DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi
2013-11-29
This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implementmore » a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.« less
Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawaji, Masahiro; Valentin, Francisco I.; Artoun, Narbeh
2015-12-21
The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spotsmore » in the VHTR core.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisseytsev, A.; Sienicki, J. J.
2011-04-12
The analysis of specific control strategies and dynamic behavior of the supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle has been extended to the two reactor types selected for continued development under the Generation IV Nuclear Energy Systems Initiative; namely, the Very High Temperature Reactor (VHTR) and the Sodium-Cooled Fast Reactor (SFR). Direct application of the standard S-CO{sub 2} recompression cycle to the VHTR was found to be challenging because of the mismatch in the temperature drop of the He gaseous reactor coolant through the He-to-CO{sub 2} reactor heat exchanger (RHX) versus the temperature rise of the CO{sub 2} through themore » RHX. The reference VHTR features a large temperature drop of 450 C between the assumed core outlet and inlet temperatures of 850 and 400 C, respectively. This large temperature difference is an essential feature of the VHTR enabling a lower He flow rate reducing the required core velocities and pressure drop. In contrast, the standard recompression S-CO{sub 2} cycle wants to operate with a temperature rise through the RHX of about 150 C reflecting the temperature drop as the CO{sub 2} expands from 20 MPa to 7.4 MPa in the turbine and the fact that the cycle is highly recuperated such that the CO{sub 2} entering the RHX is effectively preheated. Because of this mismatch, direct application of the standard recompression cycle results in a relatively poor cycle efficiency of 44.9%. However, two approaches have been identified by which the S-CO{sub 2} cycle can be successfully adapted to the VHTR and the benefits of the S-CO{sub 2} cycle, especially a significant gain in cycle efficiency, can be realized. The first approach involves the use of three separate cascaded S-CO{sub 2} cycles. Each S-CO{sub 2} cycle is coupled to the VHTR through its own He-to-CO{sub 2} RHX in which the He temperature is reduced by 150 C. The three respective cycles have efficiencies of 54, 50, and 44%, respectively, resulting in a net cycle efficiency of 49.3 %. The other approach involves reducing the minimum cycle pressure significantly below the critical pressure such that the temperature drop in the turbine is increased while the minimum cycle temperature is maintained above the critical temperature to prevent the formation of a liquid phase. The latter approach also involves the addition of a precooler and a third compressor before the main compressor to retain the benefits of compression near the critical point with the main compressor. For a minimum cycle pressure of 1 MPa, a cycle efficiency of 49.5% is achieved. Either approach opens up the door to applying the SCO{sub 2} cycle to the VHTR. In contrast, the SFR system typically has a core outlet-inlet temperature difference of about 150 C such that the standard recompression cycle is ideally suited for direct application to the SFR. The ANL Plant Dynamics Code has been modified for application to the VHTR and SFR when the reactor side dynamic behavior is calculated with another system level computer code such as SAS4A/SYSSYS-1 in the SFR case. The key modification involves modeling heat exchange in the RHX, accepting time dependent tabular input from the reactor code, and generating time dependent tabular input to the reactor code such that both the reactor and S-CO{sub 2} cycle sides can be calculated in a convergent iterative scheme. This approach retains the modeling benefits provided by the detailed reactor system level code and can be applied to any reactor system type incorporating a S-CO{sub 2} cycle. This approach was applied to the particular calculation of a scram scenario for a SFR in which the main and intermediate sodium pumps are not tripped and the generator is not disconnected from the electrical grid in order to enhance heat removal from the reactor system thereby enhancing the cooldown rate of the Na-to-CO{sub 2} RHX. The reactor side is calculated with SAS4A/SASSYS-1 while the S-CO{sub 2} cycle is calculated with the Plant Dynamics Code with a number of iterations over a timescale of 500 seconds. It is found that the RHX undergoes a maximum cooldown rate of {approx} -0.3 C/s. The Plant Dynamics Code was also modified to decrease its running time by replacing the compressible flow form of the momentum equation with an incompressible flow equation for use inside of the cooler or recuperators where the CO{sub 2} has a compressibility similar to that of a liquid. Appendices provide a quasi-static control strategy for a SFR as well as the self-adaptive linear function fitting algorithm developed to produce the tabular data for input to the reactor code and Plant Dynamics Code from the detailed output of the other code.« less
Parametric Study on the Tensile Properties of Ni-Based Alloy for a VHTR
NASA Astrophysics Data System (ADS)
Kim, Dong-Jin; Jung, Su Jin; Mun, Byung Hak; Kim, Sung Woo; Lim, Yun Soo
2015-01-01
A very high-temperature reactor (VHTR) has been studied among generation IV nuclear power plants owing to its many advantages such as high-electric efficiency and massive hydrogen production. The material used for the heat exchanger should sustain structural integrity for its life even though the material is exposed to a harsh environment at 1223 K (950 °C) in an impure helium coolant. Therefore, an enhancement of the material performance at high temperature gives a margin in determining the operating temperature and life time. This work is an effort to find an optimum combination of alloying elements and processing parameters to improve the material performance. The tensile property and microstructure for nickel-based alloys fabricated in a laboratory were evaluated as a function of the heat treatment, cold working, and grain boundary strengthener using a tension test at 1223 K (950 °C), scanning electron microscopy, and transmission electron microscopy. Elongation to rupture was increased by additional heat treatment and cold working, followed by additional heat treatment in the temperature range from 1293 K to 1383 K (1020 °C to 1110 °C) implying that the intergranular carbide contributes to grain boundary strengthening. The temperature at which the grain boundary is improved by carbide decoration was higher for a cold-worked specimen, which was described by the difference in carbide stability and carbide formation kinetics between no cold-worked and cold-worked specimens. Zr and Hf played a scavenging effect of harmful elements causing an increase in ductility.
Nuclear driven water decomposition plant for hydrogen production
NASA Technical Reports Server (NTRS)
Parker, G. H.; Brecher, L. E.; Farbman, G. H.
1976-01-01
The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.
Evaluation of the DRAGON code for VHTR design analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taiwo, T. A.; Kim, T. K.; Nuclear Engineering Division
2006-01-12
This letter report summarizes three activities that were undertaken in FY 2005 to gather information on the DRAGON code and to perform limited evaluations of the code performance when used in the analysis of the Very High Temperature Reactor (VHTR) designs. These activities include: (1) Use of the code to model the fuel elements of the helium-cooled and liquid-salt-cooled VHTR designs. Results were compared to those from another deterministic lattice code (WIMS8) and a Monte Carlo code (MCNP). (2) The preliminary assessment of the nuclear data library currently used with the code and libraries that have been provided by themore » IAEA WIMS-D4 Library Update Project (WLUP). (3) DRAGON workshop held to discuss the code capabilities for modeling the VHTR.« less
NGNP Data Management and Analysis System Modeling Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cynthia D. Gentillon
2009-09-01
Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the thirdmore » NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.« less
Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.
Hill, R N; Nutt, W M; Laidler, J J
2011-01-01
The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Kumar; Allen, Todd; Anderson, Mark
The Generation IV (GEN IV) Nuclear Energy Systems Initiative was instituted by the Department of Energy (DOE) with the goal of researching and developing technologies and materials necessary for various types of future reactors. These GEN IV reactors will employ advanced fuel cycles, passive safety systems, and other innovative systems, leading to significant differences between these future reactors and current water-cooled reactors. The leading candidate for the Next Generation Nuclear Plant (NGNP) to be built at Idaho National Lab (INL) in the United States is the Very High Temperature Reactor (VHTR). Due to the high operating temperatures of the VHTR,more » the Reactor Pressure Vessel (RPV) will partially rely on heat transfer by radiation for cooling. Heat expulsion by radiation will become all the more important during high temperature excursions during off-normal accident scenarios. Radiant power is dictated by emissivity, a material property. The NGNP Materials Research and Development Program Plan [1] has identified emissivity and the effects of high temperature oxide formation on emissivity as an area of research towards the development of the VHTR.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Pavel V. Tsvetkov
2009-05-20
This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologicmore » repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.« less
FY2012 summary of tasks completed on PROTEUS-thermal work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C.H.; Smith, M.A.
2012-06-06
PROTEUS is a suite of the neutronics codes, both old and new, that can be used within the SHARP codes being developed under the NEAMS program. Discussion here is focused on updates and verification and validation activities of the SHARP neutronics code, DeCART, for application to thermal reactor analysis. As part of the development of SHARP tools, the different versions of the DeCART code created for PWR, BWR, and VHTR analysis were integrated. Verification and validation tests for the integrated version were started, and the generation of cross section libraries based on the subgroup method was revisited for the targetedmore » reactor types. The DeCART code has been reorganized in preparation for an efficient integration of the different versions for PWR, BWR, and VHTR analysis. In DeCART, the old-fashioned common blocks and header files have been replaced by advanced memory structures. However, the changing of variable names was minimized in order to limit problems with the code integration. Since the remaining stability problems of DeCART were mostly caused by the CMFD methodology and modules, significant work was performed to determine whether they could be replaced by more stable methods and routines. The cross section library is a key element to obtain accurate solutions. Thus, the procedure for generating cross section libraries was revisited to provide libraries tailored for the targeted reactor types. To improve accuracy in the cross section library, an attempt was made to replace the CENTRM code by the MCNP Monte Carlo code as a tool obtaining reference resonance integrals. The use of the Monte Carlo code allows us to minimize problems or approximations that CENTRM introduces since the accuracy of the subgroup data is limited by that of the reference solutions. The use of MCNP requires an additional set of libraries without resonance cross sections so that reference calculations can be performed for a unit cell in which only one isotope of interest includes resonance cross sections, among the isotopes in the composition. The OECD MHTGR-350 benchmark core was simulated using DeCART as initial focus of the verification/validation efforts. Among the benchmark problems, Exercise 1 of Phase 1 is a steady-state benchmark case for the neutronics calculation for which block-wise cross sections were provided in 26 energy groups. This type of problem was designed for a homogenized geometry solver like DIF3D rather than the high-fidelity code DeCART. Instead of the homogenized block cross sections given in the benchmark, the VHTR-specific 238-group ENDF/B-VII.0 library of DeCART was directly used for preliminary calculations. Initial results showed that the multiplication factors of a fuel pin and a fuel block with or without a control rod hole were off by 6, -362, and -183 pcm Dk from comparable MCNP solutions, respectively. The 2-D and 3-D one-third core calculations were also conducted for the all-rods-out (ARO) and all-rods-in (ARI) configurations, producing reasonable results. Figure 1 illustrates the intermediate (1.5 eV - 17 keV) and thermal (below 1.5 eV) group flux distributions. As seen from VHTR cores with annular fuels, the intermediate group fluxes are relatively high in the fuel region, but the thermal group fluxes are higher in the inner and outer graphite reflector regions than in the fuel region. To support the current project, a new three-year I-NERI collaboration involving ANL and KAERI was started in November 2011, focused on performing in-depth verification and validation of high-fidelity multi-physics simulation codes for LWR and VHTR. The work scope includes generating improved cross section libraries for the targeted reactor types, developing benchmark models for verification and validation of the neutronics code with or without thermo-fluid feedback, and performing detailed comparisons of predicted reactor parameters against both Monte Carlo solutions and experimental measurements. The following list summarizes the work conducted so far for PROTEUS-Thermal Tasks: Unification of different versions of DeCART was initiated, and at the same time code modernization was conducted to make code unification efficient; (2) Regeneration of cross section libraries was attempted for the targeted reactor types, and the procedure for generating cross section libraries was updated by replacing CENTRM with MCNP for reference resonance integrals; (3) The MHTGR-350 benchmark core was simulated using DeCART with VHTR-specific 238-group ENDF/B-VII.0 library, and MCNP calculations were performed for comparison; and (4) Benchmark problems for PWR and BWR analysis were prepared for the DeCART verification/validation effort. In the coming months, the work listed above will be completed. Cross section libraries will be generated with optimized group structures for specific reactor types.« less
HyPEP FY06 Report: Models and Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
DOE report
2006-09-01
The Department of Energy envisions the next generation very high-temperature gas-cooled reactor (VHTR) as a single-purpose or dual-purpose facility that produces hydrogen and electricity. The Ministry of Science and Technology (MOST) of the Republic of Korea also selected VHTR for the Nuclear Hydrogen Development and Demonstration (NHDD) Project. This research project aims at developing a user-friendly program for evaluating and optimizing cycle efficiencies of producing hydrogen and electricity in a Very-High-Temperature Reactor (VHTR). Systems for producing electricity and hydrogen are complex and the calculations associated with optimizing these systems are intensive, involving a large number of operating parameter variations andmore » many different system configurations. This research project will produce the HyPEP computer model, which is specifically designed to be an easy-to-use and fast running tool for evaluating nuclear hydrogen and electricity production facilities. The model accommodates flexible system layouts and its cost models will enable HyPEP to be well-suited for system optimization. Specific activities of this research are designed to develop the HyPEP model into a working tool, including (a) identifying major systems and components for modeling, (b) establishing system operating parameters and calculation scope, (c) establishing the overall calculation scheme, (d) developing component models, (e) developing cost and optimization models, and (f) verifying and validating the program. Once the HyPEP model is fully developed and validated, it will be used to execute calculations on candidate system configurations. FY-06 report includes a description of reference designs, methods used in this study, models and computational strategies developed for the first year effort. Results from computer codes such as HYSYS and GASS/PASS-H used by Idaho National Laboratory and Argonne National Laboratory, respectively will be benchmarked with HyPEP results in the following years.« less
Three-dimensional NDE of VHTR core components via simulation-based testing. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzina, Bojan; Kunerth, Dennis
2014-09-30
A next generation, simulation-driven-and-enabled testing platform is developed for the 3D detection and characterization of defects and damage in nuclear graphite and composite structures in Very High Temperature Reactors (VHTRs). The proposed work addresses the critical need for the development of high-fidelity Non-Destructive Examination (NDE) technologies for as-manufactured and replaceable in-service VHTR components. Centered around the novel use of elastic (sonic and ultrasonic) waves, this project deploys a robust, non-iterative inverse solution for the 3D defect reconstruction together with a non-contact, laser-based approach to the measurement of experimental waveforms in VHTR core components. In particular, this research (1) deploys three-dimensionalmore » Scanning Laser Doppler Vibrometry (3D SLDV) as a means to accurately and remotely measure 3D displacement waveforms over the accessible surface of a VHTR core component excited by mechanical vibratory source; (2) implements a powerful new inverse technique, based on the concept of Topological Sensitivity (TS), for non-iterative elastic waveform tomography of internal defects - that permits robust 3D detection, reconstruction and characterization of discrete damage (e.g. holes and fractures) in nuclear graphite from limited-aperture NDE measurements; (3) implements state-of-the art computational (finite element) model that caters for accurately simulating elastic wave propagation in 3D blocks of nuclear graphite; (4) integrates the SLDV testing methodology with the TS imaging algorithm into a non-contact, high-fidelity NDE platform for the 3D reconstruction and characterization of defects and damage in VHTR core components; and (5) applies the proposed methodology to VHTR core component samples (both two- and three-dimensional) with a priori induced, discrete damage in the form of holes and fractures. Overall, the newly established SLDV-TS testing platform represents a next-generation NDE tool that surpasses all existing techniques for the 3D ultrasonic imaging of material damage from non-contact, limited-aperture waveform measurements. Outlook. The next stage in the development of this technology includes items such as (a) non-contact generation of mechanical vibrations in VHTR components via thermal expansion created by high-intensity laser; (b) development and incorporation of Synthetic Aperture Focusing Technique (SAFT) for elevating the accuracy of 3D imaging in highly noisy environments with minimal accessible surface; (c) further analytical and computational developments to facilitate the reconstruction of diffuse damage (e.g. microcracks) in nuclear graphite as they lead to the dispersion of elastic waves, (d) concept of model updating for accurate tracking of the evolution of material damage via periodic inspections; (d) adoption of the Bayesian framework to obtain information on the certainty of obtained images; and (e) optimization of the computational scheme toward real-time, model-based imaging of damage in VHTR core components.« less
Next Generation Nuclear Plant Methods Research and Development Technical Program Plan -- PLN-2498
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg
2008-09-01
One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less
Next Generation Nuclear Plant Methods Technical Program Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg
2010-12-01
One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less
Next Generation Nuclear Plant Methods Technical Program Plan -- PLN-2498
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard R. Schultz; Abderrafi M. Ougouag; David W. Nigg
2010-09-01
One of the great challenges of designing and licensing the Very High Temperature Reactor (VHTR) is to confirm that the intended VHTR analysis tools can be used confidently to make decisions and to assure all that the reactor systems are safe and meet the performance objectives of the Generation IV Program. The research and development (R&D) projects defined in the Next Generation Nuclear Plant (NGNP) Design Methods Development and Validation Program will ensure that the tools used to perform the required calculations and analyses can be trusted. The Methods R&D tasks are designed to ensure that the calculational envelope ofmore » the tools used to analyze the VHTR reactor systems encompasses, or is larger than, the operational and transient envelope of the VHTR itself. The Methods R&D focuses on the development of tools to assess the neutronic and thermal fluid behavior of the plant. The fuel behavior and fission product transport models are discussed in the Advanced Gas Reactor (AGR) program plan. Various stress analysis and mechanical design tools will also need to be developed and validated and will ultimately also be included in the Methods R&D Program Plan. The calculational envelope of the neutronics and thermal-fluids software tools intended to be used on the NGNP is defined by the scenarios and phenomena that these tools can calculate with confidence. The software tools can only be used confidently when the results they produce have been shown to be in reasonable agreement with first-principle results, thought-problems, and data that describe the “highly ranked” phenomena inherent in all operational conditions and important accident scenarios for the VHTR.« less
The use of a very high temperature nuclear reactor in the manufacture of synthetic fuels
NASA Technical Reports Server (NTRS)
Farbman, G. H.; Brecher, L. E.
1976-01-01
The three parts of a program directed toward creating a cost-effective nuclear hydrogen production system are described. The discussion covers the development of a very high temperature nuclear reactor (VHTR) as a nuclear heat and power source capable of producing the high temperature needed for hydrogen production and other processes; the development of a hydrogen generation process based on water decomposition, which can utilize the outputs of the VHTR and be integrated with many different ultimate hydrogen consuming processes; and the evaluation of the process applications of the nuclear hydrogen systems to assess the merits and potential payoffs. It is shown that the use of VHTR for the manufacture of synthetic fuels appears to have a very high probability of making a positive contribution to meeting the nation's energy needs in the future.
Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawari, Ayman; Ougouag, Abderrafi
2014-07-08
This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can bemore » easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.« less
Failure Predictions for VHTR Core Components using a Probabilistic Contiuum Damage Mechanics Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fok, Alex
2013-10-30
The proposed work addresses the key research need for the development of constitutive models and overall failure models for graphite and high temperature structural materials, with the long-term goal being to maximize the design life of the Next Generation Nuclear Plant (NGNP). To this end, the capability of a Continuum Damage Mechanics (CDM) model, which has been used successfully for modeling fracture of virgin graphite, will be extended as a predictive and design tool for the core components of the very high- temperature reactor (VHTR). Specifically, irradiation and environmental effects pertinent to the VHTR will be incorporated into the modelmore » to allow fracture of graphite and ceramic components under in-reactor conditions to be modeled explicitly using the finite element method. The model uses a combined stress-based and fracture mechanics-based failure criterion, so it can simulate both the initiation and propagation of cracks. Modern imaging techniques, such as x-ray computed tomography and digital image correlation, will be used during material testing to help define the baseline material damage parameters. Monte Carlo analysis will be performed to address inherent variations in material properties, the aim being to reduce the arbitrariness and uncertainties associated with the current statistical approach. The results can potentially contribute to the current development of American Society of Mechanical Engineers (ASME) codes for the design and construction of VHTR core components.« less
Experimental investigation and CFD analysis on cross flow in the core of PMR200
Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; ...
2015-04-16
The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connectingmore » the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.« less
Aqueous alteration of VHTR fuels particles under simulated geological conditions
NASA Astrophysics Data System (ADS)
Ait Chaou, Abdelouahed; Abdelouas, Abdesselam; Karakurt, Gökhan; Grambow, Bernd
2014-05-01
Very High Temperature Reactor (VHTR) fuels consist of the bistructural-isotropic (BISO) or tristructural-isotropic (TRISO)-coated particles embedded in a graphite matrix. Management of the spent fuel generated during VHTR operation would most likely be through deep geological disposal. In this framework we investigated the alteration of BISO (with pyrolytic carbon) and TRISO (with SiC) particles under geological conditions simulated by temperatures of 50 and 90 °C and in the presence of synthetic groundwater. Solid state (scanning electron microscopy (SEM), micro-Raman spectroscopy, electron probe microanalyses (EPMA) and X-ray photoelectron spectroscopy (XPS)) and solution analyses (ICP-MS, ionique chromatography (IC)) showed oxidation of both pyrolytic carbon and SiC at 90 °C. Under air this led to the formation of SiO2 and a clay-like Mg-silicate, while under reducing conditions (H2/N2 atmosphere) SiC and pyrolytic carbon were highly stable after a few months of alteration. At 50 °C, in the presence and absence of air, the alteration of the coatings was minor. In conclusion, due to their high stability in reducing conditions, HTR fuel disposal in reducing deep geological environments may constitute a viable solution for their long-term management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun
2015-07-01
A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to dependmore » largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.« less
NASA Astrophysics Data System (ADS)
Maynard, Raymond K.
An experimental system was constructed in accordance with the standard ASTM C835-06 to measure the total hemispherical emissivity of structural materials of interest in Very High Temperature Reactor (VHTR) systems. The system was tested with304 stainless steel as well as for oxidized and un-oxidized nickel, and good reproducibility and agreement with the literature data was found. Emissivity of Hastelloy X was measured under different conditions that included: (i) "as received" (original sample) from the supplier; (ii) with increased surface roughness; (iii) oxidized, and; (iv) graphite coated. Measurements were made over a wide range of temperatures. Hastelloy X, as received from the supplier, was cleaned before additional roughening of the surface and coating with graphite. The emissivity of the original samples (cleaned after received) varied from around 0.18 to 0.28 in the temperature range of 473 K to 1498 K. The apparent emissivity increased only slightly as the roughness of the surface increased (without corrections for the increased surface area due to the increased surface roughness). When Hastelloy X was coated with graphite or oxidized however, its emissivity was observed to increase substantially. With a deposited graphite layer on the Hastelloy, emissivity increased from 0.2 to 0.53 at 473 K and from 0.25 to 0.6 at 1473 K; a finding that has strong favorable safety implications in terms of decay heat removal in post-accident VHTR environments. Although initial oxidation of Hastelloy X increased the emissivity prolonged oxidation did not significantly increase emissivity. However as there is some oxidation of Hastelloy X used in the construction of VHTRs, this represents an essentially neutral finding in terms of the safety implications in post-accident VHTR environments. The total hemispherical emissivity of Haynes 230 alloy, which is regarded as a leading candidate material for heat exchangers in VHTR systems, was measured under various surface conditions. The emissivity increased from 0.178 at 600 K to 0.235 at 1375 K for Haynes 230 as received sample. The emissivity increased significantly when its surface roughness was increased, or was oxidized in air, or coated with graphite dust, as compared to the as received material. The total hemispherical emissivity of Alloy 617 was measured as a function of temperature. The total emissivity increased from about 0.2 at 600 K to about 0.35 at 1275 K.
Use of SUSA in Uncertainty and Sensitivity Analysis for INL VHTR Coupled Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom
2010-06-01
The need for a defendable and systematic Uncertainty and Sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008.The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This interim milestone report provides an overview of the current status of themore » implementation and testing of SUSA at the INL VHTR Project Office.« less
Process design and economic analysis of the zinc selenide thermochemical hydrogen cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Otsuki, H.H.; Krikorian, O.H.
1978-09-06
A detailed preliminary design for a hydrogen production plant has been developed based on an improved version of the ZnSe thermochemical cycle for decomposing water. In the latest version of the cycle, ZnCl/sub 2/ is converted directly to ZnO through high temperature steam hydrolysis. This eliminates the need for first converting ZnCl/sub 2/ to ZnSO/sub 4/ and also slightly reduces the overall heat requirement. Moreover, it broadens the temperature range over which prime heat is required and improves the coupling of the cycle with a nuclear reactor heat source. The ZnSe cycle is driven by a very-high-temperature nuclear reactor (VHTR)more » proposed by Westinghouse that provides a high-temperature (1283 K) helium working gas for process heat and power. The plant is sized to produce 27.3 Mg H/sub 2//h (60,000 lb H/sub 2//h) and requires specially designed equipment to perform the critical reaction steps in the cycle. We have developed conceptual designs for several of the important process steps to make cost estimates, and have obtained a cycle efficiency of about 40% and a hydrogen production cost of about $14/GJ. We believe that the cost is high because input data on reaction rates and equipment lifetimes have been conservatively estimated and the cycle parameters have not been optimized. Nonetheless, this initial analysis serves an important function in delineating areas in the cycle where additional research is needed to increase efficiency and reduce costs in a more advanced version of the cycle.« less
NASA Astrophysics Data System (ADS)
Fradeneck, Austen; Kimber, Mark
2017-11-01
The present study evaluates the effectiveness of current RANS and LES models in simulating natural convection in high-aspect ratio parallel plate channels. The geometry under consideration is based on a simplification of the coolant and bypass channels in the very high-temperature gas reactor (VHTR). Two thermal conditions are considered, asymmetric and symmetric wall heating with an applied heat flux to match Rayleigh numbers experienced in the VHTR during a loss of flow accident (LOFA). RANS models are compared to analogous high-fidelity LES simulations. Preliminary results demonstrate the efficacy of the low-Reynolds number k- ɛ formulations and their enhancement to the standard form and Reynolds stress transport model in terms of calculating the turbulence production due to buoyancy and overall mean flow variables.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, Mark Christopher
2015-07-01
This report details the initial comparison of mechanical strength properties between the cylindrical nuclear-grade graphite specimens irradiated in the second Advanced Graphite Creep (AGC-2) experiment with the established baseline, or unirradiated, mechanical properties compiled in the Baseline Graphite Characterization program. The overall comparative analysis will describe the development of an appropriate test protocol for irradiated specimens, the execution of the mechanical tests on the AGC-2 sample population, and will further discuss the data in terms of developing an accurate irradiated property distribution in the limited amount of irradiated data by leveraging the considerably larger property datasets being captured in themore » Baseline Graphite Characterization program. Integrating information on the inherent variability in nuclear-grade graphite with more complete datasets is one of the goals of the VHTR Graphite Materials program. Between “sister” specimens, or specimens with the same geometry machined from the same sub-block of graphite from which the irradiated AGC specimens were extracted, and the Baseline datasets, a comprehensive body of data will exist that can provide both a direct and indirect indication of the full irradiated property distributions that can be expected of irradiated nuclear-grade graphite while in service in a VHTR system. While the most critical data will remain the actual irradiated property measurements, expansion of this data into accurate distributions based on the inherent variability in graphite properties will be a crucial step in qualifying graphite for nuclear use as a structural material in a VHTR environment.« less
NASA Astrophysics Data System (ADS)
Valentin Rodriguez, Francisco Ivan
High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat dissipating capabilities of helium flow, due to natural circulation in the system at both high and low pressure, were also examined. These experimental results are useful for the development and validation of VHTR design and safety analysis codes. Numerical simulations were performed using a Multiphysics computer code, COMSOL, displaying less than 5% error between the measured graphite temperatures in both the heated and cooled channels. Finally, new correlations have been proposed describing the thermal-hydraulic phenomena in buoyancy driven flows in both heated and cooled channels.
Next generation fuel irradiation capability in the High Flux Reactor Petten
NASA Astrophysics Data System (ADS)
Fütterer, Michael A.; D'Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco; Raison, Philippe; Bakker, Klaas; de Groot, Sander; Klaassen, Frodo
2009-07-01
This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.
ICP-MS measurement of iodine diffusion in IG-110 graphite for HTGR/VHTR
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2016-05-01
Graphite functions as a structural material and as a barrier to fission product release in HTGR/VHTR designs, and elucidation of transport parameters for fission products in reactor-grade graphite is thus required for reactor source terms calculations. We measured iodine diffusion in spheres of IG-110 graphite using a release method based on Fickain diffusion kinetics. Two sources of iodine were loaded into the graphite spheres; molecular iodine (I2) and cesium iodide (CsI). Measurements of the diffusion coefficient were made over a temperature range of 873-1293 K. We have obtained the following Arrhenius expressions for iodine diffusion:DI , CsI infused =(6 ×10-12 2/s) exp(30,000 J/mol RT) And,DI , I2 infused =(4 ×10-10 m2/s) exp(-11,000 J/mol RT ) The results indicate that iodine diffusion in IG-110 graphite is not well-described by Fickan diffusion kinetics. To our knowledge, these are the first measurements of iodine diffusion in IG-110 graphite.
