014. Miscanthus will need at least one further growing season to show its full yield potential. Maize (annual) grown on clayey Kaindorf soil increased BM significantly 2013 upon T3 but not in 2014 due to erosion events on sloping terrain. Keywords: Soil quality

  8. Conditioning of sewage sludge with electrolysis: effectiveness and optimizing study to improve dewaterability.

    PubMed

    Yuan, Haiping; Zhu, Nanwen; Song, Lijie

    2010-06-01

    The potential benefits of electrolysis-conditioned sludge dewatering treatment were investigated in this paper. Focuses were placed on effectiveness and factors affecting such novel application of electrolysis process. Experiments have demonstrated that a significant improvement of sludge dewaterability evaluated by capillary suction time (CST) could be obtained at a relative low value of electrolysis voltage. A Box-Behnken experimental design based on the response surface methodology (RSM) was applied to evaluate the optimum of the influencing variables. The optimal values for electrolysis voltage, electrode distance and electrolysis time are 21 V, 5 cm and 12 min, respectively, at which the CST reduction efficiency of 18.8+/-3.1% could be achieved, this agreed with that predicted by an established polynomial model in this study.

  9. Amendments and mulches improve the biological quality of soils degraded by mining activities in SE Spain

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Hernández Fernández, María Teresa; García Izquierdo, Carlos; Solé Benet, Albert

    2014-05-01

    Mining and quarrying activities generate negative visual impacts in the landscape and a loss of environmental quality. Substrate properties at the end of mining are in general not suitable for plant growth, even native ones. In an experimental soil restoration in limestone quarries from Sierra de Gádor (Almería), SE Spain, the effect of organic amendment (sewage sludge, compost from the organic fraction of domestic waste or non-amendment) combined or not with two different kind of mulches (fine gravel, chopped forest residue) was tested by triplicate in 5 x 5 m plots with the aim to improve soil/substrate properties and to reduce evaporation and erosion. In each experimental plot 75 native plants (Stipa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. Effects of adding organic amendments and mulches on some soil microbiological and biochemical parameters (microbial biomass carbon, basal respiration and different enzymatic activities, such as dehydrogenase, phosphatase, β-glucosidase and urease) were analyzed 5 years after the start of the experiment. Vegetation growth was also monitored. The two-way ANOVA, using as factors amendment and mulch, showed a significant positive influence of organic amendments on microbial biomass (Cmic), basal respiration and some enzymatic activities related to the cycles of C and N. The highest values of these parameters were obtained with compost. The influence of the mulch factor and its interactions with the amendment factor on the measured variables did not follow a clear trend with respect the measured parameters. Mulching did not improved significantly (p<0.05) the positive effect of organic amendments on Cmic although Cmic values increased with the incorporation of "forest chopped residue" and decreased with gravel incorporation. In general, both type of mulch decreased or have no effect on the microbial activity detected in the amended soils, with the only exception of the forest chopped residue

  10. Environmental sustainability of an energy self-sufficient sewage treatment plant: improvements through DEMON and co-digestion.

    PubMed

    Schaubroeck, Thomas; De Clippeleir, Haydée; Weissenbacher, Norbert; Dewulf, Jo; Boeckx, Pascal; Vlaeminck, Siegfried E; Wett, Bernhard

    2015-05-01

    It is still not proven that treatment of sewage in a wastewater treatment plant (WWTP) is (in every case) environmentally friendly. To address this matter, we have applied a state-of-the-art life cycle assessment (LCA) to an energy self-sufficient WWTP in Strass (Austria), its supply chain and the valorization of its 'products': produced electricity out of biogas from sludge digestion and the associated stabilized digestate, applied as agricultural fertilizer. Prominent aspects of our study are: a holistic environmental impact assessment, measurement of greenhouse gas emissions (including N2O), and accounting for infrastructure, replacement of conventional fertilizers and toxicity of metals present in the stabilized digestate. Additionally, the environmental sustainability improvement by implementing one-stage partial nitritation/anammox (e.g. DEMON(®)) and co-digestion was also assessed. DEMON on the digesters reject water leads to a considerable saving of natural resources compared to nitritiation/denitritation (about 33% of the life cycle resource input), this through the lowering of sludge consumption for N-removal, and thus increasing electricity production via a higher sludge excess. However, its N2O emission could be restrained through further optimization as it represents a large share (30-66%) of the plants' damaging effect on human health, this through climate change. The co-substrate addition to the digester resulted in no significant improvement of the digestion process but induced net electricity generation. If respective amounts of conventional fertilizers are replaced, the land application of the stabilized digestate is environmentally friendly through prevention of natural resource consumption and diversity loss, but possibly not regarding human health impact due the presence of toxic heavy metals, mainly Zn, in the digestate. The outcomes show that the complete life cycle results in a prevention of resource extraction from nature and a potential

  11. Sewage Treatment

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Stennis Space Center's aquaculture research program has led to an attractive wastewater treatment for private homes. The system consists of a septic tank or tanks for initial sewage processing and a natural secondary treatment facility for further processing of septic tanks' effluent, consisting of a narrow trench, which contains marsh plants and rocks, providing a place for microorganisms. Plants and microorganisms absorb and digest, thus cleansing partially processed wastewater. No odors are evident and cleaned effluent may be discharged into streams or drainage canals. The system is useful in rural areas, costs about $1,900, and requires less maintenance than mechanical systems.

  12. Improved membrane filtration media for enumeration of total coliforms and Escherichia coli from sewage and surface waters.

    PubMed Central

    Freier, T A; Hartman, P A

    1987-01-01

    Two media were developed that allowed both a total coliform count and an Escherichia coli count to be determined on the same medium after 24 h of incubation at 35 degrees C. The new media were tested along with two standard media on 10 surface water and 7 sewage samples. The experimental media yielded equivalent or higher counts relative to the standard media and recovered more specifically the desired indicator groups as determined by colony identification. PMID:3300547

  13. "Omics" Insights into PAH Degradation toward Improved Green Remediation Biotechnologies.

    PubMed

    El Amrani, Abdelhak; Dumas, Anne-Sophie; Wick, Lukas Y; Yergeau, Etienne; Berthomé, Richard

    2015-10-06

    This review summarizes recent knowledge of polycyclic aromatic hydrocarbons (PAHs) biotransformation by microorganisms and plants. Whereas most research has focused on PAH degradation either by plants or microorganisms separately, this review specifically addresses the interactions of plants with their rhizosphere microbial communities. Indeed, plant roots release exudates that contain various nutritional and signaling molecules that influence bacterial and fungal populations. The complex interactions of these populations play a pivotal role in the biodegradation of high-molecular-weight PAHs and other complex molecules. Emerging integrative approaches, such as (meta-) genomics, (meta-) transcriptomics, (meta-) metabolomics, and (meta-) proteomics studies are discussed, emphasizing how "omics" approaches bring new insight into decipher molecular mechanisms of PAH degradation both at the single species and community levels. Such knowledge address new pictures on how organic molecules are cometabolically degraded in a complex ecosystem and should help in setting up novel decontamination strategies based on the rhizosphere interactions between plants and their microbial associates.

  14. Improvement of growth of Eucalyptus globulus and soil biological parameters by amendment with sewage sludge and inoculation with arbuscular mycorrhizal and saprobe fungi.

    PubMed

    Arriagada, C; Sampedro, I; Garcia-Romera, I; Ocampo, J

    2009-08-15

    Sewage sludge is widely used as an organic soil amendment to improve soil fertility. We investigated the effects of sewage sludge (SS) application on certain biological parameters of Eucalyptus globulus Labill. The plant was either uninoculated or inoculated with saprobe fungi (Coriolopsis rigida and Trichoderma harzianum) or arbuscular mycorrhizal (AM) fungi (Glomus deserticola and Gigaspora rosea). Sewage sludge was applied to the surface of experimental plots at rates of 0, 2, 4, 6 and 8 g 100 g(-1) of soil. Inoculation with both AM and saprobe fungi in the presence of SS was essential for the promotion of plant growth. The AM, saprobe fungi and SS significantly increased dry shoot weight. The AM fungi induced a significant increase in Fluorescein diacetate (FDA) activity but did not increase beta-glucosidase activity. Addition of SS to AM-inoculated soil did not affect either FDA or alpha-glucosidase activities in plants from soil that was either uninoculated or inoculated with the saprobe fungi. SS increased beta-glucosidase activity when it was applied at 4 g 100 g(-1). SS negatively affected AM colonization as well as the mycelium SDH activity for both mycorrhizal fungi. SS increased Eucalyptus shoot biomass and enhanced its nutrient status. Inoculation of the soil with G. deserticola stimulated significant E. globulus growth and increases in shoot tissue content of N, P, K, Ca, Mg and Fe. Dual inoculation with G. deserticola and either of the saprobe fungi had positive effects on K, Ca, Mg and Fe contents. The application of 8 g 100 g(-1) of SS had no positive effects on plant nutrition. The experimental setup provided a suitable tool for evaluating SS in combination with saprobe and AM fungi as a biological fertiliser for its beneficial effects on E. globulus plant growth.

  15. Improving the mining soil quality for a vegetation cover after addition of sewage sludges: inorganic ions and low-molecular-weight organic acids in the soil solution.

    PubMed

    Peña, Aránzazu; Mingorance, Ma Dolores; Guzmán-Carrizosa, Ignacio; Fernández-Espinosa, Antonio J

    2015-03-01

    We assessed the effects of applying stabilized sewage sludge (SSL) and composted sewage sludge (CLV), at 5 and 10% to an acid mining soil. Limed soil (NCL) amended or not with SSL and CLV was incubated for 47 days. We studied the cations and organic and inorganic anions in the soil solution by means of ion chromatography. Liming led to big increases in Ca(2+) and SO4(2-) and to significant decreases in K(+), Mg(2+), NH4(+) and NO3(-). Addition of both organic amendments increased some cations (NH4(+), K(+), Mg(2+), Na(+)) and anions (Cl(-), NO3(-) only with CLV and PO4(3-) only with SSL) and provided a greater amount of low-molecular-weight organic acids (LMWOAs) (SSL more than CLV). Incubation led to decreases in all cations, particularly remarkable for Ca(2+) and Mg(2+) in SSL-10. A decrease in NH4(+) was associated with variations in NO2(-) and NO3(-) resulting from nitrification reactions. During incubation the LMWOAs content tended to decrease similarly to the cations, especially in SSL-10. Chemometric tools revealed a clear discrimination between SSL, CLV and NCL. Furthermore, treatment effects depended upon dose, mainly in SSL. Amendment nature and dose affect the quality of a mining soil and improve conditions for plant establishment.

  16. Degradation of enoxacin antibiotic by the electro-Fenton process: Optimization, biodegradability improvement and degradation mechanism.

    PubMed

    Annabi, Cyrine; Fourcade, Florence; Soutrel, Isabelle; Geneste, Florence; Floner, Didier; Bellakhal, Nizar; Amrane, Abdeltif

    2016-01-01

    This study aims to investigate the effectiveness of the electro-Fenton process on the removal of a second generation of fluoroquinolone, enoxacin. The electrochemical reactor involved a carbon-felt cathode and a platinum anode. The influence of some experimental parameters, namely the initial enoxacin concentration, the applied current intensity and the Fe(II) amount, was examined. The degradation of the target molecule was accompanied by an increase of the biodegradability, assessed from the BOD5 on COD ratio, which increased from 0 before treatment until 0.5 after 180 min of electrolysis at 50 mg L(-1) initial enoxacin concentration, 0.2 mmol L(-1) Fe(II) concentration and 300 mA applied current intensity. TOC and COD time-courses were also evaluated during electrolysis and reached maximum residual yields of 54% and 43% after 120 min of treatment, respectively. Moreover, a simultaneous generation of inorganic ions (fluorides, ammonium and nitrates) were observed and 3 short chain carboxylic acids (formic, acetic and oxalic acids) were identified and monitored during 180 min of electrolysis. By-products were identified according to UPLC-MS/MS results and a degradation pathway was proposed.

  17. [Improvement of municipal sewage sludge dewaterability by bioleaching: a pilot-scale study with sequence batch reaction model].

    PubMed

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan

    2011-07-01

    To observe the bioleaching effect on sewage sludge dewaterability, three consecutive batch bioleaching experiments were conducted through a bioleaching bio-reactor with 700 L of working volume. Subsequently, the bioleached sludge was dewatered by using chamber filter press. The results show that the 1st batch bioleaching process can be finished within 90 hours if the aeration amount was 1.2 m3/h with the 1: 15 mixing ratio of bioleached sludge to raw sludge. The pH of sludge declines from initial 6.11 to 2.33 while ORP increased from initial -134 mV to finial 507 mV. The specific resistance to filtration (SRF) of the tested sludge was decreased from original 1.00 x 10(13) m/kg to final 0.09 x 10(13) m/kg after bioleaching. For the subsequent two batch trials, the bioleaching process can be finished in 40 hours and 46 hours, respectively. Likewise, sludge SRF is also significantly decreased to 0.19 x 10(13) m/kg and 0.36 x 10(13) m/kg if the mixing ratio of bioleached sludge to fresh sludge is 1:1 although the microbial nutrient substance dosage is reduced by 25% and 50% for 2nd, and 3rd batch experiments, respectively. The harvested bioleached sludge from three batch trails is dewatered by chamber filter press with 0.3-0.4 MPa working pressure for 2 hours. It is found that the moisture of dewatered sludge cake can be reduced to 58%, and that the dewatered sludge cake is of khaki appearance and didn't emit any offensive odor. In addition, it is also observes that sludge organic matter only changed a bit from 52.9% to 48.0%, but 58% of sludge-borne Cu and 88% of sludge-borne Zn can be removed from sludge by bioleaching process. Therefore, dual goals for sludge-borne heavy metal removal and sludge dewatering of high efficiency can be achieved simultaneously through the approach mentioned above. Therefore, bioleaching technique is of great engineering application for the treatment of sewage sludge.

  18. [Improvement of municipal sewage sludge dewaterability by bioleaching: a pilot-scale study with a continuous plug flow reaction model].

    PubMed

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng

    2011-10-01

    A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was operationally divided into six sections along the direction of the sludge movement. Ten duration of continuous operation of sludge bioleaching with Acidibacillus spp. and 1.2 m3 x h(-1) aeration amount was conducted. In this system, sludge retention time was 2.5 d, and the added amount of microbial nutritional substance was 4 g x L(-1). During sludge bioleaching, the dynamic changes of pH, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections, the moisture content and moisture evaporation rate of dewatered bioleached sludge cake obtained by chamber filter press were investigated. The results showed that the SRF of sludge significantly decreased from initial 1.50 x 10(13) m x kg(-1) to the final 0.34 x 10(13) m x kg(-1). The wasted bioleached sludge was collected and dewatered by chamber filter press under the following pressures as 0.3 MPa for 4 h (2 h for feeding sludge, 2 h for holding pressure), 3 h (1.5 h for feeding sludge, 1.5 h for holding pressure), 2 h (1 h for feeding sludge, 1 h for holding pressure), and 1 h (0.5 h for feeding sludge, 0.5 h for holding pressure). Correspondingly, the moisture of dewatered sludge was reduced to 57.9%, 59.2%, 59.6%, and 63.4% of initial moisture, respectively. Moreover, the moisture content of bioleached sludge cake was reduced to about 45% and less than 10% if the cake was placed at 25 degrees C for 15 h and 96 h, respectively. Obviously, sludge bioleaching followed by sludge dewatering using chamber filter press is a promising attractive approach for sludge half-dryness treatment in engineering application.

  19. Progress in Understanding Degradation Mechanisms and Improving Stability in Organic Photovoltaics.

    PubMed

    Mateker, William R; McGehee, Michael D

    2017-03-01

    Understanding the degradation mechanisms of organic photovoltaics is particularly important, as they tend to degrade faster than their inorganic counterparts, such as silicon and cadmium telluride. An overview is provided here of the main degradation mechanisms that researchers have identified so far that cause extrinsic degradation from oxygen and water, intrinsic degradation in the dark, and photo-induced burn-in. In addition, it provides methods for researchers to identify these mechanisms in new materials and device structures to screen them more quickly for promising long-term performance. These general strategies will likely be helpful in other photovoltaic technologies that suffer from insufficient stability, such as perovskite solar cells. Finally, the most promising lifetime results are highlighted and recommendations to improve long-term performance are made. To prevent degradation from oxygen and water for sufficiently long time periods, OPVs will likely need to be encapsulated by barrier materials with lower permeation rates of oxygen and water than typical flexible substrate materials. To improve stability at operating temperatures, materials will likely require glass transition temperatures above 100 °C. Methods to prevent photo-induced burn-in are least understood, but recent research indicates that using pure materials with dense and ordered film morphologies can reduce the burn-in effect.

  20. Eliminating methanogenic activity in hydrogen reactor to improve biogas production in a two-stage anaerobic digestion process co-digesting municipal food waste and sewage sludge.

    PubMed

    Zhu, Heguang; Parker, Wayne; Conidi, Daniela; Basnar, Robert; Seto, Peter

    2011-07-01

    Laboratory scale two-stage anaerobic digestion process model was operated for 280 days to investigate the feasibility to produce both hydrogen and methane from a mixture feedstock (1:1 (v/v)) of municipal food waste and sewage sludge. The maximum hydrogen and methane yields obtained in the two stages were 0.93 and 9.5 mL/mL feedstock. To eliminate methanogenic activity and obtain substantial hydrogen production in the hydrogen reactor, both feedstock and mixed liquor required treatment. The heat treatment (100°C, 10 min) for feedstock and a periodical treatment (every 2-5 weeks, either heating, removal of biomass particles or flushing with air) for mixed liquor were effective in different extent. The methane production in the second stage was significantly improved by the hydrogen production in the first stage. The maximum methane production obtained in the period of high hydrogen production was more than 2-fold of that observed in the low hydrogen production period.

  1. Modeling the pH-mediated extraction of ionizable organic contaminants to improve the quality of municipal sewage sludge destined for land application.

    PubMed

    Venkatesan, Arjun K; Halden, Rolf U

    2016-04-15

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and personal care products, 12 perfluorinated compounds, one surfactant and one pesticide. Annually, about 2000t of IOCs were estimated to be released to U.S. soils via land-application of MSS. A partitioning model developed to assess the impact of pH on hydrophobic sorption revealed that between 36 and 85% of the mass of individual classes of IOCs potentially could be desorbed from MSS via pH adjustment and flushing. Thus, modeling results suggest that a sequential pH treatment [acidic (~pH2) followed by basic (~pH12) treatment] has the potential to reduce the burden of harmful IOCs in MSS applied on U.S. land by up to 40±16t annually. This approach may serve as a cost-effective treatment process that can be implemented easily in existing sludge treatment infrastructure in the U.S. and worldwide, serving to significantly improve the quality of MSS destined for land application.

  2. Improvement of COD removal by controlling the substrate degradability during the anaerobic digestion of recalcitrant wastewater.

    PubMed

    Kawai, Minako; Nagao, Norio; Kawasaki, Nobuyuki; Imai, Akio; Toda, Tatsuki

    2016-10-01

    The recalcitrant landfill leachate was anaerobically digested at various mixing ratios with labile synthetic wastewater to evaluate the degradation properties of recalcitrant wastewater. The proportion of leachate to the digestion system was increased in three equal steps, starting from 0% to 100%, and later decreased back to 0% with the same steps. The chemical oxygen demand (COD) for organic carbon and other components were calculated by analyzing the COD and dissolved organic carbon (DOC), and the removal efficiencies of COD carbon and COD others were evaluated separately. The degradation properties of COD carbon and COD others shifted owing to changing of substrate degradability, and the removal efficiencies of COD carbon and COD others were improved after supplying 100% recalcitrant wastewater. The UV absorptive property and total organic carbon (TOC) of each molecular size using high performance liquid chromatography (HPLC)-size exclusion chromatography (SEC) with UVA and TOC detectors were also investigated, and the degradability of different molecular sizes was determined. Although the SEC system detected extracellular polymeric substances (EPS), which are produced by microbes in stressful environments, during early stages of the experiment, EPS were not detected after feeding 100% recalcitrant wastewater. These results suggest that the microbes had acclimatized to the recalcitrant wastewater degradation. The high removal rates of both COD carbon and COD others were sustained when the proportion of labile wastewater in the substrate was 33%, indicating that the effective removal of recalcitrant COD might be controlled by changing the substrate's degradability.

  3. Sewage sludge additive

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Mueller, W. A.; Ingham, J. D. (Inventor)

    1980-01-01

    The additive is for a raw sewage treatment process of the type where settling tanks are used for the purpose of permitting the suspended matter in the raw sewage to be settled as well as to permit adsorption of the dissolved contaminants in the water of the sewage. The sludge, which settles down to the bottom of the settling tank is extracted, pyrolyzed and activated to form activated carbon and ash which is mixed with the sewage prior to its introduction into the settling tank. The sludge does not provide all of the activated carbon and ash required for adequate treatment of the raw sewage. It is necessary to add carbon to the process and instead of expensive commercial carbon, coal is used to provide the carbon supplement.

  4. Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw.

    PubMed

    Meng, Liqiang; Li, Weiguang; Zhang, Shumei; Wu, Chuandong; Lv, Longyi

    2017-02-01

    In this study, the lab-scale co-composting of sewage sludge (SS) with mushroom substrate (SMS) and wheat straw (WS) conducted for 20days was evaluated. The addition of SMS evidently increased CO2 production and dehydrogenase activity. The combined addition of SMS and WS significantly improved the compost quality in terms of temperature, organic matter degradation and germination index, especially, reduced 21.9% of NH3 emission. That's because SMS and WS possessed the complementarity of free air space and contained plenty of degradable carbon source. The SMS could create a comfortable environment for the nitrifying bacteria and improve nitrification. The carbohydrates from combined addition of SMS and WS could be utilized by thermophilic microorganisms, stimulate ammonia assimilation and reduce NH3 emission. These results suggested that adding SMS and WS could not only improve the degradation of organic matter and the quality of compost product, but also stimulate ammonia assimilation and reduce ammonia emission.

  5. Wastewater discharge degrades coastal waters and reef communities in southern Thailand.

    PubMed

    Reopanichkul, Pasinee; Carter, R W; Worachananant, Suchai; Crossland, C J

    2010-06-01

    Runoff and sewage discharge from land developments can cause significant changes in water quality of coastal waters, resulting in coral degradation. Coastal waters around Phuket, Thailand are influenced by numerous sewage outfalls associated with rapid tourism development. Water quality and biological monitoring around the Phuket region was undertaken to quantify water quality and biotic characteristics at various distances from sewage outfalls. The surveys revealed strong gradients in water quality and biotic characteristics associated with tourism concentration levels as well as seasonal variability. Water and reef quality tended to decrease with increasing tourist intensity, but improved with increasing distance from sewage discharge within each of the three study locations. In addition, the effect of wastewater discharge was not localised around the source of pollution, but appeared to be transported to non-developed sites by currents, and exacerbated in the wet season.

  6. Improved biomass degradation using fungal glucuronoyl-esterases-hydrolysis of natural corn fiber substrate.

    PubMed

    d'Errico, Clotilde; Börjesson, Johan; Ding, Hanshu; Krogh, Kristian B R M; Spodsberg, Nikolaj; Madsen, Robert; Monrad, Rune Nygaard

    2016-02-10

    Lignin-carbohydrate complexes (LCCs) are in part responsible for the recalcitrance of lignocellulosics in relation to industrial utilization of biomass for biofuels. Glucuronoyl esterases (GEs) belonging to the carbohydrate esterase family 15 have been proposed to be able to degrade ester LCCs between glucuronic acids in xylans and lignin alcohols. By means of synthesized complex LCC model substrates we provide kinetic data suggesting a preference of fungal GEs for esters of bulky arylalkyl alcohols such as ester LCCs. Furthermore, using natural corn fiber substrate we report the first examples of improved degradation of lignocellulosic biomass by the use of GEs. Improved C5 sugar, glucose and glucuronic acid release was observed when heat pretreated corn fiber was incubated in the presence of GEs from Cerrena unicolor and Trichoderma reesei on top of different commercial cellulase/hemicellulase preparations. These results emphasize the potential of GEs for delignification of biomass thereby improving the overall yield of fermentable sugars for biofuel production.

  7. Sewage sludge fertiliser use: implications for soil and plant copper evolution in forest and agronomic soils.

    PubMed

    Ferreiro-Domínguez, Nuria; Rigueiro-Rodríguez, Antonio; Mosquera-Losada, M Rosa

    2012-05-01

    Fertilisation with sewage sludge may lead to crop toxicity and environmental degradation. This study aims to evaluate the effects of two types of soils (forest and agronomic), two types of vegetation (unsown (coming from soil seed bank) and sown), and two types of fertilisation (sludge fertilisation and mineral fertilisation, with a no fertiliser control) in afforested and treeless swards and in sown and unsown forestlands on the total and available Cu concentration in soil, the leaching of this element and the Cu levels in plant. The experimental design was completely randomised with nine treatments and three replicates. Fertilisation with sewage sludge increased the concentration of Cu in soil and plant, but the soil values never exceeded the maximum set by Spanish regulations. Sewage sludge inputs increased both the total and Mehlich 3 Cu concentrations in agronomic soils and the Cu levels in plant developed in agronomic and forest soils, with this effect pronounced in the unsown swards of forest soils. Therefore, the use of high quality sewage sludge as fertiliser may improve the global productivity of forest, agronomic and silvopastoral systems without creating environmental hazards.

  8. MODIS solar diffuser on-orbit degradation characterization using improved SDSM screen modeling

    NASA Astrophysics Data System (ADS)

    Chen, H.; Xiong, X.; Angal, A.; Wang, Z.; Wu, A.

    2016-10-01

    The Solar Diffuser (SD) is used for the MODIS reflective solar bands (RSB) calibration. An on-board Solar Diffuser Stability Monitor (SDSM) tracks the degradation of its on-orbit bi-directional reflectance factor (BRF). To best match the SDSM detector signals from its Sun view and SD view, a fixed attenuation screen is placed in its Sun view path, where the responses show ripples up to 10%, much larger than design expectation. Algorithms have been developed since the mission beginning to mitigate the impacts of these ripples. In recent years, a look-up-table (LUT) based approach has been implemented to account for these ripples. The LUT modeling of the elevation and azimuth angles is constructed from the detector 9 (D9) of SDSM observations in the MODIS early mission. The response of other detectors is normalized to D9 to reduce the ripples observed in the sun-view data. The accuracy of all detectors degradation estimation depends on how well the D9 approximated. After multiple years of operation (Terra: 16 years; Aqua: 14 years), degradation behavior of all detectors can be monitored by their own. This paper revisits the LUT modeling and proposes a dynamic scheme to build a LUT independently for each detector. Further refinement in the Sun view screen characterization will be highlighted to ensure the degradation estimation accuracy. Results of both Terra and Aqua SD on-orbit degradation are derived from the improved modeling and curve fitting strategy.

  9. Improved Learning and Memory in Aged Mice Deficient in Amyloid β-Degrading Neutral Endopeptidase

    PubMed Central

    Walther, Thomas; Albrecht, Doris; Becker, Matthias; Schubert, Manja; Kouznetsova, Elena; Wiesner, Burkard; Maul, Björn; Schliebs, Reinhard; Grecksch, Gisela; Furkert, Jens; Sterner-Kock, Anja; Schultheiss, Heinz-Peter; Becker, Axel; Siems, Wolf-Eberhard

    2009-01-01

    Background Neutral endopeptidase, also known as neprilysin and abbreviated NEP, is considered to be one of the key enzymes in initial human amyloid-β (Aβ) degradation. The aim of our study was to explore the impact of NEP deficiency on the initial development of dementia-like symptoms in mice. Methodology/Principal Findings We found that while endogenous Aβ concentrations were elevated in the brains of NEP-knockout mice at all investigated age groups, immunohistochemical analysis using monoclonal antibodies did not detect any Aβ deposits even in old NEP knockout mice. Surprisingly, tests of learning and memory revealed that the ability to learn was not reduced in old NEP-deficient mice but instead had significantly improved, and sustained learning and memory in the aged mice was congruent with improved long-term potentiation (LTP) in brain slices of the hippocampus and lateral amygdala. Our data suggests a beneficial effect of pharmacological inhibition of cerebral NEP on learning and memory in mice due to the accumulation of peptides other than Aβ degradable by NEP. By conducting degradation studies and peptide measurements in the brain of both genotypes, we identified two neuropeptide candidates, glucagon-like peptide 1 and galanin, as first potential candidates to be involved in the improved learning in aged NEP-deficient mice. Conclusions/Significance Thus, the existence of peptides targeted by NEP that improve learning and memory in older individuals may represent a promising avenue for the treatment of neurodegenerative diseases. PMID:19240795

  10. Conditioning of sewage sludge by Fenton's reagent combined with skeleton builders.

    PubMed

    Liu, Huan; Yang, Jiakuan; Shi, Yafei; Li, Ye; He, Shu; Yang, Changzhu; Yao, Hong

    2012-06-01

    Physical conditioners, often known as skeleton builders, are commonly used to improve the dewaterability of sewage sludge. This study evaluated a novel joint usage of Fenton's reagent and skeleton builders, referred to as the F-S inorganic composite conditioner, focusing on their efficacies and the optimization of the major operational parameters. The results demonstrate that the F-S composite conditioner for conditioning sewage sludge is a viable alternative to conventional organic polymers, especially when ordinary Portland cement (OPC) and lime are used as the skeleton builders. Experimental investigations confirmed that Fenton reaction required sufficient time (80 min in this study) to degrade organics in the sludge. The optimal condition of this process was at pH=5, Fe(2+)=40 mg g(-1) (dry solids), H(2)O(2)=32 mg g(-1), OPC=300 mg g(-1) and lime=400 mg g(-1), in which the specific resistance to filtration reduction efficiency of 95% was achieved.

  11. Lockport Sewage Lagoon.

    ERIC Educational Resources Information Center

    Perry, John

    1995-01-01

    Describes a student initiated stewardship project that resulted in the transformation of a sewage lagoon near the school into a place to study nature. Contains a list of 20 things that discourage a successful stewardship project. (LZ)

  12. Vessel Sewage Discharges

    EPA Pesticide Factsheets

    Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.

  13. [Assessing environmental and economical benefits of integrated sewage treatment systems].

    PubMed

    Li, Jin-rong; Zhang, Xiao-hong; Zhang, Hang-bin; Pan, Heng-yu; Liu, Qiang

    2015-08-01

    Sewage treatment, treated water treatment and sludge treatment are three basic units of an integrated sewage treatment system. This work assessed the influence of reusing or discharge of treated water and sludge landfill or compost on the sustainability of an integrated sewage treatment system using emergy analysis and newly proposed emergy indicators. This system's value included its environmental benefits and the products. Environmental benefits were the differences of the environmental service values before and after sewage treatment. Due to unavailability of data of the exchanged substance and energy in the internal system, products' values were attained by newly proposed substitution values. The results showed that the combination of sewage treatment, treated water reuse and sludge landfill had the strongest competitiveness, while the combination of sewage treatment, treated water reuse and earthworm compost was the most sustainable. Moreover, treated water reuse and earthworm compost were helpful for improving the sustainability of the integrated sewage treatment system. The quality of treated water and local conditions should be also considered when implementing the treated water reuse or discharge. The resources efficiency of earthworm compost unit needed to be further improved. Improved emergy indices were more suitable for integrated sewage treatment systems.

  14. Usage of pumice as bulking agent in sewage sludge composting.

    PubMed

    Wu, Chuandong; Li, Weiguang; Wang, Ke; Li, Yunbei

    2015-08-01

    In this study, the impacts of reused and sucrose-decorated pumice as bulking agents on the composting of sewage sludge were evaluated in the lab-scale reactor. The variations of temperature, pH, NH3 and CO2 emission rate, moisture content (MC), volatile solid, dissolved organic carbon, C/N and the water absorption characteristics of pumice were detected during the 25days composting. The MC of pumice achieved 65.23% of the 24h water absorptivity within the first 2h at the mass ratio of 0.6:1 (pumice:sewage sludge). Reused pumice increased 23.68% of CO2 production and reduced 21.25% of NH3 emission. The sucrose-decorated pumice reduced 43.37% of nitrogen loss. These results suggested that adding pumice and sucrose-decorated pumice in sludge composting matrix could not only adjust the MC of materials, but also improve the degradation of organic matters and reduce nitrogen loss.

  15. Sewage impacts coral reefs at multiple levels of ecological organization.

    PubMed

    Reopanichkul, Pasinee; Schlacher, Thomas A; Carter, R W; Worachananant, Suchai

    2009-09-01

    Against a backdrop of rising sea temperatures and ocean acidification which pose global threats to coral reefs, excess nutrients and turbidity continue to be significant stressors at regional and local scales. Because interventions usually require local data on pollution impacts, we measured ecological responses to sewage discharges in Surin Marine Park, Thailand. Wastewater disposal significantly increased inorganic nutrients and turbidity levels, and this degradation in water quality resulted in substantial ecological shifts in the form of (i) increased macroalgal density and species richness, (ii) lower cover of hard corals, and (iii) significant declines in fish abundance. Thus, the effects of nutrient pollution and turbidity can cascade across several levels of ecological organization to change key properties of the benthos and fish on coral reefs. Maintenance or restoration of ecological reef health requires improved wastewater management and run-off control for reefs to deliver their valuable ecosystems services.

  16. Distribution of Cd, Ni, Cr and Pb in sewage sludge amended soils

    NASA Astrophysics Data System (ADS)

    Sanfeliu, Teófilo

    2010-05-01

    Restoration of degraded soils with organic wastes could be a feasible practice to minimise erosion in the Mediterranean area. Today the use of sewage sludge to improve the nutrient contents of a soil is a common practice. Contamination of soils by potentially toxic elements (e.g. Cd, Ni, Cr, Pb) from amendments of sewage sludge is subject to strict controls within the European Community in relation to total permissible metal concentrations, soil properties and intended use. This study is aimed at ascertaining the chemical partitioning of Cd, Ni, Cr and Pb in agricultural soils repeatedly amended with sludge. Five surface soils (0-15 cm) that were polluted as a result of agricultural activities were used in this experiment. The sewage sludge amended soils were selected for diversity of physicochemical properties, especially pH and carbonate content. The soils are classified as non-calcareous and calcareous soils. The distribution of chemical forms of Cd, Ni, Cr and Pb in five sewage sludge amended soils was studied using a sequential extraction procedure that fractionates the metal into soluble-exchangeable, specifically sorbed-carbonate bound, oxidizable, reducible and residual forms. With regard to the mineralogical composition of the soil clay fraction, the mineralogical association found was: illite, kaolinite and chlorite. This paper provides quantitative evidence regarding the form of the association of metals and indirectly of their bioavailability. It can help to explain the process by which metals are eliminated from sewage sludge and also indicate the impact of the use of sludge on agricultural soils, as amendments. Data obtained showed different metal distribution trend among the fractions in sludge-amended soils. Comparison of distribution pattern of metals in sludge-applied soils shows that there is possible redistribution of metals among the different phases. Detailed knowledge of the soil at the application site, especially pH, CEC, buffering capacity

  17. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya.

    PubMed

    Mganga, K Z; Musimba, N K R; Nyariki, D M

    2015-12-01

    Drylands occupy more than 80% of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems.

  18. Combining Sustainable Land Management Technologies to Combat Land Degradation and Improve Rural Livelihoods in Semi-arid Lands in Kenya

    NASA Astrophysics Data System (ADS)

    Mganga, K. Z.; Musimba, N. K. R.; Nyariki, D. M.

    2015-12-01

    Drylands occupy more than 80 % of Kenya's total land mass and contribute immensely to the national economy and society through agriculture, livestock production, tourism, and wild product harvesting. Dryland ecosystems are areas of high climate variability making them vulnerable to the threats of land degradation. Consequently, agropastoralists inhabiting these ecosystems develop mechanisms and technologies to cope with the impacts of climate variability. This study is aimed to; (1) determine what agropastoralists inhabiting a semi-arid ecosystem in Kenya attribute to be the causes and indicators of land degradation, (2) document sustainable land management (SLM) technologies being undertaken to combat land degradation, and (3) identify the factors that influence the choice of these SLM technologies. Vegetation change from preferred indigenous forage grass species to woody vegetation was cited as the main indicator of land degradation. Land degradation was attributed to recurrent droughts and low amounts of rainfall, overgrazing, and unsustainable harvesting of trees for fuelwood production. However, despite the challenges posed by climate variability and recurrent droughts, the local community is engaging in simple SLM technologies including grass reseeding, rainwater harvesting and soil conservation, and dryland agroforestry as a holistic approach combating land degradation and improving their rural livelihoods. The choice of these SLM technologies was mainly driven by their additional benefits to combating land degradation. In conclusion, promoting such simple SLM technologies can help reverse the land degradation trend, improve agricultural production, food security including access to food, and subsequently improve livelihoods of communities inhabiting dryland ecosystems.

  19. Basic Sewage Treatment Operation.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    This manual was developed for use at workshops designed to introduce operators to the fundamentals of sewage plant operation. The course consists of lecture-discussions and hands-on activities. Each of the lessons has clearly stated behavioral objectives to tell the trainee what he should know or do after completing that topic. Areas covered in…

  20. Plumbing and Sewage Disposal.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of plumbing and sewage disposal used by Marine Hygiene Equipment Operators to perform their mission. The course contains three study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the…

  1. Remediation of sewage and industrial effluent using bacterially assisted floating treatment wetlands vegetated with Typha domingensis.

    PubMed

    Ijaz, Amna; Iqbal, Zafar; Afzal, Muhammad

    2016-11-01

    This investigation reports the quantitative assessment of endophyte-assisted floating treatment wetlands (FTWs) for the remediation of sewage and industrial wastewater. Typha domingensis was used to vegetate FTWs that were subsequently inoculated with a consortium of pollutant-degrading and plant growth-promoting endophytic bacteria. T. domingensis, being an aquatic species, holds excellent potential to remediate polluted water. Nonetheless, investigation conducted on Madhuana drain carrying industrial and sewage water from Faisalabad City revealed the percentage reduction in chemical oxygen demand (COD) and biochemical oxygen demand (BOD5) to be 87% and 87.5%, respectively, within 96 h on coupling the plant species with a consortium of bacterial endophytes. With the endophytes surviving in plant tissue, maximal reduction was obtained in not only the aforementioned pollution parameters but for other major environmental quality parameters including nutrients (N and P), ions (Na(+) and K(+)), Cl(-), and SO4(2-) as well, which showed percentage reductions up to 90%, 39%, 77%, 91.8%, 40%, and 60%, respectively. This significant improvement in polluted wastewater quality treated with the proposed method render it safe to be discharged freely in larger water bodies as per the National Environmental Quality Standards (NEQS) of Pakistan or to be reused safely for irrigation purposes; thus, FTWs provide a sustainable and affordable approach for in situ remediation of sewage and industrial wastewater.

  2. Improving degradation resistance of sisal fiber in concrete through fiber surface treatment

    NASA Astrophysics Data System (ADS)

    Wei, Jianqiang; Meyer, Christian

    2014-01-01

    As part of an ongoing effort to improve the sustainability of reinforced concrete, recycled concrete aggregate is being considered together with natural fibers such as sisal fiber as replacement of synthetic reinforcement. Since natural fibers are known to undergo potential deterioration in the alkaline cement matrix especially in outdoor erosive environment, they need to be treated to improve their durability. This paper describes two such methods (thermal and Na2CO3 treatment) and evaluates their effects on the degradation resistance of sisal fiber and durability of sisal fiber-reinforced concrete with recycled concrete aggregate. Concrete specimens were subjected to cycles of wetting and drying to accelerate aging. The microstructure, tensile strength and Young's modulus of sisal fiber as well as the weight loss of the composite were evaluated. Of primary interest were the effects on compressive and splitting tensile strength of sisal fiber-reinforced concrete. Thermal treatment and Na2CO3 surface treatment were shown to improve the durability of the composite as measured by splitting tensile strength by 36.5% and 46.2% and the compressive strength by 31.1% and 45.4%, respectively. The mechanisms of these two treatment methods were also analyzed. The thermal treatment achieved improvement of cellulose's crystallization, which ensured the initial strength and improved durability of sisal fiber. A layer consisting of calcium carbonate sediments, which protects the internals of a fiber from the strong alkali solution formed in the cement hydration process, was formed and filled in pits and cavities on the Na2CO3 treated sisal fiber's surface to improve their corrosion resistance and durability and reduced the detrimental effects of Na+ ions on concrete.

  3. Improved visible light photocatalytic activity of WO3 through CuWO4 for phenol degradation

    NASA Astrophysics Data System (ADS)

    Chen, Haihang; Xiong, Xianqiang; Hao, Linlin; Zhang, Xiao; Xu, Yiming

    2016-12-01

    Development of a visible light photocatalyst is challenging. Herein, we report a significant activity enhancement of WO3 upon addition of CuWO4. Reaction was carried out under visible light for phenol degradation in aqueous suspension in the presence of H2O2. A maximum reaction rate was observed at 1.0 wt% CuWO4, which was 2.1 and 4.3 times those measured with WO3 and CuWO4, respectively. Similar results were also obtained from the photocatalytic formation of OH radicals, and from the electrochemical reduction of O2. A possible mechanism responsible for the improved activity of WO3 is proposed, involving the electron transfer from CuWO4 to WO3, followed by the reduction of H2O2 over WO3.

  4. [Technology of sewage sludge hygienization].

    PubMed

    Keller, U

    1983-09-01

    That the use of modern technology against the laws of Nature must fail, has been clearly demonstrated again some years ago when sewage sludge postpasteurization was rashly introduced. Although many attempts were made to improve this procedure, it had to be abandoned because of unavoidable massive regrowth of pathogens which invaded the germ-free postpasteurized sludge. In contrast of postpasteurization, long-term large-scale tests with the pasteurization of fresh sludge (prepasteurization) have demonstrated that this procedure where methane digestion with its pathogen displacing effect constitutes the final stage, is basically able to function. With respect to the Swiss Sewage Sludge Decree which came into force in May 1981, and which imposes sludge hygienization for most applications throughout the year, various thermal prepasteurization methods have been offered on the market ready for application to meet the legally prescribed requirements. However, some of them still need selective improvements in order to ensure the desired hygienisation effect permanently. For some time now, attention has been focussed on a novel biological 2-stage procedure based on partial aerobic thermophilic fermentation followed by anaerobic sludge digestion which in addition to good hygienisation promises improved sludge thickening, reduced digestion time, more favourable energy consumption and added process stability etc. Although it has already been offered on the market, this interesting process is being thouroughly tested and optimized in parallel pilot tests plant at the WWTP Altenrhein. Finally, reference is made to further sludge treatment processes such as sludge drying and sludge composting which mostly comprise efficent sludge hygienisation although they may not entirely prevent pathogenic regrowth. Moreover, some unconventional and less popular processes such as liquid sludge irradiation and chemical methods are also mentioned.

  5. Sewage sludge treatment system

    NASA Technical Reports Server (NTRS)

    Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)

    1976-01-01

    Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.

  6. Do new matrix formulations improve resin composite resistance to degradation processes?

    PubMed

    Fonseca, Andrea Soares Quirino da Silva; Gerhardt, Kátia Maria da Fonseca; Pereira, Gisele Damiana da Silveira; Sinhoreti, Mário Alexandre Coelho; Schneider, Luis Felipe Jochims

    2013-01-01

    The aim of this study was to determine the degradation resistance of three new formulations-silorane-, Ormocer- and dimer-acid-based materials-and compare them to the traditional dimethacrylate-based materials. One silorane- (Filtek P90, P90), one Ormocer- (Ceram-X, CX), one dimer-acid- (N'Durance, ND) and two dimethacrylate-based (Filtek P60, P60; Tetric Ceram, TC) materials were investigated. Water sorption (Wsp) and solubility (Wsl) were determined after the materials were immersed in water for 28 days. Knoop hardness (KH) was determined before and after 24 h immersion in pure ethanol. The flexural-strength (FS) was determined by the bending test after one-week storage in a dry environment or after one-week immersion in pure ethanol. Data were submitted to analysis of variance (ANOVA) and Tukey's test (95%). The three new formulations showed lower Wsp than the dimethacrylate-based formulation. CX (0.50 ± 0.17%) and ND (0.72 ± 0.19%) exhibited the lowest Wsp, whereas P90 (0.02 ± 0.03%) and P60 (0.04 ± 0.03%) showed the lowest Wsl. All resins showed reduced Knoop hardness number (KHN) after ethanol immersion. P60 presented the lowest decrease in KH value (19 ± 5%). TC (48 ± 3%) and P90 (39 ± 9%) showed the highest KHN decrease after ethanol storage. The FS of CX, ND and TC were affected by ethanol storage. The new formulations did not improve the degradation resistance, as compared with the traditional methacrylate-based materials.

  7. A Comparison of Molecular Biology Mechanism of Shewanella putrefaciens between Fresh and Terrestrial Sewage Wastewater

    PubMed Central

    Xu, Jiajie; He, Weina; Wang, Zhonghua; Zhang, Dijun; Sun, Jing; Zhou, Jun; Li, Yanyan; Su, Xiurong

    2016-01-01

    Municipal and industrial wastewater is often discharged into the environment without appropriate treatment, especially in developing countries. As a result, many rivers and oceans are contaminated. It is urgent to control and administer treatments to these contaminated rivers and oceans. However, most mechanisms of bacterial colonization in contaminated rivers and oceans were unknown, especially in sewage outlets. We found Shewanella putrefaciens to be the primary bacteria in the terrestrial sewage wastewater outlets around Ningbo City, China. Therefore, in this study, we applied a combination of differential proteomics, metabolomics, and real-time fluorescent quantitative PCR techniques to identify bacteria intracellular metabolites. We found S. putrefaciens had 12 different proteins differentially expressed in freshwater culture than when grown in wastewater, referring to the formation of biological membranes (Omp35, OmpW), energy metabolism (SOD, deoxyribose-phosphate pyrophosphokinase), fatty acid metabolism (beta-ketoacyl synthase), secondary metabolism, TCA cycle, lysine degradation (2-oxoglutarate reductase), and propionic acid metabolism (succinyl coenzyme A synthetase). The sequences of these 12 differentially expressed proteins were aligned with sequences downloaded from NCBI. There are also 27 differentially concentrated metabolites detected by NMR, including alcohols (ethanol, isopropanol), amines (dimethylamine, ethanolamine), amino acids (alanine, leucine), amine compounds (bilinerurine), nucleic acid compounds (nucleosides, inosines), and organic acids (formate, acetate). Formate and ethanolamine show significant difference between the two environments and are possibly involved in energy metabolism, glycerophospholipid and ether lipids metabolism to provide energy supply, and material basis for engraftment in sewage. Because understanding S. putrefaciens’s biological mechanism of colonization (protein, gene express, and metabolites) in terrestrial

  8. Improved mechanical properties of chitosan fibers with applications to degradable radar countermeasure chaff

    NASA Astrophysics Data System (ADS)

    Knaul, Jonathan Zvi

    The objective of this work has been to improve the mechanical properties of wet spun chitosan fibers for applications to a degradable form of radar countermeasure chaff. The first part of the study characterizes the chitosan used for spinning. Three methods for determining the degree of deacetylation (% DDA) were used and they include titration, elemental analysis, and first derivative ultraviolet (UV) spectrometry. The molecular weight of the chitosan was determined in a solvent system of 0.25 M CH3COOH/0.25 M CH3COONa, using viscometry and gel permeation chromatography (GPC). Several samples of chitosan were used with the % DDA varying from 64.3 to 96.0%. The Mark-Houwink-Sakurada constants used for the determination of viscosity average molecular weight and the universal calibration of the HPLC system were K = 1.40 x 10 -4 dL/g and a = 0.83, respectively. A literature review of molecular weight analysis of chitosan is included. Preliminary wet spinning experiments involved a coagulation rate study which demonstrated that 1 M KOH was an effective coagulant for wet spinning and that the rate of coagulation increases with decreasing solvent ratio in the spin dope. A drying study confirmed the effectiveness of a methanol drying bath followed by a heated roller at 50°C. Following these studies, a wet spinning system was constructed and used. A lack of published data exists concerning the subjects of chitosan fiber spinning and mechanical improvements to both wet and dry chitosan fibers. Several post-spinning modification experiments focused on the reaction of the dried as-spun chitosan fibers with aqueous agents including potassium dihydrogen phosphate (KH2PO4), potassium hydrogen phthalate (KHP), glutaraldehyde (GA), and glyoxal (GLY). For the aqueous buffering agents of KH2PO4, and KHP, the highest mechanical properties resulted from solutions containing phthalate ions at pH 5.00, and from solutions containing phosphate ions at pH 5.39. The best time and

  9. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants.

    PubMed

    Maragkaki, A E; Fountoulakis, M; Gypakis, A; Kyriakou, A; Lasaridi, K; Manios, T

    2017-01-01

    Due to low degradability of dry solids, most of the digesters at wastewater treatment plants (WWTP) operate at low loading rates resulting in poor biogas yields. In this study, co-digestion of sewage sludge (SS) with olive mill wastewater (OMW), cheese whey (CW) and crude glycerol (CG) was studied in an attempt to improve biogas production of existing digesters at WWTPs. The effect of agro-industrial by-products in biogas production was investigated using a 220L pilot-scale (180L working volume) digester under mesophilic conditions (35°C) with a total feeding volume of 7.5L daily and a 24-day hydraulic retention time. The initial feed was sewage sludge and the bioreactor was operated using this feed for 40days. Each agro-industrial by-product was then added to the feed so that the reactor was fed continuously with 95% sewage sludge and 5% (v/v) of each examined agro-industrial by-product. The experiments showed that a 5% (v/v) addition of OMW, CG or CW to sewage sludge significantly increased biogas production by nearly 220%, 350% and 86% as values of 34.8±3.2L/d, 185.7±15.3L/d and 45.9±3.6L/d respectively, compared to that with sewage sludge alone (375ml daily, 5% v/v in the feed). The average removal of dissolved chemical oxygen demand (d-COD) ranged between 72 and 99% for organic loading rates between 0.9 and 1.5kgVSm(-3)d(-1). Reduction in the volatile solids ranged between 25 and 40%. This work suggests that methane can be produced very efficiently by adding a small concentration (5%) of agro-industrial by-products and especially CG in the inlet of digesters treating sewage sludge.

  10. An improved method for determination of fumigant degradation half-life in soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using the current approach, measurement of fumigant degradation half-lives under realistic soil conditions is problematic due to the large headspace that is necessary above the soil during incubation. This results in a poor degree of contact between the fumigant and the soil’s degrading surfaces; di...

  11. Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting.

    PubMed

    Awasthi, Mukesh Kumar; Wang, Meijing; Chen, Hongyu; Wang, Quan; Zhao, Junchao; Ren, Xiuna; Li, Dong-Sheng; Awasthi, Sanjeev Kumar; Shen, Feng; Li, Ronghua; Zhang, Zengqiang

    2017-01-01

    This study was performed to investigate the effects of biochar as an amendment to a gaseous emissions and sewage sludge (SS) composting dynamics. Six dosage of biochar [low dosage of biochar (LDB) - 2%, 4% and 6%; and higher dosage of biochar (HDB) - 8%, 12% and 18%] were amended to a mixture of SS and wheat straw (4:1 ratio on dry weight basis) and compared to control or without additive. The HDB significantly reduced CH4, N2O and NH3 emission by 92.85-95.34%, 95.14-97.30% and 58.03-65.17%, but not the CO2 emission. Meanwhile, humification results indicated that humic and fulvic acid 35-42% and 24-28% higher in the HDB amended treatments than those in the LDB and control treatments. The HDB significantly decreased total nitrogen losses and greenhouse gas emission, while LDB had significantly (p<0.001) higher CH4 and N2O emissions. Due to effective performance of HDB, the 12% biochar was recommended to be used in SS composting practice.

  12. Analysis of coral mucus as an improved medium for detection of enteric microbes and for determining patterns of sewage contamination in reef environments

    USGS Publications Warehouse

    Lipp, Erin K.; Griffin, Dale W.

    2004-01-01

    Traditional fecal indicator bacteria are often subject to a high degree of die-off and dilution in tropical marine waters, particularly in offshore areas such as coral reefs. Furthermore, these microbes are often not associated with human waste, and their presence may not be indicative of health risk. To address the offshore extent of wastewater contamination in the Florida Keys reef tract, we assayed coral surfaces for the presence of human-specific enteric viruses. The overlying water column and surface mucopolysaccharide (mucus) layers from scleractinian corals were sampled from three stations along a nearshore-to-offshore transect beginning at Long Key in the middle Florida Keys, USA. Samples were assayed for standard bacterial water quality indicators (fecal coliform bacteria and enterococci) and for human enteroviruses by direct reverse transcriptase-polymerase chain reaction (RT-PCR). The concentration of the bacterial indicators was greatest at the nearshore station in both the water column and corals, and decreased with distance from shore; no indicator bacteria were detected at the offshore station. Whereas human enteroviruses were not detected in any of the water column samples, they were detected in 50–80% of coral mucus samples at each station. These data provide evidence that human sewage is impacting the reef tract up to ~6.5 km from shore in the middle Florida Keys and that coral mucus is an efficient trap for viral markers associated with anthropogenic pollution.

  13. The Evaporation and Degradation of N-Nitroso Dimethyl Amine in Aqueous Solutions.

    DTIC Science & Technology

    WATER POLLUTION, *CHEMICAL ANALYSIS , DEGRADATION, DIMETHYLHYDRAZINES, WASTE WATER, PHOTOLYSIS, SOILS, EVAPORATION, CARCINOGENS, PUBLIC HEALTH, FOOD, PH FACTOR, SEWAGE, NITROSO COMPOUNDS, WASTES(INDUSTRIAL), NITRITES.

  14. Sewage treatment method

    DOEpatents

    Fassbender, Alex G.

    1995-01-01

    The invention greatly reduces the amount of ammonia in sewage plant effluent. The process of the invention has three main steps. The first step is dewatering without first digesting, thereby producing a first ammonia-containing stream having a low concentration of ammonia, and a second solids-containing stream. The second step is sending the second solids-containing stream through a means for separating the solids from the liquid and producing an aqueous stream containing a high concentration of ammonia. The third step is removal of ammonia from the aqueous stream using a hydrothermal process.

  15. Characterization of a Cellulomonas fimi exoglucanase/xylanase-endoglucanase gene fusion which improves microbial degradation of cellulosic biomass.

    PubMed

    Duedu, Kwabena O; French, Christopher E

    2016-11-01

    Effective degradation of cellulose requires multiple classes of enzyme working together. However, naturally occurring cellulases with multiple catalytic domains seem to be rather rare in known cellulose-degrading organisms. A fusion protein made from Cellulomonas fimi exo- and endo- glucanases, Cex and CenA which improves breakdown of cellulose is described. A homologous carbohydrate binding module (CBM-2) present in both glucanases was fused to give a fusion protein CxnA. CxnA or unfused constructs (Cex+CenA, Cex, or CenA) were expressed in Escherichia coli and Citrobacter freundii. The latter recombinant strains were cultured at the expense of cellulose filter paper. The expressed CxnA had both exo- and endo- glucanase activities. It was also exported to the supernatant as were the non-fused proteins. In addition, the hybrid CBM from the fusion could bind to microcrystalline cellulose. Growth of C. freundii expressing CxnA was superior to that of cells expressing the unfused proteins. Physical degradation of filter paper was also faster with the cells expressing fusion protein than the other constructs. Our results show that fusion proteins with multiple catalytic domains can improve the efficiency of cellulose degradation. Such fusion proteins could potentially substitute cloning of multiple enzymes as well as improving product yields.

  16. Improvement in degradability of 58s glass scaffolds by ZnO and β-TCP modification.

    PubMed

    Shuai, Cijun; Cao, Yiyuan; Dan, Gao; Gao, Chengde; Feng, Pei; Wu, Ping

    2016-09-02

    58s bioactive glass shows great potential for bone defects repair. However, at early repairing stage, the degradation rate of 58s glass is too fast due to the fast ion-exchange. At later repairing stage, the degradation rate of 58s glass is too slow due to the high dense mineral layer. In this work, Zinc oxide (ZnO) and β-tricalcium phosphate (β-TCP) were introduced into 58s glass bone scaffolds to improve the degradability. The results showed that ZnO could decrease the degradation rate and promote the stability of 58s glass at early repairing stage. Moreover, the presence of β-TCP appeared to increase the degradation rate at a later stage of repairing. Furthermore, in vitro biocompatibility study, carried out using human osteoblast-like cells (MG63), demonstrated that ZnO and β-TCP enhanced cell attachment and proliferation. The study provided a reference for further research in bone tissue engineering.

  17. Separation and recovery of nucleic acids with improved biological activity by acid-degradable polyacrylamide gel electrophoresis.

    PubMed

    Kim, Yoon Kyung; Kwon, Young Jik

    2010-05-01

    One of the fundamental challenges in studying biomacromolecules (e.g. nucleic acids and proteins) and their complexes in a biological system is isolating them in their structurally and functionally intact forms. Electrophoresis offers convenient and efficient separation and analysis of biomacromolecules but recovery of separated biomacromolecules is a significant challenge. In this study, DNAs of various sizes were separated by electrophoresis in an acid-degradable polyacrylamide gel. Almost 100% of the nucleic acids were recovered after the identified gel bands were hydrolyzed under a mildly acidic condition and purified using anion exchange resin. Further concentration by centrifugal filtration and a second purification using ion exchange column chromatography yielded 44-84% of DNA. The second conventional (non-degradable) gel electrophoresis confirmed that the nucleic acids recovered from acid-degradable gel bands preserved their electrophoretic properties through acidic gel hydrolysis, purification, and concentration processes. The plasmid DNA recovered from acid-degradable gel transfected cells significantly more efficiently than the starting plasmid DNA (i.e. improved biological activity via acid-degradable PAGE). Separation of other types of nucleic acids such as small interfering RNA using this convenient and efficient technique was also demonstrated.

  18. Improved fuel cell and electrode designs for producing electricity from microbial degradation.

    PubMed

    Park, Doo Hyun; Zeikus, J Gregory

    2003-02-05

    A new one-compartment fuel cell was composed of a rubber bunged bottle with a center-inserted anode and a window-mounted cathode containing an internal, proton-permeable porcelain layer. This fuel cell design was less expensive and more practical than the conventional two-compartment system, which requires aeration and a ferricyanide solution in the cathode compartment. Three new electrodes containing bound electron mediators including a Mn(4+)-graphite anode, a neutral red (NR) covalently linked woven graphite anode, and an Fe(3+)-graphite cathode were developed that greatly enhanced electrical energy production (i.e., microbial electron transfer) over conventional graphite electrodes. The potentials of these electrodes measured by cyclic voltametry at pH 7.0 were (in volts): +0.493 (Fe(3+)-graphite); +0.15 (Mn(4+)-graphite); and -0.53 (NR-woven graphite). The maximal electrical productivities obtained with sewage sludge as the biocatalyst and using a Mn(4+)-graphite anode and a Fe(3+)-graphite cathode were 14 mA current, 0.45 V potential, 1,750 mA/m(2) current density, and 788 mW/m(2) of power density. With Escherichia coli as the biocatalyst and using a Mn(4+)-graphite anode and a Fe(3+)-graphite cathode, the maximal electrical productivities obtained were 2.6 mA current, 0.28 V potential, 325 mA/m(2) current density, and 91 mW/m(2) of power density. These results show that the amount of electrical energy produced by microbial fuel cells can be increased 1,000-fold by incorporating electron mediators into graphite electrodes. These results also imply that sewage sludge may contain unique electrophilic microbes that transfer electrons more readily than E. coli and that microbial fuel cells using the new Mn(4+)-graphite anode and Fe(3+)-graphite cathode may have commercial utility for producing low amounts of electrical power needed in remote locations.

  19. Batchwise mesophilic anaerobic co-digestion of secondary sludge from pulp and paper industry and municipal sewage sludge.

    PubMed

    Hagelqvist, Alina

    2013-04-01

    Residues from forest-industry wastewater-treatment systems are treated as waste at many pulp and paper mills. These organic substances have previously been shown to have potential for production of large quantities of biogas. There is concern, however, that the process would require expensive equipment because of the slow degradation of these substances. Pure non-fibrous sludge from forest industry showed lower specific methane production during mesophilic digestion for 19days, 53±26 Nml/g of volatile solids as compared to municipal sewage sludge, 84±24 Nml/g of volatile solids. This paper explores the possibility of using anaerobic co-digestion with municipal sewage sludge to enhance the potential of methane production from secondary sludge from a pulp and paper mill. It was seen in a batch anaerobic-digestion operation of 19 days that the specific methane production remained largely the same for municipal sewage sludge when up to 50% of the volatile solids were replaced with forest-industry secondary sludge. It was also shown that the solid residue from anaerobic digestion of the forest-industry sludge should be of suitable quality to use for improving soil quality on lands that are not used for food production.

  20. The dissipation of phosphorus in sewage and sewage effluents.

    PubMed

    Collingwood, R W

    Of the 41 kt of phosphorus reaching the sewage works in England and Wales 15 kt is removed in sewage sludge and the remainder is disposed of to rivers. 60% of the sewage sludge is now used as fertilizer and this proportion will no doubt increase in the future. The total use of sewage sludge, however, represents only about 5% of the current annual usage of artificial phosphorus fertilizer. At present there is no general economic incentive to make better use of the phosphorus in effluents. Phosphorus removal is expensive--about 2--3 pence/m3. If all the sewage effluents in England and Wales were to be so treated the cost would be about 100--150 million pounds annually, that is about 50% of the present costs of sewage treatment. In certain cases, but rarely in the UK, phosphate is removed, not to conserve phosphorus but to minimize the problems it creates in the environment. The phosphorus removed has little value as fertilizer. Alternative methods of using the phosphorus in effluents by the production and harvesting of crops of algae or aquatic plants have so far proved uneconomic. However, these methods need to be reviewed periodically as they may in the future become economically more attractive, especially in warmer climates where plant growth can be maintained throughout the year.