In Situ Measurements of Spectral Emissivity of Materials for Very High Temperature Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Cao; S. J. Weber; S. O. Martin
2011-08-01
An experimental facility for in situ measurements of high-temperature spectral emissivity of materials in environments of interest to the gas-cooled very high temperature reactor (VHTR) has been developed. The facility is capable of measuring emissivities of seven materials in a single experiment, thereby enhancing the accuracy in measurements due to even minor systemic variations in temperatures and environments. The system consists of a cylindrical silicon carbide (SiC) block with seven sample cavities and a deep blackbody cavity, a detailed optical system, and a Fourier transform infrared spectrometer. The reliability of the facility has been confirmed by comparing measured spectral emissivitiesmore » of SiC, boron nitride, and alumina (Al2O3) at 600 C against those reported in literature. The spectral emissivities of two candidate alloys for VHTR, INCONEL{reg_sign} alloy 617 (INCONEL is a registered trademark of the Special Metals Corporation group of companies) and SA508 steel, in air environment at 700 C were measured.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Yassin; Anand, Nk
2016-03-30
A 1/16th scaled VHTR experimental model was constructed and the preliminary test was performed in this study. To produce benchmark data for CFD validation in the future, the facility was first run at partial operation with five pipes being heated. PIV was performed to extract the vector velocity field for three adjacent naturally convective jets at statistically steady state. A small recirculation zone was found between the pipes, and the jets entered the merging zone at 3 cm from the pipe outlet but diverged as the flow approached the top of the test geometry. Turbulence analysis shows the turbulence intensitymore » peaked at 41-45% as the jets mixed. A sensitivity analysis confirmed that 1000 frames were sufficient to measure statistically steady state. The results were then validated by extracting the flow rate from the PIV jet velocity profile, and comparing it with an analytic flow rate and ultrasonic flowmeter; all flow rates lie within the uncertainty of the other two methods for Tests 1 and 2. This test facility can be used for further analysis of naturally convective mixing, and eventually produce benchmark data for CFD validation for the VHTR during a PCC or DCC accident scenario. Next, a PTV study of 3000 images (1500 image pairs) were used to quantify the velocity field in the upper plenum. A sensitivity analysis confirmed that 1500 frames were sufficient to precisely estimate the flow. Subsequently, three (3, 9, and 15 cm) Y-lines from the pipe output were extracted to consider the output differences between 50 to 1500 frames. The average velocity field and standard deviation error that accrued in the three different tests were calculated to assess repeatability. The error was varied, from 1 to 14%, depending on Y-elevation. The error decreased as the flow moved farther from the output pipe. In addition, turbulent intensity was calculated and found to be high near the output. Reynolds stresses and turbulent intensity were used to validate the data by comparing it with benchmark data. The experimental data gave the same pattern as the benchmark data. A turbulent single buoyant jet study was performed for the case of LOFC in the upper plenum of scaled VHTR. Time-averaged profiles show that 3,000 frames of images were sufficient for the study up to second-order statistics. Self-similarity is an important feature of jets since the behavior of jets is independent of Reynolds number and a sole function of geometry. Self-similarity profiles were well observed in the axial velocity and velocity magnitude profile regardless of z/D where the radial velocity did not show any similarity pattern. The normal components of Reynolds stresses have self-similarity within the expected range. The study shows that large vortices were observed close to the dome wall, indicating that the geometry of the VHTR has a significant impact on its safety and performance. Near the dome surface, large vortices were shown to inhibit the flows, resulting in reduced axial jet velocity. The vortices that develop subsequently reduce the Reynolds stresses that develop and the impact on the integrity of the VHTR upper plenum surface. Multiple jets study, including two, three and five jets, were investigated.« less
Creep of A508/533 Pressure Vessel Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard Wright
2014-08-01
ABSTRACT Evaluation of potential Reactor Pressure Vessel (RPV) steels has been carried out as part of the pre-conceptual Very High Temperature Reactor (VHTR) design studies. These design studies have generally focused on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Initially, three candidate materials were identified by this process: conventional light water reactor (LWR) RPV steels A508 and A533, 2¼Cr-1Mo in the annealed condition, and Grade 91 steel. The low strength of 2¼Cr-1Mo at elevated temperature has eliminated this steel from serious consideration as the VHTR RPV candidate material. Discussions with themore » very few vendors that can potentially produce large forgings for nuclear pressure vessels indicate a strong preference for conventional LWR steels. This preference is based in part on extensive experience with forging these steels for nuclear components. It is also based on the inability to cast large ingots of the Grade 91 steel due to segregation during ingot solidification, thus restricting the possible mass of forging components and increasing the amount of welding required for completion of the RPV. Grade 91 steel is also prone to weld cracking and must be post-weld heat treated to ensure adequate high-temperature strength. There are also questions about the ability to produce, and very importantly, verify the through thickness properties of thick sections of Grade 91 material. The availability of large components, ease of fabrication, and nuclear service experience with the A508 and A533 steels strongly favor their use in the RPV for the VHTR. Lowering the gas outlet temperature for the VHTR to 750°C from 950 to 1000°C, proposed in early concept studies, further strengthens the justification for this material selection. This steel is allowed in the ASME Boiler and Pressure Vessel Code for nuclear service up to 371°C (700°F); certain excursions above that temperature are allowed by Code Case N-499-2 (now incorporated as an appendix to Section III Division 5 of the Code). This Code Case was developed with a rather sparse data set and focused primarily on rolled plate material (A533 specification). Confirmatory tests of creep behavior of both A508 and A533 are described here that are designed to extend the database in order to build higher confidence in ensuring the structural integrity of the VHTR RPV during off-normal conditions. A number of creep-rupture tests were carried out at temperatures above the 371°C (700°F) Code limit; longer term tests designed to evaluate minimum creep behavior are ongoing. A limited amount of rupture testing was also carried out on welded material. All of the rupture data from the current experiments is compared to historical values from the testing carried out to develop Code Case N-499-2. It is shown that the A508/533 basemetal tested here fits well with the rupture behavior reported from the historical testing. The presence of weldments significantly reduces the time to rupture. The primary purpose of this report is to summarize and record the experimental results in a single document.« less
Very High-Temperature Reactor (VHTR) Proliferation Resistance and Physical Protection (PR&PP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, David Lewis
2011-10-01
This report documents the detailed background information that has been compiled to support the preparation of a much shorter white paper on the design features and fuel cycles of Very High-Temperature Reactors (VHTRs), including the proposed Next-Generation Nuclear Plant (NGNP), to identify the important proliferation resistance and physical protection (PR&PP) aspects of the proposed concepts. The shorter white paper derived from the information in this report was prepared for the Department of Energy Office of Nuclear Science and Technology for the Generation IV International Forum (GIF) VHTR Systems Steering Committee (SSC) as input to the GIF Proliferation Resistance and Physicalmore » Protection Working Group (PR&PPWG) (http://www.gen-4.org/Technology/horizontal/proliferation.htm). The short white paper was edited by the GIF VHTR SCC to address their concerns and thus may differ from the information presented in this supporting report. The GIF PR&PPWG will use the derived white paper based on this report along with other white papers on the six alternative Generation IV design concepts (http://www.gen-4.org/Technology/systems/index.htm) to employ an evaluation methodology that can be applied and will evolve from the earliest stages of design. This methodology will guide system designers, program policy makers, and external stakeholders in evaluating the response of each system, to determine each system's resistance to proliferation threats and robustness against sabotage and terrorism threats, and thereby guide future international cooperation on ensuring safeguards in the deployment of the Generation IV systems. The format and content of this report is that specified in a template prepared by the GIF PR&PPWG. Other than the level of detail, the key exception to the specified template format is the addition of Appendix C to document the history and status of coated-particle fuel reprocessing technologies, which fuel reprocessing technologies have yet to be deployed commercially and have only been demonstrated in testing at a laboratory scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsvetkov, Pavel; Dickerson, Bryan; French, Joseph
2014-04-30
Robust sensing technologies allowing for 3D in-core performance monitoring in real time are of paramount importance for already established LWRs to enhance their reliability and availability per year, and therefore, to further facilitate their economic competitiveness via predictive assessment of the in-core conditions.
Analytical modeling of helium turbomachinery using FORTRAN 77
NASA Astrophysics Data System (ADS)
Balaji, Purushotham
Advanced Generation IV modular reactors, including Very High Temperature Reactors (VHTRs), utilize helium as the working fluid, with a potential for high efficiency power production utilizing helium turbomachinery. Helium is chemically inert and nonradioactive which makes the gas ideal for a nuclear power-plant environment where radioactive leaks are a high concern. These properties of helium gas helps to increase the safety features as well as to decrease the aging process of plant components. The lack of sufficient helium turbomachinery data has made it difficult to study the vital role played by the gas turbine components of these VHTR powered cycles. Therefore, this research work focuses on predicting the performance of helium compressors. A FORTRAN77 program is developed to simulate helium compressor operation, including surge line prediction. The resulting design point and off design performance data can be used to develop compressor map files readable by Numerical Propulsion Simulation Software (NPSS). This multi-physics simulation software that was developed for propulsion system analysis has found applications in simulating power-plant cycles.
Materials, Turbomachinery and Heat Exchangers for Supercritical CO2 Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Mark; Nellis, Greg; Corradini, Michael
2012-10-19
The objective of this project is to produce the necessary data to evaluate the performance of the supercritical carbon dioxide cycle. The activities include a study of materials compatibility of various alloys at high temperatures, the heat transfer and pressure drop in compact heat exchanger units, and turbomachinery issues, primarily leakage rates through dynamic seals. This experimental work will serve as a test bed for model development and design calculations, and will help define further tests necessary to develop high-efficiency power conversion cycles for use on a variety of reactor designs, including the sodium fast reactor (SFR) and very high-temperaturemore » gas reactor (VHTR). The research will be broken into three separate tasks. The first task deals with the analysis of materials related to the high-temperature S-CO{sub 2} Brayton cycle. The most taxing materials issues with regard to the cycle are associated with the high temperatures in the reactor side heat exchanger and in the high-temperature turbine. The system could experience pressures as high as 20MPa and temperatures as high as 650°C. The second task deals with optimization of the heat exchangers required by the S-CO{sub 2} cycle; the S-CO{sub 2} flow passages in these heat exchangers are required whether the cycle is coupled with a VHTR or an SFR. At least three heat exchangers will be required: the pre-cooler before compression, the recuperator, and the heat exchanger that interfaces with the reactor coolant. Each of these heat exchangers is unique and must be optimized separately. The most challenging heat exchanger is likely the pre-cooler, as there is only about a 40°C temperature change but it operates close to the CO{sub 2} critical point, therefore inducing substantial changes in properties. The proposed research will focus on this most challenging component. The third task examines seal leakage through various dynamic seal designs under the conditions expected in the S-CO{sub 2} cycle, including supercritical, choked, and two-phase flow conditions.« less
INL Results for Phases I and III of the OECD/NEA MHTGR-350 Benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom; Javier Ortensi; Sonat Sen
2013-09-01
The Idaho National Laboratory (INL) Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Methods Core Simulation group led the construction of the Organization for Economic Cooperation and Development (OECD) Modular High Temperature Reactor (MHTGR) 350 MW benchmark for comparing and evaluating prismatic VHTR analysis codes. The benchmark is sponsored by the OECD's Nuclear Energy Agency (NEA), and the project will yield a set of reference steady-state, transient, and lattice depletion problems that can be used by the Department of Energy (DOE), the Nuclear Regulatory Commission (NRC), and vendors to assess their code suits. The Methods group is responsible formore » defining the benchmark specifications, leading the data collection and comparison activities, and chairing the annual technical workshops. This report summarizes the latest INL results for Phase I (steady state) and Phase III (lattice depletion) of the benchmark. The INSTANT, Pronghorn and RattleSnake codes were used for the standalone core neutronics modeling of Exercise 1, and the results obtained from these codes are compared in Section 4. Exercise 2 of Phase I requires the standalone steady-state thermal fluids modeling of the MHTGR-350 design, and the results for the systems code RELAP5-3D are discussed in Section 5. The coupled neutronics and thermal fluids steady-state solution for Exercise 3 are reported in Section 6, utilizing the newly developed Parallel and Highly Innovative Simulation for INL Code System (PHISICS)/RELAP5-3D code suit. Finally, the lattice depletion models and results obtained for Phase III are compared in Section 7. The MHTGR-350 benchmark proved to be a challenging simulation set of problems to model accurately, and even with the simplifications introduced in the benchmark specification this activity is an important step in the code-to-code verification of modern prismatic VHTR codes. A final OECD/NEA comparison report will compare the Phase I and III results of all other international participants in 2014, while the remaining Phase II transient case results will be reported in 2015.« less
CFD Analyses of Air-Ingress Accident for VHTRs
NASA Astrophysics Data System (ADS)
Ham, Tae Kyu
The Very High Temperature Reactor (VHTR) is one of six proposed Generation-IV concepts for the next generation of nuclear powered plants. The VHTR is advantageous because it is able to operate at very high temperatures, thus producing highly efficient electrical generation and hydrogen production. A critical safety event of the VHTR is a loss-of-coolant accident. This accident is initiated, in its worst-case scenario, by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. Following the depressurization process, the air (i.e., the air and helium mixture) in the reactor cavity could enter the reactor core causing an air-ingress event. In the event of air-ingress into the reactor core, the high-temperature in-core graphite structures will chemically react with the air and could lose their structural integrity. We designed a 1/8th scaled-down test facility to develop an experimental database for studying the mechanisms involved in the air-ingress phenomenon. The current research focuses on the analysis of the air-ingress phenomenon using the computational fluid dynamics (CFD) tool ANSYS FLUENT for better understanding of the air-ingress phenomenon. The anticipated key steps in the air-ingress scenario for guillotine break of VHTR cross vessel are: 1) depressurization; 2) density-driven stratified flow; 3) local hot plenum natural circulation; 4) diffusion into the reactor core; and 5) global natural circulation. However, the OSU air-ingress test facility covers the time from depressurization to local hot plenum natural circulation. Prior to beginning the CFD simulations for the OSU air-ingress test facility, benchmark studies for the mechanisms which are related to the air-ingress accident, were performed to decide the appropriate physical models for the accident analysis. In addition, preliminary experiments were performed with a simplified 1/30th scaled down acrylic set-up to understand the air-ingress mechanism and to utilize the CFD simulation in the analysis of the phenomenon. Previous air-ingress studies simulated the depressurization process using simple assumptions or 1-D system code results. However, recent studies found flow oscillations near the end of the depressurization which could influence the next stage of the air-ingress accident. Therefore, CFD simulations were performed to examine the air-ingress mechanisms from the depressurization through the establishment of local natural circulation initiate. In addition to the double-guillotine break scenario, there are other scenarios that can lead to an air-ingress event such as a partial break were in the cross vessel with various break locations, orientations, and shapes. These additional situations were also investigated. The simulation results for the OSU test facility showed that the discharged helium coolant from a reactor vessel during the depressurization process will be mixed with the air in the containment. This process makes the density of the gas mixture in the containment lower and the density-driven air-ingress flow slower because the density-driven flow is established by the density difference of the gas species between the reactor vessel and the containment. In addition, for the simulations with various initial and boundary conditions, the simulation results showed that the total accumulated air in the containment collapsed within 10% standard deviation by: 1. multiplying the density ratio and viscosity ratio of the gas species between the containment and the reactor vessel and 2. multiplying the ratio of the air mole fraction and gas temperature to the reference value. By replacing the gas mixture in the reactor cavity with a gas heavier than the air, the air-ingress speed slowed down. Based on the understanding of the air-ingress phenomena for the GT-MHR air-ingress scenario, several mitigation measures of air-ingress accident are proposed. The CFD results are utilized to plan experimental strategy and apparatus installation to obtain the best results when conducting an experiment. The validation of the generated CFD solutions will be performed with the OSU air-ingress experimental results. (Abstract shortened by UMI.).
Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabet, Celine; Carroll, Laura; Wright, Richard
Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degreesmore » C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.« less
Methods Data Qualification Interim Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Sam Alessi; Tami Grimmett; Leng Vang
The overall goal of the Next Generation Nuclear Plant (NGNP) Data Management and Analysis System (NDMAS) is to maintain data provenance for all NGNP data including the Methods component of NGNP data. Multiple means are available to access data stored in NDMAS. A web portal environment allows users to access data, view the results of qualification tests and view graphs and charts of various attributes of the data. NDMAS also has methods for the management of the data output from VHTR simulation models and data generated from experiments designed to verify and validate the simulation codes. These simulation models representmore » the outcome of mathematical representation of VHTR components and systems. The methods data management approaches described herein will handle data that arise from experiment, simulation, and external sources for the main purpose of facilitating parameter estimation and model verification and validation (V&V). A model integration environment entitled ModelCenter is used to automate the storing of data from simulation model runs to the NDMAS repository. This approach does not adversely change the why computational scientists conduct their work. The method is to be used mainly to store the results of model runs that need to be preserved for auditing purposes or for display to the NDMAS web portal. This interim report demonstrates the currently development of NDMAS for Methods data and discusses data and its qualification that is currently part of NDMAS.« less
Bypass flow computations on the LOFA transient in a VHTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tung, Yu-Hsin; Johnson, Richard W.; Ferng, Yuh-Ming
2014-01-01
Bypass flow in the prismatic gas-cooled very high temperature reactor (VHTR) is not intentionally designed to occur, but is present in the gaps between graphite blocks. Previous studies of the bypass flow in the core indicated that the cooling provided by flow in the bypass gaps had a significant effect on temperature and flow distributions for normal operating conditions. However, the flow and heat transports in the core are changed significantly after a Loss of Flow Accident (LOFA). This study aims to study the effect and role of the bypass flow after a LOFA in terms of the temperature andmore » flow distributions and for the heat transport out of the core by natural convection of the coolant for a 1/12 symmetric section of the active core which is composed of images and mirror images of two sub-region models. The two sub-region models, 9 x 1/12 and 15 x 1/12 symmetric sectors of the active core, are employed as the CFD flow models using computational grid systems of 70.2 million and 117 million nodes, respectively. It is concluded that the effect of bypass flow is significant for the initial conditions and the beginning of LOFA, but the bypass flow has little effect after a long period of time in the transient computation of natural circulation.« less
High temperature corrosion of a nickel base alloy by helium impurities
NASA Astrophysics Data System (ADS)
Rouillard, F.; Cabet, C.; Wolski, K.; Terlain, A.; Tabarant, M.; Pijolat, M.; Valdivieso, F.
2007-05-01
High temperature corrosion properties of Haynes 230 were investigated in a purposely-designed facility under a typical very high temperature reactor (VHTR) impure helium medium. The study was focused on the surface oxide scale formation and its stability at about 1223 K. The alloy developed a Mn/Cr rich oxide layer on its surface under impure helium at 1173 K. Nevertheless, a deleterious reaction destructing the chromium oxide was evidenced above a critical temperature, TA. Reagents and products of this last reaction were investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francisco Valentin; Narbeh Artoun; Masahiro Kawaji
2015-08-01
Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures upmore » to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.« less
Master Curve and Conventional Fracture Toughness of Modified 9Cr-1Mo Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji-Hyun, Yoon; Sung-Ho, Kim; Bong-Sang, Lee
2006-07-01
Modified 9Cr-1Mo steel is a primary candidate material for reactor pressure vessel of Very High Temperature Gas-Cooled Reactor (VHTR) in Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as preliminary tests for the selection of the RPV material for VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with those of SA508-Gr.3. The objective of this study was to obtain pre-irradiation fracture toughness properties of modified 9Cr-1Mo steel as reference data for the radiation effects investigation. The resultsmore » are as follows. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 deg C and -72.4 deg C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half sized PCVN specimens respectively, which were similar to results for SA508-Gr.3. The K{sub Jc} values of modified 9Cr-1Mo with test temperatures are successfully expressed with the Master Curve. The J-R fracture resistance of modified 9Cr-1Mo steel at room temperature was almost the same as that of SA508-Gr.3. On the other hand it was a little bit higher at an elevated temperature. (authors)« less
Fracture toughness and the master curve for modified 9Cr-1Mo steel
NASA Astrophysics Data System (ADS)
Yoon, Ji-Hyun; Yoon, Eui-Pak
2006-12-01
Modified 9Cr-1Mo steel is a primary candidate material for the reactor pressure vessel of a Very High Temperature Gas-Cooled Reactor (VHTR) in the Korean Nuclear Hydrogen Development and Demonstration (NHDD) program. In this study, the T0 reference temperature, J-R fracture resistance and Charpy impact properties were evaluated for commercial Grade 91 steel as part of the preliminary testing for a selection of the RPV material for the VHTR. The fracture toughness of the modified 9Cr-1Mo steel was compared with that of SA508-Gr.3. The objective of this study was to obtain the pre-irradiation fracture toughness properties of the modified 9Cr-1Mo steel as reference data for an investigation of radiation effects. Charpy impact properties of the modified 9Cr-1Mo steel were similar to those of SA508-Gr.3. T0 reference temperatures were measured as -67.7 and -72.4°C from the tests with standard PCVN (pre-cracked Charpy V-notch) and half-sized PCVN specimens respectively, which were similar to the results for SA508-Gr.3. The KJc values of the modified 9Cr-1Mo steel with the test temperatures are successfully expressed by the Master Curve. The J-R fracture resistance of the modified 9Cr-1Mo steel at room temperature was nearly identical to that of SA508-Gr.3; in contrast, it was slightly higher at an elevated temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.A. Bingham; R.M. Ferrer; A.M. ougouag
2009-09-01
An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry andmore » cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.« less
Fuel development for gas-cooled fast reactors
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Fielding, R.; Gan, J.
2007-09-01
The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.
NGNP Data Management and Analysis System Analysis and Web Delivery Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cynthia D. Gentillon
2011-09-01
Projects for the Very High Temperature Reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the very high temperature reactor. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high-temperature and high-fluence environments. The NGNP Data Management and Analysis System (NDMAS) at the Idaho National Laboratory has been established to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities formore » displaying the data in meaningful ways and for data analysis to identify useful relationships among the measured quantities. The capabilities are described from the perspective of NDMAS users, starting with those who just view experimental data and analytical results on the INL NDMAS web portal. Web display and delivery capabilities are described in detail. Also the current web pages that show Advanced Gas Reactor, Advanced Graphite Capsule, and High Temperature Materials test results are itemized. Capabilities available to NDMAS developers are more extensive, and are described using a second series of examples. Much of the data analysis efforts focus on understanding how thermocouple measurements relate to simulated temperatures and other experimental parameters. Statistical control charts and correlation monitoring provide an ongoing assessment of instrument accuracy. Data analysis capabilities are virtually unlimited for those who use the NDMAS web data download capabilities and the analysis software of their choice. Overall, the NDMAS provides convenient data analysis and web delivery capabilities for studying a very large and rapidly increasing database of well-documented, pedigreed data.« less
3D thermal modeling of TRISO fuel coupled with neutronic simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jianwei; Uddin, Rizwan
2010-01-01
The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modelingmore » of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.« less
ICP-MS measurement of diffusion coefficients of Cs in NBG-18 graphite
NASA Astrophysics Data System (ADS)
Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.
2015-11-01
Graphite is used in the HGTR/VHTR as moderator and it also functions as a barrier to fission product release. Therefore, an elucidation of transport of fission products in reactor-grade graphite is required. We have measured diffusion coefficients of Cs in graphite NBG-18 using the release method, wherein we infused spheres of NBG-18 with Cs and measured the release rates in the temperature range of 1090-1395 K. We have obtained: These seem to be the first reported values of Cs diffusion coefficients in NBG-18. The values are lower than those reported for other graphites in the literature.
Modeling Fission Product Sorption in Graphite Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szlufarska, Izabela; Morgan, Dane; Allen, Todd
2013-04-08
The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributionsmore » of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).« less
Investigations of the Application of CFD to Flow Expected in the Lower Plenum of the Prismatic VHTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard W.Johnson; Tara Gallaway; Donna P. Guillen
2006-09-01
The Generation IV (Gen IV) very high temperature reactor (VHTR) will either be a prismatic (block) or pebble bed design. However, a prismatic VHTR reference design, based on the General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) [General Atomics, 1996] has been developed for preliminary analysis purposes [MacDonald, et al., 2003]. Numerical simulation studies reported herein are based on this reference design. In the lower plenum of the prismatic reference design, the flow will be introduced by dozens of turbulent jets from the core above. The jet flow will encounter rows of columns that support the core. The flow from themore » core will have to turn ninety degrees and flow toward the exit duct as it passed through the forest of support columns. Due to the radial variation of the power density in the core, the jets will be at various temperatures at the inlet to the lower plenum. This presents some concerns, including that local hot spots may occur in the lower plenum. This may have a deleterious effect on the materials present as well as cause a variation in temperature to be present as the flow enters the power conversion system machinery, which could cause problems with the operation of the machinery. In the past, systems analysis codes have been used to model flow in nuclear reactor systems. It is recognized, however, that such codes are not capable of modeling the local physics of the flow to be able to analyze for local mixing and temperature variations. This has led to the determination that computational fluid dynamic (CFD) codes be used, which are generally regarded as having the capability of accurately simulating local flow physics. Accurate flow modeling involves determining appropriate modeling strategies needed to obtain accurate analyses. These include determining the fineness of the grid needed, the required iterative convergence tolerance, which numerical discretization method to use, and which turbulence model and wall treatment should be employed. It also involves validating the computer code and turbulence model against a series of separate and combined flow phenomena and selecting the data used for the validation. This report describes progress made to identify proper modeling strategies for simulating the lower plenum flow for the task entitled “CFD software validation of jets in crossflow,” which was designed to investigate the issues pertaining to the validation process. The flow phenomenon previously chosen to investigate is flow in a staggered tube bank because it is shown by preliminary simulations to be the location of the highest turbulence intensity in the lower plenum Numerical simulations were previously obtained assuming that the flow is steady. Various turbulence models were employed along with strategies to reduce numerical error to allow appropriate comparisons of the results. It was determined that the sophisticated Reynolds stress model (RSM) provided the best results. It was later determined that the flow is an unsteady flow wherein circulating eddies grow behind the tube and ‘peel off’ alternately from the top and the bottom of the tube. Additional calculations show that the mean velocity is well predicted when the flow is modeled as an unsteady flow. The results for U are clearly superior for the unsteady computations; the unsteady computations for the turbulence stress are similar to those for the steady calculations, showing the same trends. It is clear that strategie« less
Selection and properties of alternative forming fluids for TRISO fuel kernel production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, M. P.; King, J. C.; Gorman, B. P.
2013-01-01
Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardousmore » alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.« less
Selection and properties of alternative forming fluids for TRISO fuel kernel production
NASA Astrophysics Data System (ADS)
Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, D. W.
2013-01-01
Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ˜10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.
AGC-2 Graphite Pre-irradiation Data Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Swank; Joseph Lord; David Rohrbaugh
2010-08-01
The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less
Creep-Fatigue Behavior of Alloy 617 at 850 and 950°C, Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, L.; Carroll, M.
Alloy 617 is the leading candidate material for an Intermediate Heat Exchanger (IHX) of the Very High Temperature Reactor (VHTR). To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests including hold times up to 9000 s at maximum tensile strain were conducted at 850 and 950 degrees C. At both temperatures, the fatigue resistance decreased when a hold time was added at peak tensile strain. The magnitude of this effect depended on the specific mechanisms and whether they resulted in a change in fracture mode from transgranular in pure fatigue to intergranular in creep-fatiguemore » for a particular temperature and strain range combination. Increases in the tensile hold duration beyond an initial value were not detrimental to the creep-fatigue resistance at 950 degrees C but did continue to degrade the lifetimes at 850 degrees C.« less
Effect of Reacting Surface Density on the Overall Graphite Oxidation Rate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang H. Oh; Eung Kim; Jong Lim
2009-05-01
Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internalmore » pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1)Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is because their chemical and mechanical characteristics are well identified by the previous investigations, and therefore it was convenient for us to access the published data, and to apply and validate our new methodologies. This paper presents preliminary results of compressive strength vs. burn-off and surface area density vs. burn-off, which can be used for the nuclear graphite selection for the NGNP.« less
Investigation on the Core Bypass Flow in a Very High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Yassin
2013-10-22
Uncertainties associated with the core bypass flow are some of the key issues that directly influence the coolant mass flow distribution and magnitude, and thus the operational core temperature profiles, in the very high-temperature reactor (VHTR). Designers will attempt to configure the core geometry so the core cooling flow rate magnitude and distribution conform to the design values. The objective of this project is to study the bypass flow both experimentally and computationally. Researchers will develop experimental data using state-of-the-art particle image velocimetry in a small test facility. The team will attempt to obtain full field temperature distribution using racksmore » of thermocouples. The experimental data are intended to benchmark computational fluid dynamics (CFD) codes by providing detailed information. These experimental data are urgently needed for validation of the CFD codes. The following are the project tasks: • Construct a small-scale bench-top experiment to resemble the bypass flow between the graphite blocks, varying parameters to address their impact on bypass flow. Wall roughness of the graphite block walls, spacing between the blocks, and temperature of the blocks are some of the parameters to be tested. • Perform CFD to evaluate pre- and post-test calculations and turbulence models, including sensitivity studies to achieve high accuracy. • Develop the state-of-the art large eddy simulation (LES) using appropriate subgrid modeling. • Develop models to be used in systems thermal hydraulics codes to account and estimate the bypass flows. These computer programs include, among others, RELAP3D, MELCOR, GAMMA, and GAS-NET. Actual core bypass flow rate may vary considerably from the design value. Although the uncertainty of the bypass flow rate is not known, some sources have stated that the bypass flow rates in the Fort St. Vrain reactor were between 8 and 25 percent of the total reactor mass flow rate. If bypass flow rates are on the high side, the quantity of cooling flow through the core may be considerably less than the nominal design value, causing some regions of the core to operate at temperatures in excess of the design values. These effects are postulated to lead to localized hot regions in the core that must be considered when evaluating the VHTR operational and accident scenarios.« less
Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures
NASA Astrophysics Data System (ADS)
Tahir, Fraaz
The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.
Influence of grain orientation on the incipient oxidation behavior of Haynes 230 at 900 °C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xu, E-mail: xuw388@mail.usask.ca; Fan, Fan; Szpunar, Jerzy A.
Ni-based superalloy Haynes 230 is used in many applications such as very high temperature reactor (VHTR) or solid oxide fuel cells (SOFCs) where it is exposed to high temperature service environment. In order to improve the resistance for high temperature oxidation, the effect of crystallographic orientation on the early stage oxidation was investigated. It was demonstrated that different oxide thicknesses are formed on grains having different orientations. Comparison of electron backscatter diffraction (EBSD) orientation maps before and after oxidation at 900 °C indicates that grains near (111) orientation, especially with the deviation angle from <111> that is smaller than 20°,more » are more oxidation resistant than grains of other orientations. Correlation between the results of electron backscatter diffraction (EBSD) and atomic force microscopy (AFM) was used to compare the oxidation rate of grains having different crystallographic orientation. The oxidation rate was found to change with the crystallographic orientation as follows (111) < (110) < (100), also it was demonstrated that the oxidation rate changes are a nearly linear function of the angle of deviation from <111> direction. The morphology of surface oxide also depends on the orientation of grains. - Highlights: • Comparison of EBSD maps before and after oxidation allows to investigate the effect of orientation on oxidation in a more direct way; • Effect of crystallographic orientation on oxidation behavior of alloy 230 is studied by combination of EBSD and AFM; • Different thickness of oxide is formed on grain with different orientation and dependence of anisotropic oxidation behavior is discussed; • The morphology of grains is also orientation dependence.« less
Molecular Tagging Velocimetry Development for In-situ Measurement in High-Temperature Test Facility
NASA Technical Reports Server (NTRS)
Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.