  1. Integrated odour modelling for sewage treatment works.

    PubMed

    Gostelow, P; Parsons, S A; Lovell, M

    2004-01-01

    Odours from sewage treatment works are a significant source of environmental annoyance. There is a need for tools to assess the degree of annoyance caused, and to assess strategies for mitigation of the problem. This is the role of odour modelling. Four main stages are important in the development of an odour problem. Firstly, the odorous molecules must be formed in the liquid phase. They must then transfer from the liquid to the gaseous phase. They are then transported through the atmosphere to the population surrounding the odour source, and are then perceived and assessed by that population. Odour modelling as currently practised tends to concentrate on the transportation of odorants through the atmosphere, with the other areas receiving less attention. Instead, odour modelling should consider each stage in an integrated manner. This paper describes the development of integrated odour models for annoyance prediction. The models describe the liquid-phase transformations and emission of hydrogen sulphide from sewage treatment processes. Model output is in a form suitable for integration with dispersion models, the predictions of which can in turn be used to indicate the probability of annoyance. The models have been applied to both hypothetical and real sewage treatment works cases. Simulation results have highlighted the potential variability of emission rates from sewage treatment works, resulting from flow, quality and meteorological variations. Emission rate variations can have significant effects on annoyance predictions, which is an important finding, as they are usually considered to be fixed and only meteorological variations are considered in predicting the odour footprint. Areas for further development of integrated odour modelling are discussed, in particular the search for improved links between analytical and sensory measurements, and a better understanding of dose/response relationships for odour annoyance.

  2. Improving degradation of paracetamol by integrating gamma radiation and Fenton processes.

    PubMed

    Cruz-González, Germán; Rivas-Ortiz, Iram B; González-Labrada, Katia; Rapado-Paneque, Manuel; Chávez-Ardanza, Armando; Nuevas-Paz, Lauro; Jáuregui-Haza, Ulises J

    2016-10-14

    Degradation of paracetamol (N-(4-hydroxiphenyl)acetamide) in aqueous solution by gamma radiation, gamma radiation/H2O2 and gamma radiation/Fenton processes was studied. Parameters affecting the radiolysis of paracetamol such as radiation dose, initial concentration of pollutant, pH and initial oxidant concentration were investigated. Gamma radiation was performed using a (60)Co source irradiator. Paracetamol degradation and mineralization increased with increasing absorbed radiation dose, but decreased with increasing initial concentration of the drug in aqueous solution. The addition of H2O2 resulted in an increased effect on irradiation-driven paracetamol degradation in comparison with the performance of the irradiation-driven process alone: paracetamol removal increased from 48.9% in the absence of H2O2 to 95.2% for H2O2 concentration of 41.7 mmol/L. However, the best results were obtained with gamma radiation/Fenton process with 100% of the drug removal at 5 kGy, for optimal H2O2 and Fe(2+) concentrations at 13.9 and 2.3 mmol/L, respectively, with a high mineralization of 63.7%. These results suggest gamma radiation/H2O2 and gamma radiation/Fenton processes as promising methods for paracetamol degradation in polluted wastewaters.

  3. The effectiveness of sewage treatment processes to remove faecal pathogens and antibiotic residues.

    PubMed

    Hendricks, Rahzia; Pool, Edmund John

    2012-01-01

    Pathogens and antibiotics enter the aquatic environment via sewage effluents and may pose a health risk to wild life and humans. The aim of this study was to determine the levels of faecal bacteria, and selected antibiotic residues in raw wastewater and treated sewage effluents from three different sewage treatment plants in the Western Cape, South Africa. Sewage treatment plant 1 and 2 use older technologies, while sewage treatment plant 3 has been upgraded and membrane technologies were incorporated in the treatment processes. Coliforms and Escherichia coli (E. coli) were used as bioindicators for faecal bacteria. A chromogenic test was used to screen for coliforms and E. coli. Fluoroquinolones and sulfamethoxazole are commonly used antibiotics and were selected to monitor the efficiency of sewage treatment processes for antibiotic removal. Enzyme Linked Immunosorbent Assays (ELISAs) were used to quantitate antibiotic residues in raw and treated sewage. Raw intake water at all treatment plants contained total coliforms and E. coli. High removal of E. coli by treatment processes was evident for treatment plant 2 and 3 only. Fluoroquinolones and sulfamethoxazole were detected in raw wastewater from all sewage treatment plants. Treatment processes at plant 1 did not reduce the fluoroquinolone concentration in treated sewage effluents. Treatment processes at plant 2 and 3 reduced the fluoroquinolone concentration by 21% and 31%, respectively. Treatment processes at plant 1 did not reduce the sulfamethoxazole concentration in treated sewage effluents. Treatment processes at plant 2 and 3 reduced sulfamethoxazole by 34% and 56%, respectively. This study showed that bacteria and antibiotic residues are still discharged into the environment. Further research needs to be undertaken to improve sewage treatment technologies, thereby producing a better quality treated sewage effluent.

  4. Complete survey of German sewage sludge ash.

    PubMed

    Krüger, Oliver; Grabner, Angela; Adam, Christian

    2014-10-21

    The amount of sewage sludge produced worldwide is expected to further increase due to rising efforts in wastewater treatment. There is a growing concern against its direct use as fertilizer due to contamination of the sludge with heavy metals and organic pollutants. Incinerating the sludge degrades organic compounds almost completely and concentrates heavy metals and phosphorus. However, the sewage sludge ash (SSA) is almost completely disposed of and with it all resources are removed from the economic cycle. Comprehensive knowledge of the composition of SSA is crucial to assess the resource recovery potentials. We conducted a survey of all SSA emerging in Germany and determined the respective mass fractions of 57 elements over a period of one year. The median content of phosphorus was 7.9%, indicating an important recovery potential. Important trace elements were Zn (2.5 g/kg), Mn (1.3 g/kg), and Cu (0.9 g/kg). Mass fractions of technology metals such as V, Cr, Ga, Nb, and rare earths were comparatively low. Considering the possible use of SSA as secondary raw material for fertilizer production it should be noted that its Cd and U content (2.7 mg/kg and 4.9 mg/kg respectively) is significantly lower than that of rock phosphate based mineral fertilizers.

  5. Single application of Sewage Sludge to an Alluvial Agricultural Soil - impacts on Soil Quality

    NASA Astrophysics Data System (ADS)

    Suhadolc, M.; Graham, D. B.; Hagn, A.; Doerfler, U.; Schloter, M.; Schroll, R.; Munch, J. C.; Lobnik, F.

    2009-04-01

    Limited information exists on the effects of sewage sludge on soil quality with regard to their ability to maintain soil functions. We studied effects of sewage sludge amendment on soil chemical properties, microbial community structure and microbial degradation of the herbicide glyphosate. Three months soil column leaching experiment has been conducted using alluvial soils (Eutric Fluvisol) with no prior history of sludge application. The soil was loamy with pH 7,4 and organic matter content of 3,5%. Soil material in the upper 2 cm of columns was mixed with dehydrated sewage sludge which was applied in amounts corresponding to the standards governing the use of sewage sludge for agricultural land. Sludge did increase some nutrients (total N, NH4+, available P and K, organic carbon) and some heavy metals contents (Zn, Cu, Pb) in soil. However, upper limits for heavy metals in agricultural soils were not exceeded. Results of heavy metal availability in soil determined by sequential extraction will be also presented. Restriction fragment length polymorphism (RFLP) analyses of 16s/18s rDNA, using universal fungal and bacterial primers, revealed clear shifts in bacterial and fungal community structure in the upper 2 cm of soils after amendment. Fungal fingerprints showed greater short term effects of sewage sludge, whereas sewage sludge seems to have prolonged effects on soil bacteria. Furthermore, sewage sludge amendment significantly increased glyphosate degradation from 21.6±1% to 33.6±1% over a 2 months period. The most probable reasons for shifts in microbial community structure and increased degradation of glyphosate are beneficial alterations to the physical-chemical characteristics of the soil. Negative effects of potentially toxic substances present in the sewage sludge on soil microbial community functioning were not observed with the methods used in our study.

  6. Single application of sewage sludge--impact on the quality of an alluvial agricultural soil.

    PubMed

    Suhadolc, Metka; Schroll, Reiner; Hagn, Alexandra; Dörfler, Ulrike; Schloter, Michael; Lobnik, Franc

    2010-12-01

    The effects of sewage sludge on soil quality with regard to its nutrient and heavy metal content, microbial community structure and ability to maintain specific soil function (degradation of herbicide glyphosate) were investigated in a three months study using an alluvial soil (Eutric Fluvisol). Dehydrated sewage sludge significantly increased soil organic matter (up to 20.6% of initial content), total and available forms of N (up to 33% and 220% of initial amount, respectively), as well as total and plant available forms of P (up to 11% and 170% of initial amount, respectively) and K (up to 70% and 47% of initial amount, respectively) in the upper 2 cm soil layer. The increase of organic matter was most prominent 3d after the application of sewage sludge, after 3 months it was no longer significant. Contents of nutrients kept to be significantly higher in the sewage sludge treated soil till the end of experiment. Contents of some heavy metals (Zn, Cu, Pb) increased as well. The highest increase was found for Zn (up to 53% of initial amount), however it was strongly bound to soil particles and its total content was kept below the maximum permissible limit for agricultural soil. Based on molecular fingerprinting of bacterial 16S rRNA gene and fungal ITS fragment on 3rd day and 3rd month after sewage sludge amendment, significant short term effects on bacterial and fungal communities were shown due to the sewage sludge. The effects were more pronounced and more long-term for bacterial than fungal communities. The mineralization of (14)C-glyphosate in the sewage sludge soil was 55.6% higher than in the control which can be linked to (i) a higher glyphosate bioavailability in sewage sludge soil, which was triggered by the pre-sorption of phosphate originating from the sewage sludge and/or (ii) beneficial alterations of the sewage sludge to the physical-chemical characteristics of the soil.

  7. Synthesis and radiation degradation of vinyl polymers with fluorine: search for improved lithographic resists. [Gamma rays

    SciTech Connect

    Pittman, C.U. Jr.; Chen, C.Y.; Ueda, M.; Helbert, J.N.; Kwiatkowski, J.H.

    1980-12-01

    Homopolymers of methyl ..cap alpha..-fluoroacrylate (MFA), trifluoroethyl methacrylate (TFEM), and hexafluoroisopropyl methacrylate (HFIM) were prepared, as were their methyl methacrylate (MMA) copolymers. Copolymers of vinylidene fluoride (VDF) and chlorotrifluoroethylene (CTFE) with MMA were also prepared. The radiation susceptibilities of these polymers were measured by the /sup 60/Co ..gamma..-irradiation method, in which molecular weights were measured by membrane osmometry and gel permeation chromatography (GPC). All the copolymers degraded by predominant chain scission except poly(methyl ..cap alpha..-fluoroacrylate), (PMFA), which crosslinks even at low doses (ca. 1 Mrad). The G/sub s/-G/sub x/ and G/sub s/ values of the chain scissioning polymers and copolymers are higher than those of poly(methyl methacrylate) PMMA reference. The high susceptibility of PMFA homopolymer to crosslinking is in contrast to that of poly(methyl ..cap alpha..-chloroacrylate), as we reported earlier. This effect is interpreted as resulting from extensive hydrogen fluoride and polyenyl radical formation, which leads to facile crosslinking. However, incorporation of the MFA monomer unit causes the (22/78) MFA/MMA copolymer to degrade with a larger value of G/sub s/ that PMMA. Apparently a second-order process leads to crosslinking in PMFA and this is retarded in the copolymer. In the homopolymers of HFIM and TFEM and in the HFIM-MMA and TFEM-MMA copolymers the HFIM and TFEM components facilitate degradation with negligible crosslinking. The increased degradation susceptibility of VDF and CTFE copolymers with MMA over that of PMMA is attributed to processes at the VDF or CTFE components (present in smaller concentrations (3 to 5 mole %) than the threshold levels (25 to 50% necessary for significant crosslinking).

  8. Long-term degradation (or improvement?) of cementitious grout/concrete for waste disposal at Hanford

    SciTech Connect

    Piepho, M.G.

    1997-12-31

    If grout and/or concrete barriers and containments are considered for long-term (500 yrs to 100,000 ) waste disposal, then long-term degradation of grout/cement materials (and others) need to be studied. Long-term degradations of a cementitious grout monolith (15.4mW x 10.4mH x 37.6mL) and its containment concrete shell and asphalt shell (each 1-m thick) were analyzed. The main degradation process of the concrete shell was believed to be fractures due to construction joints, shrinkage, thermal stress, settlement, and seismic events. A scenario with fractures was modeled (flow and transport model) for long-term risk performance (out to a million yrs). Even though the concrete/grout is expected to fracture, the concrete/grout chemistry, which has high Ph value, is very beneficial in causing calcite deposits from calcium in the water precipitating in the fractures. These calcite deposits will tend to plug the fracture and keep water from entering. The effectiveness of such plugging needs to be studied more. It`s possible that the plugged fractures are more impermeable than the original concrete/grout. The long-term performance of concrete/grout barriers will be determined by its chemistry, not its mechanical properties.

  9. Aerobic thermophilic treatment of sewage sludge at pilot plant scale. 2. Technical solutions and process design.

    PubMed

    Ponti, C; Sonnleitner, B; Fiechter, A

    1995-01-15

    The performance of the ATS process depends essentially on the oxygen transfer efficiency. Improvement of the mass transfer capacity of a bioreactor allowed to reduce the incubation time necessary to attain sludge stabilization. It is important to use equipment with a high aeration efficiency such as an injector aeration system. The ratio between the total oxygen consumption and the organic matter degradation (delta COD) ranged between 0.4 and 0.8 in the pilot plant, whereas 1.23 was found in completely mixed bioreactors (Bomio, 1990). No significant improvement of the bacterial degradation efficiency was attained with a specific power input exceeding 6-8 kW m-3. A mean residence time of less than 1 d allowed organic matter removals up to 40% with specific power consumption of 10 kWh kg-1 COD oxidized. The sludge hygienization is one of the objectives and benefits of the thermophilic treatment: not only temperature but also the total solids content were important factors affecting inactivation of pathogens. The inactivation rate was promoted by the increase of temperature, while the residual colony forming units decreased with reducing the total solids content of sewage sludge. It is concluded that continuous operation mode would not affect the quality of the hygienization but could display the high degradation potential of the aerobic system.

  10. 33 CFR 159.307 - Untreated sewage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise Vessel Operations § 159.307 Untreated sewage. No person shall discharge any untreated sewage from a cruise...

  11. 33 CFR 159.307 - Untreated sewage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise Vessel Operations § 159.307 Untreated sewage. No person shall discharge any untreated sewage from a cruise...

  12. Luciferase protection against proteolytic degradation: a key for improving signal in nano-system biology.

    PubMed

    Ataei, Farangis; Hosseinkhani, Saman; Khajeh, Khosro

    2009-10-26

    Luciferase is most widely used bioluminescence protein in biotechnological processes, but the enzyme is susceptible to proteolytic degradation, thereby its intracellular half-life decreased. Osmolytes are known to enhance the stability of proteins and protect them in a native folded and functional state. The effects of osmolytes, including sucrose, glycine and DMSO on the stability of luciferase were investigated. To different extents, all osmolytes protected the luciferase towards proteolytic degradation in a concentration-dependent manner. The results showed that 1.5M sucrose, 1.5M glycine and 15% DMSO are the best. The ability of these osmolytes to protect luciferase against proteolysis decreased from sucrose, glycine, and finally DMSO. Enzymatic kinetic data showed that the luciferase activity is significantly kept in the presence of sucrose and glycine compared to DMSO, particularly at high temperatures. Bioluminescence intensity, circular dichroism (CD), intrinsic and ANS fluorescence experiments showed change in secondary and tertiary luciferase structure. These results suggest that osmolytes exert an important effect on stabilization of luciferase conformation; decreasing the unfolding rate, preventing adaptation and binding of luciferase at the active site of proteases, thereby the proteolytic digestion reduced and its active conformation was kept.

  13. Selection and use of phytate-degrading LAB to improve cereal-based products by mineral solubilization during dough fermentation.

    PubMed

    Anastasio, Marilena; Pepe, Olimpia; Cirillo, Teresa; Palomba, Simona; Blaiotta, Giuseppe; Villani, Francesco

    2010-01-01

    New producers of phytate-degrading enzymes, especially lactic acid bacteria (LAB), were used to improve mineral solubilization during dough fermentation. In all, among strains from different sources by microorganisms (150 lactic acid bacteria, 36 yeasts), 38 (24%) exhibited a clear zone around the colonies by hydrolyzing hexacalcium phytate contained in solid medium. When phytase-positive strains from plate assay were tested for phytase activity in liquid medium, 6 of the strains (37%) exhibited phytate-degrading activity in at least one of the 3 different media used. Of the LAB, the highest phytase values were found for Enterococcus faecium A86 (0.74 U/mL) and Lactobacillus plantarum H5 (0.71 U/mL). Two different starter cultures obtained by combinations of phytase-positive (phy+: L. plantarum H5 and L3, Leuconostoc gelidum A16, and E. faecium A86) or phytase-negative (phy-: L. gelidum LM249, L. plantarum H19, and L. plantarum L8) selected LAB strains, were used to measure mineral concentrations of iron, zinc, and manganese during dough fermentation. Although the 2 kinds of starter showed similar acidic values, the presence of phytate-degrading LAB strains increased mineral solubilization in comparison to the starter phy-.

  14. Investigation of protease-mediated cuticle-degradation of nematodes by using an improved immunofluorescence-localization method.

    PubMed

    Tian, Baoyu; Huang, Wei; Huang, Jianzhong; Jiang, Xianzhang; Qin, Lina

    2009-06-01

    In order to facilitate the understanding of the actual process of enzyme-based degradation of nematodes, we visualized the localization of BLG4, a cuticle-degrading protease from the nematophagous bacterium Brevibacillus laterosporus G4, on nematode cuticle by using an improved immuno-labeled fluorescent method. Live nematodes, heat-killed nematodes and extracted nematode cuticles were exposed to the protease, and the localization of the protease and the resulting tissue degradation and destruction were observed microscopically. The bioassay findings showed that live nematodes were significantly more resistant to the protease than the dead nematodes and the extracted cuticles were. The observation of the immuno-labeling fluorescence for BLG4 revealed that the protease localized first in the tail region of the live target; and then spread over the entire target and ultimately destroyed it, including the cuticle. The results indicated the resistance of nematode cuticles to enzymatic attacks and the differences in protease susceptibilities at different regions on the nematode cuticles.

  15. Acute Acidification of Stratum Corneum Membrane Domains Using Polyhydroxyl Acids Improves Lipid Processing and Inhibits Degradation of Corneodesmosomes

    PubMed Central

    Hachem, Jean-Pierre; Roelandt, Truus; Schürer, Nanna; Pu, Xu; Fluhr, Joachim; Giddelo, Christina; Man, Mao-Qiang; Crumrine, Debra; Roseeuw, Diane; Feingold, Kenneth R.; Mauro, Theodora; Elias, Peter M.

    2010-01-01

    Neutralization of the normally acidic stratum corneum (SC) has deleterious consequences for permeability barrier homeostasis and SC integrity/cohesion attributable to serine proteases (SPs) activation leading to deactivation/degradation of lipid-processing enzymes and corneodesmosomes (CD). As an elevated pH compromises SC structure and function, we asked here whether SC hyperacidification would improve the structure and function. We lowered the pH of mouse SC using two polyhydroxyl acids (PHA), lactobionic acid (LBA), or gluconolactone (GL). Applications of the PHA reduced the pH at all levels of SC of hairless mouse, with further selective acidification of SC membrane domains, as shown by fluorescence lifetime imaging. Hyperacidification improved permeability barrier homeostasis, attributable to increased activities of two key membrane-localized, ceramide-generating hydrolytic enzymes (β-glucocerebrosidase and acidic sphingomyelinase), which correlated with accelerated extracellular maturation of SC lamellar membranes. Hyperacidification generated “supernormal” SC integrity/cohesion, attributable to an SP-dependent decreased degradation of desmoglein-1 (DSG1) and the induction of DSG3 expression in lower SC. As SC hyperacidification improves the structure and function, even of normal epidermis, these studies lay the groundwork for an assessment of the potential utility of SC acidification as a therapeutic strategy for inflammatory dermatoses, characterized by abnormalities in barrier function, cohesion, and surface pH. PMID:19741713

  16. Sewage sludge gasification: First studies

    SciTech Connect

    Garcia-Bacaicoa, P.; Bilbao, R.; Uson, C.

    1995-11-01

    Wastewater treatment installations produce a large quantity of sewage sludge, the disposal and treatment of which causes several problems because of its volume, its toxic organic constituents and the heavy metals that it contains. Certain methods of treatment and disposal do exist, but they are not entirely satisfactory. Moreover, it is important to develop a technology for the adequate treatment of sewage sludge in order to reduce the environmental problem and the costs of treatment. It can be assumed that gasification is a suitable technology because it reduces the waste volume, destroys the toxic organic compounds and fixes the heavy metals in the resultant solid. In order to gain knowledge of the processes occurring in the gasifier, the results obtained in experiments on the thermal decomposition of sewage sludge at different heating rates are shown.

  17. Evaluation of forest trees growth after sewage sludge application

    NASA Astrophysics Data System (ADS)

    Vaitkutä--, Dovilé; Balträ--Naitä--, Edita; Booth, Colin A.; Fullen, Michael A.; Pereira, Paulo

    2010-05-01

    Sewage sludge is extensively used in forest to improve soil properties. It is expected that sewage sludge rich in phosphorus, nitrogen and organic material enhance the germination of tree seedlings in poor soils. In Lithuania, the deforested soils are highly acid, and have a lack of nutrients, especially in exploited peat areas. Sewage sludge from industry contains beneficial components for the soils (such as organic matter, phosphorus, nitrogen, calcium, magnesium, etc.). However, it is also rich in heavy metals, especially Cd, Pb, Cu and Zn. High heavy metals concentrations in soil can be phytotoxic and cause reduced plant growth or plant death. The main objectives of this research was to determine the influence of industrial sewage sludge in the forestry and to highlight the idea that industrial sewage sludge containing metals does not favour development of birch and pine trees. The study was performed in Taruskos experimental plot in Panevezys region (Lithuania), amended with industrial sewage sludge ten years ago was afforestated with birch and pine seedlings. In order to observe the effects of the amendment in accumulation the mentioned metals and tree growth we collected data from trees in amended plot and control plot. The results showed that soil parameters were improved in the amended plot, in comparing with control site (higher pH, organic matter and cation exchange capacity). However, the growth of investigated trees was slower (e.g. birch roots, shoot, stem and leaves biomass was 40, 7.4, 18.6, 22% smaller than in control site. In pine case: 30, 1.2, 17, 36%, respectively; the stem height of birch was 16% and pine - 12% smaller than in control site). This reduced growth can be related with heavy metals concentration load on soil and accumulation in trees. Cu and Cd concentrations were higher in soil amended with sewage sludge comparing with control site (60 and 36%, respectively). Also, in contaminated trees Cu and Cd concentrations were higher (Cu

  18. A study on torrefaction of sewage sludge to enhance solid fuel qualities

    SciTech Connect

    Poudel, Jeeban; Ohm, Tae-In; Lee, Sang-Hoon; Oh, Sea Cheon

    2015-06-15

    Highlights: • The physio chemical variation of sewage sludge during torrefaction was studied. • Compounds with oxygen were emitted at a temperature lower than that for C{sub x}H{sub y}. • Sewage sludge torrefaction range was defined between 300 and 350 °C. - Abstract: Torrefaction is a treatment which serves to improve the properties of biomass in relation to thermochemical processing techniques for energy generation. In this study, the torrefaction of sewage sludge, which is a non-lignocellulosic waste was investigated in a horizontal tubular reactor under nitrogen flow at temperature ranging from 150 to 400 °C, for torrefaction residence time varying from 0 to 50 min. The torrefaction kinetics of sewage sludge was studied to obtain the kinetic parameters. The torrefied sewage sludge products were characterized in terms of their elemental composition, energy yield, ash content and volatile fraction. The energy and mass yields decreased with an increase in the torrefaction temperature. From an elemental analysis, the weight percentage of carbon in the sewage sludge increased with an increase in the torrefaction temperature. On the other hand, the weight percentages of hydrogen and oxygen tended to decrease. The gaseous products from torrefaction of sewage sludge were also analyzed. From this work, it was found that the compounds with oxygen were emitted at a temperature lower than that for hydrocarbon gases and the temperatures of 300–350 °C were the optimum torrefaction temperatures for sewage sludge.

  19. Science impact of MODIS C5 calibration degradation and C6+ improvements

    NASA Astrophysics Data System (ADS)

    Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; Hall, F.; Sellers, P.; Wu, A.; Angal, A.

    2014-07-01

    The Collection 6 (C6) MODIS land and atmosphere datasets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra, and to lesser extent, in MODIS Aqua geophysical datasets. Sensor degradation is largest in the Blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångström Exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6+ calibration of the MODIS dataset which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as de-trending and Terra-Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm over deserts, we have also developed a de-trending and cross-calibration method which removes residual decadal trends on the order of several tenths of one percent of

  20. Scientific impact of MODIS C5 calibration degradation and C6+ improvements

    NASA Astrophysics Data System (ADS)

    Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; Hall, F.; Sellers, P.; Wu, A.; Angal, A.

    2014-12-01

    The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångström exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6+ calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra-Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on

  1. Scientific Impact of MODIS C5 Calibration Degradation and C6+ Improvements

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; Hall, F.; Sellers, P.; Wu, A.; Angal, A.

    2014-01-01

    The Collection 6 (C6) MODIS (Moderate Resolution Imaging Spectroradiometer) land and atmosphere data sets are scheduled for release in 2014. C6 contains significant revisions of the calibration approach to account for sensor aging. This analysis documents the presence of systematic temporal trends in the visible and near-infrared (500 m) bands of the Collection 5 (C5) MODIS Terra and, to lesser extent, in MODIS Aqua geophysical data sets. Sensor degradation is largest in the blue band (B3) of the MODIS sensor on Terra and decreases with wavelength. Calibration degradation causes negative global trends in multiple MODIS C5 products including the dark target algorithm's aerosol optical depth over land and Ångstrom exponent over the ocean, global liquid water and ice cloud optical thickness, as well as surface reflectance and vegetation indices, including the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). As the C5 production will be maintained for another year in parallel with C6, one objective of this paper is to raise awareness of the calibration-related trends for the broad MODIS user community. The new C6 calibration approach removes major calibrations trends in the Level 1B (L1B) data. This paper also introduces an enhanced C6C calibration of the MODIS data set which includes an additional polarization correction (PC) to compensate for the increased polarization sensitivity of MODIS Terra since about 2007, as well as detrending and Terra- Aqua cross-calibration over quasi-stable desert calibration sites. The PC algorithm, developed by the MODIS ocean biology processing group (OBPG), removes residual scan angle, mirror side and seasonal biases from aerosol and surface reflectance (SR) records along with spectral distortions of SR. Using the multiangle implementation of atmospheric correction (MAIAC) algorithm over deserts, we have also developed a detrending and cross-calibration method which removes residual decadal trends on

  2. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment.

    PubMed

    Ruffino, Barbara; Campo, Giuseppe; Genon, Giuseppe; Lorenzi, Eugenio; Novarino, Daniel; Scibilia, Gerardo; Zanetti, Mariachiara

    2015-01-01

    Performances of mechanical and low-temperature (<100°C) thermal pre-treatments were investigated to improve the present efficiency of anaerobic digestion (AD) carried out on waste activated sludge (WAS) in the largest Italian wastewater treatment plant (2,300,000p.e.). Thermal pre-treatments returned disintegration rates of one order of magnitude higher than mechanical ones (about 25% vs. 1.5%). The methane specific production increased by 21% and 31%, with respect to untreated samples, for treatment conditions of respectively 70 and 90°C, 3h. Thermal pre-treatments also decreased WAS viscosity. Preliminary energy and economic assessments demonstrated that a WAS final total solid content of 5% was enough to avoid the employment of auxiliary methane for the pre-treatment at 90°C and the subsequent AD process, provided that all the heat generated was transferred to WAS through heat exchangers. Moreover, the total revenues from sale of the electricity produced from biogas increased by 10% with respect to the present scenario.

  3. Analysis of degradation phenomena in ancient, traditional and improved building materials of historical monuments

    NASA Astrophysics Data System (ADS)

    Figueiredo, M. O.; Silva, T. P.; Veiga, J. P.

    2008-07-01

    A review is presented on constructive techniques plus materials and the processes involved in degradation phenomena observed in two historical monuments: the Zambujeiro dolmen (Portugal) and the Roman Aqueduct of Carthage (Tunisia). Dolmens are particularly impressive megalithic constructions for the dimensions of granite blocks. At Zambujeiro, the upright stones have undergone a catastrophic evolution after the archaeological exploitation due to accelerated weathering through a process apparently distinct from natural granite decay in nearby outcrops. The biological attack of granite minerals by lichen exudates has emphasized the hazardous character of bromine and more has been learnt about construction techniques, namely, the insertion in the mound of an impermeable clay stratum that hinders water penetration into the dolmen chamber. The characterization of original Roman ashlar blocks, including masonry and the diagnosis of Byzantine and medieval reconstruction testimonies in the Aqueduct of Carthage were the object of a detailed study by X-ray diffraction and synchrotron radiation X-ray fluorescence. Traditional constructive techniques and local construction materials were studied and successive historical, modern and recent rehabilitations were reappraised.

  4. Bioremediation as an efficient method to degrade creosote and improve groundwater quality

    SciTech Connect

    Newbern, V.A.

    1994-09-01

    A hydrogeologic monitoring evaluation was conducted to determine the efficiency of bioremediation on a site at which creosote is used for pressure treating and wood preservation. Initially, pentachlorophenol (PCP) and diesel fuel were incorporated with the creosote. The waste water generated from the process was disposed of in three unlined surface impoundments until 1982. Thirteen monitoring wells were installed between August 1981 and the first half of 1982 where both PCP and creosote releases were found and attributed to the impoundments. A groundwater quality assessment program was initiated in April 1986 and a subsequent pilot groundwater remediation program begun in February 1987. A Corrective Action Plan (CAP) has been in operation since August 1987 and was designed to remediate groundwater from the uppermost water-bearing sand (Bentley sand), which was affected by the impoundment areas. With the CAP, a system of 21 recovery wells set in 4 lines were implemented to withdraw the groundwater. The groundwater was then treated in above-ground bioreactors where microorganisms were introduced to degrade the creosote compounds. Treated groundwater was then discharged to the public waste-water facility or injected to recharge the Bentley sands by the use of either of the two recharge trenches. Both nutrients and oxygen were added to the water prior to injection to increase the in-situ bioremediation of the creosote and PCP contaminants via two air sparging lines. The results demonstrate the reduction of creosote constituents from the groundwater with the use of bioremediation.

  5. Characterization of 26 miniSTR loci for improved analysis of degraded DNA samples.

    PubMed

    Hill, Carolyn R; Kline, Margaret C; Coble, Michael D; Butler, John M

    2008-01-01

    An additional 20 novel mini-short tandem repeat (miniSTR) loci have been developed and characterized beyond the six previously developed by our laboratory for a total of 26 non-CODIS miniSTR markers. These new markers produce short PCR products in the target range of 50-150 base pairs (bp) by moving the primer sequences as close as possible-often directly next to the identified repeat region. These candidate loci were initially screened based on their small amplicon sizes and locations on chromosomes currently unoccupied by the 13 CODIS STR loci or at least 50 Mb away from them on the same chromosome. They were sequenced and evaluated across more than 600 samples, and their population statistics were determined. The heterozygosities of the new loci were compared with those of the 13 CODIS loci and all were found to be comparable. Only five of the new loci had lower values than the CODIS loci; however, all of these were much smaller in size. This data suggests that these 26 miniSTR loci will serve as useful complements to the CODIS loci to aid in the forensic analysis of degraded DNA, as well as missing persons work and parentage testing with limited next-of-kin reference samples.

  6. Radiation degradation behavior of chlorine-containing vinyl copolymers. Search for improved electron-beam resists

    SciTech Connect

    Helbert, J.N.; Poindexter, E.H.; Pittman, C.U. Jr.; Chen, C.Y.

    1980-06-01

    Vinyl copolymers with high radiation degradation sensitivity have been synthesized by copolymerizing vinylidene chloride (VDC), CH/sub 2/ = CCl/sub 2/, with methyl methacrylate (MMA), methacrylonitrile, methyl ..cap alpha..-chloroacrylate, and dimethyl itaconate using emulsion techniques. In addition, copolymers of methyl ..cap alpha..-chloroacrylate with methyl methacrylate and poly(..cap alpha..-chloroacrylonitrile) were studied. Introduction of vinylidene chloride into methyl methacrylate polymers caused a sharp increase in G/sub s/ even at relatively low VDC incorporation. Upon 29% VDC incorporation, the G/sub s/ value increased from 1.3 (homopolymer of MMA) to 3.4. G/sub s/ was found to be a linear function of copolymer content for several systems, but G/sub x/ was not. At higher VDC levels, the increase in G/sub s/ was countered by increases in G/sub x/. At lower VDC levels, G/sub x/ was suppressed below the values predicted by a linear G/sub x/ dependence on composition for such systems as VDC/MMA, MCA/MMA, and ..cap alpha..-chloroacrylonitrile/MMA. The VDC/MMA copolymer (29% VDC) gave a sensitivity of 4.0 x 10/sup -5/ C/cm/sup 2/ to electron beam exposure using the 0% unexposed resist thickness loss criterion and is 2 to 3 times more sensitive than PMMA. Poly(..cap alpha..-chloroacrylonitrile) is a negative resist with a sensitivity of 5 x 10/sup -5/ C/cm/sup 2/ using one-micron line images for testing.

  7. Numerical Modeling of Earthquake-Induced Landslide Using an Improved Discontinuous Deformation Analysis Considering Dynamic Friction Degradation of Joints

    NASA Astrophysics Data System (ADS)

    Huang, Da; Song, Yixiang; Cen, Duofeng; Fu, Guoyang

    2016-12-01

    Discontinuous deformation analysis (DDA) as an efficient technique has been extensively applied in the dynamic simulation of discontinuous rock mass. In the original DDA (ODDA), the Mohr-Coulomb failure criterion is employed as the judgment principle of failure between contact blocks, and the friction coefficient is assumed to be constant in the whole calculation process. However, it has been confirmed by a host of shear tests that the dynamic friction of rock joints degrades. Therefore, the friction coefficient should be gradually reduced during the numerical simulation of an earthquake-induced rockslide. In this paper, based on the experimental results of cyclic shear tests on limestone joints, exponential regression formulas are fitted for dynamic friction degradation, which is a function of the relative velocity, the amplitude of cyclic shear displacement and the number of its cycles between blocks with an edge-to-edge contact. Then, an improved DDA (IDDA) is developed by implementing the fitting regression formulas and a modified removing technique of joint cohesion, in which the cohesion is removed once the `sliding' or `open' state between blocks appears for the first time, into the ODDA. The IDDA is first validated by comparing with the theoretical solutions of the kinematic behaviors of a sliding block on an inclined plane under dynamic loading. Then, the program is applied to model the Donghekou landslide triggered by the 2008 Wenchuan earthquake in China. The simulation results demonstrate that the dynamic friction degradation of joints has great influences on the runout and velocity of sliding mass. Moreover, the friction coefficient possesses higher impact than the cohesion of joints on the kinematic behaviors of the sliding mass.

  8. Copper speciation in continental inputs to the Vigo Ria: sewage discharges versus river fluxes.

    PubMed

    Santos-Echeandia, Juan; Laglera, Luis M; Prego, Ricardo; van den Berg, Constant M G

    2008-02-01

    Continental inputs of copper via rivers and sewage into the Vigo Ria were evaluated. The main fluvial input is not contaminated and the most degraded discharges occur on the southern margin of the middle ria. Continental inputs of copper and ligands to the ria are dominated by sewage treatment plants (136 mol Cu day(-1), 124 mol L day(-1)) supported by rivers (15 mol Cu day(-1), 21 mol L day(-1)). The dissolved fraction is the main channel of discharge for rivers (66%) with particulate matter being predominant in sewage (63%). Dissolved copper is organically complexed both in rivers (99.8%) and sewage (99.9%). This minor difference may be attributed to the fact that the stability of sewage complexes is greater than those in rivers. Moreover, ligand concentrations are higher in sewage than in rivers. Thus, the natural continental inputs of copper and ligands into the ria are magnified by anthropogenic inputs (5-15 and 3-5 times higher for copper and ligands, respectively).

  9. Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater.

    PubMed

    Mo, Kyung; Lee, Wonbae; Kim, Moonil

    2017-02-01

    A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.

  10. A degradable, bioactive, gelatinized alginate hydrogel to improve stem cell/growth factor delivery and facilitate healing after myocardial infarction

    PubMed Central

    Della Rocca, Domenico G.; Willenberg, Bradley J.; Ferreira, Leonardo F.; Wate, Prateek S.; Petersen, John W.; Handberg, Eileen M.; Zheng, Tong; Steindler, Dennis A.; Terada, Naohiro; Batich, Christopher D.; Byrne, Barry J.; Pepine, Carl J.

    2013-01-01

    Despite remarkable effectiveness of reperfusion and drug therapies to reduce morbidity and mortality following myocardial infarction (MI), many patients have debilitating symptoms and impaired left ventricular (LV) function highlighting the need for improved post-MI therapies. A promising concept currently under investigation is intramyocardial injection of high-water content, polymeric biomaterial gels (e.g., hydrogels) to modulate myocardial scar formation and LV adverse remodeling. We propose a degradable, bioactive hydrogel that forms a unique microstructure of continuous, parallel capillary-like channels (Capgel). We hypothesize that the innovative architecture and composition of Capgel can serve as a platform for endogenous cell recruitment and drug/cell delivery, therefore facilitating myocardial repair after MI. PMID:22939314

  11. Improvement in the degradation resistance of silicon nanostructures by the deposition of diamond-like carbon films

    SciTech Connect

    Klyui, N. I. Semenenko, M. A.; Khatsevich, I. M.; Makarov, A. V.; Kabaldin, A. N.; Fomovskii, F. V.; Han, Wei

    2015-08-15

    It is established that the deposition of a diamond-like film onto a structure with silicon nanoclusters in a silicon dioxide matrix yields an increase in the long-wavelength photoluminescence intensity of silicon nanoclusters due to the passivation of active-recombination centers with hydrogen and a shift of the photoluminescence peak to the region of higher photosensitivity of silicon-based solar cells. It is also shown that, due to the deposited diamond-like film, the resistance of such a structure to degradation upon exposure to γ radiation is improved, which is also defined by the effect of the passivation of radiation-induced activerecombination centers by hydrogen that is released from the films during treatment.

  12. Metagenome approaches revealed a biological prospect for improvement on mesophilic cellulose degradation.

    PubMed

    Wang, Yubo; Xia, Yu; Ju, Feng; Zhang, Tong

    2015-12-01

    Improvement on the bioconversion of cellulosic biomass depends much on the expanded knowledge on the underlying microbial structure and the relevant genetic information. In this study, metagenomic analysis was applied to characterize an enriched mesophilic cellulose-converting consortium, to explore its cellulose-hydrolyzing genes, and to discern genes involved in methanogenesis. Cellulose conversion efficiency of the mesophilic consortium enriched in this study was around 70 %. Apart from methane, acetate was the major fermentation product in the liquid phase, while propionate and butyrate were also detected at relatively high concentrations. With the intention to uncover the biological factors that might shape the varying cellulose conversion efficiency at different temperatures, results of this mesophilic consortium were then compared with that of a previously reported thermophilic cellulose-converting consortium. It was found that the mesophilic consortium harbored a larger pool of putative carbohydrate-active genes, with 813 of them in 54 GH modules and 607 genes in 13 CBM modules. Methanobacteriaceae and Methanosaetaceae were the two methanogen families identified, with a preponderance of the hydrogenotrophic Methanobacteriaceae. In contrast to its relatively high diversity and high abundance of carbohydrate-active genes, the abundance of genes involved in the methane metabolism was comparatively lower in the mesophilic consortium. A biological enhancement on the methanogenic process might serve as an effective option for the improvement of the cellulose bioconversion at mesophilic temperature.

  13. A new method to improve the performance of multi-GNSS pseudorange positioning in signal-degraded environment

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Xu, Longwei; Shu, Bao; Zhang, Ming; Qian, Chuang

    2016-08-01

    There are two existing multi-GNSS positioning methods, (1) separate receiver clock parameter is set for each constellation, (2) estimating intersystem biases (ISBs) in advance to obtain position solutions with only four unknowns. The former is the regular method and its unknowns include three receiver-coordinate parameters and several receiver clock parameters (depend on the number of participant constellations), so that it may disable when few satellites belonging to different GNSS are in view. The latter is one workable way to obtain position solution with only four visible satellites. In addition to the disabled regular method, the positioning results by the ISB-corrected method are often unsatisfactory for navigation users in signal-degraded environment. Both the deviation of ISB-solutions and the remaining measurement errors of the need corrected observations are factors to degrade location precision. Apart from these, fewer visible satellites usually cause a low robustness of the positioning model, which cause the negative influence of various errors is amplified. Based on the variation of various measurement errors, we propose a new ISSB-corrected method with observations corrected by corresponding satellite-dependent parameters. The new parameter contains the difference of time scales, hardware delays and uncorrected measurement errors between the corresponding satellite and reference, in other words, it can synthetically consider measurement errors and the ISB. By the ISSB-corrected method, we not only achieve positioning solutions with four satellites, but also significantly reduce the accuracy loss. Many experiments are conducted to present the superiority of the ISSB-corrected method. In open-area, the accuracies of regular and ISB-corrected methods are nearly equal. Apart from a similar accuracy in horizontal, the accuracy is improved by approximate 10% in up direction with respect to the two existing methods. Given the high redundancy of model in open

  14. Targeted Induction of Ceramide Degradation Leads to Improved Systemic Metabolism and Reduced Hepatic Steatosis

    PubMed Central

    Kusminski, Christine M.; Sun, Kai; Sharma, Ankit X.; Pearson, Mackenzie J.; Sifuentes, Angelika J.; McDonald, Jeffrey G.; Gordillo, Ruth; Scherer, Philipp E.

    2015-01-01

    Sphingolipids have garnered attention for their role in insulin resistance and lipotoxic cell death. Aberrant accumulation of ceramides correlates with hepatic insulin resistance and steatosis. To further investigate the tissue-specific effects of local changes in ceramidase activity, we have developed transgenic mice inducibly expressing acid ceramidase, to trigger the deacylation of ceramides. This represents the first inducible genetic model that acutely manipulates ceramides in adult mouse tissues. Hepatic overexpression of acid ceramidase prevents hepatic steatosis and prompts improvements in insulin action in liver and adipose tissue. Conversely, overexpression of acid ceramidase within adipose tissue prevents hepatic steatosis and insulin resistance. Induction of ceramidase activity in either tissue promotes a lowering of hepatic ceramides and reduced activation of the ceramide-activated protein kinase C isoform PKC-zeta. These observations suggest the existence of a rapidly acting "crosstalk" between liver and adipose tissue sphingolipids, critically regulating glucose metabolism and hepatic lipid uptake. PMID:26190650

  15. CFD simulation of anaerobic digester with variable sewage sludge rheology.

    PubMed

    Craig, K J; Nieuwoudt, M N; Niemand, L J

    2013-09-01

    A computational fluid dynamics (CFD) model that evaluates mechanical mixing in a full-scale anaerobic digester was developed to investigate the influence of sewage sludge rheology on the steady-state digester performance. Mechanical mixing is provided through an impeller located in a draft tube. Use is made of the Multiple Reference Frame model to incorporate the rotating impeller. The non-Newtonian sludge is modeled using the Hershel-Bulkley law because of the yield stress present in the fluid. Water is also used as modeling fluid to illustrate the significant non-Newtonian effects of sewage sludge on mixing patterns. The variation of the sewage sludge rheology as a result of the digestion process is considered to determine its influence on both the required impeller torque and digester mixing patterns. It was found that when modeling the fluid with the Hershel-Bulkley law, the high slope of the sewage stress-strain curve at high shear rates causes significant viscous torque on the impeller surface. Although the overall fluid shear stress property is reduced during digestion, this slope is increased with sludge age, causing an increase in impeller torque for digested sludge due to the high strain rates caused by the pumping impeller. Consideration should be given to using the Bingham law to deal with high strain rates. The overall mixing flow patterns of the digested sludge do however improve slightly.

  16. Failure of sewage pumps: statistical modelling and impact assessment.

    PubMed

    Korving, H; Geise, M; Clemens, F

    2006-01-01

    Sewage pumping stations are directly responsible for affecting performance, i.e. failing pumps may result in combined sewer overflows or flooding. However, failures of sewage pumps are not yet incorporated in sewer assessments due to lack of knowledge and data. This paper presents the analysis of pump failure data provided by two sewer management authorities in The Netherlands. Pump failures have been studied accounting for the nature of the failures, the operation and maintenance procedures of the management authority, the ageing of the pumps and the changes in the environment of pumps. The analysis shows that sewage pumps fail relatively often due to the composition of sewage and the discontinuous operation of the pumps. The interarrival time and the duration of failures are highly variable and independent of the pump type and the specific function of the pump. The results also indicate that the serviceability of sewer systems is significantly affected by failing pumps. As a consequence, part of the environmental damage due to CSOs (combined sewer overflows) can be avoided by improving maintenance of pumping stations.

  17. Identification and photocatalytic destruction of malodorous compounds in sewage.

    PubMed

    Canela, M C; Jardim, W F

    2008-06-01

    Malodorous compounds were identified in sewage samples using two different types of pre-concentration procedures: (a) pre-concentration onto adsorbent column (Tenax), (b) liquid-liquid extraction, in conjunction with sensory analysis. Sulphur and nitrogen containing compounds, hydrocarbons, substituted benzenes and components of essential oils and aldehydes were identified. These compounds were considered to be responsible for the septic and grassy/earthy odour described by sensory panellists. Studies on photodestruction of malodorous compounds present in the sewage samples showed that the main compounds were destroyed. This destruction was confirmed by both sensory analysis and gas chromatography through abatement in the intensity of odour as well as chromatogram peak areas. Comparing odour destruction using two processes, photocatalysis and loss due to mass transfer, the conversion rate was 71% at the beginning, later reaching a plateau of about 65%. Thus photocatalysis seems to be a promising technology in the degradation of malodorous compounds stripped to the atmosphere from sewage, especially when they are present at low concentrations.

  18. Sewage sludge treatment with lime.

    PubMed

    Herbst, B

    2000-01-01

    The article describes the application of lime as a method for treatment and hygienisation of sewage sludges with lime products such as quicklime, slake lime and dolomitic lime. As a result of the increase in temperature and pH-value during sludge and lime mixing most pathogenic vectors of disease (i.e. bacteria, worms, viruses and parasites) are reduced in concentration and viability to manufacture a safe product for further application on agricultural land.

  19. 1. VIEW OF SEWAGE TREATMENT PLANT (BLDG. 769) SOUTH OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF SEWAGE TREATMENT PLANT (BLDG. 769) SOUTH OF STORAGE SHED (BLDG 773). SECURITY FENCE EAST OF SEWAGE TREATMENT PLANT. - Vandenberg Air Force Base, Space Launch Complex 3, Sewage Treatment Plant, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol.

    PubMed

    Kuhar, Sarika; Nair, Lavanya M; Kuhad, Ramesh Chander

    2008-04-01

    Phanerochaete chrysosporium, Pycnoporus cinnabarinus,and fungal isolates RCK-1 and RCK-3 were tested for their lignin degradation abilities when grown on wheat straw (WS) and Prosopis juliflora (PJ) under solid-state cultivation conditions. Fungal isolate RCK-1 degraded more lignin in WS (12.26% and 22.64%) and PJ (19.30% and 21.97%) and less holocellulose in WS (6.27% and 9.39%) and PJ (3.01% and 4.58%) after 10 and 20 days, respectively, than other fungi tested. Phanerochaete chrysosporium caused higher substrate mass loss and degraded more of holocellulosic content (WS: 55.67%; PJ: 48.89%) than lignin (WS: 18.89%; PJ: 20.20%) after 20 days. The fungal pretreatment of WS and PJ with a high-lignin-degrading and low-holocellulose-degrading fungus (fungal isolate RCK-1) for 10 days resulted in (i) reduction in acid load for hydrolysis of structural polysaccharides (from 3.5% to 2.5% in WS and from 4.5% to 2.5% in PJ), (ii) an increase in the release of fermentable sugars (from 30.27 to 40.82 g L(-1) in WS and from 18.18 to 26.00 g L(-1) in PJ), and (iii) a reduction in fermentation inhibitors (total phenolics) in acid hydrolysate of WS (from 1.31 to 0.63 g L(-1)) and PJ (from 2.05 to 0.80 g L(-1)). Ethanol yield and volumetric productivity from RCK-1-treated WS (0.48 g g(-1) and 0.54 g L(-1) h(-1), respectively) and PJ (0.46 g g(-1) and 0.33 g L(-1) h(-1), respectively) were higher than untreated WS (0.36 g g(-1) and 0.30 g L(-1) h(-1), respectively) and untreated PJ (0.42 g g(-1) and 0.21 g L(-1) h(-1), respectively).

  1. Steam explosion pretreatment of wheat straw to improve methane yields: investigation of the degradation kinetics of structural compounds during anaerobic digestion.

    PubMed

    Theuretzbacher, Franz; Lizasoain, Javier; Lefever, Christopher; Saylor, Molly K; Enguidanos, Ramon; Weran, Nikolaus; Gronauer, Andreas; Bauer, Alexander

    2015-03-01

    Wheat straw can serve as a low-cost substrate for energy production without competing with food or feed production. This study investigated the effect of steam explosion pretreatment on the biological methane potential and the degradation kinetics of wheat straw during anaerobic digestion. It was observed that the biological methane potential of the non steam exploded, ground wheat straw (276 l(N) kg VS(-1)) did not significantly differ from the best steam explosion treated sample (286 l(N) kg VS(-1)) which was achieved at a pretreatment temperature of 140°C and a retention time of 60 min. Nevertheless degradation speed was improved by the pretreatment. Furthermore it was observed that compounds resulting from chemical reactions during the pretreatment and classified as pseudo-lignin were also degraded during the anaerobic batch experiments. Based on the rumen simulation technique, a model was developed to characterise the degradation process.

  2. Effects on Ni and Cd speciation in sewage sludge during composting and co-composting with steel slag.

    PubMed

    Zeng, Zheng-Zhong; Wang, Xiao-Li; Gou, Jian-Feng; Zhang, He-Fei; Wang, Hou-Cheng; Nan, Zhong-Ren

    2014-03-01

    Sewage sludge and industrial steel slag (SS) pose threats of serious pollution to the environment. The experiments aimed to improve the stabilizing effects of heavy metal Ni and Cd morphology in composting sludge. The total Ni and Cd species distribution and chemical forms in the compost sewage sludge were investigated with the use of compost and co-compost with SS, including degradation. The carbon/nitrogen ratio of piles was regulated with the use of sawdust prior to batch aerobic composting experiments. Results indicated that the co-composting with SS and organic matter humification can contribute to the formation of Fe and Mn hydroxides and that the humus colloid significantly changed Ni and Cd species distribution. The decreased content of Ni and Cd in an unstable state inhibited their biological activity. Conclusions were drawn that an SS amount equal to 7% of the dry sludge mass was optimal value to guarantee the lowest amount of Cd in an unstable state, whereas the amount was 14% for Ni.

  3. Protecting effect of recycled urban wastes (sewage sludge and wastewater) on ryegrass against the toxicity of pesticides at high concentrations.

    PubMed

    Peña, Aránzazu; Mingorance, Ma Dolores; Guzmán, Ignacio; Sánchez, Lourdes; Fernández-Espinosa, Antonio J; Valdés, Benito; Rossini-Oliva, Sabina

    2014-09-01

    Degraded landscapes, like those from abandoned mine areas, could be restored by revegetating them with appropriate plant species, after correction for acidity and improvement by adding exogenous organic material. Application of urban wastes to large areas of derelict land helps in the sustainable development of this landscape. However, the development of plant species in these soils could require in the future the management of possible pests or diseases by pesticide applications which could also affect plant yield. Therefore, ryegrass (Lolium perenne L.) was planted in a limed soil from the mining area of Riotinto (SW Spain), using an indoor pot experiment and the effects of amendment with sewage sludge, as well as irrigation with urban wastewater on plant uptake of the insecticide thiacloprid and the fungicide fenarimol were examined. Ryegrass biomass was reduced up to 3-fold by pesticide application. Fenarimol residues were the highest in soil, while those of thiacloprid were lower in soil and higher in ryegrass. Addition of sewage sludge and irrigation with wastewater led to a reduction of pesticide translocation to the aerial plant parts, representing a lower hazard to ryegrass quality grown in this mine soil.

  4. Co-digestion of glycerine and sewage sludge to optimise green electricity production.

    PubMed

    Maes, L; Weemaes, M; Hellinck, N; De Gueldre, G; Van De Steene, B

    2013-01-01

    Sewage sludge and crude glycerine were co-digested in the mesophilic digester of Hoogstraten wastewater treatment plant. Additions of up to 1 kg of crude glycerine/(m³ reactor).(day) were done without significant operational problems. At higher dosage, severe digester foaming was observed. Methane production during co-digestion was up to 20% higher than what would be expected based on the digester input. Compared to the period before glycerine dosage, every tonne of added crude glycerine resulted in a surplus methane production of 489 Nm³. The theoretical methane production from the used crude glycerine was 341 Nm³ per tonne. The difference is explained by a higher sewage sludge degradability during co-digestion with glycerine. Glycerine dosage can remedy the lowered specific biogas yield of sewage sludge in Flanders and consequently enhance green electricity production.

  5. Improvement of bioactivity, degradability, and cytocompatibility of biocement by addition of mesoporous magnesium silicate into sodium-magnesium phosphate cement.

    PubMed

    Wu, Yingyang; Tang, Xiaofeng; Chen, Jie; Tang, Tingting; Guo, Han; Tang, Songchao; Zhao, Liming; Ma, Xuhui; Hong, Hua; Wei, Jie

    2015-09-01

    A novel mesoporous magnesium-based cement (MBC) was fabricated by using the mixed powders of magnesium oxide, sodium dihydrogen phosphate, and mesoporous magnesium silicate (m-MS). The results indicate that the setting time and water absorption of the MBC increased as a function of increasing m-MS content, while compressive strength decreased. In addition, the degradability of the MBC in a solution of Tris-HCl and the ability of apatite formation on the MBC were significantly improved with the increase in m-MS content. In cell culture experiments, the results show that the attachment, proliferation, and alkaline phosphatase activity of the MC3T3-E1 cells on the MBC were significantly enhanced with the increase of the content of m-MS. It can be suggested that the MBC with good cytocompatibility could promote the proliferation and differentiation of the MC3T3-E1 cells. In short, our findings indicate that the MBC containing m-MS had promising potential as a new biocement for bone regeneration and repair applications.

  6. Modified DOP-PCR for improved STR typing of degraded DNA from human skeletal remains and bloodstains.

    PubMed

    Ambers, Angie; Turnbough, Meredith; Benjamin, Robert; Gill-King, Harrell; King, Jonathan; Sajantila, Antti; Budowle, Bruce

    2016-01-01

    Forensic and ancient DNA samples often are damaged and in limited quantity as a result of exposure to harsh environments and the passage of time. Several strategies have been proposed to address the challenges posed by degraded and low copy templates, including a PCR based whole genome amplification method called degenerate oligonucleotide-primed PCR (DOP-PCR). This study assessed the efficacy of four modified versions of the original DOP-PCR primer that retain at least a portion of the 5' defined sequence and alter the number of bases on the 3' end. The use of each of the four modified primers resulted in improved STR profiles from environmentally-damaged bloodstains, contemporary human skeletal remains, American Civil War era bone samples, and skeletal remains of WWII soldiers over those obtained by previously described DOP-PCR methods and routine STR typing. Additionally, the modified DOP-PCR procedure allows for a larger volume of DNA extract to be used, reducing the need to concentrate the sample and thus mitigating the effects of concurrent concentration of inhibitors.

  7. Adsorption of heavy metals on to sugar cane bagasse: improvement of adsorption capacities due to anaerobic degradation of the biosorbent.

    PubMed

    Joseph, Osnick; Rouez, Maxime; Métivier-Pignon, Hélène; Bayard, Rémy; Emmanuel, Evens; Gourdon, Rémy

    2009-12-01

    In this work, anaerobic degradation of sugar cane bagasse was studied with a dual objective: the production of biogas and the improvement of the material's characteristics for its implementation in adsorption processes. The biogas production was determined by means of biomethane potential tests carried out over two months of incubation at 35 degrees C. Biogas and methane cumulative productions were assumed to follow a first-order rate of decay. Theoretical cumulative methane and biogas productions were calculated using Buswell's equation. The anaerobic digestion resulted in a 92% decrease in the leachable organic fraction and a 40% mass loss of bagasse. The average productions of biogas and methane from the whole set of experiments were 293 +/- 6 and 122 +/- 4 mL g(-1) of volatile solids, respectively. The anaerobic incubation of the raw material led to an increase in adsorption capacities towards metal ions, which were multiplied by around 2.0 for Zn2+ and 2.3 for Cd2+.

  8. Revisiting methanotrophic communities in sewage treatment plants.

    PubMed

    Ho, Adrian; Vlaeminck, Siegfried E; Ettwig, Katharina F; Schneider, Bellinda; Frenzel, Peter; Boon, Nico

    2013-04-01

    The methanotrophic potential in sewage treatment sludge was investigated. We detected a diverse aerobic methanotrophic community that potentially plays a significant role in mitigating methane emission in this environment. The results suggest that community structure was determined by conditions specific to the processes in a sewage treatment plant.

  9. My Town, My Creek, My Sewage

    ERIC Educational Resources Information Center

    Woodburn, John H.

    1972-01-01

    After summarizing the ecology of polluted streams as well as the technology and biology of sewage treatment methods, and considering the economic and social aspects of introducing advanced sewage treatment, comments on the role of biology teachers in providing public information are made. (AL)

  10. 33 CFR 159.85 - Sewage removal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Sewage removal. 159.85 Section 159.85 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.85 Sewage removal. The...

  11. 33 CFR 159.85 - Sewage removal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Sewage removal. 159.85 Section 159.85 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.85 Sewage removal. The...

  12. 33 CFR 159.85 - Sewage removal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Sewage removal. 159.85 Section 159.85 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.85 Sewage removal. The...

  13. 33 CFR 159.85 - Sewage removal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Sewage removal. 159.85 Section 159.85 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.85 Sewage removal. The...

  14. 33 CFR 159.85 - Sewage removal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Sewage removal. 159.85 Section 159.85 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.85 Sewage removal. The...

  15. Sewage Disposal in Port Harcourt, Nigeria.

    ERIC Educational Resources Information Center

    Ayotamuno, M. J.

    1993-01-01

    This survey of the Port Harcourt, Nigeria, sewage disposal system exemplifies sewage disposal in the developing world. Results reveal that some well-constructed and maintained drains, as well as many open drains and septic tanks, expose women and children to the possibility of direct contact with parasitic organisms and threaten water resources.…

  16. Agronomic value of sewage sludge and corn cob biochar in an infertile Oxisol

    NASA Astrophysics Data System (ADS)

    Deenik, J. L.; Cooney, M. J.; Antal, M. J., Jr.

    2013-12-01

    Disposal of sewage sludge and other agricultural waste materials has become increasingly difficult in urban environments with limited land space. Carbonization of the hazardous waste produces biochar as a soil amendment with potential to improve soil quality and productivity. A series of greenhouse pot experiments were conducted to assess the agrnomic value of two biochars made from domestic wastewater sludge and corn cob waste. The ash component of the sewage sludge biochar was very high (65.5%) and high for the corn cob (11.4%) biochars. Both biochars contained low concentrations of heavy metals and met EPA land application criteria. The sewage sludge biochar was a better liming material and source of mineral nutrients than the corn cob biochar, but the corn cob biochar showed the greatest increase in soil carbon and total nitrogen. Both biochar materials increased soil pH compared with soils not receiving biochar, but the sewage sludge biochar was a more effective liming material maintaining elevated soil pH throughout the 3 planting cycles. The sewage sludge biochar also showed the greatest increase in extractable soil P and base cations. In the first planting cycle, both biochars in combination with conventional fertilizers produced significantly higher corn seedling growth than the fertilized control. However, the sewage sludge biochar maintained beneficial effects corn seedling growth through the third planting cycle showing 3-fold increases in biomass production compared with the control in the third planting. The high ash content and associated liming properties and mineral nutrient contributions in the sewage sludge biochar explain benefits to plant growth. Conversion of sewage sludge waste into biochar has the potential to effectively address several environmental issues: 1) convert a hazardous waste into a valuable soil amendment, 2) reduce land and water contamination, and 3) improve soil quality and productivity.

  17. Geomorphological Dating Using an Improved Scarp Degradation Model: Is This a Reliable Approach Compared With Common Absolute Dating Methods?

    NASA Astrophysics Data System (ADS)

    Oemisch, M.; Hergarten, S.; Neugebauer, H. J.

    2002-12-01

    Geomorphological dating of a certain landform or geomorphological structure is based on the evolution of the landscape itself. In this context it is difficult to use common absolute dating techniques such as luminescence and radiocarbon dating because they require datable material which is often not available. Additionally these methods do not always date the time since the formation of these structures. For these reasons the application of geomorphological dating seems one reliable possibility to date certain geomorphological features. The aim of our work is to relate present-day shapes of fault scarps and terrace risers to their ages. The time span since scarp formation ceased is reflected by the stage of degradation as well as the rounding of the profile edges due to erosive processes. It is assumed that the average rate of downslope soil movement depends on the local slope angle and can be described in terms of a diffusion equation. On the basis of these assumptions we present a model to simulate the temporal development of scarp degradation by erosion. A diffusivity reflecting the effects of soil erosion, surface runoff and detachability of particles as well as present-day shapes of scarps are included in the model. As observations of present-day scarps suggest a higher diffusivity at the toe than at the head of a slope, we suggest a linear approach with increasing diffusivities in downslope direction. First results show a better match between simulated and observed profiles of the Upper Rhine Graben in comparison to models using a constant diffusivity. To date the scarps the model has to be calibrated. For this purpose we estimate diffusivities by fitting modelled profiles to observed ones of known age. Field data have been collected in the area around Bonn, Germany and in the Alps, Switzerland. It is a matter of current research to assess the quality of this dating technique and to compare the results and the applicability with some of the absolute dating

  18. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  19. Proposal of a new degradation mechanism of enalapril maleate and improvement of enalapril maleate stability in tablet formulation with different stabilizers.

    PubMed

    Chen, J; Zhang, L H; Xu, R J; Bu, N J; Zhang, L

    2014-04-01

    Enalapril maleate (EM) is unstable in poorly designed tablet formulations. To improve the stability of EM, the degradation mechanism should be elucidated. In this study, we found that several commonly used excipients promoted the degradants of EM, particularly a diketopiperazine derivative (DKP). We propose two degradation pathways in which both acid and alkali can promote the formation of DKP, although previous reports suggested that DKP is produced mainly in acidic media. Based on the degradation pathways, we believe that subtle control of the microenvironmental pH can inhibit the formation of DKP. This was confirmed by the observation that the degradation rate became slower when certain organic acids were added to the binary mixtures of EM and excipient. The data showed that the stability of EM in the ternary mixtures was much higher than that in binary mixtures. It was further proved that tablets containing these organic acids produced less DKP after the accelerated test. We also found that the formation of DKP in tablets varied with different ratios of tartaric acid, which was used as a model organic acid. This illustrated that an optimum ratio of tartaric acid is required. These results indicated that the stability of EM in tablet formulation is closely associated with microenvironmental pH and the addition of a suitable organic acid based on the reaction mechanism is an effective strategy for improving the stability of EM.

  20. Improved WO3 photocatalytic efficiency using ZrO2 and Ru for the degradation of carbofuran and ampicillin.

    PubMed

    Gar Alalm, Mohamed; Ookawara, Shinichi; Fukushi, Daisuke; Sato, Akira; Tawfik, Ahmed

    2016-01-25

    The photocatalytic degradation of carbofuran (pesticide) and ampicillin (pharmaceutical) using synthesized WO3/ZrO2 nanoparticles under simulated solar light was investigated. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectra analyses were used to characterize the prepared catalysts. The optimum ratio of WO3 to ZrO2 was determined to be 1:1 for the degradation of both contaminants. The degradation of carbofuran and ampicillin by WO3/ZrO2 after 240 min of irradiation was 100% and 96%, respectively. Ruthenium (Ru) was employed as an additive to WO3/ZrO2 to enhance the photocatalytic degradation rate. Ru/WO3/ZrO2 exhibited faster degradation rates than WO3/ZrO2. Furthermore, 100% and 97% degradation of carbofuran and ampicillin, respectively, was achieved using Ru/WO3/ZrO2 after 180 min of irradiation. The durability of the catalyst was investigated by reusing the same suspended catalyst, which achieved 92% of its initial efficiency. The photocatalytic degradation of ampicillin and carbofuran followed pseudo-first order kinetics according to the Langmuir-Hinshelwood model.

  1. Positive role of incorporating P-25 TiO2 to mesoporous-assembled TiO2 thin films for improving photocatalytic dye degradation efficiency.

    PubMed

    Sreethawong, Thammanoon; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2014-09-15

    In this work, a simple and effective strategy to improve the photocatalytic dye degradation efficiency of the mesoporous-assembled TiO2 nanoparticle thin films by incorporating small contents of commercial P-25 TiO2 during the thin film preparation was developed. The mesoporous-assembled TiO2 nanoparticles were synthesized by a sol-gel method with the aid of a mesopore-directing surfactant, followed by homogeneously mixing with P-25 TiO2 prior to the thin film coating on glass substrate. The mesoporous-assembled TiO2 film with 5 wt.% P-25 TiO2 incorporation and calcined at 400°C provided an improved photocatalytic Acid Black (AB) dye degradation efficiency. The increase in number of coated layers to the optimum four layers of the aforementioned film was found to further improve the degradation efficiency. The recyclability test of this 5 wt.% P-25 TiO2-incorporated mesoporous-assembled TiO2 film with four coated layers revealed that it can be reused for multiple cycles without a requirement of post-treatment while the degradation efficiency was retained.

  2. Sewage sludge pasteurization by gamma radiation: Financial viability case studies

    NASA Astrophysics Data System (ADS)

    Swinwood, Jean F.; Kotler, Jiri

    This paper examines the financial viability of sewage sludge pasteurization by gamma radiation, by examining the following three North American scenarios: 1) Small volume sewage treatment plant experiencing high sludge disposal costs. 2) Large volume sewage treatment plant experiencing low sludge disposal costs. 3) Large volume sewage treatment plant experiencing high sludge disposal costs.

  3. A study on torrefaction of sewage sludge to enhance solid fuel qualities.

    PubMed

    Poudel, Jeeban; Ohm, Tae-In; Lee, Sang-Hoon; Oh, Sea Cheon

    2015-06-01

    Torrefaction is a treatment which serves to improve the properties of biomass in relation to thermochemical processing techniques for energy generation. In this study, the torrefaction of sewage sludge, which is a non-lignocellulosic waste was investigated in a horizontal tubular reactor under nitrogen flow at temperature ranging from 150 to 400°C, for torrefaction residence time varying from 0 to 50 min. The torrefaction kinetics of sewage sludge was studied to obtain the kinetic parameters. The torrefied sewage sludge products were characterized in terms of their elemental composition, energy yield, ash content and volatile fraction. The energy and mass yields decreased with an increase in the torrefaction temperature. From an elemental analysis, the weight percentage of carbon in the sewage sludge increased with an increase in the torrefaction temperature. On the other hand, the weight percentages of hydrogen and oxygen tended to decrease. The gaseous products from torrefaction of sewage sludge were also analyzed. From this work, it was found that the compounds with oxygen were emitted at a temperature lower than that for hydrocarbon gases and the temperatures of 300-350°C were the optimum torrefaction temperatures for sewage sludge.

  4. Pharmaceutical load in sewage sludge and biochar produced by hydrothermal carbonization.

    PubMed

    vom Eyser, C; Palmu, K; Schmidt, T C; Tuerk, J

    2015-12-15

    We investigated the removal of twelve pharmaceuticals in sewage sludge by hydrothermal carbonization (HTC), which has emerged as a technology for improving the quality of organic waste materials producing a valuable biochar material. In this study, the HTC converted sewage sludge samples to a biochar product within 4h at a temperature of 210 °C and a resulting pressure of about 15 bar. Initial pharmaceutical load of the sewage sludge was investigated as well as the residual concentrations in biochar produced from spiked and eight native sewage sludge samples from three waste water treatment plants. Additionally, the solid contents of source material and product were compared, which showed a considerable increase of the solid content after filtration by HTC. All pharmaceuticals except sulfamethoxazole, which remained below the limit of quantification, frequently occurred in the investigated sewage sludges in the μg/kg dry matter (DM) range. Diclofenac, carbamazepine, metoprolol and propranolol were detected in all sludge samples with a maximum concentration of 800 μg/kgDM for metoprolol. HTC was investigated regarding its contaminant removal efficiency using spiked sewage sludge. Pharmaceutical concentrations were reduced for seven compounds by 39% (metoprolol) to≥97% (carbamazepine). In native biochar samples the four compounds phenazone, carbamazepine, metoprolol and propranolol were detected, which confirmed that the HTC process can reduce the load of micropollutants. In contrast to the other investigated compounds phenazone concentration increased, which was further addressed in thermal behaviour studies including three structurally similar potential precursors.

  5. Characterization of sewage sludge organic matter using solid-state carbon-13 nuclear magnetic resonance spectroscopy.

    PubMed

    Smernik, Ronald J; Oliver, Ian W; Merrington, Graham

    2003-01-01

    Six sewage sludges from five sewage treatment plants in Australia were characterized using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Spectra were acquired both before and after removal of mineral components through treatment with hydrofluoric acid (HF). Carbon mass balance indicated that little organic matter was lost on HF treatment, which significantly improved NMR sensitivity and spectral resolution, and decreased acquisition time and hence cost of NMR analysis. Two NMR techniques were used, the standard cross polarization (CP) technique and Bloch decay (BD). The BD technique had not been applied previously to the analysis of sewage sludge. For each sludge sample, both before and after HF treatment, the BD spectrum contained significantly more alkyl carbon. Spin counting, another technique applied to sewage sludge here for the first time, showed that the BD spectra of the HF-treated sludges were quantitative, while approximately 30% of the CP NMR signal went undetected. The discrepancy between CP and BD spectra was attributed to the presence of alkyl carbon with such high molecular mobility that the efficiency of cross polarization is affected. This study shows that sewage sludge organic matter is significantly different in chemistry to soil organic matter and has implications for the application of sewage sludge to agricultural land.

  6. Nutrient sequestration, biomass production by microalgae and phytoremediation of sewage water.

    PubMed

    Renuka, N; Sood, A; Ratha, S K; Prasanna, R; Ahluwalia, A S

    2013-01-01

    The present work was aimed at analysing the role of inoculated microalgae in nutrient dynamics, bioremediation and biomass production of sewage water. Preliminary microscopic analyses of sewage water revealed the presence of different algal groups, with predominance of Cyanophyta. Among the inoculated strains, Calothrix showed highest dry cell weight (916.67 mg L(-1)), chlorophyll and carotenoid content in tap water + sewage water (1:1) treatment. Significant removal of NO3-N ranging from 57-78% and PO4-P (44-91%) was recorded in microalgae inoculated tap water + sewage water. The total dissolved solids and electrical conductivity of tap water + sewage water after incubation with Calothrix sp. decreased by 28.5 and 28.0%, accompanied by an increase in dissolved oxygen from 4.4 to 6.4 mg L(-1) on the 20th day. Our investigation revealed the robustness of Calothrix sp. in sequestering nutrients (N and P), improving water quality and proliferating in sewage water.

  7. Analyzing hydrocarbons in sewer to help in PAH source apportionment in sewage sludges.

    PubMed

    Mansuy-Huault, Laurence; Regier, Annette; Faure, Pierre

    2009-05-01

    A multi-molecular approach for polycyclic aromatic hydrocarbons (PAH) source apportionment in sewage sludge was tested. Three simple catchment areas with corresponding wastewater treatment plants (WWTP) were chosen. Sewage sludges of these WWTPs chronically exceeded the French guide values for PAHs. Aliphatic and aromatic hydrocarbons were quantified in sediments or wastewater suspended particulate matter sampled in different locations of the sewer as well as in sewage sludge. Various molecular indices including PAH ratios were calculated. The results showed that the ratios calculated from sewage sludge analyses provided a rather unspecific hydrocarbon fingerprint where combustion input appear as the main PAH sources. The complexity of the inputs as well as degradation occurring during wastewater treatment prevent any detailed diagnosis. Coupled to the analyses of samples collected in the sewer, the multi-molecular approach becomes more efficient especially for the identification of specific petroleum inputs such as fuel or used lubricating oils which can be important PAH sources. Indeed, the sampling in the sewer allows a spatial screening of the hydrocarbon inputs and facilitates the PAH source apportionment by avoiding the dilution of specific inputs with the whole wastewater inputs and by limiting the degradation of the molecular fingerprint that could occur during transfer and treatment in the WWTP. Then, the combination of PAH ratios and aliphatic distribution analyses is a very valuable approach that can help in sewer and WWTP management.

  8. Factors favoring a degradation or an improvement in activities of daily living (ADL) performance among nursing home (NH) residents: a survival analysis.

    PubMed

    Bürge, Elisabeth; von Gunten, Armin; Berchtold, André

    2013-01-01

    Different factors influence ADL performance among nursing home (NH) residents in long term care. The aim was to investigate which factors were associated with a significant change of ADL performance in NH residents, and whether or not these factors were gender-specific. The design was a survival analysis. The 10,199 participants resided in ninety Swiss NHs. Their ADL performance had been assessed by the Resident Assessment Instrument Minimum Data Set (RAI-MDS) in the period from 1997 to 2007. Relevant change in ADL performance was defined as 2 levels of change on the ADL scale between two successive assessments. The occurrence of either an improvement or a degradation of the ADL status) was analyzed using the Cox proportional hazard model. The analysis included a total of 10,199 NH residents. Each resident received between 2 and 23 assessments. Poor balance, incontinence, impaired cognition, a low BMI, impaired vision, no daily contact with proxies, impaired hearing and the presence of depression were, by hierarchical order, significant risk factors for NH residents to experience a degradation of ADL performance. Residents, who were incontinent, cognitively impaired or had a high BMI were significantly less likely to improve their ADL abilities. Male residents with cancer were prone to see their ADL improve. The year of NH entry was significantly associated with either degradation or improvement of ADL performance. Measures aiming at improving balance and continence, promoting physical activity, providing appropriate nourishment and cognitive enhancement are important for ADL performance in NH residents.

  9. Microwave Supported Treatment of Sewage Sludge

    NASA Astrophysics Data System (ADS)

    Janíček, František; Perný, Milan; Šály, Vladimír; Giemza, Markus; Hofmann, Peter

    2016-07-01

    This work is focused on microwave treatment of sewage sludge. The aim of our experiments was to investigate the impact of microwave radiation upon different sewage sludge parameters such as concentration of nitrates and nitrites, phosphates, COD (Chemical Oxygen Demand), SVI (Sludge Volume Index) and the microscopic structure of sludge. The experiments with microwave irradiation of sewage sludge indicate that moderate microwave power causes visible effects on the chemical, physical and biological properties of the sludge. The calculation of profitability and energy efficiency is also presented.

  10. Amelioration of groundwater nitrate contamination following installation of a central sewage system in two Israeli villages

    NASA Astrophysics Data System (ADS)

    Avisar, Dror; Kronfeld, Joel; Siep Talma, A.

    2009-08-01

    This study traces both the long-term deterioration of the ground water supply in two neighboring villages that had relied upon cesspits/cesspools for waste disposal, as well as the subsequent progressive improvement to original water quality levels. The rapid improvement is attributed to the replacement of the cesspits by a central sewage disposal network. In each of the villages of Kefar Bara and Kefar Kassem, a single, relatively deep, community well supplies drinking water. These wells were drilled into the underlying carbonate Judea Group aquifer that initially provided very high quality potable water. Over time, large increases in the nitrate contamination, reaching to as high as 67 mg/L nitrate, paralleled the population growth. The higher dissolved nitrate concentrations were also marked by enrichments in the δ15 N (approximately +8 ‰(air)) values above those of the surrounding and regional uncontaminated background δ15 N values (in the range of +3 to +6 ‰ (air)). Within several years after the cesspit disposal was terminated the nitrate values declined to concentrations that were reported (approximately 25 mg/L-NO3) decades prior, when the water quality monitoring had just commenced. This study demonstrates not only how water quality can degrade but also how it can be restored once the problem is identified and countered. This simple method of ameliorating a water quality problem that was tending towards reaching serious proportions would seem to be quite efficacious for any area lacking economic alternative water resources.

  11. Inoculation with a mixed degrading culture improves the pesticide removal of an on-farm biopurification system.

    PubMed

    Verhagen, Pieter; De Gelder, Leen; Boon, Nico

    2013-10-01

    To investigate whether the pesticide removal in on-farm biopurification systems (BPS) filled with two different types of substrata (biomix and plastic carriers) is affected by inoculation with a pesticide-degrading strain or mixed culture, lab-scale BPS used to treat chloropropham point source contaminations were bioaugmented with either a specialized chloropropham-degrading strain or a chloropropham-degrading enrichment culture. Application of both inoculum types leads to an accelerated degradation activity in the columns filled with plastic carriers. For both substratum types, inoculation with the mixed culture resulted in a lower breakthrough of the toxic intermediate 3-chloroaniline at high hydraulic loads, compared to inoculation with the pure isolate and no inoculation. This study suggests that the use of plastic carrier materials could be a proficient alternative to the use of a conventional biomix as a substratum in on-farm BPS and that inoculation with a mixed degrading culture can reduce the leaching of more mobile toxic intermediates.

  12. The occurrence and significance to animal health of salmonellas in sewage and sewage sludges.

    PubMed Central

    Jones, P. W.; Rennison, L. M.; Lewin, V. H.; Redhead, D. L.

    1980-01-01

    A total of 882 samples of settled sewage, sewage sludges and final effluents from eight sewage treatment plants were examined for the presence of salmonellas. Of these samples 68% were positive, isolations being made most frequently from settled sewage (85%), raw sludge (87%) and anaerobically digested sludge (96%). Fewer isolations were made from final effluent (24%) and processed sludges (58%). Samples usually contained less than 200 salmonellas/100 ml and arguments are presented that such concentrations should not lead to disease in animals if suitable grazing restrictions are followed. PMID:6985928

  13. Flow characteristics of the raw sewage for the design of sewage-source heat pump systems.

    PubMed

    Xu, Ying; Wu, Yuebin; Sun, Qiang

    2014-01-01

    The flow characteristics of raw sewage directly affect the technical and economic performance of sewage-source heat pump systems. The purpose of this research is to characterize the flow characteristics of sewage by experimental means. A sophisticated and flexible experimental apparatus was designed and constructed. Then the flow characteristics of the raw sewage were studied through laboratorial testing and theoretical analyses. Results indicated that raw sewage could be characterized as a power-law fluid with the rheological exponent n being 0.891 and the rheological coefficient k being 0.00175. In addition, the frictional loss factor formula in laminar flow for raw sewage was deduced by theoretical analysis of the power-law fluid. Furthermore, an explicit empirical formula for the frictional loss factor in turbulent flow was obtained through curve fitting of the experimental data. Finally, the equivalent viscosity of the raw sewage is defined in order to calculate the Reynolds number in turbulent flow regions; it was found that sewage had two to three times the viscosity of water at the same temperature. These results contributed to appropriate parameters of fluid properties when designing and operating sewage-source heat pump systems.

  14. Thermal hydrolysis for sewage treatment: A critical review.

    PubMed

    Barber, W P F

    2016-11-01

    A review concerning the development and applicability of sewage sludge thermal hydrolysis especially prior to anaerobic digestion is presented. Thermal hydrolysis has proven to be a successful approach to making sewage sludge more amenable to anaerobic digestion. Currently there are 75 facilities either in operation or planning, spanning several continents with the first installation in 1995. The reported benefits of thermal hydrolysis relate to: increased digestion loading rate due to altered rheological properties, improved biodegradation of (especially activated) sludge and enhanced dewaterability. In spite of its relative maturity, there has been no attempt to perform a critical review of the pertinent literature relating to the technology. Closer look at the literature reveals complications with comparing both experimental- and full-scale results due to differences in experimental set-up and capability, and also site-specific conditions at full-scale. Furthermore, it appears that understanding of thermodynamic and rheological properties of sludge is key to optimizing the process, however these parameters are largely overlooked by the literature. This paper aims to bridge these complexities in order to elucidate the benefits of thermal hydrolysis for sewage treatment, and makes recommendations for further development and research.

  15. Strategic environmental assessment of alternative sewage sludge management scenarios.

    PubMed

    Poulsen, Tjalfe G; Hansen, Jens Aa

    2003-02-01

    Strategic environmental assessment (SEA) of sewage sludge management in a Danish municipality (Aalborg), with 160,000 inhabitants using alternative methods for aggregation of environmental impacts was performed. The purpose is to demonstrate the use of SEA in relation to sludge management and to improve SEA methodology. Six different scenarios for management of sewage sludge within the Aalborg municipality involving thermal treatment, composting and landfilling of sludge were evaluated. Environmental impact categories considered were global warming, non-renewable resources (nutrients and fossil fuels) and land use. Impact categories human health, ecotoxicity and soil quality were excluded as methodology for their assessment is not yet fully developed. Thermal sludge treatment with energy utilisation was shown to be a promising option for sewage sludge management in Aalborg. Sensitivity of the relative environmental impacts with respect to calculation methodology and input parameter values were evaluated to identify important parameters and calculation methods. The analysis showed that aggregation procedures, sludge biogas potential and sludge production were very important whereas sludge transport was not.

  16. Pathway of radioisotopes from land surface to sewage sludge

    NASA Astrophysics Data System (ADS)

    Fischer, Helmut W.; Yokoo, Yoshiyuki

    2014-05-01

    Radioactive surface contaminations will only partially remain at the original location - a fraction of the inventory will take part in (mainly terrestrial and aquatic) environmental transport processes. The probably best known and most important process comprises the food chain. Besides, the translocation of dissolved and particle-bound radioisotopes with surface waters plays an important role. These processes can have the effect of displacing large radioisotope amounts over considerable distances and of creating new sinks and hot spots, as it is already known for sewage sludge. We are reporting on a combined modeling and experimental project concerning the transport of I-131 and Cs-134/Cs-137 FDNPP 2011 depositions in the Fukushima Prefecture. Well-documented experimental data sets are available for surface deposition and sewage sludge concentrations. The goal is to model the pathway in between, involving surface runoff, transport in the sewer system and processes in the sewage treatment plant. Watershed runoff and sewer transport will be treated with models developed recently by us in other projects. For sewage treatment processes a new model is currently being constructed. For comparison and further validation, historical data from Chernobyl depositions and tracer data from natural and artificial, e.g. medical, isotopes will be used. First results for 2011 data from Fukushima Prefecture will be presented. The benefits of the study are expected to be two-fold: on one hand, the abundant recent and historical data will help to develop and improve environmental transport models; on the other hand, both data and models will help in identifying the most critical points in the envisaged transport pathways in terms of radiation protection and waste management.

  17. Applying sewage epidemiology approach to estimate illicit drug consumption in a tropical context: Bias related to sewage temperature and pH.

    PubMed

    Devault, Damien A; Lévi, Yves; Karolak, Sara

    2017-04-15

    Illicit drug consumption can be estimated from drug target residue (DTR) in wastewater, with the reliability of results being partly linked to DTR stability in the sewage network. However, wastewater temperature and pH drive the stability of molecules and, in this context, tropical conditions must be studied to specify the impact of residence time in the sewage network on DTR degradation. Warmth enhances biotic and abiotic processes such as degradation, leading to a decrease in oxygen content, and consequently, early diagenesis conditions in wastewater. In this study, we conduct laboratory studies under acidic pH and high temperature (30°C) conditions to determine the degradation half-lives of cocaine (COC), tetrahydrocannabinol, and heroine targets, allowing COC/benzoylecgonine (BZE) ratio variations to be predicted in sewage networks. A rapid COC degradation is observed, as already reported in the literature but without a short-term significant difference between 20°C and 30°C. Acidic pH seems to prevent degradation. Thus, theoretically, the use of COC as DTR is only reliable in acidic conditions, with the decrease in COC concentration being 6% at 8h, but over 40% in other conditions. By contrast, the use of BZE as DTR to estimate COC consumption, which is performed in practice, can be undertaken with the same back-calculation equation as used in temperate countries. However, 11-nor-delta-9-carboxytetrahydrocannabinol stability is more influenced by high temperature: concentration levels after 24h are 20% lower at 30°C than at 20°C, corresponding to a 20% and 40% decrease, respectively. Based on a mean residence time of 8h, underestimated cannabis consumption is close to 15% in tropical contexts, which is double that of temperate areas.

  18. Concentrations and specific loads of UV filters in sewage sludge originating from a monitoring network in Switzerland.

    PubMed

    Plagellat, Cécile; Kupper, Thomas; Furrer, Reinhard; de Alencastro, Luiz Felippe; Grandjean, Dominique; Tarradellas, Joseph

    2006-02-01

    Many substances related to human activities end up in wastewater and accumulate in sewage sludge. The present study focuses on the analysis of widely used UV filters 3-(4-methylbenzylidene) camphor (4-MBC), octyl-methoxycinnamate (OMC), octocrylene (OC) and octyl-triazone (OT) in sewage sludge originating from a monitoring network in Switzerland. Mean concentrations in stabilised sludge from 14 wastewater treatment plants were 1780, 110, 4840 and 5510 microg/kg dry matter for 4-MBC, OMC, OC and OT, respectively. Specific loads in sewage sludge show that UV filters originate mainly from private households, but surface runoff and industries may be considered as additional sources. This indicates that besides use for sunscreens and cosmetics UV filters might occur in plastics and other materials and be released to the environment by volatilization or leaching. Differences between the modeled per capita loads of UV filters in sewage sludge and the observed specific loads in sewage sludge are probably due to erroneous figures of production volumes, degradation and sorption during wastewater treatment as well as degradation processes during transport in the sewer or sludge treatment. Thus, further research is needed to elucidate the fate of UV filters after application and release into the environment. Other compounds used as UV filters should be included in future studies.

  19. A Family Physician's Guide to Sewage Sludge

    PubMed Central

    Connop, Peter J.

    1983-01-01

    The potential environmental and personal health effects from the agricultural uses of domestic sewage sludge may increasingly require the guidance of the family physician, especially in farming communities. This article summarizes the potential health hazards and outlines the tripartite risk phenomenon—hazard identification, risk assessment, and social evaluation. For the agricultural use of dewatered sewage sludge, strict adherence to regulated procedures should not increase risk beyond that of agriculture generally. Confirmation by prospective epidemiological studies is recommended. PMID:21283298

  20. Dry co-digestion of sewage sludge and rice straw under mesophilic and thermophilic anaerobic conditions.

    PubMed

    Chu, Xiangqian; Wu, Guangxue; Wang, Jiaquan; Hu, Zhen-Hu

    2015-12-01

    Dry anaerobic digestion of sewage sludge can recover biogas as energy; however, its low C/N ratio limits it as a single substrate in the anaerobic digestion. Rice straw is an abundant agricultural residue in China, which is rich in carbon and can be used as carbon source. In the present study, the performance of dry co-digestion of sewage sludge and rice straw was investigated under mesophilic (35 °C) and thermophilic (55 °C) conditions. The operational factors impacting dry co-digestion of sewage sludge and rice straw such as C/N ratio, moisture content, and initial pH were explored under mesophilic conditions. The results show that low C/N ratios resulted in a higher biogas production rate, but a lower specific biogas yield; low moisture content of 65 % resulted in the instability of the digestion system and a low specific biogas yield. Initial pH ranging 7.0-9.0 did not affect the performance of the anaerobic digestion. The C/N ratio of 26-29:1, moisture content of 70-80 %, and pH 7.0-9.0 resulted in good performance in the dry mesophilic co-digestion of sewage sludge and rice straw. As compared with mesophilic digestion, thermophilic co-digestion of sewage sludge and rice straw significantly enhanced the degradation efficiency of the substrates and the specific biogas yield (p < 0.05) at the conditions of C/N ratio 26:1, moisture content 80 %, and natural initial pH. Although high concentrations of ammonia-nitrogen (NH4-N, 1500 mg/kg wet weight) were formed during thermophilic digestion, there was no obvious inhibition occurred. The results indicated that rice straw can be used as carbon source for the dry co-digestion of sewage sludge under mesophilic and thermophilic conditions.

  1. Improved mortality of the Formosan subterranean termite by fungi, when amended with cuticle-degrading enzymes or eicosanoid biosynthesis inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Formosan subterranean termites (FST) were exposed to spores of the fungus Beauveria pseudobassiana (Bpb) strain 8046 to determine virulence of the fungus. Once Bpb was determined to cause mortality of FST it was combined with enzymes capable of degrading the insect cuticle to measure the potential ...

  2. Improvements to the design process for a real-time passive millimeter-wave imager to be used for base security and helicopter navigation in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Anderton, Rupert N.; Cameron, Colin D.; Burnett, James G.; Güell, Jeff J.; Sanders-Reed, John N.

    2014-06-01

    This paper discusses the design of an improved passive millimeter wave imaging system intended to be used for base security in degraded visual environments. The discussion starts with the selection of the optimum frequency band. The trade-offs between requirements on detection, recognition and identification ranges and optical aperture are discussed with reference to the Johnson Criteria. It is shown that these requirements also affect image sampling, receiver numbers and noise temperature, frame rate, field of view, focusing requirements and mechanisms, and tolerance budgets. The effect of image quality degradation is evaluated and a single testable metric is derived that best describes the effects of degradation on meeting the requirements. The discussion is extended to tolerance budgeting constraints if significant degradation is to be avoided, including surface roughness, receiver position errors and scan conversion errors. Although the reflective twist-polarization imager design proposed is potentially relatively low cost and high performance, there is a significant problem with obscuration of the beam by the receiver array. Methods of modeling this accurately and thus designing for best performance are given.

  3. Management of sewage sludge by composting using fermented water hyacinth.

    PubMed

    Tello-Andrade, A F; Jiménez-Moleón, M C; Sánchez-Galván, G

    2015-10-01

    The goal of the present research work was to assess the management of sewage sludge (SS) by composting using fermented water hyacinth (WHferm) as an amendment. The water hyacinth was fermented, and a higher production of volatile fatty acids (VFAs) (782.67 mg L(-1)) and soluble organic carbon (CSOL) (4788.34 mg L(-1)) was obtained using a particle size of 7 mm compared to 50 mm. For composting, four treatments (10 kg fresh weight each) were evaluated: treatment A (100 % SS + 0 % WHferm), treatment B (75 % SS + 25 % WHferm), treatment C (50 % SS + 50 % WHferm), and treatment D (25 % SS + 75 % WHferm). The WHferm added to SS, especially in treatments C (50 %) and D (75 %), increased the initial contents of organic matter (OM), organic carbon (CORG), CSOL, the C/N ratio, and the germination index (GI). The heavy metal content (HMC) (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) at the beginning was below the maximum allowed by USEPA regulations. All of the samples were free of Salmonella sp. from the beginning. The reduction of the CORG, CSOL, total Kjeldahl nitrogen (TKN), and C/N ratio indicated the degradation of the OM by day 198. The treatments with WHferm (B, C, and D) yielded higher values of electrical conductivity, cation exchange capacity, and GI than SS at day 198. No significant differences were observed in GI among the treatments with WHferm. The fecal coliforms were eliminated (<3 MPN g(-1)) and the helminths were reduced to ≤5 eggs/2 g during the process. The competition for nutrients and the presence of suppressive fungi of the genera Penicillium, Rhizopus, Paecilomyces (penicillin producers), and Fusariella isolated from the compost may have promoted the elimination of pathogens since no thermophile temperatures were obtained. WHferm as an amendment in the composting of SS improved the characteristics of the final product, especially when it was used in proportions of 25 and 50 %. An excellent product was obtained in terms of HMC, and the product was B class

  4. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect

    Mark R. Cole

    2013-12-01

    The Central Facilities Area (CFA), located in Butte County, Idaho, at the Idaho National Laboratory has an existing wastewater system to collect and treat sanitary wastewater and non-contact cooling water from the facility. The existing treatment facility consists of three cells: Cell #1 has a surface area of 1.7 acres, Cell #2 has a surface area of 10.3 acres, and Cell #3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5-acre land application site that uses a center-pivot irrigation sprinkler system. As flows at CFA have decreased in recent years, the amount of wastewater discharged to the land application site has decreased from 13.64 million gallons in 2004 to no discharge in 2012 and 2013. In addition to the decreasing need for land application, approximately 7.7 MG of supplemental water was added to the system in 2013 to maintain a water level and prevent the clay soil liners in the cells from drying out and “cracking.” The Idaho National Laboratory is concerned that the sewage lagoons and land application site may be oversized for current and future flows. A further concern is the sustainability of the large volumes of supplemental water that are added to the system according to current operational practices. Therefore, this study was initiated to evaluate the system capacity, operational practices, and potential improvement alternatives, as warranted.

  5. Gadolinium oxide decorated multiwalled carbon nanotube/tridoped titania nanocomposites for improved dye degradation under simulated solar light irradiation

    SciTech Connect

    Mamba, Gcina; Mbianda, Xavier Yangkou; Mishra, Ajay Kumar

    2016-03-15

    Graphical abstract: Illustration of the collaborative effect between MWCNT-Gd and Gd,N,S-TiO{sub 2} towards degradation of AB 74. - Highlights: • MWCNT-Gd/tridoped titania was successfully prepared via a sol-gel method. • XPS revealed the presence of Ti, C, O, S, N and Gd in MWCNT-Gd/Gd,N,S-TiO{sub 2}. • MWCNT-Gd/Gd,N,S-TiO{sub 2} displayed 100% degradation of acid blue 74 in 150 min. • Over 60% TOC removal by MWCNT-Gd/Gd,N,S-TiO{sub 2}. - Abstract: Neodymium/gadolinium/europium, nitrogen and sulphur tridoped titania (Nd/Gd/Eu, N,S-TiO{sub 2}) was hybridised with pre-synthesised gadolinium oxide decorated multiwalled carbon nanotubes (MWCNT-Gd) using a sol–gel method. Subsequent to drying and calcination, composite photocatalysts: MWCNT-Gd/Nd,N,S-TiO{sub 2}, MWCNT-Gd/Gd,N,S-TiO{sub 2} and MWCNT-Gd/Eu,N,S-TiO{sub 2}, were obtained and characterised using TEM, SEM-EDX, UV–vis, XPS, XRD and FT-IR. Acid blue 74 (AB74) was used as a model dye to investigate the photocatalytic degradation properties of the prepared materials under simulated solar light irradiation. Coupling the different tridoped titania with MWCNT-Gd enhanced their activity compared to MWCNT/TiO{sub 2}, MWCNT-Gd/TiO{sub 2} and MWCNT/Gd,N,S-TiO{sub 2}. MWCNT-Gd/Gd,N,S-TiO{sub 2} showed the highest activity towards AB74 degradation reaching 100% decolourisation after 150 min of irradiation. Total organic carbon analysis revealed that over 50% of the AB74 molecules were completely mineralised after 180 min of irradiation in the presence of MWCNT-Gd/Gd,N,S-TiO{sub 2}.

  6. Improvement of ethanol productivity and energy efficiency by degradation of inhibitors using recombinant Zymomonas mobilis (pHW20a-fdh).

    PubMed

    Dong, Hong-Wei; Fan, Li-Qiang; Luo, Zichen; Zhong, Jian-Jiang; Ryu, Dewey D Y; Bao, Jie

    2013-09-01

    Toxic compounds, such as formic acid, furfural, and hydroxymethylfurfural (HMF) generated during pretreatment of corn stover (CS) at high temperature and low pH, inhibit growth of Zymomonas mobilis and lower the conversion efficiency of CS to biofuel and other products. The inhibition of toxic compounds is considered as one of the major technical barriers in the lignocellulose bioconversion. In order to detoxify and/or degrade these toxic compounds by the model ethanologenic strain Z. mobilis itself in situ the fermentation medium, we constructed a recombinant Z. mobilis ZM4 (pHW20a-fdh) strain that is capable of degrading toxic inhibitor, formate. This is accomplished by cloning heterologous formate dehydrogenase gene (fdh) from Saccharomyces cerevisiae and by coupling this reaction of NADH regeneration reaction system with furfural and HMF degradation in the recombinant Z. mobilis strain. The NADH regeneration reaction also improved both the energy efficiency and cell physiological activity of the recombinant organism, which were definitely confirmed by the improved cell growth, ethanol yield, and ethanol productivity during fermentation with CS hydrolysate.

  7. Improvement of physico-mechanical, thermomechanical, thermal and degradation properties of PCL/gelatin biocomposites: Effect of gamma radiation

    NASA Astrophysics Data System (ADS)

    Zaman, Haydar U.; Beg, M. D. H.

    2015-04-01

    This research was to study the effects of gelatin content variation and gamma radiation after the 2-ethylhexyl acrylate (EHA) pre-treatment on the foundamental properties of gelatin film laminated polycaprolactone (PCL) biocomposites. PCL/gelatin film (PCL/GF) composites were fabricated by compression molding and their properties were studied by physico-mechanical, thermomechanical, thermal and degradation properties. The results from mechanical properties such as tensile modulus and impact strength of the composites increased with increasing of gelatin content up to 10 wt% and then decreased while the tensile strength and elongation at break decreased. EHA monomer (2-8 wt%) was added to the gelatin solution and films were prepared by casting and found to increase the mechanical properties of the PCL/EHA blended gelatin film (PCL/EGF) composites. Treatment of the gelatin film with gamma radiation after the EHA pre-treatment showed the best mechanical properties of the resulting composites. Dynamic mechanical thermal analysis results showed that the storage modulus of the PCL/EGF and PCL/EHA blended gelatin film with gamma radiation (PCL/GEGF) composites was increased significantly. The degradation properties in water and soil were determined for the non-irradiated and irradiated composites. It was observed that the non-irradiated composite degrades more than that of the irradiated composites.

  8. A critical review on gas diffusion micro and macroporous layers degradations for improved membrane fuel cell durability

    NASA Astrophysics Data System (ADS)

    Lapicque, Francois; Belhadj, Mariem; Bonnet, Caroline; Pauchet, Joël; Thomas, Yohann

    2016-12-01

    Formerly considered as a secondary component of fuel cell, gas diffusion layers (GDLs) have been shown to have a key role in gas transport to the catalyst layers and in water management: in particular, the microporous layer (MPL) deposited on the diffusion substrate has an active part in water distribution in the membrane electrode assembly and in its efficient removal from the cell. In addition to its perfect design for the targeted application and in combination with the macroporous substrate (MPS), the MPL structure and physicochemical properties have to contribute to the cell durability, which is still considered as insufficient for larger, massive commercialisation of this energy conversion system. The paper is aimed at reviewing the main knowledge gained on the role of the MPL on GDL operation and durability, with investigation of degradation phenomena of both MPL and MPS, together with the role played by the MPL in mitigating the occurrence of degradation phenomena that can occur in the whole fuel cell. In addition to the reviewing purpose, original data on ex-situ degradation of GDL are presented.

  9. Changes in soil quality indicators under long-term sewage irrigation in a sub-tropical environment

    NASA Astrophysics Data System (ADS)

    Masto, Reginald Ebhin; Chhonkar, Pramod K.; Singh, Dhyan; Patra, Ashok K.

    2009-01-01

    Though irrigation with sewage water has potential benefits of meeting the water requirements, the sewage irrigation may mess up to harm the soil health. To assess the potential impacts of long-term sewage irrigation on soil health and to identify sensitive soil indicators, soil samples were collected from crop fields that have been irrigated with sewage water for more than 20 years. An adjacent rain-fed Leucaena leucocephala plantation system was used as a reference to compare the impact of sewage irrigation on soil qualities. Soils were analyzed for different physical, chemical, biological and biochemical parameters. Results have shown that use of sewage for irrigation improved the clay content to 18-22.7%, organic carbon to 0.51-0.86% and fertility status of soils. Build up in total N was up to 2,713 kg ha-1, available N (397 kg ha-1), available P (128 kg ha-1), available K (524 kg ha-1) and available S (65.5 kg ha-1) in the surface (0.15 m) soil. Long-term sewage irrigation has also resulted a significant build-up of DTPA extractable Zn (314%), Cu (102%), Fe (715%), Mn (197.2), Cd (203%), Ni (1358%) and Pb (15.2%) when compared with the adjacent rain-fed reference soil. Soils irrigated with sewage exhibited a significant decrease in microbial biomass carbon (-78.2%), soil respiration (-82.3%), phosphatase activity (-59.12%) and dehydrogenase activity (-59.4%). An attempt was also made to identify the sensitive soil indicators under sewage irrigation, where microbial biomass carbon was singled out as the most sensitive indicator.

  10. Vermistabilization of primary sewage sludge.

    PubMed

    Hait, Subrata; Tare, Vinod

    2011-02-01

    An integrated composting-vermicomposting process has been developed for utilization of primary sewage sludge (PSS). Matured vermicompost was used as bulking material and a source of active microbial culture during aerobic activated composting (AAC). AAC resulted in sufficient enrichment of bulking material with organic matter after 20 cycles of recycling and mixing with PSS and produced materials acceptable for vermicomposting. Vermicomposting caused significant reduction in pH, volatile solids (VS), specific oxygen uptake rate (SOUR), total organic carbon (TOC), C/N ratio and pathogens and substantial increase in electrical conductivity (EC), total nitrogen (TN) and total phosphorous (TP) as compared to compost. Environmental conditions and stocking density have profound effects on vermicomposting. Temperature of 20°C with high humidity is favorable environmental condition for vermicomposting employing Eisenia fetida. Favorable stocking density range for vermiculture is 0.5-2.0 kg m(-2) (optimum: 0.5 kg m(-2)) and for vermicomposting is 2.0-4.0 kg m(-2) (optimum: 3.0 kg m(-2)), respectively.

  11. Assessing Ecological Impacts of Shrimp and Sewage Effluent: Biological Indicators with Standard Water Quality Analyses

    NASA Astrophysics Data System (ADS)

    Jones, A. B.; O'Donohue, M. J.; Udy, J.; Dennison, W. C.

    2001-01-01

    Despite evidence linking shrimp farming to several cases of environmental degradation, there remains a lack of ecologically meaningful information about the impacts of effluent on receiving waters. The aim of this study was to determine the biological impact of shrimp farm effluent, and to compare and distinguish its impacts from treated sewage effluent. Analyses included standard water quality/sediment parameters, as well as biological indicators including tissue nitrogen (N) content, stable isotope ratio of nitrogen (δ 15N), and amino acid composition of inhabitant seagrasses, mangroves and macroalgae. The study area consisted of two tidal creeks, one receiving effluent from a sewage treatment plant and the other from an intensive shrimp farm. The creeks discharged into the western side of Moreton Bay, a sub-tropical coastal embayment on the east coast of Australia. Characterization of water quality revealed significant differences between the creeks, and with unimpacted eastern Moreton Bay. The sewage creek had higher concentrations of dissolved nutrients (predominantly NO-3/NO-2 and PO3-4, compared to NH+4 in the shrimp creek). In contrast, the shrimp creek was more turbid and had higher phytoplankton productivity. Beyond 750 m from the creek mouths, water quality parameters were indistinguishable from eastern Moreton Bay values. Biological indicators detected significant impacts up to 4 km beyond the creek mouths (reference site). Elevated plant δ 15N values ranged from 10·4-19·6‰ at the site of sewage discharge to 2·9-4·5‰ at the reference site. The free amino acid concentration and composition of seagrass and macroalgae was used to distinguish between the uptake of sewage and shrimp derived N. Proline (seagrass) and serine (macroalgae) were high in sewage impacted plants and glutamine (seagrass) and alanine (macroalgae) were high in plants impacted by shrimp effluent. The δ 15N isotopic signatures and free amino acid composition of inhabitant

  12. Microbial sewage contamination associated with Superstorm Sandy flooding in New York City

    NASA Astrophysics Data System (ADS)

    O'Mullan, G.; Dueker, M.; Sahajpal, R.; Juhl, A. R.

    2013-05-01

    The lower Hudson River Estuary commonly experiences degraded water quality following precipitation events due to the influence of combined sewer overflows. During Super-storm Sandy large scale flooding occurred in many waterfront areas of New York City, including neighborhoods bordering the Gowanus Canal and Newtown Creek Superfund sites known to frequently contain high levels of sewage associated bacteria. Water, sediment, and surface swab samples were collected from Newtown Creek and Gowanus Canal flood impacted streets and basements in the days following the storm, along with samples from the local waterways. Samples were enumerated for the sewage indicating bacterium, Enterococcus, and DNA was extracted and amplified for 16S ribosomal rRNA gene sequence analysis. Waterways were found to have relatively low levels of sewage contamination in the days following the storm. In contrast, much higher levels of Enterococci were detected in basement and storm debris samples and these bacteria were found to persist for many weeks in laboratory incubations. These data suggest that substantial sewage contamination occurred in some flood impacted New York City neighborhoods and that the environmental persistence of flood water associated microbes requires additional study and management attention.

  13. Bioremediation of hydrocarbons contaminating sewage effluent using man-made biofilms: effects of some variables.

    PubMed

    Al-Mailem, D M; Kansour, M K; Radwan, S S

    2014-11-01

    Biofilm samples were established on glass slides by submerging them in oil-free and oil-containing sewage effluent for a month. In batch cultures, such biofilms were effective in removing crude oil, pure n-hexadecane, and pure phenanthrene contaminating sewage effluent. The amounts of the removed hydrocarbons increased with increasing biofilm surface area exposed to the effluent. On the other hand, addition of the reducing agent thioglycollate dramatically inhibited the hydrocarbon bioremediation potential of the biofilms. The same biofilm samples removed contaminating hydrocarbons effectively in three successive batch bioremediation cycles but started to become less effective in the cycles thereafter, apparently due to mechanical biofilm loss during successive transfers. As major hydrocarbonoclastic bacteria, the biofilms harbored species belonging to the genera Pseudomonas, Microvirga, Zavarzinia, Mycobacterium, Microbacterium, Stenotrophomonas, Gordonia, Bosea, Sphingobium, Brachybacterium, and others. The nitrogen fixer Azospirillum brasilense and the microalga Ochromonas distigma were also present; they seemed to enrich the biofilms, with nitrogenous compounds and molecular oxygen, respectively, which are known to enhance microbiological hydrocarbon degradation. It was concluded that man-made biofilms based upon sewage microflora are promising tools for bioremediation of hydrocarbons contaminating sewage effluent.

  14. Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil.

    PubMed

    Antoniadis, Vasileios; Tsadilas, Christos D; Ashworth, Daniel J

    2007-06-01

    Sewage sludge-amended soils may alter their ability to adsorb heavy metals over time, due to the decomposition of sludge-borne organic matter. Thus, we studied Cd, Ni, and Zn adsorption by a sewage sludge-amended soil (Typic Xerofluvent) before and after one-year incubation in both monometal and competitive systems. In the monometal system, the order of decreasing sorption was Zn>Cd>Ni. Competition significantly reduced metal K(d), especially that of Cd which decreased by nearly 50%. Over the course of the incubation there was a 31% reduction of soil organic matter content. At the same time, in competitive systems Cd K(d) significantly decreased, while Zn K(d) significantly increased, and Ni K(d) remained unaffected. This study shows that sewage sludge-amended soils may change in their ability to sorb heavy metals over time at high metal concentrations. The data suggest that Cd is likely to be of most environmental significance in such soils, since it exhibited decreased sorption under competitive conditions and as the organic matter content of the soil was reduced. The potential for long-term release of metals should be considered in the risk assessment associated with sewage sludge addition to soils, particularly in climates where degradation of organic matter is likely to be enhanced.

  15. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation.

    PubMed

    Khiewwijit, Rungnapha; Keesman, Karel J; Rijnaarts, Huub; Temmink, Hardy

    2015-10-01

    This work aims at exploring the feasibility of a combined process bioflocculation to concentrate sewage organic matter and anaerobic fermentation to produce volatile fatty acids (VFA). Bioflocculation, using a high-loaded aerobic membrane bioreactor (HL-MBR), was operated at an HRT of 1h and an SRT of 1 day. The HL-MBR process removed on average 83% of sewage COD, while only 10% of nitrogen and phosphorus was removed. During anaerobic fermentation of HL-MBR concentrate at an SRT of 5 days and 35 °C, specific VFA production rate of 282 mg VFA-COD/g VSS could be reached and consisted of 50% acetate, 40% propionate and 10% butyrate. More than 75% of sewage COD was diverted to the concentrate, but only 15% sewage COD was recovered as VFA, due to incomplete VSS degradation at the short treatment time applied. This shows that combined process for the VFA production is technologically feasible and needs further optimization.

  16. Metal pollution of groundwater in the vicinity of Valiathura Sewage Farm in Kerala, south India.

    PubMed

    Varghese, J; Jaya, D S

    2014-12-01

    A comprehensive study was conducted to evaluate metal pollution of groundwater in the vicinity of Valiathura Sewage Farm in Thiruvananthapuram district, Kerala using the Heavy Metal Pollution Index (HPI). Forty two groundwater samples were collected during the summer season (April 2010) and the concentration of metals Fe, Cu, Zn, Cd and Pb were analyzed. Results showed that groundwater was contaminated mainly with Fe, Cu and Pb. Correlation analysis revealed that the sources of metals in groundwater in the study area are the same, and it may be due to the leachates from the nearby Sewage Farm, Parvathy Puthanar canal and solid wastes dumped in the residential area. Of the groundwater samples studied, 47.62 % were medium and 2.68 % were classified in HPI high category. HPI was highest (41.79) in DW29, which was adjacent to the polluted Parvathy Puthanar canal and Sewage Farm. The present study points out that the metal pollution causes the degradation of groundwater quality around the Sewage Farm during the study period.

  17. The study on the evaluation of the pollution control situation of the sewage systems in the counties and cities of Taiwan by applying the VIKOR method.

    PubMed

    Kuo, Jun-Yuan

    2015-09-15

    Currently, the pollution control situation of the sewage systems across Taiwan can be divided into the two major sewage systems, namely, industrial area sewage and public community sewage. When the counties and cities of Taiwan cannot effectively control the sewage pollution situation, ecological pollution of the environment and personal health damage would result. Therefore, evaluating the pollution control situation of the sewage systems can help the environmental protection authorities developing strategies for the pollution control of the sewage systems in the future. In this study, the Vise Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method was applied to evaluate the pollution control situation of the sewage systems. The water sample test qualification rate, the emission permit issuance rate, and the staff setting rate of the dedicated wastewater treatment company were used as the pollution control evaluation indexes. According to the results, the use of the VIKOR method to evaluate the pollution control situation of the sewage systems is effective. In cities and counties in Taiwan, public community sewage systems, dedicated to pollution control case, the public community should be actively coached in emission control technology to upgrade sewage capacity, the issuance of discharge permits, and the staff setting rate of the dedicated wastewater treatment, to improve public community sewage pollution control system capabilities. In Taiwan, the industrial area sewage systems, dedicated to pollution control situations, must pay attention to business units in raw materials, spare part inventory, and machine supplier of choice, and we must choose to meet environmental supply chain of green suppliers, which would be effective in reducing effluent produce and improve water sample test qualification rate. The VIKOR value of Yilan County is 1.0000, which is the worst in the pollution control of all the industrial area sewage systems, followed by Taoyuan

  18. Behaviour of emerging contaminants in sewage sludge after anaerobic digestion.

    PubMed

    Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F

    2016-11-01

    Nowadays, there is an increasing concern over the presence of contaminants in the aquatic environment, where they can be introduced from wastewater after their incomplete removal in the treatment plants. In this work, degradation of selected emerging pollutants in the aqueous and solid phases of sewage sludge has been investigated after anaerobic digestion using two different digesters: mesophilic and thermophilic. Initially, sludge samples were screened by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) for identification of emerging contaminants in the samples. In a second step, a target quantitative method based on LC coupled to tandem MS was applied for selected pollutants identified in the previous screening. The behaviour of the compounds under anaerobic conditions was studied estimating the degradation efficiency and distribution of compounds between both sludge phases. Irbesartan and benzoylecgonine seemed to be notably degraded in both phases of the sludge. Venlafaxine showed a significant concentration decrease in the aqueous phase in parallel to an increase in the solid phase. The majority of the compounds showed an increase of their concentrations in both phases after the digestion. Concentrations in the solid phase were commonly higher than in the aqueous for most contaminants, indicating that they were preferentially adsorbed onto the solid particles.

  19. Tracking the composition and transformation of humic and fulvic acids during vermicomposting of sewage sludge by elemental analysis and fluorescence excitation-emission matrix.

    PubMed

    Zhang, Jie; Lv, Baoyi; Xing, Meiyan; Yang, Jian

    2015-05-01

    Sewage sludge (T1) and the mixture of sewage sludge and cattle dung (T2) were vermicomposted with Eisenia fetida, respectively. The transformation of humic acid (HA) and fulvic acid (FA) extracted from these two treatments were evaluated by a series of chemical and spectroscopic methods. Results indicated that the vermicomposting decreased pH, TOC, and C/N ratio, and increased EC, total extractable C, and HA contents. The FA content in treatment T1 was increased significantly, and only slight increasing was observed in treatment T2. Moreover, vermicomposting decreased H content, C/N ratio, proteinaceous and carbohydrates components, and increased the N content, C/H ratio, aromatic compounds and polycondensation structures in HA and FA. In addition, fluorescence spectra and fluorescence regional integration indicated that protein-like groups were degraded and HA compounds were formed. Furthermore, the addition of cattle dung enhanced the humification process and improved the HA quality in spite of no significant effect on the FA.

  20. Removal of aqueous oxalic acid by heterogeneous catalytic ozonation with MnOx/sewage sludge-derived activated carbon as catalysts.

    PubMed

    Huang, Yuanxing; Sun, Yaru; Xu, Zhihua; Luo, Mengyu; Zhu, Chunlei; Li, Liang

    2017-01-01

    MnOx/sewage sludge-derived activated carbon (MnOx/SAC) was prepared as catalysts to improve the performance of aqueous oxalic acid degradation by ozonation. The results indicated that MnOx/SAC had excellent catalytic activity in mineralization of oxalic acid during heterogeneous catalytic ozonation process. MnOx/SAC with a manganese load of 30% exhibited the strongest catalytic activity under the condition of solution pH3.5, which enhanced the oxalic acid removal from 10.3% to 92.2% in 60min compared with that treated by ozone alone. Increase of catalyst dosage and aqueous ozone concentration was advantageous for oxalic acid removal from water. On the basis of catalyst characterization analysis and the observation of inhibitory effect induced by higher pH, less catalyst dosage as well as the presence of hydroxyl radical scavenger, it was deduced that the reaction mechanism involved both hydroxyl radicals attack and surface reactions.

  1. Dynamics of brominated flame retardants removal in contaminated wastewater sewage sludge under anaerobic conditions.

    PubMed

    Stiborova, Hana; Vrkoslavova, Jana; Pulkrabova, Jana; Poustka, Jan; Hajslova, Jana; Demnerova, Katerina

    2015-11-15

    Disposal of solid waste to landfills from waste water sewage treatment plants (WWTPs) serves as a potential source of contamination by polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD). Native microbial communities have been found to degrade a variety of xenobiotics, such as PBDEs and HBCDs. This study investigates the potential of autochthonous microflora to remove 11 PBDE congeners and HBCDs in waste water sludge under anaerobic conditions. Laboratory microcosms were constructed with sewage sludge from the WWTPs of Hradec Kralove and Brno. BDE 209 was detected as the prevailing congener in concentrations 685 and 1403 ng/g dw and the total amounts of 10 lower PBDEs (BDE 28, 47, 49, 66, 85, 99, 100, 153, 154, 183) were 605 and 205 ng/g dw in sludge from Hradec Kralove and Brno, respectively. The levels of HBCD were detected in both sludge lower than 24 ng/g dw. The experiment was carried out for 15 months. After three months of incubation, HBCD was completely degraded to below detection limits. In sewage from both WWTPs, the higher brominated DEs were removed faster than the lower brominated congeners. One exception was tri-BDE, which was degraded completely within 15 months of cultivation. A significant increase in congener tetra-BDE 49 concentrations was observed over the course of the experiment in all tested sewage. The relative distribution of individual congeners among all PBDEs changed after 15 months of the incubation in favour of lower brominated congeners. This indicates that debromination is the major mechanism of anaerobic biodegradation. Despite of the increase of BDE 49, the overall removal of all 11 PBDEs achieved the levels of 47.4 and 68.7% in samples from WWTPs Hradec Kralove and Brno, respectively.

  2. Influence of forced air volume on water evaporation during sewage sludge bio-drying.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Zheng, Guo-Di; Liu, Hong-Tao; Pan, Tian-Hao

    2013-09-01

    Mechanical aeration is critical to sewage sludge bio-drying, and the actual water loss caused by aeration can be better understood from investigations of the relationship between aeration and water evaporation from the sewage sludge bio-drying pile based on in situ measurements. This study was conducted to investigate the effects of forced air volume on the evaporation of water from a sewage sludge bio-drying pile. Dewatered sewage sludge was bio-dried using control technology for bio-drying, during which time the temperature, superficial air velocity and water evaporation were measured and calculated. The results indicated that the peak air velocity and water evaporation occurred in the thermophilic phase and second temperature-increasing phase, with the highest values of 0.063 ± 0.027 m s(-1) and 28.9 kg ton(-1) matrix d(-1), respectively, being observed on day 4. Air velocity above the pile during aeration was 43-100% higher than when there was no aeration, and there was a significantly positive correlation between air volume and water evaporation from day 1 to 15. The order of daily means of water evaporation was thermophilic phase > second temperature-increasing phase > temperature-increasing phase > cooling phase. Forced aeration controlled the pile temperature and improved evaporation, making it the key factor influencing water loss during the process of sewage sludge bio-drying.

  3. Bio-oil from thermo-chemical hydro-liquefaction of wet sewage sludge.

    PubMed

    Malins, Kristaps; Kampars, Valdis; Brinks, Janis; Neibolte, Ilze; Murnieks, Raimonds; Kampare, Ruta

    2015-01-01

    The present work demonstrates the influence of experimental conditions such as weight ratio of sewage sludge to water (1/0-1/15), reaction temperature (200-350°C), initial H2 pressure (2.0-11.0MPa), residence time (10-100min) and type of catalysts (Na2CO3, Raney nickel, FeSO4, MoS2) on hydro-liquefaction process of sewage sludge. High amount of water improves the hydro-liquefaction process of sewage sludge by increasing the yield of bio-oil and the total conversion. The highest yield of bio-oil (47.79 wt.%) from sewage sludge was obtained with initial H2 pressure 5.0MPa, reaction temperature 300°C, and residence time 40min. Under these experimental conditions, using weight ratio of sewage sludge to water 1/5, catalyst (FeSO4) - 5 wt.% of dry SS, mixing speed 350rpm the obtained bio-oil had the highest energy recovery (69.84%), total conversion (70.64%) and its calorific value was 35.22MJ/kg.

  4. Sanitary and bacteriological aspects of sewage treatment.

    PubMed

    Filipkowska, Zofia

    2003-01-01

    A study into the removal of contamination load and indicator bacteria was carried out in 1992-1996 in the mechanical, biological and chemical waste-water treatment plant WTP in Lezany, in the County of Reszel, in the Province of Warmia and Mazury in Poland. The results of chemical analyses found a high efficiency of removal of carbon compounds, COD (90%) and BOD (98%), in the process of purification of household sewage. In addition, a high effectiveness of total nitrogen, on average 71%, and unsatisfactory removal of ammonia nitrogen and phosphorus compounds were found. The results of microbiological analyses confirmed the high efficiency of removal of indicator bacteria in the process of sewage treatment from 94 to 97%. In the sewage after the final phase of purification in stabilization ponds, the following pathogenic bacteria were identified with the use of the EPL 21tests: Escherichia coli, Enterobacter agglomerans, Enterobacter aerogenes, Enterobacter cloacae, Enterobacter georgoriae, Citrobacter freundii, Klebsiella pnemoniae, Klebsiella oxytoca, Klebsiella ozaenae, Ervinia herbicola, Edwardsiella tarda, Serratia odoriefra, Serratia marcescens, Providencia alcalifaciens, Hafnia alvei, Yersina pestis, Yersina pseudotuberculosis, Yersinia fredericksenii, Salmonella spp., Shigella dysenteriae, Aeromons hydrophila, Pseudomonas aerulginosa. The obtained results show that although the sewage purification system is efficient and reduces the contamination load to the level required by the regulations (Ministry of Environmental Protection, Natural Resources and Forestry from 20 September 1991) and removes a great percentage of indicator bacteria, the purified sewage may be a source of pathogenic bacteria in inland waters.

  5. Management of sewage sludge and ash containing radioactive materials.

    SciTech Connect

    Bachmaier, J. T.; Aiello, K.; Bastian, R. K.; Cheng, J.-J.; Chiu, W. A.; Goodman, J.; Hogan, R.; Jones, A. R.; Kamboj, S.; Lenhart, T.; Ott, W. R.; Rubin, A. B.; Salomon, S. N.; Schmidt, D. W.; Setlow, L. W.; Yu, C.; Wolbarst, A. B.; Environmental Science Division; Middlesex County Utilities Authority; U.S. EPA; N.J. Dept of Environmental Protection; NRC

    2007-01-01

    Approximately 50% of the seven to eight million metric tonnes of municipal sewage sludge produced annually in the US is reused. Beneficial uses of sewage sludge include agricultural land application, land reclamation, forestry, and various commercial applications. Excessive levels of contaminants, however, can limit the potential usefulness of land-applied sewage sludge. A recently completed study by a federal inter-agency committee has identified radioactive contaminants that could interfere with the safe reuse of sewage sludge. The study found that typical levels of radioactive materials in most municipal sewage sludge and incinerator ash do not present a health hazard to sewage treatment plant workers or to the general public. The inter-agency committee has developed recommendations for operators of sewage treatment plants for evaluating measured or estimated levels of radioactive material in sewage sludge and for determining whether actions to reduce potential exposures are appropriate.

  6. Vessel Sewage Discharges: Statutes, Regulations, and Related Laws and Treaties

    EPA Pesticide Factsheets

    Vessel sewage discharges can be regulated under multiple statutes, regulations, and laws/treaties, including the Clean Water Act, Title XIV, MARPOL Annex IV and the Vessel General Permit. This page describes how these are applied to vessel sewage.

  7. JPL Activated Carbon Treatment System (ACTS) for sewage

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An Activated Carbon Treatment System (ACTS) was developed for sewage treatment and is being applied to a one-million gallon per day sewage treatment pilot plant in Orange County California. Activities reported include pyrolysis and activation of carbon-sewage sludge, and activated carbon treatment of sewage to meet ocean discharge standards. The ACTS Sewage treatment operations include carbon-sewage treatment, primary and secondary clarifiers, gravity (multi-media) filter, filter press dewatering, flash drying of carbon-sewage filter cake, and sludge pyrolysis and activation. Tests were conducted on a laboratory scale, 10,000 gallon per day demonstration plant and pilot test equipment. Preliminary economic studies are favorable to the ACTS process relative to activated sludge treatment for a 175,000,000 gallon per day sewage treatment plant.