2015-01-01
The High Temperature Test Facility, HTTF, at Oregon State University (OSU) is an integral-effect test facility designed to model the behavior of a Very High Temperature Gas Reactor (VHTR) during a Depressurized Conduction Cooldown (DCC) event. It also has the ability to conduct limited investigations into the progression of a Pressurized Conduction Cooldown (PCC) event in addition to phenomena occurring during normal operations. Both of these phenomena will be studied with in-situ velocity field measurements. Experimental measurements of velocity are critical to provide proper boundary conditions to validate CFD codes, as well as developing correlations for system level codes, such as RELAP5 (http://www4vip.inl.gov/relap5/). Such data will be the first acquired in the HTTF and will introduce a diagnostic with numerous other applications to the field of nuclear thermal hydraulics. A laser-based optical diagnostic under development at The George Washington University (GWU) is presented; the technique is demonstrated with velocity data obtained in ambient temperature air, and adaptation to high-pressure, high-temperature flow is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwin A. Harvego; Michael G. McKellar
2011-11-01
There have been a number of studies involving the use of gases operating in the supercritical mode for power production and process heat applications. Supercritical carbon dioxide (CO2) is particularly attractive because it is capable of achieving relatively high power conversion cycle efficiencies in the temperature range between 550 C and 750 C. Therefore, it has the potential for use with any type of high-temperature nuclear reactor concept, assuming reactor core outlet temperatures of at least 550 C. The particular power cycle investigated in this paper is a supercritical CO2 Recompression Brayton Cycle. The CO2 Recompression Brayton Cycle can bemore » used as either a direct or indirect power conversion cycle, depending on the reactor type and reactor outlet temperature. The advantage of this cycle when compared to the helium Brayton cycle is the lower required operating temperature; 550 C versus 850 C. However, the supercritical CO2 Recompression Brayton Cycle requires an operating pressure in the range of 20 MPa, which is considerably higher than the required helium Brayton cycle operating pressure of 8 MPa. This paper presents results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton Recompression cycle for different reactor outlet temperatures. The direct supercritical CO2 cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 Brayton Recompression cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect cycles, sensitivity calculations were performed for reactor outlet temperature between 550 C and 850 C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power cycle, thermal efficiencies in the range of 40 to 50% can be achieved. For the indirect supercritical CO2 power cycle, thermal efficiencies were approximately 10% lower than those obtained for the direct cycle over the same reactor outlet temperature range.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
... Market and Planning Efficiency Through Improved Software; Notice of Technical Conference To Discuss Increasing Market and Planning Efficiency Through Improved Software May 7, 2010. Take notice that Commission... planning efficiency through improved software. [[Page 27342
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phadke, Amol; Shah, Nihar; Abhyankar, Nikit
Improving efficiency of air conditioners (ACs) typically involves improving the efficiency of various components such as compressors, heat exchangers, expansion valves, refrigerant,and fans. We estimate the incremental cost of improving the efficiency of room ACs based on the cost of improving the efficiency of its key components. Further, we estimate the retail price increase required to cover the cost of efficiency improvement, compare it with electricity bill savings, and calculate the payback period for consumers to recover the additional price of a more efficient AC. The finding that significant efficiency improvement is cost effective from a consumer perspective is robustmore » over a wide range of assumptions. If we assume a 50% higher incremental price compared to our baseline estimate, the payback period for the efficiency level of 3.5 ISEER is 1.1 years. Given the findings of this study, establishing more stringent minimum efficiency performance criteria (one-star level) should be evaluated rigorously considering significant benefits to consumers, energy security, and environment« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nihar; Abhyankar, Nikit; Park, Won Young
Improving efficiency of air conditioners (ACs) typically involves improving the efficiency of various components such as compressors, heat exchangers, expansion valves, refrigerant and fans. We estimate the incremental cost of improving the efficiency of room ACs based on the cost of improving the efficiency of its key components. Further, we estimate the retail price increase required to cover the cost of efficiency improvement, compare it with electricity bill savings, and calculate the payback period for consumers to recover the additional price of a more efficient AC. We assess several efficiency levels, two of which are summarized below in the report.more » The finding that significant efficiency improvement is cost effective from a consumer perspective is robust over a wide range of assumptions. If we assume a 50% higher incremental price compared to our baseline estimate, the payback period for the efficiency level of 3.5 ISEER is 1.1 years. Given the findings of this study, establishing more stringent minimum efficiency performance criteria (one star level) should be evaluated rigorously considering significant benefits to consumers, energy security and environment.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... Market and Planning Efficiency Through Improved Software; Notice of Technical Conference: Increasing Real-Time and Day- Ahead Market Efficiency Through Improved Software Take notice that Commission staff will...-time and day-ahead market efficiency through improved software. A detailed agenda with the list of and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-13
... Market and Planning Efficiency Through Improved Software; Notice of Technical Conference: Increasing Real-Time and Day- Ahead Market Efficiency Through Improved Software Take notice that Commission staff will... for increasing real-time and day-ahead market efficiency through improved software. This conference...
NASA Astrophysics Data System (ADS)
Clifford, Corey; Kimber, Mark
2017-11-01
Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.
Nodal Diffusion Burnable Poison Treatment for Prismatic Reactor Cores
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. M. Ougouag; R. M. Ferrer
2010-10-01
The prismatic block version of the High Temperature Reactor (HTR) considered as a candidate Very High Temperature Reactor (VHTR)design may use burnable poison pins in locations at some corners of the fuel blocks (i.e., assembly equivalent structures). The presence of any highly absorbing materials, such as these burnable poisons, within fuel blocks for hexagonal geometry, graphite-moderated High Temperature Reactors (HTRs) causes a local inter-block flux depression that most nodal diffusion-based method have failed to properly model or otherwise represent. The location of these burnable poisons near vertices results in an asymmetry in the morphology of the assemblies (or blocks). Hencemore » the resulting inadequacy of traditional homogenization methods, as these “spread” the actually local effect of the burnable poisons throughout the assembly. Furthermore, the actual effect of the burnable poison is primarily local with influence in its immediate vicinity, which happens to include a small region within the same assembly as well as similar regions in the adjacent assemblies. Traditional homogenization methods miss this artifact entirely. This paper presents a novel method for treating the local effect of the burnable poison explicitly in the context of a modern nodal method.« less
Biaxial Thermal Creep of Alloy 617 and Alloy 230 for VHTR Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Kun; Lv, Wei; Tung, Hsiao-Ming
2016-05-18
In this study, we employed pressurized creep tubes to investigate the biaxial thermal creep behavior of Inconel 617 (alloy 617) and Haynes 230 (alloy 230). Both alloys are considered to he the primary candidate structural materials for very high-temperature reactors (VITITRs) due to their exceptional high-temperature mechanical properties. The current creep experiments were conducted at 900 degrees C for the effective stress range of 15-35 MPa. For both alloys, complete creep strain development with primary, secondary, and tertiary regimes was observed in all the studied conditions. Tertiary creep was found to he dominant over the entire creep lives of bothmore » alloys. With increasing applied creep stress, the fraction of the secondary creep regime decreases. The nucleation, diffusion, and coarsening of creep voids and carbides on grain boundaries were found to be the main reasons for the limited secondary regime and were also found to be the major causes of creep fracture. The creep curves computed using the adjusted creep equation of the form epsilon= cosh 1(1 rt) + P-sigma ntm agree well with the experimental results for both alloys at die temperatures of 850-950 degrees C.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... Market and Planning Efficiency Through Improved Software; Notice Establishing Date for Comments From June... real-time and day- ahead market efficiency through improved software.\\1\\ \\1\\ Notice of technical conference: increasing real-time and day-ahead market efficiency through improved software, 76 Fed. Reg. 28...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup
In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot andmore » 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... for improving Medicare program efficiency and to reward suggesters for monetary savings. 420.410... Program Efficiency and to Reward Suggesters for Monetary Savings § 420.410 Establishment of a program to collect suggestions for improving Medicare program efficiency and to reward suggesters for monetary...
Code of Federal Regulations, 2011 CFR
2011-10-01
... for improving Medicare program efficiency and to reward suggesters for monetary savings. 420.410... Program Efficiency and to Reward Suggesters for Monetary Savings § 420.410 Establishment of a program to collect suggestions for improving Medicare program efficiency and to reward suggesters for monetary...
The improving efficiency frontier of inpatient rehabilitation hospitals.
Harrison, Jeffrey P; Kirkpatrick, Nicole
2011-01-01
This study uses a linear programming technique called data envelopment analysis to identify changes in the efficiency frontier of inpatient rehabilitation hospitals after implementation of the prospective payment system. The study provides a time series analysis of the efficiency frontier for inpatient rehabilitation hospitals in 2003 immediately after implementation of PPS and then again in 2006. Results indicate that the efficiency frontier of inpatient rehabilitation hospitals increased from 84% in 2003 to 85% in 2006. Similarly, an analysis of slack or inefficiency shows improvements in output efficiency over the study period. This clearly documents that efficiency in the inpatient rehabilitation hospital industry after implementation of PPS is improving. Hospital executives, health care policymakers, taxpayers, and other stakeholders benefit from studies that improve health care efficiency.
Silicon solar cell efficiency improvement: Status and outlook
NASA Technical Reports Server (NTRS)
Wolf, M.
1985-01-01
Efficiency and operating life is an economic attribute in silicon solar cells application. The efficiency improvements made during the 30 year existence of the silicon solar cells, from about 6% efficiency at the beginning to 19% in the most recent experimental cells is illustrated. In the more stationary periods, the effort was oriented towards improving radiation resistance and yields on the production lines, while, in other periods, the emphasis was on reaching new levels of efficiency through better cell design and improved material processing. First results were forthcoming from the recent efforts. Considerably more efficiency advancement in silicon solar cells is expected, and the anticipated attainment of efficiencies significantly above 20% is discussed. Major advances in material processing and in the resulting material perfection are required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xu; Shen, Bo; Price, Lynn
China’s industrial sector dominates the country’s total energy consumption and energy efficiency in the industry sector is crucial to help China reach its energy and CO 2 emissions reduction goals. There are many energy efficiency policies in China, but the motivation and willingness of enterprises to improve energy efficiency has weakened. This report first identifies barriers that enterprises face to be self-motivated to implement energy efficiency measures. Then, this report reviews international policies and programs to improve energy efficiency and evaluates how these policies helped to address the identified barriers. Lastly, this report draws conclusions and provides recommendations to Chinamore » in developing policies and programs to motivate enterprises to improve energy efficiency.« less
Research requirements for development of improved helicopter rotor efficiency
NASA Technical Reports Server (NTRS)
Davis, S. J.
1976-01-01
The research requirements for developing an improved-efficiency rotor for a civil helicopter are documented. The various design parameters affecting the hover and cruise efficiency of a rotor are surveyed, and the parameters capable of producing the greatest potential improvement are identified. Research and development programs to achieve these improvements are defined, and estimated costs and schedules are presented. Interaction of the improved efficiency rotor with other technological goals for an advanced civil helicopter is noted, including its impact on engine noise, hover and cruise performance, one-engine-inoperative hover capability, and maintenance and reliability.
The improving efficiency frontier of religious not-for-profit hospitals.
Harrison, Jeffrey P; Sexton, Christopher
2006-01-01
By using data-envelopment analysis (DEA), this study evaluates the efficiency of religious not-for-profit hospitals. Hospital executives, healthcare policy makers, taxpayers, and other stakeholders benefit from studies that improve hospital efficiency. Results indicate that overall efficiency in religious hospitals improved from 72% in 1998 to 74% in 2001. What is more important is that the number of religious hospitals operating on the efficiency frontier increased from 40 in 1998 to 47 in 2001. This clearly documents that religious hospitals are becoming more efficient in the management of resources. From a policy perspective, this study highlights the economic importance of encouraging increased efficiency throughout the healthcare industry.
Novignon, Jacob; Nonvignon, Justice
2017-06-12
Health centers in Ghana play an important role in health care delivery especially in deprived communities. They usually serve as the first line of service and meet basic health care needs. Unfortunately, these facilities are faced with inadequate resources. While health policy makers seek to increase resources committed to primary healthcare, it is important to understand the nature of inefficiencies that exist in these facilities. Therefore, the objectives of this study are threefold; (i) estimate efficiency among primary health facilities (health centers), (ii) examine the potential fiscal space from improved efficiency and (iii) investigate the efficiency disparities in public and private facilities. Data was from the 2015 Access Bottlenecks, Cost and Equity (ABCE) project conducted by the Institute for Health Metrics and Evaluation. The Stochastic Frontier Analysis (SFA) was used to estimate efficiency of health facilities. Efficiency scores were then used to compute potential savings from improved efficiency. Outpatient visits was used as output while number of personnel, hospital beds, expenditure on other capital items and administration were used as inputs. Disparities in efficiency between public and private facilities was estimated using the Nopo matching decomposition procedure. Average efficiency score across all health centers included in the sample was estimated to be 0.51. Also, average efficiency was estimated to be about 0.65 and 0.50 for private and public facilities, respectively. Significant disparities in efficiency were identified across the various administrative regions. With regards to potential fiscal space, we found that, on average, facilities could save about GH₵11,450.70 (US$7633.80) if efficiency was improved. We also found that fiscal space from efficiency gains varies across rural/urban as well as private/public facilities, if best practices are followed. The matching decomposition showed an efficiency gap of 0.29 between private and public facilities. There is need for primary health facility managers to improve productivity via effective and efficient resource use. Efforts to improve efficiency should focus on training health workers and improving facility environment alongside effective monitoring and evaluation exercises.
RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom
2012-06-01
The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.« less
RELAP5-3D results for phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strydom, G.; Epiney, A. S.
2012-07-01
The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2. (authors)« less
Al-Amin, Mona; Makarem, Suzanne C; Rosko, Michael
2016-01-01
Efficiency has emerged as a central goal to the operations of health care organizations. There are two competing perspectives on the relationship between efficiency and organizational performance. Some argue that organizational slack is a waste and that efficiency contributes to organizational performance, whereas others maintain that slack acts as a buffer, allowing organizations to adapt to environmental demands and contributing to organizational performance. As value-based purchasing becomes more prevalent, health care organizations are incented to become more efficient and, at the same time, improve their patients' experiences and outcomes. Unused slack resources might facilitate the timely implementation of these improvements. Building on previous research on organizational slack and inertia, we test whether efficiency and other organizational factors predict organizational effectiveness in improving Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) ratings. We rely on data from the American Hospital Association and HCAHPS. We estimate hospital cost-efficiency by Stochastic Frontier Analysis and use regression analysis to determine whether efficiency, competition, hospital size, and other organizational factors are significant predictors of hospital effectiveness. Our findings indicate that efficiency and hospital size have a significant negative association with organizational ability to improve HCAHPS ratings. Although achieving organizational efficiency is necessary for health care organizations, given the changes that are currently occurring in the U.S. health care system, it is important for health care managers to maintain a certain level of slack to respond to environmental demands and have the resources needed to improve their performance.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-28
... Market and Planning Efficiency Through Improved Software; Supplemental Agenda Notice Take notice that... for increasing real-time and day-ahead market efficiency through improved software. A detailed agenda..., the software industry, government, research centers and academia and is intended to build on the...
USDA-ARS?s Scientific Manuscript database
The walnut industry is faced with an urgent need to improve post-harvest processing efficiency, particularly drying and dehulling operations. This research investigated the feasibility of dry-dehulling and infrared (IR) pre-drying of walnuts for improved processing efficiency and dried product quali...
Engineering crop nutrient efficiency for sustainable agriculture.
Chen, Liyu; Liao, Hong
2017-10-01
Increasing crop yields can provide food, animal feed, bioenergy feedstocks and biomaterials to meet increasing global demand; however, the methods used to increase yield can negatively affect sustainability. For example, application of excess fertilizer can generate and maintain high yields but also increases input costs and contributes to environmental damage through eutrophication, soil acidification and air pollution. Improving crop nutrient efficiency can improve agricultural sustainability by increasing yield while decreasing input costs and harmful environmental effects. Here, we review the mechanisms of nutrient efficiency (primarily for nitrogen, phosphorus, potassium and iron) and breeding strategies for improving this trait, along with the role of regulation of gene expression in enhancing crop nutrient efficiency to increase yields. We focus on the importance of root system architecture to improve nutrient acquisition efficiency, as well as the contributions of mineral translocation, remobilization and metabolic efficiency to nutrient utilization efficiency. © 2017 Institute of Botany, Chinese Academy of Sciences.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... Market and Planning Efficiency Through Improved Software; Notice Establishing Date for Comments July 27... software related to wholesale electricity markets and planning: \\1\\ \\1\\ Notice of Technical Conference to Discuss Increasing Market and Planning Efficiency Through Improved Software, 75 FR 27,341 (2010). June 2-3...
Air transportation energy efficiency
NASA Technical Reports Server (NTRS)
Williams, L. J.
1977-01-01
The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.
The NASA Aircraft Energy Efficiency program
NASA Technical Reports Server (NTRS)
Klineberg, J. M.
1979-01-01
A review is provided of the goals, objectives, and recent progress in each of six aircraft energy efficiency programs aimed at improved propulsive, aerodynamic and structural efficiency for future transport aircraft. Attention is given to engine component improvement, an energy efficient turbofan engine, advanced turboprops, revolutionary gains in aerodynamic efficiency for aircraft of the late 1990s, laminar flow control, and composite primary aircraft structures.
Van Houdenhoven, Mark; van Oostrum, Jeroen M; Hans, Erwin W; Wullink, Gerhard; Kazemier, Geert
2007-09-01
An operating room (OR) department has adopted an efficient business model and subsequently investigated how efficiency could be further improved. The aim of this study is to show the efficiency improvement of lowering organizational barriers and applying advanced mathematical techniques. We applied advanced mathematical algorithms in combination with scenarios that model relaxation of various organizational barriers using prospectively collected data. The setting is the main inpatient OR department of a university hospital, which sets its surgical case schedules 2 wk in advance using a block planning method. The main outcome measures are the number of freed OR blocks and OR utilization. Lowering organizational barriers and applying mathematical algorithms can yield a 4.5% point increase in OR utilization (95% confidence interval 4.0%-5.0%). This is obtained by reducing the total required OR time. Efficient OR departments can further improve their efficiency. The paper shows that a radical cultural change that comprises the use of mathematical algorithms and lowering organizational barriers improves OR utilization.
In-Situ Optical Imaging of Carrier Transport in Multilayer Solar Cells
2008-06-01
5 1. Efficiency Considerations....................................................... 5 2. Construction...improved efficiency solar cells. The need to move forward on these improvements is driven by the increasing price of oil and other traditional fuels...any improvement in material in a high efficiency multi-junction cell can be difficult to mathematically model, and much effort is involved in
Assessing global resource utilization efficiency in the industrial sector.
Rosen, Marc A
2013-09-01
Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Danny S; Sherwin, John R; Raustad, Richard
2014-04-10
The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonalmore » energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.« less
Salgado, Roy M; Sheard, Ailish C; Vaughan, Roger A; Parker, Daryl L; Schneider, Suzanne M; Kenefick, Robert W; McCormick, James J; Gannon, Nicholas P; Van Dusseldorp, Trisha A; Kravitz, Len R; Mermier, Christine M
2017-02-01
Heat stress has been reported to reduce uncoupling proteins (UCP) expression, which in turn should improve mitochondrial efficiency. Such an improvement in efficiency may translate to the systemic level as greater exercise economy. However, neither the heat-induced improvement in mitochondrial efficiency (due to decrease in UCP), nor its potential to improve economy has been studied. Determine: (i) if heat stress in vitro lowers UCP3 thereby improving mitochondrial efficiency in C2C12 myocytes; (ii) whether heat acclimation (HA) in vivo improves exercise economy in trained individuals; and (iii) the potential improved economy during exercise at altitude. In vitro, myocytes were heat stressed for 24 h (40°C), followed by measurements of UCP3, mitochondrial uncoupling, and efficiency. In vivo, eight trained males completed: (i) pre-HA testing; (ii) 10 days of HA (40°C, 20% RH); and (iii) post-HA testing. Pre- and posttesting consisted of maximal exercise test and submaximal exercise at two intensities to assess exercise economy at 1600 m (Albuquerque, NM) and 4350 m. Heat-stressed myocytes displayed significantly reduced UCP3 mRNA expression and, mitochondrial uncoupling (77.1 ± 1.2%, P < 0.0001) and improved mitochondrial efficiency (62.9 ± 4.1%, P < 0.0001) compared to control. In humans, at both 1600 m and 4350 m, following HA, submaximal exercise economy did not change at low and moderate exercise intensities. Our findings indicate that while heat-induced reduction in UCP3 improves mitochondrial efficiency in vitro, this is not translated to in vivo improvement of exercise economy at 1600 m or 4350 m. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Wang, Li; Xi, Feng Ming; Li, Jin Xin; Liu, Li Li
2016-09-01
Taking 39 industries as independent decision-making units in Liaoning Province from 2003 to 2012 and considering the benefits of energy, economy and environment, we combined direction distance function and radial DEA method to estimate and decompose the energy conservation and carbon emissions reduction efficiency of the industries. Carbon emission of each industry was calculated and defined as an undesirable output into the model of energy saving and carbon emission reduction efficiency. The results showed that energy saving and carbon emission reduction efficiency of industries had obvious heterogeneity in Liaoning Province. The whole energy conservation and carbon emissions reduction efficiency in each industry of Liaoning Province was not high, but it presented a rising trend. Improvements of pure technical efficiency and scale efficiency were the main measures to enhance energy saving and carbon emission reduction efficiency, especially scale efficiency improvement. In order to improve the energy saving and carbon emission reduction efficiency of each industry in Liaoning Province, we put forward that Liaoning Province should adjust industry structure, encourage the development of low carbon high benefit industries, improve scientific and technological level and adjust the industry scale reasonably, meanwhile, optimize energy structure, and develop renewable and clean energy.
Wang, Binbin; Zhang, Huawei; Liang, Dongmei; Hao, Panlong; Li, Yanni; Qiao, Jianjun
2017-12-01
Lactococcus lactis is a gram-positive bacterium used extensively in the dairy industry and food fermentation, and its biological characteristics are usually improved through genetic manipulation. However, poor transformation efficiency was the main restriction factor for the construction of engineered strains. In this study, the transformation efficiency of L. lactis F44 showed a 56.1-fold increase in acid condition (pH 5.0); meanwhile, erythromycin stress (0.04 μg/mL) promoted the transformation efficiency more significantly (76.9-fold). Notably, the transformation efficiency of F44e (L. lactis F44 harboring empty pLEB124) increased up to 149.1-fold under the synergistic stresses of acid and erythromycin. In addition, the gene expression of some DNA binding proteins (DprA, RadA, RadC, RecA, RecQ, and SsbA) changed correspondingly. Especially for radA, 25.1-fold improvement was detected when F44e was exposed to pH 5.0. Overexpression of some DNA binding proteins could improve the transformation efficiency. The results suggested that acid or erythromycin stress could improve the transformation efficiency of L. lactis through regulating gene expression of DNA binding proteins. We have proposed a simple but promising strategy for improving the transformation efficiency of L. lactis and other hard-transformed microorganisms. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Hyperbola-parabola primary mirror in Cassegrain optical antenna to improve transmission efficiency.
Zhang, Li; Chen, Lu; Yang, HuaJun; Jiang, Ping; Mao, Shengqian; Caiyang, Weinan
2015-08-20
An optical model with a hyperbola-parabola primary mirror added in the Cassegrain optical antenna, which can effectively improve the transmission efficiency, is proposed in this paper. The optimum parameters of a hyperbola-parabola primary mirror and a secondary mirror for the optical antenna system have been designed and analyzed in detail. The parabola-hyperbola primary structure optical antenna is obtained to improve the transmission efficiency of 10.60% in theory, and the simulation efficiency changed 9.359%. For different deflection angles to the receiving antenna with the emit antenna, the coupling efficiency curve of the optical antenna has been obtained.
Nanopurification of semen improves AI pregnancy rates in beef cattle
USDA-ARS?s Scientific Manuscript database
Reproductive efficiency is several times more important than any other factor affecting economic efficiency in beef production. Multiple studies have been conducted to improve fertility of beef cows, but few studies have been conducted to improve fertility in sires. Also, with current improvements...
7 CFR 4280.128 - Application and documentation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Program General Renewable Energy System and Energy Efficiency Improvement Guaranteed Loans § 4280.128... capital improvements to an existing renewable energy system) or to make energy efficiency improvements. The response to § 4280.113(a) must include a brief description of the system or improvement. This...
7 CFR 4280.128 - Application and documentation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Program General Renewable Energy System and Energy Efficiency Improvement Guaranteed Loans § 4280.128... capital improvements to an existing renewable energy system) or to make energy efficiency improvements. The response to § 4280.113(a) must include a brief description of the system or improvement. This...
7 CFR 4280.128 - Application and documentation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Program General Renewable Energy System and Energy Efficiency Improvement Guaranteed Loans § 4280.128... capital improvements to an existing renewable energy system) or to make energy efficiency improvements. The response to § 4280.113(a) must include a brief description of the system or improvement. This...
Process and design considerations for high-efficiency solar cells
NASA Technical Reports Server (NTRS)
Rohati, A.; Rai-Choudhury, P.
1985-01-01
This paper shows that oxide surface passivation coupled with optimum multilayer anti-reflective coating can provide approx. 3% (absolute) improvement in solar cell efficiency. Use of single-layer AR coating, without passivation, gives cell efficiencies in the range of 15 to 15.5% on high-quality, 4 ohm-cm as well as 0.1 to 0.2 ohm-cm float-zone silicon. Oxide surface passivation alone raises the cell efficiency to or = 17%. An optimum double-layer AR coating on oxide-passivated cells provides an additional approx. 5 to 10% improvement over a single-layer AR-coated cell, resulting in cell efficiencies in excess of 18%. Experimentally observed improvements are supported by model calculations and an approach to or = 20% efficient cells is discussed.
Efficiency Improvement of HIT Solar Cells on p-Type Si Wafers.
Wei, Chun-You; Lin, Chu-Hsuan; Hsiao, Hao-Tse; Yang, Po-Chuan; Wang, Chih-Ming; Pan, Yen-Chih
2013-11-22
Single crystal silicon solar cells are still predominant in the market due to the abundance of silicon on earth and their acceptable efficiency. Different solar-cell structures of single crystalline Si have been investigated to boost efficiency; the heterojunction with intrinsic thin layer (HIT) structure is currently the leading technology. The record efficiency values of state-of-the art HIT solar cells have always been based on n-type single-crystalline Si wafers. Improving the efficiency of cells based on p-type single-crystalline Si wafers could provide broader options for the development of HIT solar cells. In this study, we varied the thickness of intrinsic hydrogenated amorphous Si layer to improve the efficiency of HIT solar cells on p-type Si wafers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abhyankar, Nikit; Shah, Nihar; Park, Won Young
Falling AC prices, increasing incomes, increasing urbanization, and high cooling requirements due to hot climate are all driving increasing uptake of Room Air Conditioners (RACs) in the Indian market. Air conditioning already comprises 40-60% of summer peak load in large metropolitan Indian cities such as Delhi and is likely to contribute 150 GW to the peak demand in 2030. Standards and labeling policies have contributed to improving the efficiency of RACs in India by about 2.5% in the last 10 years (2.5% per year) while inflation adjusted RAC prices have continued to decline. In this paper, we assess the technicalmore » feasibility, cost-benefit, and required policy enhancements by further accelerating the efficiency improvement of RACs in India. We find that there are examples of significantly more accelerated improvements such as those in Japan and Korea where AC efficiency improved by more than 7% per year resulting in almost a doubling of energy efficiency in 7 to 10 years while inflation adjusted AC prices continued to decline. We find that the most efficient RAC sold on the Indian market is almost twice as efficient as the typical AC sold on the market and hence see no technology constraints in a similar acceleration of improvement of efficiency. If starting 2018, AC efficiency improves at a rate of 6% instead of 3%, 40-60 GW of peak load (equivalent to connected load of 5-6 billion LED bulbs), and over 75 TWh/yr (equivalent to 60 million consumers consuming 100 kWh/month) will be saved by 2030; total peak load reduction would be as high as 50 GW. The net present value (NPV) of the consumer benefit between 2018-2030 will range from Rs 18,000 Cr in the most conservative case (in which prices don’t continue to decline and increase based estimates of today’s cost of efficiency improvement) to 140,000 Cr in a more realistic case (in which prices are not affected by accelerated efficiency improvement as shown by historical experience). This benefit is achievable by ratcheting up the 1 star level for fixed and inverter ACs to the level of today’s five star rating for inverter ACs by 2022. Bulk procurement (similar to the Domestic Efficient Lighting Program) and incentive programs can complement the accelerated ratcheting up of star levels. Similar programs can also be implemented for other types of ACs.« less
Measuring efficiency among US federal hospitals.
Harrison, Jeffrey P; Meyer, Sean
2014-01-01
This study evaluates the efficiency of federal hospitals, specifically those hospitals administered by the US Department of Veterans Affairs and the US Department of Defense. Hospital executives, health care policymakers, taxpayers, and federal hospital beneficiaries benefit from studies that improve hospital efficiency. This study uses data envelopment analysis to evaluate a panel of 165 federal hospitals in 2007 and 157 of the same hospitals again in 2011. Results indicate that overall efficiency in federal hospitals improved from 81% in 2007 to 86% in 2011. The number of federal hospitals operating on the efficiency frontier decreased slightly from 25 in 2007 to 21 in 2011. The higher efficiency score clearly documents that federal hospitals are becoming more efficient in the management of resources. From a policy perspective, this study highlights the economic importance of encouraging increased efficiency throughout the health care industry. This research examines benchmarking strategies to improve the efficiency of hospital services to federal beneficiaries. Through the use of strategies such as integrated information systems, consolidation of services, transaction-cost economics, and focusing on preventative health care, these organizations have been able to provide quality service while maintaining fiscal responsibility. In addition, the research documented the characteristics of those federal hospitals that were found to be on the Efficiency Frontier. These hospitals serve as benchmarks for less efficient federal hospitals as they develop strategies for improvement.
High efficiency silicon solar cell review
NASA Technical Reports Server (NTRS)
Godlewski, M. P. (Editor)
1975-01-01
An overview is presented of the current research and development efforts to improve the performance of the silicon solar cell. The 24 papers presented reviewed experimental and analytic modeling work which emphasizes the improvment of conversion efficiency and the reduction of manufacturing costs. A summary is given of the round-table discussion, in which the near- and far-term directions of future efficiency improvements were discussed.
Variable cross-section windings for efficiency improvement of electric machines
NASA Astrophysics Data System (ADS)
Grachev, P. Yu; Bazarov, A. A.; Tabachinskiy, A. S.
2018-02-01
Implementation of energy-saving technologies in industry is impossible without efficiency improvement of electric machines. The article considers the ways of efficiency improvement and mass and dimensions reduction of electric machines with electronic control. Features of compact winding design for stators and armatures are described. Influence of compact winding on thermal and electrical process is given. Finite element method was used in computer simulation.
Measuring and Benchmarking Technical Efficiency of Public Hospitals in Tianjin, China
Li, Hao; Dong, Siping
2015-01-01
China has long been stuck in applying traditional data envelopment analysis (DEA) models to measure technical efficiency of public hospitals without bias correction of efficiency scores. In this article, we have introduced the Bootstrap-DEA approach from the international literature to analyze the technical efficiency of public hospitals in Tianjin (China) and tried to improve the application of this method for benchmarking and inter-organizational learning. It is found that the bias corrected efficiency scores of Bootstrap-DEA differ significantly from those of the traditional Banker, Charnes, and Cooper (BCC) model, which means that Chinese researchers need to update their DEA models for more scientific calculation of hospital efficiency scores. Our research has helped shorten the gap between China and the international world in relative efficiency measurement and improvement of hospitals. It is suggested that Bootstrap-DEA be widely applied into afterward research to measure relative efficiency and productivity of Chinese hospitals so as to better serve for efficiency improvement and related decision making. PMID:26396090
Recovery Act--Class 8 Truck Freight Efficiency Improvement Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trucks, Daimler
2015-07-26
Daimler Trucks North America completed a five year, $79.6M project to develop and demonstrate a concept vehicle with at least 50% freight efficiency improvement over a weighted average of several drive cycles relative to a 2009 best-in-class baseline vehicle. DTNA chose a very fuel efficient baseline vehicle, the 2009 Freightliner Cascadia with a DD15 engine, yet successfully demonstrated a 115% freight efficiency improvement. DTNA learned a great deal about the various technologies that were incorporated into Super Truck and those that, through down-selection, were discarded. Some of the technologies competed with each other for efficiency, and notably some of themore » technologies complemented each other. For example, we found that Super Truck’s improved aerodynamic drag resulted in improved fuel savings from eCoast, relative to a similar vehicle with worse aerodynamic drag. However, some technologies were in direct competition with each other, namely the predictive technologies which use GPS and 3D digital maps to efficiently manage the vehicles kinetic energy through controls and software, versus hybrid which is a much costlier technology that essentially targets the same inefficiency. Furthermore, the benefits of a comprehensive, integrated powertrain/vehicle approach was proven, in which vast improvements in vehicle efficiency (e.g. lower aero drag and driveline losses) enabled engine strategies such as downrating and downspeeding. The joint engine and vehicle developments proved to be a multiplier-effect which resulted in large freight efficiency improvements. Although a large number of technologies made the selection process and were used on the Super Truck demonstrator vehicle, some of the technologies proved not feasible for series production.« less
Improving paddling efficiency through raising sitting height in female white water kayakers.
Broomfield, Shelley A L; Lauder, Mike
2015-01-01
The study compared female white water paddlers over two conditions: with seat raise and with no seat raise. The aim was to determine whether raising the sitting height would improve paddling efficiency. Sitting height of each participant was recorded in order to calculate the seat raise height required and three-dimensional kinematic data was collected for six participants over both conditions. Twelve measures of efficiency were utilised. The efficiency of all participants improved on the seat condition for ≥4 of the measures, with three participants showing improvement for ≥6 of the measures. The stern snaking measure had the highest value of significance (P = 0.1455) and showed an average of 11.98% reduction in movement between no seat and seat conditions. The results indicate that improvements were seen although these were individualistic. Therefore it can be concluded that it is worth experimenting with a seat raise for a female kayaker who is lacking efficiency, noting, however, that improvements might depend on anthropometrics and the seat height selected, and therefore could elicit differing results.
ERIC Educational Resources Information Center
US Environmental Protection Agency, 2011
2011-01-01
Saving energy through energy efficiency improvements can cost less than generating, transmitting, and distributing energy from power plants, and provides multiple economic and environmental benefits. Local governments can promote energy efficiency in their jurisdictions by developing and implementing strategies that improve the efficiency of…
The moderating effect of leadership on the relationship between personality and performance.
Yeh, Shu-Chuan Jennifer; Yuan, Kuo-Shu; Chen, Shih-Hua Sarah; Lo, Ying-Ying; Chou, Hsueh-Chih; Huang, Shan; Chiu, Herng-Chia; Wan, Thomas T H
2016-10-01
To examine how personality and leadership influence efficiency in the nursing service environment. Leadership and personality contribute to the success and failure of a unit. However, how they interact to influence performance is still understudied. We used matched pairs sample design to survey 135 head nurses and 1353 registered nurses on validated instruments of demographic characteristics, leadership styles and personality during June and July of 2014. Efficiency was calculated using Data Envelopment Analysis. Tobit regression was used for analysis. High conscientiousness and low neuroticism were significantly associated with higher efficiency. Particularly, under the initiating structure leadership style, high conscientiousness, high extraversion, high agreeableness, high openness and low neuroticism were related to higher efficiency. Openness would improve efficiency under a low consideration leadership style. Most personality traits were related to higher efficiency under the initiating leadership style. Only openness would improve leaders' efficiency under a high initiating structure and a low consideration leadership style. Considering personality as one factor of selecting head nurses, selecting the right person can improve the fit between individuals and organisations, which in turn, improves job performance. Training head nurses to develop better leadership styles in nurses is another way to enhance efficiency. © 2016 John Wiley & Sons Ltd.
Meng, Lai-Sheng
2018-04-11
Water is crucial to plant growth and development because it serves as a medium for all cellular functions. Thus, the improvement of plant drought tolerance or water use efficiency/water uptake efficiency is important in modern agriculture. In this review, we mainly focus on new genetic factors for ameliorating drought tolerance or water use efficiency/water uptake efficiency of plants and explore the involvement of these genetic factors in the regulation of improving plant drought tolerance or water use efficiency/water uptake efficiency, which is a result of altered stomata density and improving root systems (primary root length, hair root growth, and lateral root number) and enhanced production of osmotic protectants, which is caused by transcription factors, proteinases, and phosphatases and protein kinases. These results will help guide the synthesis of a model for predicting how the signals of genetic and environmental stress are integrated at a few genetic determinants to control the establishment of either water use efficiency or water uptake efficiency. Collectively, these insights into the molecular mechanism underpinning the control of plant drought tolerance or water use efficiency/water uptake efficiency may aid future breeding or design strategies to increase crop yield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phadke, Amol; Abhyankar, Nikit; Shah, Nihar
Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40% cost effectively. The total potential energy savings from Roommore » AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.« less
Energy-efficiency program for clothes washers, clothes dryers, and dishwashers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-11-01
The objectives of this study of dishwashers, clothes washers, and clothes dryers are: to evaluate existing energy efficiency test procedures and recommend the use of specific test procedures for each appliance group and to establish the maximum economically and technologically feasible energy-efficiency improvement goals for each appliance group. Specifically, the program requirements were to determine the energy efficiency of the 1972 models, to evaluate the feasibility improvements that could be implemented by 1980 to maximize energy efficiency, and to calculate the percentage efficiency improvement based on the 1972 baseline and the recommended 1980 targets. The test program was conducted usingmore » 5 dishwashers, 4 top-loading clothes washers, one front-loading clothes washer, 4 electric clothes dryers, and 4 gas clothes dryers. (MCW)« less
NASA Astrophysics Data System (ADS)
Chan, Chia-Hsin; Tu, Chun-Chuan; Tsai, Wen-Jiin
2017-01-01
High efficiency video coding (HEVC) not only improves the coding efficiency drastically compared to the well-known H.264/AVC but also introduces coding tools for parallel processing, one of which is tiles. Tile partitioning is allowed to be arbitrary in HEVC, but how to decide tile boundaries remains an open issue. An adaptive tile boundary (ATB) method is proposed to select a better tile partitioning to improve load balancing (ATB-LoadB) and coding efficiency (ATB-Gain) with a unified scheme. Experimental results show that, compared to ordinary uniform-space partitioning, the proposed ATB can save up to 17.65% of encoding times in parallel encoding scenarios and can reduce up to 0.8% of total bit rates for coding efficiency.
Improving membrane protein expression by optimizing integration efficiency
2017-01-01
The heterologous overexpression of integral membrane proteins in Escherichia coli often yields insufficient quantities of purifiable protein for applications of interest. The current study leverages a recently demonstrated link between co-translational membrane integration efficiency and protein expression levels to predict protein sequence modifications that improve expression. Membrane integration efficiencies, obtained using a coarse-grained simulation approach, robustly predicted effects on expression of the integral membrane protein TatC for a set of 140 sequence modifications, including loop-swap chimeras and single-residue mutations distributed throughout the protein sequence. Mutations that improve simulated integration efficiency were 4-fold enriched with respect to improved experimentally observed expression levels. Furthermore, the effects of double mutations on both simulated integration efficiency and experimentally observed expression levels were cumulative and largely independent, suggesting that multiple mutations can be introduced to yield higher levels of purifiable protein. This work provides a foundation for a general method for the rational overexpression of integral membrane proteins based on computationally simulated membrane integration efficiencies. PMID:28918393
Sun, Xinlu; Chong, Heap-Yih; Liao, Pin-Chao
2018-06-25
Navigated inspection seeks to improve hazard identification (HI) accuracy. With tight inspection schedule, HI also requires efficiency. However, lacking quantification of HI efficiency, navigated inspection strategies cannot be comprehensively assessed. This work aims to determine inspection efficiency in navigated safety inspection, controlling for the HI accuracy. Based on a cognitive method of the random search model (RSM), an experiment was conducted to observe the HI efficiency in navigation, for a variety of visual clutter (VC) scenarios, while using eye-tracking devices to record the search process and analyze the search performance. The results show that the RSM is an appropriate instrument, and VC serves as a hazard classifier for navigation inspection in improving inspection efficiency. This suggests a new and effective solution for addressing the low accuracy and efficiency of manual inspection through navigated inspection involving VC and the RSM. It also provides insights into the inspectors' safety inspection ability.
NASA Astrophysics Data System (ADS)
Park, Jae-Won; Kim, Eung-Seon; Kim, Jae-Un; Kim, Yootaek; Windes, William E.
2016-08-01
The potential of reducing the oxidation of the supporting graphite components during normal and/or accident conditions in the Very High Temperature Reactor (VHTR) design has been studied. In this work efforts have been made to slow the oxidation process of the graphite with a thin SiC coating (∼ 10 μm). Upon heating at ≥ 1173 K in air, the spallations and cracks were formed in the dense columnar structured SiC coating layer grown on the graphite with a functionally gradient electron beam physical vapor deposition (EB-PVD. In accordance with the formations of these defects, the sample was vigorously oxidized, leaving only the SiC coating layer. Then, efforts were made to heal the surface defects using additional EB-PVD with ion beam bombardment and chemical vapor deposition (CVD). The EB-PVD did not effectively heal the cracks. But, the CVD was more appropriate for crack healing, likely due to its excellent crack line filling capability with a high density and high aspect ratio. It took ∼ 34 min for the 20% weight loss of the CVD crack healed sample in the oxidation test with annealing at 1173 K, while it took ∼ 8 min for the EB-PVD coated sample, which means it took ∼4 times longer at 1173 K for the same weight reduction in this experimental set-up.
FUZZY-LOGIC-BASED CONTROLLERS FOR EFFICIENCY OPTIMIZATION OF INVERTER-FED INDUCTION MOTOR DRIVES
This paper describes a fuzzy-logic-based energy optimizing controller to improve the efficiency of induction motor/drives operating at various load (torque) and speed conditions. Improvement of induction motor efficiency is important not only from the considerations of energy sav...
Air transportation energy efficiency - Alternatives and implications
NASA Technical Reports Server (NTRS)
Williams, L. J.
1976-01-01
Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.
Improving Energy Efficiency of Buildings in the Urals
NASA Astrophysics Data System (ADS)
Kiyanets, A. V.
2017-11-01
The article is devoted to the results of studies of energy efficiency improvements of the buildings which are constructed under the climatic conditions of the Ural Federal District of the Russian Federation. The relevance of the stated problem is corroborated. The requirements of the existing regulatory legal acts of the Russian Federation on energy conservation and energy efficiency in construction are given. The article specifies that energy efficiency in construction refers to a set of measures aimed at the reduction of energy resources which are consumed by buildings and are necessary to maintain the required microclimate parameters indoors. The main modern measures for improving the energy efficiency of buildings are presented, and their application under the climatic conditions of the Urals are analyzed and calculated. Each of the proposed methods is evaluated. Basing on the research results, it is concluded that most of the currently known measures for improving the energy efficiency of buildings are significantly limited in the Ural Federal District due to the small economic effect connected with the complexity and high cost of their implementation and operation, the peculiarities of climatic conditions and the conditions of the population density of the territories or significant ineffectiveness of the measures themselves; the most promising measures for improving the energy efficiency of buildings under the climatic and economic conditions of the Urals are the measures for reducing heat loss through the building envelopes (for improving the heat-insulation characteristics of the applied materials and structures).
Improved Efficient Routing Strategy on Scale-Free Networks
NASA Astrophysics Data System (ADS)
Jiang, Zhong-Yuan; Liang, Man-Gui
Since the betweenness of nodes in complex networks can theoretically represent the traffic load of nodes under the currently used routing strategy, we propose an improved efficient (IE) routing strategy to enhance to the network traffic capacity based on the betweenness centrality. Any node with the highest betweenness is susceptible to traffic congestion. An efficient way to improve the network traffic capacity is to redistribute the heavy traffic load from these central nodes to non-central nodes, so in this paper, we firstly give a path cost function by considering the sum of node betweenness with a tunable parameter β along the actual path. Then, by minimizing the path cost, our IE routing strategy achieved obvious improvement on the network transport efficiency. Simulations on scale-free Barabási-Albert (BA) networks confirmed the effectiveness of our strategy, when compared with the efficient routing (ER) and the shortest path (SP) routing.
Xie, Shao-Lin; Bian, Wan-Ping; Wang, Chao; Junaid, Muhammad; Zou, Ji-Xing; Pei, De-Sheng
2016-01-01
Contemporary improvements in the type II clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system offer a convenient way for genome editing in zebrafish. However, the low efficiencies of genome editing and germline transmission require a time-intensive and laborious screening work. Here, we reported a method based on in vitro oocyte storage by injecting oocytes in advance and incubating them in oocyte storage medium to significantly improve the efficiencies of genome editing and germline transmission by in vitro fertilization (IVF) in zebrafish. Compared to conventional methods, the prior micro-injection of zebrafish oocytes improved the efficiency of genome editing, especially for the sgRNAs with low targeting efficiency. Due to high throughputs, simplicity and flexible design, this novel strategy will provide an efficient alternative to increase the speed of generating heritable mutants in zebrafish by using CRISPR/Cas9 system. PMID:27680290
Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Fina, Michael Dane
Organic light-emitting diodes (OLEDs) have made tremendous technological progress in the past two decades and have emerged as a top competitor for next generation light-emitting displays and lighting. State-of-the-art OLEDs have been reported in literature to approach, and even surpass, white fluorescent tube efficiency. However, despite rapid technological progress, efficiency metrics must be improved to compete with traditional inorganic light-emitting diode (LED) technology. Organic materials possess specialized traits that permit manipulations to the light-emitting cavity. Overall, as demonstrated within, these modifications can be used to improve electrical and optical device efficiencies. This work is focused at analyzing the effects that nanopatterned geometric modifications to the organic active layers play on device efficiency. In general, OLED efficiency is complicated by the complex, coupled processes which contribute to spontaneous dipole emission. A composite of three sub-systems (electrical, exciton and optical) ultimately dictate the OLED device efficiency. OLED electrical operation is believed to take place via a low-mobility-modified Schottky injection process. In the injection-limited regime, geometric effects are expected to modify the local electric field leading to device current enhancement. It is shown that the patterning effect can be used to enhance charge carrier parity, thereby enhancing overall recombination. Current density and luminance characteristics are shown to be improved by OLED nanopatterning from both the model developed within and experimental techniques. Next, the optical enhancement effects produced by the nanopatterned array are considered. Finite-difference time-domain (FDTD) simulations are used to determine positional, spectral optical enhancement for the nanopatterned device. The results show beneficial effects to the device performance. The optical enhancements are related to the reduction in internal radiative quenching (improved internal quantum efficiency) and improvement in light extraction (improved outcoupling efficiency). Furthermore, the electrical model is used to construct a positional radiative efficiency map that when combined with the optical enhancement reveals the overall external quantum efficiency enhancement.
Improving Quality and Efficiency of Postpartum Hospital Education
Buchko, Barbara L.; Gutshall, Connie H.; Jordan, Elizabeth T.
2012-01-01
The purpose of this study was to investigate the implementation of an evidence-based, streamlined, education process (comprehensive education booklet, individualized education plan, and integration of education into the clinical pathway) and nurse education to improve the quality and efficiency of postpartum education during hospitalization. A one-group pretest–posttest design was used to measure the quality of discharge teaching for new mothers and efficiency of the education process for registered nurses before and after implementation of an intervention. Results indicated that a comprehensive educational booklet and enhanced documentation can improve efficiency in the patient education process for nurses. PMID:23997552
DCT based interpolation filter for motion compensation in HEVC
NASA Astrophysics Data System (ADS)
Alshin, Alexander; Alshina, Elena; Park, Jeong Hoon; Han, Woo-Jin
2012-10-01
High Efficiency Video Coding (HEVC) draft standard has a challenging goal to improve coding efficiency twice compare to H.264/AVC. Many aspects of the traditional hybrid coding framework were improved during new standard development. Motion compensated prediction, in particular the interpolation filter, is one area that was improved significantly over H.264/AVC. This paper presents the details of the interpolation filter design of the draft HEVC standard. The coding efficiency improvements over H.264/AVC interpolation filter is studied and experimental results are presented, which show a 4.0% average bitrate reduction for Luma component and 11.3% average bitrate reduction for Chroma component. The coding efficiency gains are significant for some video sequences and can reach up 21.7%.
Future long-range transports - Prospects for improved fuel efficiency
NASA Technical Reports Server (NTRS)
Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.
1975-01-01
A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: historical trends in airplane efficiency; technological opportunities including supercritical aerodynamics, vortex diffusers, composite materials, propulsion systems, active controls, and terminal-area operations; unconventional design concepts, and hydrogen-fueled airplane.
Li, Hao; Dong, Siping
2015-01-01
China has long been stuck in applying traditional data envelopment analysis (DEA) models to measure technical efficiency of public hospitals without bias correction of efficiency scores. In this article, we have introduced the Bootstrap-DEA approach from the international literature to analyze the technical efficiency of public hospitals in Tianjin (China) and tried to improve the application of this method for benchmarking and inter-organizational learning. It is found that the bias corrected efficiency scores of Bootstrap-DEA differ significantly from those of the traditional Banker, Charnes, and Cooper (BCC) model, which means that Chinese researchers need to update their DEA models for more scientific calculation of hospital efficiency scores. Our research has helped shorten the gap between China and the international world in relative efficiency measurement and improvement of hospitals. It is suggested that Bootstrap-DEA be widely applied into afterward research to measure relative efficiency and productivity of Chinese hospitals so as to better serve for efficiency improvement and related decision making. © The Author(s) 2015.
Does capitated contracting improve efficiency? Evidence from California hospitals.
Chu, Hsuan-Lien; Liu, Shuen-Zen; Romeis, James C
2004-01-01
This study examines the effect of capitated contracting on hospital efficiency to better understand strategies related to the recent financial crisis in the California health care market. Our findings indicate that less efficient hospitals are more likely to participate in capitated contracting. As a result, hospitals with capitated contracts are, on average, less efficient than hospitals without capitated contracts. Hospital efficiency generally increases with respect to the degree of capitation involvement. The efficiency improvement, however, becomes insignificant when capitation exposures are already high. Thus, hospital executives should not be overly optimistic about efficiency gains obtained in capitated contracting and should control the degree of capitation involvement.
Rho, Won-Yeop; Chun, Myeung-Hwan; Kim, Ho-Sub; Kim, Hyung-Mo; Suh, Jung Sang; Jun, Bong-Hyun
2016-06-15
Dye-sensitized solar cells (DSSCs) were fabricated using open-ended freestanding TiO₂ nanotube arrays functionalized with Ag nanoparticles (NPs) in the channel to create a plasmonic effect, and then coated with large TiO₂ NPs to create a scattering effect in order to improve energy conversion efficiency. Compared to closed-ended freestanding TiO₂ nanotube array-based DSSCs without Ag or large TiO₂ NPs, the energy conversion efficiency of closed-ended DSSCs improved by 9.21% (actual efficiency, from 5.86% to 6.40%) with Ag NPs, 6.48% (actual efficiency, from 5.86% to 6.24%) with TiO₂ NPs, and 14.50% (actual efficiency, from 5.86% to 6.71%) with both Ag NPs and TiO₂ NPs. By introducing Ag NPs and/or large TiO₂ NPs to open-ended freestanding TiO₂ nanotube array-based DSSCs, the energy conversion efficiency was improved by 9.15% (actual efficiency, from 6.12% to 6.68%) with Ag NPs and 8.17% (actual efficiency, from 6.12% to 6.62%) with TiO₂ NPs, and by 15.20% (actual efficiency, from 6.12% to 7.05%) with both Ag NPs and TiO₂ NPs. Moreover, compared to closed-ended freestanding TiO₂ nanotube arrays, the energy conversion efficiency of open-ended freestanding TiO₂ nanotube arrays increased from 6.71% to 7.05%. We demonstrate that each component-Ag NPs, TiO₂ NPs, and open-ended freestanding TiO₂ nanotube arrays-enhanced the energy conversion efficiency, and the use of a combination of all components in DSSCs resulted in the highest energy conversion efficiency.
Zhang, Xing; Tone, Kaoru; Lu, Yingzhe
2018-04-01
To assess the change in efficiency and total factor productivity (TFP) of the local public hospitals in Japan after the local public hospital reform launched in late 2007, which was aimed at improving the financial capability and operational efficiency of hospitals. Secondary data were collected from the Ministry of Internal Affairs and Communications on 213 eligible medium-sized hospitals, each operating 100-400 beds from FY2006 to FY2011. The improved slacks-based measure nonoriented data envelopment analysis models (Quasi-Max SBM nonoriented DEA models) were used to estimate dynamic efficiency score and Malmquist Index. The dynamic efficiency measure indicated an efficiency gain in the first several years of the reform and then was followed by a decrease. Malmquist Index analysis showed a significant decline in the TFP between 2006 and 2011. The financial improvement of medium-sized hospitals was not associated with enhancement of efficiency. Hospital efficiency was not significantly different among ownership structure and law-application system groups, but it was significantly affected by hospital location. The results indicate a need for region-tailored health care policies and for a more comprehensive reform to overcome the systemic constraints that might contribute to the decline of the TFP. © Health Research and Educational Trust.
Chansa, Collins; Sundewall, Jesper; McIntyre, Di; Tomson, Göran; Forsberg, Birger C
2008-07-01
Zambia introduced a sector-wide approach (SWAp) in the health sector in 1993. The goal was to improve efficiency in the use of domestic funds and externally sourced development assistance by integrating these into a joint sectoral framework. Over a decade into its existence, however, the SWAp remains largely unevaluated. This study explores whether the envisaged improvements have been achieved by studying developments in administrative, technical and allocative efficiency in the Zambian health sector from 1990-2006. A case study was conducted using interviews and analysis of secondary data. Respondents represented a cross-section of stakeholders in the Zambian health sector. Secondary data from 1990-2006 were collected for six indicators related to administrative, technical and allocative efficiency. The results showed small improvements in administrative efficiency. Transaction costs still appeared to be high despite the introduction of the SWAp. Indicators for technical efficiency showed a drop in hospital bed utilization rates and government share of funding for drugs. As for allocative efficiency, budget execution did not improve with the SWAp, although there were large variations between both donors and year. Funding levels had apparently improved at district level but declined for hospitals. Finally, the SWAp had not succeeded in bringing all external assistance together under a common framework. Despite strong commitment to implement the SWAp in Zambia, the envisaged efficiency improvements do not seem to have been attained. Possible explanations could be that the SWAp has not been fully developed or that not all parties have completely embraced it. SWAp is not ruled out as a coordination model, but the current setup in Zambia has not proved to be fully effective.
NASA Astrophysics Data System (ADS)
Baran, Derya; Ashraf, Raja Shahid; Hanifi, David A.; Abdelsamie, Maged; Gasparini, Nicola; Röhr, Jason A.; Holliday, Sarah; Wadsworth, Andrew; Lockett, Sarah; Neophytou, Marios; Emmott, Christopher J. M.; Nelson, Jenny; Brabec, Christoph J.; Amassian, Aram; Salleo, Alberto; Kirchartz, Thomas; Durrant, James R.; McCulloch, Iain
2017-03-01
Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 +/- 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 +/- 0.4% efficiency and a high open-circuit voltage of 1.03 +/- 0.01 V.
NASA Astrophysics Data System (ADS)
Phuong, Vu Hung
2018-03-01
This research applies Data Envelopment Analysis (DEA) approach to analyze Total Factor Productivity (TFP) and efficiency changes in Vietnam coal mining industry from 2007 to 2013. The TFP of Vietnam coal mining companies decreased due to slow technological progress and unimproved efficiency. The decadence of technical efficiency in many enterprises proved that the coal mining industry has a large potential to increase productivity through technical efficiency improvement. Enhancing human resource training, technology and research & development investment could help the industry to improve efficiency and productivity in Vietnam coal mining industry.
Ergonomics and simulation-based approach in improving facility layout
NASA Astrophysics Data System (ADS)
Abad, Jocelyn D.
2018-02-01
The use of the simulation-based technique in facility layout has been a choice in the industry due to its convenience and efficient generation of results. Nevertheless, the solutions generated are not capable of addressing delays due to worker's health and safety which significantly impact overall operational efficiency. It is, therefore, critical to incorporate ergonomics in facility design. In this study, workstation analysis was incorporated into Promodel simulation to improve the facility layout of a garment manufacturing. To test the effectiveness of the method, existing and improved facility designs were measured using comprehensive risk level, efficiency, and productivity. Results indicated that the improved facility layout generated a decrease in comprehensive risk level and rapid upper limb assessment score; an increase of 78% in efficiency and 194% increase in productivity compared to existing design and thus proved that the approach is effective in attaining overall facility design improvement.
NASA Astrophysics Data System (ADS)
Davidenko, N. A.; Davidenko, I. I.; Mokrinskaya, E. V.; Pavlov, V. A.; Studzinsky, S. L.; Tarasenko, V. V.; Tonkopieva, L. S.; Chuprina, N. G.
2018-03-01
Recording media for polarization holography based on new azobenzene-containing monomers with octylmethacrylate are created. Their electrophysical and information properties are investigated. Improvement of the diffraction efficiency of holograms in these media in an external electric field formed by charging the free surface of the polymer film in a corona discharge is demonstrated. The diffraction efficiency is improved more in the copolymer, in which the azobenzene fragments possess larger dipole moments.
7 CFR 4280.128 - Application and documentation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and Energy Efficiency Improvements Program Section B. Guaranteed Loans § 4280.128 Application and... the purchase of a renewable energy system (including making necessary capital improvements to an existing renewable energy system) or to make energy efficiency improvements. The response to § 4280.108(a...
Health system productivity change in Zambia: A focus on the child health services.
Achoki, Tom; Kinfu, Yohannes; Masiye, Felix; Frederix, Geert W J; Hovels, Anke; Leufkens, Hubert G
2017-02-01
Efficiency and productivity improvement have become central in global health debates. In this study, we explored productivity change, particularly the contribution of technological progress and efficiency gains associated with improvements in child survival in Zambia (population 15 million). Productivity was measured by applying the Malmquist productivity index on district-level panel data. The effect of socioeconomic factors was further analyzed by applying an ordinary least squares regression technique. During 2004-2009, overall productivity in Zambia increased by 5.0 per cent, a change largely attributed to technological progress rather than efficiency gains. Within-country productivity comparisons revealed wide heterogeneity in favor of more urbanized and densely populated districts. Improved cooking methods, improved sanitation, and better educated populations tended to improve productive gains, whereas larger household size had an adverse effect. Addressing such district-level factors and ensuring efficient delivery and optimal application of existing health technologies offer a practical pathway for further improving population health.
Baseline Concept Description of a Small Modular High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans Gougar
2014-05-01
The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less
Baseline Concept Description of a Small Modular High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans D.