  8. Mechanism of red mud combined with Fenton's reagent in sewage sludge conditioning.

    PubMed

    Zhang, Hao; Yang, Jiakuan; Yu, Wenbo; Luo, Sen; Peng, Li; Shen, Xingxing; Shi, Yafei; Zhang, Shinan; Song, Jian; Ye, Nan; Li, Ye; Yang, Changzhu; Liang, Sha

    2014-08-01

    Red mud was evaluated as an alternative skeleton builder combined with Fenton's reagent in sewage sludge conditioning. The results show that red mud combined with Fenton's reagent showed good conditioning capability with the pH of the filtrate close to neutrality, indicating that red mud acted as a neutralizer as well as a skeleton builder when jointly used with Fenton's reagent. Through response surface methodology (RSM), the optimal dosages of Fe(2+), H2O2 and red mud were proposed as 31.9, 33.7 and 275.1 mg/g DS (dry solids), respectively. The mechanism of the composite conditioner could be illuminated as follows: (1) extracellular polymeric substances (EPS), including loosely bound EPS and tightly bound EPS, were degraded into dissolved organics, e.g., proteins and polysaccharides; (2) bound water was released and converted into free water due to the degradation of EPS; and (3) morphology of the conditioned sludge exhibited a porous structure in contrast with the compact structure of raw sludge, and the addition of red mud formed new mineral phases and a rigid lattice structure in sludge, allowing the outflow of free water. Thus, sludge dewatering performance was effectively improved. The economic assessment for a wastewater treatment plant of 370,000 equivalent inhabitants confirms that using red mud conditioning, combined with Fenton's reagent, leads to a saving of approximately 411,000 USD/y or 50.8 USD/t DS comparing with using lime and ordinary Portland cement combined with Fenton's reagent, and approximately 612,000 USD/y or 75.5 USD/t DS comparing with the traditional treatment.

  9. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.

    PubMed

    Zhang, Lihui; Duan, Feng; Huang, Yaji

    2015-04-01

    Experiments were conducted in a thermogravimetric analyzer to assess the enhancement of combustion characteristics of different solid fuels blended with organic calcium compounds (OCCs). Rice husk, sewage sludge, and bituminous coal, and two OCC were used in this study. Effect of different mole ratios of calcium to sulfur (Ca/S ratio) on the combustion characteristics were also investigated. Results indicated that combustion performance indexes for bituminous coal impregnated by OCC were improved, however, an inverse trend was found for sewage sludge because sewage sludge has lower ignition temperature and higher volatile matter content compared to those of OCC. For rice husk, effect of added OCC on the combustion characteristics is not obvious. Different solid fuels show different combustion characteristics with increases of Ca/S ratio. The maximum combustion performance indexes appear at Ca/S ratios of 1:1, 2:1, and 3:1 for OCC blended with Shenhua coal, rice husk, and sewage sludge, respectively.

  10. Impact of sewage treatment plants and combined sewer overflow basins on the microbiological quality of surface water.

    PubMed

    Rechenburg, A; Koch, Ch; Classen, Th; Kistemann, Th

    2006-01-01

    In a small river catchment, microbiological quality of different sewage treatment plants under regular conditions and in case of heavy rainfall, when combined sewage overflow basins (CSOs) are activated, was examined regarding microbial indicators and pathogens. In the watercourse, no self-cleaning effects could be observed. Small compact treatment plants discharge treated wastewater with a poor microbiological quality compared to river water quality and the quality of treated wastewater of larger plants. During storm water events, concentrations of microorganisms downstream of sewer overflows were approximately two logs higher than during dry weather conditions. Concentrations of parasites decreased slowly during the overflow, in parallel to filterable matter and particle-bound substances. The annual load of microorganisms originating from CSOs significantly exceeds the load from treated effluent of the sewage plants. Thus, an improved hygienic quality of the water course could be achieved by preventing overflows and by enhancing sewage treatment plants.

  11. A control system based on field programmable gate array for papermaking sewage treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Zi Sheng; Xie, Chang; Qing Xiong, Yan; Liu, Zhi Qiang; Li, Qing

    2013-03-01

    A sewage treatment control system is designed to improve the efficiency of papermaking wastewater treatment system. The automation control system is based on Field Programmable Gate Array (FPGA), coded with Very-High-Speed Integrate Circuit Hardware Description Language (VHDL), compiled and simulated with Quartus. In order to ensure the stability of the data used in FPGA, the data is collected through temperature sensors, water level sensor and online PH measurement system. The automatic control system is more sensitive, and both the treatment efficiency and processing power are increased. This work provides a new method for sewage treatment control.

  12. Utilization and Conversion of Sewage Sludge as Metal Sorbent

    NASA Astrophysics Data System (ADS)

    Gong, Xu Dong; Li, Loretta Y.

    2013-04-01

    Most biosolids are disposed on land. With improvements in wastewater treatment processes and upgrading of treatment plants across Canada, biosolids generation will increase dramatically. These biosolids will need to be dealt with because they contain various contaminants, including heavy metals and several classes of emerging contaminants. A number of researchers have recently focused on preparation of sewage sludge-based adsorbents by carbonation, physical activation and chemical activation for decontamination of air and wastewater. These previous studies have indicated that sludge-based activated carbon can have good adsorption performance for organic substances in dye wastewater. The overall results suggest that activated carbon from sewage sludge can produce a useful adsorbent, while also reducing the amount of sewage sludge to be disposed. However, sludge-derived activated carbon has not been extensively studied, especially for adsorption of heavy metal ions in wastewater and for its capacity to remove emerging contaminants, such as poly-fluorinated compounds (PFCs). Previous research has indicated that commercial activated carbons adsorb organic compounds more efficiently than heavy metal ions. 45 Activated carbon can be modified to enhance its adsorption capacity for special heavy metal ions,46 e.g. by addition of inorganic and organic reagents. The modifications which are successful for commercial activated carbon should also be effective for sludge-derived activated carbon, but this needs to be confirmed. Our research focuses on (a) investigation of techniques for converting sewage sludge (SS) to activated carbon (AC) as sorbents; (b) exploration of possible modification of the activated carbon (MAC) to improve its sorption capacity; (c) examination of the chemical stability of the activated carbon and the leachability of contaminants from activated carbon,; (d) comparison of adsorptivity with that of other sorbents. Based on XRD and FT-IR, we successfully

  13. Biological and ecophysiological reactions of white wall rocket (Diplotaxis erucoides L.) grown on sewage sludge compost.

    PubMed

    Korboulewsky, Nathalie; Bonin, Gilles; Massiani, Catherine

    2002-01-01

    We studied the effects of sewage sludge compost on white wall rocket (Diplotaxis erucoides L.) compared with mineral fertilization and control (without any fertilizer) in a greenhouse experiment. The plants grown on the compost-amended soil showed a different growth dynamic: a significant delay in flowering and a bigger root system. Both the compost and the fertilization treatments increased biomass and seed yield. Heavy metal (Cu, Cd, Zn, Ni) distribution within the plant was in the following order: roots > leaves > stems, except for zinc which was homogeneously distributed. The balance of mineral nutrition was not affected by treatments. Zinc was the trace element which was most taken up. Unlike many species of Brassicaceae, white wall rocket is not a hyperaccumulator. Although sewage sludge compost improved plant growth, delay in flowering shows that it is necessary to take precautions when spreading sewage sludge in natural areas.

  14. [Concentration and emission fluxes of halogenated flame retardants in sewage from sewage outlet in Dongjiang River].

    PubMed

    Zeng, Yan-Hong; Luo, Xiao-Jun; Sun, Yu-Xin; Yu, Le-Huan; Chen, She-Jun; Mai, Bi-Xian

    2011-10-01

    Fourteen sewage samples from sewage outlets in Dongjiang River were collected. Halogented flame retardants were extracted and purified using dichloromethane and alumina/silica-gel column, respectively. The concentrations of halogenated flame retardants were measured utilizing GC/MS, and the emission fluxes were estimated. Decabromodiphenyl ethane (DBDPE) was the predominant halogenated pollutant (accounting for 64%) in sewage with the concentration ranging from 9.1 ng/L to 990 ng/L. The concentrations of polybrominated biphenyl ether (PBDEs), dominated by BDE209, in the sewage ranged from 6.9 ng/L to 470 ng/L, accounting for 30% of total halogenated flame retardants. The concentrations of other flame retardants, such as dechlorane plus (DP), 1, 2-bis(2, 4, 6-tribromophenoxy) ethane (BTBPE), hexabromobenzene (HBB), and pentabromotoluene (PBT), were ranged within 0.17-23.6, nd-26.3, nd-1.45 and nd-0.45 ng/L, respectively. The concentrations of PBDEs in sewage of Dongjiang River were comparable to those in influent wastewater of sewage treatment plants of Guangzhou, suggesting that the wastewater was discharged directly into Dongjiang River without any treatment. The emission flux of halogenated flame retardants from sewage was 191 kg. Emission from industrial wastewater, contributed to 48%-91% of total emission, was the main source of halogenated flame retardants.

  15. Ground-water quality near a sewage-sludge recycling site and a landfill near Denver, Colorado

    USGS Publications Warehouse

    Robson, Stanley G.

    1977-01-01

    The Metropolitan Denver Sewage Disposal District and the city and county of Denver operate a sewage-sludge recycling site and a landfill in an area about 15 miles (24 kilometers) east of Denver. The assessment of the effects of these facilities on the ground-water system indicated that five wells perforated in alluvium were found to have markedly degradedd water quality. One well is located in the landfill and water that was analyzed was obtained from near the base of the buried refuse, two others are located downgradient and near sewage-sludge burial areas, and the remaining two are located near stagnant surface ponds. Concentrations of nitrate in wells downgradient from fields where sludge is plowed into the soil were higher than background concentrations due to the effects of the sludge disposal. No evidence of water-quality degradation was detected in deeper wells perforated in the bedrock formations. (Woodard-USGS)

  16. Lipid profiling in sewage sludge.

    PubMed

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-03-20

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production.

  17. Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A.

    PubMed

    Li, Xianghui; Guo, Weilin; Liu, Zhonghua; Wang, Ruiqin; Liu, Hua

    2017-02-15

    A novel quinone-modified metal-organic frameworks NH2-MIL-101(Fe) was synthesized using a simple chemical method under mild condition. The introduced 2-anthraquinone sulfonate (AQS) can be covalently modified with NH2-MIL-101(Fe) and acts as a redox mediator to enhance the degradation of bisphenol A (BPA) via persulfate activation. The obtained AQS-NH-MIL-101(Fe) was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectra, cyclic voltammetry and electrochemical impedance spectroscopy. AQS-NH-MIL-101(Fe) exhibited better catalytic performance compared with NH2-MIL-101(Fe) and NH2-MIL-101(Fe) with free AQS (NH2-MIL-101(Fe)/AQS). That is, AQS-NH-MIL-101(Fe) was proved to be the most effective in that more than 97.7% of BPA was removed. The degradation rate constants (k) of AQS-NH-MIL-101(Fe) was 9-fold higher than that of NH2-MIL-101(Fe) and 7-fold higher than NH2-MIL-101(Fe)/AQS, indicating that AQS is a great electron-transfer mediator when modified with NH2-MIL-101(Fe). Based on the above results, the possible mechanism of catalytic reaction has been investigated in view of the trapping experiments. In addition, the AQS-NH-MIL-101(Fe) catalyst exhibited excellent stability and can be used several times without significant deterioration in performance.

  18. GPo1 alkB gene expression for improvement of the degradation of diesel oil by a bacterial consortium

    PubMed Central

    Luo, Qun; He, Ying; Hou, Deng-Yong; Zhang, Jian-Guo; Shen, Xian-Rong

    2015-01-01

    To facilitate the biodegradation of diesel oil, an oil biodegradation bacterial consortium was constructed. The alkane hydroxylase (alkB) gene of Pseudomonas putida GPo1 was constructed in a pCom8 expression vector, and the pCom8-GPo1 alkB plasmid was transformed into Escherichia coli DH5α. The AlkB protein was expressed by diesel oil induction and detected through SDS-polyacrylamide gel electrophoresis. The culture of the recombinant (pCom8-GPo1 alkB/E. coli DH5α) with the oil biodegradation bacterial consortium increased the degradation ratio of diesel oil at 24 h from 31% to 50%, and the facilitation rates were increased as the proportion of pCom8-GPo1 alkB/E. coli DH5α to the consortium increased. The results suggested that the expression of the GPo1 gene in E. coli DH5α could enhance the function of diesel oil degradation by the bacterial consortium. PMID:26413044

  19. Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode.

    PubMed

    Gong, Yuexiang; Li, Jiuyi; Zhang, Yanyu; Zhang, Meng; Tian, Xiujun; Wang, Aimin

    2016-03-05

    Solutions of 500 mL 200 mg L(-1) fluoroquinolone antibiotic levofloxacin (LEVO) have been degraded by anodic oxidation (AO), AO with electrogenerated H2O2 (AO-H2O2) and electro-Fenton (EF) processes using an activated carbon fiber (ACF) felt cathode from the point view of not only LEVO disappearance and mineralization, but also biodegradability enhancement. The LEVO decay by EF process followed a pseudo-first-order reaction with an apparent rate constant of 2.37×10(-2)min(-1), which is much higher than that of AO or AO-H2O2 processes. The LEVO mineralization also evidences the order EF>AO-H2O2>AO. The biodegradability (BOD5/COD) increased from 0 initially to 0.24, 0.09, and 0.03 for EF, AO-H2O2 and AO processes after 360 min treatment, respectively. Effects of several parameters such as current density, initial pH and Fe(2+) concentration on the EF degradation have also been examined. Three carboxylic acids including oxalic, formic and acetic acid were detected, as well as the released inorganic ions NH4(+), NO3(-) and F(-). At last, an ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry was used to identify about eight aromatic intermediates formed in 60 min of EF treatment, and a plausible mineralization pathway for LEVO by EF treatment was proposed.

  20. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.

    PubMed

    Kirchmann, Holger; Börjesson, Gunnar; Kätterer, Thomas; Cohen, Yariv

    2017-03-01

    fertiliser (e.g. mono-ammonium phosphate fertiliser, MAP) can be produced from metal-contaminated sewage sludge ash in a process whereby the metals are removed. We argue that the view on organic waste recycling needs to be diversified in order to improve the urban-rural nutrient cycle, since only recycling urban organic wastes directly is not a viable option to close the urban-rural nutrient cycle. Recovery and recycling of nutrients from organic wastes are a possible solution. When organic waste recycling is complemented by nutrient extraction, some nutrient loops within society can be closed, enabling more sustainable agricultural production in future.

  1. Biodegradation of Sewage Wastewater Using Autochthonous Bacteria

    PubMed Central

    Dhall, Purnima; Kumar, Rita; Kumar, Anil

    2012-01-01

    The performance of isolated designed consortia comprising Bacillus pumilus, Brevibacterium sp, and Pseudomonas aeruginosa for the treatment of sewage wastewater in terms of reduction in COD (chemical oxygen demand), BOD (biochemical oxygen demand) MLSS (mixed liquor suspended solids), and TSS (total suspended solids) was studied. Different parameters were optimized (inoculum size, agitation, and temperature) to achieve effective results in less period of time. The results obtained indicated that consortium in the ratio of 1 : 2 (effluent : biomass) at 200 rpm, 35°C is capable of effectively reducing the pollutional load of the sewage wastewaters, in terms of COD, BOD, TSS, and MLSS within the desired discharge limits, that is, 32 mg/L, 8 mg/L, 162 mg/L, and 190 mg/L. The use of such specific consortia can overcome the inefficiencies of the conventional biological treatment facilities currently operational in sewage treatment plants. PMID:22272181

  2. Wastes to Resources: Appropriate Technologies for Sewage Treatment and Conversion.

    ERIC Educational Resources Information Center

    Anderson, Stephen P.

    Appropriate technology options for sewage management systems are explained in this four-chapter report. The use of appropriate technologies is advocated for its health, environmental, and economic benefits. Chapter 1 presents background information on sewage treatment in the United States and the key issues facing municipal sewage managers.…

  3. Enhancement of microbial density and methane production in advanced anaerobic digestion of secondary sewage sludge by continuous removal of ammonia.

    PubMed

    Tao, Bing; Donnelly, Joanne; Oliveira, Ivo; Anthony, Ruth; Wilson, Victoria; Esteves, Sandra R

    2017-05-01

    Ammonia inhibition mitigation in anaerobic digestion of high solids content of thermally hydrolysed secondary sewage sludge by the NH4(+) affinitive clinoptilolite and a strong acid type ion-exchange resin S957 was investigated. Continuous NH4(+)-N removal was achieved through ion-exchanging at both temperatures with average removals of 50 and 70% for the clinoptilolite and resin dosed reactors, respectively. Approximate 0.2-0.5unit of pH reduction was also observed in the dosed reactors. The synergy of NH4(+)-N removal and pH reduction exponentially decreased free NH3 concentration, from 600 to 90mg/L at 43°C, which mitigated ammonia inhibition and improved methane yields by approximately 54%. Microbial community profiling suggested that facilitated by ammonia removal, the improvement in methane production was mainly achieved through the doubling in bacterial density and a 6-fold increase in population of the Methanosarcinaceae family, which in turn improved the degradation of residual volatile fatty acids, proteins and carbohydrates.

  4. Isolation and identification of phytate-degrading rhizobacteria with activity of improving growth of poplar and Masson pine.

    PubMed

    Li, Gui-E; Wu, Xiao-Qin; Ye, Jian-Ren; Hou, Liang; Zhou, Ai-Dong; Zhao, Liu

    2013-11-01

    A number of soil microorganisms can convert insoluble forms of phosphorus (P) to an accessible form to increase plant yields. Phytate is such a large kind of insoluble organic phosphorus that plants cannot absorb directly in soil, so the objectives of this study were to isolate, screen phytate-degrading rhizobacteria (PDRB), and to select potential microbial inocula that could increase the P uptake by plants. In this study, a total of 24 soil samples were collected from natural habitats of eight poplar and pine planting areas from the eastern to southern China. 17 PDRB strains were preliminarily screened from the rhizosphere soil of poplars and pines by the visible decolorization in the phytate selective medium. The highest ratio of the total diameter (colony + halo zone) to the colony diameter of the isolates was JZ-GX1, 3.85. Afterward, 17 PDRB strains were further determined for their abilities to degrade sodium phytate based on the amount of liberated inorganic P in liquid phytate specific medium. The results showed that the phytase ability of the three highest PDRB strains: JZ-GX1, JZ-DZ1 and JZ-ZJ1 were up to 2.58, 2.36 and 2.24 U/mL, respectively, much better than most of the bacteria reported in previous studies. In the soil-plant experiment, compared to CK, the best three strains of PDRB all could significantly promote growth of poplar and Masson pine under container growing. The three efficient PDRB strains were identified as follow: JZ-GX1, Rahnella aquatilis, both JZ-DZ1 and JZ-ZJ1 being autofluorescent, Pseudomonas fluorescens, by 16S rDNA gene sequencing technology, Biolog Identification System and biological characterization. The present study suggests that the three screened PDRB strains would have great potential application as biological fertilizers in the future.

  5. Estimation of amphetamine and methamphetamine uses in Beijing through sewage-based analysis.

    PubMed

    Li, Jing; Hou, Linlin; Du, Peng; Yang, Jun; Li, Kaiyang; Xu, Zeqiong; Wang, Congcong; Zhang, Huafang; Li, Xiqing

    2014-08-15

    Sewage epidemiology has been proven as an effective approach to estimate the use of illicit drugs by a population. In this study, sewage analysis was applied to examine the patterns of amphetamine (AMP) and methamphetamine (METH) uses in the urban area of Beijing. Influent and effluent samples were collected from all the thirteen sewage treatment plants (STPs) in the urban area during two sampling campaigns. METH concentrations in influents were found to range from several tens to several hundred ng·L(-1), whereas AMP concentrations ranged from several to several tens ng·L(-1). The concentration ratios between AMP and METH in influents at most STPs were close to the rate of AMP excretion following METH ingestion, indicating that AMP in sewage in Beijing was predominately from the metabolism of METH. Much higher METH loads were observed in the center part of the urban area in Beijing, indicating a strong correlation between METH use and economic level and entertainment activities. Seasonal variation in METH loads was significant, with greater use in summer than in winter. Significant difference in METH loads between weekdays and weekend days were observed in winter but not in summer. No clear trend in diurnal variation of METH use was observed. Nearly complete removal of METH occurred at the STPS in Beijing. Apparent removal rates of AMP were lower than those of METH, likely due to degradation of METH into AMP during the wastewater treatment processes. In summary, this study represents the first application of sewage epidemiology to the entire urban population of a metropolitan in mainland China and provided an overview of METH and AMP uses in the city.

  6. Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage.

    PubMed

    Guan, Xiao-Hong; Chen, Guang-Hao; Shang, Chii

    2005-09-01

    This paper attempted to study the feasibility of reusing water treatment works sludge ("alum sludge") to improve particulate pollutant removal from sewage. The main issues focused upon were: (1) the appropriate dosage of the alum sludge, (2) the appropriate operating conditions, and (3) the possible mechanisms for enhancement by adding alum sludge. Actual alum sludge and sewage were applied to a series of jar tests conducted under various conditions. It has been found that both the SS and COD removal efficiencies could be improved by the addition of the alum sludge, which was mainly attributed to the removal of relatively fine particles with a size of 48-200 microm. The appropriate dosage of the alum sludge was determined to be 18-20 mg of Al/L. Increasing the mixing speed or reducing the floc size of the alum sludge enhanced the SS and COD removal and the dispersed alum sludge could remove particulate contaminants with smaller size than the raw sewage. ToF-SIMS evidence revealed that the aluminum species at the surface of the alum sludge were effectively utilized for improving the SS and COD removal. It was postulated that the sweep flocculation and/or the physical adsorption might play key roles in the enhancement of particulate pollutant removal from sewage.

  7. Ecotoxicity Assessment of Stabilized Sewage Sludge from Municipal Sewage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Elżbieta; Próba, Marta; Wolny, Lidia

    2016-09-01

    Aim of this study was to evaluate the ecotoxicity of municipal sewage sludge conditioned with polyelectrolytes, taken from selected sewage treatment plant. Using the bioindication analysis overall toxicity was assessed, which allows to know the total toxicity of all the harmful substances contained in sewage sludge, in many cases acting synergistically. To prepare a sample of sludge for the basic test, all analyses were performed with a ratio of liquid to solid of 10:1 (water extract). Daphnia pulex biological screening test was used. A dilution series of an water extract of sludge were prepared to include within its scope the lowest concentration that causes 100% effect and the highest producing less than 10% of the effect within a specified range of the assay. The results of the test were read after 24 and 48 hours. Based on the research and analysis of test results it proved that the sewage sludge conditioned with polyelectrolytes exhibit the characteristics of eco-toxic.

  8. Classification of fault location and the degree of performance degradation of a rolling bearing based on an improved hyper-sphere-structured multi-class support vector machine

    NASA Astrophysics Data System (ADS)

    Wang, Yujing; Kang, Shouqiang; Jiang, Yicheng; Yang, Guangxue; Song, Lixin; Mikulovich, V. I.

    2012-05-01

    Effective classification of a rolling bearing fault location and especially its degree of performance degradation provides an important basis for appropriate fault judgment and processing. Two methods are introduced to extract features of the rolling bearing vibration signal—one combining empirical mode decomposition (EMD) with the autoregressive model, whose model parameters and variances of the remnant can be obtained using the Yule-Walker or Ulrych-Clayton method, and the other combining EMD with singular value decomposition. Feature vector matrices obtained are then regarded as the input of the improved hyper-sphere-structured multi-class support vector machine (HSSMC-SVM) for classification. Thereby, multi-status intelligent diagnosis of normal rolling bearings and faulty rolling bearings at different locations and the degrees of performance degradation of the faulty rolling bearings can be achieved simultaneously. Experimental results show that EMD combined with singular value decomposition and the improved HSSMC-SVM intelligent method requires less time and has a higher recognition rate.

  9. Thermal decomposition of sewage sludge under N2, CO2 and air: Gas characterization and kinetic analysis.

    PubMed

    Hernández, Ana Belén; Okonta, Felix; Freeman, Ntuli

    2017-03-25

    Thermochemical valorisation processes that allow energy to be recovered from sewage sludge, such as pyrolysis and gasification, have demonstrated great potential as convenient alternatives to conventional sewage sludge disposal technologies. Moreover, these processes may benefit from CO2 recycling. Today, the scaling up of these technologies requires an advanced knowledge of the reactivity of sewage sludge and the characteristics of the products, specific to the thermochemical process. In this study the behaviour of sewage sludge during thermochemical conversion, under different atmospheres (N2, CO2 and air), was studied, using TGA-FTIR, in order to understand the effects of different atmospheric gases on the kinetics of degradation and on the gaseous products. The different steps observed during the solid degradation were related with the production of different gaseous compounds. A higher oxidative degree of the atmosphere surrounding the sample resulted in higher reaction rates and a shift of the degradation mechanisms to lower temperatures, especially for the mechanisms taking place at temperatures above 400 °C. Finally, a multiple first-order reaction model was proposed to compare the kinetic parameters obtained under different atmospheres. Overall, the highest activation energies were obtained for combustion. This work proves that CO2, an intermediate oxidative atmosphere between N2 and air, results in an intermediate behaviour (intermediate peaks in the derivative thermogravimetric curves and intermediate activation energies) during the thermochemical decomposition of sewage sludge. Overall, it can be concluded that the kinetics of these different processes require a different approach for their scaling up and specific consideration of their characteristic reaction temperatures and rates should be evaluated.

  10. Oxisol decapitated recovery with green manure and sewage sludge: Effect on growth of Astronium fraxinifolium

    NASA Astrophysics Data System (ADS)

    Souto Filho, S. N.; Marchini, D. C.; de Arruda, O. G.; Giácomo, R. G.; Alves, M. C.

    2012-04-01

    Incorrect use of land and large buildings in rural areas are causing changes to it, making them less productive and thus increasing the degraded areas. Techniques aimed at ecological restoration of degraded soils have been investigated. In recovery planning a degraded area, the great challenge to be achieved is the establishment of a A horizon, so that from then on, the process is catalyzed by the biosphere, and there may be other horizons, as the natural conditioning. In this sense the positive changes were investigated in an environment of decapitated Savannah Oxisol, which was removed a layer 8.5 m thick to build a hydroelectric power plant. For recovery, we used a native tree species, green manure, sewage sludge and grass. The studied soil is under human intervention techniques for recovery for seven years. The experimental design was randomized blocks with five treatments and five replications. The treatments were: 1-Control- bare soil (without management), 2-Astronium fraxinifolium Schott; 3-A. fraxinifolium + Canavalia ensiformis; 4- A. fraxinifolium + Raphanus sativus by 2005 was replaced in 2006 by Crotalaria juncea; 5- A. fraxinifolium + Brachiaria decumbens + sewage sludge (60 t ha-1, dry basis). We studied in 2010 and 2011 the development of tree species (stem diameter and plant height), the fresh and dry matter of green manures and B. decumbens. The results were analyzed by performing the variance analysis and Tukey test at 5% probability to compare averages. The rate of plant growth during the periods studied in the treatment with sewage sludge was higher than other treatments, so this is the most appropriate management for the recovery of degraded soil under study.

  11. Water recovery from sewage using forward osmosis.

    PubMed

    Lutchmiah, Kerusha; Cornelissen, Emile R; Harmsen, Danny J H; Post, Jan W; Lampi, Keith; Ramaekers, Hans; Rietveld, Luuk C; Roest, Kees

    2011-01-01

    This research is part of the Sewer Mining project aimed at developing a new technological concept by extracting water from sewage by means of forward osmosis (FO). FO, in combination with a reconcentration system, e.g. reverse osmosis (RO) is used to recover high-quality water. Furthermore, the subsequent concentrated sewage (containing an inherent energy content) can be converted into a renewable energy (RE) source (i.e. biogas). The effectiveness of FO membranes in the recovery of water from sewage has been evaluated. Stable FO water flux values (>4.3 LMH) were obtained with primary effluent (screened, not treated) used as the feed solution. Fouling of the membrane was also induced and further investigated. Accumulated fouling was found to be apparent, but not irreversible. Sewer Mining could lead to a more economical and sustainable treatment of wastewater, facilitating the extraction of water and energy from sewage and changing the way it is perceived: not as waste, but as a resource.

  12. 33 CFR 159.307 - Untreated sewage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Untreated sewage. 159.307 Section 159.307 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise...

  13. 33 CFR 159.307 - Untreated sewage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Untreated sewage. 159.307 Section 159.307 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise...

  14. 33 CFR 159.307 - Untreated sewage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Untreated sewage. 159.307 Section 159.307 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Discharge of Effluents in Certain Alaskan Waters by Cruise...

  15. Home Sewage Disposal. Special Circular 212.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This circular provides current information for homeowners who must repair or replace existing on-lot sewage disposal systems. Site requirements, characteristics and preparation are outlined for a variety of alternatives such as elevated sand mounds, sand-lined beds and trenches, and oversized absorption area. Diagrams indicating construction…

  16. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, L.W.

    1985-08-30

    This invention relates generally to the dewatering of sludge, and more particularly to the dewatering of a sewage sludge having a moisture content of about 50 to 80% in the form of small cellular micro-organism bodies having internally confined water.

  17. In-situ caustic generation from sewage: the impact of caustic strength and sewage composition.

    PubMed

    Pikaar, Ilje; Rozendal, René A; Rabaey, Korneel; Yuan, Zhiguo

    2013-10-01

    Periodic caustic dosage is a commonly used method by the water industry to elevate pH levels and deactivate sewer biofilms responsible for hydrogen sulfide generation. Caustic (NaOH) can be generated in-situ from sewage using a divided electrochemical cell, which avoids the need for transport, handling and storage of concentrated caustic solutions. In this study, we investigated the impact of caustic strength in the cathode compartment and the impact of sodium concentration in sewage on the Coulombic efficiency (CE) for caustic generation. The CE was found to be independent of the caustic strength produced in the range of up to ~3 wt%. Results showed that a caustic solution of ~3 wt% could be produced directly from sewage at a CE of up to 75 ± 0.5%. The sodium concentration in sewage had a significant impact on the CE for caustic generation as well as on the energy requirements of the system, with a higher sodium concentration leading to a higher CE and lower energy consumption. The proton, calcium, magnesium and ammonium concentrations in sewage affected the CE for caustic generation, especially at low sodium concentrations. Economical assessment based on the experimental results indicated that sulfide control in sewers using electrochemically-generated caustic from sewage is an economically attractive strategy.

  18. Utilization of night-soil, sewage, and sewage sludge in agriculture.

    PubMed

    PETRIK, M

    1954-01-01

    The author reviews the agricultural use of night-soil, sewage, and sewage sludge from two points of view: the purely agricultural and the sanitary.Knowledge of the chemistry and bacteriology of human faecal matter is still rather scant, and much further work has to be done to find practical ways of digesting night-soil in a short time into an end-product of high fertilizing value and free of pathogens, parasites, and weeds.More is known about sewage and sewage sludge, but expert opinion is not unanimous as to the manner or the value of their use in agriculture. The author reviews a number of studies and experiments made in many countries of the world on the content, digestion, composting, agricultural value, and epidemiological importance of sewage and sewage sludge, but draws from these the conclusion that the chemistry, biology, and bacteriology of the various methods of treatment and use of waste matter need further investigation. He also considers that standards of quality might be set up for sludge and effluents used in agriculture and for water conservation.

  19. Utilization of night-soil, sewage, and sewage sludge in agriculture

    PubMed Central

    Petrik, Milivoj

    1954-01-01

    The author reviews the agricultural use of night-soil, sewage, and sewage sludge from two points of view: the purely agricultural and the sanitary. Knowledge of the chemistry and bacteriology of human faecal matter is still rather scant, and much further work has to be done to find practical ways of digesting night-soil in a short time into an end-product of high fertilizing value and free of pathogens, parasites, and weeds. More is known about sewage and sewage sludge, but expert opinion is not unanimous as to the manner or the value of their use in agriculture. The author reviews a number of studies and experiments made in many countries of the world on the content, digestion, composting, agricultural value, and epidemiological importance of sewage and sewage sludge, but draws from these the conclusion that the chemistry, biology, and bacteriology of the various methods of treatment and use of waste matter need further investigation. He also considers that standards of quality might be set up for sludge and effluents used in agriculture and for water conservation. PMID:13160760

  20. Synthesis of Cu Loaded TiO2 Nanoparticles for the Improved Photocatalytic Degradation of Rhodamine B

    NASA Astrophysics Data System (ADS)

    Kavitha, V.; Ramesh, P. S.; Geetha, D.

    2016-10-01

    Copper doped Titanium dioxide TiO2 nanoparticles were synthesized by sol-gel method using titanium tetraisopropoxide and copper sulfate as precursors. The synthesized nanoparticles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), UV-Visible spectroscopy (UV-Vis), Photoluminesce spectroscopy (PL) and atomic force microscopy (AFM). XRD analysis confirms the formation of anatase titanium dioxide and average particle size was 35nm. Cu- TiO2 exhibits a shift in the absorption edge toward visible spectrum. The rate of recombination and transfer behavior of the photoexcited electron-hole pairs in the semiconductors was recorded by photoluminescence. From SEM spherical shaped nanoparticles was observed. Comparing with pure TiO2 nanoparticles, Cu doped TiO2 photocatalyst exhibited enhanced photocatalytic activity under natural sunlight irradiation in the decomposition of rhodamine B aqueous solution. The maximum 97% of degradation efficiency of Rhodamine B was observed at 0.6% Cu-TiO2 within 180min. The photocatalytic efficiency of Rhodamine B of Cu doped TiO2 nanoparticle was higher than the pure TiO2, which could be attributed to the small crystallinity intense light absorption in Sunlight and narrow bandgap energy of Copper.

  1. Prevention of sewage pollution by stabilization ponds.

    PubMed

    Lakshminarayana, J S

    1975-01-01

    Water is polluted when it constitutes a health hazard or when its usefulness is impaired. The major sources of water pollution are municipal, manufacturing, mining, steam, electric power, cooling and agricultural. Municipal or sewage pollution forms a greater part of the man's activity and it is the immediate need of even smaller communities of today to combat sewage pollution. It is needless to stress that if an economic balance of the many varied services which a stream or a body of water is called upon to render is balanced and taken into consideration one could think of ending up in a wise management programme. In order to eliminate the existing water pollutional levels of the natural water one has to think of preventive and treatment methods. Of the various conventional and non-conventional methods of sewage treatment known today, in India, where the economic problems are complex, the waste stabilization ponds have become popular over the last two decades to let Public Health Engineers use them with confidence as a simple and reliable means of treatment of sewage and certain industrial wastes, at a fraction of the cost of conventional waste treatment plants used hitherto. A waste stabilization pond makes use of natural purification processes involved in an ecosystem through the regulating of such processes. The term "waste stabilization pond" in its simplest form is applied to a body of water, artificial or natural, employed with the intention of retaining sewage or organic waste waters until the wastes are rendered stable and inoffensive for discharge into receiving waters or on land, through physical, chemical and biological processes commonly referred to as "self-purification" and involving the symbiotic action of algae and bacteria under the influence of sunlight and air. Organic matter contained in the waste is stabilized and converted in the pond into more stable matter in the form of algal cells which find their way into the effluent and hence the term

  2. Preparation of biochar from sewage sludge

    NASA Astrophysics Data System (ADS)

    Nieto, Aurora; María Méndez, Ana; Gascó, Gabriel

    2013-04-01

    Biomass waste materials appropriate for biochar production include crop residues (both field residues and processing residues such as nut shells, fruit pits, bagasse, etc), as well as yard, food and forestry wastes, and animal manures. Biochar can and should be made from biomass waste materials and must not contain unacceptable levels of toxins such as heavy metals which can be found in sewage sludge and industrial or landfill waste. Making biochar from biomass waste materials should create no competition for land with any other land use option—such as food production or leaving the land in its pristine state. Large amounts of agricultural, municipal and forestry biomass are currently burned or left to decompose and release CO2 and methane back into the atmosphere. They also can pollute local ground and surface waters—a large issue for livestock wastes. Using these materials to make biochar not only removes them from a pollution cycle, but biochar can be obtained as a by-product of producing energy from this biomass. Sewage sludge is a by-product from wastewater treatment plants, and contains significant amounts of heavy metals, organic toxins and pathogenic microorganisms, which are considered to be harmful to the environment and all living organisms. Agricultural use, land filling and incineration are commonly used as disposal methods. It was, however, reported that sewage sludge applications in agriculture gives rise to an accumulation of harmful components (heavy metals and organic compounds) in soil. For this reason, pyrolysis can be considered as a promising technique to treat the sewage sludge including the production of fuels. The objective of this work is to study the advantages of the biochar prepared from sewage sludge.

  3. Deciphering the function and regulation of SbCAD2: A key lignin gene to improve sorghum biomass degradability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic modification of lignin biosynthesis in the cell wall of biofuel feedstocks is likely one of the most effective ways to improve the conversion efficiency of cellulosic biomass to biofuel for the bioenergy industry. As a key enzyme that catalyzes the last step of monolignol synthesis, cinnamy...

  4. Reduction of matrix effects and improvement of sensitivity during determination of two chloridazon degradation products in aqueous matrices by using UPLC-ESI-MS/MS.

    PubMed

    Kowal, Sebastian; Balsaa, Peter; Werres, Friedrich; Schmidt, Torsten C

    2012-06-01

    The development and validation of a sensitive and reliable detection method for the determination of two polar degradation products, desphenyl-chloridazon (DPC) and methyl-desphenyl-chloridazon (MDPC) in surface water, ground water and drinking water is presented. The method is based on direct large volume injection ultra-performance liquid chromatography electrospray tandem mass spectrometry. This simple but powerful analytical method for polar substances in the aquatic environment is usually hampered by varying matrix effects, depending on the nature of different water bodies. For the two examined degradation products, the matrix effects are particularly strong compared with other polar degradation products of pesticides. Therefore, matrix effects were studied thoroughly with the aim of minimising them and improving sensitivity during determination by postcolumn addition of ammonia solution as a modifier. An internal standard was used in order to compensate for remaining matrix effects. The calibration curve shows very good coefficients of correlation (0.9994 for DPC and 0.9999 for MDPC). Intraday precision values were lower than 5 % for DPC, 3 % for MDPC and the limits of detection were 10 ng/L for both substances. The method was successfully used in a national round robin test with a deviation between 3 and 8 % from target values. Finally, about 1,000 samples from different water bodies have been examined with this method in the Rhine and Ruhr region of North-Rhine-Westphalia (Germany) and in the European Union. Approximately 76 % of analysed samples contained measurable amounts of DPC at concentrations up to 8 μg/L while 53 % of the samples showed MDPC concentrations up to 2.3 μg/L.

  5. Rapid thermal conditioning of sewage sludge

    NASA Astrophysics Data System (ADS)

    Zheng, Jianhong

    Rapid thermal conditioning (RTC) is a developing technology recently applied to sewage sludge treatment. Sludge is heated rapidly to a reaction temperature (up to about 220sp°C) under sufficient pressure to maintain the liquid phase. Reaction is quenched after 10 to 30 seconds when the mixture of sludge and steam pass through a pressure let-down valve. This process reduces the amount of sludge requiring land disposal, eliminates the need for polymer coagulant, improves dewaterability, increases methane production, and further reduces the concentration of pathogens. The odor problem associated with traditional thermal conditioning processes is largely minimized. Ammonia removal is readily integrated with the process. For this research, a pilot unit was constructed capable of processing 90 liters of sludge per hour. Over 22 runs were made with this unit using sludge from New York City Water Pollution Control Plants (WPCP). Sludges processed in this equipment were tested to determine the effect of RTC operating conditions on sludge dewaterability, biodegradability, and other factors affecting the incorporation of RTC into wastewater treatment plants. Dewaterability of thermally conditioned sludge was assessed for cetrifugeability and filterability. Bench scale centrifugation was used for evaluating centrifugeability, pressure filtration and capillary suction time (CST) for filterability. A mathematical model developed for centrifuge dewatering was used to predict the effect of RTC on full scale centrifuge performance. Particle size distribution and solids density of raw and treated PDS were also analyzed. An observed increase in sludge solids density at least partially explains its improved centrifugeability. An investigation of thermally conditioned amino acids showed that the L-isomer is highly biodegradable while the D-isomers are generally less so. Glucose is highly biodegradable, but rapidly becomes refractory as thermal conditioning time is lengthened. This

  6. Sewage outfall plume dispersion observations with an autonomous underwater vehicle.

    PubMed

    Ramos, P; Cunha, S R; Neves, M V; Pereira, F L; Quintaneiro, I

    2005-01-01

    This work represents one of the first successful applications of Autonomous Underwater Vehicles (AUVs) for interdisciplinary coastal research. A monitoring mission to study the shape and estimate the initial dilution of the S. Jacinto sewage outfall plume using an AUV was performed on July 2002. An efficient sampling strategy enabling greater improvements in spatial and temporal range of detection demonstrated that the sewage effluent plume can be clearly traced using naturally occurring tracers in the wastewater. The outfall plume was found at the surface highly influenced by the weak stratification and low currents. Dilution varying with distance downstream was estimated from the plume rise over the outfall diffuser until a nearly constant value of 130:1, 60 m from the diffuser, indicating the near field end. Our results demonstrate that AUVs can provide high-quality measurements of physical properties of effluent plumes in a very effective manner and valuable considerations about the initial mixing processes under real oceanic conditions can be further investigated.

  7. Advanced two-phase digestion of sewage sludge

    SciTech Connect

    Ghosh, S.

    1984-01-01

    This paper describes the development and operating results of a novel configuration of the two-phase digestion concept. The two-phase system, comprises two custom-designed upflow digesters, which were operated in tandem to optimize the liquefying-acidification and acetogenesis-methanation reactions. The results are based on system operation for more than one year with a high-metal-content sewage sludge. During the operating period, the system exhibited an increasing methane yield at hydraulic retention times (HRT) of less than 6 days. With continuing culture enrichment and improvements in reactor design, the methane yield increased from 5 to 6.8 SCF/lb VS added, and then to 7.7 SCF/lb VS added. This methane yield was about 80% of the theoretical methane yield achievable with this sewage sludge--and the highest methane yield reported for sludge at this HRT. Operation of the novel process configuration was very stable and superior to that of conventional single-stage digestion in terms of methane yield, gas generation rate, and net energy production. About 75 weight percent of the organic solids was gasified; this could be the maximum attainable feed conversion efficiency for sludge, considering that between 75% and 80% of this feed is normally biodegradable. 3 references, 7 tables.

  8. Co-culturing monocytes with smooth muscle cells improves cell distribution within a degradable polyurethane scaffold and reduces inflammatory cytokines.

    PubMed

    McBane, Joanne E; Cai, Kuihua; Labow, Rosalind S; Santerre, J Paul

    2012-02-01

    Activated monocytes can promote inflammation or wound repair, depending on the nature of the implant environment. Recent work showed that a degradable, polar-hydrophobic-ionic polyurethane (D-PHI) induced an anti-inflammatory monocyte phenotype. In the current study it is hypothesized that wound-healing phenotype monocytes (activated by D-PHI material chemistry) will promote human vascular smooth muscle cells (hVSMC) to attach and migrate into porous D-PHI scaffolds. hVSMC migration is necessary for hVSMC population of the scaffold and tissue formation to occur, and then, once tissue formation is complete, the monocyte should promote contractile phenotype markers in the hVSMC. hVSMC were cultured for up to 28 days with or without monocytes and analyzed for cell viability, attachment (DNA) and migration. Lysates were analyzed for the hVSMC contractile phenotype markers calponin and α-smooth muscle actin (α-SMA) as well as urokinase plasminogen activator (uPA; pro-migration marker) using immunoblotting analysis. Histological staining showed that hVSMC alone remained around the perimeter of the scaffold, whereas co-culture samples had co-localization of monocytes with hVSMC in the pores, a more even cell distribution throughout the scaffold and increased total cell attachment (P<0.05). Co-culture samples had higher cell numbers and more DNA than the addition of both single cell cultures. The water-soluble tetrazolium-1 data suggested that cells were not dying over the 28 day culture period. Calponin, also linked to cell motility, was maintained up to 28 days in the co-culture and hVSMC alone, whereas α-SMA disappeared after 7 days. Co-cultures on D-PHI showed that monocytes were activated to a wound-healing phenotype (low TNF-α, elevated IL-10), while promoting uPA expression. In summary, this study showed that, by co-culturing monocytes with hVSMC, the latter showed increased total cell attachment and infiltration into the D-PHI scaffold compared with hVSMC alone

  9. Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands.

    PubMed

    Dan A; Yang, Yang; Dai, Yu-nv; Chen, Chun-xing; Wang, Su-yu; Tao, Ran

    2013-10-01

    Twelve pilot-scale constructed wetlands with different configurations were set up in the field to evaluate the removal and factors that influence removal of sulfonamides (sulfadiazine, sulfapyridine, sulfacetamide, sulfamethazine and sulfamethoxazole) and trimethoprim from domestic sewage. The treatments included four flow types, three substrates, two plants and three hydraulic loading rates across two seasons (summer and winter). Most target antibiotics were efficiently removed by specific constructed wetlands; in particular, all types of constructed wetlands performed well for the degradation of sulfapyridine. Flow types were the most important influencing factor in this study, and the best removal of sulfonamides was achieved in vertical subsurface-flow constructed wetlands; however, the opposite phenomenon was found with trimethoprim. Significant relationships were observed between antibiotic degradation and higher temperature and redox potential, which indicated that microbiological pathways were the most probable degradation route for sulfonamides and trimethoprim in constructed wetlands.

  10. Tracking human sewage microbiome in a municipal wastewater treatment plant.

    PubMed

    Cai, Lin; Ju, Feng; Zhang, Tong

    2014-04-01

    Human sewage pollution is a major threat to public health because sewage always comes with pathogens. Human sewage is usually received and treated by wastewater treatment plants (WWTPs) to control pathogenic risks and ameliorate environmental health. However, untreated sewage that flows into water environments may cause serious waterborne diseases, as reported in India and Bangladesh. To examine the fate of the human sewage microbiome in a local municipal WWTP of Hong Kong, we used massively parallel sequencing of 16S rRNA gene to systematically profile microbial communities in samples from three sections (i.e., influent, activated sludge, and effluent) obtained monthly throughout 1 year. The results indicated that: (1) influent sewage bacterial profile reflected the human microbiome; (2) human gut bacterial community was the dominant force shaping influent sewage bacterial profile; (3) most human sewage bacteria could be effectively removed by the WWTP; (4) a total of 75 genera were profiled as potentially pathogenic bacteria, most of which were still present in the effluent although at a very low level; (5) a grouped pattern of bacterial community was observed among the same section samples but a dispersed pattern was found among the different section samples; and (6) activated sludge was less affected by the influent sewage bacteria, but it showed a significant impact on the effluent bacteria. All of these findings provide novel insights toward a mechanistic understanding of the fate of human sewage microbiome in the WWTP.

  11. Investigation of effects of background water on upwelled reflectance spectra and techniques for analysis of dilute primary-treated sewage sludge

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Usry, J. W.; Witte, W. G.; Farmer, F. H.; Gurganus, E. A.

    1979-01-01

    In an effort to improve understanding of the effects of variations in background water on reflectance spectra, laboratory tests were conducted with various concentrations of sewage sludge diluted with several types of background water. The results from these tests indicate that reflectance spectra for sewage-sludge mixtures are dependent upon the reflectance of the background water. Both the ratio of sewage-sludge reflectance to background-water reflectance and the ratio of the difference in reflectance to background-water reflectance show spectral variations for different turbid background waters. The difference in reflectance is the only parameter considered.

  12. Application of acclimated sewage sludge as a bio-augmentation/bio-stimulation strategy for remediating chlorpyrifos contamination in soil with/without cadmium.

    PubMed

    Wang, Can; Zhou, Zhiren; Liu, Hongdan; Li, Junjie; Wang, Ying; Xu, Heng

    2017-02-01

    This experiment was performed to investigate the effects of acclimated sewage sludge (ASS) and sterilized ASS on the fates of chlorpyrifos (CP) in soil with or without cadmium (Cd), as well as the improvement of soil biochemical properties. Results showed that both ASS and sterilized ASS could significantly promote CP dissipation, and the groups with ASS had the highest efficiency on CP removal, whose degradation rates reached 71.3%-85.9% at the 30th day (40.4%-50.2% higher than non-sludge groups). Besides, the degradation rate of CP was not severely influenced by the existence of Cd, and the population of soil microorganism dramatically increased after adding sludge. The soil enzyme activities (dehydrogenase, acid phosphatase and FDA hydrolase activities) ranked from high to low were as follows: groups with sterilized ASS>groups with ASS>groups without sludge. Simultaneously, 16S rRNA gene sequencing revealed that ASS changed bacterial community structure and diversity in soil. In addition, alkali-hydrolyzable nitrogen and Olsen- phosphorus increased after application of sludge, indicating that the addition of ASS (or sterilized ASS) could effectively improve soil fertility.

  13. Processing technologies and cell wall degrading enzymes to improve nutritional value of dried distillers grain with solubles for animal feed: an in vitro digestion study.

    PubMed

    de Vries, Sonja; Pustjens, Annemieke M; Kabel, Mirjam A; Salazar-Villanea, Sergio; Hendriks, Wouter H; Gerrits, Walter J J

    2013-09-18

    Currently, the use of maize dried distillers grain with solubles (DDGS) as protein source in animal feed is limited by the inferior protein quality and high levels of non-starch polysaccharides (NSP). Processing technologies and enzymes that increase NSP degradability might improve digestive utilization of DDGS, enhancing its potential as a source of nutrients for animals. The effects of various combinations of processing technologies and commercial enzyme mixtures on in vitro digestion and subsequent fermentation of DDGS were tested. Wet-milling, extrusion, and mild hydrothermal acid treatment increased in vitro protein digestion but had no effect on NSP. Severe hydrothermal acid treatments, however, effectively solubilized NSP (48-78%). Addition of enzymes did not affect NSP solubilization in unprocessed or processed DDGS. Although the cell wall structure of DDGS seems to be resistant to most milder processing technologies, in vitro digestion of DDGS can be effectively increased by severe hydrothermal acid treatments.

  14. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton's reagent and lime.

    PubMed

    Yu, Wenbo; Yang, Jiakuan; Shi, Yafei; Song, Jian; Shi, Yao; Xiao, Jun; Li, Chao; Xu, Xinyu; He, Shu; Liang, Sha; Wu, Xu; Hu, Jingping

    2016-05-15

    Conditioning sewage sludge with Fenton's reagent could effectively improve its dewaterability. However, drawbacks of conditioning with Fenton's reagent are requirement of acidic conditions to prevent iron precipitation and subsequent neutralization with alkaline additive to obtain the pH of the filtrate close to neutrality. In this study, roles of pH were thoroughly investigated in the acidification pretreatment, Fenton reaction, and the final filtrate after conditioning. Through the response surface methodology (RSM), the optimal dosages of H2SO4, Fe(2+), H2O2, and lime acted as a neutralizer were found to be 0 (no acidification), 47.9, 34.3 and 43.2 mg/g DS (dry solids). With those optimal doses, water content of the dewatered sludge cakes could be reduced to 55.8 ± 0.6 wt%, and pH of the final filtrate was 6.6 ± 0.2. Fenton conditioning without initial acidification can simplify the conditioning process and reduce the usage of lime. The Fe(3+) content in the sludge cakes showed a close correlation with the dewaterability of conditioned sludge, i.e., the water content of sludge cakes, SRF (specific resistance to filtration), CST (capillary suction time), bound water content, and specific surface area. It indicated that the coagulation by Fe(3+) species in Fenton reaction could play an important role, compared to traditional Fenton oxidation effect on sludge conditioning. Thus, a two-step mechanism of Fenton oxidation and Fe(III) coagulation was proposed in sewage sludge conditioning. The mechanisms include the following: (1) extracellular polymeric substances (EPS) were firstly degraded into dissolved organics by Fenton oxidation; (2) bound water was converted to free water due to degradation of EPS; (3) the sludge particles were disintegrated into small ones by oxidation; (4) Fe(3+) generated from Fenton reaction acted as a coagulant to agglomerate smaller sludge particles into larger dense particles with less bond water; (5) finally, the dewatered

  15. Dual attenuation of proteasomal and autophagic BMAL1 degradation in Clock Δ19/+ mice contributes to improved glucose homeostasis.

    PubMed

    Jeong, Kwon; He, Baokun; Nohara, Kazunari; Park, Noheon; Shin, Youngmin; Kim, Seonghwa; Shimomura, Kazuhiro; Koike, Nobuya; Yoo, Seung-Hee; Chen, Zheng

    2015-07-31

    Circadian clocks orchestrate essential physiology in response to various cues, yet their mechanistic and functional plasticity remains unclear. Here, we investigated Clock(Δ19/+) heterozygous (Clk/+) mice, known to display lengthened periodicity and dampened amplitude, as a model of partially perturbed clocks. Interestingly, Clk/+ mice exhibited improved glycemic control and resistance to circadian period lengthening under high-fat diet (HFD). Furthermore, BMAL1 protein levels in Clk/+ mouse liver were upregulated compared with wild-type (WT) mice under HFD. Pharmacological and molecular studies showed that BMAL1 turnover entailed proteasomal and autophagic activities, and CLOCKΔ19 attenuated both processes. Consistent with an important role of BMAL1 in glycemic control, enhanced activation of insulin signaling was observed in Clk/+ mice relative to WT in HFD. Finally, transcriptome analysis revealed reprogramming of clock-controlled metabolic genes in Clk/+ mice. Our results demonstrate a novel role of autophagy in circadian regulation and reveal an unforeseen plasticity of circadian and metabolic networks.

  16. Determination of carbon/nitrogen ratio and heavy metals in bulking agents used for sewage composting.

    PubMed

    Alidadi, H; Najafpoor, A A; Parvaresh, A

    2007-11-15

    Improving the soil quality with organic matter and N, P and K contents are some of sewage sludge benefits. Adjusting carbonaceous materials such as plant wastes to dewatered sludge compost results in increasing the moisture content and improving C/N ratio. This study was conduced for three months in 2005, in Laboratory of Chemistry of Water and Wastewater in the School of Public Health of Isfahan University of Medical Science, to determine the C/N ratio and heavy metals concentration of bulking agents in sawdust, leaves, rice hulls and dewatered sewage sludge. Dewatered sludge was collected from Isfahan sewage treatment plant. Sawdust was collected from sawmills. Leaves were collected from municipality of Isfahan and rice hull from rice mills, then in samples determined C/N ratio and heavy metal according to standard methods. The results showed that concentrations of chromium and cadmium in the mixture of dewatered sewage sludge and bulking agents were lower them those of the standard level. Means of cobalt (115.44 mg kg(-1)), nickel (57.44 mg kg(-1)) and zinc (273.48 mg kg(-1)) concentrations were maximum in dewatered sludge but mean concentration of cobalt (25.66 mg kg(-1)) in rice hull samples and mean zinc (8.99 mg kg(-1)) and nickel (5.106 mg kg(-1)) concentrations in sawdust samples were minimum. The optimal conditions sewage sludge composting, each kilogram of sludge needs 350 g of saw dust, 470 g of leaves and 388 g of rice hull. Amount of heavy metals present in the bulking agents is lower than the amount mentioned for the compost.

  17. Removal of surfactants nonylphenol ethoxylates from municipal sewage-comparison of an A/O process and biological aerated filters.

    PubMed

    Gao, Dawen; Li, Zhe; Guan, Junxue; Li, Yifan; Ren, Nanqi

    2014-02-01

    The concentrations of nonylphenol ethoxylates (NPnEO, n=1 to 2) and nonylphenol (NP) in water and sludge samples were measured from a full scale sewage treatment plant (STP) with an Anaerobic/Oxic (A/O) and a Biological Aerated Filter (BAF) process. The A/O process was found to exhibit improved performance in comparison to the BAF process. Mean values of NP, NP1EO and NP2EO concentrations in influents from the STP were similar, ranging from 1.8 to 2.0×10(3)ngL(-1). In the A/O process, the removal efficiency of NP, NP1EO and NP2EO from the aqueous phase was 78%, 84%, and 89%, respectively. In contrast, the removal efficiencies of NP, NP1EO, and NP2EO were relatively lower for the BAF process, at 55%, 76%, and 79%, respectively. High concentrations of NP, NP1EO and NP2EO detected in the sludge samples had a maximum value of 2.7μgg(-1) dw, which indicates that improvement in the overall elimination of NP, NP1EO and NP2EO may be associated with adsorption by the sludge. To further investigate the fate of NP, NP1EO and NP2EO in the STP, our research assessed the degradation characteristics of NP by calculating its transformational loss in the STP. The results demonstrate that the quantity of NP measured in the effluent from the oxic unit increased by 32%, which indicates that NP1EO and NP2EO may undergo degradation in the oxic conditions.

  18. Event-driven model predictive control of sewage pumping stations for sulfide mitigation in sewer networks.

    PubMed

    Liu, Yiqi; Ganigué, Ramon; Sharma, Keshab; Yuan, Zhiguo

    2016-07-01

    Chemicals such as Mg(OH)2 and iron salts are widely dosed to sewage for mitigating sulfide-induced corrosion and odour problems in sewer networks. The chemical dosing rate is usually not automatically controlled but profiled based on experience of operators, often resulting in over- or under-dosing. Even though on-line control algorithms for chemical dosing in single pipes have been developed recently, network-wide control algorithms are currently not available. The key challenge is that a sewer network is typically wide-spread comprising many interconnected sewer pipes and pumping stations, making network-wide sulfide mitigation with a relatively limited number of dosing points challenging. In this paper, we propose and demonstrate an Event-driven Model Predictive Control (EMPC) methodology, which controls the flows of sewage streams containing the dosed chemical to ensure desirable distribution of the dosed chemical throughout the pipe sections of interests. First of all, a network-state model is proposed to predict the chemical concentration in a network. An EMPC algorithm is then designed to coordinate sewage pumping station operations to ensure desirable chemical distribution in the network. The performance of the proposed control methodology is demonstrated by applying the designed algorithm to a real sewer network simulated with the well-established SeweX model using real sewage flow and characteristics data. The EMPC strategy significantly improved the sulfide mitigation performance with the same chemical consumption, compared to the current practice.

  19. Rethinking sewage treatment by enhancing primary settling with low-dosage lime.

    PubMed

    Ramadori, R; Marani, D; Renzi, V; Passino, R; DiPinto, A C

    2005-01-01

    This work presents a thorough fractionation of COD in raw sewage, followed by pilot plant coagulation tests with low-dosage lime (pH 9). Through a physical separation (sieving and crossflow filtration) total COD in the raw sewage was partitioned among eight size fractions in the range of 150-0.02 microm. In addition, respirometric tests were performed to measure the biodegradability of the different size fractions. More than 60% of COD was associated with settleable and supracolloidal particles (size > 1 microm), which are characterised by slow biodegradability. Coagulation with lime increased COD removal efficiencies in the primary treatment from typical 30-35%, up to 65-70%, suggesting that lime may induce the almost complete removal of the slowly settling, slowly biodegradable supracolloidal particles in the primary treatment. On the basis of these results a non-conventional sewage treatment scheme is proposed, considering that there is plenty of space for improving primary treatment efficiency through sewage coagulation. Higher primary treatment efficiency may present several advantages, including lower aeration energy in the subsequent biological unit and higher energy recovery from sludge digestion.

  20. Antibiotic resistome and its association with bacterial communities during sewage sludge composting.

    PubMed

    Su, Jian-Qiang; Wei, Bei; Ou-Yang, Wei-Ying; Huang, Fu-Yi; Zhao, Yi; Xu, Hui-Juan; Zhu, Yong-Guan

    2015-06-16

    Composting is widely used for recycling of urban sewage sludge to improve soil properties, which represents a potential pathway of spreading antibiotic resistant bacteria and genes to soils. However, the dynamics of antibiotic resistance genes (ARGs) and the underlying mechanisms during sewage sludge composting were not fully explored. Here, we used high-throughput quantitative PCR and 16S rRNA gene based illumina sequencing to investigate the dynamics of ARGs and bacterial communities during a lab-scale in-vessel composting of sewage sludge. A total of 156 unique ARGs and mobile genetic elements (MGEs) were detected encoding resistance to almost all major classes of antibiotics. ARGs were detected with significantly increased abundance and diversity, and distinct patterns, and were enriched during composting. Marked shifts in bacterial community structures and compositions were observed during composting, with Actinobacteria being the dominant phylum at the late phase of composting. The large proportion of Actinobacteria may partially explain the increase of ARGs during composting. ARGs patterns were significantly correlated with bacterial community structures, suggesting that the dynamic of ARGs was strongly affected by bacterial phylogenetic compositions during composting. These results imply that direct application of sewage sludge compost on field may lead to the spread of abundant ARGs in soils.

  1. Application of hybrid coagulation microfiltration with air backflushing to direct sewage concentration for organic matter recovery.

    PubMed

    Jin, Zhengyu; Gong, Hui; Wang, Kaijun

    2015-01-01

    The idea of sewage concentration is gradually being accepted as a promising and sustainable way of wastewater resource recovery. In this study, Hybrid coagulation microfiltration (HCM) with air backflushing (AB) was investigated to effectively concentrate organic matter. Compared to direct sewage microfiltration, the addition of coagulation process improved the filtration performance with less fouling trends and better concentration efficiency. The use of AB exhibited even better performance within the same 7-h preliminary concentration period by reducing to one tenth of the resistance and collecting around four times as much organic matter into the product concentrate as in direct sewage microfiltration. During 93-h lab-scale continuous concentration by HCM with AB, a product concentrate with the COD concentration over 15,000 mg/L was achieved and around 70% of total influent organic matter could be recovered. Compared to Direct Membrane Filtration (DMF) with Chemically Enhanced Backwash (CEB), HCM with AB achieved better concentration efficiency with higher concentration extent and concentration velocity along with less organic matter mineralization and the more concentrated product despite with lower organic matter retention. HCM with AB could be a promising effective sewage organic matter concentration for resource recovery under optimization.

  2. Sewage sludge disposal strategies for sustainable development.

    PubMed

    Kacprzak, Małgorzata; Neczaj, Ewa; Fijałkowski, Krzysztof; Grobelak, Anna; Grosser, Anna; Worwag, Małgorzata; Rorat, Agnieszka; Brattebo, Helge; Almås, Åsgeir; Singh, Bal Ram

    2017-03-14

    The main objective of the present review is to compare the existing sewage sludge management solutions in terms of their environmental sustainability. The most commonly used strategies, that include treatment and disposal has been favored within the present state-of-art, considering existing legislation (at European and national level), characterization, ecotoxicology, waste management and actual routs used currently in particular European countries. Selected decision making tools, namely End-of-waste criteria and Life Cycle Assessment has been proposed in order to appropriately assess the possible environmental, economic and technical evaluation of different systems. Therefore, some basic criteria for the best suitable option selection has been described, in the circular economy "from waste to resources" sense. The importance of sewage sludge as a valuable source of matter and energy has been appreciated, as well as a potential risk related to the application of those strategies.