2014-10-01
The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phadke, Amol; Abhyankar, Nikit; Shah, Nihar
Electricity demand for room ACs is growing very rapidly in emerging economies such as India. We estimate the electricity demand from room ACs in 2030 in India considering factors such as weather and income growth using market data on penetration of ACs in different income classes and climatic regions. We discuss the status of the current standards, labels, and incentive programs to improve the efficiency of room ACs in these markets and assess the potential for further large improvements in efficiency and find that efficiency can be improved by over 40percent cost effectively. The total potential energy savings from Roommore » AC efficiency improvement in India using the best available technology will reach over 118 TWh in 2030; potential peak demand saving is found to be 60 GW by 2030. This is equivalent to avoiding 120 new coal fired power plants of 500 MW each. We discuss policy options to complement, expand and improve the ongoing programs to capture this large potential.« less
Metabolic and physiological mechanisms responsible for variation in feed efficiency
USDA-ARS?s Scientific Manuscript database
There has been an increase in the number of experiments in the past few years that explore the underlying mechanisms involved in feed efficiency of beef cattle. This is a byproduct of the need to improve feed efficiency to increase the sustainability of beef production and improve the economic situa...
Ginning efficiency in upland cotton - a value-added trait in cotton improvement
USDA-ARS?s Scientific Manuscript database
In the past few years, there has been some consorted effort between cotton geneticists and ginning engineers to understand "ginning efficiency" in upland cotton. Ginning efficiency includes ginning rate (measured in gm lint sec -1) and net gin stand energy (measured in Wh kg -1 lint). Improved ginn...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-14
...- and Heavy-Duty Fuel Efficiency Improvement Program AGENCY: National Highway Traffic Safety... efficiency improvement program for commercial medium- and heavy-duty on-highway vehicles and work trucks... efficiency standards starting with model year (MY) 2016 commercial medium- and heavy-duty on-highway vehicles...
Enhancement of ultrasonic disintegration of sewage sludge by aeration.
Zhao, He; Zhang, Panyue; Zhang, Guangming; Cheng, Rong
2016-04-01
Sonication is an effective way for sludge disintegration, which can significantly improve the efficiency of anaerobic digestion to reduce and recycle use of sludge. But high energy consumption limits the wide application of sonication. In order to improve ultrasonic sludge disintegration efficiency and reduce energy consumption, aeration was introduced. Results showed that sludge disintegration efficiency was improved significantly by combining aeration with ultrasound. The aeration flow rate, gas bubble size, ultrasonic density and aeration timing had impacts on sludge disintegration efficiency. Aeration that used in later stage of ultrasonic irradiation with low aeration flow rate, small gas bubbles significantly improved ultrasonic disintegration sludge efficiency. At the optimal conditions of 0.4 W/mL ultrasonic irradiation density, 30 mL/min of aeration flow rate, 5 min of aeration in later stage and small gas bubbles, ultrasonic sludge disintegration efficiency was increased by 45% and one third of ultrasonic energy was saved. This approach will greatly benefit the application of ultrasonic sludge disintegration and strongly promote the treatment and recycle of wastewater sludge. Copyright © 2015. Published by Elsevier B.V.
Quality and Efficiency Improvement Tools for Every Radiologist.
Kudla, Alexei U; Brook, Olga R
2018-06-01
In an era of value-based medicine, data-driven quality improvement is more important than ever to ensure safe and efficient imaging services. Familiarity with high-value tools enables all radiologists to successfully engage in quality and efficiency improvement. In this article, we review the model for improvement, strategies for measurement, and common practical tools with real-life examples that include Run chart, Control chart (Shewhart chart), Fishbone (Cause-and-Effect or Ishikawa) diagram, Pareto chart, 5 Whys, and Root Cause Analysis. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Konishi, Tatsunori; Harata, Masahiko
2014-01-01
We show here that the transformation efficiency of Saccharomyces cerevisiae is improved by altering carbon sources in media for pre-culturing cells prior to the transformation reactions. The transformation efficiency was increased up to sixfold by combination with existing transformation protocols. This method is widely applicable for yeast research since efficient transformation can be performed easily without changing any of the other procedures in the transformation.
NASA Astrophysics Data System (ADS)
Song, Chi; Zhang, Xuejun; Zhang, Xin; Hu, Haifei; Zeng, Xuefeng
2017-06-01
A rigid conformal (RC) lap can smooth mid-spatial-frequency (MSF) errors, which are naturally smaller than the tool size, while still removing large-scale errors in a short time. However, the RC-lap smoothing efficiency performance is poorer than expected, and existing smoothing models cannot explicitly specify the methods to improve this efficiency. We presented an explicit time-dependent smoothing evaluation model that contained specific smoothing parameters directly derived from the parametric smoothing model and the Preston equation. Based on the time-dependent model, we proposed a strategy to improve the RC-lap smoothing efficiency, which incorporated the theoretical model, tool optimization, and efficiency limit determination. Two sets of smoothing experiments were performed to demonstrate the smoothing efficiency achieved using the time-dependent smoothing model. A high, theory-like tool influence function and a limiting tool speed of 300 RPM were o
Evaluation of the performance of national health systems in 2004-2011: An analysis of 173 countries.
Sun, Daxin; Ahn, Haksoon; Lievens, Tomas; Zeng, Wu
2017-01-01
In an effort to improve health service delivery and achieve better health outcomes, the World Health Organization (WHO) has called for improved efficiency of health care systems to better use the available funding. This study aims to examine the efficiency of national health systems using longitudinal country-level data. Data on health spending per capita, infant mortality rate (IMR), under 5 mortality rate (U5MR), and life expectancy (LE) were collected from or imputed for 173 countries from 2004 through 2011. Data envelopment analyses were used to evaluate the efficiency and regression models were constructed to examine the determinants of efficiency. The average efficiency of the national health system, when examined yearly, was 78.9%, indicating a potential saving of 21.1% of health spending per capita to achieve the same level of health status for children and the entire population, if all countries performed as well as their peers. Additionally, the efficiency of the national health system varied widely among countries. On average, Africa had the lowest efficiency of 67%, while West Pacific countries had the highest efficiency of 86%. National economic status, HIV/AIDS prevalence, health financing mechanisms and governance were found to be statistically associated with the efficiency of national health systems. Taking health financing as an example, a 1% point increase of social security expenses as a percentage of total health expenditure correlated to a 1.9% increase in national health system efficiency. The study underscores the need to enhance efficiency of national health systems to meet population health needs, and highlights the importance of health financing and governance in improving the efficiency of health systems, to ultimately improve health outcomes.
High efficiency silicon solar cell based on asymmetric nanowire.
Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M; Baek, Chang-Ki
2015-07-08
Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.
Long-term shifts in life-cycle energy efficiency and carbon intensity.
Yeh, Sonia; Mishra, Gouri Shankar; Morrison, Geoff; Teter, Jacob; Quiceno, Raul; Gillingham, Kenneth; Riera-Palou, Xavier
2013-03-19
The quantity of primary energy needed to support global human activity is in large part determined by how efficiently that energy is converted to a useful form. We estimate the system-level life-cycle energy efficiency (EF) and carbon intensity (CI) across primary resources for 2005-2100. Our results underscore that although technological improvements at each energy conversion process will improve technology efficiency and lead to important reductions in primary energy use, market mediated effects and structural shifts toward less efficient pathways and pathways with multiple stages of conversion will dampen these efficiency gains. System-level life-cycle efficiency may decrease as mitigation efforts intensify, since low-efficiency renewable systems with high output have much lower GHG emissions than some high-efficiency fossil fuel systems. Climate policies accelerate both improvements in EF and the adoption of renewable technologies, resulting in considerably lower primary energy demand and GHG emissions. Life-cycle EF and CI of useful energy provide a useful metric for understanding dynamics of implementing climate policies. The approaches developed here reiterate the necessity of a combination of policies that target efficiency and decarbonized energy technologies. We also examine life-cycle exergy efficiency (ExF) and find that nearly all of the qualitative results hold regardless of whether we use ExF or EF.
Photon-number-resolving SSPDs with system detection efficiency over 50% at telecom range
NASA Astrophysics Data System (ADS)
Zolotov, P.; Divochiy, A.; Vakhtomin, Yu.; Moshkova, M.; Morozov, P.; Seleznev, V.; Smirnov, K.
2018-02-01
We used technology of making high-efficiency superconducting single-photon detectors as a basis for improvement of photon-number-resolving devices. By adding optical cavity and using an improved NbN superconducting film, we enhanced previously reported system detection efficiency at telecom range for such detectors. Our results show that implementation of optical cavity helps to develop four-section device with quantum efficiency over 50% at 1.55 µm. Performed experimental studies of detecting multi-photon optical pulses showed irregularities over defining multi-photon through single-photon quantum efficiency.
2016-10-28
assumptions. List of Assumptions: Price of electrical energy : $0.07/kWh flat rate for energy at the base Price of peak power: $15/MW peak power...EW-201147) Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy Security, and...12-C-0002 5b. GRANT NUMBER Advanced Micro-Grid Energy Management Coupled with Integrated Volt/VAR Control for Improved Energy Efficiency, Energy
NASA Astrophysics Data System (ADS)
Su, Ruifeng; Zhu, Mingzhi; Huang, Zhan; Wang, Baoxu; Wu, Wenkai
2018-01-01
Influence of radiation force of a high-energy laser beam on the second harmonic generation (SHG) efficiency through stress within a mounted potassium dihydrogen phosphate (KDP) crystal is studied, as well as an active method of improving the SHG efficiency by controlling the stress is proposed. At first, the model for studying the influence of the radiation force on the SHG efficiency is established, where the radiation force is theoretically analyzed, the stress caused by the radiation force is theoretically analyzed and numerically calculated using the finite-element method, and the influence of the stress on the SHG efficiency is theoretically analyzed. Then, a method of improving the SHG efficiency by controlling the stress through adjusting the structural parameters of the mounting set of the KDP crystal is examined. It demonstrates that the radiation force causes stress within the KDP crystal and further militates against the SHG efficiency; however, the SHG efficiency could be improved by controlling the stress through adjusting the structural parameters of the mounting set of the KDP crystal.
Yang, Lei; Gu, Wenxing; Hong, Ling; Mi, Yang; Liu, Feng; Liu, Ming; Yang, Yufei; Sharma, Bigyan; Liu, Xinfeng; Huang, Hui
2017-08-16
Nonradiative Förster resonance energy transfer (FRET) is an important mechanism of organic solar cells, which can improve the exciton migration over a long distance, resulting in improvement of efficiency of solar cells. However, the current observations of FRET are very limited, and the efficiencies are less than 9%. In this study, FRET effect was first observed between two nonfullerene acceptors in ternary solar cells, which improved both the absorption range and exciton harvesting, leading to the dramatic enhancement in the short circuit current and power conversion efficiency. Moreover, this strategy is proved to be a versatile platform for conjugated polymers with different bandgaps, resulting in a remarkable efficiency of 10.4%. These results demonstrated a novel method to enhance the efficiency of organic soar cells.
NASA Technical Reports Server (NTRS)
Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,
2013-01-01
The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.
SU-F-T-163: Improve Proton Therapy Efficiency: Report of a Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Y; Flanz, J; Mah, D
Purpose: The technology of proton therapy, especially the pencil beam scanning technique, is evolving very quickly. However, the efficiency of proton therapy seems to lag behind conventional photon therapy. The purpose of the abstract is to report on the findings of a workshop on improvement of QA, planning and treatment efficiency in proton therapy. Methods: A panel of physicists, clinicians, and vendor representatives from over 18 institutions in the United States and internationally were convened in Knoxville, Tennessee in November, 2015. The panel discussed several topics on how to improve proton therapy efficiency, including 1) lean principle and failure modemore » and effects analysis, 2) commissioning and machine QA, 3) treatment planning, optimization and evaluation, 4) patient positioning and IGRT, 5) vendor liaison and machine availability, and 6) staffing, education and training. Results: The relative time needed for machine QA, treatment planning & check in proton therapy was found to range from 1 to 2.5 times of that in photon therapy. Current status in proton QA, planning and treatment was assessed. Key areas for efficiency improvement, such as elimination of unnecessary QA items or steps and development of efficient software or hardware tools, were identified. A white paper to summarize our findings is being written. Conclusion: It is critical to improve efficiency by developing reliable proton beam lines, efficient software tools on treatment planning, optimization and evaluation, and dedicated proton QA device. Conscious efforts and collaborations from both industry leaders and proton therapy centers are needed to achieve this goal and further advance the technology of proton therapy.« less
Opportunities for improving milk production efficiency in dairy cattle
USDA-ARS?s Scientific Manuscript database
Increasing feed costs and the desire to improve environmental stewardship have stimulated renewed interest in improving feed efficiency of livestock, including that of U.S. dairy herds. For instance, USDA cost projections for corn and soybean meal suggest a 20% increase over 2010 pricing for a 16% p...
Opportunities for improving milk production efficiency in dairy cattle
USDA-ARS?s Scientific Manuscript database
Increasing feed costs and the desire to improve environmental stewardship have stimulated interest in improving feed efficiency of livestock, including that of U.S. dairy herds. For instance, USDA cost projections for corn and soybean meal suggest a 20% increase over 2010 pricing for a 16% protein ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lower, Mark D; Christopher, Timothy W; Oland, C Barry
The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPImore » program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.« less
USDA-ARS?s Scientific Manuscript database
The biolistic method is reliable for delivering genes of interest into various species. Low transformation efficiency has been a limiting factor for its application. The DNA coating agent protamine was shown to improve transformation efficiency in rice, while a reduction of plasmid DNA in the bomb...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... the purpose of Part A-1 of EPCA, which is to improve the efficiency of electric motors and pumps and... to improve the efficiency of electric motors, pumps and certain other industrial equipment to.... Energy Information Administration. \\2\\ Based on Energy Efficiency and Electric Motors, Report PB- 259 129...
Future long-range transports: Prospects for improved fuel efficiency
NASA Technical Reports Server (NTRS)
Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.
1975-01-01
A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: (1) historical trends in airplane efficiency; (2) technological opportunities including supercritical aerodynamics, (3) vortex diffusers, (4) composite materials, (5) propulsion systems, (6) active controls, and terminal-area operations; (7) unconventional design concepts, and (8) hydrogen-fueled airplane.
Yang, Hui; Huang, Xiaochang; Fang, Shaoming; He, Maozhang; Zhao, Yuanzhang; Wu, Zhenfang; Yang, Ming; Zhang, Zhiyan; Chen, Congying; Huang, Lusheng
2017-01-01
Gut microbiota plays fundamental roles in energy harvest, nutrient digestion, and intestinal health, especially in processing indigestible components of polysaccharides in diet. Unraveling the microbial taxa and functional capacity of gut microbiome associated with feed efficiency can provide important knowledge to improve pig feed efficiency in swine industry. In the current research, we studied the association of fecal microbiota with feed efficiency in 280 commercial Duroc pigs. All experimental pigs could be clustered into two enterotype-like groups. Different enterotypes showed the tendency of association with the feed efficiency (P = 0.07). We further identified 31 operational taxonomic units (OTUs) showing the potential associations with porcine feed efficiency. These OTUs were mainly annotated to the bacteria related to the metabolisms of dietary polysaccharides. Although we did not identify the RFI-associated bacterial species at FDR < 0.05 level, metagenomic sequencing analysis did find the distinct function capacities of gut microbiome between the high and low RFI pigs (FDR < 0.05). The KEGG orthologies related to nitrogen metabolism, amino acid metabolism, and transport system, and eight KEGG pathways including glycine, serine, and threonine metabolism were positively associated with porcine feed efficiency. We inferred that gut microbiota might improve porcine feed efficiency through promoting intestinal health by the SCFAs produced by fermenting dietary polysaccharides and improving the utilization of dietary protein. The present results provided important basic knowledge for improving porcine feed efficiency through modulating gut microbiome. PMID:28861066
Energy efficiency in California laboratory-type facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, E.; Bell, G.; Sartor, D.
The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in themore » overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.« less
Tips for Improving Seed Planting Efficiency
R. Kasten Dumroese; David L. Wenny; Susan J. Morrison
2002-01-01
The efficiency of a precision seeder was improved by adding a mirror so employees could monitor seed levels and by marking seeds with brightly colored talc to quickly verify the accuracy of the machine.
Energy efficient strategy for throughput improvement in wireless sensor networks.
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-23
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature.
Energy Efficient Strategy for Throughput Improvement in Wireless Sensor Networks
Jabbar, Sohail; Minhas, Abid Ali; Imran, Muhammad; Khalid, Shehzad; Saleem, Kashif
2015-01-01
Network lifetime and throughput are one of the prime concerns while designing routing protocols for wireless sensor networks (WSNs). However, most of the existing schemes are either geared towards prolonging network lifetime or improving throughput. This paper presents an energy efficient routing scheme for throughput improvement in WSN. The proposed scheme exploits multilayer cluster design for energy efficient forwarding node selection, cluster heads rotation and both inter- and intra-cluster routing. To improve throughput, we rotate the role of cluster head among various nodes based on two threshold levels which reduces the number of dropped packets. We conducted simulations in the NS2 simulator to validate the performance of the proposed scheme. Simulation results demonstrate the performance efficiency of the proposed scheme in terms of various metrics compared to similar approaches published in the literature. PMID:25625902
Surface passivation of InP solar cells with InAlAs layers
NASA Technical Reports Server (NTRS)
Jain, Raj K.; Flood, Dennis J.; Landis, Geoffrey A.
1993-01-01
The efficiency of indium phosphide solar cells is limited by high values of surface recombination. The effect of a lattice-matched In(0.52)Al(0.48)As window layer material for InP solar cells, using the numerical code PC-1D is investigated. It was found that the use of InAlAs layer significantly enhances the p(+)n cell efficiency, while no appreciable improvement is seen for n(+)p cells. The conduction band energy discontinuity at the heterojunction helps in improving the surface recombination. An optimally designed InP cell efficiency improves from 15.4 percent to 23 percent AMO for a 10 nm thick InAlAs layer. The efficiency improvement reduces with increase in InAlAs layer thickness, due to light absorption in the window layer.
Efficiency of endoscopy units can be improved with use of discrete event simulation modeling.
Sauer, Bryan G; Singh, Kanwar P; Wagner, Barry L; Vanden Hoek, Matthew S; Twilley, Katherine; Cohn, Steven M; Shami, Vanessa M; Wang, Andrew Y
2016-11-01
Background and study aims: The projected increased demand for health services obligates healthcare organizations to operate efficiently. Discrete event simulation (DES) is a modeling method that allows for optimization of systems through virtual testing of different configurations before implementation. The objective of this study was to identify strategies to improve the daily efficiencies of an endoscopy center with the use of DES. Methods: We built a DES model of a five procedure room endoscopy unit at a tertiary-care university medical center. After validating the baseline model, we tested alternate configurations to run the endoscopy suite and evaluated outcomes associated with each change. The main outcome measures included adequate number of preparation and recovery rooms, blocked inflow, delay times, blocked outflows, and patient cycle time. Results: Based on a sensitivity analysis, the adequate number of preparation rooms is eight and recovery rooms is nine for a five procedure room unit (total 3.4 preparation and recovery rooms per procedure room). Simple changes to procedure scheduling and patient arrival times led to a modest improvement in efficiency. Increasing the preparation/recovery rooms based on the sensitivity analysis led to significant improvements in efficiency. Conclusions: By applying tools such as DES, we can model changes in an environment with complex interactions and find ways to improve the medical care we provide. DES is applicable to any endoscopy unit and would be particularly valuable to those who are trying to improve on the efficiency of care and patient experience.
Efficiency of endoscopy units can be improved with use of discrete event simulation modeling
Sauer, Bryan G.; Singh, Kanwar P.; Wagner, Barry L.; Vanden Hoek, Matthew S.; Twilley, Katherine; Cohn, Steven M.; Shami, Vanessa M.; Wang, Andrew Y.
2016-01-01
Background and study aims: The projected increased demand for health services obligates healthcare organizations to operate efficiently. Discrete event simulation (DES) is a modeling method that allows for optimization of systems through virtual testing of different configurations before implementation. The objective of this study was to identify strategies to improve the daily efficiencies of an endoscopy center with the use of DES. Methods: We built a DES model of a five procedure room endoscopy unit at a tertiary-care university medical center. After validating the baseline model, we tested alternate configurations to run the endoscopy suite and evaluated outcomes associated with each change. The main outcome measures included adequate number of preparation and recovery rooms, blocked inflow, delay times, blocked outflows, and patient cycle time. Results: Based on a sensitivity analysis, the adequate number of preparation rooms is eight and recovery rooms is nine for a five procedure room unit (total 3.4 preparation and recovery rooms per procedure room). Simple changes to procedure scheduling and patient arrival times led to a modest improvement in efficiency. Increasing the preparation/recovery rooms based on the sensitivity analysis led to significant improvements in efficiency. Conclusions: By applying tools such as DES, we can model changes in an environment with complex interactions and find ways to improve the medical care we provide. DES is applicable to any endoscopy unit and would be particularly valuable to those who are trying to improve on the efficiency of care and patient experience. PMID:27853739
Oliveira, Ana V.; Silva, Andreia P.; Bitoque, Diogo B.; Silva, Gabriela A.; Rosa da Costa, Ana M.
2013-01-01
OBJECTIVE: Gene therapy relies on efficient vector for a therapeutic effect. Efficient non-viral vectors are sought as an alternative to viral vectors. Chitosan, a cationic polymer, has been studied for its gene delivery potential. In this work, disulfide bond containing groups were covalently added to chitosan to improve the transfection efficiency. These bonds can be cleaved by cytoplasmic glutathione, thus, releasing the DNA load more efficiently. MATERIALS AND METHODS: Chitosan and thiolated chitosan nanoparticles (NPs) were prepared in order to obtain a NH3+:PO4− ratio of 5:1 and characterized for plasmid DNA complexation and release efficiency. Cytotoxicity and gene delivery studies were carried out on retinal pigment epithelial cells. RESULTS: In this work, we show that chitosan was effectively modified to incorporate a disulfide bond. The transfection efficiency of chitosan and thiolated chitosan varied according to the cell line used, however, thiolation did not seem to significantly improve transfection efficiency. CONCLUSION: The apparent lack of improvement in transfection efficiency of the thiolated chitosan NPs is most likely due to its size increase and charge inversion relatively to chitosan. Therefore, for retinal cells, thiolated chitosan does not seem to constitute an efficient strategy for gene delivery. PMID:23833516
NASA Technical Reports Server (NTRS)
Wolf, M.
1982-01-01
The historical progression of efficiency improvements, cost reductions, and performance improvements in modules and photovoltaic systems are described. The potential for future improvements in photovoltaic device efficiencies and cost reductions continues as device concepts, designs, processes, and automated production capabilities mature. Additional step-function improvements can be made as today's simpler devices are replaced by more sophisticated devices.
IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
William M. Bond; Salih Ersayin
2007-03-30
This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency ofmore » individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern Minnesota, and future proposals are pending with non-taconite mineral processing applications.« less
Determinants of eco-efficiency in the Chinese industrial sector.
Fujii, Hidemichi; Managi, Shunsuke
2013-12-01
This study measures productive inefficiency within the context of multi-environmental pollution (eco-efficiency) in the Chinese industrial sector. The weighted Russell directional distance model is applied to measure eco-efficiency using production technology. The objective is to clarify how external factors affect eco-efficiency. The major findings are that both foreign direct investment and investment for pollution abatement improve eco-efficiency as measured by air pollutant substances. A levy system for wastewater discharge improves eco-efficiency as measured by wastewater pollutant substances. However, an air pollutant levy does not significantly affect eco-efficiency as measured by air pollutants. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Evaluation of Energy Efficiency Improvements to Portable Classrooms in Florida.
ERIC Educational Resources Information Center
Callahan, Michael P.; Parker, Danny S.; Sherwin, John R.; Anello, Michael T.
Findings are presented from a 2-year experiment exploring ways to reduce energy costs and improve the learning environment in Florida's 25,000 portable classrooms. Improvements were made in two highly instrumented portable classrooms in the following areas: installation of a T8 lighting system with electronic ballasts; a high efficiency heat pump…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-18
... Market and Planning Efficiency Through Improved Software; Notice of Agenda and Procedures for Staff Technical Conference June 10, 2010. This notice establishes the agenda and procedures for the staff[email protected] . Kimberly D. Bose, Secretary. Agenda for AD10-12 Staff Technical Conference on Enhanced Power...
Spitzer observatory operations: increasing efficiency in mission operations
NASA Astrophysics Data System (ADS)
Scott, Charles P.; Kahr, Bolinda E.; Sarrel, Marc A.
2006-06-01
This paper explores the how's and why's of the Spitzer Mission Operations System's (MOS) success, efficiency, and affordability in comparison to other observatory-class missions. MOS exploits today's flight, ground, and operations capabilities, embraces automation, and balances both risk and cost. With operational efficiency as the primary goal, MOS maintains a strong control process by translating lessons learned into efficiency improvements, thereby enabling the MOS processes, teams, and procedures to rapidly evolve from concept (through thorough validation) into in-flight implementation. Operational teaming, planning, and execution are designed to enable re-use. Mission changes, unforeseen events, and continuous improvement have often times forced us to learn to fly anew. Collaborative spacecraft operations and remote science and instrument teams have become well integrated, and worked together to improve and optimize each human, machine, and software-system element. Adaptation to tighter spacecraft margins has facilitated continuous operational improvements via automated and autonomous software coupled with improved human analysis. Based upon what we now know and what we need to improve, adapt, or fix, the projected mission lifetime continues to grow - as does the opportunity for numerous scientific discoveries.
Staib, Andrew; Sullivan, Clair; Jones, Matt; Griffin, Bronwyn; Bell, Anthony; Scott, Ian
2017-06-01
Patients who require emergency admission to hospital require complex care that can be fragmented, occurring in the ED, across the ED-inpatient interface (EDii) and subsequently, in their destination inpatient ward. Our hospital had poor process efficiency with slow transit times for patients requiring emergency care. ED clinicians alone were able to improve the processes and length of stay for the patients discharged directly from the ED. However, improving the efficiency of care for patients requiring emergency admission to true inpatient wards required collaboration with reluctant inpatient clinicians. The inpatient teams were uninterested in improving time-based measures of care in isolation, but they were motivated by improving patient outcomes. We developed a dashboard showing process measures such as 4 h rule compliance rate coupled with clinically important outcome measures such as inpatient mortality. The EDii dashboard helped unite both ED and inpatient teams in clinical redesign to improve both efficiencies of care and patient outcomes. © 2016 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Priority directions of the improvement of energy management at the enterprise
NASA Astrophysics Data System (ADS)
Dyakova, Galina; Izmaylova, Svetlana; Mottaeva, Angela; Karanina, Elena
2017-10-01
The relevance of article is caused by the fact that at the industrial enterprises pay little attention to the matters of energy saving or to the management of energy efficiency. The authors of the article defined that the potential of the increase in energy efficiency as well as the improvement of quality of strategic management at the enterprise, is connected with investment into the human capital. For the improvement of system of energy management, the key indicators of energy efficiency at the individual level are defined, the algorithm of the development of key indicators by means of which the energy efficiency of the human capital will be measured is developed, actions for support to the developed transitional strategy of power management are offered, positive results of formation of the human capital directed to increase in energy efficiency are designated.
NASA Astrophysics Data System (ADS)
Thangaraju, K.; Lee, Jonghee; Lee, Jeong-Ik; Chu, Hye Yong; Kim, Yun-Hi; Kwon, Soon-Ki
2015-06-01
A 10-nm thick 4,4',4″-tris(carbazole-9-yl)tri-phenylamine (TcTa) interlayer effectively confines triplet excitons within the emissive layer (EML) of phosphorescent organic light emitting diodes (PHOLEDs) based on green-emitting Ir(ppy)3 dopant and improves the charge balance in the EML of the device, resulting the higher device efficiencies of 61.7 cd/A, 19.7 %, and 43.2 lm/W with the maximum luminance of 75,310 cd/m2 and highly improved efficiency roll-off (22.2% at 20 mA/cm2) when compared to those (61.1 cd/A, 19.6 %, and 47.2 lm/W with a maximum luminance of 38,350 cd/m2) of the standard device with efficiency roll-off of 62.3 % at 20 mA/cm2.
Chen, Jin-Jin; Gong, Peng-Fei; Liu, Yi-Lan; Liu, Bo-Yan; Eggert, Dawn; Guo, Yuan-Heng; Zhao, Ming-Xia; Zhao, Qing-Sheng; Zhao, Bing
2018-04-01
A novel technique of ultrasound-assisted freeze-thaw pretreatment (UFP) was developed to improve the drying efficiency of maca and bioactive amide synthesis in maca. The optimal UFP conditions are ultrasonic processing 90 min at 30 °C with 6 freeze-thaw cycles. Samples with freeze-thaw pretreatment (FP), ultrasound pretreatment (UP), and UFP were prepared for further comparative study. A no pretreatment (NP) sample was included as a control. The results showed that UFP improved the drying efficiency of maca slices, showing the highest effective moisture diffusivity (1.75 × 10 -9 m 2 /s). This result was further supported by low-field nuclear magnetic resonance (LF-NMR) analysis and scanning electron microscopy (SEM). The rehydration capacity and protein content of maca slices were improved by UFP. More importantly, contents of bioactive macamides and their biosynthetic precursors were increased in 2.5- and 10-fold, respectively. In conclusion, UFP is an efficient technique to improve drying efficiency, physicochemical properties, and bioactive macamides of maca, which can be applied in the industrial manufacture of maca products. © 2018 Institute of Food Technologists®.
Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping
2018-02-28
We provided a new method to improve the efficiency of Sb₂S₃ thin film solar cells. The TiO₂ electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb₂S₃ solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO₂ films. Compared with the undoped TiO₂, Li-doped mesoporous TiO₂ dramatically improved the photo-voltaic performance of the thermal-evaporated Sb₂S₃ thin film solar cells, with the average power conversion efficiency ( PCE ) increasing from 1.79% to 4.03%, as well as the improved open-voltage ( V oc ), short-circuit current ( J sc ) and fill factors. The best device based on Li-doped TiO₂ achieved a power conversion efficiency up to 4.42% as well as a V oc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb₂S₃ solar cells. This study showed that Li-doping on TiO₂ can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb₂S₃-based solar cells.