  3. Environmental response to sewage treatment strategies: Hong Kong's experience in long term water quality monitoring.

    PubMed

    Xu, Jie; Lee, Joseph H W; Yin, Kedong; Liu, Hongbin; Harrison, Paul J

    2011-11-01

    In many coastal cities around the world, marine outfalls are used for disposal of partially treated wastewater effluent. The combined use of land-based treatment and marine discharge can be a cost-effective and environmentally acceptable sewage strategy. Before 2001, screened sewage was discharged into Victoria Harbour through many small outfalls. After 2001, the Hong Kong Harbour Area Treatment Scheme (HATS) was implemented to improve the water quality in Victoria Harbour and surrounding waters. Stage I of HATS involved the construction of a 24 km long deep tunnel sewerage system to collect sewage from the densely populated urban areas of Hong Kong to a centralized sewage treatment plant at Stonecutters Island. A sewage flow of 1.4 million m3 d(-1) receives Chemically Enhanced Primary Treatment (CEPT) followed by discharge via a 1.2 km long outfall 2 km west of the harbor. The ecosystem recovery in Victoria Harbour and the environmental response to sewage abatement after the implementation of HATS was studied using a 21-year data set from long term monthly water quality monitoring. Overall, the pollution control scheme has achieved the intended objectives. The sewage abatement has resulted in improved water quality in terms of a significant reduction in nutrients and an increase in bottom DO levels. Furthermore, due to the efficient tidal mixing and flushing, the impact of the HATS discharge on water quality in the vicinity of the outfall location is relatively limited. However, Chl a concentrations have not been reduced in Victoria Harbour where algal growth is limited by hydrodynamic mixing and water clarity rather than nutrient concentrations. Phosphorus removal in the summer is suggested to reduce the risk of algal blooms in the more weakly-flushed and stratified southern waters, while nutrient removal is less important in other seasons due to the pronounced role played by hydrodynamic mixing. The need for disinfection of the effluent to reduce bacterial (E

  4. PCR- RFLP based bacterial diversity analysis of a municipal sewage treatment plant.

    PubMed

    Devi, S Gayathri; Ramya, M

    2015-09-01

    Bacterial diversity of sewage soil is an essential study to discover novel bacterial species involved in biodegradation. Restriction Fragment Length Polymorphism is one of the most useful molecular technique for diversity analysis in terms of cost effectiveness and reliability. The present study focuses on bacterial diversity of municipal sewage treatment plant in Chennai, Tamil Nadu, India through metagenomic approach. A 16S r DNA clone library was constructed from metagenomic DNA of sewage soil. 200 clones from the library were subjected to colony PCR and RFLP analysis. Upon RFLP analysis, 16 different Operational Taxonomic Units (OTU's) were obtained and a single clone from each OTU was subjected to sequencing. Phylogenetic analysis of sequences revealed the presence of five different groups of bacteria namely Proteobacteria (56%), Actinobacteria (7%), Firmicutes (5%), Bacteroidetes (17%) and Plancomycetes (7%). Three novel and uncultured groups of bacteria (8%) were also discovered. Most of the organisms identified through this study were reported to be efficient degraders of hydrocarbons, aromatic compounds and heavy metals, thereby promoting biodegradation of polluted environment.

  5. Biological nitrate removal using a food waste-derived carbon source in synthetic wastewater and real sewage.

    PubMed

    Zhang, Haowei; Jiang, Jianguo; Li, Menglu; Yan, Feng; Gong, Changxiu; Wang, Quan

    2016-01-15

    The production of volatile fatty acids (VFAs) from food waste to improve biological nutrient removal has drawn much attention. In this study, acidogenic liquid from food waste was used as an alternative carbon source for synthetic wastewater treatment. C/N ratios of 5 and 6 were suitable for denitrification, and the change in acidogenic liquid composition had no negative effect on denitrification. The denitrification rates using optimal carbon-to-nitrate ratios of acidogenic liquid were more than 25 mg NO3-N/(gVSS·h). At the same time, acidogenic liquid was used to improve nutrient removal from summer and winter sewage. C/N ratios of 5 and 6 were acceptable for summer sewage treatment. Total nitrogen in the final effluent was less than 7 mg/L. Two additional hours were required for winter sewage treatment, and the C/N ratio had to be >6.

  6. Odour measurements for sewage treatment works.

    PubMed

    Gostelow, P; Parsons, S A; Stuetz, R M

    2001-03-01

    Public concern over odours from sewage treatment works is increasing. More people are being exposed to odours, due to development around existing works or construction of new works. Increased awareness of both the environment and individual rights has meant people are now more likely to complain. Odour abatement and control is a major issue for sewage works operators. To control odours, they must first be measured. This is no easy task as response to odours is subjective. Our understanding of the sense of smell is incomplete, and there is no single measure that will directly relate to the likelihood of complaint. Odour measurement has often been regarded as an art as opposed to a science. Odour measurement techniques fall into two classes. Sensory measurements employ the human nose and measure the effects of the odour as perceived by an observer. Analytical measurements characterise odours in terms of their chemical composition and attempt to quantify the odorants present. Both methods are less than ideal--sensory measurements can be overly subjective and the interpretation of results requires care. Analytical measurements are complicated by the large number of odorants present, often at concentrations close to detection limits. Our incomplete understanding of odour perception makes linking analytical and sensory measurements difficult. This paper reviews the methods applied to sewage treatment works odour measurement. Sensory and analytical measurements are reviewed, along with a recent development, the electronic nose.

  7. Urban energy mining from sewage sludge.

    PubMed

    Kwon, E E; Yi, H; Kwon, H H

    2013-01-01

    This work showed that sewage sludge could be a strong candidate for biodiesel production. High lipid content (18-20%) with C(16-18)-carbon range was experimentally identified and measured. These lipids from sewage sludge were converted into biodiesel via the transesterification reaction with MgO-CaO/Al(2)O(3) derived from magnesium slag, and biodiesel conversion was ~98%. The experimental work enabled explaining that temperature is the main driving force for the transesterification reaction, which can be enhanced in the presence of CO(2). This also enables combination of esterification of free fatty acids and transesterification of triglycerides into a single process within 1 min in the temperature range of 350-500°C. Sewage sludge residue after extracting lipids was also a good feedstock for recovering energy via thermo-chemical processes. The impact of CO(2) co-feed on the pyrolysis/gasification process of SS residue was also investigated in this work. The CO(2) injected into the thermo-chemical process remarkably increased the generation of CO by a factor of 2. Moreover, the introduction of CO(2) into the pyrolysis/gasification process enabled reducing condensable hydrocarbons (tar) by expediting cracking; thus, utilizing CO(2) as chemical feedstock for the gasification process not only leads to higher thermal efficiency but also has environmental benefits.

  8. Occurrence of Cytophagas in Sewage Plants

    PubMed Central

    Güde, Hans

    1980-01-01

    With the application of plate count methods and of the KOH-flexirubin test, bacteria belonging to the Cytophaga group were proved to occur regularly in samples from biological sewage treatment facilities. Generally, the percentage of Cytophaga colonies of the total heterotrophic colonies was lowest in the inflow sewage water as compared with the values found in activated sludge, trickling filter, and effluent samples. During an observation period of 16 months, the highest percentages of cytophagas were found in winter samples from activated sludge and trickling filters. Furthermore, cytophagas were shown to have high percentages of the bacteria lytic to polymeric substrates such as cellulose, chitin, dextran, pectin, xylan, and gelatin. Thus, it is suggested that cytophagas may contribute to sewage purification, especially at cold temperatures and by polymer breakdown. Cytophaga strains isolated were shown to have gliding motility, flexirubin pigmentation, and a low guanine plus cytosine base ratio in common. The strains were roughly subdivided into a spreading, a nonspreading, and a cellulolytic group. PMID:16345539

  9. Ammonia sanitisation of sewage sludge using urea.

    PubMed

    Fidjeland, Jørgen; Lalander, Cecilia; Jönsson, Håkan; Vinnerås, Björn

    2013-01-01

    The aim of the study was to develop a simple, low-cost treatment for sewage sludge using urea as a sanitising agent. Sewage sludge was spiked with Enterococcus faecalis and Salmonella typhimurium, treated with 0.5, 1, 1.5 and 2% w/w urea at laboratory scale, and the viability was monitored during 4 months of storage at 4, 10 and 22 °C (only 0.5%). A linear relationship was identified between Salmonella spp. inactivation rate and ammonia (NH3) concentration. Temperature had a positive impact on Salmonella spp. inactivation at higher temperatures, but in the range 4-10 °C temperature influenced this inactivation merely by its impact on the ammonia equilibrium. Enterococcus spp. was more persistent and a lag phase of up to 11 weeks was observed. Higher temperature and ammonia concentration reduced the lag phase duration significantly, and also had a clear effect on the inactivation rate for the treatments with 0.5% urea at 22 °C and 2% urea at 4 and 10 °C. Urea sanitisation of sewage sludge can give a 2 log10 reduction of Enterococcus spp. and more than a 5 log10 reduction of Salmonella spp. within 6 weeks with either 0.5% w/w urea at 22 °C or 2% urea at 10 °C.

  10. Dual attenuation of proteasomal and autophagic BMAL1 degradation in ClockΔ19/+ mice contributes to improved glucose homeostasis

    PubMed Central

    Jeong, Kwon; He, Baokun; Nohara, Kazunari; Park, Noheon; Shin, Youngmin; Kim, Seonghwa; Shimomura, Kazuhiro; Koike, Nobuya; Yoo, Seung-Hee; Chen, Zheng

    2015-01-01

    Circadian clocks orchestrate essential physiology in response to various cues, yet their mechanistic and functional plasticity remains unclear. Here, we investigated ClockΔ19/+ heterozygous (Clk/+) mice, known to display lengthened periodicity and dampened amplitude, as a model of partially perturbed clocks. Interestingly, Clk/+ mice exhibited improved glycemic control and resistance to circadian period lengthening under high-fat diet (HFD). Furthermore, BMAL1 protein levels in Clk/+ mouse liver were upregulated compared with wild-type (WT) mice under HFD. Pharmacological and molecular studies showed that BMAL1 turnover entailed proteasomal and autophagic activities, and CLOCKΔ19 attenuated both processes. Consistent with an important role of BMAL1 in glycemic control, enhanced activation of insulin signaling was observed in Clk/+ mice relative to WT in HFD. Finally, transcriptome analysis revealed reprogramming of clock-controlled metabolic genes in Clk/+ mice. Our results demonstrate a novel role of autophagy in circadian regulation and reveal an unforeseen plasticity of circadian and metabolic networks. PMID:26228022

  11. Serial completely stirred tank reactors for improving biogas production and substance degradation during anaerobic digestion of corn stover.

    PubMed

    Li, YuQian; Liu, ChunMei; Wachemo, Akiber Chufo; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Li, XiuJin

    2017-03-11

    Several completely stirred tank reactors (CSTR) connected in series for anaerobic digestion of corn stover were investigated in laboratory scale. Serial anaerobic digestion systems operated at a total HRT of 40days, and distribution of HRT are 10+30days (HRT10+30d), 20+20days (HRT20+20d), and 30+10days (HRT30+10d) were compared to a conventional one-step CSTR at the same HRT of 40d. The results showed that in HRT10+30d serial system, the process became very unstable at organic load of 50gTS·L(-1). The HRT20+20d and HRT30+10d serial systems improved methane production by 8.3-14.6% compared to the one-step system in all loads of 50, 70, 90gTS·L(-1). The conversion rates of total solid, cellulose, and hemicellulose were increased in serial anaerobic digestion systems compared to single system. The serial systems showed more stable process performance in high organic load. HRT30+10d system showed the best biogas production and conversions among all systems.

  12. Water Hyacinths and Alligator Weeds for Final Filtration of Sewage

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R. C.; Gordon, J.

    1976-01-01

    The potential of water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxerides) (Mart.) Griesb. as secondary and tertiary filtration systems for domestic sewage was demonstrated. These two vascular aquatic plants reduced the suspended solids, total Kjeldahl nitrogen, total phosphorus, BOD sub 5, and total organic carbon levels in domestic sewage from 60 percent to 98 percent within a two week period. These plants grown in domestic sewage were also free of toxic levels of trace heavy metals.

  13. Display of phytase on the cell surface of Saccharomyces cerevisiae to degrade phytate phosphorus and improve bioethanol production.

    PubMed

    Chen, Xianzhong; Xiao, Yan; Shen, Wei; Govender, Algasan; Zhang, Liang; Fan, You; Wang, Zhengxiang

    2016-03-01

    Currently, development of biofuels as an alternative fuel has gained much attention due to resource and environmental challenges. Bioethanol is one of most important and dominant biofuels, and production using corn or cassava as raw materials has become a prominent technology. However, phytate contained in the raw material not only decreases the efficiency of ethanol production, but also leads to an increase in the discharge of phosphorus, thus impacting on the environment. In this study, to decrease phytate and its phosphorus content in an ethanol fermentation process, Saccharomyces cerevisiae was engineered through a surface-displaying system utilizing the C-terminal half of the yeast α-agglutinin protein. The recombinant yeast strain, PHY, was constructed by successfully displaying phytase on the surface of cells, and enzyme activity reached 6.4 U/g wet biomass weight. Ethanol productions using various strains were compared, and the results demonstrated that the specific growth rate and average fermentation rate of the PHY strain were higher 20 and 18 %, respectively, compared to the control strain S. cerevisiae CICIMY0086, in a 5-L bioreactor process by simultaneous saccharification and fermentation. More importantly, the phytate phosphorus concentration decreased by 89.8 % and free phosphorus concentration increased by 142.9 % in dry vinasse compared to the control in a 5-L bioreactor. In summary, we constructed a recombinant S. cerevisiae strain displaying phytase on the cell surface, which could improve ethanol production performance and effectively reduce the discharge of phosphorus. The strain reported here represents a useful novel engineering platform for developing an environment-friendly system for bioethanol production from a corn substrate.

  14. Detection of Human Sewage in Urban Stormwater Using DNA Based Methods and Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    McLellan, S. L.; Malet, N.; Sauer, E.; Mueller-Spitz, S.; Borchardt, M.

    2008-12-01

    related to the mixed organic matter sources in polluted stormwater runoff, and that this signal will distinct from untreated sanitary sewage. Stable isotope signatures of stormwater and untreated sewage were determined and compared with the rivers. Isotopic values of stormwater was delta 15N = 1.1 ± 2 %; delta 13C = -25.5 ± 3 % and sewage was delta 15N = -1.9 ± 0.2 %; delta 13C = -23.6 ± 0.3. Suspended particular organic matter (SPOM) of Milwaukee River showed depleted delta 13C (-28.6 ± 1.6 %) and enriched delta 15N (7.7 ± 1.9 %) values. SPOM of the KK River exhibited the most depleted delta 15N (0.2 ± 1.6 %) and enriched delta 13C (-24.8 ± 1.8 %) isotopic values. Menomonee River SPOM showed intermediate isotopic values. The delta 13C values of each river and the estuary enriched significantly throughout the summer storm periods. The isotope signals in the KK and Menomonee were indicative of stormwater runoff and sewage contamination. These results suggest that unrecognized sewage inputs are chronically present and may be delivered through urban stormwater systems. DNA based methods combined with isotope analysis may provide a useful tool for urban watershed assessments and to identify sewage inputs. Delineating the relative contribution of stormwater and sewage to overall degraded water quality might give the first indication of the impact of these sources on the Michigan Lake waters.

  15. The economics of the disposal of sewage and trade effluents*

    PubMed Central

    Townend, C. B.

    1959-01-01

    In this review of the economics of the disposal of sewage and trade wastes, the author touches on all aspects of the subject, from the annual costs of sewerage and sewage-disposal services in England and Wales, and what he terms the “uneconomics” of pollution of natural waters, to the financing of capital expenditure on the construction of new sewage works and equipment and on alterations to existing works. He discusses the purposes and relative costs of the various processes in the treatment of domestic sewage and outlines the special problems involved in the disposal of trade wastes. PMID:13839093

  16. Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission during sewage sludge composting.

    PubMed

    Awasthi, Mukesh Kumar; Wang, Quan; Ren, Xiuna; Zhao, Junchao; Huang, Hui; Awasthi, Sanjeev Kumar; Lahori, Altaf Hussain; Li, Ronghua; Zhou, Lina; Zhang, Zengqiang

    2016-11-01

    The objective of the present study was to mitigate the greenhouse gas (GHG) emissions during composting of dewatered fresh sewage sludge (DFSS) employing biochar combined with zeolite (B+Z) and low dosage of lime (B+L). The 12% biochar was mixed at a 10%, 15% and 30% of zeolite and 1% lime, while without any additives was used as control. The results indicated that the combine use of B+Z was significantly increased the enzymatic activities and reduced the ammonia loss 58.03-65.17% as compare to B+L amended treatment, while CH4 92.85-95.34% and N2O 95.14-97.28% decreased than control. The B+L1% amendment significantly increased the organic matter degradation but the reduction was lower than B+Z and that could reduce the CH4 and N2O emission by 55.17-63.08% and 62.24-65.53% as compare to control, respectively. Overall our results demonstrated that 12%B+Z10% addition into DFSS can be potentially used to improve the DFSS composting by mitigation of GHG emission and nitrogen loss.

  17. Improving the quality of Laminaria japonica-based diet for Apostichopus japonicus through degradation of its algin content with Bacillus amyloliquefaciens WB1.

    PubMed

    Wang, Xitao; Wang, Lili; Che, Jian; Li, Zhen; Zhang, Jiancheng; Li, Xiaoyu; Hu, Weiqing; Xu, Yongping

    2015-07-01

    content had been degraded by B. amyloliquefaciens WB1 could improve the growth performance of A. japonicus as well its resistance to bacterial infection. It could therefore act as an alternative to S. thunbergii and is economical at the same time.

  18. Characteristics of sewage sludge and distribution of heavy metal in plants with amendment of sewage sludge.

    PubMed

    Dai, Jia-yin; Chen, Ling; Zhao, Jian-fu; Ma, Na

    2006-01-01

    In order to better understand land application of sewage sludge, the characterization of heavy metals and organic pollutants were investigated in three different sewage sludges in Shanghai City, China. It was found that the total concentrations of Cd in all of sewage sludge and total concentrations of Zn in Jinshan sewage sludge, as well as those of Zn, Cu, and Ni in Taopu sludge are higher than Chinese regulation limit of pollutants for sludge to be used in agriculture. Leachability of Hg in all of studied samples and that of Cd in Taopu sewage sludge exceed the limit values of waste solid extraction standard in China legislation. Based on the characteristics for three kinds of sewage sludge, a pot experiment was conducted to investigate the effect of soil amended with Quyang sewage sludge on the accumulation of heavy metal by Begonia semperflorens-hybr; Ophiopogon japonicus (L.F.) Ker-Gaw; Loropetalum chindense-var. rubrum; Dendranthema morifolium; Viola tricolor; A ntirrhinum majus; Buxus radicans Sieb; Viburnum macrocephalum; Osmanthus fragrans Lour; Cinnamomum camphora siebold and Ligustrum lucidum ait. Results showed that 8 species of plant survived in the amended soil, and moreover they flourished as well as those cultivated in the control soil. The heavy metal concentration in plants varied with species, As, Pb, Cd and Cr concentration being the highest in the four herbaceous species studied, particularly in the roots of D. morifolium. These plants, however, did not show accumulator of As, Pb, Cd and Cr. The highest concentration of Ni and Hg was found in the roots of D. morifolium, followed by the leaves of B. semperflorens-hybr. Levels of Zn and Cu were much higher in D. morifolium than in the other plant species. D. morifolium accumulated Ni, Hg, Cu and Zn, which may contribute to the decrease of heavy metal contents in the amended soil. Treatment with sewage sludge did not significantly affect the uptake of heavy metals by the L. chindense-var. rubrum

  19. Advanced degradation of brominated epoxy resin and simultaneous transformation of glass fiber from waste printed circuit boards by improved supercritical water oxidation processes.

    PubMed

    Liu, Kang; Zhang, Zhiyuan; Zhang, Fu-Shen

    2016-10-01

    This work investigated various supercritical water oxidation (SCWO) systems, i.e. SCWO1 (only water), SCWO2 (water+H2O2) and SCWO3 (water+H2O2/NaOH), for waste printed circuit boards (PCBs) detoxification and recycling. Response surface methodology (RSM) was applied to optimize the operating conditions of the optimal SCWO3 systems. The optimal reaction conditions for debromination were found to be the NaOH of 0.21g, the H2O2 volume of 9.04mL, the time of 39.7min, maximum debromination efficiency of 95.14%. Variance analysis indicated that the factors influencing debromination efficiency was in the sequence of NaOH>H2O2>time. Mechanism studies indicated that the dissociated ions from NaOH in supercritical water promoted the debromination of brominated epoxy resins (BERs) through an elimination reaction and nucleophilic substitution. HO2, produced by H2O2 could induce the oxidation of phenol ring to open (intermediates of BERs), which were thoroughly degraded to form hydrocarbons, CO2, H2O and NaBr. In addition, the alkali-silica reaction between OH(-) and SiO2 induced the phase transformation of glass fibers, which were simultaneously converted into anorthite and albite. Waste PCBs in H2O2/NaOH improved SCWO system were fully degraded into useful products and simultaneously transformed into functional materials. These findings are helpful for efficient recycling of waste PCBs.

  20. Hierarchical structures constructed by BiOX ( X = Cl, I) nanosheets on CNTs/carbon composite fibers for improved photocatalytic degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Weng, Baicheng; Xu, Fenghua; Xu, Jianguang

    2014-12-01

    A hierarchical structure (CNTs/CFs-NSs) of BiOX ( X = Cl, I) nanosheets (NSs) on carbon fibers (CFs) embedded with aligned carbon nanotubes (CNTs) with improved photocatalytic activities has been developed on a large scale. In the CNTs/CFs obtained by centrifugal spinning, CNTs align along the axis of the CFs, form π-π stacking interactions with CFs and strength the electrical conductivity of CFs, which favors the electron collection and transportation. Cross-flake BiOX NSs were uniformly grown on the surface of CNTs/CFs through a successive ionic layer adsorption and reaction process. The as-prepared BiOX NSs are less than 20 nm in thickness with dominant reactive (001) facets that are almost fully exposed, promoting the photocatalytic properties. The hierarchical CNTs/CFs-NSs show 3- and 2-fold improved photocatalytic activities for degradation of methyl orange for BiOCl and BiOI compared to corresponding neat NSs, respectively, given the synergistic effects of CNTs/CFs and NSs. Moreover, these novel hierarchical structures with stable performance enhance the recycled ability for the photocatalyst.

  1. Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes

    PubMed Central

    Gutowski, Stacie M.; Shoemaker, James T.; Templeman, Kellie L.; Wei, Yang; Latour, Robert A.; Bellamkonda, Ravi V.; LaPlaca, Michelle C.; García, Andrés J.

    2015-01-01

    Neural electrodes are an important part of brain-machine interface devices that can restore functionality to patients with sensory and movement disorders. Chronically implanted neural electrodes induce an unfavorable tissue response which includes inflammation, scar formation, and neuronal cell death, eventually causing loss of electrode function. We developed a poly(ethylene glycol) hydrogel coating for neural electrodes with non-fouling characteristics, incorporated an anti-inflammatory agent, and engineered a stimulus-responsive degradable portion for on-demand release of the anti-inflammatory agent in response to inflammatory stimuli. This coating reduces in vitro glial cell adhesion, cell spreading, and cytokine release compared to uncoated controls. We also analyzed the in vivo tissue response using immunohistochemistry and microarray qRT-PCR. Although no differences were observed among coated and uncoated electrodes for inflammatory cell markers, lower IgG penetration into the tissue around PEG+IL-1Ra coated electrodes indicates an improvement in blood-brain barrier integrity. Gene expression analysis showed higher expression of IL-6 and MMP-2 around PEG+IL-1Ra samples, as well as an increase in CNTF expression, an important marker for neuronal survival. Importantly, increased neuronal survival around coated electrodes compared to uncoated controls was observed. Collectively, these results indicate promising findings for an engineered coating to increase neuronal survival and improve tissue response around implanted neural electrodes. PMID:25617126

  2. Protease-degradable PEG-maleimide coating with on-demand release of IL-1Ra to improve tissue response to neural electrodes.

    PubMed

    Gutowski, Stacie M; Shoemaker, James T; Templeman, Kellie L; Wei, Yang; Latour, Robert A; Bellamkonda, Ravi V; LaPlaca, Michelle C; García, Andrés J

    2015-03-01

    Neural electrodes are an important part of brain-machine interface devices that can restore functionality to patients with sensory and movement disorders. Chronically implanted neural electrodes induce an unfavorable tissue response which includes inflammation, scar formation, and neuronal cell death, eventually causing loss of electrode function. We developed a poly(ethylene glycol) hydrogel coating for neural electrodes with non-fouling characteristics, incorporated an anti-inflammatory agent, and engineered a stimulus-responsive degradable portion for on-demand release of the anti-inflammatory agent in response to inflammatory stimuli. This coating reduces in vitro glial cell adhesion, cell spreading, and cytokine release compared to uncoated controls. We also analyzed the in vivo tissue response using immunohistochemistry and microarray qRT-PCR. Although no differences were observed among coated and uncoated electrodes for inflammatory cell markers, lower IgG penetration into the tissue around PEG+IL-1Ra coated electrodes indicates an improvement in blood-brain barrier integrity. Gene expression analysis showed higher expression of IL-6 and MMP-2 around PEG+IL-1Ra samples, as well as an increase in CNTF expression, an important marker for neuronal survival. Importantly, increased neuronal survival around coated electrodes compared to uncoated controls was observed. Collectively, these results indicate promising findings for an engineered coating to increase neuronal survival and improve tissue response around implanted neural electrodes.

  3. Advanced solid-state carbon-13 nuclear magnetic resonance spectroscopic studies of sewage sludge organic matter: detection of organic "domains".

    PubMed

    Smernik, Ronald J; Oliver, Ian W; Merrington, Graham

    2003-01-01

    Two novel solid-state 13C nuclear magnetic resonance (NMR) spectroscopic techniques, PSRE (proton spin relaxation editing) and RESTORE [Restoration of Spectra via T(CH) and T(1rho)H (T One Rho H) Editing], were used to provide detailed chemical characterization of the organic matter from six Australian sewage sludges. These methods were used to probe the submicrometer heterogeneity of sludge organic matter, and identify and quantify spatially distinct components. Analysis of the T1H relaxation behavior of the sludges indicated that each sludge contained two types of organic domains. Carbon-13 PSRE NMR subspectra were generated to determine the chemical nature of these domains. The rapidly relaxing component of each sludge was rich in protein and alkyl carbon, and was identified as dead bacterial material. The slowly relaxing component of each sludge was rich in carbohydrate and lignin structures, and was identified as partly degraded plant material. The bacterial domains were shown, using the RESTORE technique, to also have characteristically rapid T(1rho)H relaxation rates. This rapid T(1rho)H relaxation was identified as the main cause of underrepresentation of these domains in standard 13C cross polarization (CP) NMR spectra of sludges. The heterogeneous nature of sewage sludge organic matter has implications for land application of sewage sludge, since the two components are likely to have different capacities for sorbing organic and inorganic toxicants present in sewage sludge, and will decompose at different rates.

  4. Odor composition analysis and odor indicator selection during sewage sludge composting

    PubMed Central

    Zhu, Yan-li; Zheng, Guo-di; Gao, Ding; Chen, Tong-bin; Wu, Fang-kun; Niu, Ming-jie; Zou, Ke-hua

    2016-01-01

    ABSTRACT On the basis of total temperature increase, normal dehydration, and maturity, the odor compositions of surface and internal piles in a well-run sewage sludge compost plant were analyzed using gas chromatography–mass spectrometry with a liquid nitrogen cooling system and a portable odor detector. Approximately 80 types of substances were detected, including 2 volatile inorganic compounds, 4 sulfur organic compounds, 16 benzenes, 27 alkanes, 15 alkenes, and 19 halogenated compounds. Most pollutants were mainly produced in the mesophilic and pre-thermophilic periods. The sulfur volatile organic compounds contributed significantly to odor and should be controlled primarily. Treatment strategies should be based on the properties of sulfur organic compounds. Hydrogen sulfide, methyl mercaptan, dimethyl disulfide, dimethyl sulfide, ammonia, and carbon disulfide were selected as core indicators. Ammonia, hydrogen sulfide, carbon disulfide, dimethyl disulfide, methyl mercaptan, dimethylbenzene, phenylpropane, and isopentane were designated as concentration indicators. Benzene, m-xylene, p-xylene, dimethylbenzene, dichloromethane, toluene, chlorobenzene, trichloromethane, carbon tetrachloride, and ethylbenzene were selected as health indicators. According to the principle of odor pollution indicator selection, dimethyl disulfide was selected as an odor pollution indicator of sewage sludge composting. Monitoring dimethyl disulfide provides a highly scientific method for modeling and evaluating odor pollution from sewage sludge composting facilities. Implications: Composting is one of the most important methods for sewage sludge treatment and improving the low organic matter content of many agricultural soils. However, odors are inevitably produced during the composting process. Understanding the production and emission patterns of odors is important for odor control and treatment. Core indicators, concentration indicators, and health indicators provide an index

  5. Spatial and temporal trends in water quality in a Mediterranean temporary river impacted by sewage effluents.

    PubMed

    David, Arthur; Tournoud, Marie-George; Perrin, Jean-Louis; Rosain, David; Rodier, Claire; Salles, Christian; Bancon-Montigny, Chrystelle; Picot, Bernadette

    2013-03-01

    This paper analyzes how changes in hydrological conditions can affect the water quality of a temporary river that receives direct inputs of sewage effluents. Data from 12 spatial surveys of the Vène river were examined. Physico-chemical parameters, major ion, and nutrient concentrations were measured. Analyses of variance (ANOVA) and multivariate analyses were performed. ANOVA revealed significant spatial differences for conductivity and major ion but no significant spatial differences for nutrient concentrations even if higher average concentrations were observed at stations located downstream from sewage effluent discharge points. Significant temporal differences were observed among all the parameters. Karstic springs had a marked dilution effect on the direct disposal of sewage effluents. During high-flow periods, nutrient concentrations were high to moderate whereas nutrient concentrations ranged from moderate to bad at stations located downstream from the direct inputs of sewage effluents during low-flow periods. Principal component analysis showed that water quality parameters that explained the water quality of the Vène river were highly dependent on hydrological conditions. Cluster analysis showed that when the karstic springs were flowing, water quality was homogeneous all along the river, whereas when karstic springs were dry, water quality at the monitoring stations was more fragmented. These results underline the importance of considering hydrological conditions when monitoring the water quality of temporary rivers. In view of the pollution observed in the Vène river, "good water chemical status" can probably only be achieved by improving the management of sewage effluents during low-flow periods.

  6. Enhanced power generation and energy conversion of sewage sludge by CEA-microbial fuel cells.

    PubMed

    Abourached, Carole; Lesnik, Keaton Larson; Liu, Hong

    2014-08-01

    The production of methane from sewage sludge through the use of anaerobic digestion has been able to effectively offset energy costs for wastewater treatment. However, significant energy reserves are left unrecovered and effluent standards are not met necessitating secondary processes such as aeration. In the current study a novel cloth-electrode assembly microbial fuel cell (CEA-MFC) was used to generate electricity from sewage sludge. Fermentation pretreatment of the sludge effectively increased the COD of the supernatant and improved reactor performance. Using the CEA-MFC design, a maximum power density of 1200 mW m(-2) was reached after a fermentation pre-treatment time of 96 h. This power density represents a 275% increase over those previously observed in MFC systems. Results indicate continued improvements are possible and MFCs may be a viable modification to existing wastewater treatment infrastructure.

  7. Sewage sludge composting: quality assessment for agricultural application.

    PubMed

    Nafez, Amir Hossein; Nikaeen, Mahnaz; Kadkhodaie, Safora; Hatamzadeh, Maryam; Moghim, Sharareh

    2015-11-01

    In order to use sewage sludge (SS) composts in agriculture, it is extremely important to estimate the quality of compost products. The aim of this study was to investigate the quality of composted SS as a fertilizer and soil amendment especially in semi-arid areas. To determine the quality and agronomic value of the SS compost products, analyses on pH, electrical conductivity, organic matter content, C/N ratio, phytotoxicity, microbial load, and heavy metal content of composted anaerobically digested SS, with different proportions (1:1, 1:2, and 1:3 v/v) of green and dry plant waste, as bulking agents, were performed. The 1:2 and 1:3 mixtures of SS and green/dry plant waste were the most beneficial for composting, with final composts attaining high organic matter degradation and exhibiting low amounts of heavy metals, a relatively high germination index, and significant reduction of pathogens, suggesting the agricultural relevance of composted SS and green/dry plant waste at 1:2 and 1:3 (v/v) proportions. pH and electrical conductivity were also within the permissible limits. With respect to international standards, it appears that composted SS and green/dry plant waste at 1:2 and 1:3 proportions pose no threat to soil or plant quality if used in agriculture or land restoration.

  8. Treatment of municipal sewage sludge in supercritical water: A review.

    PubMed

    Qian, Lili; Wang, Shuzhong; Xu, Donghai; Guo, Yang; Tang, Xingying; Wang, Laisheng

    2016-02-01

    With increasing construction of wastewater treatment plants and stricter policies, municipal sewage sludge (MSS) disposal has become a serious problem. Treatment of MSS in supercritical water (SCW) can avoid the pre-drying procedure and secondary pollution of conventional methods. SCW treatment methods can be divided into supercritical water gasification (SCWG), supercritical water partial oxidation (SCWPO) and supercritical water oxidation (SCWO) technologies with increasing amounts of oxidants. Hydrogen-rich gases can be generated from MSS by SCWG or SCWPO technology using oxidants less than stoichiometric ratio while organic compounds can be completely degraded by SCWO technology with using an oxidant excess. For SCWG and SCWPO technologies, this paper reviews the influences of different process variables (MSS properties, moisture content, temperature, oxidant amount and catalysts) on the production of gases. For SCWO technology, this paper reviews research regarding the removal of organics with or without hydrothermal flames and the changes in heavy metal speciation and risk. Finally, typical systems for handling MSS are summarized and research needs and challenges are proposed.

  9. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China

    PubMed Central

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-01-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464

  10. Co-digestion to support low temperature anaerobic pretreatment of municipal sewage in a UASB-digester.

    PubMed

    Zhang, Lei; Hendrickx, Tim L G; Kampman, Christel; Temmink, Hardy; Zeeman, Grietje

    2013-11-01

    The aim of this work was to demonstrate that co-digestion improves soluble sewage COD removal efficiency in treatment of low temperature municipal sewage by a UASB-digester system. A pilot scale UASB-digester system was applied to treat real municipal sewage, and glucose was chosen as a model co-substrate. Co-substrate was added in the sludge digester to produce additional methanogenic biomass, which was continuously recycled to inoculate the UASB reactor. Soluble sewage COD removal efficiency increased from 6 to 23%, which was similar to its biological methane potential (BMP). Specific methanogenic activity of the UASB and of the digester sludge at 15°C tripled to a value respectively of 43 and 39 mg CH4-COD/(g VSS d). Methane production in the UASB reactor increased by more than 90% due to its doubled methanogenic capacity. Therefore, co-digestion is a suitable approach to support a UASB-digester for pretreatment of low temperature municipal sewage.

  11. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China.

    PubMed

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-12-11

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index I(geo) and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. I(geo) classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes.

  12. Adaptation of mesophilic anaerobic sewage fermentor populations to thermophilic temperatures

    SciTech Connect

    Chen, M.

    1983-04-01

    Thermophilic (50/sup 0/ ) and obligately thermophilic (60/sup 0/C) anaerobic carbohydrate- and protein-digesting and methanogenic bacterial populations were enumerated in a mesophilic (35/sup 0/C) fermentor anaerobically digesting municipal primary sludge. Of the total population in the mesophilic fermentor, 9% were thermophiles and 1% were obligate thermophiles. Of these 10%, the percentages of bacteria (thermophiles and obligate thermophiles, respectively) able to use specific substrates were as follows: bacteria able to digest albumin, casein, starch, and mono- and disaccharides, 30 and 10%; pectin degraders, 10 and 0.2%; cellulose degraders, 2 and 0.06%; methanogens that grow with H/sub 2/ and CO/sub 2/, methanol, and dimethylamine, 9 and 1%; methanogens that grow with formate, 8 and 5%; and methanogens that grow with acetate, 25 and less than 0.8%. Shortly after the temperature was elevated from 35 to 50 or 60 degrees C, the digestion of albumin, casein, starch, and mono- and disaccharides was detected, and methane was produced from H/sub 2/ and CO/sub 2/. Methane produced from acetate was not delayed at 50 degrees C, but was delayed by 29 days at 60 degrees C. Methane produced from formate was delayed by 3 days, from methanol by 7 days, and from dimethylamine by 5 days at 50 and 60 degrees C. A 10- and 20-day acclimation period was required for hydrolysis of pectin and cellulose, respectively, at 50 degrees C. Digestion of pectin required 20 days and cellulose longer than 85 days when the temperature was elevated abruptly from 35 to 60 degrees C. The acclimation period for the digestion of pectin and cellulose at 60 degrees C was shortened to 3 and 15 days, respectively, by seeding with a small amount of a culture acclimated to 50 degrees C. The data suggest that enrichment of cellulolytic, pectinolytic, and acetate-utilizing bacteria is crucial for the digestion of sewage sludge at 60 degrees C. (Refs. 17).

  13. The environmental quality of the sewage discharge area of Qingdao Cove—A cladistic analysis

    NASA Astrophysics Data System (ADS)

    Wu, Baoling; Lu, Hua

    1993-06-01

    This study on the environmental quality of the Qingdao Cove intertidal zone sewage discharge area is based on data obtained from the December of 1989 and 1990 macrobenthos investigations there, and uses pollution indicator species and computer aided cladistic analysis to divide the area into a polluted area and a semipolluted area. The study showed the environmental quality in 1990 improved over that in 1989.

  14. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant.

    PubMed

    Luostarinen, S; Luste, S; Sillanpää, M

    2009-01-01

    The feasibility of co-digesting grease trap sludge from a meat-processing plant and sewage sludge was studied in batch and reactor experiments at 35 degrees C. Grease trap sludge had high methane production potential (918 m(3)/tVS(added)), but methane production started slowly. When mixed with sewage sludge, methane production started immediately and the potential increased with increasing grease trap sludge content. Semi-continuous co-digestion of the two materials was found feasible up to grease trap sludge addition of 46% of feed volatile solids (hydraulic retention time 16d; maximum organic loading rate 3.46 kgVS/m(3)d). Methane production was significantly higher and no effect on the characteristics of the digested material was noticed as compared to digesting sewage sludge alone. At higher grease trap sludge additions (55% and 71% of feed volatile solids), degradation was not complete and methane production either remained the same or decreased.

  15. Radioactivity in municipal sewage and sludge.

    PubMed Central

    Martin, J E; Fenner, F D

    1997-01-01

    OBJECTIVE: To determine the environmental consequences of discharges of radioactivity from a large medical research facility into municipal sewage, specifically 131I activity in sewage sludge, and the radiation exposures to workers and the public when sludges are incinerated. METHODS: The authors measured radioactivity levels in the sludge at the Ann Arbor, Michigan, Waste Water Treatment Plant following radioiodine treatments of two patients at the University of Michigan hospital complex and performed a series of calculations to estimate potential radiation doses due to releases of 131I from incineration of sewage sludge. RESULTS: Approximately 1.1% of the radioactive 131I administered therapeutically to patients was measured in the primary sludge. Radiation doses from incineration of sludge were calculated to be 0.048 millirem (mrem) for a worker during a period in which the incinerator filtration system failed, a condition that could be considered to represent maximum exposure conditions, for two nine-hour days. Calculated results for a more typically exposed worker (with the filtration system in operation and a 22-week period of incineration) yielded a committed effective dose equivalent of 0.066 mrem. If a worker were exposed to both conditions during the period of incineration, the dose was calculated to be 0.11 mrem. For a member of the public, the committed effective dose equivalent was calculated as 0.003 mrem for a 22-week incineration period. Exposures to both workers and the public were a very small fraction of a typical annual dose (about 100 mrem excluding radon, or 300 mrem with radon) due to natural background radiation. Transport time to the treatment plant for radioiodine was found to be much longer than that of a normal sewage, possibly due to absorption of iodine by organic material in the sewer lines. The residence time of radioiodine in the sewer also appears to be longer than expected. CONCLUSION: 131I in land-applied sludge presents few

  16. 33 CFR 159.121 - Sewage processing test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Sewage processing test. 159.121 Section 159.121 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.121 Sewage processing test....

  17. 33 CFR 159.121 - Sewage processing test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Sewage processing test. 159.121 Section 159.121 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.121 Sewage processing test....

  18. 33 CFR 159.121 - Sewage processing test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Sewage processing test. 159.121 Section 159.121 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.121 Sewage processing test....

  19. 33 CFR 159.121 - Sewage processing test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Sewage processing test. 159.121 Section 159.121 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) POLLUTION MARINE SANITATION DEVICES Design, Construction, and Testing § 159.121 Sewage processing test....

  20. Credit PSR. Northeast and southwest facades of Sewage Pumping Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. Northeast and southwest facades of Sewage Pumping Station (Building 4330). Building retains its World War II construction materials and character. In the background at the extreme left is Building 4305 (Unicon Portable Hangar) - Edwards Air Force Base, North Base, Sewage Pumping Station, Southwest of E Street, Boron, Kern County, CA

  1. Coxiella burnetii in sewage water at sewage water treatment plants in a Q fever epidemic area.

    PubMed

    Schets, F M; de Heer, L; de Roda Husman, A M

    2013-11-01

    During 2007-2010, over 4000 persons in The Netherlands contracted Q-fever, a zoonosis caused by the bacterium Coxiella burnetii. Goats and sheep are the main reservoir of C. burnetti and infected animals shed the bacterium with their urine, faeces and birth products. Human infections may occur through direct contact with infected animals, or through inhalation of contaminated dust particles or aerosols. Discharge of waste water from Q fever contaminated goat farms may result in the presence of C. burnetii in sewage water and aerosols at sewage water treatment plants (SWTPs) which may pose a health risk for workers or neighbouring residents. The objectives of this study were to determine the presence of C. burnetii at SWTPs and to optimize available detection methods. In March-July 2011, sewage influent and aeration tank samples from four SWTPs receiving discharge from Q fever positive goat farms were examined by using a multiplex real-time PCR detecting C. burnetii DNA by targeting IS1111 and com1 genes. Influent (44%; n=16/36) and active sludge (36%; n=13/36) samples were positive with low C. burnetii DNA content. Percentage positive samples per SWTP were 28-61%. Positive samples were most frequent in March 2011 and least frequent in May 2011. The presence of C. burnetii DNA in sewage water samples suggests that SWTPs receiving waste water from Q fever contaminated goat farms may contribute to the spread of C. burnetii to the environment. The low levels of C. burnetii DNA in sewage water during the decline of the Q fever outbreak in The Netherlands in 2011 indicate a low health risk for SWTP workers and residents.

  2. Improved 1,3-propanediol production with hemicellulosic hydrolysates (corn straw) as cosubstrate: Impact of degradation products on Klebsiella pneumoniae growth and 1,3-propanediol fermentation.

    PubMed

    Jin, Pin; Li, Shuang; Lu, Sheng-guo; Zhu, Jian-guo; Huang, He

    2011-01-01

    To improve 1,3-propanediol (1,3-PD) production by an economic and efficient approach, hemicellulosic hydrolysates (HH) used as cosubstrate resulted in more biomass and higher reducing power for 1,3-PD production. The effects of primary degradation products such as individual sugars (xylose, glucose, mannose, arabinose and galactose) and major inhibitors (furfural, acetate and formate) on the Klebsiella pneumoiae growth and 1,3-PD production were investigated in this study. Xylose and mannose could efficiently promote the 1,3-PD production and cell growth. Furfural (0.28 g/l) and sodium acetate (1.46 g/l) in low concentration were not inhibitory to Klebsiella pneumoniae, rather they have stimulatory effect on the growth and 1,3-PD biosynthesis, especially the acetate. In fed-batch fermentation with HH as cosubstrate, the final 1,3-PD production, conversion from glycerol and productivity were 71.58 g/l, 0.65 mol/mol and 1.93 g/l/h, respectively, which were 17.8%, 25.0% and 17.7% higher than that from glycerol alone.

  3. Cutting improves the productivity of lucerne-rich stands used in the revegetation of degraded arable land in a semi-arid environment

    PubMed Central

    Yuan, Zi-Qiang; Yu, Kai-Liang; Wang, Bin-Xian; Zhang, Wang-Yun; Zhang, Xu-Long; Siddique, Kadambot H. M.; Stefanova, Katia; Turner, Neil C.; Li, Feng-Min

    2015-01-01

    Understanding the relationships between vegetative and environmental variables is important for revegetation and ecosystem management on the Loess Plateau, China. Lucerne (Medicago sativa L.) has been widely used in the region to improve revegetation, soil and water conservation, and to enhance livestock production. However, there is little information on how environmental factors influence long-term succession in lucerne-rich vegetation. Our objective was to identify the main environmental variables controlling the succession process in lucerne-rich vegetation such that native species are not suppressed after sowing on the Loess Plateau. Vegetation and soil surveys were performed in 31 lucerne fields (three lucerne fields without any management from 2003–2013 and 28 fields containing 11-year-old lucerne with one cutting each year). Time after planting was the most important factor affecting plant species succession. Cutting significantly affected revegetation characteristics, such as aboveground biomass, plant density and diversity. Soil moisture content, soil organic carbon, soil available phosphorus and slope aspect were key environmental factors affecting plant species composition and aboveground biomass, density and diversity. Long-term cutting can cause self-thinning in lucerne, maintain the stability of lucerne production and slow its degradation. For effective management of lucerne fields, phosphate fertilizer should be applied and cutting performed. PMID:26166449

  4. COD removal efficiency and mechanism of HMBR in high volumetric loading for ship domestic sewage treatment.

    PubMed

    Zhu, Linan; He, Hailing; Wang, Chunli

    2016-10-01

    The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m(3)•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L. DO had a more remarkable effect on the COD removal efficiency than HRT. In addition, HMBR revealed an excellent capability of resisting organics loading impact. Within the range of volumetric loading of 0.72 to 4.8 kg COD/(m(3)•d), the effluent COD concentration satisfied the discharge requirement of IMO. It was found that the organics degradation in the aeration tank followed the first-order reaction, with obtained kinetic parameters of vmax (2.79 d(-1)) and Ks (395 mg/L). The original finding of this study had shown the effectiveness of HMBR in organic contaminant degradation at high substrate concentration, which can be used as guidance in the full scale of the design, operation and maintenance of ship domestic sewage treatment devices.

  5. Genotoxic and mutagenic effects of sewage sludge on higher plants.

    PubMed

    Corrêa Martins, Maria Nilza; de Souza, Victor Ventura; Souza, Tatiana da Silva

    2016-02-01

    Sewage treatment yields sludge, which is often used as a soil amendment in agriculture and crop production. Although the sludge contains elevated concentrations of macro and micronutrients, high levels of inorganic and organic compounds with genotoxic and mutagenic properties are present in sludge. Application of sludge in agriculture is a pathway for direct contact of crops to toxic chemicals. The objective of this study was to compile information related to the genotoxic and mutagenic effects of sewage sludge in different plant species. In addition, data are presented on toxicological effects in animals fed with plants grown in soils supplemented with sewage sludge. Despite the benefits of using sewage sludge as organic fertilizer, the data showcased in this review suggest that this residue can induce genetic damage in plants. This review alerts potential risks to health outcomes after the intake of food cultivated in sewage sludge-amended soils.

  6. The effect of bioleaching on sewage sludge pyrolysis.

    PubMed

    Chen, Zhihua; Hu, Mian; Cui, Baihui; Liu, Shiming; Guo, Dabin; Xiao, Bo

    2016-02-01

    The effects of bioleaching on sewage sludge pyrolysis were studied. Sewage sludge was treated by bioleaching with solid concentrations of 6% (w/v), 8% (w/v), 10% (w/v). Results showed that bioleaching treatment could modify the physicochemical properties of sewage sludge and enhance the metals removal. The optimum removal efficiencies of heavy metals were achieved with solid concentration of 6% (w/v) bioleaching treatment: Cu, 73.08%; Zn, 78.67%; Pb, 24.65%; Cd, 79.46%. The characterization results of thermogravimetric analysis (TGA) showed that the bioleached sewage sludge with a 6% (w/v) solid concentration treatment was the easiest to decompose. Pyrolytic experiments of bioleached sewage sludge were performed in a laboratory-scale fixed bed reactor. Results indicated that bioleaching treatment greatly influenced the product yields and gas composition.

  7. Occupational hepatitis B virus infection in sewage workers.

    PubMed

    Arvanitidou, M; Constantinidis, T C; Doutsos, J; Mandraveli, K; Katsouyannopoulos, V

    1998-01-01

    In a cross-sectional study the employees of a Sewage Company were tested for hepatitis B virus (HBV) markers--HBsAg, anti-HBs, anti-HBc--to determine the prevalence of HBV infection and assess the risk of exposed sewage workers becoming infected, so as to evaluate the necessity for appropriate vaccination. The overall prevalence of HBV markers was 43.9% and 6.6% of the employees were HBsAg carriers. In the univariate analysis the prevalence of past and current infection was significantly associated with exposure to sewage (p < 0.001), age (p < 0.001) and with educational level (p < 0.001). However, the logistic regression analysis confirmed that only exposure to sewage was independently associated with positivity for HBV infection (p < 0.001). Workers exposed to sewage should therefore be considered for vaccination against hepatitis B virus.

  8. Rural sewage treatment processing in Yongjia County, Zhejiang Province

    NASA Astrophysics Data System (ADS)

    Wang, W. H.; Kuan, T. H.

    2016-08-01

    Issues regarding water pollution in rural areas of China have garnered increased attention over the years. Further discussion on the circumstances and results of existing domestic sewage treatment methods may serve as an appropriate reference in solving these important issues. This article explored the current conditions of water contamination in rural areas of China, introduced the characteristics and effects of applicable sewage treatment technology, and summarized the results of the planning, installation, and operation of rural sewage treatment facilities in Yongjia County in Zhejiang Province. However, relying on a single technical design rule is not adequate for solving the practical problems that these villages face. Instead, methods of planning rural sewage treatment should be adapted to better suit local conditions and different residential forms. It is crucial, ultimately, for any domestic sewage treatment system in a rural area to be commissioned, engineered, and maintained by a market-oriented professional company.

  9. Cardoon (Cynara cardunculus L.) biomass production in a calcareous soil amended with sewage sludge compost and irrigated with sewage water

    NASA Astrophysics Data System (ADS)

    Lag, A.; Gomez, I.; Navarro-Pedreño, J.; Melendez, I.; Perez Gimeno, A.; Soriano-Disla, J. M.

    2010-05-01

    Energy use is one of the most important current global issues. Traditional energetic resources are limited and its use generates environmental problems, i.e. Global Warming, thus it is necessary to find alternative ways to produce energy. Energy crops represent one step towards sustainability but it must be coupled with appropriate land use and management adapted to local conditions. Moreover, positive effects like soil conservation; economical improvement of rural areas and CO2 storage could be achieved. Treated sewage water and sewage sludge compost were used as low-cost inputs for nutrition and irrigation, to cultivate cardoon (Cynara cardunculus L.) a perennial Mediterranean crop. The aim of the present field experiment was to ascertain the optimum dose of compost application to obtain maximum biomass production. Four compost treatments were applied by triplicate (D1=0; D2=30; D3=50; D4=70 ton/ha) and forty eight cardoon plants were placed in each plot, 12 per treatment, in a calcareous soil (CLfv; WRB, 2006) plot, located in the South East of Spain, in semi-arid conditions. The experiment was developed for one cardoon productive cycle (one year); soil was sampled three times (October, April and July). Soil, compost and treated sewage irrigation water were analyzed (physical and chemical properties). Stalk, capitula and leave weight as well as height and total biomass production were the parameters determined for cardoon samples. Analyses of variance (ANOVA) at p=0,05 significance level were performed to detect differences among treatments for each sampling/plot and to study soil parameters evolution and biomass production for each plot/dose. Several statistical differences in soil were found between treatments for extractable zinc, magnesium and phosphorus; as well as Kjeldahl nitrogen and organic carbon due to compost application, showing a gradual increase of nutrients from D1 to D4. However, considering the evolution of soil parameters along time, pH was

  10. Vitrification as an alternative to landfilling of tannery sewage sludge.

    PubMed

    Celary, Piotr; Sobik-Szołtysek, Jolanta

    2014-12-01

    Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with flotation sewage sludge, and 45% v/v and 5% v/v, respectively, for precipitation sewage sludge. These combinations allowed for obtaining products with negligible heavy metal leaching levels and hardness similar to commercial glass, which suggests they could be potentially used as construction aggregate substitutes. Incineration of sewage sludge before the vitrification process lead to

  11. Microplastics in Sewage Sludge: Effects of Treatment.

    PubMed

    Mahon, A M; O'Connell, B; Healy, M G; O'Connor, I; Officer, R; Nash, R; Morrison, L

    2017-01-17

    Waste water treatment plants (WWTPs) are receptors for the cumulative loading of microplastics (MPs) derived from industry, landfill, domestic wastewater and stormwater. The partitioning of MPs through the settlement processes of wastewater treatment results in the majority becoming entrained in the sewage sludge. This study characterized MPs in sludge samples from seven WWTPs in Ireland which use anaerobic digestion (AD), thermal drying (TD), or lime stabilization (LS) treatment processes. Abundances ranged from 4196 to 15 385 particles kg(-1) (dry weight). Results of a general linear mixed model (GLMM) showed significantly higher abundances of MPs in smaller size classes in the LS samples, suggesting that the treatment process of LS shears MP particles. In contrast, lower abundances of MPs found in the AD samples suggests that this process may reduce MP abundances. Surface morphologies examined using scanning electron microscopy (SEM) showed characteristics of melting and blistering of TD MPs and shredding and flaking of LS MPs. This study highlights the potential for sewage sludge treatment processes to affect the risk of MP pollution prior to land spreading and may have implications for legislation governing the application of biosolids to agricultural land.

  12. Phosphate fertilizer from sewage sludge ash (SSA).

    PubMed

    Franz, M

    2008-01-01

    Ashes from sewage sludge incineration are rich in phosphorus content, ranging between 4% and 9%. Due to the current methods of disposal used for these ashes, phosphorus, which is a valuable plant nutrient, is removed from biological cycling. This article proposes the possible three-stage processing of SSA, whereby more than 90% of phosphorus can be extracted to make an adequate phosphate fertilizer. SSA from two Swiss sewage sludge incinerators was used for laboratory investigations. In an initial step, SSA was leached with sulfuric acid using a liquid-to-solid ratio of 2. The leaching time and pH required for high phosphorus dissolution were determined. Inevitably, dissolution of heavy metals takes place that would contaminate the fertilizer. Thus in a second step, leach solution has to be purified by having the heavy metals removed. Both ion exchange using chelating resins and sulfide precipitation turned out to be suitable for removing critical Cu, Ni and Cd. Thirdly, phosphates were precipitated as calcium phosphates with lime water. The resulting phosphate sludge was dewatered, dried and ground to get a powdery fertilizer whose efficacy was demonstrated by plant tests in a greenhouse. By measuring the weight of plants after 6 weeks of growth, fertilized in part with conventional phosphate fertilizer, fertilizer made from SSA was proven to be equal in its plant uptake efficiency.

  13. Microwave oxidation treatment of sewage sludge.

    PubMed

    Lo, Kwang V; Srinivasan, Asha; Liao, Ping H; Bailey, Sam

    2015-01-01

    Microwave-oxidation treatment of sewage sludge using various oxidants was studied. Two treatment schemes with a combination of hydrogen peroxide and ozone were examined: hydrogen peroxide and ozone were introduced into the sludge simultaneously, followed by microwave heating. The other involved the ozonation first, and then the resulting solution was subjected to microwave and hydrogen peroxide treatment. The set with ozonation followed by hydrogen peroxide plus microwave heating yielded higher soluble materials than those of the set with hydrogen peroxide plus ozone first and then microwave treatment. No settling was observed for all treatments in the batch operation, except ozone/microwave plus hydrogen peroxide set at 120°C. The pilot-scale continuous-flow 915 MHz microwave study has demonstrated that microwave-oxidation process is feasible for real-time industrial application. It would help in providing key data for the design of a full-scale system for treating sewage sludge and the formulation of operational protocols.

  14. Supercritical water pyrolysis of sewage sludge.

    PubMed

    Ma, Wenchao; Du, Guiyue; Li, Jian; Fang, Yuanhao; Hou, Li'an; Chen, Guanyi; Ma, Degang

    2017-01-01

    Municipal sewage sludge (SS) from wastewater treatment plant containing high water content (>85wt.%), lead to the difficulty of co-combustion with MSW or coal due to the high cost of drying. This study explores an alternative method by supercritical water (SCW) pyrolysis of sewage sludge (SS) in a high pressure reaction vessel. The effects of temperature and moisture content of SS on yield and composition of the products (bio-oil, bio char and non-condensable gas) were studied. A temperature of 385°C and moisture content of 85wt.% were found to be the optimum conditions for the maximum bio-oil production of 37.23wt.%, with a higher heating value of 31.08MJ/kg. In the optimum condition, the yields of aliphatic hydrocarbon and phenols were about 29.23wt.% and 12.51wt.%, respectively. The physical and chemical properties of bio-char were analyzed by using XRF and BET. Results of GC analyses of NCG showed that it has the maximum HHV of 13.39MJ/m(3) at 445°C and moisture content of 85wt.%. The reaction path from SS to bio-oil through SCW pyrolysis was given. Moreover, carbon balance was calculated for the optimal condition, and finding out that 64.27wt.% of the carbon content was transferred from SS to bio-oil. Finally, this work demonstrates that the SCW pyrolysis is a promising disposal method for SS.

  15. Water quality assessment of Malad Creek, Mumbai, India: an impact of sewage and tidal water.

    PubMed

    Sardar, V K; Vijay, R; Sohony, R A

    2010-01-01

    The aim of the study was to carry out water quality assessment and to identify sources responsible for deterioration of quality in the Malad creek, Mumbai, India. Creek receives sewage and wastewater from various drains and partially treated effluent from Malad and Versova treatment facilities. To assess the water quality, sampling locations were identified in the creek based on discharges of wastewater and sewage. Identified locations were traced in physical space by a global positioning system. Samples were collected during low and high tides and analyzed for physical, chemical and bacteriological parameters such as pH, Turbidity, DO, BOD, NH(3)-N, PO(4) and FC and compared with SW-II Standards. Parameters were also analyzed statistically and correlated to determine the relationship amongst the parameters using SPSS software. The idea was to determine the probable causes contributing to the pollution in the creek. Various options were suggested for improvement in the creek quality based on water quality assessment.

  16. The Water Quality in Rio Highlights the Global Public Health Concern Over Untreated Sewage

    PubMed Central

    Eisenberg, Joseph N.S.; Bartram, Jamie; Wade, Timothy J.

    2016-01-01

    Summary: Water quality issues in Rio have been widely publicized because of the 2016 Olympics. Recent concerns about polluted waters that athletes may be exposed to highlights the conditions that more than a billion people globally are exposed to daily. Despite these unhealthy conditions, much is unknown about the risks and exposure pathways associated with bathing in or drinking untreated or partially treated sewage. Beyond acute illness, we are learning more about the chronic sequelae that arise from repeated exposure to pathogens found in sewage. Additionally, we do not know enough about how to measure water quality, especially in developing countries. A consequence of these knowledge gaps is that data from developed countries are used to guide public health approaches in low- and middle-income settings. More data that are locally specific are needed to inform guidelines for improving sanitation and water quality in Rio and other cities in developing countries. PMID:27689546

  17. Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste.

    PubMed

    Serrano, Antonio; Siles López, José Angel; Chica, Arturo Francisco; Martín, M Angeles; Karouach, Fadoua; Mesfioui, Abdelaziz; El Bari, Hassan

    2014-01-01

    Mesophilic anaerobic digestion is a treatment that is widely applied for sewage sludge management but has several disadvantages such as low methane yield, poor biodegradability and nutrient imbalance. In this paper, we propose orange peel waste as an easily biodegradable co-substrate to improve the viability of the process. Sewage sludge and orange peel waste were mixed at a proportion of 70:30 (wet weight), respectively. The stability was maintained within correct parameters throughout the process, while the methane yield coefficient and biodegradability were 165 L/kg volatile solids (VS) (0 degrees C, 1 atm) and 76% (VS), respectively. The organic loading rate (OLR) increased from 0.4 to 1.6kg VS/m3 d. Nevertheless, the OLR and methane production rate decreased at the highest loads, suggesting the occurrence of an inhibition phenomenon.

  18. Effect of irrigation on the survival of total coliforms in three semiarid soils after amendment with sewage sludge.

    PubMed

    García-Orenes, F; Roldán, A; Guerrero, C; Mataix-Solera, J; Navarro-Pedreño, J; Gómez, I; Mataix-Beneyto, J

    2007-01-01

    Sewage sludges are increasingly used in soil amendment programmes, although not without risk since they contain, among other potential hazards, high concentrations of total coliform bacteria. In this paper we have studied the effect of irrigation on the survival of total coliforms in three semiarid degraded soils with different agricultural practices. Fresh sewage sludge was added at 50 g kg(-1) soil, and incubated in both the presence and absence of irrigation. The absence of irrigation led to a sharp decrease in the number of total coliforms in all soils, with the bacteria disappearing in 40 days. Irrigation produced a substantial initial increase in the number of coliforms in the three soils, although after 80 days there was none growing in any of the soils. The results showed that there were significant differences in the survival of coliform bacteria due to the presence or absence of irrigation.