Materials Approach to Fuel Efficient Tires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Votruba-Drzal, Peter; Kornish, Brian
2015-06-30
The objective of this project was to design, develop, and demonstrate fuel efficient and safety regulation compliant tire filler and barrier coating technologies that will improve overall fuel efficiency by at least 2%. The program developed and validated two complementary approaches to improving fuel efficiency through tire improvements. The first technology was a modified silica-based product that is 15% lower in cost and/or enables a 10% improvement in tread wear while maintaining the already demonstrated minimum of 2% improvement in average fuel efficiency. The second technology was a barrier coating with reduced oxygen transmission rate compared to the state-of-the-art halobutylmore » rubber inner liners that will provide extended placarded tire pressure retention at significantly reduced material usage. A lower-permeance, thinner inner liner coating which retains tire pressure was expected to deliver the additional 2% reduction in fleet fuel consumption. From the 2006 Transportation Research Board Report1, a 10 percent reduction in rolling resistance can reduce consumer fuel expenditures by 1 to 2 percent for typical vehicles. This savings is equivalent to 6 to 12 gallons per year. A 1 psi drop in inflation pressure increases the tire's rolling resistance by about 1.4 percent.« less
Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency.
Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Liu, Bing; Feng, Dongru; Wang, Jinfa; Wang, Hong-Bin
2016-11-01
Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. © 2016 American Society of Plant Biologists. All Rights Reserved.
Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency1[OPEN
Jin, Honglei; Li, Mengshu; Duan, Sujuan; Fu, Mei; Dong, Xiaoxiao; Feng, Dongru; Wang, Jinfa
2016-01-01
Maximizing light capture by light-harvesting pigment optimization represents an attractive but challenging strategy to improve photosynthetic efficiency. Here, we report that loss of a previously uncharacterized gene, HIGH PHOTOSYNTHETIC EFFICIENCY1 (HPE1), optimizes light-harvesting pigments, leading to improved photosynthetic efficiency and biomass production. Arabidopsis (Arabidopsis thaliana) hpe1 mutants show faster electron transport and increased contents of carbohydrates. HPE1 encodes a chloroplast protein containing an RNA recognition motif that directly associates with and regulates the splicing of target RNAs of plastid genes. HPE1 also interacts with other plastid RNA-splicing factors, including CAF1 and OTP51, which share common targets with HPE1. Deficiency of HPE1 alters the expression of nucleus-encoded chlorophyll-related genes, probably through plastid-to-nucleus signaling, causing decreased total content of chlorophyll (a+b) in a limited range but increased chlorophyll a/b ratio. Interestingly, this adjustment of light-harvesting pigment reduces antenna size, improves light capture, decreases energy loss, mitigates photodamage, and enhances photosynthetic quantum yield during photosynthesis. Our findings suggest a novel strategy to optimize light-harvesting pigments that improves photosynthetic efficiency and biomass production in higher plants. PMID:27609860
Kant, Surya; Bi, Yong-Mei; Rothstein, Steven J
2011-02-01
Development of genetic varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Generally, NUE can be divided into two parts. First, assimilation efficiency involves nitrogen (N) uptake and assimilation and second utilization efficiency involves N remobilization. Understanding the mechanisms regulating these processes is crucial for the improvement of NUE in crop plants. One important approach is to develop an understanding of the plant response to different N regimes, especially to N limitation, using various methods including transcription profiling, analysing mutants defective in their normal response to N limitation, and studying plants that show better growth under N-limiting conditions. One can then attempt to improve NUE in crop plants using the knowledge gained from these studies. There are several potential genetic and molecular approaches for the improvement of crop NUE discussed in this review. Increased knowledge of how plants respond to different N levels as well as to other environmental conditions is required to achieve this.
Multiscale Methods for Accurate, Efficient, and Scale-Aware Models of the Earth System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldhaber, Steve; Holland, Marika
The major goal of this project was to contribute improvements to the infrastructure of an Earth System Model in order to support research in the Multiscale Methods for Accurate, Efficient, and Scale-Aware models of the Earth System project. In support of this, the NCAR team accomplished two main tasks: improving input/output performance of the model and improving atmospheric model simulation quality. Improvement of the performance and scalability of data input and diagnostic output within the model required a new infrastructure which can efficiently handle the unstructured grids common in multiscale simulations. This allows for a more computationally efficient model, enablingmore » more years of Earth System simulation. The quality of the model simulations was improved by reducing grid-point noise in the spectral element version of the Community Atmosphere Model (CAM-SE). This was achieved by running the physics of the model using grid-cell data on a finite-volume grid.« less
Holographic heat engine within the framework of massive gravity
NASA Astrophysics Data System (ADS)
Mo, Jie-Xiong; Li, Gu-Qiang
2018-05-01
Heat engine models are constructed within the framework of massive gravity in this paper. For the four-dimensional charged black holes in massive gravity, it is shown that the existence of graviton mass improves the heat engine efficiency significantly. The situation is more complicated for the five-dimensional neutral black holes since the constant which corresponds to the third massive potential also contributes to the efficiency. It is also shown that the existence of graviton mass can improve the heat engine efficiency. Moreover, we probe how the massive gravity influences the behavior of the heat engine efficiency approaching the Carnot efficiency.
Improved intersection operations during detector failures.
DOT National Transportation Integrated Search
2010-03-01
The objective of this project was to develop three modules that would improve the efficiency of : intersection operations at isolated signalized intersections. The motivation for these modules was to use the : existing detectors more efficiently. Thi...
Thin film solar cells grown by organic vapor phase deposition
NASA Astrophysics Data System (ADS)
Yang, Fan
Organic solar cells have the potential to provide low-cost photovoltaic devices as a clean and renewable energy resource. In this thesis, we focus on understanding the energy conversion process in organic solar cells, and improving the power conversion efficiencies via controlled growth of organic nanostructures. First, we explain the unique optical and electrical properties of organic materials used for photovoltaics, and the excitonic energy conversion process in donor-acceptor heterojunction solar cells that place several limiting factors of their power conversion efficiency. Then, strategies for improving exciton diffusion and carrier collection are analyzed using dynamical Monte Carlo models for several nanostructure morphologies. Organic vapor phase deposition is used for controlling materials crystallization and film morphology. We improve the exciton diffusion efficiency while maintaining good carrier conduction in a bulk heterojunction solar cell. Further efficiency improvement is obtained in a novel nanocrystalline network structure with a thick absorbing layer, leading to the demonstration of an organic solar cell with 4.6% efficiency. In addition, solar cells using simultaneously active heterojunctions with broad spectral response are presented. We also analyze the efficiency limits of single and multiple junction organic solar cells, and discuss the challenges facing their practical implementations.
Scaling production and improving efficiency in DEA: an interactive approach
NASA Astrophysics Data System (ADS)
Rödder, Wilhelm; Kleine, Andreas; Dellnitz, Andreas
2017-10-01
DEA models help a DMU to detect its (in-)efficiency and to improve activities, if necessary. Efficiency is only one economic aim for a decision-maker; however, up- or downsizing might be a second one. Improving efficiency is the main topic in DEA; the long-term strategy towards the right production size should attract our attention as well. Not always the management of a DMU primarily focuses on technical efficiency but rather is interested in gaining scale effects. In this paper, a formula for returns to scale (RTS) is developed, and this formula is even applicable for interior points of technology. Particularly, technical and scale inefficient DMUs need sophisticated instruments to improve their situation. Considering RTS as well as efficiency, in this paper, we give an advice for each DMU to find an economically reliable path from its actual situation to better activities and finally to most productive scale size (mpss), perhaps. For realizing this path, we propose an interactive algorithm, thus harmonizing the scientific findings and the interests of the management. Small numerical examples illustrate such paths for selected DMUs; an empirical application in theatre management completes the contribution.
Improvements in the efficiency of turboexpanders in cryogenic applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agahi, R.R.; Lin, M.C.; Ershaghi, B.
1996-12-31
Process designers have utilized turboexpanders in cryogenic processes because of their higher thermal efficiencies when compared with conventional refrigeration cycles. Process design and equipment performance have improved substantially through the utilization of modern technologies. Turboexpander manufacturers have also adopted Computational Fluid Dynamic Software, Computer Numerical Control Technology and Holography Techniques to further improve an already impressive turboexpander efficiency performance. In this paper, the authors explain the design process of the turboexpander utilizing modern technology. Two cases of turboexpanders processing helium (4.35{degrees}K) and hydrogen (56{degrees}K) will be presented.
Kaya, Mine; Hajimirza, Shima
2018-05-25
This paper uses surrogate modeling for very fast design of thin film solar cells with improved solar-to-electricity conversion efficiency. We demonstrate that the wavelength-specific optical absorptivity of a thin film multi-layered amorphous-silicon-based solar cell can be modeled accurately with Neural Networks and can be efficiently approximated as a function of cell geometry and wavelength. Consequently, the external quantum efficiency can be computed by averaging surrogate absorption and carrier recombination contributions over the entire irradiance spectrum in an efficient way. Using this framework, we optimize a multi-layer structure consisting of ITO front coating, metallic back-reflector and oxide layers for achieving maximum efficiency. Our required computation time for an entire model fitting and optimization is 5 to 20 times less than the best previous optimization results based on direct Finite Difference Time Domain (FDTD) simulations, therefore proving the value of surrogate modeling. The resulting optimization solution suggests at least 50% improvement in the external quantum efficiency compared to bare silicon, and 25% improvement compared to a random design.
Federal roles to realize national energy-efficiency opportunities in the 1990s
NASA Astrophysics Data System (ADS)
Hirst, Eric
1989-10-01
Improving energy efficiency throughout the U.S. economy is a vital component of our nation's energy future, with many benefits. Improving efficiency can: save money consumers, increase economic productivity and international competitiveness, reduce oil and gas prices by reducing the demand for foreign oil, enhance national security by lowering oil imports, reduce the adverse environmental consequences of fuel cycles, especially acid rain and global warming, add diversity and flexibility to the nation's portfolio of energy resources, respond to public interest in, and support of, energy efficiency. The primary purpose of this report is to suggest expanded roles for the U.S. Department of Energy (DOE) in improving energy efficiency during the 1990s. In an ideal world, the normal workings of the market place would yield optimal energy-efficiency purchase and operating decisions. Unfortunately, distortions in fuel prices, limited access to capital, misplaced incentives, lack of information, and difficulty in processing information complicate energy-related decision making. Thus, consumers in all sectors of the economy underinvest in energy-efficient systems. These market barriers, coupled with growing concern about environmental quality, justify a larger Federal role.
Kim, Jaoon Young Hwan; Kwak, Ho Seok; Sung, Young Joon; Choi, Hong Il; Hong, Min Eui; Lim, Hyun Seok; Lee, Jae-Hyeok; Lee, Sang Yup; Sim, Sang Jun
2016-01-01
Microalgae possess great potential as a source of sustainable energy, but the intrinsic inefficiency of photosynthesis is a major challenge to realize this potential. Photosynthetic organisms evolved phototaxis to find optimal light condition for photosynthesis. Here we report a microfluidic screening using competitive phototaxis of the model alga, Chlamydomonas reinhardtii, for rapid isolation of strains with improved photosynthetic efficiencies. We demonstrated strong relationship between phototaxis and photosynthetic efficiency by quantitative analysis of phototactic response at the single-cell level using a microfluidic system. Based on this positive relationship, we enriched the strains with improved photosynthetic efficiency by isolating cells showing fast phototactic responses from a mixture of 10,000 mutants, thereby greatly improving selection efficiency over 8 fold. Among 147 strains isolated after screening, 94.6% showed improved photoautotrophic growth over the parental strain. Two mutants showed much improved performances with up to 1.9- and 8.1-fold increases in photoautotrophic cell growth and lipid production, respectively, a substantial improvement over previous approaches. We identified candidate genes that might be responsible for fast phototactic response and improved photosynthesis, which can be useful target for further strain engineering. Our approach provides a powerful screening tool for rapid improvement of microalgal strains to enhance photosynthetic productivity. PMID:26852806
Rahman, Sanzidur; Hasan, M Kamrul
2008-09-01
Environmental conditions significantly affect production, but are often ignored in studies analysing productivity and efficiency leading to biased results. In this study, we examine the influence of selected environmental factors on productivity and efficiency in wheat farming in Bangladesh. Results reveal that environmental production conditions significantly affect the parameters of the production function and technical efficiency, as well as correlates of inefficiency. Controlling for environmental production conditions improves technical efficiency by 4 points (p<0.01) from 86% to 90%. Large farms are more efficient relative to small and medium sized farms (p<0.01 and 0.05), with no variation among regions. Policy implications include soil fertility improvement through soil conservation and crop rotation, improvement in managerial practices through extension services and adoption of modern technologies, promotion of education, strengthening the research-extension link, and development of new varieties that have higher yield potential and are also suitable for marginal areas.
Beneficial aerodynamic effect of wing scales on the climbing flight of butterflies.
Slegers, Nathan; Heilman, Michael; Cranford, Jacob; Lang, Amy; Yoder, John; Habegger, Maria Laura
2017-01-30
It is hypothesized that butterfly wing scale geometry and surface patterning may function to improve aerodynamic efficiency. In order to investigate this hypothesis, a method to measure butterfly flapping kinematics optically over long uninhibited flapping sequences was developed. Statistical results for the climbing flight flapping kinematics of 11 butterflies, based on a total of 236 individual flights, both with and without their wing scales, are presented. Results show, that for each of the 11 butterflies, the mean climbing efficiency decreased after scales were removed. Data was reduced to a single set of differences of climbing efficiency using are paired t-test. Results show a mean decrease in climbing efficiency of 32.2% occurred with a 95% confidence interval of 45.6%-18.8%. Similar analysis showed that the flapping amplitude decreased by 7% while the flapping frequency did not show a significant difference. Results provide strong evidence that butterfly wing scale geometry and surface patterning improve butterfly climbing efficiency. The authors hypothesize that the wing scale's effect in measured climbing efficiency may be due to an improved aerodynamic efficiency of the butterfly and could similarly be used on flapping wing micro air vehicles to potentially achieve similar gains in efficiency.
NASA Astrophysics Data System (ADS)
Sankarasubramanian, A.; Sabo, J. L.; Larson, K. L.; Seo, S. B.; Sinha, T.; Bhowmik, R.; Vidal, A. Ruhi; Kunkel, K.; Mahinthakumar, G.; Berglund, E. Z.; Kominoski, J.
2017-07-01
Recent U.S. Geological Survey water-use report suggests that increasing water-use efficiency could mitigate the supply-and-demand imbalance arising from changing climate and growing population. However, this rich data have neither analyzed to understand the underlying patterns, nor have been investigated to identify the factors contributing to this increased efficiency. A national-scale synthesis of public supply withdrawals ("withdrawals") reveals a strong North-south gradient in public supply water use with the increasing population in the South contributing to increased withdrawal. Contrastingly, a reverse South-north gradient exists in per capita withdrawals ("efficiency"), with northern states consistently improving the efficiency, while the southern states' efficiency declined. Our analyses of spatial patterns of per capita withdrawals further demonstrate that urban counties exhibit improved efficiency over rural counties. Improved efficiency is also demonstrated over high-income and well-educated counties. Given the potential implications of the findings in developing long-term water conservation measures (i.e., increasing block rates), we argue the need for frequent updates, perhaps monthly to annual, of water-use data for identifying effective strategies that control the water-use efficiency in various geographic settings under a changing climate.
Gallium arsenide solar cell efficiency: Problems and potential
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Godlewski, M. P.
1985-01-01
Under ideal conditions the GaAs solar cell should be able to operate at an AMO efficiency exceeding 27 percent, whereas to date the best measured efficiencies barely exceed 19 percent. Of more concern is the fact that there has been no improvement in the past half decade, despite the expenditure of considerable effort. State-of-the-art GaAs efficiency is analyzed in an attempt to determine the feasibility of improving on the status quo. The possible gains to be had in the planar cell. An attempt is also made to predict the efficiency levels that could be achieved with a grating geometry. Both the N-base and the P-base BaAs cells in their planar configurations have the potential to operate at AMO efficiencies between 23 and 24 percent. For the former the enabling technology is essentially in hand, while for the latter the problem of passivating the emitter surface remains to be solved. In the dot grating configuration, P-base efficiencies approaching 26 percent are possible with minor improvements in existing technology. N-base grating cell efficiencies comparable to those predicted for the P-base cell are achievable if the N surface can be sufficiently passivated.
High-efficiency silicon solar-cell design and practical barriers
NASA Technical Reports Server (NTRS)
Mokashi, A.
1985-01-01
A numerical evaluation technique is used to study the impact of practical barriers, such as heavy doping effects (Auger recombination, band gap narrowing), surface recombination, shadowing losses and minority-carrier lifetime (Tau), on a high efficiency silicon solar cell performance. Considering a high Tau of 1 ms, efficiency of a silicon solar cell of the hypothetical case is estimated to be around 29%. This is comparable with (detailed balance limit) maximum efficiency of a p-n junction solar cell of 30%. Value of Tau is varied from 1 second to 20 micro. Heavy doping effects, and realizable values of surface recombination velocities and shadowing, are then considered in succession and their influence on cell efficiency is evaluated and quantified. These practical barriers cause the cell efficiency to reduce from the maximum value of 29% to the experimentally achieved value of about 19%. Improvement in open circuit voltage V sub oc is required to achieve cell efficiency greater than 20%. Increased value of Tau reduces reverse saturation current and, hence, improves V sub oc. Control of surface recombination losses becomes critical at higher V sub oc. Substantial improvement in Tau and considerable reduction in surface recombination velocities is essential to achieve cell efficiencies greater than 20%.
Improving urban district heating systems and assessing the efficiency of the energy usage therein
NASA Astrophysics Data System (ADS)
Orlov, M. E.; Sharapov, V. I.
2017-11-01
The report describes issues in connection with improving urban district heating systems from combined heat power plants (CHPs), to propose the ways for improving the reliability and the efficiency of the energy usage (often referred to as “energy efficiency”) in such systems. The main direction of such urban district heating systems improvement suggests transition to combined heating systems that include structural elements of both centralized and decentralized systems. Such systems provide the basic part of thermal power via highly efficient methods for extracting thermal power plants turbines steam, while peak loads are covered by decentralized peak thermal power sources to be mounted at consumers’ locations, with the peak sources being also reserve thermal power sources. The methodology was developed for assessing energy efficiency of the combined district heating systems, implemented as a computer software product capable of comparatively calculating saving on reference fuel for the system.
A Survey of Architectural Techniques For Improving Cache Power Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh
Modern processors are using increasingly larger sized on-chip caches. Also, with each CMOS technology generation, there has been a significant increase in their leakage energy consumption. For this reason, cache power management has become a crucial research issue in modern processor design. To address this challenge and also meet the goals of sustainable computing, researchers have proposed several techniques for improving energy efficiency of cache architectures. This paper surveys recent architectural techniques for improving cache power efficiency and also presents a classification of these techniques based on their characteristics. For providing an application perspective, this paper also reviews several real-worldmore » processor chips that employ cache energy saving techniques. The aim of this survey is to enable engineers and researchers to get insights into the techniques for improving cache power efficiency and motivate them to invent novel solutions for enabling low-power operation of caches.« less
RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency.
Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y Eugene; Zhang, Jifeng
2016-01-28
Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells.
Realizing Efficient Energy Harvesting from Organic Photovoltaic Cells
NASA Astrophysics Data System (ADS)
Zou, Yunlong
Organic photovoltaic cells (OPVs) are emerging field of research in renewable energy. The development of OPVs in recent years has made this technology viable for many niche applications. In order to realize widespread application however, the power conversion efficiency requires further improvement. The efficiency of an OPV depends on the short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF). For state-of-the-art devices, JSC is mostly optimized with the application of novel low-bandgap materials and a bulk heterojunction device architecture (internal quantum efficiency approaching 100%). The remaining limiting factors are the low VOC and FF. This work focuses on overcoming these bottlenecks for improved efficiency. Temperature dependent measurements of device performance are used to examine both charge transfer and exciton ionization process in OPVs. The results permit an improved understanding of the intrinsic limit for VOC in various device architectures and provide insight on device operation. Efforts have also been directed at engineering device architecture for optimized FF, realizing a very high efficiency of 8% for vapor deposited small molecule OPVs. With collaborators, new molecules with tailored desired energy levels are being designed for further improvements in efficiency. A new type of hybrid organic-inorganic perovskite material is also included in this study. By addressing processing issues and anomalous hysteresis effects, a very high efficiency of 19.1% is achieved. Moving forward, topics including engineering film crystallinity, exploring tandem architectures and understanding degradation mechanisms will further push OPVs toward broad commercialization.
Numerical convergence improvements for porflow unsaturated flow simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, Greg
2017-08-14
Section 3.6 of SRNL (2016) discusses various PORFLOW code improvements to increase modeling efficiency, in preparation for the next E-Area Performance Assessment (WSRC 2008) revision. This memorandum documents interaction with Analytic & Computational Research, Inc. (http://www.acricfd.com/default.htm) to improve numerical convergence efficiency using PORFLOW version 6.42 for unsaturated flow simulations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-28
... Market and Planning Efficiency Through Improved Software; Notice of Agenda and Procedures for Staff... conference to be held on June 2, 2010 and June 3, 2010, to discuss issues related to unit commitment software... Unit Commitment Software Federal Energy Regulatory Commission June 2, 2010 8 a.m Richard O'Neill, FERC...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... Market and Planning Efficiency Through Improved Software; Notice of Agenda and Procedures for Staff... planning models and software. The technical conference will be held from 8 a.m. to 5:30 p.m. (EDT) on June.... Agenda for AD10-12 Staff Technical Conference on Planning Models and Software Federal Energy Regulatory...
Improved Ant Algorithms for Software Testing Cases Generation
Yang, Shunkun; Xu, Jiaqi
2014-01-01
Existing ant colony optimization (ACO) for software testing cases generation is a very popular domain in software testing engineering. However, the traditional ACO has flaws, as early search pheromone is relatively scarce, search efficiency is low, search model is too simple, positive feedback mechanism is easy to porduce the phenomenon of stagnation and precocity. This paper introduces improved ACO for software testing cases generation: improved local pheromone update strategy for ant colony optimization, improved pheromone volatilization coefficient for ant colony optimization (IPVACO), and improved the global path pheromone update strategy for ant colony optimization (IGPACO). At last, we put forward a comprehensive improved ant colony optimization (ACIACO), which is based on all the above three methods. The proposed technique will be compared with random algorithm (RND) and genetic algorithm (GA) in terms of both efficiency and coverage. The results indicate that the improved method can effectively improve the search efficiency, restrain precocity, promote case coverage, and reduce the number of iterations. PMID:24883391
Overall equipment efficiency of Flexographic Printing process: A case study
NASA Astrophysics Data System (ADS)
Zahoor, S.; Shehzad, A.; Mufti, NA; Zahoor, Z.; Saeed, U.
2017-12-01
This paper reports the efficiency improvement of a flexographic printing machine by reducing breakdown time with the help of a total productive maintenance measure called overall equipment efficiency (OEE). The methodology is comprised of calculating OEE of the machine before and after identifying the causes of the problems. Pareto diagram is used to prioritize main problem areas and 5-whys analysis approach is used to identify the root cause of these problems. OEE of the process is improved from 34% to 40.2% for a 30 days time period. It is concluded that OEE and 5-whys analysis techniques are useful in improving effectiveness of the equipment and for the continuous process improvement as well.
Corbella, Clara; Puigagut, Jaume
2018-08-01
For the past few years, there has been an increasing interest in the operation of constructed wetlands as microbial fuel cells (CW-MFCs) for both the improvement of wastewater treatment efficiency and the production of energy. However, there is still scarce information on design and operation aspects to maximize CW-MFCs efficiency, especially for the treatment of real domestic wastewater. The aim of this study was to quantify the extent of treatment efficiency improvement carried out by membrane-less MFCs simulating a core of a shallow un-planted horizontal subsurface flow constructed wetland. The influence of the external resistance (50, 220, 402, 604 and 1000Ω) and the anode material (graphite and gravel) on treatment efficiency improvement were addressed. To this purpose, 6 lab-scale membrane-less MFCs were set-up and loaded in batch mode with domestic wastewater for 13weeks. Results showed that 220Ω was the best operation condition for maximising MFCs treatment efficiency, regardless the anode material employed. Gravel-based anode MFCs operated at closed circuit showed ca. 18%, 15%, 31% and 25% lower effluent concentration than unconnected MFCs to the COD, TOC, PO 4 -3 and NH 4 + -N, respectively. Main conclusion of the present work is that constructed wetlands operated as MFCs is a promising strategy to improve domestic wastewater treatment efficiency. However, further studies at pilot scale under more realistic conditions (such as planted systems operated under continuous mode) shall be performed to confirm the findings here reported. Copyright © 2018 Elsevier B.V. All rights reserved.
Analyzing whether countries are equally efficient at improving longevity for men and women.
Barthold, Douglas; Nandi, Arijit; Mendoza Rodríguez, José M; Heymann, Jody
2014-11-01
We examined the efficiency of country-specific health care spending in improving life expectancies for men and women. We estimated efficiencies of health care spending for 27 Organisation for Economic Co-operation and Development (OECD) countries during the period 1991 to 2007 using multivariable regression models, including country fixed-effects and controlling for time-varying levels of national social expenditures, economic development, and health behaviors. Findings indicated robust differences in health-spending efficiency. A 1% annual increase in health expenditures was associated with percent changes in life expectancy ranging from 0.020 in the United States (95% confidence interval [CI] = 0.008, 0.032) to 0.121 in Germany (95% CI = 0.099, 0.143). Health-spending increases were associated with greater life expectancy improvements for men than for women in nearly every OECD country. This is the first study to our knowledge to estimate the effect of country-specific health expenditures on life expectancies of men and women. Future work understanding the determinants of these differences has the potential to improve the overall efficiency and equity of national health systems.
Improving productivity and firm performance with enterprise resource planning
NASA Astrophysics Data System (ADS)
Beheshti, Hooshang M.; Beheshti, Cyrus M.
2010-11-01
Productivity is generally considered to be the efficient utilisation of organisational resources and is measured in terms of the efficiency of a worker, company or nation. Focusing on efficiency alone, however, can be harmful to the organisation's long-term success and competitiveness. The full benefits of productivity improvement measures are realised when productivity is examined from two perspectives: operational efficiency (output/input) of an individual worker or a business unit as well as performance (effectiveness) with regard to end user or customer satisfaction. Over the years, corporations have adopted new technology to integrate business activities in order to achieve both effectiveness and efficiency in their operations. In recent years, many firms have invested in enterprise resource planning (ERP) in order to integrate all business activities into a uniform system. The implementation of ERP enables the firm to reduce the transaction costs of the business and improve its productivity, customer satisfaction and profitability.
UAB UTC transit related activities
DOT National Transportation Integrated Search
2011-01-25
The ITS Strategic Plan outlines a strategy for improving the efficiency of the Region's existing highway and transit systems. The Region's overall goal is to improve the efficiency and effectiveness of existing systems so as to reduce the need to bui...
McNamara, J P
2015-12-01
A major role of the dairy cow is to convert low-quality plant materials into high-quality protein and other nutrients for humans. We must select and manage cows with the goal of having animals of the greatest efficiency matched to their environment. We have increased efficiency tremendously over the years, yet the variation in productive and reproductive efficiency among animals is still large. In part, this is because of a lack of full integration of genetic, nutritional, and reproductive biology into management decisions. However, integration across these disciplines is increasing as the biological research findings show specific control points at which genetics, nutrition, and reproduction interact. An ordered systems biology approach that focuses on why and how cells regulate energy and N use and on how and why organs interact through endocrine and neurocrine mechanisms will speed improvements in efficiency. More sophisticated dairy managers will demand better information to improve the efficiency of their animals. Using genetic improvement and animal management to improve milk productive and reproductive efficiency requires a deeper understanding of metabolic processes throughout the life cycle. Using existing metabolic models, we can design experiments specifically to integrate data from global transcriptional profiling into models that describe nutrient use in farm animals. A systems modeling approach can help focus our research to make faster and larger advances in efficiency and determine how this knowledge can be applied on the farms.
Transportation energy efficiency trends in the 1990s
DOT National Transportation Integrated Search
2003-04-01
In the 1990s : The transportation sector showed little increase : in energy efficiency as transportation activity and : energy use continued to grow. : Passenger travel energy-efficiency levels : improved slightly, mainly due to efficiency ga...
Potential Organ-Donor Supply and Efficiency of Organ Procurement Organizations
Guadagnoli, Edward; Christiansen, Cindy L.; Beasley, Carol L.
2003-01-01
The authors estimated the supply of organ donors in the U.S. and also according to organ procurement organizations (OPOs). They estimated the number of donors in the U.S. to be 16,796. Estimates of the number of potential donors for each OPO were used to calculate the level of donor efficiency (actual donors as a percent of potential donors). Overall, donor efficiency for OPOs was 35 percent; the majority was between 30- and 40-percent efficient. Although there is room to improve donor efficiency in the U.S., even a substantial improvement will not meet the Nation's demand for organs. PMID:14628403
Potential organ-donor supply and efficiency of organ procurement organizations.
Guadagnoli, Edward; Christiansen, Cindy L; Beasley, Carol L
2003-01-01
The authors estimated the supply of organ donors in the U.S. and also according to organ procurement organizations (OPOs). They estimated the number of donors in the U.S. to be 16,796. Estimates of the number of potential donors for each OPO were used to calculate the level of donor efficiency (actual donors as a percent of potential donors). Overall, donor efficiency for OPOs was 35 percent; the majority was between 30- and 40-percent efficient. Although there is room to improve donor efficiency in the U.S., even a substantial improvement will not meet the Nation's demand for organs.