  19. Anaerobic co-digestion of sewage sludge and strawberry extrudate under mesophilic conditions.

    PubMed

    Serrano, Antonio; Siles, José A; Chica, Arturo F; Martín, M Ángeles

    2014-01-01

    The biomethanization of sewage sludge has several disadvantages such as low methane yield, poor biodegradability and nutrient imbalance. In this paper, a sewage sludge and strawberry extrudate mixture in a proportion of 40:60 (wet weight) is proposed to improve the viability of the process. The addition of an easily biodegradable co-substrate enhanced the nutrient balance and diluted the heavy metals and inhibitors from sewage sludge. Two different experimental set-ups at lab and semi-pilot scale were employed in order to ensure the reproducibility and significance of the obtained values. Co-digestion improved the stability of the process by decreasing the alkalinity to a mean value of 3215 ± 190 mg CaCO₃/L, while maintaining the pH within the optimal range for anaerobic digestion. The methane yield coefficient and biodegradability were 176 L/kg VS (total volatile solids) (0°C, 1 atm) and 81% (VS), respectively. Kinetic parameters decreased at the highest loads, suggesting the occurrence of a slowing down phenomenon. A quality organic amendment with a heavy metal content lower than the limits established under European legislation for agricultural applications was obtained from the digestate of the proposed treatment.

  20. The study of the cumulative effects of the application of urban sewage sludge on an eroded soil cultivated in the Algerian steppe

    NASA Astrophysics Data System (ADS)

    Boutmedjet, Ahmed; Boukkaya, Nassira; Houyou, zohra; Ouakid, Mohamed; Bielders, Charles

    2014-05-01

    Since the seventies, desertification is one of the major problems faced by the Mediterranean climate regions. These problems are inherent in the soil and climate characteristics of these regions, but their magnitude and acuity depend mainly on human activities. The process of desertification that affects more and more land is more pronounced as soil degradation, which accelerates constantly reduced resources farmland and pasture. Especially in areas bordering the Sahara, as the Algerian steppe, a real belt between the Sahara and the Algerian tell As part of the study of the cumulative effect of the application of urban sewage sludge on sandy soil and culture that is a cereal (barley), we had results that enabled us to identify some precepts,. The short-term effects studied in this experiment indicate that the amendment of the sewage sludge had a beneficial effect on the fertilizing qualities of the soil and therefore the performance of barley. To observations of Culture (barley), indicate that the best grain yield was obtained with D3 (28.76 quintals / ha) and D2 (33.91 quintals / ha). This is due to the effect of the sludge by the addition of required nutrients crop production. The lowest yield (24.11 quintals / ha) being obtained for the control (D0). It is the same for straw yield, with 47.5 quintals / ha in D2. The D3 treatment (30 t / ha) has previously presented the best results, but after 3 years we noticed that the best yields are obtained with D2 (10 t / ha). Except the pH and the rate of limestone that are related to changes in the characteristics of the site, there was an improvement in some physical and chemical properties of the soil. The contributions of sewage sludge amended greater quality soil biology D2 (number and effective species collected). Increasing the organic matter content (1.45%) and electrical conductivity (0.18 microseconds / cm) in the soil is only significant for the highest dose (30t/ha), although a tendency to enrichment in

  1. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.

    PubMed

    Smith, Stephen R

    2009-01-01

    additions to agricultural and other soils, with background concentrations of heavy metals, raise the soil content and the availability of heavy metals for transfer into crop plants. The availability in soil depends on the nature of the chemical association between a metal with the organic residual and soil matrix, the pH value of the soil, the concentration of the element in the compost and the soil, and the ability of the plant to regulate the uptake of a particular element. There is no evidence of increased metal release into available forms as organic matter degrades in soil once compost applications have ceased. However, there is good experimental evidence demonstrating the reduced bioavailability and crop uptake of metals from composted biosolids compared to other types of sewage sludge. It may therefore be inferred that composting processes overall are likely to contribute to lowering the availability of metals in amended soil compared to other waste biostabilisation techniques. The total metal concentration in compost is important in controlling crop uptake of labile elements, like Zn and Cu, which increases with increasing total content of these elements in compost. Therefore, low metal materials, which include source-segregated and greenwaste composts, are likely to have inherently lower metal availabilities overall, at equivalent metal loading rates to soil, compared to composted residuals with larger metal contents. This is explained because the compost matrix modulates metal availability and materials low in metals have stronger sorption capacity compared to high metal composts. Zinc is the element in sewage sludge-treated agricultural soil identified as the main concern in relation to potential impacts on soil microbial activity and is also the most significant metal in compost with regard to soil fertility and microbial processes. However, with the exception of one study, there is no other tangible evidence demonstrating negative impacts of heavy metals

  2. Production and characterization of glazed tiles containing incinerated sewage sludge.

    PubMed

    Lin, D F; Chang, W C; Yuan, C; Luo, H L

    2008-01-01

    In this article, glaze with different colorants was applied to tile specimens manufactured by incinerated sewage sludge ash (ISSA) and clay. Improvements using different amounts of colorants, and glaze components and concentrations on tile bodies were investigated. Four different proportions of clay (by weight ratio) were replaced by ISSA. Tiles of size 12 cm x 6 cm x 1 cm were made and left in an electric furnace to make biscuit tiles at 800 degrees C. Afterwards, four colorants, Fe2O3 (red), V2O5 (yellow), CoCO3 (blue), and MnO2 (purple), and four different glaze concentrations were applied on biscuit tile specimens. These specimens were later sintered into glazed tiles at 1050 degrees C. The study shows that replacement of clay by sludge ash had adverse effects on properties of tiles. Water absorption increased and bending strength reduced with increased amounts of ash. However, both water absorption and bending strength improved for glazed ash tiles. Abrasion of grazed tiles reduced noticeably from 0.001 to 0.002 g. This implies glaze can enhance abrasion resistance of tiles. Effects like lightfastness and acid-alkali resistance improved as different glazes were applied on tiles. In general, red glazed tiles showed the most stable performance, followed by blue, yellow, and purple.

  3. Isolation and Characterization of Polyacrylamide-Degrading Bacteria from Dewatered Sludge

    PubMed Central

    Yu, Feng; Fu, Ruimin; Xie, Yun; Chen, Wuling

    2015-01-01

    Polyacrylamide (PAM) is a water-soluble polymer that is widely used as a flocculant in sewage treatment. The accumulation of PAM affects the formation of dewatered sludge and potentially produces hazardous monomers. In the present study, the bacterial strain HI47 was isolated from dewatered sludge. This strain could metabolize PAM as its sole nutrient source and was subsequently identified as Pseudomonas putida. The efficiency of PAM degradation was 31.1% in 7 days and exceeded 45% under optimum culture condition (pH 7.2, 39 °C and 100 rpm). The addition of yeast extract and glucose improved the bacterial growth and PAM degradation. The degraded PAM samples were analyzed by gel-filtration chromatography, Fourier transform infrared and high-performance liquid chromatography. The results showed that high-molecular-weight PAM was partly cleaved to small molecular oligomer derivatives and part of the amide groups of PAM had been converted to carboxyl groups. The biodegradation did not accumulate acrylamide monomers. Based on the SDS-PAGE and N-terminal sequencing results, the PAM amide groups were converted into carboxyl groups by a PAM-induced extracellular enzyme from the aliphatic amidase family. PMID:25893998

  4. [Development of Chemical Exposure Prediction Model for Aerobic Sewage Treatment Plant for Biochemical Wastewaters].

    PubMed

    Zhou, Lin-jun; Liu, Ji-ning; Shi, Li-li; Feng, Jie; Xu, Yan-hua

    2016-01-15

    Sewage treatment plant (STP) is a key transfer station for chemicals distributed into different environment compartment, and hence models of exposure prediction play a crucial role in the environmental risk assessment and pollution prevention of chemicals. A mass balance model namely Chinese Sewage treatment plant (C-STP(O)) was developed to predict the fate and exposure of chemicals in a conventional sewage treatment plant. The model was expressed as 9 mixed boxes by compartment of air, water, suspended solids, and settled solids. It was based on the minimum input data required on the notification in new chemicals, such as molecular weight, absorption coefficient, vapor pressure, water solubility, ready or inherent biodegradability. The environment conditions ( Temperature = 283 K, wind speed = 2 m x s(-1)) and the classic STP scenario parameters of China, especially the scenario parameters of water quality and sludge properties were adopted in C-STP( 0) model to reflect Chinese characteristics, these parameters were sewage flow of 35 000 m3 x d(-1), influent BOD5 of 0.15 g x L(-1), influent SS of 0.2 kg x m(-3), effluent SS of 0.02 kg x m(-3), BOD5 removal in aerator of 90% sludge density of 1.6 kg x L(3) and organic carbon content of 0.18-0.19. It adopted the fugacity express for mechanism of linear absorption, first-order degradation, Whitman two resistances. An overall interphase transfer constant which was the sum of surface volatilization and stripping was used to assess the volatilization in aerator. The most important and uncertain input value was the biodegradation rate constant, and determination of which required a tier test strategy from ready or inherent biodegradability data to simulate test in STP. An extrapolated criterion of US EPA to derive biodegradation rate constant using the results of ready and inherent biodegradability was compared with that of EU and was recommended. C-STP ( 0 ) was valid to predict the relative emission of volatilization

  5. Presence of Methicillin Resistant Staphylococcus aureus (MRSA) in sewage treatment plant.

    PubMed

    Boopathy, Raj

    2017-02-23

    The presence of antibiotic resistant bacteria and antibiotic resistance genes in rural sewage treatment plants are not well reported in the literature. The aim of the present study was to study the frequency occurrence of Methicillin Resistant Staphylococcus aureus (MRSA) in a rural sewage treatment plant. This study was conducted using raw sewage as well as treated sewage from a small town sewage treatment plant in rural southeast Louisiana of USA. Results showed the presence of MRSA consistently in both raw and treated sewage. The presence of mecA gene responsible for methicillin resistance was confirmed in the raw and treated sewage water samples.

  6. Do concentrations of pharmaceuticals in sewage reflect prescription figures?

    PubMed

    van Nuijs, Alexander L N; Covaci, Adrian; Beyers, Herman; Bervoets, Lieven; Blust, Ronny; Verpooten, Gert; Neels, Hugo; Jorens, Philippe G

    2015-06-01

    In recent years, it has been demonstrated that sewage-based epidemiology can deliver interesting information on trends in illicit drug consumption. However, until now, no real evidence exists that the measured concentrations of drugs in sewage can be exactly correlated with the amounts of drugs used by a specific population. This study aimed therefore at correlating detailed monthly prescription figures of 11 pharmaceuticals (atenolol, bisoprolol, citalopram, fluoxetine, venlafaxine, losartan, telmisartan, valsartan, carbamazepine, metformin, and tramadol) with measured concentrations of these compounds in influent sewage from five sewage treatment plants in Belgium. For 7 out of the 11 substances, a ratio between loads calculated from the prescription figures and loads calculated from measured concentrations in the range of 0.30-3.00 was observed. For four pharmaceuticals (atenolol, bisoprolol, telmisartan, and venlafaxine), the observed relationship was less pronounced. The manuscript gives an overview of the possible uncertainties that are related with the calculated correlations. This study highlights the need for gathering all the necessary information regarding sewage sampling, stability of substances in sewage, pharmacokinetics, and analytical method performance when sewage-based epidemiology studies are performed.

  7. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes.

    PubMed

    Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

    2015-11-01

    Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature.

  8. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes

    NASA Astrophysics Data System (ADS)

    Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

    2015-11-01

    Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature.

  9. Metal transfer in vermicomposting of sewage sludge and plant wastes

    SciTech Connect

    Frank, R.; Klauck, C.; Stonefield, K.I.

    1983-12-01

    Sewage sludge is an urban waste that has a potential nutrient value for recycling into food production. A set of guidelines has been developed that prescribes the quality of sludge suitable for utilization on foodlands. A number of sewage sludges do not meet the criteria and are therefore not acceptable for direct foodland application. One of the options available for such sludges is the production of compost and one of these composting processes involves worms (vermicomposting). This study looks at a pilot vermicomposting operation and follows metal concentrations by batch lot from the sewage sludge to the final commercial product.

  10. Virus isolations from sewage and from a stream receiving effluents of sewage treatment plants*

    PubMed Central

    Grinstein, Saul; Melnick, Joseph L.; Wallis, Craig

    1970-01-01

    In order to detect viruses in sewage or streams, it is first necessary to concentrate the virus present in the fluid sample. Available methods are not readily manageable for concentrating virus from large volumes of fluid, and have not always yielded high recovery rates. In the study described in this paper, a method for concentration of viruses by adsorption on insoluble cross-linked maleic anhydride polyelectrolytes has been utilized to survey the viral flora of sewage and of a stream receiving sewage effluents, in a residential area of Houston, Texas. On a single day the virus flow at different points along the stream varied from 304 000 to 6 014 000 PFU/min. From 84 samples each of 1 US gal, 14 520 isolates were obtained, chiefly echovirus type 7 and polioviruses of all 3 types, some of them with characteristics of virulent wild strains. With virus isolation rates as high as those achieved, it is now possible to monitor virus in natural waters more effectively. PMID:4315865

  11. Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC).

    PubMed

    Kleemann, Rosanna; Chenoweth, Jonathan; Clift, Roland; Morse, Stephen; Pearce, Pete; Saroj, Devendra

    2017-02-01

    This research compares and contrasts the physical and chemical characteristics of incinerator sewage sludge ash (ISSA) and pyrolysis sewage sludge char (PSSC) for the purposes of recovering phosphorus as a P-rich fertiliser. Interest in P recovery from PSSC is likely to increase as pyrolysis is becoming viewed as a more economical method of sewage sludge thermal treatment compared to incineration. The P contents of ISSA and PSSC are 7.2-7.5% and 5.6%, respectively. Relative to the sludge, P concentrations are increased about 8-fold in ISSA, compared to roughly 3-fold in PSSC. Both PSSC and ISSA contain whitlockite, an unusual form of calcium phosphate, with PSSC containing more whitlockite than ISSA. Acid leaching experiments indicate that a liquid/solid ratio of 10 with 30min contact time is optimal to release PO4-P into leachate for both ISSA and PSSC. The proportion of P extracted from PSSC is higher due to its higher whitlockite content. Heavy metals are less soluble from PSSC because they are more strongly incorporated in the particles. The results suggest there is potential for the development of a process to recover P from PSSC.

  12. Environmental degradation and environmental threats in China.

    PubMed

    Wang, Ying

    2004-01-01

    The article presents a review of environmental degradation and its threats in China. Air pollution, water pollution, deforestation, soil degradation, sand depositing in dams, decaying urban infrastructure, and more and more hazards such as floods, landslides and soil erosion are major consequences of environmental degradation and are making tremendous loss both in life and property. Through investigation, the author found that poor air quality in the large cities; water pollution in the downstream of many rivers; the multiple problems of many mining areas; lack of access to fresh water; decaying sewage systems; and the disastrous impact of these environmental degradations on public health and agricultural products in many provinces is rather serious. Relationship of environmental degradation and natural hazards is close; more attention should be put in environmental degradation that may surpass economy progress if the trend continues. It is therefore imperative that Chinese government undertake a series of prudent actions now that will enable to be in the best possible position when the current environmental crisis ultimately passes.

  13. Plasma chemical gasification of sewage sludge.

    PubMed

    Balgaranova, Janetta

    2003-02-01

    The possibility for plasma gasification of sewage sludge is investigated. Water steam is used as the plasma generating gas and as a chemical reagent. The experiments are carried out at a sludge to water steam ratio of 1 to 1.5 by weight, and at a plasma torch temperature of up to 2600 degrees C. The calculated average temperature in the reactor after mixing with the sludge particles is up to 1700 degrees C. Proximate and ultimate analyses of the sludge are given. The resulting gases are analysed by gas chromatography. High calorific gas containing mainly carbon monoxide (48% volume) and hydrogen (46% volume), as well as glass-like slag, is obtained. No water-soluble substances are detected within it. The amount of carbon dioxide produced is under 4% mass. No hydrocarbons are observed within the gas. The investigated process is environmentally safe, compact and shows a high rate of conversion.

  14. Sewage sludge dewatering using flowing liquid metals

    SciTech Connect

    Carlson, L.W.

    1986-11-04

    A method is described of reducing the moisture content of a moist sewage sludge having a moisture content of about 50-80% and formed of small cellular micro-organism bodies having internally confined water. The method comprises: circulating a hot liquid metal in a loop; forming a mixture of the moist sludge and the hot liquid metal in a portion of the loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies; separating the liquid metal, dried sludge, and vaporized water in a separation zone of the loop; and drawing off the dried sludge and vaporized water from the loop whereby the liquid metal is left to be recirculated in the loop.

  15. Insight into biological phosphate recovery from sewage.

    PubMed

    Ye, Yuanyao; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen; Zhang, Xinbo; Guo, Jianbo; Ni, Bing-Jie; Chang, Soon Woong; Nguyen, Dinh Duc

    2016-10-01

    The world's increasing population means that more food production is required. A more sustainable supply of fertilizers mainly consisting of phosphate is needed. Due to the rising consumption of scarce resources and limited natural supply of phosphate, the recovery of phosphate and their re-use has potentially high market value. Sewage has high potential to recover a large amount of phosphate in a circular economy approach. This paper focuses on utilization of biological process integrated with various subsequent processes to concentrate and recycle phosphate which are derived from liquid and sludge phases. The phosphate accumulation and recovery are discussed in terms of mechanism and governing parameters, recovery efficiency, application at plant-scale and economy.

  16. Thixotropic behaviour of thickened sewage sludge

    PubMed Central

    2014-01-01

    The aim of the work is a description of the rheological behaviour of thickened sewage sludge. The sample of thickened sludge was collected from the wastewater treatment plant, where pressure flotation unit is used for a process of thickening. The value of dry matter of collected sample was 3.52%. Subsequently the sample was diluted and the rheological properties of individual samples were obtained. Several types of rheological tests were used for the determination of the sample. At first the hysteresis loop test was performed. The next test was focused on the time-dependency, i.e. measurement of dependence of dynamic viscosity on the time at constant shear rate. Further dependence dynamic viscosity on the temperature was performed. Then the activation energy was obtained from measured values. Finally, the hysteresis areas were counted and measured values were evaluated with use of Herschel-Bulkley mathematical model. PMID:24860659

  17. Addition of biochar to sewage sludge decreases freely dissolved PAHs content and toxicity of sewage sludge-amended soil.

    PubMed

    Stefaniuk, Magdalena; Oleszczuk, Patryk

    2016-11-01

    Due to an increased content of polycyclic aromatic hydrocarbons (PAHs) frequently found in sewage sludges, it is necessary to find solutions that will reduce the environmental hazard associated with their presence. The aim of this study was to determine changes of total and freely dissolved concentration of PAHs in sewage sludge-biochar-amended soil. Two different sewage sludges and biochars with varying properties were tested. Biochars (BC) were produced from biogas residues at 400 °C or 600 °C and from willow at 600 °C. The freely dissolved PAH concentration was determined by means of passive sampling using polyoxymethylene (POM). Total and freely dissolved PAH concentration was monitored at the beginning of the experiment and after 90 days of aging of the sewage sludge with the biochar and soil. Apart from chemical evaluation, the effect of biochar addition on the toxicity of the tested materials on bacteria - Vibrio fischeri (Microtox(®)), plants - Lepidium sativum (Phytotestkit F, Phytotoxkit F), and Collembola - Folsomia candida (Collembolan test) was evaluated. The addition of biochar to the sewage sludges decreased the content of Cfree PAHs. A reduction from 11 to 43% of sewage sludge toxicity or positive effects on plants expressed by root growth stimulation from 6 to 25% to the control was also found. The range of reduction of Cfree PAHs and toxicity was dependent on the type of biochar. After 90 days of incubation of the biochars with the sewage sludge in the soil, Cfree PAHs and toxicity were found to further decrease compared to the soil with sewage sludge alone. The obtained results show that the addition of biochar to sewage sludges may significantly reduce the risk associated with their environmental use both in terms of PAH content and toxicity of the materials tested.

  18. Raw Sewage Harbors Diverse Viral Populations

    PubMed Central

    Cantalupo, Paul G.; Calgua, Byron; Zhao, Guoyan; Hundesa, Ayalkibet; Wier, Adam D.; Katz, Josh P.; Grabe, Michael; Hendrix, Roger W.; Girones, Rosina; Wang, David; Pipas, James M.

    2011-01-01

    ABSTRACT At this time, about 3,000 different viruses are recognized, but metagenomic studies suggest that these viruses are a small fraction of the viruses that exist in nature. We have explored viral diversity by deep sequencing nucleic acids obtained from virion populations enriched from raw sewage. We identified 234 known viruses, including 17 that infect humans. Plant, insect, and algal viruses as well as bacteriophages were also present. These viruses represented 26 taxonomic families and included viruses with single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), positive-sense ssRNA [ssRNA(+)], and dsRNA genomes. Novel viruses that could be placed in specific taxa represented 51 different families, making untreated wastewater the most diverse viral metagenome (genetic material recovered directly from environmental samples) examined thus far. However, the vast majority of sequence reads bore little or no sequence relation to known viruses and thus could not be placed into specific taxa. These results show that the vast majority of the viruses on Earth have not yet been characterized. Untreated wastewater provides a rich matrix for identifying novel viruses and for studying virus diversity. Importance At this time, virology is focused on the study of a relatively small number of viral species. Specific viruses are studied either because they are easily propagated in the laboratory or because they are associated with disease. The lack of knowledge of the size and characteristics of the viral universe and the diversity of viral genomes is a roadblock to understanding important issues, such as the origin of emerging pathogens and the extent of gene exchange among viruses. Untreated wastewater is an ideal system for assessing viral diversity because virion populations from large numbers of individuals are deposited and because raw sewage itself provides a rich environment for the growth of diverse host species and thus their viruses. These studies suggest that

  19. [Sewage sludge conditioning by bioleaching combined with Fenton-like oxidation].

    PubMed

    Liu, Chang-geng; Zhang, Pan-yue; Jiang, Jiao-jiao; Zeng, Cheng-hua; Huang, Yi; Xu, Guo-yin

    2015-01-01

    Bioleaching combined with Fenton-like oxidation was used to condition sewage sludge. The results showed that it took approximately 1 d to decrease pH from 6.9 to 2.5 by bioleaching, with fixed sulfur power and FeSO4 x 7H2O dosages of 3 g x L(-1) and 8 g x L(-1), respectively. After bioleaching, the volatile solids(VS) reduction was 13.4%, and the specific resistance to filtration(SRF) dropped from 3.1 x 10(9)s2 x g(-1) to 1.5 x 10(9)s2 x g(-1) with a reduction of 51.6%, but the bioleached sludge was still difficult to be dewatered. The bioleached sludge was further oxidized by Fenton-like oxidation. The results indicated that the optimal H2O2 dosage and reaction time were 3.3 g x L(-1) and 60 min, respectively. Under the optimal conditions, VS reduction was 30.8%, SRF was declined to 1.9 x 10(8) s2 x g(-1) with a reduction of 93.9%, and the moisture of sludge cake was 76.9%. After treated by bioleaching combined with Fenton-like oxidation, the dewaterability and stability of sewage sludge were significantly improved. Besides, the combined technology was more efficient in conditioning sewage sludge than single Fenton-like oxidation.

  20. Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling.

    PubMed

    Hidaka, Taira; Wang, Feng; Tsumori, Jun

    2015-09-01

    Anaerobic co-digestion of sewage sludge and other organic wastes, such as kitchen garbage, food waste, and agricultural waste, at a wastewater treatment plant (WWTP) is a promising method for both energy and material recovery. Substrate characteristics and the anaerobic digestion performance of sewage sludge and various organic wastes were compared using experiments and modeling. Co-digestion improved the value of digested sewage sludge as a fertilizer. The relationship between total and soluble elemental concentrations was correlated with the periodic table: most Na and K (alkali metals) were soluble, and around 20-40% of Mg and around 10-20% of Ca (alkaline earth metals) were soluble. The ratio of biodegradable chemical oxygen demand of organic wastes was 65-90%. The methane conversion ratio and methane production rate under mesophilic conditions were evaluated using a simplified mathematical model. There was reasonably close agreement between the model simulations and the experimental results in terms of methane production and nitrogen concentration. These results provide valuable information and indicate that the model can be used as a pre-evaluation tool to facilitate the introduction of co-digestion at WWTPs.

  1. Anaerobic co-digestion of sewage sludge with shredded grass from public green spaces.

    PubMed

    Hidaka, Taira; Arai, Sayuri; Okamoto, Seiichiro; Uchida, Tsutomu

    2013-02-01

    Adding greenery from public spaces to the co-digestion process with sewage sludge was evaluated by shredding experiments and laboratory-scale batch and continuous mesophilic anaerobic fermentation experiments. The ratio of the shredded grass with 20mm or less in length by a commercially available shredder was 93%. The methane production was around 0.2NL/gVS-grass in the batch experiment. The continuous experiment fed with sewage sludge and shredded grass was stably operated for 81days. The average methane production was 0.09NL/gVS-grass when the TS ratio of the sewage sludge and the grass was 10:1. This value was smaller than those of other reports using grass silage, but the grass species in this study were not managed, and the collected grass was just shredded and not ensiled before feeding to the reactor for simple operation. The addition of grass to a digester can improve the carbon/nitrogen ratio, methane production and dewaterability.

  2. A research on sintering characteristics and mechanisms of dried sewage sludge.

    PubMed

    Wang, Xingrun; Jin, Yiying; Wang, Zhingyu; Mahar, Rasool Bux; Nie, Yongfeng

    2008-12-30

    This study investigates the sintering behavior of dried sewage sludge and the related sintering mechanisms, considering sintering temperature and sintering time. Experimental results indicate that the characteristics are primarily influenced by sintering temperature. When the sintering temperature is increased from 1020 to 1050 degrees C, the specimens' compressive strength and bulk density increase significantly, while water absorption decreases obviously, indicating an improvement of densification due to sintering. However, the compressive strength cannot meet the requirement for traditional ceramic products due to the release of organic matters and the formation of big pores in the products. Phosphorus in sewage sludge initially takes reactions with the formation of calcium magnesium phosphate and aluminum phosphate during sintering, which are helpful for enhancing the compressive strength. So, some materials with high contents of Al could be used to enhance the compressive strength of products. Heavy metals are fixed primarily inside the sintered specimens, with the As, Pb, Cd, Cr, Ni, Cu, Zn concentrations in the leachate found to be in the range of China regulatory requirements. These results reveal the feasibility of recycling dried sewage sludge by sintering as a construction material.

  3. Transformation and availability of nutrients and heavy metals during integrated composting-vermicomposting of sewage sludges.

    PubMed

    Hait, Subrata; Tare, Vinod

    2012-05-01

    Transformation and availability of nutrients and some heavy metals were assessed during the integrated composting-vermicomposting of both primary sewage sludge (PSS) and waste activated sewage sludge (WAS) using matured vermicompost as indigenous bulking material and employing Eisenia fetida as earthworm species. Vermicomposting resulted in significant increase in total N (TN) (PSS: 41.7-64.6%, F=11.6, P<0.05; WAS: 36.4-58.6%, F=6.4, P<0.05), water soluble N (WSN) (PSS: 37.1-50.5%, F=30.1, P<0.05; WAS: 40.1-53.0%, F=27.6, P<0.05), total P (TP) (PSS: 39.9-69.8%, F=27.1, P<0.05; WAS: 32.2-56.6%, F=21.4, P<0.05) and water soluble P (WSP) (PSS: 25.2-34.3%, F=163.9, P<0.05; WAS: 24.1-34.2%, F=144.3, P<0.05) as compared to the initial compost material depending on different experimental conditions. The study demonstrated that the vermicomposting significantly improved the availability of nutrients in sewage sludges. In addition, vermicomposting considerably reduced the availability of heavy metals except Fe and Mn, presumably by forming organic-bound complexes in spite of several fold increase in their total content. The environmental conditions (i.e., temperature and relative humidity), in general, showed significant effect on the transformation and availability of nutrients and heavy metals. There was no effect of earthworm density on the transformation and availability of heavy metals and nutrients except N and P, possibly due to prior exposure during acclimation period in sewage sludge.

  4. Transformation products and human metabolites of triclocarban and tricllosan in sewage sludge across the United States

    USGS Publications Warehouse

    Pycke, Benny F.G.; Roll, Isaac B.; Brownawell, Bruce J.; Kinney, Chad A.; Furlong, Edward T.; Kolpin, Dana W.; Halden, Rolf U.

    2014-01-01

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2′-hydroxy-TCC (r = 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r = 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37–74%), whereas its contribution to partial TCC dechlorination was limited (0.4–2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.

  5. Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States.

    PubMed

    Pycke, Benny F G; Roll, Isaac B; Brownawell, Bruce J; Kinney, Chad A; Furlong, Edward T; Kolpin, Dana W; Halden, Rolf U

    2014-07-15

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α=0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2'-hydroxy-TCC (r=0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r=0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α=0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37-74%), whereas its contribution to partial TCC dechlorination was limited (0.4-2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.

  6. Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability.

    PubMed

    Jensen, P D; Astals, S; Lu, Y; Devadas, M; Batstone, D J

    2014-12-15

    Anaerobic codigestion (AcoD) is a proven option to significantly boost biogas production while utilizing existing digesters and infrastructure. The aim of the present research was to conduct an exhaustive study regarding anaerobic codigestion of mixed sewage sludge and crude glycerol considering impacts on organic load, hydraulic load, process performance and microbial community. The methane potential of crude glycerol varied from 370 mL CH4·g(-1) VS to 483 mL CH4·g(-1) VS for different samples tested. The half maximal inhibitory concentration of crude glycerol was 1.01 g VS L(-1), and the primary mechanism of inhibition was through overload from rapid fermentation rather than the presence of toxic compounds in the crude glycerol. In continuous operation over 200 days, feeding glycerol at up to 2% v/v, increased organic load by up to 70% and resulted in a 50% increase in methane production. Glycerol dosing resulted in no change in apparent dewaterability, with both codigestion and control reactors returning values of 22%-24%. Members of the phylum Thermotogae emerged as a niche population during AcoD of sewage sludge and glycerol; however there was no gross change in microbial community structure and only minimal changes in diversity. AcoD did not result in synergisms between sewage sludge and crude glycerol. Actually, at dose rate up to 2% v/v glycerol dosing is still an effective strategy to increase the organic loading rate of continuous anaerobic digesters with minimal impact of the hydraulic retention time. Nonetheless, the dose rate must be managed to: (i) prevent process inhibition and (ii) ensure sufficient degradation time to produce a stable biosolids product.

  7. Benefits of the Use of Sewage Sludge over EDTA to Remediate Soils Polluted with Heavy Metals.

    PubMed

    Hernández, Ana J; Gutiérrez-Ginés, María J; Pastor, Jesús

    2015-09-01

    Sewage sludges from urban wastewater treatment plants are often used to remediate degraded soils. However, the benefits of their use in metal-polluted soils remain unclear and need to be assessed in terms of factors besides soil fertility. This study examines the use of thermal-dried sewage sludge (TDS) as an amendment for heavy metal-polluted soil in terms of its effects on soil chemical properties, leachate composition, and the growth of native plant communities. To assess the response of the soil and its plant community to an increase in metal mobilization, the effects of TDS amendment were compared with those of the addition of a chelating agent (ethylenediaminetetraacetic acid [EDTA]). The experimental design was based on a real-case scenario in which soils from of an abandoned mine site were used in a greenhouse bioassay. Two doses of TDS and EDTA were applied to a soil containing high Pb, Zn, Cu, and Cd levels (4925, 5675, 404, and 25 mg kg, respectively). Soil pH was 6.4, and its organic matter content was 5.53%. The factors examined after soil amendment were soil fertility and heavy metal contents, leachate element losses, the plant community arising from the seed bank (plant cover, species richness and biodiversity, above/below ground biomass), and phytotoxic effects (chemical contents of abundant species). Thermal-dried sewage sludge emerged as a good phytostabilizer of Pb, Zn, Cu, and Cd given its capacity to reduce the plant uptake of metals and achieve rapid plant cover. This amendment also enhanced the retention of other elements in the plant root system and overall showed a better capacity to remediate soils polluted with several heavy metals. The addition of EDTA led to plant productivity losses and nutritional imbalances because it increased the mobility of several elements in the soil and its leachates.

  8. Transformation Products and Human Metabolites of Triclocarban and Triclosan in Sewage Sludge Across the United States

    PubMed Central

    2015-01-01

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2′-hydroxy-TCC (r = 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r = 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37–74%), whereas its contribution to partial TCC dechlorination was limited (0.4–2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge. PMID:24932693

  9. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    EPA Science Inventory

    Sewage samples from seven locations in the United States were analyzed for Escherichia coli isolates which were resistant to trimethoprim-sulfamethoxazole (SXT). The prevalence rate of SXT resistant organisms varied between the different geographical locales. The majority of th...

  10. Bacteriophages active against Bacteroides fragilis in sewage-polluted waters.

    PubMed Central

    Tartera, C; Jofre, J

    1987-01-01

    Twelve strains of different Bacteroides species were tested for their efficiency of detection of bacteriophages from sewage. The host range of several isolated phages was investigated. The results indicated that there was a high degree of strain specificity. Then, by using Bacteroides fragilis HSP 40 as the host, which proved to be the most efficient for the detection of phages, feces from humans and several animal species and raw sewage, river water, water from lagoons, seawater, groundwater, and sediments were tested for the presence of bacteriophages that were active against B. fragilis HSP 40. Phages were detected in feces of 10% of the human fecal samples tested and was never detected in feces of the other animal species studied. Moreover, bacteriophages were always recovered from sewage and sewage-polluted samples of waters and sediments, but not from nonpolluted samples. The titers recovered were dependent on the degree of pollution in analyzed waters and sediments. PMID:3662510

  11. 13. Sewage treatment lagoon, drainage control at center left, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Sewage treatment lagoon, drainage control at center left, looking south - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  12. Impact of Mid-Atlantic sewage sludge probed

    NASA Astrophysics Data System (ADS)

    Blue, Charles

    1992-01-01

    Every year since 1986, 8 million tons of raw sewage has been dumped into the ocean at the Mid-Atlantic Bight, an area 100 miles off the coast of New York and New Jersey. Originally, this location was thought to be a safe dump site because of its considerable depth and strong ocean currents, which would prevent sewage from accumulating on the ocean floor. Recently, several scientists tested that assumption and found evidence for significant amounts of sewage accumulation at the dump site.Scientific studies of the dump site, coordinated by NOAA's National Undersea Research Program, will be presented at the 1992 AGU Ocean Science Meeting in New Orleans, January 27-31. The studies reveal the extent of sewage sludge accumulation at the Mid-Atlantic Bight and determine the environmental impact that significant accumulations of this material has on the ocean environment.

  13. Sandis irradiator for dried sewage solids. Final safety analysis report

    SciTech Connect

    Morris, M.

    1980-07-01

    Analyses of the hazards associated with the operation of the Sandia irradiator for dried sewage solids, as well as methods and design considerations to minimize these hazards, are presented in accordance with DOE directives.

  14. Vessel Sewage Discharges: No-Discharge Zones (NDZs)

    EPA Pesticide Factsheets

    States may petition the EPA to establish areas, called no discharge zones (NDZs), where vessel sewage discharges are prohibited. This page describes how NDZs are designated, the types of designations, who enforces them, and how to comply.

  15. Vitrification as an alternative to landfilling of tannery sewage sludge

    SciTech Connect

    Celary, Piotr Sobik-Szołtysek, Jolanta

    2014-12-15

    Highlights: • The possibility of vitrification of tannery sewage sludge was investigated. • Glass cullet was substituted with different wastes of mineral character. • Component ratio in the processed mixtures was optimized. • Environmental safety of the acquired vitrificates was verified. • An alternative management approach of usually landfilled waste was presented. - Abstract: Due to high content of heavy metals such as chromium, tannery sewage sludge is a material which is difficult to be biologically treated as it is in the case of organic waste. Consequently, a common practice in managing tannery sewage sludge is landfilling. This poses a potential threat to both soil and water environments and it additionally generates costs of construction of landfills that meet specific environment protection requirements. Vitrification of this kind of sewage sludge with the addition of mineral wastes can represent an alternative to landfilling. The aim of this study was to investigate the possibility of obtaining an environmentally safe product by means of vitrification of tannery sewage sludge from a flotation wastewater treatment process and chemical precipitation in order to address the upcoming issue of dealing with sewage sludge from the tannery industry which will be prohibited to be landfilled in Poland after 2016. The focus was set on determining mixtures of tannery sewage sludge with additives which would result in the lowest possible heavy metal leaching levels and highest hardness rating of the products obtained from their vitrification. The plasma vitrification process was carried out for mixtures with various amounts of additives depending on the type of sewage sludge used. Only the materials of waste character were used as additives. One finding of the study was an optimum content of mineral additives in vitrified mixture of 30% v/v waste molding sands with 20% v/v carbonate flotation waste from the zinc and lead industry for the formulations with

  16. Impact of sewage sludge applications on the biogeochemistry of soils.

    PubMed

    Devaney, D; Godley, A R; Hodson, M E; Purdy, K; Yamulki, S

    2008-01-01

    This report describes an investigation into the bioavailability and fate of trace metals and their subsequent impact on important soil microbiological functions such as nitrification, denitrification and methane oxidation in low and high Cu containing soils in the presence and absence of residual organic matter from sewage sludge additions made 10 years earlier. The soils being studied are part of long term sewage sludge trials and include a low Cu soil (13.3 mg Cu/kg soil, 4.18 LOI %), left un-amended to serve as a control soil, soil amended with a high Cu sewage sludge (278.3 mg Cu/kg soil, 6.52 LOI %) and soil amended with a low Cu sewage sludge (46.3 mg Cu/kg soil, 6.18 LOI %). Soil was also amended with inorganic metal salts (273.4 mg Cu/kg soil, 4.52 LOI %) to further investigate the impact of Cu in the absence of additional organic matter contained in applied sewage sludge. Data from the first two years of a project are presented which has included field-based studies at long term sewage sludge trials based in Watlington, Oxford, UK and laboratory based studies at the Institute of Grassland & Environmental Research, North Wyke, Devon, UK.

  17. Evaluation of bangkok sewage sludge for possible agricultural use.

    PubMed

    Pasda, Nuanjun; Panichsakpatana, Supamard; Limtong, Pitayakon; Oliver, Robert; Montange, Denis

    2006-04-01

    Bangkok (Thailand) covers more than 1500 km2 and has 10 million inhabitants. The disposal of wastewater is creating huge problems of pollution. The estimated amount of sewage sludge was estimated to be around 108 tonnes dry matter (DM) per day in 2005. In order to find a lasting way of disposal for this sewage sludge, the suitability of the sludge produced from three waste-water treatment plants for use as fertilizing material was investigated. Monthly samplings and analysis of sewage sludge from each plant showed that the composition of sludge varied according to the area of collection and period of sampling, and there was no link to rainfall cycle. Plant nutrient content was high (i.e. total N from 19 to 38 g kg(-1) DM) whereas organic matter content was low. The concentrations of heavy metals varied between sludge samples, and were sometimes higher than the E.U. or U.S. regulations for sewage sludge use in agriculture. Faecal coliforms were present in the sludge from one of the plants, indicating a possible contamination by night soil. In order to decrease this potentially pathogenic population the sewage sludge should be heated by composting. As the C/N ratio of sewage sludge was low (around 6) some organic by-products with high carbon content could be added as structural material to enhance the composting.

  18. ESBL-producing E. coli in Austrian sewage sludge.

    PubMed

    Reinthaler, Franz Ferdinand; Feierl, Gebhard; Galler, Herbert; Haas, Doris; Leitner, Eva; Mascher, Franz; Melkes, Angelika; Posch, Josefa; Winter, Ingrid; Zarfel, Gernot; Marth, Egon

    2010-03-01

    The aim of this study was to investigate the degree of contamination of sewage sludge with ESBL-producing Escherichia coli strains and the effectiveness of different sewage sludge treatment methods. Monthly sewage sludge samples were collected between January and September 2009 in 5 different sewage treatment plants and tested for the presence of ESBL E. coli. In addition, the number of colony forming units (CFU) of E. coli and coliform bacteria before and after the different sludge treatment methods (aerobic/anaerobic digestion, lime stabilization, and thermal treatment) was investigated. Of the 72 sewage sludge samples investigated, ESBL-positive E. coli were found in 44 (61.1%) sewage sludge samples. The classification of beta-lactamase groups was carried out in 15 strains resulting in the detection of 2 different groups (CTX-M and TEM) of bla genes. All 15 of them had a CTX-M gene and 4 of these strains furthermore carried a TEM gene. With regard to the CFU of E. coli and coliform bacteria, thermal treatment and lime stabilization following dehydration sufficiently reduced pathogen concentrations. The plants using merely stabilization and dehydration showed an increase of E. coli and coliform bacteria and thus also an increase in ESBL-producing E. coli.

  19. Oceanographic effects of the 1992 Point Loma sewage pipe spill

    SciTech Connect

    Casey, R.; Ciccateri, A.; Dougherty, K.; Gacek, L.; Lane, S.; Liponi, K.; Leeds, R.; Walsh, F. )

    1992-01-01

    Early in early 1992, 180 million gallons of advanced primarily treated sewage emptied into 10 meters of water from the broken Point Loma sewage pipe, San Diego. For about two months a sewage boil about the size of a football field existed at the surface and within the Point Loma kelp bed. Sampling and observations taken during the spill indicated the surface waters at the spill site were grayish and smelling of sewage. The sewage water had mixed with the marine waters reducing salinity to about one-half normal (or 15 ppt.). The sediment load of the sewage coated the blades of the giant kelp and the kelp was limp and withdrawn from the surface. At the site of the main boil the kelp appeared to have dropped to the bottom. Sediments on the bottom in the boil area were mainly coarse sands as compared to the surrounding sandy-muds. Preliminary results using laboratory analysis suggest: one month into the spill no infauna were observed in the sediments or planktons in the water of the boil area, but were in the surrounding sediments and water; the observed phytoplankton were dominated by dinoflagellates and suggested red tide conditions surrounding the boil. The site has been monitored monthly since the spill to observe further impact and recovery.

  20. Identification of estrogenic activity change in sewage, industrial and livestock effluents by gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Byeong-Yong; Kang, Sung-Wook; Yoo, Jisu; Kim, Woong-Ki; Bae, Paek-Hyun; Jung, Jinho

    2012-11-01

    In this study, reduction of estrogenic activity in three different types of effluents from sewage, industrial and livestock wastewater treatment plants by gamma-irradiation was investigated using the yeast two-hybrid assay. After gamma-ray treatment at a dose of 10 kGy, estrogenic activities of sewage, industrial and livestock effluents decreased from 4.4 to 3.0, 1.5 to 1.0 and 16 to 9.9 ng-EEQ L-1, respectively. The substantial reduction of estrogenic activity in livestock effluent was attributable to the degradation of 17β-estradiol (E2), estrone (E1) and 17α-ethynylestradiol (EE2). Although bisphenol A (BPA) was found at the highest concentration in all effluents, its contribution to the estrogenic activity was not significant due to its low relative estrogenic potency. Meanwhile, the calculated estrogenic activity based on concentrations of E2, E1, EE2 and BPA in the effluents significantly differed from the measured ones. Overestimation may have resulted by dissolved organic matters in effluents inhibiting the estrogenic activity of E2, E1, EE2 and BPA, whereas underestimation was likely due to estrogenic by-products generated by gamma-irradiation.

  1. Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHs) from soils freshly amended with sewage sludge

    SciTech Connect

    Wild, S.R.; Jones, K.C. )

    1993-01-01

    Sewage sludge containing typical indigenous concentrations of polynuclear aromatic hydrocarbons (PAHs) was applied to several different soils in glass microcosms. Biologically active and sterilized soils were monitored for PAH content over a period of approximately 205 d. Agricultural soils with and without previous exposure to sewage sludge were tested, together with a forest soil and a soil from a major roadside. Loss of PAHs from a soil spike with a PAH standard solution was also investigated. Results indicate the PAH compounds with less than four benzene rings are susceptible to abiotic loss processes. However, losses by these mechanisms were insignificant for compounds with four or more benzene rings. Half-lives for the sludge-applied PAHs were derived and indicated a strong dependence of persistence on chemical structure. Half-lives for phenanthrene and benzo[ghi]perylene were between 83 and 193 d and 282 and 535 d, respectively. Mean half-lives correlate directly with log K[sub ow] and inversely with log water solubility. Behavior of PAHs was different in each soil, probably due to different soil characteristics and history of PAH exposure. The soil spiked with PAHs provided the lowest half-life values for most PAH compounds, suggesting a higher susceptibility of spiked PAHs to both abiotic and biological degradation.

  2. Risk characterisation and management of sewage sludge on agricultural land--implications for the environment and the food-chain.

    PubMed

    Ross, A D; Lawrie, R A; Keneally, J P; Whatmuff, M S

    1992-08-01

    The disposal of sewage wastes may cause severe environmental problems as was graphically demonstrated with pollution on Sydney's ocean beaches in recent years. Sewage sludges contain valuable plant nutrients and organic matter which can improve the fertility and structure of the soil. However, human parasites, pathogenic micro-organisms and chemicals capable of causing soil contamination, phytotoxicity and residues in animal products may also be present. Although sewage sludge is frequently spread on agricultural land overseas, it is not common in Australia and most states do not have specific regulations to minimise risk and promote good practice. A sludge-to-land program began in the Sydney region in 1990. It follows guidelines written by NSW Agriculture to encourage beneficial agricultural use of sludge by adoption of environmentally sustainable practices. This article describes the major risks to the food-chain and the environment, which may be associated with applying sewage sludge to agricultural land. It summarises how the risks are managed, and where further research data are required.

  3. The effect of lime-dried sewage sludge on the heat-resistance of eco-cement.

    PubMed

    Li, Wen-Quan; Liu, Wei; Cao, Hai-Hua; Xu, Jing-Cheng; Liu, Jia; Li, Guang-Ming; Huang, Juwen

    2016-01-01

    The treatment and disposal of sewage sludge is a growing problem for sewage treatment plants. One method of disposal is to use sewage sludge as partial replacement for raw material in cement manufacture. Although this process has been well researched, little attention has been given to the thermal properties of cement that has had sewage sludge incorporated in the manufacturing process. This study investigated the fire endurance of eco-cement to which lime-dried sludge (LDS) had been added. LDS was added in proportions of 0%, 3%, 6%, 9%, and 12% (by weight) to the raw material. The eco-cement was exposed to 200, 400, or 600 °C for 3 h. The residual strength and the microstructural properties of eco-cement were then studied. Results showed that the eco-cement samples suffered less damage than conventional cement at 600 °C. The microstructural studies showed that LDS incorporation could reduce Ca(OH)(2) content. It was concluded that LDS has the potential to improve the heat resistance of eco-cement products.

  4. Application of sewage sludge and intermittent aeration strategy to the bioremediation of DDT- and HCH-contaminated soil.

    PubMed

    Liang, Qi; Lei, Mei; Chen, Tongbin; Yang, Jun; Wan, Xiaoming; Yang, Sucai

    2014-08-01

    Adding organic amendments to stimulate the biodegradation of pesticides is a subject of ongoing interest. The effect of sewage sludge on the bioremediation of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) contaminated soil was investigated in bench scale experiments, and intermittent aeration strategy was also used in this study to form an anaerobic-aerobic cycle. Bioremediation of DDT and HCH was enhanced with the addition of sewage sludge and the intermittent aeration. The removal rates of HCH and DDT were raised by 16.8%-80.8% in 10 days. Sewage sludge increased the organic carbon content from 6.2 to 218 g/kg, and it could also introduce efficient degradation microbes to soil, including Pseudomonas sp., Bacillus sp. and Sphingomonas sp. The unaerated phase enhanced the anaerobic dechlorination of DDT and HCH, and anaerobic removal rates of β-HCH, o,p'-DDT and p,p'-DDT accounted for more than 50% of the total removal rates, but the content of α-HCH declined more in the aerobic phase.

  5. Drift Degradation Analysis

    SciTech Connect

    D. Kicker

    2004-09-16

    code, which determines structurally controlled key-block failure, is not applicable for stress-controlled failure in the lithophysal units. To address these limitations, additional numerical codes have been included that can explicitly apply seismic and thermal loads, providing significant improvements to the analysis of drift degradation and extending the validity of drift degradation models.

  6. Underwater experiments on the effects of sewage sludge on a marine ecosystem

    NASA Astrophysics Data System (ADS)

    Eleftheriou, A.; Moore, D. C.; Basford, D. J.; Robertson, M. R.

    The experimental addition of different concentrations of sewage sludge to clean marine deposits resulted in a degradation of the sediments and a modified benthic macrofauna. The addition of a large amount of sludge (100 l·m -2·a -1) resulted in a sparse Capitella dominated fauna of low density and high biomass. The lower amount (50 l·m -2·a -1) allowed the presence of a normal fauna but of an enhanced abundance and biomass. Though recovery was good there was evidence that the addition of large amounts of sludge had lasting toxic effects. Comparisons of the results of these experiments with the effects observed in sludge dumping grounds are made and the significance of the different input levels in a marine ecosystem is discussed.

  7. Sewage coliphages studied by electron microscopy.

    PubMed Central

    Ackermann, H W; Nguyen, T M

    1983-01-01

    Sewage was enriched with 35 Escherichia coli strains, and sediments of enrichment cultures were studied in the electron microscope. They contained up to 10 varieties of morphologically different particles. T-even-type phages predominated in 14 samples. Thirteen phages were enriched, representing the families Myoviridae (seven), Styloviridae (two), Podoviridae (three), and Microviridae (one). Twelve of these corresponded to known enterobacterial phage species, namely, 121, K19, FC3-9, O1, 9266, T2, 16-19, kappa, beta 4, N4, T7, and phi X174. Cubic RNA phages and filamentous phages were not detected. Types 121 and 9266 have previously been observed only in Romania and South Africa. Identification by morphology is usually simple. Our investigative technique is qualitative and will not detect all phages present. Most enrichment strains are polyvalent, and electron microscopy is always required for phage identification. In a general way, electron microscopy seems to be the method of choice for investigation of phage geography and ecology. Images PMID:6847179

  8. Strains of lactic acid bacteria isolated from sour doughs degrade phytic acid and improve calcium and magnesium solubility from whole wheat flour.

    PubMed

    Lopez, H W; Ouvry, A; Bervas, E; Guy, C; Messager, A; Demigne, C; Remesy, C

    2000-06-01

    Five strains of lactic bacteria have been isolated from sour doughs and examined for their ability to degrade phytic acid. In white flour medium in which phytic acid was the only source of phosphorus, the disappearance of phytate and an elevation of inorganic phosphate were observed after only 2 h of incubation in all strains tested (-30 and +60%, respectively). Both phenomena correspond to phytate breakdown. No difference was observed in the levels of phytic acid hydrolysis among strains, suggesting that phytase enzymes are similar among these bacteria. Using whole wheat flour medium naturally rich in phytic acid in the presence of Leuconostoc mesenteroides strain 38, a 9 h fermentation established that the degradation of PA and the production of lactic acid lead to greater Ca and Mg solubility than in control medium.

  9. Evaluation of pharmaceuticals and personal care products as water-soluble molecular markers of sewage.

    PubMed

    Nakada, Norihide; Kiri, Kentaro; Shinohara, Hiroyuki; Harada, Arata; Kuroda, Keisuke; Takizawa, Satoshi; Takada, Hideshige

    2008-09-01

    We examined the utility of 13 pharmaceuticals and personal care products (PPCPs) as molecular markers of sewage contamination in riverine, groundwater, and coastal environments. The PPCPs were crotamiton, ibuprofen, naproxen, ketoprofen, fenoprofen, mefenamic acid, thymol, triclosan, propyphenazone, carbamazepine, diethyltoluamide, ethenzamide, and caffeine. Measurements in 37 Japanese rivers showed positive correlations of riverine flux of crotamiton (r2 = 0.85), carbamazepine (r2 = 0.84), ibuprofen (r2 = 0.73), and mefenamic acid (r2 = 0.67) with the population in the catchments. In three surveys in the Tamagawa estuary, crotamiton, carbamazepine, and mefenamic acid behaved conservatively across seasons within a salinity range of 0.4-29 per thousand, suggesting their utility as molecular markers in coastal environments. Removal of ketoprofen and naproxen in the estuary was ascribed to photodegradation. Ibuprofen and thymol were removed from estuarine waters in summer by microbial degradation. Triclosan was removed by a combination of microbial degradation, photodegradation, and adsorption. These results were consistent with those of river water incubated for 8 d at 25 degrees C in the dark in order to examine the effects of biodegradation and photodegradation. Crotamiton was detected in groundwater from the Tokyo metropolitan area (12 out of 14 samples), suggesting wastewater leakage from decrepit sewers. Carbamazepine, ketoprofen, and ibuprofen (5/14), caffeine (4/14), and diethyltoluamide (3/14) were also detected in the groundwater, whereas the other carboxylic and phenolic PPCPs were not detected and were thought to be removed during their passage through soil. All the data demonstrated the utility of crotamiton and carbamazepine as conservative markers in freshwater and coastal environments. We recommend combining these conservative markers with labile PPCPs to detect inputs of poorly treated sewage.

  10. Tracking sewage derived contamination in riverine settings by analysis of synthetic surfactants.

    PubMed

    Corada-Fernández, Carmen; Lara-Martín, Pablo A; Candela, Lucila; González-Mazo, Eduardo

    2011-07-01

    A study has been made of the presence and reactivity of the most commonly used surfactants, both anionic (linear alkylbenzene sulfonates, LAS, and alkyl ethoxysulfates, AES) and non-ionic (alcohol polyethoxylates, AEOs, and nonylphenol polyethoxylates, NPEOs), in water and surface sediments from the middle stretch of the Guadalete River in SW Spain (12 stations). Average values were between 0.1 and 3.7 mg kg(-1) in sediment, and between 0.2 and 37 μg L(-1) in water. The sorption of surfactants was dominated by hydrophobic mechanisms, so those homologues having longer alkyl chains (e.g. C(18)AEO) showed higher relative percentages and concentrations in sediments compared with water. Local and sharply higher concentrations of these compounds were observed at three sampling stations (7, 9 and 12), indicating the occurrence of wastewater discharges into the river. By analysing the distributions of different surfactant homologues and their metabolites we were able to distinguish between sewage contamination from sources discharging treated and untreated wastewaters. Upstream (stations 1-2), LAS concentrations were below 30 μg L(-1) and the composition of their degradation intermediates (sulfophenyl carboxylic acids, SPCs) (160 μg L(-1)) was dominated by short-chain homologues (C(6)-C(9)SPCs), indicating that the degradation of this surfactant is at an advanced stage. The highest concentration (487 μg L(-1)) of SPCs was detected near the effluent outlet of a sewage treatment plant (STP) (station 12). Sampling stations (7 and 9) affected by untreated wastewater discharges were the only ones showing the presence of the most reactive and biodegradable SPC isomers and homologues (e.g. C(11)SPC). Here, LAS reached the highest concentration values measured (>2 mg L(-1)), and showed a homologue distribution closer to that of commercial mixtures than LAS found at the other stations.

  11. Improving methane production in cow dung and corn straw co-fermentation systems via enhanced degradation of cellulose by cabbage addition

    PubMed Central

    Wu, Wenyang; Chen, Yong; Faisal, Shah; Khan, Aman; Chen, Zhengjun; Ling, Zhenmin; Liu, Pu; Li, Xiangkai

    2016-01-01

    The effects of cabbage waste (CW) addition on methane production in cow dung and corn straw co-fermentation systems were investigated. Four experimental groups, each containing 55 g of substrate, were set up as follows: 100% cow dung (C); 36% cabbage and 64% cow dung (CC); 36% straw and 64% cow dung (SC); and 18% cabbage, 18% straw, and 64% cow dung (CSC). After seven days of fermentation, the maximum methane yield was 134 mL in the CSC group, which was 2.81-fold, 1.78-fold, and 1340-fold higher than that obtained in the CC, SC, and C groups, respectively. CW treatment of the CSC group enhanced cellulase activity and enriched culturable cellulose-degrading bacterial strains. Miseq sequencing data revealed that the predominant phylum in the CSC group was Bacteroidetes, which contains most of the cellulose-degrading bacteria. Our results suggested that CW treatment elevated cellulose degradation and promoted methane production. PMID:27641709

  12. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings

    SciTech Connect

    Weyens, N.; van der Lelie, D.; Truyens, S.; Dupae, J.; Newman, L.; Taghavi, S.; Carleer, R.; Vangronsveld, J.

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l{sup -1} TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l{sup -1} TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. The endophyte P. putida W619-TCE degrades TCE during its transport through the xylem, leading to reduced TCE concentrations in poplar, and decreased TCE evapotranspiration.

  13. Efficient performance and the microbial community changes of submerged anaerobic membrane bioreactor in treatment of sewage containing cellulose suspended solid at 25°C.

    PubMed

    Watanabe, Ryoya; Nie, Yulun; Takahashi, Shintaro; Wakahara, Shinichiro; Li, Yu-You

    2016-09-01

    Influence of cellulose as suspended solid (SS) on the performance of submerged anaerobic membrane bioreactor (SAnMBR) was evaluated at 25°C using two types of synthetic sewage (SS contained or not). During the 110days operation, COD and BOD removal, CH4 gas recovery and cellulose accumulation were investigated in detail. The influence of cellulose as SS in sewage on the SAnMBR performance was not significant at HRT longer than12h and 65-72% of the influent COD was recovered as methane gas at HRT of 12h. At HRT of 6h, the quality of effluent got worse and the accumulation of cellulose was found in reactor. 16S rRNA analysis revealed that the microbial diversity distribution including Archaea and Bacteria changed due to the addition of SS in sewage and specific microbe for cellulose degradation such as Proteobacteria was detected. Sludge in SAnMBR could acclimate to characteristics of sewage by self-adaptation.

  14. Preparation of a sewage sludge laboratory quality control material for butyltin compounds and their determination by isotope-dilution mass spectrometry.

    PubMed

    Zuliani, Tea; Milačič, Radmila; Ščančar, Janez

    2012-05-01

    The characterisation of a laboratory quality control material (QCM) for dibutyltin (DBT) and tributyltin (TBT) in sewage sludge is described. The reference values were determined by the use of two different types of isotope-dilution mass spectrometry: gas chromatography-mass spectrometry and gas chromatography-inductively coupled plasma mass spectrometry. To avoid possible analytical errors such as non-quantitative extraction and species degradation during sample preparation, different extraction methods were tested (microwave- and ultrasound-assisted extraction and mechanical stirring). The reference values were based on the unweighted means of results from the homogenisation and characterisation studies. The reference values obtained were 1,553 ± 87 and 534 ± 38 ng Sn g(-1) for DBT and TBT, respectively. In the uncertainty budget estimation, the sample inhomogeneity and between-method imprecision were taken into account. The concentrations of DBT and TBT in QCM are similar to those in the harbour sediment certified reference material PACS-2. Likewise, the levels of DBT and TBT are in the range of these compounds normally present in sewage sludge worldwide. In the future, the QCM will be used for an intercomparison study on DBT and TBT in sewage sludge, and as a day-to-day QCM during studies concerning the application of sewage sludge as an additive to artificial soil or as a raw material in civil engineering construction.

  15. Evaluation of uncertainties associated with the determination of community drug use through the measurement of sewage drug biomarkers.

    PubMed

    Castiglioni, Sara; Bijlsma, Lubertus; Covaci, Adrian; Emke, Erik; Hernández, Félix; Reid, Malcolm; Ort, Christoph; Thomas, Kevin V; van Nuijs, Alexander L N; de Voogt, Pim; Zuccato, Ettore

    2013-02-05

    The aim of this study was to integrally address the uncertainty associated with all the steps used to estimate community drug consumption through the chemical analysis of sewage biomarkers of illicit drugs. Uncertainty has been evaluated for sampling, chemical analysis, stability of drug biomarkers in sewage, back-calculation of drug use (specific case of cocaine), and estimation of population size in a catchment using data collected from a recent Europe-wide investigation and from the available literature. The quality of sampling protocols and analytical measurements has been evaluated by analyzing standardized questionnaires collected from 19 sewage treatments plants (STPs) and the results of an interlaboratory study (ILS), respectively. Extensive reviews of the available literature have been used to evaluate stability of drug biomarkers in sewage and the uncertainty related to back-calculation of cocaine use. Different methods for estimating population size in a catchment have been compared and the variability among the collected data was very high (7-55%). A reasonable strategy to reduce uncertainty was therefore to choose the most reliable estimation case by case. In the other cases, the highest uncertainties are related to the analysis of sewage drug biomarkers (uncertainty as relative standard deviation; RSD: 6-26% from ILS) and to the back-calculation of cocaine use (uncertainty; RSD: 26%). Uncertainty can be kept below 10% in the remaining steps, if specific requirements outlined in this work are considered. For each step, a best practice protocol has been suggested and discussed to reduce and keep to a minimum the uncertainty of the entire procedure and to improve the reliability of the estimates of drug use.

  16. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  17. Aerobic degradation of ibuprofen in batch and continuous reactors by an indigenous bacterial community.

    PubMed

    Fortunato, María Susana; Fuentes Abril, Nancy Piedad; Martinefski, Manuela; Trípodi, Valeria; Papalia, Mariana; Rádice, Marcela; Gutkind, Gabriel; Gallego, Alfredo; Korol, Sonia Edith

    2016-10-01

    Water from six points from the Riachuelo-Matanza basin was analyzed in order to assess ibuprofen biodegradability. In four of them biodegradation of ibuprofen was proved and degrading bacterial communities were isolated. Biodegradation in each point could not be correlated with sewage pollution. The indigenous bacterial community isolated from the point localized in the La Noria Bridge showed the highest degradative capacity and was selected to perform batch and continuous degradation assays. The partial 16S rRNA gene sequence showed that the community consisted of Comamonas aquatica and Bacillus sp. In batch assays the community was capable of degrading 100 mg L(-1) of ibuprofen in 33 h, with a specific growth rate (μ) of 0.21 h(-1). The removal of the compound, as determined by High performance liquid chromatography (HPLC), exceeded 99% of the initial concentration, with a 92.3% removal of Chemical Oxygen Demand (COD). In a down-flow fixed-bed continuous reactor, the community shows a removal efficiency of 95.9% of ibuprofen and 92.3% of COD for an average inlet concentration of 110.4 mg. The reactor was kept in operation for 70 days. The maximal removal rate for the compound was 17.4 g m(-3) d(-1). Scanning electron microscopy was employed to observe biofilm development in the reactor. The ability of the isolated indigenous community can be exploited to improve the treatment of wastewaters containing ibuprofen.