Arnetz, Bengt B; Lucas, Todd; Arnetz, Judith E
2011-01-01
To determine whether the relationship between organizational climate and employee mental health is consistent (ie, invariant) or differs across four large hospitals, and whether organizational efficiency mediates this relationship. Participants (total N = 5316) completed validated measures of organizational climate variables (social climate, participatory management, goal clarity, and performance feedback), organizational efficiency, occupational stress, and mental health. Path analysis best supported a model in which organizational efficiency partially mediated relationships between organizational climate, occupational stress, and mental health. Focusing on improving both the psychosocial work environment and organizational efficiency might contribute to decreased employee stress, improved mental well-being, and organizational performance.
Physics Features of TRU-Fueled VHTRs
Lewis, Tom G.; Tsvetkov, Pavel V.
2009-01-01
The current waste management strategy for spent nuclear fuel (SNF) mandated by the US Congress is the disposal of high-level waste (HLW) in a geological repository at Yucca Mountain. Ongoing efforts on closed-fuel cycle options and difficulties in opening and safeguarding such a repository have led to investigations of alternative waste management strategies. One potential strategy for the US fuel cycle would be to make use of fuel loadings containing high concentrations of transuranic (TRU) nuclides in the next-generation reactors. The use of such fuels would not only increase fuel supply but could also potentially facilitate prolonged operation modes (viamore » fertile additives) on a single fuel loading. The idea is to approach autonomous operation on a single fuel loading that would allow marketing power units as nuclear batteries for worldwide deployment. Studies have already shown that high-temperature gas-cooled reactors (HTGRs) and their Generation IV (GEN IV) extensions, very-high-temperature reactors (VHTRs), have encouraging performance characteristics. This paper is focused on possible physics features of TRU-fueled VHTRs. One of the objectives of a 3-year U.S. DOE NERI project was to show that TRU-fueled VHTRs have the possibility of prolonged operation on a single fuel loading. A 3D temperature distribution was developed based on conceivable operation conditions of the 600 MWth VHTR design. Results of extensive criticality and depletion calculations with varying fuel loadings showed that VHTRs are capable for autonomous operation and HLW waste reduction when loaded with TRU fuel.« less
Aircraft Energy Efficiency (ACEE) status report
NASA Technical Reports Server (NTRS)
Nored, D. L.; Dugan, J. F., Jr.; Saunders, N. T.; Ziemianski, J. A.
1979-01-01
Fuel efficiency in aeronautics, for fuel conservation in general as well as for its effect on commercial aircraft operating economics is considered. Projects of the Aircraft Energy Efficiency Program related to propulsion are emphasized. These include: (1) engine component improvement, directed at performance improvement and engine diagnostics for prolonged service life; (2) energy efficient engine, directed at proving the technology base for the next generation of turbofan engines; and (3) advanced turboprop, directed at advancing the technology of turboprop powered aircraft to a point suitable for commercial airline service. Progress in these technology areas is reported.
An Adaptive Evolutionary Algorithm for Traveling Salesman Problem with Precedence Constraints
Sung, Jinmo; Jeong, Bongju
2014-01-01
Traveling sales man problem with precedence constraints is one of the most notorious problems in terms of the efficiency of its solution approach, even though it has very wide range of industrial applications. We propose a new evolutionary algorithm to efficiently obtain good solutions by improving the search process. Our genetic operators guarantee the feasibility of solutions over the generations of population, which significantly improves the computational efficiency even when it is combined with our flexible adaptive searching strategy. The efficiency of the algorithm is investigated by computational experiments. PMID:24701158
An adaptive evolutionary algorithm for traveling salesman problem with precedence constraints.
Sung, Jinmo; Jeong, Bongju
2014-01-01
Traveling sales man problem with precedence constraints is one of the most notorious problems in terms of the efficiency of its solution approach, even though it has very wide range of industrial applications. We propose a new evolutionary algorithm to efficiently obtain good solutions by improving the search process. Our genetic operators guarantee the feasibility of solutions over the generations of population, which significantly improves the computational efficiency even when it is combined with our flexible adaptive searching strategy. The efficiency of the algorithm is investigated by computational experiments.
2012-01-01
Background The economic downturn exacerbates the inadequacy of resources for combating the worldwide HIV/AIDS pandemic and amplifies the need to improve the efficiency of HIV/AIDS programs. Methods We used data envelopment analysis (DEA) to evaluate efficiency of national HIV/AIDS programs in transforming funding into services and implemented a Tobit model to identify determinants of the efficiency in 68 low- and middle-income countries. We considered the change from the lowest quartile to the average value of a variable a "notable" increase. Results Overall, the average efficiency in implementing HIV/AIDS programs was moderate (49.8%). Program efficiency varied enormously among countries with means by quartile of efficiency of 13.0%, 36.4%, 54.4% and 96.5%. A country's governance, financing mechanisms, and economic and demographic characteristics influence the program efficiency. For example, if countries achieved a notable increase in "voice and accountability" (e.g., greater participation of civil society in policy making), the efficiency of their HIV/AIDS programs would increase by 40.8%. For countries in the lowest quartile of per capita gross national income (GNI), a notable increase in per capita GNI would increase the efficiency of AIDS programs by 45.0%. Conclusions There may be substantial opportunity for improving the efficiency of AIDS services, by providing more services with existing resources. Actions beyond the health sector could be important factors affecting HIV/AIDS service delivery. PMID:22443135
Perceptual learning improves visual performance in juvenile amblyopia.
Li, Roger W; Young, Karen G; Hoenig, Pia; Levi, Dennis M
2005-09-01
To determine whether practicing a position-discrimination task improves visual performance in children with amblyopia and to determine the mechanism(s) of improvement. Five children (age range, 7-10 years) with amblyopia practiced a positional acuity task in which they had to judge which of three pairs of lines was misaligned. Positional noise was produced by distributing the individual patches of each line segment according to a Gaussian probability function. Observers were trained at three noise levels (including 0), with each observer performing between 3000 and 4000 responses in 7 to 10 sessions. Trial-by-trial feedback was provided. Four of the five observers showed significant improvement in positional acuity. In those four observers, on average, positional acuity with no noise improved by approximately 32% and with high noise by approximately 26%. A position-averaging model was used to parse the improvement into an increase in efficiency or a decrease in equivalent input noise. Two observers showed increased efficiency (51% and 117% improvements) with no significant change in equivalent input noise across sessions. The other two observers showed both a decrease in equivalent input noise (18% and 29%) and an increase in efficiency (17% and 71%). All five observers showed substantial improvement in Snellen acuity (approximately 26%) after practice. Perceptual learning can improve visual performance in amblyopic children. The improvement can be parsed into two important factors: decreased equivalent input noise and increased efficiency. Perceptual learning techniques may add an effective new method to the armamentarium of amblyopia treatments.
DOT National Transportation Integrated Search
2013-04-01
The USDOT and Federal Highway Administration (FHWA) recommend the smart use of innovative project : delivery systems, such as design-build, to improve efficiency and effectiveness of developing transportation : projects. Although design-build provide...
7 CFR 4280.109 - Qualification for simplified applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Renewable Energy Systems and Energy Efficiency Improvements Program Section A. Grants § 4280.109 Qualification for... must use commercially available renewable energy systems or energy efficiency improvements. (5...
7 CFR 4280.109 - Qualification for simplified applications.
Code of Federal Regulations, 2011 CFR
2011-01-01
...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Renewable Energy Systems and Energy Efficiency Improvements Program Section A. Grants § 4280.109 Qualification for... must use commercially available renewable energy systems or energy efficiency improvements. (5...
A Secure and Efficient Handover Authentication Protocol for Wireless Networks
Wang, Weijia; Hu, Lei
2014-01-01
Handover authentication protocol is a promising access control technology in the fields of WLANs and mobile wireless sensor networks. In this paper, we firstly review an efficient handover authentication protocol, named PairHand, and its existing security attacks and improvements. Then, we present an improved key recovery attack by using the linearly combining method and reanalyze its feasibility on the improved PairHand protocol. Finally, we present a new handover authentication protocol, which not only achieves the same desirable efficiency features of PairHand, but enjoys the provable security in the random oracle model. PMID:24971471
Lan, Chunfeng; Luo, Jingting; Lan, Huabin; Fan, Bo; Peng, Huanxin; Zhao, Jun; Sun, Huibin; Zheng, Zhuanghao; Liang, Guangxing; Fan, Ping
2018-01-01
We provided a new method to improve the efficiency of Sb2S3 thin film solar cells. The TiO2 electron transport layers were doped by lithium to improve their charge extraction properties for the thermal-evaporated Sb2S3 solar cells. The Mott-Schottky curves suggested a change of energy band and faster charge transport in the Li-doped TiO2 films. Compared with the undoped TiO2, Li-doped mesoporous TiO2 dramatically improved the photo-voltaic performance of the thermal-evaporated Sb2S3 thin film solar cells, with the average power conversion efficiency (PCE) increasing from 1.79% to 4.03%, as well as the improved open-voltage (Voc), short-circuit current (Jsc) and fill factors. The best device based on Li-doped TiO2 achieved a power conversion efficiency up to 4.42% as well as a Voc of 0.645 V, which are the highest values among the reported thermal-evaporated Sb2S3 solar cells. This study showed that Li-doping on TiO2 can effectively enhance the charge extraction properties of electron transport layers, offering a new strategy to improve the efficiency of Sb2S3-based solar cells. PMID:29495612
NASA Astrophysics Data System (ADS)
Joost, William J.
2012-09-01
Transportation accounts for approximately 28% of U.S. energy consumption with the majority of transportation energy derived from petroleum sources. Many technologies such as vehicle electrification, advanced combustion, and advanced fuels can reduce transportation energy consumption by improving the efficiency of cars and trucks. Lightweight materials are another important technology that can improve passenger vehicle fuel efficiency by 6-8% for each 10% reduction in weight while also making electric and alternative vehicles more competitive. Despite the opportunities for improved efficiency, widespread deployment of lightweight materials for automotive structures is hampered by technology gaps most often associated with performance, manufacturability, and cost. In this report, the impact of reduced vehicle weight on energy efficiency is discussed with a particular emphasis on quantitative relationships determined by several researchers. The most promising lightweight materials systems are described along with a brief review of the most significant technical barriers to their implementation. For each material system, the development of accurate material models is critical to support simulation-intensive processing and structural design for vehicles; improved models also contribute to an integrated computational materials engineering (ICME) approach for addressing technical barriers and accelerating deployment. The value of computational techniques is described by considering recent ICME and computational materials science success stories with an emphasis on applying problem-specific methods.
USDA-ARS?s Scientific Manuscript database
A world-wide food shortage is predicted by the year 2050, and biotechnologies are needed to improve production efficiency in agriculture. Biotechnologies that improve reproductive efficiency in domestic farm species will improve the availability and price of food for the growing world population. ...
Improving operating room efficiency via an interprofessional approach.
Bender, Jeffrey S; Nicolescu, Teodora O; Hollingsworth, Susan B; Murer, Krystal; Wallace, Kristina R; Ertl, William J
2015-03-01
Third-party payer reimbursements will likely continue to decrease. Therefore, it is imperative for operating rooms (ORs), often a hospital's largest revenue source, to improve efficiency. We report the outcome after 3 years of a lean, Six Sigma program to improve OR utilization. In January 2011, our hospital system instituted a facility-wide approach to address the problem of OR efficiency. Interprofessional teams were formed to examine all aspects of OR use. An OR Governance Committee consisting of Department Chairs, nursing and senior administration oversaw the project. Outpatients' readiness on time for surgery increased from 59% to 95%, while first case on-time starts improved from 32% to 73%. Block utilization went from 68% to 74% and actual room utilization improved from 56% to 68%. The number of cases increased by 9%. Overtime went from 7% of total to 4%, so personnel costs decreased 14% despite 26% more employees. There was a reduction in annual voluntary OR staff turnover from 28% to 11%. Revenues increased more than 10% annually. A concerted effort to optimize OR performance resulted in marked improvements in access, overall case efficiency, staff satisfaction, and financial performance. Copyright © 2015 Elsevier Inc. All rights reserved.
INL receives GreenGov Presidential Award for fleet fuel efficiency improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wold, Scott
Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.
2011-01-01
natural gas vehicle-fueling station, improving the efficiency of boilers, installing a generating system to supplement the electricity purchased during...voltage regulation of transformers in its substations to improve energy efficiency and a small study on customer assistance, both at BPA’s own expense...Fort Campbell has installed more energy efficient boilers, HVAC systems , hot water heaters, lighting, 10 A ground source heat pump (GSHP), also
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-09-01
The Exchange, formerly the Army and Air Force Exchange Service (AAFES), is a joint military activity and the U.S. Department of Defense?s (DOD) oldest and largest retailer. The Exchange is taking a leadership role in water efficiency improvements in their commercial kitchens by integrating water efficiency concepts into the organization?s overall sustainability plan and objectives.
Methods of Efficient Study Habits and Physics Learning
NASA Astrophysics Data System (ADS)
Zettili, Nouredine
2010-02-01
We want to discuss the methods of efficient study habits and how they can be used by students to help them improve learning physics. In particular, we deal with the most efficient techniques needed to help students improve their study skills. We focus on topics such as the skills of how to develop long term memory, how to improve concentration power, how to take class notes, how to prepare for and take exams, how to study scientific subjects such as physics. We argue that the students who conscientiously use the methods of efficient study habits achieve higher results than those students who do not; moreover, a student equipped with the proper study skills will spend much less time to learn a subject than a student who has no good study habits. The underlying issue here is not the quantity of time allocated to the study efforts by the students, but the efficiency and quality of actions so that the student can function at peak efficiency. These ideas were developed as part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), an outreach grant funded by the Alabama Commission on Higher Education. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasanbeigi, Ali; Price, Lynn
Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources formore » improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.« less
Improving Plant Nitrogen Use Efficiency through Alteration of Amino Acid Transport Processes1[OPEN
Perchlik, Molly
2017-01-01
Improving the efficiency of nitrogen (N) uptake and utilization in plants could potentially increase crop yields while reducing N fertilization and, subsequently, environmental pollution. Within most plants, N is transported primarily as amino acids. In this study, pea (Pisum sativum) plants overexpressing AMINO ACID PERMEASE1 (AAP1) were used to determine if and how genetic manipulation of amino acid transport from source to sink affects plant N use efficiency. The modified plants were grown under low, moderate, or high N fertilization regimes. The results showed that, independent of the N nutrition, the engineered plants allocate more N via the vasculature to the shoot and seeds and produce more biomass and higher seed yields than wild-type plants. Dependent on the amount of N supplied, the AAP1-overexpressing plants displayed improved N uptake or utilization efficiency, or a combination of the two. They also showed significantly increased N use efficiency in N-deficient as well as in N-rich soils and, impressively, required half the amount of N to produce as many fruits and seeds as control plants. Together, these data support that engineering N allocation from source to sink presents an effective strategy to produce crop plants with improved productivity as well as N use efficiency in a range of N environments. PMID:28733388
Zheng, Hao; Tang, Cui; Yin, Chunhua
2015-06-01
Present study aimed at exploring advantages/disadvantages of amino acid modified trimethylated chitosan in conquering multiple gene delivery obstacles and thus providing comprehensive understandings for improved transfection efficiency. Arginine, cysteine, and histidine modified trimethyl chitosan were synthesized and employed to self-assemble with plasmid DNA (pDNA) to form nanocomplexes, namely TRNC, TCNC, and THNC, respectively. They were assessed by structural stability, cellular uptake, endosomal escape, release behavior, nuclear localization, and in vitro and in vivo transfection efficiencies. Besides, sodium tripolyphosphate (TPP) was added into TRNC to compromise certain disadvantageous attributes for pDNA delivery. Optimal endosomal escape ability failed to bring in satisfactory transfection efficiency of THNC due to drawbacks in structural stability, cellular uptake, pDNA liberation, and nuclear distribution. TCNC evoked the most potent gene expression owing to multiple advantages including sufficient stability, preferable uptake, efficient pDNA release, and high nucleic accumulation. Undesirable stability and insufficient pDNA release adversely affected TRNC-mediated gene transfer. However, incorporation of TPP could improve such disadvantages and consequently resulted in enhanced transfection efficiencies. Coordination of multiple contributing effects to conquer all delivery obstacles was necessitated for improved transfection efficiency, which would provide insights into rational design of gene delivery vehicles.
Coal-Powered Electric Generating Unit Efficiency and Reliability Dialogue: Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Emmanuel
Coal continues to play a critical role in powering the Nation’s electricity generation, especially for baseload power plants. With aging coal generation assets facing decreased performance due to the state of the equipment, and with challenges exacerbated by the current market pressures on the coal sector, there are opportunities to advance early-stage technologies that can retrofit or replace equipment components. These changes will eventually result in significant improvements in plant performance once further developed and deployed by industry. Research and development in areas such as materials, fluid dynamics, fuel properties and preparation characteristics, and a new generation of plant controlsmore » can lead to new components and systems that can help improve the efficiency and reliability of coal-fired power plants significantly, allowing these assets to continue to provide baseload power. Coal stockpiles at electricity generation plants are typically large enough to provide 30 to 60 days of power prior to resupply—significantly enhancing the stability and reliability of the U.S. electricity sector. Falling prices for non-dispatchable renewable energy and mounting environmental regulations, among other factors, have stimulated efforts to improve the efficiency of these coal-fired electric generating units (EGUs). In addition, increased reliance on natural gas and non-dispatchable energy sources has spurred efforts to further increase the reliability of coal EGUs. The Coal Powered EGU Efficiency and Reliability Dialogue brought together stakeholders from across the coal EGU industry to discuss methods for improvement. Participants at the event reviewed performance-enhancing innovations in coal EGUs, discussed the potential for data-driven management practices to increase efficiency and reliability, investigated the impacts of regulatory compliance on coal EGU performance, and discussed upcoming challenges for the coal industry. This report documents the key findings and research suggestions discussed at the event. Discussions at the workshop will aid DOE in developing a set of distinct initiatives that can be pursued by government and industry to realize promising technological pursuits. DOE plans to use the results of the Dialogue coupled with ongoing technical analysis of efficiency opportunities within the coal-fired fleet, and additional studies to develop a comprehensive strategy for capitalizing on thermal efficiency improvements. Expected Power Plant Efficiency Improvements include developing cost-effective, efficient, and reliable technologies for boilers, turbines, and sensors and controls to improve the reliability and efficiency of existing coal-based power plants. The Office of Fossil Energy at DOE plans to work with industry to develop knowledge pertaining to advanced technologies and systems that industry can subsequently develop. These technologies and systems will increase reliability, add operational flexibility and improve efficiency, thereby providing more robust power generation infrastructure. The following table lists the research suggestions and questions for further investigation that were identified by participants in each session of the dialogue.« less
Energy efficiency of mobile soft robots.
Shui, Langquan; Zhu, Liangliang; Yang, Zhe; Liu, Yilun; Chen, Xi
2017-11-15
The performance of mobile soft robots is usually characterized by their locomotion/velocity efficiency, whereas the energy efficiency is a more intrinsic and fundamental criterion for the performance evaluation of independent or integrated soft robots. In this work, a general framework is established to evaluate the energy efficiency of mobile soft robots by considering the efficiency of the energy source, actuator and locomotion, and some insights for improving the efficiency of soft robotic systems are presented. Proposed as the ratio of the desired locomotion kinetic energy to the input mechanical energy, the energy efficiency of locomotion is found to play a critical role in determining the overall energy efficiency of soft robots. Four key factors related to the locomotion energy efficiency are identified, that is, the locomotion modes, material properties, geometric sizes, and actuation states. It is found that the energy efficiency of most mobile soft robots reported in the literature is surprisingly low (mostly below 0.1%), due to the inefficient mechanical energy that essentially does not contribute to the desired locomotion. A comparison of the locomotion energy efficiency for several representative locomotion modes in the literature is presented, showing a descending ranking as: jumping ≫ fish-like swimming > snake-like slithering > rolling > rising/turning over > inchworm-like inching > quadruped gait > earthworm-like squirming. Besides, considering the same locomotion mode, soft robots with lower stiffness, higher density and larger size tend to have higher locomotion energy efficiency. Moreover, a periodic pulse actuation instead of a continuous actuation mode may significantly reduce the input mechanical energy, thus improving the locomotion energy efficiency, especially when the pulse actuation matches the resonant states of the soft robots. The results presented herein indicate a large and necessary space for improving the locomotion energy efficiency, which is of practical significance for the future development and application of soft robots.
Alaghemandan, Hamed; Yarmohammadian, Mohammad H; Khorasani, Elahe; Rezaee, Sobhan
2014-02-01
In Isfahan, the second metropolitan in Iran, there are 1448 dentistry treatment centers that most of them are inefficient. Today, efficiency is the most important issue in health care centers as well as dentistry clinics. The goal of this research is to investigate the affordability and efficiency of dentistry clinics in Isfahan province, Iran. The current work is a quantitative research, designed in three methodological steps, including two surveys and experimental studies, for understanding current deficiencies of Iranian dentistry clinics. First, we ran a survey. Then, we analyzed the results of the questionnaires which guided us to find a particular intervening package to improve the efficiency of the clinics. At the second step, we chose an inefficient clinic named Mohtasham (Iran, Isfahan) to evaluate our intervening package. Based on what the interviewees answered, we mention the most important issues to be considered for improving the efficiency of dental clinics in Isfahan. By considering mentioned problematic issues, an intervening package was designed. This intervening package was applied in Mohtasham clinic, since June 2010. It improved the clinic's income from 16328 US$ with 4125 clients in 2010, to 420,000 US$ with 14784 patients in 2012. The proposed intervening package changed this clinic to an efficient and economic one. Its income increased 5.08 times and its patient's numbers grew 4.01 times simultaneously. In other words, Mohtasham's experience demonstrates the reliability of the package and its potentiality to be applied in macro level to improve other dentistry clinics.
Chiller plant design rules...Have they changed?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppelheimer, D.
1995-09-01
Chilled water plants are often viewed as energy consumers, actually they are only energy movers. In just the simple process of chilling water, there are four discrete energy moving functions. The chilled water pumps, condenser water pumps, and cooling tower fans are all forms of transport energy. The chiller is a heat pump where energy is consumed to raise the temperature of the heat stream. Insight into improved chiller plant performance can be obtained by tracking the power consumption of these four functions. The performance of centrifugal chillers has improved dramatically in the past 25 years. Certainly some of thismore » improvement is due to technology improvements in heat transfer and compressor efficiency. However, the lion`s share of gain in chiller efficiency is a result of chiller owners budgeting more funds to energy conservation and purchasing more efficient chillers. Since 1970, the efficiency of electric water chillers has improved by nearly 4 percent! The intent of this presentation is to review the energy cost associated with central chilled water plants and identify opportunities in design that may reduce energy costs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrell, L.A.; Sippel, M.A.
1996-09-01
The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing andmore » better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.« less
NASA Astrophysics Data System (ADS)
Chen, Junyi; Subramani, Thiyagu; Sun, Yonglie; Jevasuwan, Wipakorn; Fukata, Naoki
2018-05-01
Silicon nanowire solar cells were fabricated by metal catalyzed electroless etching (MCEE) followed by thermal chemical vapor deposition (CVD). In this study, we investigated two effects, a UV/ozone treatment and the use of a micro-grid electrodes, to enhance light absorption and reduce the optic losses in the solar cell device. The UV/ozone treatment successfully improved the conversion efficiency. The micro-grid electrodes were then applied in solar cell devices subjected to a back surface field (BSF) treatment and rapid thermal annealing (RTA). These effects improved the conversion efficiency from 9.4% to 10.9%. Moreover, to reduce surface recombination and improve the continuity of front electrodes, we optimized the etching time of the MCEE process, giving a high efficiency of 12.3%.
Xu, Qing-Yang; Yuan, Da-Xing; Mu, Hao-Ran; Igbari, Femi; Bao, Qiaoliang; Liao, Liang-Sheng
2016-12-01
A new approach to improve the quality of MAPbI3 - x Cl x perovskite film was demonstrated. It involves annealing the precursor film after pumping away the solvent, which can decrease the influence of solvent evaporation rate for the growth of the MAPbI3 - x Cl x perovskite film. The resulting film showed improved morphology, stronger absorption, fewer crystal defects, and smaller charge transfer resistance. The corresponding device demonstrated enhanced performance when compared with a reference device. The averaged value of power conversion efficiency increased from 10.61 to 12.56 %, and a champion efficiency of 14.0 % was achieved. This work paves a new way to improve the efficiency of perovskite solar cells.
Solid polymeric electrolyte based dye-sensitized solar cell with improved stability
NASA Astrophysics Data System (ADS)
Prasad, Narottam; Kumar, Manish; Patel, K. R.; Roy, M. S.
2018-05-01
The impact of polymeric electrolyte was investigated over the performance of dye-sensitized solar cell made with Rose Bengal as sensitizer. Further, the selective influence of TiCl4 treatment and pre-sensitizer deoxycholic acid on nc-TiO2 photoanode was determined in terms of improvement in conversion efficiency of the cell. It is found that the effect of TiCl4 treatment was comparatively more than pre-sensitization with de-oxy cholic acid towards improving the efficiency of the cell. The conversion efficiency on TiCl4 treatment was 0.2% whereas on pre-sensitization with deoxy chollic acid it was 0.1%. The combined effect of both TiCl4 treatment & pre-sensitization with deoxycholic acid leads conversion efficiency to 0.33%.
NASA Astrophysics Data System (ADS)
Groeneveld, Bart G. H. M.; Najafi, Mehrdad; Steensma, Bauke; Adjokatse, Sampson; Fang, Hong-Hua; Jahani, Fatemeh; Qiu, Li; ten Brink, Gert H.; Hummelen, Jan C.; Loi, Maria Antonietta
2017-07-01
We present efficient p-i-n type perovskite solar cells using NiOx as the hole transport layer and a fulleropyrrolidine with a triethylene glycol monoethyl ether side chain (PTEG-1) as electron transport layer. This electron transport layer leads to higher power conversion efficiencies compared to perovskite solar cells with PCBM (phenyl-C61-butyric acid methyl ester). The improved performance of PTEG-1 devices is attributed to the reduced trap-assisted recombination and improved charge extraction in these solar cells, as determined by light intensity dependence and photoluminescence measurements. Through optimization of the hole and electron transport layers, the power conversion efficiency of the NiOx/perovskite/PTEG-1 solar cells was increased up to 16.1%.
Improving health and energy efficiency through community-based housing interventions.
Howden-Chapman, Philippa; Crane, Julian; Chapman, Ralph; Fougere, Geoff
2011-12-01
Houses designed for one climate and cultural group may not be appropriate for other places and people. Our aim is to find cost-effective ways to improve the characteristics of older homes, ill-fitted for New Zealand's climate, in order to improve the occupants' health. We have carried out two community randomised trials, in partnership with local communities, which have focused on retrofitted insulation and more effective heating and have two other studies under way, one which focuses on electricity vouchers and the other on housing hazard remediation. The Housing, Insulation and Health Study showed that insulating 1,350 houses, built before insulation was required, improved the occupants' health and well being as well as household energy efficiency. In the Housing, Heating and Health Study we investigated the impact of installing more effective heating in insulated houses for 409 households, where there was a child with doctor-diagnosed asthma. Again, the study showed significant results in the intervention group; indoor temperatures increased and levels of NO(2) were halved. Children reported less poor health, lower levels of asthma symptoms and sleep disturbances by wheeze and dry cough. Children also had fewer days off school. Improving the energy efficiency of older housing leads to health improvements and energy efficiency improvements. Multidisciplinary studies of housing interventions can create compelling evidence to support policies for sustainable housing developments which improve health.
7 CFR 4280.114 - Qualification for simplified applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... proposed project must use commercially available renewable energy systems or energy efficiency improvements...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Renewable Energy System and Energy Efficiency Improvement Grants § 4280.114...
7 CFR 4280.114 - Qualification for simplified applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... proposed project must use commercially available renewable energy systems or energy efficiency improvements...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Renewable Energy System and Energy Efficiency Improvement Grants § 4280.114...
7 CFR 4280.114 - Qualification for simplified applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... proposed project must use commercially available renewable energy systems or energy efficiency improvements...-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Renewable Energy System and Energy Efficiency Improvement Grants § 4280.114...
21 CFR 558.62 - Arsanilic acid.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Indications for use Limitations Sponsor (i) 45 to 90 1. Growing chickens: For growth promotion and feed...) .......do 015565 (iii) Erythromycin 4.6 Chickens; growth promotion and feed efficiency; improving.... 012487 (iv) Erythromycin 4.6 to 18.5 Chickens; growth promotion and feed efficiency; improving...
Benchmarking and Self-Assessment in the Wine Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitsky, Christina; Radspieler, Anthony; Worrell, Ernst
2005-12-01
Not all industrial facilities have the staff or theopportunity to perform a detailed audit of their operations. The lack ofknowledge of energy efficiency opportunities provides an importantbarrier to improving efficiency. Benchmarking programs in the U.S. andabroad have shown to improve knowledge of the energy performance ofindustrial facilities and buildings and to fuel energy managementpractices. Benchmarking provides a fair way to compare the energyintensity of plants, while accounting for structural differences (e.g.,the mix of products produced, climate conditions) between differentfacilities. In California, the winemaking industry is not only one of theeconomic pillars of the economy; it is also a large energymore » consumer, witha considerable potential for energy-efficiency improvement. LawrenceBerkeley National Laboratory and Fetzer Vineyards developed the firstbenchmarking tool for the California wine industry called "BEST(Benchmarking and Energy and water Savings Tool) Winery". BEST Wineryenables a winery to compare its energy efficiency to a best practicereference winery. Besides overall performance, the tool enables the userto evaluate the impact of implementing efficiency measures. The toolfacilitates strategic planning of efficiency measures, based on theestimated impact of the measures, their costs and savings. The tool willraise awareness of current energy intensities and offer an efficient wayto evaluate the impact of future efficiency measures.« less
Measuring efficiency of cotton cultivation in Pakistan: a restricted production frontier study.