  18. Pharmaceuticals as indictors of sewage-influenced groundwater

    NASA Astrophysics Data System (ADS)

    Müller, Beate; Scheytt, Traugott; Asbrand, Martin; de Casas, Andrea Mross

    2012-09-01

    A set of human pharmaceuticals enables identification of groundwater that is influenced by sewage and provides information on the time of recharge. As the consumption rates of the investigated pharmaceuticals have changed over time, so too has the composition of the sewage. At the study area, south of Berlin (Germany), irrigation was performed as a method of wastewater clean-up at sewage irrigation farms until the early 1990s. Today, treated wastewater is discharged into the surface-water-stream Nuthegraben. Groundwater and surface-water samples were analyzed for the pharmaceutical substances clofibric acid, bezafibrate, diclofenac, carbamazepine and primidone, the main ions and organic carbon. The pharmaceutical substances were detected at concentrations up to microgram-per-liter level in groundwater and surface-water samples from the Nuthegraben Lowland area and from the former irrigation farms. Concentrations detected in groundwater are generally much lower than in surface water and there is significant variation in the distribution of pharmaceutical concentrations in groundwater. Groundwater influenced by the irrigation of sewage water shows higher primidone and clofibric-acid concentrations. Groundwater influenced by recent discharge of treated sewage water into the surface water shows high carbamazepine concentrations while concentrations of primidone and clofibric acid are low.

  19. Co-digestion of pig slaughterhouse waste with sewage sludge.

    PubMed

    Borowski, Sebastian; Kubacki, Przemysław

    2015-06-01

    Slaughterhouse wastes (SHW) are potentially very attractive substrates for biogas production. However, mono-digestion of these wastes creates great technological problems associated with the inhibitory effects of ammonia and fatty acids on methanogens as well as with the foaming in the digesters. In the following study, the co-digestion of slaughterhouse wastes with sewage sludge (SS) was undertaken. Batch and semi-continuous experiments were performed at 35°C with municipal sewage sludge and pig SHW composed of meat tissue, intestines, bristles and post-flotation sludge. In batch assays, meat tissue and intestinal wastes gave the highest methane productions of 976 and 826 dm(3)/kg VS, respectively, whereas the methane yield from the sludge was only 370 dm(3)/kg VS. The co-digestion of sewage sludge with 50% SHW (weight basis) provided the methane yield exceeding 600 dm(3)/kg VS, which was more than twice as high as the methane production from sewage sludge alone. However, when the loading rate exceeded 4 kg VS/m(3) d, a slight inhibition of methanogenesis was observed, without affecting the digester stability. The experiments showed that the co-digestion of sewage sludge with large amount of slaughterhouse wastes is feasible, and the enhanced methane production does not affect the digester stability.

  20. Metabolites and biodegradation pathways of fatty alcohol ethoxylates in microbial biocenoses of sewage treatment plants.

    PubMed Central

    Steber, J; Wierich, P

    1985-01-01

    The biodegradation of fatty alcohol polyglycol ethers was studied by analyzing the 14C-labeled intermediates isolated from the effluent of a model continuous-flow sewage treatment plant after dosage of either alkyl- or heptaglycol-labeled stearyl alcohol ethoxylate (SA-7EO). In each case, uncharged and carboxylated (mainly dicarboxylated) polyethylene glycols constituted the most prominent metabolites. The results indicate that there is a faster degradation of the alkyl than the polyethylene glycol moiety and that there are two distinct primary degradation mechanisms acting simultaneously in microbial biocenoses: intramolecular scission of the surfactant as well as omega- and beta-oxidation of the alkyl chain. Characterization of the bulk of 14C-labeled metabolites as a homologous series of neutral and acidic polyglycol units and identification of several C2-fragments accounted for the depolymerization of the hydrophilic part of the surfactant by stepwise cleavage of ether-bound EO units; from additional degradation studies employing either neutral or carboxylated 14C-labeled polyethylene glycols as model metabolites, it was concluded that hydrolytic as well as oxidative cleavage of C2-units is involved. Most of the identified low-molecular-weight 14C-labeled acids suggest an ultimate degradation of EO monomers by the oxidative dicarbonic acid cycle or the glycerate pathway or both. In addition, the finding of considerable amounts of oxalic and formic acids allow consideration of an additional mineralization route via glyoxylic, oxalic, and formic acids. The simultaneous action of different degradation mechanisms indicates the involvement of several distinct bacterial groups in the biodegradation of fatty alcohol ethoxylates under environmental conditions. PMID:3994363

  1. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi River water

    EPA Science Inventory

    Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is kn...

  2. 40 CFR 60.4780 - What sewage sludge incineration units are exempt from this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustion units that incinerate sewage sludge and are not located at a wastewater treatment facility designed to treat domestic sewage sludge. These units may be subject to another subpart of this part...

  3. Joint NRC/EPA Sewage Sludge Radiological Survey: Survey Design & Test Site Results

    EPA Pesticide Factsheets

    This report contains the results of a radiological survey of nine publicly POTWs around the country, which was commissioned by the Sewage Sludge Subcommittee, to determine whether and to what extent radionuclides concentrate in sewage treatment wastes.

  4. Degradation of 17beta-estradiol in aqueous solution by ozonation in the presence of manganese(II) and oxalic acid.

    PubMed

    Jiang, Liying; Zhang, Lu; Chen, Jianmeng; Ji, Hong

    2013-01-01

    Natural estrogens, such as 17beta-estradiol (E2), are the main substances responsible for estrogenic activity found in domestic sewage. In the work described herein, the degradation of E2 has been investigated by single ozonation and catalytic ozonation in the presence of manganese ion (Mn2+) and oxalic acid. The presence of Mn2+ and oxalic acid in the ozonation processes significantly improved the E2 degradation and, hence, the reduction of estrogenic activity in aqueous solution. The addition of Mn2+ and oxalic acid produced many more hydroxyl radicals in the catalytic ozonation system than in the single ozonation system. Oxidation products formed during ozonation of E2 have been identified by means of gas chromatography-mass spectrometry (GC-MS), on the basis of which a possible reaction pathway for E2 degradation by ozonation is proposed. E2 was first oxidized to hydroxyl-semiquinone isomers, and these were subsequently degraded to low molecular weight compounds such as oxalic acid and malonic acid. The latter were easily oxidized by ozone to form carbon dioxide (CO2). The results demonstrate that the ozonation-Mn(2+)-oxalic acid system may serve as a powerful tool for removing E2, and the addition of Mn2+ and oxalic acid is favourable for the complete removal of estrogenic activity induced by steroid estrogens in aqueous solution.

  5. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes.

    PubMed

    You, Siming; Wang, Wei; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2016-10-01

    The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes.

  6. Current state of sewage treatment in China.

    PubMed

    Jin, Lingyun; Zhang, Guangming; Tian, Huifang

    2014-12-01

    The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the aspects of scale, treatment processes, sludge handling, geographical distribution, and discharge standards. By 2012, there were 3340 WWTPs in operation in China with a capacity of 1.42 × 10(8) m(3)/d. The number of medium-scale WWTPs (1-10 × 10(4) m(3)/d) counted for 75% of total WWTPs. On average, the chemical oxygen demand (COD) removal efficiencies of small-scale, medium-scale, large-scale and super-large-scale WWTPs were 81, 85.5, 87.5 and 86.5%, respectively. Generally speaking, the nutrients removal instead of COD removal was of concern. As to the different processes, oxidation ditch, anaerobic-anoxic-oxic (A(2)/O) and sequencing batch reactor (SBR) were the mainstream technologies in China. These technologies had minor difference in terms of overall COD removal efficiency. The sludge treatment in WWTPs was basically "thickening-coagulation-mechanical dehydration" and the major disposal method was sanitary landfill in China. The distributions of WWTPs and their utilization showed significant regional characteristics. The sewage treatment capacity of China concentrated on the coastal areas and middle reaches of Yangtze River, which were the economically developed zones. Besides, most WWTPs enforced the Class 1 or Class 2 discharge standards, but few realized wastewater reuse. Finally, existing problems were discussed, including low removal efficiency of nitrogen and phosphorus, emerging contaminants, low reuse of reclaimed water, poor sludge treatment and disposal, low execution standard of effluent, and emissions of greenhouse gas from WWTPs. Suggestions regarding potential technical and administrative measures were given.

  7. Variovorax defluvii sp. nov., isolated from sewage.

    PubMed

    Jin, Long; Kim, Kwang Kyu; Ahn, Chi-Yong; Oh, Hee-Mock

    2012-08-01

    A polyphasic taxonomic study was carried out on 2C1-b(T) and 2C-21, two strains isolated from sewage flowing into River Geumho in Korea. Cells of the two strains were Gram-negative, non-spore-forming, motile and oval or rod-shaped. Comparative 16S rRNA gene sequence studies showed a clear affiliation of these two isolates with members of the Betaproteobacteria; they were most closely related to Variovorax boronicumulans KCTC 22010(T), Variovorax dokdonensis KCTC 12544(T), Variovorax ginsengisoli KCTC 12583(T), Variovorax paradoxus ATCC 17713(T) and Variovorax soli KACC 11579(T) showing 16S rRNA gene sequence similarities of 97.4-98.8% with these strains and shared 100% similarity with each other. The genomic DNA G+C contents of strains 2C1-b(T) and 2C1-21 were 65.5 and 65.2 mol%, respectively. Phenotypic and chemotaxonomic data [Q-8 as the major ubiquinone; C(16:0), summed feature 4 (C(16:1)ω7c and/or iso-C(15:0) 2-OH), C(17:0) cyclo and summed feature 7 (C(18:1)ω7c and/or ω9t and/or ω12t) as major fatty acids] supported the affiliation of strains 2C1-b(T) and 2C-21 to the genus Variovorax. Based on evidence derived from this polyphasic analysis, it is proposed that strains 2C1-b(T) and 2C1-21 represent a novel species for which the name Variovorax defluvii sp. nov. is proposed; the type strain is 2C1-b(T) ( = KCTC 12768(T) = JCM 17804(T)).

  8. Estrogenic compounds in Tunisian urban sewage treatment plant: occurrence, removal and ecotoxicological impact of sewage discharge and sludge disposal.

    PubMed

    Belhaj, Dalel; Athmouni, Khaled; Jerbi, Bouthaina; Kallel, Monem; Ayadi, Habib; Zhou, John L

    2016-12-01

    The occurrence, fate and ecotoxicological assessment of selected estrogenic compounds were investigated at Tunisian urban sewage treatment plant. The influents, effluents, as well as primary, secondary and dehydrated sludge, were sampled and analyzed for the target estrogens to evaluate their fate. All target compounds were detected in both sewage and sludge with mean concentrations from 0.062 to 0.993 μg L(-1) and from 11.8 to 792.9 μg kg(-1)dry weight, respectively. A wide range of removal efficiencies during the treatment processes were observed, from 6.3 % for estrone to 76.8 % for estriol. Ecotoxicological risk assessment revealed that the highest ecotoxicological risk in sewage effluent and dehydrated sludge was due to 17β-estradiol with a risk quotient (RQ) of 4.6 and 181.9, respectively, and 17α-ethinylestradiol with RQ of 9.8 and 14.85, respectively. Ecotoxicological risk after sewage discharge and sludge disposal was limited to the presence of 17β-estradiol in dehydrated-sludge amended soil with RQ of 1.38. Further control of estrogenic hormones in sewage effluent and sludge is essential before their discharge and application in order to prevent their introduction into the natural environment.

  9. Useful Ingredients Recovery from Sewage Sludge by using Hydrothermal Reaction

    NASA Astrophysics Data System (ADS)

    Suzuki, Koichi; Moriyama, Mika; Yamasaki, Yuki; Takahashi, Yui; Inoue, Chihiro

    2006-05-01

    Hydrothermal treatment of sludge from a sewage treatment plant was conducted to obtain useful ingredients for culture of specific microbes which can reduce polysulfide ion into sulfide ion and/or hydrogen sulfide. Several additives such as acid, base, and oxidizer were added to the hydrothermal reaction of excess sludge to promote the production of useful materials. After hydrothermal treatment, reaction solution and precipitation were qualitatively and quantitatively analyzed and estimated the availability as nutrition in cultural medium. From the results of product analysis, most of organic solid in sewage was basically decomposed by hydrothermal hydrolysis and transformed into oily or water-soluble compounds. Bacterial culture of sulfate-reducing bacteria (SRB) showed the good results in multiplication with medium which was obtained from hydrothermal treatment of sewage sludge with magnesium or calcium hydroxide and hydrogen peroxide.

  10. Impacts on groundwater due to land application of sewage sludge

    SciTech Connect

    Higgins, A.J.

    1984-06-01

    The project was designed to demonstrate the potential benefits of utilizing sewage sludge as a soil conditioner and fertilizer on Sassafras sandy loam soil. Aerobically digested, liquid sewage sludge was applied to the soil at rates of 0, 22.4, and 44.8 Mg of dry solids/ha for three consecutive years between 1978 and 1981. Groundwater, soil, and crop contamination levels were monitored to establish the maximum sewage solids loading rate that could be applied without causing environmental deterioration. The results indicate that application of 22.4 Mg of dry solids/ha of sludge is the upper limit to ensure protection of the groundwater quality on the site studied. Application rates at or slightly below 22.4 Mg of dry solids/ha are sufficient for providing plant nutrients for the dent corn and rye cropping system utilized in the study.

  11. Agronomic characterisation of different types of sewage sludge: policy implications.

    PubMed

    Mosquera-Losada, M R; Muñoz-Ferreiro, N; Rigueiro-Rodríguez, A

    2010-03-01

    Spain is one of the main municipal sewage sludge producers of Europe. This paper aims to agronomically characterise different types of sewage sludge stabilised by different methods (anaerobically digested, composted, and pelletised) and deliver policy recommendations from the results of this characterisation. Anaerobic sewage sludge quality is found to be better in plants with a lower volume of water processing. Composted sludge shows the best quality from a heavy metal point of view, but its low available nitrogen content increases the input of heavy metals when spread, as compared to digested or pelletised sludge. Pelletised sludge has higher heavy metal content than anaerobically digested sludge. Despite the good quality of the sludges, future regulations, especially with regard to Cd levels, will limit the use of this waste in agriculture.

  12. Neurotoxic effects of solvent exposure on sewage treatment workers

    SciTech Connect

    Kraut, A.; Lilis, R.; Marcus, M.; Valciukas, J.A.; Wolff, M.S.; Landrigan, P.J.

    1988-07-01

    Nineteen Sewage Treatment Workers (STWs) exposed to industrial sewage that contained benzene, toluene, and other organic solvents at a primary sewage treatment plant in New York City (Plant A) were examined for evidence of solvent toxicity. Fourteen (74%) complained of central nervous system (CNS) symptoms consistent with solvent exposure, including lightheadedness, fatigue, increased sleep requirement, and headache. The majority of these symptoms resolved with transfer from the plant. Men working less than 1 yr at Plant A were more likely to complain of two or more CNS symptoms than men who were working there longer than 1 yr (p = .055). Objective abnormalities in neurobehavioral testing were found in all 4 men working longer than 9 yr at this plant, but in only 5 of 15 employed there for a shorter period (p = .03). These results are consistent with the known effects of solvent exposure. Occupational health personnel must be aware that STWs can be exposed to solvents and other industrial wastes.

  13. Municipal sewage sludge as fertilizer. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-12-01

    The bibliography contains citations concerning the use of sewage sludge as fertilizer. References study the effects of municipal sewage sludge on vegetation such as maize, beans, roadside plant life, and hardwood trees. Sewage sludge used as fertilizer to reclaim mined land is explored. Public attitudes are also considered. (Contains a minimum of 247 citations and includes a subject term index and title list.)

  14. Municipal sewage sludge as fertilizer. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning the use of sewage sludge as fertilizer. References study the effects of municipal sewage sludge on vegetation such as maize, beans, roadside plant life, and hardwood trees. Sewage sludge used as fertilizer to reclaim mined land is explored. Public attitudes are also considered. (Contains a minimum of 226 citations and includes a subject term index and title list.)

  15. Municipal sewage sludge as fertilizer. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-01-01

    The bibliography contains citations concerning the use of sewage sludge as fertilizer. References study the effects of municipal sewage sludge on vegetation such as maize, beans, roadside plant life, and hardwood trees. Sewage sludge used as fertilizer to reclaim mined land is explored. Public attitudes are also considered. (Contains a minimum of 230 citations and includes a subject term index and title list.)

  16. Detection and distribution of rotavirus in raw sewage and creeks in Sao Paulo, Brazil

    SciTech Connect

    Mehnert, D.U.; Stewien, K.E. )

    1993-01-01

    Rotavirus invection is an important cause of hospitalization and mortality of infants and children in developing countries, especially where the water supply and sewage disposal systems are in precarious conditions. This report describes the detection, quantitation, and distribution of rotaviruses in domestic sewage and sewage polluted creeks in the city of San Paulo. 22 refs., 1 fig., 3 tabs.

  17. PROCESS DESIGN MANUAL: LAND APPLICATION OF SEWAGE SLUDGE AND DOMESTIC SEPTAGE

    EPA Science Inventory

    Land application of sewage sludge generated by domestic sewage treatment is performed in an environmentally safe and cost–effective manner in many communities. Land application involves taking advantage of the fertilizing and soil conditioning properties of sewage sludge by sp...

  18. A COMPREHENSIVE STUDY OF HOURLY AND DAILY SEWAGE FLOW RATES IN FLORIDA PUBLIC SCHOOLS.

    ERIC Educational Resources Information Center

    FOGARTY, WILLIAM J.; REEDER, MILTON E.

    A DETERMINATION OF THE HOURLY AND DAILY SEWAGE FLOW RATES IN FLORIDA PUBLIC SCHOOLS WAS MADE TO IDENTIFY THE FLOW CHARACTERISTICS AND TO PROVIDE A MORE PRECISE BASIS FOR THE ESTABLISHMENT OF DESIGN CRITERIA FOR SEWAGE DISPOSAL FACILITIES IN SCHOOLS. WATER FLOW DATA WAS COLLECTED FOR 158 SCHOOLS AND SEWAGE FLOW DATA FROM 42 SCHOOLS. THE FINDINGS…

  19. Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung.

    PubMed

    Xing, Meiyan; Li, Xiaowei; Yang, Jian; Huang, Zhidong; Lu, Yongsen

    2012-02-29

    The chemical changes of water-extractable organic matter (WEOM) from five different substrates of sewage sludge enriched with different proportions of cow dung after vermicomposting with Eisenia fetida were investigated using various analytical approaches. Results showed that dissolved organic carbon, chemical oxygen demand, and C/N ratio of the substrates decreased significantly after vermicomposting process. The aromaticity of WEOM from the substrates enhanced considerably, and the amount of volatile fatty acids declined markedly, especially for the cow dung substrate. Gel filtration chromatography analysis showed that the molecular weight fraction between 10(3) and 10(6) Da became the main part of WEOM in the final product. 1H nuclear magnetic resonance spectra revealed that the proportion of H moieties in the area of 0.00-3.00 ppm decreased, while increasing at 3.00-4.25 ppm after vermicomposting. Fluorescence spectra indicated that vermicomposting caused the degradation of protein-like groups, and the formation of fulvic and humic acid-like compounds in the WEOM of the substrates. Overall results indicate clearly that vermicomposting promoted the degradation and transformation of liable WEOM into biological stable substances in sewage sludge and cow dung alone, as well as in mixtures of both materials, and testing the WEOM might be an effective way to evaluate the biological maturity and chemical stability of vermicompost.

  20. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings.

    PubMed

    Weyens, Nele; Truyens, Sascha; Dupae, Joke; Newman, Lee; Taghavi, Safiyh; van der Lelie, Daniel; Carleer, Robert; Vangronsveld, Jaco

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l(-1) TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l(-1) TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected.

  1. Improving the degradation behavior and in vitro biological property of nano-hydroxyapatite surface- grafted with the assist of citric acid.

    PubMed

    Jiang, Liuyun; Jiang, Lixin; Xiong, Chengdong; Su, Shengpei

    2016-10-01

    To obtain ideal nano-hydroxyapatite(n-HA) filler for poly(lactide-co-glycolide) (PLGA), a new surface-grafting with the assist of citric acid for nano-hydroxyapatite (n-HA) was designed, and the effect of n-HA surface-grafted with or without citric acid on in vitro degradation behavior and cells viability was studied by the experiments of soaking in simulated body fluid (SBF) and incubating with human osteoblast-like cells (MG-63). The change of pH value, tensile strength reduction, the surface deposits, cells attachment and proliferation of samples during the soaking and incubation were investigated by means of pH meter, electromechanical universal tester, scanning electron microscope (SEM) coupled with energy-dispersive spectro-scopy (EDS), fluorescence microscope and MTT method. The results showed that the introduction of citric acid not only delayed the strength reduction during the degradation by inhibiting the detachment of n-HA from PLGA, but also endowed it better cell attachment and proliferation, suggesting that the n-HA surface-grafted with the assist of citric acid was an important bioactive ceramic fillers for PLGA used as bone materials.

  2. Xylan degradation improved by a combination of monolithic columns bearing immobilized recombinant β-xylosidase from Aspergillus awamori X-100 and Grindamyl H121 β-xylanase.

    PubMed

    Volokitina, Maria V; Bobrov, Kirill S; Piens, Kathleen; Eneyskaya, Elena V; Tennikova, Tatiana B; Vlakh, Evgenia G; Kulminskaya, Anna A

    2015-01-01

    Synergistic action of exo- and endohydrolazes is preferred for effective destruction of biopolymers. The main purpose of the present work was to develop an efficient tool for degradation of xylan. Macroporous lab-made monolithic columns and commercial CIM-Epoxy disk were used to immobilize the recombinant β-xylosidase from Aspergillus awamori and Grindamyl β-xylanase. The efficiency of xylan degradation using the low-loaded β-xylosidase column appeared to be four times higher than for the in-solution process and about six times higher than for the high-loaded bioreactor. Disk bioreactor with the Grindamil β-xylanase operated in a recirculation mode has shown noticeable advantages over the column design. Additionally, a system comprised of two immobilized enzyme reactors (IMERs) was tested to accelerate the biopolymer hydrolysis, yielding total xylan conversion into xylose within 20 min. Fast online monitoring HPLC procedure was developed where an analytical DEAE CIM disk was added to the two-enzyme system in a conjoint mode. A loss of activity of immobilized enzymes did not exceed 7% after 5 months of the bioreactor usage. We can therefore conclude that the bioreactors developed exhibit high efficiency and remarkable long-term stability.

  3. Poly(Beta-Hydroxybutyrate) Stereoisomers: A Model Study of the Effects of Stereochemical and Morphological Variables on Polymer Biological Degradability

    DTIC Science & Technology

    1992-01-01

    sole source of carbon. The bacterial ybutyrate), (R)-PHB, which is a highly crystalline bio- strains Pseudomonas ?remoignei (ATCC 17989)15-18 and...degradable thermoplastic.8 Alcaligenes faecalis T1,1s9A isolated from soil and activated Several researchers have studied the depolymerization sewage sludge

  4. Isolation of viruses from sewage, with special regard to poliovirus

    PubMed Central

    Böttiger, Margareta

    1978-01-01

    This report concerns experiments to isolate different viruses from sewage. Using a special cell-line from Utrecht, derived from human amniotic cells, it was possible to isolate poliovirus selectively when antisera against six types of coxsackievirus B were added to the tissue culture. The method was tested in connexion with the epidemiological investigation of a case of poliomyelitis in Sweden in 1977. It rapidly demonstrated that the virus implicated was present in all neighbouring sewage plants, indicating a wide distribution of the virus in the area. PMID:216501

  5. Spreading lagooned sewage sludge on farm land: A case history

    SciTech Connect

    Robson, C.M.; Sommers, L.E.

    1995-06-01

    This report describes the development of a project involving the application of approximately 265,000 cubic meters of lagooned sewage sludge from a metropolitan area on privately-owned farm land in an adjacent, rural county. The sludge application project was initiated to enable use of the land occupied by the lagoons for expansion of the sewage treatment plant. The procedures developed will be valuable to those proposing to practice land disposal of stabilized sludge as part of the Nation`s resource conservation program.

  6. The application of potassium ferrate for sewage treatment.

    PubMed

    Jiang, Jia-Qian; Panagoulopoulos, Alex; Bauer, Mike; Pearce, Pete

    2006-04-01

    The comparative performance of potassium ferrate(VI), ferric sulphate and aluminium sulphate for the removal of turbidity, chemical oxygen demand (COD), colour (as Vis400-abs) and bacteria in sewage treatment was evaluated. For coagulation and disinfection of sewage, potassium ferrate(VI) can remove more organic contaminants, COD and bacteria in comparison with the other two coagulants for the same doses used. Also, potassium ferrate(VI) produces less sludge volume and removes more contaminants, which should make subsequent sludge treatment easier.

  7. Salmonellosis in wild birds feeding at sewage treatment works.

    PubMed Central

    Plant, C. W.

    1978-01-01

    Between June 1976 and August 1977 faeces were collected from 599 wild British birds caught during ringing operations at two sewage treatment works in south-east England. Samples were incubated with selenite-F broth to detect the presence of Salmonella. Salm. anatum was isolated from one bird, a Dunnock Prunella modularis an incidence of 0.17% of the total birds examined and 3.23% of the Dunnocks. Comparisons are drawn with previously reported studies and it is suggested that sewage treatment works play little part in the transmission of Salmonella infections to wild birds feeding there. PMID:690424

  8. Isolation and identification of dexamethasone sodium phosphate degrading Pseudomonas alcaligenes.

    PubMed

    Yi, Wang; Zhibang, Yang; Lili, Zhu; Zhongquan, Shi; Lianju, Ma; Ziwei, Tang; Renju, Jiang

    2015-02-01

    Glucocorticosteroids such as dexamethasone have polluted hospital wastewater, urban sewage, and river water in varying degrees. However, dexamethasone degradation by bioremediation technology is less understood. This study aims to isolate bacteria that could degrade dexamethasone and to identify their degradation characteristics. Hospital wastewater contaminated by dexamethasone was collected. After culturing in inorganic salt medium and in carbon deficient medium containing dexamethasone sodium phosphate, a bacterial strain with dexamethasone sodium phosphate as the sole carbon and energy source was enriched and isolated from the contaminated wastewater. The strain was identified as Pseudomonas alcaligenes by morphology, Gram staining, biochemical test, and 16S rDNA sequencing. Isolated bacteria were domesticated. Then its degradation characteristic was determined by high-performance liquid chromatography method. The degradation rate of P. alcaligenes on dexamethasone sodium phosphate was 50.86%. Of the degraded dexamethasone sodium phosphate, 75.23% of dexamethasone sodium phosphate was degraded to dexamethasone and 23.63% was degraded to other metabolites. In conclusion, the isolated P. alcaligenes in this study would provide experimental evidence for further research on the bioremediation technology to treat dexamethasone sodium phosphate and dexamethasone polluted water and further for the elimination of side effects of dexamethasone.

  9. From sewage water treatment to wastewater reuse. One century of Paris sewage farms history.

    PubMed

    Védry, B; Gousailles, M; Affholder, M; Lefaux, A; Bontoux, J

    2001-01-01

    The irrigation fields of Paris have been used for 100 years. Their soils mainly contain heavy metals in the topmost layer. Metals come from raw sewage as well as from digested sludge of biological treatment plants which have been diluted for years in raw water. Vegetables that are cultivated in the irrigation fields concentrate metals but their average contents, however, are lower than the recommended limit values. Some vegetables concentrate more specifically one type of metal. Corn seeds accumulate less metal than green vegetables. The SIAAP keeps operating irrigation fields by delivering clariflocculated water with a low metal content from the new Seine Centre plant, with the purpose of keeping some 2,000 ha of green zone in an otherwise heavily constructed area and to prevent a metal release from the soil should irrigation be interrupted. Maintaining irrigation fields also relieves the biological treatment plant and then contributes to preserve the quality of the Seine river, especially in summer.

  10. The occurrence and ecological risks of endocrine disrupting chemicals in sewage effluents from three different sewage treatment plants, and in natural seawater from a marine reserve of Hong Kong.

    PubMed

    Xu, Elvis G B; Liu, Shan; Ying, Guang-Guo; Zheng, Gene J S; Lee, Joseph H W; Leung, Kenneth M Y

    2014-08-30

    We determined the concentrations of 12 endocrine disrupting chemicals (EDCs) in sewage effluents collected from three different sewage treatment plants (STPs) in Hong Kong, and found 4-nonylphenol (NP) and bisphenol A (BPA) were the most abundant EDCs. Effluent concentrations of NP and BPA were higher in dry season than in wet season, but opposite seasonal changes of NP were observed in receiving waters, probably due to the surface runoff. The two secondary STPs showed higher removal efficiency for these compounds than the preliminary STP, while having higher removal efficiency in wet season. Therefore, it is necessary to upgrade the preliminary STP and improve the EDC removal efficiency in dry season. Seawaters from the Cape D' Aguilar Marine Reserve adjacent to these STPs also exhibited elevated NP levels with a hazard quotient >1. Furthermore, diluted effluents from the STPs elicited significant transcriptional responses of EDC-related genes in the marine medaka fish.

  11. Isolation and identification of enteroviruses from sewage and sewage-contaminated water in Lagos, Nigeria.

    PubMed

    Adeniji, Johnson Adekunle; Faleye, Temitope Oluwasegun Cephas

    2014-06-01

    Studies have confirmed silent circulation of enteroviruses in the environment even in the absence of associated clinical conditions in the community. In this light, 26 samples of sewage and sewage-contaminated water serving selected high-risk communities in Lagos Nigeria were examined between June and September 2010. To concentrate virus particles in the sample, 480 μL of each sample was centrifuged at 3,000 rpm for 1 h at 4 °C. Subsequently, pellets were pooled, chloroform treated and further centrifuged at 1,500 rpm for 20 min at 4 °C. The water phase (concentrate) was then collected and stored at -20 °C. The concentrates were subsequently inoculated into RD and L20B cell lines. Recovered isolates were identified by real-time RT-PCR (rRT-PCR), serotyping, VP1 amplification, sequencing and phylogenetic analysis. Overall, 9 (34.6%) of the samples showed characteristic enterovirus cytopathic effect in RD cell line and were subsequently confirmed by pan-enterovirus rRT-PCR. The isolates were further identified by serotyping to include three E7, one E11 and one E13 isolates whilst four isolates were untypable. Further characterisation by VP1 sequencing confirmed the results of serotyping and rRT-PCR for all but isolate E13. Also, the four previously untypable isolates were identified to include two E19, one E20 and one E7 by VP1 sequencing. Results of the study confirmed circulation of Sub-Saharan Africa-specific enterovirus clades in the region, provide information on their molecular epidemiology and emphasise the need to combine methods of identification to enhance enterovirus surveillance.

  12. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand

  13. Anaerobic co-digestion of sewage sludge and food waste.

    PubMed

    Prabhu, Meghanath S; Mutnuri, Srikanth

    2016-04-01

    Anaerobic co-digestion of organic matter improves digester operating characteristics and its performance. In the present work, food waste was collected from the institute cafeteria. Two types of sludge (before centrifuge and after centrifuge) were collected from the fluidised bed reactor of the institute treating sewage wastewater. Food waste and sludge were studied for their physico-chemical characteristics, such as pH, chemical oxygen demand, total solids, volatile solids, ammoniacal nitrogen, and total nitrogen. A biomethane potential assay was carried out to find out the optimum mixing ratio of food waste and sludge for anaerobic co-digestion. Results indicated that food waste mixed with sludge in the ratio of 1:2 produced the maximum biogas of 823 ml gVS(-1)(21 days) with an average methane content of 60%. Batch studies were conducted in 5 L lab-glass reactors at a mesophilic temperature. The effect of different substrate loading rates on biogas production was investigated. The mixing ratio of food waste and sludge was 1:2. A loading rate of 1 gVS L d(-1)gave the maximum biogas production of 742 ml g(-1)VS L d(-1)with a methane content of 50%, followed by 2 gVS L d(-1)with biogas of 539 ml g(-1)VS L d(-1) Microbial diversity of the reactor during fed batch studies was investigated by terminal restriction fragment length polymorphism. A pilot-scale co-digestion of food waste and sludge (before centrifuge) indicated the process stability of anaerobic digestion.

  14. Using a Bayesian approach to improve and calibrate a dynamic model of polycyclic aromatic hydrocarbons degradation in an industrial contaminated soil.

    PubMed

    Brimo, Khaled; Garnier, Patricia; Sun, Siao; Bertrand-Krajewski, Jean-Luc; Cébron, Aurélie; Ouvrard, Stéphanie

    2016-08-01

    A novel kinetics model that describes the dynamics of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils is presented. The model includes two typical biodegradation pathways: the co-metabolic pathway using pseudo first order kinetics and the specific biodegradation pathway modeled using Monod kinetics. The sorption of PAHs to the solid soil occurs through bi-phasic fist order kinetics, and two types of non-extractible bounded residues are considered: the biogenic and the physically sequestrated into soil matrix. The PAH model was developed in Matlab, parameterized and tested successfully on batch experimental data using a Bayesian approach (DREAM). Preliminary results led to significant model simplifications. They also highlighted that the specific biodegradation pathway was the most efficient at explaining experimental data, as would be expected for an old industrial contaminated soil. Global analysis of sensitivity showed that the amount of PAHs ultimately degraded was mostly governed by physicochemical interactions rather than by biological activity.

  15. The Effect of paper mill waste and sewage sludge amendments on soil organic matter

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Barriga, Sandra; Guerrero, Francisca; Gascó, Gabriel

    2013-04-01

    In general, Mediterranean soils have low organic matter content, due to the climate characteristics of this region and inadequate land management. Traditionally, organic wastes such as manure are used as amendment in order to improve the soil quality, increasing soil fertility by the accumulation of nitrogen, phosphorus and other plant nutrients in the soil. In the last decade, other anthropogenic organic wastes such as sewage sludge or paper waste materials have been studied as soil amendments to improve physical, chemical and biological properties of soils. The objective of the present work was to study the influence of waste from a paper mill and sewage sludge amendments on soil organic matter. For this reason, soil organic matter evolution was studied using thermogravimetric analysis (TGA), the derivative (dTG) and differential thermal analysis (DTA). Thermal analytical techniques have the advantage of using full samples without pre-treatments and have been extensively used to study the evolution of organic matter in soils, to evaluate composting process or to study the evolution of organic matter of growing media.

  16. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste

    PubMed Central

    Zuliani, Luca; Frison, Nicola; Jelic, Aleksandra; Fatone, Francesco; Bolzonella, David; Ballottari, Matteo

    2016-01-01

    Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO2, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB) was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates. PMID:27735859

  17. Isolation, Characterization, and Degradation Performance of the 17β-Estradiol-Degrading Bacterium Novosphingobium sp. E2S

    PubMed Central

    Li, Shunyao; Liu, Juan; Sun, Minxia; Ling, Wanting; Zhu, Xuezhu

    2017-01-01

    A 17β-estradiol (E2)-degrading bacterium E2S was isolated from the activated sludge in a sewage treatment plant (STP). The morphology, biological characteristics, and 16S ribosomal RNA (rRNA) gene sequence of strain E2S indicated that it belonged to the genus Novosphingobium. The optimal degrading conditions were 30 °C and pH 7.0. The ideal inoculum volume was 5% (v/v), and a 20-mL degradation system was sufficient to support the removal ability of strain E2S. The addition of extra NaCl to the system did not benefit the E2 degradation in batch culture by this strain. Strain E2S exhibited high degradation efficiency with initial substrate concentrations of 10–50 mg·L−1. For example, in mineral salt medium containing 50 mg·L−1 of E2, the degradation efficiency was 63.29% after seven days. In cow manure samples supplemented with 50 mg·L−1 of E2, strain E2S exhibited 66.40% degradation efficiency after seven days. The finding of the E2-degrading strain E2S provided a promising method for removing E2 from livestock manure in order to reduce the potential environmental risks of E2. PMID:28125060

  18. In vitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents.

    PubMed

    Maletz, Sibylle; Floehr, Tilman; Beier, Silvio; Klümper, Claudia; Brouwer, Abraham; Behnisch, Peter; Higley, Eric; Giesy, John P; Hecker, Markus; Gebhardt, Wilhelm; Linnemann, Volker; Pinnekamp, Johannes; Hollert, Henner

    2013-03-15

    Occurrence of pharmaceuticals in aquatic ecosystems is related to sewage effluents. Due to the possible adverse effects on wildlife and humans, degradation and removal of pharmaceuticals and their metabolites during wastewater treatment is an increasingly important task. The present study was part of a proof of concept study at a medium sized country hospital in western Germany that investigated efficiency of advanced treatment processes to remove toxic potencies from sewage. Specifically, the efficiency of treatment processes such as a membrane bioreactor (MBR) and ozonation to remove endocrine disruptive potentials was assessed. Estrogenic effects were characterized by use of two receptor-mediated in vitro transactivation assays, the Lyticase Yeast Estrogen Screen (LYES) and the Estrogen Receptor mediated Chemical Activated LUciferase gene eXpression (ER CALUX(®)). In addition, the H295R Steroidogenesis Assay (H295R) was utilized to detect potential disruption of steroidogenesis. Raw sewage contained measurable estrogen receptor (ER)-mediated potency as determined by use of the LYES (28.9 ± 8.6 ng/L, 0.33× concentration), which was reduced after treatment by MBR (2.3 ± 0.3 ng/L) and ozone (1.2 ± 0.4 ng/L). Results were confirmed by use of ER CALUX(®) which measured concentrations of estrogen equivalents (EEQs) of 0.2 ± 0.11 ng/L (MBR) and 0.01 ± 0.02 ng/L (ozonation). In contrast, treatment with ozone resulted in greater production of estradiol and aromatase activity at 3× and greater concentrations in H295R cells. It is hypothesized that this is partly due to formation of active oxidized products during ozonation. Substance-specific analyses demonstrated efficient removal of most of the measured compounds by ozonation. A comparison of the ER-mediated responses measured by use of the LYES and ER CALUX(®) with those from the chemical analysis using a mass-balance approach revealed estrone (E1) to be the main compound that caused the estrogenic effects

  19. Land application of chemically treated sewage sludge. II. Effects on soil and plant heavy metal content

    SciTech Connect

    Soon, Y.K.; Bates, T.E.; Moyer, J.R.

    1980-07-01

    Anaerobically digested sewage sludges resulting from treatment of sewage with Ca(OH)/sub 2/, Al/sub 2/(SO/sub 4/)/sub 3/, or FeCl/sub 3/ for phosphorus precipitation were applied to corn (Zea mays L.) and bromegrass (Bromus inermis Leyess) grown on a soil having an initial pH of 7.3. Rates of sludge supplied 200, 400, 800, and and 1,600 kg N/ha each year for 5 years. Treatments with NH/sub 4/NO/sub 3/ supplying 0, 100, 20, and 400 kg N/ha were included for comparison. Plant tissue was analyzed for Cu, Zn, Mn, Cd, Ni, Cr, and Pb. No toxicity or deficiency symptoms were noted. Soil Zn, Cd, and Ni extracted by NTA (nitrilotriacetic acid) were increased by continued sludge application. The NTA-extractable Zn and Cd were positively correlated with the Zn and Cd concentrations in corn stover. Soil pH was reduced by the Fe-sludge application, slightly affected by the Al-sludge, and increased by the Ca-sludge. Increases in Cu concentrations in bromegrass and corn stover were associated with increases in the N content rather than the source of N, and plant Cu concentrations remained relatively constant across years. Sewage sludge application increased Zn, Cd, and Ni concentrations in bromegrass and corn stover, and Zn and Ni concentrations in corn grain, particularly at the higher metal loadings from sludge application. Zinc and Cd concentrations, especially in corn stover, increased with continued sludge application during the 5-year period. The inclusion of soil pH as a factor, in addition to cummulative amounts of Zn or Cd added as a constituent of sludge, improved the regression equations predicting Zn or Cd uptake.

  20. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor.

    PubMed

    Zhang, Weijiang; Yuan, Chengyong; Xu, Jiao; Yang, Xiao

    2015-05-01

    A vacuum fixed bed reactor was used to pyrolyze sewage sludge, biomass (rice husk) and their blend under high temperature (900°C). Pyrolytic products were kept in the vacuum reactor during the whole pyrolysis process, guaranteeing a long contact time (more than 2h) for their interactions. Remarkable synergetic effect on gas production was observed. Gas yield of blend fuel was evidently higher than that of both parent fuels. The syngas (CO and H2) content and gas lower heating value (LHV) were obviously improved as well. It was highly possible that sewage sludge provided more CO2 and H2O during co-pyrolysis, promoting intense CO2-char and H2O-char gasification, which benefited the increase of gas yield and lower heating value. The beneficial synergetic effect, as a result, made this method a feasible one for gas production.

  1. An evaluation of the application of treated sewage effluents in Las Tablas de Daimiel National Park, Central Spain

    NASA Astrophysics Data System (ADS)

    Navarro, Vicente; García, Beatriz; Sánchez, David; Asensio, Laura

    2011-04-01

    SummaryAt the present time there is not enough information available to develop a quantitative model on how inundation takes place in the 1490 ha area of Tablas de Daimiel National Park (Central Spain) located upstream of Morenillo Dam. Given that it is the most important area in the Park from an ecological standpoint, this is a major concern, as it has not been possible to assess the potential effectiveness of the interventions geared towards improving its current state. As a result, it is not feasible to simulate the hydrologic response to the application of treated sewage effluents, an initiative recently implemented by the Public Administration responsible for water management in the Guadiana River Basin, where the Park is located. To help solve this problem, a simplified model of the hydrologic behaviour of the system has been developed focusing on the characterisation of the main trends of the inundation process. Field data from 12 drying processes were used to identify the model parameters. Later, the evolution of the system was examined after the application of treated sewage effluents, assuming the hypothesis of a dry climate. The results show that the 10 Mm 3 of available effluents is sufficient to improve from 2 ha to 60 ha the inundation condition of the areas considered to be high-priority. This therefore demonstrates that, from a hydrologic point of view, it is highly advisable to use treated sewage effluents.

  2. Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung.

    PubMed

    Li, Xiaowei; Xing, Meiyan; Yang, Jian; Huang, Zhidong

    2011-01-30

    The chemical changes occurring in five different substrates of sewage sludge spiked with different proportions of cow dung after vermicomposting with Eisenia foetida for 90 days were investigated. Their humic acid-like (HAL) fractions were isolated to determine the elemental and functional composition, and structural and functional characteristics using ultraviolet/visible, Fourier transform infrared (FT-IR) and fluorescence spectroscopies and scanning electron microscopy. After vermicomposting, the total organic C and C/N ratio decreased, and the total extractable C and humic acid (HA) C increased in all substrates. In the HAL fractions, the C and H contents, C/N and C/O and aliphatic structures, proteinaceous components and carbohydrates decreased, while the O and N and acidic functional group contents and C/H ratio, aromaticity and polycondensation structures increased. Further, the results suggest that the addition of cow dung to sewage sludge could improve the quality of organic matter humification of the substrates. The structures of HAL fractions in vermicomposts resembled those typical of soil HA, especially the vermicompost of cow dung alone. Scanning electron microscopy showed the microstructure of HAL fraction in final product became close-grained and lumpy. Overall results indicate that vermicomposting was an efficient technology for promoting organic matter (OM) humification in sewage sludge and cow dung alone, as well as in mixtures of both materials, improving their quality and environmental safety as a soil OM resource for utilization as soil amendments.

  3. Impact of sewage discharges on coastal water quality of Mumbai, India: present and future scenarios.

    PubMed

    Vijay, Ritesh; Mardikar, Trupti; Kumar, Rakesh

    2016-07-01

    The simulation study assesses the impact of sewage discharges on the present and predicted water quality of the Mumbai coast using MIKE 21. Water quality parameters in terms of dissolved oxygen (DO), biochemical oxygen demand (BOD) and faecal coliform (FC) are checked against specified standards. The simulation is validated for the present coastal hydrodynamics and observed water quality parameters. The validated model is further used for predicting scenarios in terms of upgradation in a pumping station and improvement in wastewater collection, treatment level and disposal systems. The water quality of the existing coastal environment does not conform to the stipulated standards but improves considerably in the prediction scenarios. However, despite a marked improvement in FC, it is not as per desired standards as no treatment for bacteria removal is considered. The simulation study emphasizes the need for exploring options like the reuse or recycle of treated effluent, as an effort for water conservation.

  4. Heavy metal water pollution associated with the use of sewage sludge compost and limestone outcrop residue for soil restoration: effect of saline irrigation.

    NASA Astrophysics Data System (ADS)

    Pérez-Gimeno, Ana; Navarro-Pedreño, Jose; Gómez, Ignacio; Belén Almedro-Candel, María; Jordán, Manuel M.; Bech, Jaume

    2015-04-01

    The use of composted sewage sludge and limestone outcrop residue in soil restoration and technosol making can influence the mobility of heavy metals into groundwater. The use of compost from organic residues is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Compost amendments may improve the physical, chemical, and biological properties of soils (Jordão et al. 2006; Iovieno et al. 2009). However, the use of compost and biosolids may have some negative effects on the environment (Karaca 2004; Navarro-Pedreño et al. 2004). This experiment analyzed the water pollution under an experimental design based on the use of columns (0-30 cm) formed by both wastes. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the leachates was checked under controlled conditions inside a greenhouse (mean values: 20°±5°C and around 60% relative humidity). Sixteen 30-cm tall columns made of PVC pipe with internal diameters of 10.5 cm were prepared. The columns were filled with one of these materials: either sewage sludge compost (SW) or limestone outcrop residue (LR), fraction (<4 mm). The columns were irrigated with 2000 mL/week (230 mm) for twelve weeks (April to July). Half of them were irrigated with non-saline water (NS) and the others were so with saline water (S) from the beginning of the experiment. Four treatments combining the quality of the irrigation water (saline and non-saline) and wastes were studied: SW-NS, SW-S, LR-NS, and LR-S. After 24 hours of irrigation on the first day of each week, the leachates were taken and analyzed the heavy metal content (AAS-ES espectometer). The environmental risk due to the presence of heavy metals associated with the use of these materials was very low in general (under 0.1 mg/L). The use of sewage sludge favoured the presence of these metals in the lecheates and no effect

  5. Challenge of urban sewage disposal in a karst region: Mérida, Yucátan, Mexico

    NASA Astrophysics Data System (ADS)

    Perry, E. C.; Villasuso, M.

    2013-05-01

    , efficient systems that provide almost tertiary-level sewage treatment have been developed and installed in various localities worldwide. Fitting the old parts of Mérida with several such systems would be less disruptive than blasting a monolithic sewer network through the city's rocky base, and it would minimize the problem of pumping sewage in an almost completely flat-lying area. Appropriate reuse of water from such local treatment facilities would be more flexible than from a single central system. Furthermore, injecting water into the aquifer after secondary or tertiary treatment would be a huge improvement over pumping of untreated "aguas negras" into the saline intrusion. Finally, there is a renaissance of sorts in sewage treatment technology, and it would be much easier to upgrade a number of individual systems as they became obsolete than to replace a monolithic central system. Safe, effective operation and monitoring of the suggested of sewage system would be challenging. Yet, as more cities join those 500 world-wide that now have populations approaching or exceeding one million, use of streams to export pollution may become infeasible. Perhaps Mérida can become a model to demonstrate that people can safely process and reuse their own wastewater.

  6. Degradation of cyanotoxins (microcystin) in drinking water using photoelectrooxidation.

    PubMed

    Garcia, A C A; Rodrigues, M A S; Xavier, J L N; Gazulla, V; Meneguzzi, A; Bernardes, A M

    2015-05-01

    The discharge of sewage and industrial effluents containing high concentrations of pollutants in water bodies increases eutrophication. Cyanobacteria, some of the organisms whose growth is promoted by high nutrient concentrations, are resistant and produce several types of toxins, known as cyanotoxins, highly harmful to human beings. Current water treatment systems for the public water supply are not efficient in degradation of toxins. Advanced oxidation processes (AOP) have been tested for the removal of cyanotoxins, and the results have been positive. This study examines the application of photoelectrooxidation in the degradation of cyanotoxins (microcystins). The performance of the oxidative processes involved was evaluated separately: Photocatalysis, Electrolysis and Photoelectrooxidation. Results showed that the electrical current and UV radiation were directly associated with toxin degradation. The PEO system is efficient in removing cyanotoxins, and the reduction rate reached 99%. The final concentration of toxin was less than 1 µg/L of microcystin in the treated solution.

  7. Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions.

    PubMed

    Armada, Elisabeth; Azcón, Rosario; López-Castillo, Olga M; Calvo-Polanco, Mónica; Ruiz-Lozano, Juan Manuel

    2015-05-01

    Studies have shown that some microorganisms autochthonous from stressful environments are beneficial when used with autochthonous plants, but these microorganisms rarely have been tested with allochthonous plants of agronomic interest. This study investigates the effectiveness of drought-adapted autochthonous microorganisms [Bacillus thuringiensis (Bt) and a consortium of arbuscular mycorrhizal (AM) fungi] from a degraded Mediterranean area to improve plant growth and physiology in Zea mays under drought stress. Maize plants were inoculated or not with B. thuringiensis, a consortium of AM fungi or a combination of both microorganisms. Plants were cultivated under well-watered conditions or subjected to drought stress. Several physiological parameters were measured, including among others, plant growth, photosynthetic efficiency, nutrients content, oxidative damage to lipids, accumulation of proline and antioxidant compounds, root hydraulic conductivity and the expression of plant aquaporin genes. Under drought conditions, the inoculation of Bt increased significantly the accumulation of nutrients. The combined inoculation of both microorganisms decreased the oxidative damage to lipids and accumulation of proline induced by drought. Several maize aquaporins able to transport water, CO2 and other compounds were regulated by the microbial inoculants. The impact of these microorganisms on plant drought tolerance was complementary, since Bt increased mainly plant nutrition and AM fungi were more active improving stress tolerance/homeostatic mechanisms, including regulation of plant aquaporins with several putative physiological functions. Thus, the use of autochthonous beneficial microorganisms from a degraded Mediterranean area is useful to protect not only native plants against drought, but also an agronomically important plant such as maize.

  8. Seasonal and spatial dynamics of nutrients and phytoplankton biomass in Victoria Harbour and its vicinity before and after sewage abatement.

    PubMed

    Ho, Alvin Y T; Xu, Jie; Yin, Kedong; Yuan, Xiangcheng; He, Lei; Jiang, Yuelu; Lee, Joseph H W; Anderson, Donald M; Harrison, Paul J

    2008-01-01

    This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO(3) and SiO(4) concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH(4) and PO(4) in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally > 9 microL(-1) in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO(4) in the most productive southern waters and it seldom decreased to limiting levels ( approximately 0.1 microM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained > 3.5 mg L(-1) at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH(4) and PO(4) and an increase in bottom DO. In contrast, there were an increase in chl a and NO(3), and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on

  9. 21 CFR 211.50 - Sewage and refuse.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Sewage and refuse. 211.50 Section 211.50 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS: GENERAL CURRENT GOOD MANUFACTURING PRACTICE FOR FINISHED PHARMACEUTICALS Buildings and Facilities § 211.50...

  10. Treatment efficacy of algae-based sewage treatment plants.

    PubMed

    Mahapatra, Durga Madhab; Chanakya, H N; Ramachandra, T V

    2013-09-01

    Lagoons have been traditionally used in India for decentralized treatment of domestic sewage. These are cost effective as they depend mainly on natural processes without any external energy inputs. This study focuses on the treatment efficiency of algae-based sewage treatment plant (STP) of 67.65 million liters per day (MLD) capacity considering the characteristics of domestic wastewater (sewage) and functioning of the treatment plant, while attempting to understand the role of algae in the treatment. STP performance was assessed by diurnal as well as periodic investigations of key water quality parameters and algal biota. STP with a residence time of 14.3 days perform moderately, which is evident from the removal of total chemical oxygen demand (COD) (60 %), filterable COD (50 %), total biochemical oxygen demand (BOD) (82 %), and filterable BOD (70 %) as sewage travels from the inlet to the outlet. Furthermore, nitrogen content showed sharp variations with total Kjeldahl nitrogen (TKN) removal of 36 %; ammonium N (NH4-N) removal efficiency of 18 %, nitrate (NO3-N) removal efficiency of 22 %, and nitrite (NO2-N) removal efficiency of 57.8 %. The predominant algae are euglenoides (in facultative lagoons) and chlorophycean members (maturation ponds). The drastic decrease of particulates and suspended matter highlights heterotrophy of euglenoides in removing particulates.

  11. PATHOGEN RISKS FROM APPLYING SEWAGE SLUDGE TO LAND

    EPA Science Inventory

    Congress banned ocean dumping of municipal wastes in the late 1980s. In its place, EPA developed guidance (40 CFR Part 503) for land application of processed sewage sludge (biosolids), mainly for agricultural purposes (1). Public health and environmental concerns with processed...

  12. From the Toilet to the Tank – Biofuels from Sewage

    SciTech Connect

    2016-11-02

    What we flush can be converted into a biocrude oil with properties very similar to fossil fuels. Pacific Northwest National Laboratory researchers have worked out a process that does not require that sewage be dried before transforming it under heat and pressure to biocrude. Metro Vancouver in Canada hopes to build a demonstration plant.

  13. Chironomidae From a Sewage Treatment Station of Southern Brazil

    NASA Astrophysics Data System (ADS)

    Signoretti, R. P.; Sonoda, K. C.; Ferraz, E.

    2005-05-01

    As the great number of insects living and reproducing at a municipal sewage treatment station located in Piracicaba City and the fear about how dangerous it could be for human healthy, a study was conduct to identify the taxa presented there and to analyze their community structure using stable isotopes. The Chironomidae identification was performed on specific level. The sewage treatment station is a man-made wetland system, situated 30m nearby the Piracicaba River. It treats the sewage from an urban area with 3000 inhabitants. The sewage discharge varies from 133 to 186L/s/ha. The samples were taken on the ending of the rainy season with a D-frame net. The material was washed (210mm mesh size), sorted and preserved in 70% alcohol. Chironomidae had a low participation in the community, with 14.9% of the specimens. Goeldichironomus serratus (47.8% from total Chironomidae), G. holoprasinus (43.5%) and Chironomus decorus (8.7%) were identified. Those species are worldwide recognized as pollution-resistant, used as indicators of environmental water quality. The wetland studied showed low dissolved oxygen (1.5mg/L) on the sampling period and the presence of those Chironomidae species should be expected. The low diversity and high dominance are common features for those impacted environments.

  14. Investigation of sewage sludge treatment using air plasma assisted gasification.

    PubMed

    Striūgas, Nerijus; Valinčius, Vitas; Pedišius, Nerijus; Poškas, Robertas; Zakarauskas, Kęstutis

    2017-03-18

    This study presents an experimental investigation of downdraft gasification process coupled with a secondary thermal plasma reactor in order to perform experimental investigations of sewage sludge gasification, and compare process parameters running the system with and without the secondary thermal plasma reactor. The experimental investigation were performed with non-pelletized mixture of dried sewage sludge and wood pellets. To estimate the process performance, the composition of the producer gas, tars, particle matter, producer gas and char yield were measured at the exit of the gasification and plasma reactor. The research revealed the distribution of selected metals and chlorine in the process products and examined a possible formation of hexachlorobenzene. It determined that the plasma assisted processing of gaseous products changes the composition of the tars and the producer gas, mostly by destruction of hydrocarbon species, such as methane, acetylene, ethane or propane. Plasma processing of the producer gas reduces their calorific value but increases the gas yield and the total produced energy amount. The presented technology demonstrated capability both for applying to reduce the accumulation of the sewage sludge and production of substitute gas for drying of sewage sludge and electrical power.

  15. Less-costly activated carbon for sewage treatment

    NASA Technical Reports Server (NTRS)

    Ingham, J. D.; Kalvinskas, J. J.; Mueller, W. A.

    1977-01-01

    Lignite-aided sewage treatment is based on absorption of dissolved pollutants by activated carbon. Settling sludge is removed and dried into cakes that are pyrolyzed with lignites to yield activated carbon. Lignite is less expensive than activated carbon previously used to supplement pyrolysis yield.

  16. Wildlife health implications of sewage disposal in wetlands

    USGS Publications Warehouse

    Friend, M.; Godfrey, P.J.; Kaynor, E.R.; Pelczarski, S.

    1985-01-01

    Wildlife health concerns associated with disposal of sewage effluent in wetlands are of three primary types: (1) introduction of pathogens, (2) introduction of pollutants that adversely impact on host body defense mechanisms, and (3) changes in the physical and chemical properties of wetlands that favor the development and maintenance of disease problems. Unlike the situation with human health concerns, introduction of pathogens is not the major concern regarding wildlife health. Instead, the focus of attention needs to be directed at environmental changes likely to take place as a result of effluent discharges into different types of wetlands. Unless these changes are adequately addressed from a disease perspective, marshes utilized for sewage disposal could become disease incubators and wildlife death traps. This result would be unfortunate because the backlash would likely negate the potentially beneficial aspects of the use of sewage wastewater for the creation of new wetlands and have a severe impact on progress being made towards evaluation of the compatibility of wildlife and sewage effluents.

  17. Gaseous fuels production from dried sewage sludge via air gasification.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz

    2014-07-01

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic.

  18. Effect of seeding during thermophilic composting of sewage sludge

    SciTech Connect

    Nakasaki, K.; Sasaki, M.; Shoda, M.; Kubota, H.

    1985-03-01

    The effect of seeding on the thermophilic composting of sewage sludge was examined by measuring the changes in CO/sub 2/ evolution rates and microbial numbers. Although the succession of thermophilic bacteria and thermophilic actinomycetes clearly reflected the effect of seeding, no clear difference was observed in the overall rate of composting or quality of the composted product. 7 references.

  19. 40 CFR 35.925-13 - Sewage collection system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... collection system conforms with any approved WQM plan, other environmental laws in accordance with § 35.925... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Sewage collection system. 35.925-13 Section 35.925-13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER...

  20. 40 CFR 35.925-13 - Sewage collection system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... collection system conforms with any approved WQM plan, other environmental laws in accordance with § 35.925... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Sewage collection system. 35.925-13 Section 35.925-13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER...

  1. 40 CFR 35.925-13 - Sewage collection system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... collection system conforms with any approved WQM plan, other environmental laws in accordance with § 35.925... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Sewage collection system. 35.925-13 Section 35.925-13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER...

  2. 40 CFR 35.925-13 - Sewage collection system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collection system conforms with any approved WQM plan, other environmental laws in accordance with § 35.925... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Sewage collection system. 35.925-13 Section 35.925-13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER...

  3. 40 CFR 35.925-13 - Sewage collection system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... collection system conforms with any approved WQM plan, other environmental laws in accordance with § 35.925... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Sewage collection system. 35.925-13 Section 35.925-13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER...

  4. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    EPA Science Inventory

    The increase in resistance rates to trimehtoprim-sulfamethoxazole (TMP/SMX) in isolates of Escherichia coli has become a matter of increasing concern. This has been particularly true in reference to community acquired urinary tract infections (UTI). This study utilized sewage i...

  5. FACTORS AFFECTING DISINFECTION AND STABILIZATION OF SEWAGE SLUDGE

    EPA Science Inventory

    Effective disinfection and stabilization of sewage sludge prior to land application is essential to not only protect human health, but also to convince the public of its benefits and safety. A basic understanding of the key factors involved in producing a stable biosolid product ...

  6. Apparatus for processing municipal solid waste and sewage sludge

    SciTech Connect

    Harendza-harinxma, A. J.

    1980-08-12

    Sewage sludge and municipal solid waste are simultaneously processed by first dissolving a catalyst, such as sodium aluminate, in the sludge, then mixing the sludge-aluminate mixture with the municipal waste to form a carbonizing mixture. After dewatering and drying, the mixture is carbonized in a furnace heated by a mixture of city gas and pyrolysis gases given off by the furnace.

  7. IDENTIFYING COMPOUNDS DESPITE CHROMATOGRAPHY LIMITATIONS: ORGANOPHOSPHATES IN TREATED SEWAGE

    EPA Science Inventory

    Highly concentrated extracts of sewage treatment plant (STP) effluents contain detectable
    levels of dozens of compounds resulting from human activities. Recent concern over use and
    disposal of Pharmaceuticals and Personal Care Products (PPCPS) (1) has stimulated interest ...

  8. Acoustic tracking of ocean-dumped sewage sludge.

    PubMed

    Proni, J R; Newman, F C; Sellers, R L; Parker, C

    1976-09-10

    With a modified 200-kilohertz acoustic echo sounder, it has been possible to detect and map sewage dumped into the ocean over several hours. The three-dimensional distribution of suspended material and its rate of diffusion are indicated after digital processing of the data.

  9. Determination of pesticide residues in sewage sludge: a review.

    PubMed

    Tadeo, José L; Sánchez-Brunete, Consuelo; Albero, Beatriz; García-Valcárcel, Ana I

    2010-01-01

    Pesticides are widely applied to protect plants from diseases, weeds, and insect damage, and they usually come into contact with soil where they may undergo a variety of transformations and provide a complex pattern of metabolites. Spreading sewage sludge on agricultural lands has been actively promoted by national authorities as an economic way of recycling. However, as a byproduct of wastewater treatment, sewage sludge may contain pesticides and other toxic substances that could be incorporated into agricultural products or be distributed in the environment. This article reviews the determination of pesticides in sewage sludge samples. Sample preparation including pretreatment, extraction, and cleanup, as well as the subsequent instrumental determination of pesticide residues, are discussed. Extraction techniques such as Soxhlet extraction, ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, and matrix solid-phase dispersion and their most recent applications to the determination of pesticides in sewage sludge samples are reviewed. Determination of pesticides, generally carried out by GC and HPLC coupled with different detectors, especially MS for the identification and quantification of residues, is summarized and discussed.

  10. Viable blastocystis cysts in Scottish and Malaysian sewage samples.

    PubMed

    Suresh, K; Smith, H V; Tan, T C

    2005-09-01

    Blastocystis cysts were detected in 38% (47/123) (37 Scottish, 17 Malaysian) of sewage treatment works. Fifty percent of influents (29% Scottish, 76% Malaysian) and 28% of effluents (9% Scottish, 60% Malaysian) contained viable cysts. Viable cysts, discharged in effluent, provide further evidence for the potential for waterborne transmission of Blastocystis.

  11. Photocopy of drawing (original drawing of Sewage Treatment Plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Sewage Treatment Plant - No. 1 Pump House in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) ELEVATIONS, SECTIONS, AND DETAILS - MacDill Air Force Base, Pump House No. 1, Hillsborough Garden Drive & Tampa Boulevard, Tampa, Hillsborough County, FL

  12. Photocopy of drawing (original drawing of Sewage Treatment Plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing (original drawing of Sewage Treatment Plant - No. 1 Pump House in possession of MacDill Air Force Base, Civil Engineering, Tampa, Florida; 1940 architectural drawings by Construction Division, Office of the Quartermaster General) FLOOR PLANS AND SECTIONS - MacDill Air Force Base, Pump House No. 1, Hillsborough Garden Drive & Tampa Boulevard, Tampa, Hillsborough County, FL

  13. Concentration of viruses from sewage by adsorption on Millipore membranes*

    PubMed Central

    Wallis, Craig; Melnick, Joseph L.

    1967-01-01

    The authors describe a relatively simple membrane-adsorption method for the efficient concentration of viruses from sewage. Sewage, first freed of bacteria by filtration through membranes under conditions that permit virus to pass freely, is then treated with anion resins to remove organic components that adsorb to Millipore membranes and prevent virus adsorption. The salt concentration of the resin filtrates is increased with MgCl2 to enhance virus adsorption to membranes. The sewage is next adsorbed to a Millipore membrane, from which virus is readily recovered by homogenization in small fluid volumes. The method was tested in Houston, Texas, for 7 months of 1966, during which period 2795 isolates were made from 10 concentrates of 1-US-gallon (3.78-litre) samples and only 4 from unconcentrated sewage. The isolates included types 2 and 3 poliovirus, 9 echovirus types and 2 coxsackieviruses. Examination of these type 2 poliovirus strains isolated over a 4-month period showed that 13 of 19 had d+ markers (although none was T+), indicating either that the vaccine strain had reverted in the d marker, or that wild strains were circulating in the population in spite of the absence of clinical disease. PMID:5299748

  14. Nitrogen and Phosphorus Removal from Combined Sewage Components by Microbial Activity1

    PubMed Central

    Finstein, M. S.

    1966-01-01

    When primary domestic sewage sludge was combined with settled sewage or secondary-treatment plant effluent, synergism resulted. The activity (measured by oxygen uptake, and the removal of Kjeldahl nitrogen and orthophosphate from solution) which resulted from incubating sludge together with settled sewage exceeded the sum of the activities when these components were incubated separately. A similar synergistic effect occurred with sludge and effluent. The sewage sludges were deficient in readily available nitrogen, but no shortage of phosphorus was demonstrated. The addition of ammonium and orthophosphate salts to sludge, in concentrations equivalent to those found in settled sewage and effluent, stimulated sludge oxygen uptake at least 80% as much as settled sewage or effluent. It is suggested that the synergism reflects increased microbial activity resulting from widened carbon-nitrogen and carbon-phosphorus ratios achieved by combining sludge with nutrient-rich settled sewage or effluent. PMID:5927052

  15. Sewage influence in a macrotidal estuary: Fatty acid and sterol distributions

    NASA Astrophysics Data System (ADS)

    Quemeneur, Michelle; Marty, Yanic

    1992-04-01

    Estuarine surface sediment and suspended matter from the Morlaix River estuary were analysed for fatty acids and sterols by HPLC and GC. This estuary represents a typical example of a coastal river estuary subjected to strong tides and receiving domestic wastes in its upper reaches. Wastewater fatty acid and sterol distribution patterns have been used to estimate the anthropogenic matter influx and its behaviour as an estuarine organic matter component. The 5 β-stanols, specific to fecal material and relatively persistent in the environment, provide a spatial view of sewage dispersion in estuarine waters and sediments and are used to calculate the relative importance of anthropogenic inputs in the degradable organic matter. Their distribution at high and low water indicates that anthropogenic particles are distributed throughout the estuary and may reach the coastal areas. However, owing to the dilution and the sedimentation processes, the anthropogenic matter contribution to the total organic matter is low in the outer estuary. By contrast, sediments from the upper estuary are strongly influenced by fresh anthropogenic inputs which may be detected by fatty acid fingerprint. The 18:1( n- 7)/18:1( n- 9) ratio which indicates the ability of the sediment to degrade the anthropogenic fresh material demonstrates a perturbation all along the narrow upper estuary.

  16. The effect of composting on the organic colloidal fraction from domestic sewage sludge

    NASA Astrophysics Data System (ADS)

    Almendros, Gonzalo; Leal, Juan A.; Martin, Francisco; Gonzalez-Vila, Francisco J.

    Due to the frequent use of domestic sewage sludges as organic additives to soils with low humus content, the chemical characteristics of the extractable polymers from composted and uncomposted sludges were described. The alkali-soluble, acid-insoluble sludge fraction (humic-like) was isolated after exhaustive lipid extraction, and analyzed by chemical degradation followed by combined gas chromatography mass spectrometry. It was observed that this sludge fraction contained an important amount of lipid compounds (more than 40% by weight). Most of this lipid material can be physically removed, but the residual polymer fractions were also found to be highly aliphatic in nature. The high yields upon degradation of several types of alkanoic acids and the relatively high proportion of polypeptides (30% by weight), as well as carbohydrates, suggested that the humic-like fractions from both the composted and uncomposted sludges consisted of slightly altered microbial and residual biopolymers. The effects of composting sludge mainly concern the selective biodegradation of the less resistant moieties. The great differences between the chemical nature of the humic-like fraction of the composted sludge and that of the soil humic acids are considered to reflect the low proportion of lignified materials in the original sludge.

  17. Targeted rapid amplification of cDNA ends (T-RACE)--an improved RACE reaction through degradation of non-target sequences.

    PubMed

    Bower, Neil I; Johnston, Ian A

    2010-11-01

    Amplification of the 5' ends of cDNA, although simple in theory, can often be difficult to achieve. We describe a novel method for the specific amplification of cDNA ends. An oligo-dT adapter incorporating a dUTP-containing PCR primer primes first-strand cDNA synthesis incorporating dUTP. Using the Cap finder approach, another distinct dUTP containing adapter is added to the 3' end of the newly synthesized cDNA. Second-strand synthesis incorporating dUTP is achieved by PCR, using dUTP-containing primers complimentary to the adapter sequences incorporated in the cDNA ends. The double-stranded cDNA-containing dUTP serves as a universal template for the specific amplification of the 3' or 5' end of any gene. To amplify the ends of cDNA, asymmetric PCR is performed using a single gene-specific primer and standard dNTPs. The asymmetric PCR product is purified and non-target transcripts containing dUTP degraded by Uracil DNA glycosylase, leaving only those transcripts produced during the asymmetric PCR. Subsequent PCR using a nested gene-specific primer and the 3' or 5' T-RACE primer results in specific amplification of cDNA ends. This method can be used to specifically amplify the 3' and 5' ends of numerous cDNAs from a single cDNA synthesis reaction.

  18. Genetic structure of Pilosocereus gounellei (Cactaceae) as revealed by AFLP marker to guide proposals for improvement and restoration of degraded areas in Caatinga biome.

    PubMed

    Monteiro, E R; Strioto, D K; Meirelles, A C S; Mangolin, C A; Machado, M F P S

    2015-12-15

    Amplified fragment length polymorphism (AFLP) analysis was used to evaluate DNA polymorphism in Pilosocereus gounellei with the aim of differentiating samples grown in different Brazilian semiarid regions. Seven primer pairs were used to amplify 703 AFLP markers, of which 700 (99.21%) markers were polymorphic. The percentage of polymorphic markers ranged from 95.3% for the primer combination E-AAG/M-CTT to 100% for E-ACC/M-CAT, E-ACC/M-CAA, E-AGC/M-CAG, E-ACT/M-CTA, and E-AGG/M-CTG. The largest number of informative markers (126) was detected using the primer combination E-AAC/M-CTA. Polymorphism of the amplified DNA fragments ranged from 72.55% (in sample from Piauí State) to 82.79% (in samples from Rio Grande Norte State), with an average of 75.39%. Despite the high genetic diversity of AFLP markers in xiquexique, analysis using the STRUCTURE software identified relatively homogeneous clusters of xiquexique from the same location, indicating a differentiation at the molecular level, among the plant samples from different regions of the Caatinga biome. The AFLP methodology identified genetically homogeneous and contrasting plants, as well as plants from different regions with common DNA markers. Seeds from such plants can be used for further propagation of plants for establishment of biodiversity conservation units and restoration of degraded areas of the Caatinga biome.

  19. Continuous degradation of maltose: improvement in stability and catalytic properties of maltase (α-glucosidase) through immobilization using agar-agar gel as a support.

    PubMed

    Nawaz, Muhammad Asif; Karim, Asad; Aman, Afsheen; Marchetti, Roberta; Qader, Shah Ali Ul; Molinaro, Antonio

    2015-04-01

    Maltose degrading enzyme was immobilized within agar-agar support via entrapment method due to its industrial utilization. The maximum immobilization efficiency (82.77%) was achieved using 4.0% agar-agar keeping the diameter of bead up to 3.0 mm. The matrix entrapment showed maximum catalytic activity at pH 7.0 and temperature 65 °C. Substrate saturation kinetics showed that the K m of immobilized enzyme increased from 1.717 to 2.117 mM ml(-1) where as Vmax decreased from 8,411 to 7,450 U ml(-1 )min(-1) as compared to free enzyme. The immobilization significantly increased the stability of maltase against various temperatures and immobilized maltase retain 100% of its original activity after 2 h at 50 °C, whereas the free maltase only showed 60% residual activity under same condition. The reusability of entrapped maltase showed activity up to 12 cycles and retained 50% of activity even after 5th cycle. Storage stability of agar entrapped maltase retain 73% of its initial activity even after 2 months when stored at 30 °C while free enzyme showed only 37% activity at same storage conditions.

  20. Acute Exercise Improves Insulin Clearance and Increases the Expression of Insulin-Degrading Enzyme in the Liver and Skeletal Muscle of Swiss Mice

    PubMed Central

    Ferreira, Sandra M.; Vettorazzi, Jean F.; Nardelli, Tarlliza R.; Araujo, Hygor N.; Santos, Gustavo J.; Carneiro, Everardo M.; Boschero, Antonio C.; Rezende, Luiz F.; Costa-Júnior, José M.

    2016-01-01

    The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60–70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe. PMID:27467214

  1. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1994-12-31

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  2. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  3. Co-pyrolysis of sewage sludge and manure.

    PubMed

    Ruiz-Gómez, Nadia; Quispe, Violeta; Ábrego, Javier; Atienza-Martínez, María; Murillo, María Benita; Gea, Gloria

    2017-01-01

    The management and valorization of residual organic matter, such as sewage sludge and manure, is gaining interest because of the increasing volume of these residues, their localized generation and the related problems. The anaerobic digestion of mixtures of sewage sludge and manure could be performed due to the similarities between both residues. The purpose of this study is to evaluate the feasibility of the co-pyrolysis of sewage sludge (SS) and digested manure (DM) as a potential management technology for these residues. Pyrolysis of a sewage sludge/manure blend (50:50%) was performed at 525°C in a stirred batch reactor under N2 atmosphere. The product yields and some characteristics of the product were analyzed and compared to the results obtained in the pyrolysis of pure residues. Potential synergetic and antagonist effects during the co-pyrolysis process were evaluated. Although sewage sludge and manure seem similar in nature, there are differences in their pyrolysis product properties and distribution due to their distinct ash and organic matter composition. For the co-pyrolysis of SS and DM, the product yields did not show noticeable synergistic effects with the exception of the yields of organic compounds, being slightly higher than the predicted average, and the H2 yield, being lower than expected. Co-pyrolysis of SS and DM could be a feasible management alternative for these residues in locations where both residues are generated, since the benefits and the drawbacks of the co-pyrolysis are similar to those of the pyrolysis of each residue.

  4. Hepatitis A in workers exposed to sewage: a systematic review

    PubMed Central

    Glas, C; Hotz, P; Steffen, R

    2001-01-01

    OBJECTIVES—To assess whether the scientific literature supports the hypothesis that workers exposed to sewage are at higher risk of hepatitis A (HA).
METHODS—All original papers reporting epidemiological studies published in English, French, or German which reported on the risk of HA infection in workers exposed to sewage were eligible. They were identified by several methods and each original paper was assessed independently with a checklist by two people. Studies were classified according to the strength of their design. Non-eligible studies were also examined to assess the impact of publication bias. If the risk estimates diverged widely, causes for heterogeneity were assessed. A distinction was made between seroprevalence studies based on subclinical HA (defined only by the presence of anti-HA antibodies) and clinical HA.
RESULTS—17 eligible studies were identified. No indication of an increased risk of clinical HA could be found. For seroprevalence the studies with the strongest design suggested a slightly increased risk of subclinical HA with an odds ratio (OR) <2.5. Heterogeneity was considerable and precluded a meta-analysis. Considering non-eligible studies would still decrease the OR.
CONCLUSIONS—The systematic review does not confirm an increased risk of clinical HA in workers exposed to sewage. An increased risk of subclinical HA cannot be excluded but the association between seropositivity and exposure to sewage was not strong and became still weaker if publication bias was taken into account.


Keywords: hepatitis A; sewage; systematic review PMID:11706141

  5. Mucosal and cutaneous human papillomaviruses detected in raw sewages.

    PubMed

    La Rosa, Giuseppina; Fratini, Marta; Accardi, Luisa; D'Oro, Graziana; Della Libera, Simonetta; Muscillo, Michele; Di Bonito, Paola

    2013-01-01

    Epitheliotropic viruses can find their way into sewage. The aim of the present study was to investigate the occurrence, distribution, and genetic diversity of Human Papillomaviruses (HPVs) in urban wastewaters. Sewage samples were collected from treatment plants distributed throughout Italy. The DNA extracted from these samples was analyzed by PCR using five PV-specific sets of primers targeting the L1 (GP5/GP6, MY09/MY11, FAP59/64, SKF/SKR) and E1 regions (PM-A/PM-B), according to the protocols previously validated for the detection of mucosal and cutaneous HPV genotypes. PCR products underwent sequencing analysis and the sequences were aligned to reference genomes from the Papillomavirus Episteme database. Phylogenetic analysis was then performed to assess the genetic relationships among the different sequences and between the sequences of the samples and those of the prototype strains. A broad spectrum of sequences related to mucosal and cutaneous HPV types was detected in 81% of the sewage samples analyzed. Surprisingly, sequences related to the anogenital HPV6 and 11 were detected in 19% of the samples, and sequences related to the "high risk" oncogenic HPV16 were identified in two samples. Sequences related to HPV9, HPV20, HPV25, HPV76, HPV80, HPV104, HPV110, HPV111, HPV120 and HPV145 beta Papillomaviruses were detected in 76% of the samples. In addition, similarity searches and phylogenetic analysis of some sequences suggest that they could belong to putative new genotypes of the beta genus. In this study, for the first time, the presence of HPV viruses strongly related to human cancer is reported in sewage samples. Our data increases the knowledge of HPV genomic diversity and suggests that virological analysis of urban sewage can provide key information useful in supporting epidemiological studies.

  6. Removal of viruses from sewage, effluents, and waters

    PubMed Central

    Berg, Gerald

    1973-01-01

    All sewage and water treatment processes remove or destroy viruses. Some treatment methods are better than others, but none is likely to remove all of the viruses present in sewage or in raw water. Primary settling of solids probably removes a great many of the viruses in sewage because viruses are largely associated with the solids. Long storage of effluents or water is destructive to viruses. Activated sludge is the best biological method for removing viruses from sewage. Trickling filters and oxidation ponds are erratic, the latter probably because of short-circuiting. Coagulation with metal ions is the most effective single treatment method for removing viruses from sewage and from raw waters, according to laboratory studies at least. Lime is the best coagulant for these purposes in the rapidly virucidal high pH range. Polyelectrolytes also can sediment viruses. Rapid filtration through clean sand does not remove viruses, but filtration of coagulated effluents does, probably because the layering floc itself adsorbs viruses. Clays and carbon adsorb viruses to some extent, but the process is not efficient. Ultimately, disinfection should help to produce virus-free waters for drinking and virus-free effluents for discharge into waters with which man may come into contact. Because disinfection is not a simple matter, disinfectants must be selected according to need. Effluents and waters containing solids can probably be disinfected only by heat or by penetrating radiation, waters discharged into streams should not be disinfected with anything that will injure or kill aquatic life (unless the toxic products can be neutralized), and drinking-waters should carry a disinfecting residue. PMID:4607010

  7. Mucosal and Cutaneous Human Papillomaviruses Detected in Raw Sewages

    PubMed Central

    La Rosa, Giuseppina; Fratini, Marta; Accardi, Luisa; D'Oro, Graziana; Della Libera, Simonetta; Muscillo, Michele; Di Bonito, Paola

    2013-01-01

    Epitheliotropic viruses can find their way into sewage. The aim of the present study was to investigate the occurrence, distribution, and genetic diversity of Human Papillomaviruses (HPVs) in urban wastewaters. Sewage samples were collected from treatment plants distributed throughout Italy. The DNA extracted from these samples was analyzed by PCR using five PV-specific sets of primers targeting the L1 (GP5/GP6, MY09/MY11, FAP59/64, SKF/SKR) and E1 regions (PM-A/PM-B), according to the protocols previously validated for the detection of mucosal and cutaneous HPV genotypes. PCR products underwent sequencing analysis and the sequences were aligned to reference genomes from the Papillomavirus Episteme database. Phylogenetic analysis was then performed to assess the genetic relationships among the different sequences and between the sequences of the samples and those of the prototype strains. A broad spectrum of sequences related to mucosal and cutaneous HPV types was detected in 81% of the sewage samples analyzed. Surprisingly, sequences related to the anogenital HPV6 and 11 were detected in 19% of the samples, and sequences related to the “high risk” oncogenic HPV16 were identified in two samples. Sequences related to HPV9, HPV20, HPV25, HPV76, HPV80, HPV104, HPV110, HPV111, HPV120 and HPV145 beta Papillomaviruses were detected in 76% of the samples. In addition, similarity searches and phylogenetic analysis of some sequences suggest that they could belong to putative new genotypes of the beta genus. In this study, for the first time, the presence of HPV viruses strongly related to human cancer is reported in sewage samples. Our data increases the knowledge of HPV genomic diversity and suggests that virological analysis of urban sewage can provide key information useful in supporting epidemiological studies. PMID:23341898

  8. State Waste Discharge Permit application, 100-N Sewage Lagoon

    SciTech Connect

    Not Available

    1994-06-01

    As part of the Hanford Federal Facility Agreement and Consent Order negotiations (Ecology et al. 1994), the US Department of Energy, Richland Operations Office, the US Environmental Protection Agency, and the Washington State Department of Ecology agreed that liquid effluent discharges to the ground on the Hanford Site which affect groundwater or have the potential to affect groundwater would be subject to permitting under the structure of Chapter 173--216 (or 173--218 where applicable) of the Washington Administrative Code, the State Waste Discharge Permit Program. As a result of this decision, the Washington State Department of Ecology and the US Department of Energy, Richland Operations Office entered into Consent Order No. DE 91NM-177, (Ecology and DOE-RL 1991). This document constitutes the State Waste Discharge Permit application for the 100-N Sewage Lagoon. Since the influent to the sewer lagoon is domestic waste water, the State Waste Discharge Permit application for Public Owned Treatment Works Discharges to Land was used. Although the 100-N Sewage Lagoon is not a Public Owned Treatment Works, the Public Owned Treatment Works application is more applicable than the application for industrial waste water. The 100-N Sewage Lagoon serves the 100-N Area and other Hanford Site areas by receiving domestic waste from two sources. A network of sanitary sewer piping and lift stations transfers domestic waste water from the 100-N Area buildings directly to the 100-N Sewage Lagoon. Waste is also received by trucks that transport domestic waste pumped from on site septic tanks and holding tanks. Three ponds comprise the 100-N Sewage Lagoon treatment system. These include a lined aeration pond and stabilization pond, as well as an unlined infiltration pond. Both piped-in and trucked-in domestic waste is discharged directly into the aeration pond.

  9. Salt enrichment of municipal sewage: New prevention approaches in Israel

    NASA Astrophysics Data System (ADS)

    Weber, Baruch; Avnimelech, Yoram; Juanico, Marcelo

    1996-07-01

    Wastewater irrigation is an environmentally sound wastewater disposal practice, but sewage is more saline than the supplied fresh water and the salts are recycled together with the water. Salts have negative environmental effects on crops, soils, and groundwater. There are no inexpensive ways to remove the salts once they enter sewage, and the prevention of sewage salt enrichment is the most immediately available solution. The body of initiatives presently structured by the Ministry of the Environment of Israel are herein described, with the aim to contribute to the search for a long-term solution of salinity problems in arid countries. The new initiatives are based on: (1) search for new technologies to reduce salt consumption and discharge into sewage; (2) different technologies to cope with different situations; (3) raising the awareness of the public and industry on the environmental implications of salinity pollution; and (4) an elastic legal approach expressed through new state-of-the-art regulations. The main contributor to the salinity of sewage in Israel is the watersoftening process followed by the meat koshering process. Some of the adopted technical solutions are: the discharge of the brine into the sea, the substitution of sodium by potassium salts in the ion-exchangers, the construction of centralized systems for the supply of soft water in industrial areas, the precipitation of Ca and Mg in the effluents from ion-exchangers and recycling of the NaCI solution, a reduction of the discharge of salts by the meat koshering process, and new membrane technology for salt recovery.

  10. The fate of trace organic contaminants in sewage sludge during recuperative thickening anaerobic digestion.

    PubMed

    Yang, Shufan; McDonald, James; Hai, Faisal I; Price, William E; Khan, Stuart J; Nghiem, Long D

    2017-02-08

    The aim of this work was to study the fate of trace organic contaminants (TrOCs) in sewage sludge during recuperative thickening anaerobic digestion. Sludge shearing at 3142s(-1) for 5minutes improved biogas production. By contrast, shearing at ≥6283s(-1) for 5minutes caused a notable reduction in biogas production and the removal of volatile solids. Results reported here showed the prevalent occurrence of 17 TrOCs in sewage sludge and highlights the importance of assessing TrOC removal via mass balance calculation by taking into account partitioning between the aqueous and solid phase as well as biodegradation. Hydrophilic and readily-biodegradable TrOCs (caffeine, trimethoprim, and paracetamol) were well removed and were not affected by shearing. TrOCs such as carbamazepine, gemfibrozil, and diuron showed biodegradation only at high shearing. It is possible that shearing can facilitate the circulation of TrOCs between aqueous and solid phases, thus, enhancing the biodegradation of some TrOCs.

  11. Step-feeding SBR for nitrogen removal from expressway service area sewage

    NASA Astrophysics Data System (ADS)

    Song, Xiancai; Zhao, Lejun; Liu, Dongfang; Zhao, Jianqiang

    2017-03-01

    The treatment of highway service area sewage are mainly nitrogen removal. The step-feeding sequencing batch reactor (SBR), which is a novel operation mode of SBR was used for the study of nitrogen removal from high ammonia wastewater. The process has achieved a higher nitrogen removal efficient by three phases of consecutive anoxic and aerobic periods. Moreover, the indicator of pH and dissolved oxygen (DO) can reflect the durations of aerobic and anoxic process. This study is based on the simulation of expressway service area sewage, of which the C/N ratio is 10. The paper firstly discussed the relationship among the flow distribution of each step, and then discussed the running time which was optimized by using the principle of equal sludge loading. At last, the differences of removal efficiencies of COD, NH4+-N and TN between optimal distribution and equilibrium distribution for influent flow were compared. Nitrogen removal efficiency could be greatly improved by step-feeding in the SBR, the average ammonia removal efficiency was higher than 99% and the average TN removal efficiency was higher than 92%.

  12. Growth, chemical composition and soil properties of Tipuana speciosa (Benth.) Kuntze seedlings irrigated with sewage effluent

    NASA Astrophysics Data System (ADS)

    Ali, Hayssam M.; Khamis, Mohamed H.; Hassan, Fatma A.

    2012-06-01

    This study was carried out at a greenhouse of Sabahia Horticulture Research Station, Alexandria, Egypt, to study the effect of sewage effluent on the growth and chemical composition of Tipuana speciosa (Benth.) Kuntze seedlings as well as on soil properties for three stages. The irrigation treatments were primary-treated wastewater and secondary-treated wastewater, in addition to tap water as control. Therefore, the treated wastewater was taken from oxidation ponds of New Borg El-Arab City. Results of these study revealed that the primary effluent treatment explored the highest significant values for vegetative growth and biomass, compared to the other treatments. In addition, the higher significant concentration and uptake of chemical composition in different plant parts were obtained from the primary effluent treatment during the three stages of irrigation. It was found that the concentration of heavy metals in either plant or soil was below as compared to the world-recommended levels. These findings suggested that the use of sewage effluent in irrigating T. speciosa seedlings grown in calcareous soil was beneficial for the improvement of soil properties and production of timber trees, and also important for the safe manner of disposal of wastewater.

  13. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying.

    PubMed

    Liu, Huan; Liu, Peng; Hu, Hongyun; Zhang, Qiang; Wu, Zhenyu; Yang, Jiakuan; Yao, Hong

    2014-12-01

    Joint application of Fenton's reagent and CaO can dramatically enhance sludge dewaterability, thus are also likely to affect subsequent thermal drying process. This study investigated the synergistic effects of the two conditioners on the thermal drying behavior of sewage sludge and the emission characteristics of main sulfur-/nitrogen-containing gases. According to the results, Fenton peroxidation combined with CaO conditioning efficiently promoted sludge heat transfer, reduced the amounts of both free and bound water, and created porous structure in solids to provide evaporation channels, thus producing significant positive effects on sludge drying performance. In this case, the required time for drying was shortened to one-third. Additionally, joint usage of Fenton's reagent and CaO did not increase the losses of organic matter during sludge drying process. Meanwhile, they facilitated the formation of sulfate and sulfonic acid/sulfone, leading to sulfur retention in dried sludge. Both of Fenton peroxidation and CaO conditioning promoted the oxidation, decomposition, and/or dissolution of protein and inorganic nitrogen in sludge pre-treatment. As a consequence, the emissions of sulfurous and nitrogenous gases from dewatered sludge drying were greatly suppressed. These indicate that combining Fenton peroxidation with CaO conditioning is a promising strategy to improve drying efficiency of sewage sludge and to control sulfur and nitrogen contaminants during sludge thermal drying process.

  14. Marine meiobenthic and nematode community structure in Victoria Harbour, Hong Kong upon recovery from sewage pollution.

    PubMed

    Liu, Xiao-Shou; Xu, Wen-Zhe; Cheung, Siu Gin; Shin, Paul K S

    2011-01-01

    Sediment quality, meiofaunal and nematode communities were monitored across six time points at two inside-harbour and three outside-harbour sites over a three-year period in Victoria Harbour, Hong Kong, after the implementation of a sewage treatment project. Twenty-one meiofaunal groups comprising mainly free-living nematodes and harpacticoid copepods and 188 species of free-living nematodes were identified. The outside-harbour area had a more diverse and significantly different nematode community structure as compared to that in the inside-harbour area. Such spatial difference was highly correlated with the total Kjeldahl nitrogen content of the sediments. Over the study period, there was no significant improvement in sediment quality within the harbour. However, in the last sampling time, an increase in meiofaunal abundance and a closer similarity in nematode composition between one of the inside- and outside-harbour sites suggested signs of recovery of the meiofauna as a response to abatement of sewage pollution.

  15. Foamed lightweight materials made from mixed scrap metal waste powder and sewage sludge ash.

    PubMed

    Wang, Kuen-Sheng; Chiou, Ing-Jia

    2004-10-01

    The porous properties and pozzolanic effects of sewage sludge ash (SSA) make it possible to produce lightweight materials. This study explored the effects of different metallic foaming agents, made from waste aluminium products, on the foaming behaviours and engineering characteristics, as well as the microstructure of sewage sludge ash foamed lightweight materials. The results indicated that aluminium powder and mixed scrap metal waste powder possessed similar chemical compositions. After proper pre-treatment, waste aluminium products proved to be ideal substitutes for metallic foaming agents. Increasing the amount of mixed scrap metal waste by 10-15% compared with aluminium powder would produce a similar foaming ratio and compressive strength. The reaction of the metallic foaming agents mainly produced pores larger than 10 microm, different from the hydration reaction of cement that produced pores smaller than 1 microm mostly. To meet the requirements of the lightweight materials characteristics and the compressive strength, the amount of SSA could be up to 60-80% of the total solids. An adequate amount of aluminium powder is 0.5-0.9% of the total solids. Increasing the fineness of the mixed scrap metal waste powder could effectively reduce the amount required and improve the foaming ratio.

  16. Compiled data on the vascular aquatic plant program, 1975 - 1977. [for sewage lagoon

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.; Mcdonald, R.

    1977-01-01

    The performance of a single cell, facultative sewage lagoon was significantly improved with the introduction of vascular aquatic plants. Water hyacinth (Eichhornia crassipes) was the dominant plant from April to November; duckweed (Lemna spp.) and (Spirodela spp.) flourished from December to March. This 2 ha lagoon received approximately 475 cu m/day of untreated sewage and has a variable COD sub 5 loading rate of 22-30 kg/ha/day. During the first 14 months of operation with aquatic plants, the average influent BOD sub 5 was reduced by 95% from 110 mg/l to an average of 5 mg/l in the effluent. The average influent suspended solids were reduced by 90% from 97 mg/l to 10 mg/l in the effluent. Significant reductions in nitrogen and phosphorus were effected. The monthly kjeldahl nitrogen for influent and effluent averaged 12.0 and 3.4 mg/l, respectively, a reduction of 72%. The total phosphorus was reduced on an average of 56% from 3.7 mg/l influent to 1.6 mg/l effluent.

  17. Disinfection and oxidation of sewage effluent water using ozone and UV technologies.

    PubMed

    Oh, B S; Park, S J; Jung, Y J; Park, S Y; Kang, J W

    2007-01-01

    This study was aimed at exploring the reclamation of sewage treatment plant effluent water (SEW) as an alternative water resource. For the oxidation of SEW, an ozone-UV system, based on the results of the combined ozone/UV process performed in our previous study, was set up under practical conditions, including a series type, continuous mode, semi-pilot scale operation (1.5 m3/d). As a result, the serial contact of the ozone and UV reactors showed lower CODCr and TOC removal efficiencies. However, these were greatly enhanced by recycling the water flow of the ozone-UV system at 40Q, as a result of the improvements in the transferred ozone dose in the ozone reactor and the contact efficiency between photons and ozone in the UV reactor, which approached that achieved in the combined ozone/UV process. For the disinfection of SEW, carried out in a syringe-type batch reactor, the increase of instantaneous ozone demand (ozone ID) led to a higher inactivation efficiency, an increased UV transmittance due to ozonation, and an enhanced inactivation rate of E. coli in the UV reactor. Additionally, it was concluded that the ozone/UV process could overcome the limitations of the ozone alone and UV alone processes for the reclamation of sewage effluent water.

  18. Anaerobic treatment of domestic sewage in modified septic tanks at low temperature.

    PubMed

    Chen, Zhiqiang; Wen, Qinxue; Guan, Huabin; Bakke, Rune; Ren, Nanqi

    2014-01-01

    Three laboratory-scale septic tanks, an anaerobic baffled reactor (ABR)-septic tank (R1), a Yuhuan drawing three-dimensional-carrier-septic tank (R2) and a conventional septic tank (R3), were operated in parallel over half a year under hydraulic retention times (HRTs) of 36, 24 and 12 h, with a sewage temperature of 16 degrees C. The removal efficiencies of total chemical oxygen demand (CODtot) achieved in R1 and R2 increased by 14%, 21% and 12% and 18%, 3% and 16%, respectively, under three different HRTs, as compared to those in R3. The total nitrogen and phosphorus removal efficiencies were negligible. R1 sludges had a higher specific methane production rate as compared to that of R2 and R3 sludges. The results indicated that the two modified septic tanks can improve the performance in terms of COD and total solids removal, both were suitable technologies for domestic sewage (pre) treatment at low temperature in northern China.

  19. Characterization of mesoporous activated carbons prepared by pyrolysis of sewage sludge with pyrolusite.

    PubMed

    Liu, Chen; Tang, Zhengguang; Chen, Yao; Su, Shijun; Jiang, Wenju

    2010-02-01

    Activated carbons were prepared from sewage sludge by chemical activation. Pyrolusite was added as a catalyst during activation and carbonization. The influence of the mineral addition on the properties of the activated carbons produced was evaluated. The results show that activated carbons from pyrolusite-supplemented sewage sludge had up to a 75% higher BET surface area and up to a 66% increase in mesoporosity over ordinary sludge-based activated carbons. Batch adsorption experiments applying the prepared adsorbents to synthetic dye wastewater treatment yielded adsorption data well fitted to the Langmuir isotherm. The adsorbents from pyrolusite-supplemented sludges performed better in dye removal than those without mineral addition, with the carbon from pyrolusite-augmented sludge T2 presenting a significant increase in maximum adsorption capacity of 50mg/g. The properties of the adsorbents were improved during pyrolusite-catalyzed pyrolysis via enhancement of mesopore production, thus the mesopore channels may provide fast mass transfer for large molecules like dyes.

  20. Membrane fouling controlled by coagulation/adsorption during direct sewage membrane filtration (DSMF) for organic matter concentration.

    PubMed

    Gong, Hui; Jin, Zhengyu; Wang, Xian; Wang, Kaijun

    2015-06-01

    Unlike the role of the membrane in a membrane bioreactor, which is designed to replace a sediment tank, direct sewage membrane filtration (DSMF), with the goal of concentrating organic matters, is proposed as a pretreatment process in a novel sewage treatment concept. The concept of membrane-based pretreatment is proposed to divide raw sewage into a concentrated part retaining most organics and a filtered part with less pollutant remaining, so that energy recovery and water reuse, respectively, could be realized by post-treatment. A pilot-scale experiment was carried out to verify the feasibility of coagulant/adsorbent addition for membrane fouling control, which has been the main issue during this DSMF process. The results showed that continuous coagulant addition successfully slowed down the increase in filtration resistance, with the resistance maintained below 1.0×10(13) m(-1) in the first 70 hr before a jump occurred. Furthermore, the adsorbent addition contributed to retarding the occurrence of the filtration resistance jump, achieving simultaneous fouling control and chemical oxygen demand (COD) concentration improvement. The final concentrated COD amounted to 7500 mg/L after 6 days of operation.

  1. Influence of organic and inorganic flocculants on the formation of PCDD/Fs during sewage sludge incineration.

    PubMed

    Lin, Xiaoqing; Li, Xiaodong; Lu, Shengyong; Wang, Fei; Chen, Tong; Yan, Jianhua

    2015-10-01

    Flocculants are widely used to improve the properties of sludge dewatering in industrial wastewater treatment. However, there have been no studies conducted on the influence of flocculants on the formation of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) during sewage sludge incineration. This paper selected three typical kinds of flocculants, including polyacrylamide (PAM), poly-ferric chloride (PFC), and polyaluminum chloride (PAC) flocculant, to study their influences on the formation of PCDD/Fs during sewage sludge incineration. The results indicated that PAM flocculant, which is an organic flocculant, inhibited the formation of PCDD/Fs in sewage sludge incineration, while inorganic flocculant, such as PFC and PAC flocculant, promoted the formation. The most probable explanation is that the amino content in the PAM flocculant acted as an inhibitor in the formation of PCDD/Fs, while the chlorine content, especially the metal catalyst in the PFC and PAC flocculants, increased the formation rate. The addition of flocculants nearly did not change the distribution of PCDD/F homologues. The PCDFs contributed the most toxic equivalent (TEQ) value, especially 2, 3, 4, 7, 8-PeCDF. Therefore, the use of inorganic flocculants in industrial wastewater treatment should be further assessed and possibly needs to be strictly regulated if the sludge is incinerated. From this aspect, a priority to the use of organic flocculants should be given.

  2. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode.

    PubMed

    Nam, Joo-Youn; Kim, Dong-Hoon; Kim, Sang-Hyoun; Lee, Wontae; Shin, Hang-Sik; Kim, Hyun-Woo

    2016-04-01

    Food waste and sewage sludge are the most abundant and problematic organic wastes in any society. Mixture of these two wastes may provide appropriate substrate condition for dark fermentative biohydrogen production based on synergistic mutual benefits. This work evaluates continuous hydrogen production from the cosubstrate of food waste and sewage sludge to verify mechanisms of performance improvement in anaerobic sequencing batch reactors. Volatile solid concentration and mixing ratio of food waste and sludge were adjusted to 5 % and 80:20, respectively. Five different hydraulic retention times (HRT) of 36, 42, 48, 72, and 108 h were tested using anaerobic sequencing batch reactors to find out optimal operating condition. Results show that the best performance was achieved at HRT 72 h, where the hydrogen yield, the hydrogen production rate, and hydrogen content were 62.0 mL H2/g VS, 1.0 L H2/L/day, and ~50 %, respectively. Sufficient solid retention time (143 h) and proper loading rate (8.2 g COD/L/day as carbohydrate) at HRT 72h led to the enhanced performance with better hydrogen production showing appropriate n-butyrate/acetate (B/A) ratio of 2.6. Analytical result of terminal-restriction fragment length polymorphism revealed that specific peaks associated with Clostridium sp. and Bacillus sp. were strongly related to enhanced hydrogen production from the cosubstrate of food waste and sewage sludge.

  3. Research on atmospheric pressure plasma processing sewage

    NASA Astrophysics Data System (ADS)

    Song, Gui-cai; Na, Yan-xiang; Dong, Xiao-long; Sun, Xiao-liang

    2013-08-01

    The water pollution has become more and more serious with the industrial progress and social development, so it become a worldwide leading environmental management problem to human survival and personal health, therefore, countries are looking for the best solution. Generally speaking, in this paper the work has the following main achievements and innovation: (1) Developed a new plasma device--Plasma Water Bed. (2) At atmospheric pressure condition, use oxygen, nitrogen, argon and helium as work gas respectively, use fiber spectrometer to atmospheric pressure plasma discharge the emission spectrum of measurement, due to the different work gas producing active particle is different, so can understand discharge, different particle activity, in the treatment of wastewater, has the different degradation effects. (3) Methyl violet solution treatment by plasma water bed. Using plasma drafting make active particles and waste leachate role, observe the decolorization, measurement of ammonia nitrogen removal.

  4. Growth, physiology and yield of durum wheat (Triticum durum) treated with sewage sludge under water stress conditions

    PubMed Central

    Boudjabi, Sonia; Kribaa, Mohammed; Chenchouni, Haroun

    2015-01-01

    In arid and semi-arid areas, low soil fertility and water deficit considerably limit crop production. The use of sewage sludge as an organic amendment could contribute to the improvement of soil fertility and hence the agronomic production. The study aims to highlight the behaviour of durum wheat to the application of sewage sludge associated with water stress. The assessment focused on morphophysiological parameters of the wheat plant and yield. Under greenhouse conditions, the variety Mohamed Ben Bachir was treated by four water stress levels (100 %, 80 %, 50 % and 30 %). Each stress level comprised five fertilizer treatments: 20, 50 and 100 t/ha of dry sludge, 35 kg/ha of urea, and a control with no fertilization. Results revealed a significant loss in water content and chlorophyll a in leaves. Water stress negatively affected the development of wheat plants by reducing significantly seed yield, leaf area and biomass produced. Plant’s responses to water stress manifested by an accumulation of proline and a decrease in total phosphorus. However, the increasing doses of sewage sludge limited the effect of water stress. Our findings showed an increase in the amount of chlorophyll pigments, leaf area, total phosphorus, biomass and yield. In addition, excessive accumulation of proline (1.11 ± 1.03 µg/g DM) was recorded as a result of the high concentration of sludge (100 t/ha DM). The application of sewage sludge is beneficial for the wheat crop, but the high accumulation of proline in plants treated with high dose of sludge suggests to properly consider this fact. The application of sludge should be used with caution in soils where water is limited. Because the combined effect of these two factors could result in a fatal osmotic stress to crop development. PMID:26417365

  5. Degradation monitoring using probabilistic inference

    NASA Astrophysics Data System (ADS)

    Alpay, Bulent

    In order to increase safety and improve economy and performance in a nuclear power plant (NPP), the source and extent of component degradations should be identified before failures and breakdowns occur. It is also crucial for the next generation of NPPs, which are designed to have a long core life and high fuel burnup to have a degradation monitoring system in order to keep the reactor in a safe state, to meet the designed reactor core lifetime and to optimize the scheduled maintenance. Model-based methods are based on determining the inconsistencies between the actual and expected behavior of the plant, and use these inconsistencies for detection and diagnostics of degradations. By defining degradation as a random abrupt change from the nominal to a constant degraded state of a component, we employed nonlinear filtering techniques based on state/parameter estimation. We utilized a Bayesian recursive estimation formulation in the sequential probabilistic inference framework and constructed a hidden Markov model to represent a general physical system. By addressing the problem of a filter's inability to estimate an abrupt change, which is called the oblivious filter problem in nonlinear extensions of Kalman filtering, and the sample impoverishment problem in particle filtering, we developed techniques to modify filtering algorithms by utilizing additional data sources to improve the filter's response to this problem. We utilized a reliability degradation database that can be constructed from plant specific operational experience and test and maintenance reports to generate proposal densities for probable degradation modes. These are used in a multiple hypothesis testing algorithm. We then test samples drawn from these proposal densities with the particle filtering estimates based on the Bayesian recursive estimation formulation with the Metropolis Hastings algorithm, which is a well-known Markov chain Monte Carlo method (MCMC). This multiple hypothesis testing

  6. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus).

    PubMed

    Belhaj, Dalel; Elloumi, Nada; Jerbi, Bouthaina; Zouari, Mohamed; Abdallah, Ferjani Ben; Ayadi, Habib; Kallel, Monem

    2016-10-01

    Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture, is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for Helianthus annuus, a pot experiment was conducted by mixing sewage sludge at 2.5, 5, and 7.5 % (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductivity, organic matter, total N, available P, and exchangeable Na, K, and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Ni, Cu, Cr, and Zn concentrations of soil. The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in shoot and root concentrations of Cr, Cu, Ni, and Zn in plant as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Moreover, high metal removal for the harvestable parts of the crops was recorded. Sewage sludge amendment increased root and shoot length, leaves number, biomass, and antioxidant activities of sunflower. Significant increases in the activities of antioxidant enzymes and in the glutathione, proline, and soluble sugar content in response to amendment with sewage sludge may be defense mechanisms induced in response to heavy metal stress. Graphical abstract Origin, fate and behavior of sewage sludge fertilizer.

  7. Population Screening Using Sewage Reveals Pan-Resistant Bacteria in Hospital and Community Samples

    PubMed Central

    Mileguir, Fernando; Azar, Roberto; Smollan, Gill; Belausov, Natasha; Rahav, Galia; Shamiss, Ari; Mendelson, Ella; Keller, Nathan

    2016-01-01

    The presence of pan-resistant bacteria worldwide possesses a threat to global health. It is difficult to evaluate the extent of carriage of resistant bacteria in the population. Sewage sampling is a possible way to monitor populations. We evaluated the presence of pan-resistant bacteria in Israeli sewage collected from all over Israel, by modifying the pour plate method for heterotrophic plate count technique using commercial selective agar plates. This method enables convenient and fast sewage sampling and detection. We found that sewage in Israel contains multiple pan-resistant bacteria including carbapenemase resistant Enterobacteriacae carrying blaKPC and blaNDM-1, MRSA and VRE. blaKPC carrying Klebsiella pneumonia and Enterobacter cloacae were the most common Enterobacteriacae drug resistant bacteria found in the sewage locations we sampled. Klebsiella pneumonia, Enterobacter spp., Escherichia coli and Citrobacter spp. were the 4 main CRE isolated from Israeli sewage and also from clinical samples in our clinical microbiology laboratory. Hospitals and Community sewage had similar percentage of positive samplings for blaKPC and blaNDM-1. VRE was found to be more abundant in sewage in Israel than MRSA but there were more locations positive for MRSA and VRE bacteria in Hospital sewage than in the Community. Therefore, our upgrade of the pour plate method for heterotrophic plate count technique using commercial selective agar plates can be a useful tool for routine screening and monitoring of the population for pan-resistant bacteria using sewage. PMID:27780222

  8. UP3005, a Botanical Composition Containing Two Standardized Extracts of Uncaria gambir and Morus alba, Improves Pain Sensitivity and Cartilage Degradations in Monosodium Iodoacetate-Induced Rat OA Disease Model

    PubMed Central

    Yimam, Mesfin; Lee, Young-Chul; Kim, Tae-Woo; Moore, Breanna; Jiao, Ping; Hong, Mei; Kim, Hyun-Jin; Nam, Jeong-Bum; Kim, Mi-Ran; Oh, Jin-Sun; Cleveland, Sabrina; Hyun, Eu-Jin; Chu, Min; Jia, Qi

    2015-01-01

    Osteoarthritis (OA) is a multifactorial disease primarily noted by cartilage degradation in association with inflammation that causes significant morbidity, joint pain, stiffness, and limited mobility. Present-day management of OA is inadequate due to the lack of principal therapies proven to be effective in hindering disease progression where symptomatic therapy focused approach masks the actual etiology leading to irreversible damage. Here, we describe the effect of UP3005, a composition containing a proprietary blend of two standardized extracts from the leaf of Uncaria gambir and the root bark of Morus alba, in maintaining joint structural integrity and alleviating OA associated symptoms in monosodium-iodoacetate- (MIA-) induced rat OA disease model. Pain sensitivity, micro-CT, histopathology, and glycosaminoglycans (GAGs) level analysis were conducted. Diclofenac at 10 mg/kg was used as a reference compound. UP3005 resulted in almost a complete inhibition in proteoglycans degradation, reductions of 16.6% (week 4), 40.5% (week 5), and 22.0% (week 6) in pain sensitivity, statistically significant improvements in articular cartilage matrix integrity, minimal visual subchondral bone damage, and statistically significant increase in bone mineral density when compared to the vehicle control with MIA. Therefore, UP3005 could potentially be considered as an alternative therapy from natural sources for the treatment of OA and/or its associated symptoms. PMID:25802546

  9. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination.

    PubMed

    Weyens, Nele; Beckers, Bram; Schellingen, Kerim; Ceulemans, Reinhart; van der Lelie, Daniel; Newman, Lee; Taghavi, Safiyh; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    To examine the potential of Pseudomonas putida W619-TCE to improve phytoremediation of Ni-TCE co-contamination, the effects of inoculation of a Ni-resistant, TCE-degrading root endophyte on Ni-TCE phytotoxicity, Ni uptake and trichloroethylene (TCE) degradation of Ni-TCE-exposed poplar cuttings are evaluated. After inoculation with P. putida W619-TCE, root weight of non-exposed poplar cuttings significantly increased. Further, inoculation induced a mitigation of the Ni-TCE phytotoxicity, which was illustrated by a diminished exposure-induced increase in activity of antioxidative enzymes. Considering phytoremediation efficiency, inoculation with P. putida W619-TCE resulted in a 45% increased Ni uptake in roots as well as a slightly significant reduction in TCE concentration in leaves and TCE evapotranspiration to the atmosphere. These results indicate that endophytes equipped with the appropriate characteristics can assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation. Furthermore, as poplar is an excellent plant for biomass production as well as for phytoremediation, the obtained results can be exploited to produce biomass for energy and industrial feedstock applications in a highly productive manner on contaminated land that is not suited for normal agriculture. Exploiting this land for biomass production could contribute to diminish the conflict between food and bioenergy production.

  10. Characterisation of raw sewage and performance assessment of primary settling tanks at Firle Sewage Treatment Works, Harare, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Muserere, Simon Takawira; Hoko, Zvikomborero; Nhapi, Innocent

    The need for more stringent effluent discharge standards as prescribed by the Environmental Management Act 20:27 to protect the environment can be sustainably achieved with the aid of Activated Sludge Models. Thus, the researchers believe it is time to re-evaluate wastewater characteristics at Firle Sewage Treatment Works (STW) and make use of activated sludge simulators to address pollution challenges caused by the sewage plant. Therefore, this paper characterizes raw sewage and assesses settled and unsettled sewage in order to evaluate the performance of the primary treatment system and the suitability of the settled sewage for treatment by the subsequent Biological Nutrient Removal (BNR) system at Firle STW. Parameters studied included COD, BOD, TKN, TP, NH3, TSS, pH and Alkalinity. Composite samples were collected over a 9-day campaign period (27 June to 6 July 2012), hourly grab samples over 24 hrs and composite samples on 6 March 2012 which were then analysed in the lab in accordance with Standard Methods for the Examination of Water and Wastewater to support the City of Harare 2004-2012 lab historical records. Concentrations for unsettled sewage in mg/L were COD (527 ± 32), BOD (297 ± 83) TKN (19.0 ± 2.0), TP (18 ± 3), NH3 (24.0 ± 12.9), TSS (219 ± 57), while pH was 7.0 ± 0 and Alkalinity 266 ± 36 mg/L. For settled sewage the corresponding values in mg/L were COD (522 ± 15), BOD (324 ± 102), TKN (21.0 ± 3.0), TP (19.0 ± 2.0), NH3 (25.6 ± 11.2), TSS (250 ± 66), while pH was 7.0 ± 0 and Alkalinity 271 ± 17 mg/L. The plant design values for raw sewage are COD (650 mg/L), BOD (200 mg/L), TKN (40 mg/L) and TP (11 mg/L). Thus, COD and nitrogen were within the plant design range while BOD and TP were higher. Treatability of sewage in BNR systems is often inferred from the levels of critical parameters and also the ratios of TKN/COD and COD/TP. The wastewater average settled COD/BOD, COD/TP and TKN/COD ratio were 1.7 ± 0.5, 27.1 ± 3.1 and 0.04 ± 0

  11. Investigation of the fate of sulfonamides downgradient of a decommissioned sewage farm near Berlin, Germany.

    PubMed

    Richter, Doreen; Massmann, Gudrun; Taute, Thomas; Duennbier, Uwe

    2009-05-12

    The drinking water production of a drinking water treatment plant in Berlin is affected by ambient contaminated groundwater. The three organic compounds para-toluenesulfonamide (p-TSA), ortho-toluenesulfonamide (o-TSA) and benzenesulfonamide (BSA) were identified in the catchment area of this plant. The groundwater pollution is a result of former sewage farm irrigation in the area, operating for almost 70 years until the 1980s. The distribution of the sulfonamides in the anoxic groundwater was investigated, and a large number of observation and production wells were sampled for this purpose. The contaminant plume is 25 m3000 m2000 m (depth, length, width) in size. The high concentrations of p-TSA, o-TSA and BSA in the groundwater show that the sulfonamides persist over decades in an anoxic aquifer environment. Groundwater quality assessment revealed that elevated concentrations of the analytes can be expected in the abstraction well galleries in the future. Therefore, sulfonamides should periodically be monitored in the drinking water (maximum allowed concentration of 0.30 microg/L of p-TSA and for o-TSA and BSA, a limit of 0.10 microg/L for unknown substances applies). Because of the widespread application and the persistence of the sulfonamides under anoxic conditions, our local investigations suggest that the substances may generally be present in groundwater under the influence of sewage irrigation. Incubation experiments were conducted under in situ hydrostatic pressure to study the behaviour of these trace organic compounds under different redox conditions (oxic and anoxic). Groundwater sampling equipment was either sterilised or not sterilised in order to distinguish between microbiological processes occurring in the aquifer and those representing sampling and storage artefacts (incubation experiments). Results showed that the addition of oxygen to the anoxic groundwater facilitates p-TSA and o-TSA degradation. Hence, while the substances are persistent

  12. Environmental risk evaluation of the use of mine spoils and treated sewage sludge in the ecological restoration of limestone quarries

    NASA Astrophysics Data System (ADS)

    Jordán, M. M.; Pina, S.; García-Orenes, F.; Almendro-Candel, M. B.; García-Sánchez, E.

    2008-07-01

    The ecologic restoration criteria in areas degraded from extraction activities require making use of their mine spoils. These materials do not meet fertility conditions to guarantee restoration success and therefore, need the incorporation of organic amendments to obtain efficient substratum. Reducing the deficiencies in the organic material and restoration material nutrients with the contribution of treated sewage sludge is proposed in this work. This experiment was based on a controlled study using columns. The work was conducted with two mine spoils, both very rich in calcium carbonate. The first mineral, of poor quality, came from the formation of aggregates of crushed limestone ( Z). The other residual material examined originated in limestone extraction, formed by the levels of interspersed non-limestone materials and the remains of stripped soils ( D). Two treatments were undertaken (30,000 and 90,000 kg/ha of sewage sludge), in addition to a control treatment. The water contribution was carried out with a device that simulated either short-duration rain or a flooding irrigation system in order to cover the surface and then percolate through the soil. The collection of leached water took place 24 h after the applications. Different parameters of the leached water were determined, including pH, electrical conductivity, nitrate anions, ammonium, phosphates, sulphates and chlorides. The values obtained for each irrigation application are discussed, and the nitrate values obtained were very elevated.

  13. Occurrence of PBDEs and alternative halogenated flame retardants in sewage sludge from the industrial city of Guangzhou, China.

    PubMed

    Wu, Qihang; Li, Haiyan; Kuo, Dave T F; Chen, Shejun; Mai, Bixian; Li, Huosheng; Liu, Zhineng; Deng, Mingjun; Zhang, Haozhi; Hu, Xiaodong; Geng, Xinhua; Chen, Yongheng

    2017-01-01

    This study investigated the prevalence and abundance of halogenated flame retardants (HFRs) in sludge samples from 5 sewage treatment plants in Guangzhou, China. Detection of 18 polybrominated diphenyl ethers (PBDEs), 9 alternative HFRs including Dechlorane Plus (DP), brominated alkylbenzenes, and polybrominated biphenyls, and 2 related degradation products was conducted. Decabromodiphenyl ether (BDE 209) and decabromodiphenyl ethane (DBDPE) were the dominant HFRs, with concentrations ranging from 200 to 2150 ng/g and 680-27,400 ng/g, respectively. The DBDPE detected was the highest level reported so far, exceeding those previously reported by 10-100 times. PBDEs were surpassed as the dominant HFRs in sewage sludge, with mean DBDPE/BDE 209 ratio exceeding 2 in all samples. The review of earlier surveys reveals that DBDPE level was surging while BDE 209 was declining. Annual emissions of BDE 209, DP, and DBDPE were estimated to be 227.9, 10.5, and 979.3 kg/yr, respectively. Although ecological risks assessment suggested low risks for the examined sludge, the key environmental properties and transformation pathways of alternative HFRs remain largely unknown. These findings prompt for further investigations on alternative HFR and sustainable management practices for HFR-laden biosolids. The HFR emission pattern revealed in this study is likely representative of other similarly industrialized regions in the post-PBDE era.

  14. Determination of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in sewage sludge by ultra-high-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Yu, Yiyi; Huang, Qiuxin; Cui, Jianlan; Zhang, Kun; Tang, Caiming; Peng, Xianzhi

    2011-01-01

    A sensitive method has been developed and validated for the determination of diverse groups of pharmaceuticals, steroid hormones, and hormone-like personal care products in sewage sludge. Samples were extracted by ultrasonic-assisted extraction followed by solid-phase extraction cleanup. For determination of estrogens and hormone-like phenolic compounds, sample extracts were further derivatized with dansyl chloride and purified with silica gel column chromatography to improve the analytical sensitivity. The chemicals were determined by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in multiple-reaction monitoring mode. Recoveries ranged mostly from 63% to 119% with relative standard deviations within 15%. Method quantification limits were 0.1-3 ng g(-1) dry weight (dw) for sewage sludge. The method was applied to a preliminary investigation of pharmaceuticals and personal care products (PPCPs) in sewage sludge and sediment in the Pearl River Delta, South China. Triclosan, triclocarban, 2-phenylphenol, bisphenol A, and parabens were ubiquitously detected at 3.6-5088.2 ng g(-1) dw in sludge and 0.29-113.1 ng g(-1) dw in sediment samples, respectively. Estrone, carbamazepine, metoprolol, and propranolol were also frequently quantified in the sludge and sediment samples. The dewatering process caused no significant losses of these PPCPs in sewage sludge.

  15. Health status and bioremediation capacity of wild freshwater mussels (Diplodon chilensis) exposed to sewage water pollution in a glacial Patagonian lake.

    PubMed

    Bianchi, Virginia A; Castro, Juan M; Rocchetta, Iara; Bieczynski, Flavia; Luquet, Carlos M

    2014-04-01

    Deleterious effects on health and fitness are expected in mussels chronically exposed to sewage water pollution. Diplodon chilensis inhabiting SMA, an area affected by untreated and treated sewage water, shows increased hemocyte number and phagocytic activity, while bacteriolytic and phenoloxidase activities in plasma and reactive oxygen species production in hemocytes are lower compared to mussels from an unpolluted area (Yuco). There are not differences in cell viability, lysosomal membrane stability, lipid peroxidation and total oxygen scavenging capacity between SMA and Yuco mussels' hemocytes. Energetic reserves and digestive gland mass do not show differences between groups; although the condition factor is higher in SMA than in Yuco mussels. Gills of SMA mussels show an increase in mass and micronuclei frequency compared to those of Yuco. Mussels from both sites reduce bacterial loads in polluted water and sediments, improving their quality with similar feeding performance. These findings suggest that mussels exposed to sewage pollution modulate physiological responses by long-term exposure; although, gills are sensitive to these conditions and suffer chronic damage. Bioremediation potential found in D. chilensis widens the field of work for remediation of sewage bacterial pollution in water and sediments by filtering bivalves.

  16. Financial management of Kashima Rinkai Specified Sewage Works.

    PubMed

    Ochiai, E; Igarashi, T; Iseki, H; Seya, H; Matsui, S

    2006-01-01

    The Kashima Rinkai Specified Sewage Works (KRSSW) is located at the northern side of the Kashima Coastal Industrial Zone, facing the Sea of Kashimanada (Pacific Ocean). It straddles one city and two townships: the city of Kashima, which boasts Kashima Port, a transportation center that was constructed on Kashimanada Beach by digging into the virgin sands, and the towns of Kamisu and Hasaki. The industries located there include steel, petrochemicals, chemicals, foodstuffs, livestock feeds, electric power and machinery metals. Industrial wastewaters with public sewage, except steel industry, are treated by the Fukashiba Treatment Plant which is managed by the Ibaraki Prefectural Government. The financial management of KRSSW is analysed to show its stand-alone condition.

  17. Effects of chemically contaminated sewage sludge on an aphid population

    SciTech Connect

    Culliney, T.W.; Pimentel, D.

    1986-12-01

    Survival and fecundity of green peach aphids, Myzus persicae, were markedly reduced when they were fed on collard plants grown in pots of soil treated with chemically contaminated sewage sludge, as compared to populations on potted plants grown in uncontaminated sludge or on fertilized soil (control). Calculated demographic parameters differed significantly between the contaminated sludge and uncontaminated sludge populations and between the contaminated sludge and control populations. No significant differences were detected between the uncontaminated sludge and control populations. The ecological effects on the aphids suggest that plant uptake and translocation of chemicals from the contaminated sludge affected aphid fitness through direct toxicity and/or reduced nutritional value of the plant. These results indicate that phytophagous insects may be affected by chemical contaminants in sewage sludge used in agriculture.

  18. Quantification of viable helminth eggs in samples of sewage sludge.

    PubMed

    Rocha, Maria Carolina Vieira da; Barés, Monica Eboly; Braga, Maria Cristina Borba

    2016-10-15

    For the application of sewage sludge as fertilizer, it is of fundamental importance the absence of pathogenic organisms, such as viable helminth eggs. Thus, the quantification of these organisms has to be carried out by means of the application of reliable and accurate methodologies. Nevertheless, until the present date, there is no consensus with regard to the adoption of a universal methodology for the detection and quantification of viable helminth eggs. It is therefore necessary to instigate a debate on the different protocols currently in use, as well as to assemble relevant information in order to assist in the development of a more comprehensive and accurate method to quantify viable helminth eggs in samples of sewage sludge and its derivatives.

  19. Variations of metal distribution in sewage sludge composting.

    PubMed

    Nomeda, Sabiene; Valdas, Paulauskas; Chen, Shen-Yi; Lin, Jih-Gaw

    2008-01-01

    In the study, the variations of heavy metal distributions (of Cu, Mn, Pb, and Zn) during the sewage sludge composting process were investigated by sequential extraction procedures. The total content of Cu and Zn in the composted mixture increased after the composting process. Mn and Zn were mainly found in mobile fractions (exchangeable fraction (F1), carbonate fraction (F2), and Fe/Mn oxide fraction (F3)). Cu and Pb were strongly associated with the stable fractions (organic matter/sulfides fraction (F4) and residual fraction (F5)). These five metal fractions were used to calculate the metal mobility (bioavailability) in the sewage sludge and composted mixture. The mobility (bioavailability) of Mn, Pb, and Zn (but not Cu) increased during the composting process. The metal mobility in the composted mixture ranked in the following order: Mn>Zn>Pb>Cu.

  20. Evaluation of modified clay coagulant for sewage treatment.

    PubMed

    Jiang, Jia-Qian; Zeng, Zhiqiang; Pearce, Pete

    2004-07-01

    The use of modified clays as coagulants for sewage treatment was investigated in this study. The raw clays were montmorillonites K10 and KSF, and were modified by polymeric Al or Fe and/or Al/Fe mixing polymeric species. The comparative performance of modified clays and aluminium sulphate and ferric sulphate were evaluated in terms of the removal of turbidity, suspended solids, UV(254)-abs, colour, and total and soluble CODs. The results demonstrated that after being modified with mixing polymeric Al/Fe species, two montmorillonite clays possess greater properties to remove the particles (as suspended solids) and organic pollutants (as COD and UV(254)-abs) from the sewage and to enhance the particle settling rate significantly.