Watto, Muhammad Arif; Mugera, Amin
2014-11-01
Massive groundwater pumping for irrigation has started lowering water tables rapidly in different regions of Pakistan. Declining water tables have thus prompted research efforts to improve agricultural productivity and efficiency to make efficient use of scarce water resources. This study employs a restricted stochastic production frontier to estimate the level of, and factors affecting, technical efficiency of groundwater-irrigated cotton farms in the Punjab province of Pakistan. The mean technical efficiency estimates indicate substantial technical inefficiencies among cotton growers. On average, tube-well owners and water buyers can potentially increase cotton production by 19% and 28%, respectively, without increasing the existing input level. The most influential factors affecting technical efficiency positively are the use of improved quality seed, consultation with extension field staff and farmers' perceptions concerning the availability of groundwater resources for irrigation in the future. This study proposes that adopting improved seed for new cotton varieties and providing better extension services regarding cotton production technology would help to achieve higher efficiency in cotton farming. Within the context of falling water tables, educating farmers about the actual crop water requirements and guiding them about groundwater resource availability may also help to achieve higher efficiencies. © 2014 Society of Chemical Industry. © 2014 Society of Chemical Industry.
Eco-efficiency Analysis of Furniture Product Using Life Cycle Assessment
NASA Astrophysics Data System (ADS)
Rinawati, Dyah Ika; Sriyanto; Sari, Diana Puspita; Prayodha, Andana Cantya
2018-02-01
Furniture is one of Indonesia's main commodities strategically role in economic growth and employment in Indonesia. In their production process there many wastes resulted, such as such as sawdust, cuttings - pieces of wood, components that do not conform to specifications and the edges of wood from a log. Contrast with requirement of timber for furniture industries, availability of raw material sources decrease because of limited forest areas. Beside that, using electricity and chemical material in furniture production process have impact to environment. This study aim to assess the eco-cost and eco-efficiency ratio of the product so strategic recommendations to improve the eco-efficiency of products can be designed. The results of data processing showed the environmental costs of the furniture production process amount Rp 30.887.84. Eco-efficiency index of furniture products studied was 4,79 with the eco-efficiency ratio of 79,12%. This result means that the measured furniture products already profitable and sustainable, as well as its production process is already fairly efficient. However, improved performance of the production process can still be done to improve the eco-efficiency by minimizing the use of raw materials.
Scope for improved eco-efficiency varies among diverse cropping systems.
Carberry, Peter S; Liang, Wei-li; Twomlow, Stephen; Holzworth, Dean P; Dimes, John P; McClelland, Tim; Huth, Neil I; Chen, Fu; Hochman, Zvi; Keating, Brian A
2013-05-21
Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat-maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems.
Scope for improved eco-efficiency varies among diverse cropping systems
Carberry, Peter S.; Liang, Wei-li; Twomlow, Stephen; Holzworth, Dean P.; Dimes, John P.; McClelland, Tim; Huth, Neil I.; Chen, Fu; Hochman, Zvi; Keating, Brian A.
2013-01-01
Global food security requires eco-efficient agriculture to produce the required food and fiber products concomitant with ecologically efficient use of resources. This eco-efficiency concept is used to diagnose the state of agricultural production in China (irrigated wheat–maize double-cropping systems), Zimbabwe (rainfed maize systems), and Australia (rainfed wheat systems). More than 3,000 surveyed crop yields in these three countries were compared against simulated grain yields at farmer-specified levels of nitrogen (N) input. Many Australian commercial wheat farmers are both close to existing production frontiers and gain little prospective return from increasing their N input. Significant losses of N from their systems, either as nitrous oxide emissions or as nitrate leached from the soil profile, are infrequent and at low intensities relative to their level of grain production. These Australian farmers operate close to eco-efficient frontiers in regard to N, and so innovations in technologies and practices are essential to increasing their production without added economic or environmental risks. In contrast, many Chinese farmers can reduce N input without sacrificing production through more efficient use of their fertilizer input. In fact, there are real prospects for the double-cropping systems on the North China Plain to achieve both production increases and reduced environmental risks. Zimbabwean farmers have the opportunity for significant production increases by both improving their technical efficiency and increasing their level of input; however, doing so will require improved management expertise and greater access to institutional support for addressing the higher risks. This paper shows that pathways for achieving improved eco-efficiency will differ among diverse cropping systems. PMID:23671071
Shen, Jianbo; Li, Chunjian; Mi, Guohua; Li, Long; Yuan, Lixing; Jiang, Rongfeng; Zhang, Fusuo
2013-03-01
Root and rhizosphere research has been conducted for many decades, but the underlying strategy of root/rhizosphere processes and management in intensive cropping systems remain largely to be determined. Improved grain production to meet the food demand of an increasing population has been highly dependent on chemical fertilizer input based on the traditionally assumed notion of 'high input, high output', which results in overuse of fertilizers but ignores the biological potential of roots or rhizosphere for efficient mobilization and acquisition of soil nutrients. Root exploration in soil nutrient resources and root-induced rhizosphere processes plays an important role in controlling nutrient transformation, efficient nutrient acquisition and use, and thus crop productivity. The efficiency of root/rhizosphere in terms of improved nutrient mobilization, acquisition, and use can be fully exploited by: (1) manipulating root growth (i.e. root development and size, root system architecture, and distribution); (2) regulating rhizosphere processes (i.e. rhizosphere acidification, organic anion and acid phosphatase exudation, localized application of nutrients, rhizosphere interactions, and use of efficient crop genotypes); and (3) optimizing root zone management to synchronize root growth and soil nutrient supply with demand of nutrients in cropping systems. Experiments have shown that root/rhizosphere management is an effective approach to increase both nutrient use efficiency and crop productivity for sustainable crop production. The objectives of this paper are to summarize the principles of root/rhizosphere management and provide an overview of some successful case studies on how to exploit the biological potential of root system and rhizosphere processes to improve crop productivity and nutrient use efficiency.
O'Connor, Sydney; Ayres, Alison; Cortellini, Lynelle; Rosand, Jonathan; Rosenthal, Eric; Kimberly, W Taylor
2012-08-01
Reliable and efficient data repositories are essential for the advancement of research in Neurocritical care. Various factors, such as the large volume of patients treated within the neuro ICU, their differing length and complexity of hospital stay, and the substantial amount of desired information can complicate the process of data collection. We adapted the tools of process improvement to the data collection and database design of a research repository for a Neuroscience intensive care unit. By the Shewhart-Deming method, we implemented an iterative approach to improve the process of data collection for each element. After an initial design phase, we re-evaluated all data fields that were challenging or time-consuming to collect. We then applied root-cause analysis to optimize the accuracy and ease of collection, and to determine the most efficient manner of collecting the maximal amount of data. During a 6-month period, we iteratively analyzed the process of data collection for various data elements. For example, the pre-admission medications were found to contain numerous inaccuracies after comparison with a gold standard (sensitivity 71% and specificity 94%). Also, our first method of tracking patient admissions and discharges contained higher than expected errors (sensitivity 94% and specificity 93%). In addition to increasing accuracy, we focused on improving efficiency. Through repeated incremental improvements, we reduced the number of subject records that required daily monitoring from 40 to 6 per day, and decreased daily effort from 4.5 to 1.5 h/day. By applying process improvement methods to the design of a Neuroscience ICU data repository, we achieved a threefold improvement in efficiency and increased accuracy. Although individual barriers to data collection will vary from institution to institution, a focus on process improvement is critical to overcoming these barriers.
Cima, Robert R; Brown, Michael J; Hebl, James R; Moore, Robin; Rogers, James C; Kollengode, Anantha; Amstutz, Gwendolyn J; Weisbrod, Cheryl A; Narr, Bradly J; Deschamps, Claude
2011-07-01
Operating rooms (ORs) are resource-intense and costly hospital units. Maximizing OR efficiency is essential to maintaining an economically viable institution. OR efficiency projects often focus on a limited number of ORs or cases. Efforts across an entire OR suite have not been reported. Lean and Six Sigma methodologies were developed in the manufacturing industry to increase efficiency by eliminating non-value-added steps. We applied Lean and Six Sigma methodologies across an entire surgical suite to improve efficiency. A multidisciplinary surgical process improvement team constructed a value stream map of the entire surgical process from the decision for surgery to discharge. Each process step was analyzed in 3 domains, ie, personnel, information processed, and time. Multidisciplinary teams addressed 5 work streams to increase value at each step: minimizing volume variation; streamlining the preoperative process; reducing nonoperative time; eliminating redundant information; and promoting employee engagement. Process improvements were implemented sequentially in surgical specialties. Key performance metrics were collected before and after implementation. Across 3 surgical specialties, process redesign resulted in substantial improvements in on-time starts and reduction in number of cases past 5 pm. Substantial gains were achieved in nonoperative time, staff overtime, and ORs saved. These changes resulted in substantial increases in margin/OR/day. Use of Lean and Six Sigma methodologies increased OR efficiency and financial performance across an entire operating suite. Process mapping, leadership support, staff engagement, and sharing performance metrics are keys to enhancing OR efficiency. The performance gains were substantial, sustainable, positive financially, and transferrable to other specialties. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Management and genetic factors affecting efficiency of cattle in a grazing environment
USDA-ARS?s Scientific Manuscript database
Much of current efforts to improve efficiency in cattle use measures of individual feed intake in combination with weight gain as an indication of efficiency. This approach provides pertinent information concerning efficiency during the growing phase, but the relationship to cow efficiency remains t...
Obure, Carol Dayo; Jacobs, Rowena; Guinness, Lorna; Mayhew, Susannah; Vassall, Anna
2016-01-01
Theoretically, integration of vertically organized services is seen as an important approach to improving the efficiency of health service delivery. However, there is a dearth of evidence on the effect of integration on the technical efficiency of health service delivery. Furthermore, where technical efficiency has been assessed, there have been few attempts to incorporate quality measures within efficiency measurement models particularly in sub-Saharan African settings. This paper investigates the technical efficiency and the determinants of technical efficiency of integrated HIV and sexual and reproductive health (SRH) services using data collected from 40 health facilities in Kenya and Swaziland for 2008/2009 and 2010/2011. Incorporating a measure of quality, we estimate the technical efficiency of health facilities and explore the effect of integration and other environmental factors on technical efficiency using a two-stage semi-parametric double bootstrap approach. The empirical results reveal a high degree of inefficiency in the health facilities studied. The mean bias corrected technical efficiency scores taking quality into consideration varied between 22% and 65% depending on the data envelopment analysis (DEA) model specification. The number of additional HIV services in the maternal and child health unit, public ownership and facility type, have a positive and significant effect on technical efficiency. However, number of additional HIV and STI services provided in the same clinical room, proportion of clinical staff to overall staff, proportion of HIV services provided, and rural location had a negative and significant effect on technical efficiency. The low estimates of technical efficiency and mixed effects of the measures of integration on efficiency challenge the notion that integration of HIV and SRH services may substantially improve the technical efficiency of health facilities. The analysis of quality and efficiency as separate dimensions of performance suggest that efficiency may be achieved without sacrificing quality. PMID:26803655
Obure, Carol Dayo; Jacobs, Rowena; Guinness, Lorna; Mayhew, Susannah; Vassall, Anna
2016-02-01
Theoretically, integration of vertically organized services is seen as an important approach to improving the efficiency of health service delivery. However, there is a dearth of evidence on the effect of integration on the technical efficiency of health service delivery. Furthermore, where technical efficiency has been assessed, there have been few attempts to incorporate quality measures within efficiency measurement models particularly in sub-Saharan African settings. This paper investigates the technical efficiency and the determinants of technical efficiency of integrated HIV and sexual and reproductive health (SRH) services using data collected from 40 health facilities in Kenya and Swaziland for 2008/2009 and 2010/2011. Incorporating a measure of quality, we estimate the technical efficiency of health facilities and explore the effect of integration and other environmental factors on technical efficiency using a two-stage semi-parametric double bootstrap approach. The empirical results reveal a high degree of inefficiency in the health facilities studied. The mean bias corrected technical efficiency scores taking quality into consideration varied between 22% and 65% depending on the data envelopment analysis (DEA) model specification. The number of additional HIV services in the maternal and child health unit, public ownership and facility type, have a positive and significant effect on technical efficiency. However, number of additional HIV and STI services provided in the same clinical room, proportion of clinical staff to overall staff, proportion of HIV services provided, and rural location had a negative and significant effect on technical efficiency. The low estimates of technical efficiency and mixed effects of the measures of integration on efficiency challenge the notion that integration of HIV and SRH services may substantially improve the technical efficiency of health facilities. The analysis of quality and efficiency as separate dimensions of performance suggest that efficiency may be achieved without sacrificing quality. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Successful strategies for improving operating room efficiency at academic institutions.
Overdyk, F J; Harvey, S C; Fishman, R L; Shippey, F
1998-04-01
In this prospective study, we evaluated the etiology of operating room (OR) delays in an academic institution, examined the impact of multidisciplinary strategies to improve OR efficiency, and established OR timing benchmarks for use in future OR efficiency studies. OR times and delay etiologies were collected for 94 cases during the initial phase of the study. Timing data and delay etiologies were analyzed, and 2 wk of multidisciplinary OR efficiency awareness education was conducted for the nursing, surgical, and anesthesia staff. After the education period, timing data were collected from 1787 cases, and monthly reports listing individual case delays and timing data were sent to the Chiefs of Service. For the first case of the day, patient in room, anesthesia ready, surgical preparation start, and procedure start time were significantly earlier (P < 0.01) in the posteducation period compared with the preeducation period, and the procedure start time for the first case of the day occurred, on average, 22 min earlier than all other procedures. For all cases combined, turnover time decreased, on average, by 16 min. Unavailability of surgeons, anesthesiologists, and residents decreased significantly (P < 0.05) as causes of OR delays. Anesthesia induction times were consistently longer for the vascular and cardiothoracic services, whereas surgical preparation time was increased for the neurosurgical and orthopedic services (P < 0.05). Identification of the etiology of OR inefficiency, combined with multidisciplinary awareness training and personal accountability, can improve OR efficiency. The time savings realized are probably most cost-effective when combined with more flexible OR staffing and improved OR scheduling. We achieved significant improvements in operating room efficiency by analyzing operating room data on causes of delays, devising strategies for minimizing the most common delays, and subsequently measuring delay data. Personal accountability, streamlining of procedures, interdisciplinary team work, and accurate data collection were all important contributors to improved efficiency.
[Separation of PM2.5 from coal combustion with phase change].
Yan, Jin-pei; Yang, Lin-jun; Zhang, Xia; Sun, Lu-juan; Zhang, Yu; Shen, Xiang-lin
2008-12-01
The influence of two methods of gas moisture conditioning on removal efficiency of PM2.5 from coal combustion with addition of atomized droplets and steam was investigated. The particles size distribution and number concentration were measured in real time by electrical low pressure impactor (ELPI). The results show that collection efficiency of PM2.5 from coal combustion can be highly improved with steam condensational enlargement. Particle stage collection efficiency increases with the particles, especially for those smaller than 0.3 microm. The separation efficiency can be improved by 60% with the size of particles increasing from 0.03 microm to 0.3 microm for 0.1 kg/m3 of steam addition. The removal efficiency is independent of the gas temperature at the inlet of conditioning chamber for steam addition. But it increases with the gas temperature obviously for atomized droplets addition, which can be improved by 30% with increasing gas temperature from 136 degrees C to 256 degrees C. High removal efficiency of PM2.5 from coal combustion can be obtained with atomized droplets evaporation in hot flue gas except for steam addition.
Heller, Christian Maria
2004-04-27
An organic electroluminescent device ("OELD") has a controllable brightness, an improved energy efficiency, and stable optical output at low brightness. The OELD is activated with a series of voltage pulses, each of which has a maximum voltage value that corresponds to the maximum power efficiency when the OELD is activated. The frequency of the pulses, or the duty cycle, or both are chosen to provide the desired average brightness.
ERIC Educational Resources Information Center
Schiefelbein, Ernesto
Seven strategies for improving the quality and efficiency of educational system in Latin American are delineated within the context of background information on the coverage and efficiency of school systems from 1970 to 1980, technical and institutional limitations to educational progress, and an estimate of the impact of the strategies.…
NASA Astrophysics Data System (ADS)
Nagashima, Keisuke; Tsubouchi, Masaaki; Ochi, Yoshihiro; Maruyama, Momoko
2018-03-01
We have proposed an improved contact grating device for generating terahertz waves efficiently and have succeeded in developing the device with a very high diffraction efficiency and a wide spectral width. This device has a bi-angular filter and a Fabry-Perot-type structure, which are composed of dielectric multilayers. The bi-angular filter is designed to reflect the 0th-order wave and transmit the-1st-order diffraction wave. Numerical calculations indicate that the new device has a maximum diffraction efficiency over 99% and a spectral width of approximately 20 nm. We measured a high efficiency of 90% over a broad spectral range using a fabricated device.
Economic Analysis of Waterfront Area Services at Naval Station, Long Beach
1991-06-01
the Gradall for waterfront area services, would result in improved responsiveness and timely service. Customer satisfaction and overall customer ...overall cost. Hence, both quality and efficiency will improve leading to greater customer satisfaction . 58 VII. RECOMMENDATIONS FOR ACTION RECOMMENDATION 1...prompting the need for improved efficiency. To ensure adequate future support can be provided to its customers , Naval Station Long Beach (Navsta) is
NASA Technical Reports Server (NTRS)
Lin, Z.; Stamnes, S.; Jin, Z.; Laszlo, I.; Tsay, S. C.; Wiscombe, W. J.; Stamnes, K.
2015-01-01
A successor version 3 of DISORT (DISORT3) is presented with important upgrades that improve the accuracy, efficiency, and stability of the algorithm. Compared with version 2 (DISORT2 released in 2000) these upgrades include (a) a redesigned BRDF computation that improves both speed and accuracy, (b) a revised treatment of the single scattering correction, and (c) additional efficiency and stability upgrades for beam sources. In DISORT3 the BRDF computation is improved in the following three ways: (i) the Fourier decomposition is prepared "off-line", thus avoiding the repeated internal computations done in DISORT2; (ii) a large enough number of terms in the Fourier expansion of the BRDF is employed to guarantee accurate values of the expansion coefficients (default is 200 instead of 50 in DISORT2); (iii) in the post processing step the reflection of the direct attenuated beam from the lower boundary is included resulting in a more accurate single scattering correction. These improvements in the treatment of the BRDF have led to improved accuracy and a several-fold increase in speed. In addition, the stability of beam sources has been improved by removing a singularity occurring when the cosine of the incident beam angle is too close to the reciprocal of any of the eigenvalues. The efficiency for beam sources has been further improved from reducing by a factor of 2 (compared to DISORT2) the dimension of the linear system of equations that must be solved to obtain the particular solutions, and by replacing the LINPAK routines used in DISORT2 by LAPACK 3.5 in DISORT3. These beam source stability and efficiency upgrades bring enhanced stability and an additional 5-7% improvement in speed. Numerical results are provided to demonstrate and quantify the improvements in accuracy and efficiency of DISORT3 compared to DISORT2.
7 CFR 4280.149 - Requirements after project construction.
Code of Federal Regulations, 2011 CFR
2011-01-01
... paragraphs (a) and (b) of this section, as applicable. (a) Renewable energy projects. For renewable energy... future similar projects. (7) Actual jobs created or saved. (b) Energy efficiency improvement projects. For energy efficiency improvement projects, commencing the first full calendar year following the year...
Improving feed efficiency in dairy production systems – challenges and possibilities
USDA-ARS?s Scientific Manuscript database
Improving production efficiency has always been a goal of animal agriculture to ensure an abundant food and fiber supply, and to maintain producer profitability. In recent decades, the concept of sustainable agriculture emerged, which includes the additional goals of safeguarding natural resources, ...
Study of the impact of a telematics system on safe and fuel-efficient driving in trucks.
DOT National Transportation Integrated Search
2014-04-01
A telematics system has been successfully demonstrated to be useful for improving motor carrier efficiency. In this : particular field study, the research team demonstrated that telematics can be used to monitor and improve safe : driving behavior as...
DOT National Transportation Integrated Search
1997-11-01
The ITS Strategic Plan outlines a strategy for improving the efficiency of the Capitol Regions existing highway and transit systems. The Regions overall goal is to improve the efficiency and effectiveness of existing systems so as to reduce the...
NASA Astrophysics Data System (ADS)
Jaffrey, V.; Mohamed, N. M. Z. N.; Rose, A. N. M.
2017-10-01
In almost all manufacturing industry, increased productivity and better efficiency of the production line are the most important goals. Most factories especially small scale factory has less awareness of manufacturing system optimization and lack of knowledge about it and uses the traditional way of management. Problems that are commonly identified in the factory are a high idle time of labour and also small production. This study is done in a Small and Medium Enterprises (SME) low volume production company. Data collection and problems affecting productivity and efficiency are identified. In this study, Witness simulation software is being used to simulate the layout and the output is focusing on the improvement of layout in terms of productivity and efficiency. In this study, the layout is rearranged by reducing the travel time from a workstation to another workstation. Then, the improved layout is modelled and the machine and labour statistic of both, original and improved layout is taken. Productivity and efficiency are calculated for both layout and then being compared.
RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency
Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y. Eugene; Zhang, Jifeng
2016-01-01
Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells. PMID:26817820
Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics.
Johlin, Eric; Al-Obeidi, Ahmed; Nogay, Gizem; Stuckelberger, Michael; Buonassisi, Tonio; Grossman, Jeffrey C
2016-06-22
While low hole mobilities limit the current collection and efficiency of hydrogenated amorphous silicon (a-Si:H) photovoltaic devices, attempts to improve mobility of the material directly have stagnated. Herein, we explore a method of utilizing nanostructuring of a-Si:H devices to allow for improved hole collection in thick absorber layers. This is achieved by etching an array of 150 nm diameter holes into intrinsic a-Si:H and then coating the structured material with p-type a-Si:H and a conformal zinc oxide transparent conducting layer. The inclusion of these nanoholes yields relative power conversion efficiency (PCE) increases of ∼45%, from 7.2 to 10.4% PCE for small area devices. Comparisons of optical properties, time-of-flight mobility measurements, and internal quantum efficiency spectra indicate this efficiency is indeed likely occurring from an improved collection pathway provided by the nanostructuring of the devices. Finally, we estimate that through modest optimizations of the design and fabrication, PCEs of beyond 13% should be obtainable for similar devices.
Efficiency of bulk-heterojunction organic solar cells
Scharber, M.C.; Sariciftci, N.S.
2013-01-01
During the last years the performance of bulk heterojunction solar cells has been improved significantly. For a large-scale application of this technology further improvements are required. This article reviews the basic working principles and the state of the art device design of bulk heterojunction solar cells. The importance of high power conversion efficiencies for the commercial exploitation is outlined and different efficiency models for bulk heterojunction solar cells are discussed. Assuming state of the art materials and device architectures several models predict power conversion efficiencies in the range of 10–15%. A more general approach assuming device operation close to the Shockley–Queisser-limit leads to even higher efficiencies. Bulk heterojunction devices exhibiting only radiative recombination of charge carriers could be as efficient as ideal inorganic photovoltaic devices. PMID:24302787
Analyzing Whether Countries Are Equally Efficient at Improving Longevity for Men and Women
Nandi, Arijit; Mendoza Rodríguez, José M.; Heymann, Jody
2014-01-01
Objectives. We examined the efficiency of country-specific health care spending in improving life expectancies for men and women. Methods. We estimated efficiencies of health care spending for 27 Organisation for Economic Co-operation and Development (OECD) countries during the period 1991 to 2007 using multivariable regression models, including country fixed-effects and controlling for time-varying levels of national social expenditures, economic development, and health behaviors. Results. Findings indicated robust differences in health-spending efficiency. A 1% annual increase in health expenditures was associated with percent changes in life expectancy ranging from 0.020 in the United States (95% confidence interval [CI] = 0.008, 0.032) to 0.121 in Germany (95% CI = 0.099, 0.143). Health-spending increases were associated with greater life expectancy improvements for men than for women in nearly every OECD country. Conclusions. This is the first study to our knowledge to estimate the effect of country-specific health expenditures on life expectancies of men and women. Future work understanding the determinants of these differences has the potential to improve the overall efficiency and equity of national health systems. PMID:24328639
Levidow, Les; Lindgaard-Jørgensen, Palle; Nilsson, Asa; Skenhall, Sara Alongi; Assimacopoulos, Dionysis
2014-01-01
The well-known eco-efficiency concept helps to assess the economic value and resource burdens of potential improvements by comparison with the baseline situation. But eco-efficiency assessments have generally focused on a specific site, while neglecting wider effects, for example, through interactions between water users and wastewater treatment (WWT) providers. To address the methodological gap, the EcoWater project has developed a method and online tools for meso-level analysis of the entire water-service value chain. This study investigated improvement options in two large manufacturing companies which have significant potential for eco-efficiency gains. They have been considering investment in extra processes which can lower resource burdens from inputs and wastewater, as well as internalising WWT processes. In developing its methodology, the EcoWater project obtained the necessary information from many agents, involved them in the meso-level assessment and facilitated their discussion on alternative options. Prior discussions with stakeholders stimulated their attendance at a workshop to discuss a comparative eco-efficiency assessment for whole-system improvement. Stakeholders expressed interest in jointly extending the EcoWater method to more options and in discussing investment strategies. In such ways, optimal solutions will depend on stakeholders overcoming fragmentation by sharing responsibility and knowledge.
Engineering dihydropteroate synthase (DHPS) for efficient expression on M13 phage.
Brockmann, Eeva-Christine; Lamminmäki, Urpo; Saviranta, Petri
2005-06-20
Phage display is a commonly used selection technique in protein engineering, but not all proteins can be expressed on phage. Here, we describe the expression of a cytoplasmic homodimeric enzyme dihydropteroate synthetase (DHPS) on M13 phage, established by protein engineering of DHPS. The strategy included replacement of cysteine residues and screening for periplasmic expression followed by random mutagenesis and phage display selection with a conformation-specific anti-DHPS antibody. Cysteine replacement alone resulted in a 12-fold improvement in phage display of DHPS, but after random mutagenesis and three rounds of phage display selection, phage display efficiency of the library had improved 280-fold. Most of the selected clones had a common Asp96Asn mutation that was largely responsible for the efficient phage display of DHPS. Asp96Asn affected synergistically with the cysteine replacing mutations that were needed to remove the denaturing effect of potential wrong disulfide bridging in phage display. Asp96Asn alone resulted in a 1.8-fold improvement in phage display efficiency, but in combination with the cysteine replacing mutations, a total of 130-fold improvement in phage display efficiency of DHPS was achieved.
NASA Astrophysics Data System (ADS)
Feng, Bo; Deng, Biao; Fu, Yi; Liu, Le Gong; Li, Zeng Cheng; Feng, Mei Xin; Zhao, Han Min; Sun, Qian
2017-07-01
This work reports a significant improvement in efficiency by optimizing the via-like n-electrode architecture design of a GaN-based thin-film LED grown on a 6-inch silicon substrate. The external quantum efficiency of the as-fabricated 1.1 mm × 1.1 mm via-thin-film LED chip at 350 mA was increased by 11.3% compared to that of a vertical thin-film LED chip with a conventional finger-like n-electrode. Detailed analysis of encapsulation gain and false color emission patterns illustrated that the significantly improved LED performance was due to enhanced light extraction efficiency and more uniform current spreading, both of which can be attributed to the optimized via-thin-film chip structure. Minimizing the light loss at the periphery of the Ag mirror was demonstrated to be a critical factor for improving light extraction, rather than simply replacing the finger-like n-electrodes with via-like ones. After encapsulation, the median blue lamp power and the wall-plug efficiency of the via-thin-film LED at 350 mA reached 659 mW and 63.7%, respectively.
Grey, Charlotte N B; Jiang, Shiyu; Nascimento, Christina; Rodgers, Sarah E; Johnson, Rhodri; Lyons, Ronan A; Poortinga, Wouter
2017-01-31
Research suggests that living in fuel poverty and cold homes contributes to poor physical and mental health, and that interventions targeted at those living in poor quality housing may lead to health improvements. However, little is known about the socio-economic intermediaries and processes that contribute to better health. This study examined the relationship between energy efficiency investments to homes in low-income areas and mental and physical health of residents, as well as a number of psychosocial outcomes likely to be part of the complex relationship between energy efficiency measures and health outcomes. A quasi-experimental field study with a controlled pretest-posttest design was conducted (intervention n = 364; control n = 418) to investigate the short-term health and psychosocial impacts of a domestic energy efficiency programme that took place across Wales between 2013 and 2015. Survey data were collected in the winters before and after installation of energy efficiency measures, including external wall insulation. The study used a multilevel modelling repeated measures approach to analyse the data. The energy efficiency programme was not associated with improvements in physical and mental health (using the SF-12v2 physical and mental health composite scales) or reductions in self-reported respiratory and asthma symptoms. However, the programme was associated with improved subjective wellbeing (B = 0.38, 95% CI 0.12 to 0.65), as well as improvements in a number of psychosocial outcomes, including increased thermal satisfaction (OR = 3.83, 95% CI 2.40 to 5.90), reduced reports of putting up with feeling cold to save heating costs (OR = 0.49, CI = 0.25 to 0.94), fewer financial difficulties (B = -0.15, 95% CI -0.25 to -0.05), and reduced social isolation (OR = 0.32, 95% CI 0.13 to 0.77). The study showed that investing in energy efficiency in low-income communities does not lead to self-reported health improvements in the short term. However, investments increased subjective wellbeing and were linked to a number of psychosocial intermediaries that are conducive to better health. It is likely that better living conditions contribute to improvements in health outcomes in the longer term. Better understanding of the impacts on recipients of energy efficiency schemes, could improve targeting of future fuel poverty policies.
An Improved Perturb and Observe Algorithm for Photovoltaic Motion Carriers
NASA Astrophysics Data System (ADS)
Peng, Lele; Xu, Wei; Li, Liming; Zheng, Shubin
2018-03-01
An improved perturbation and observation algorithm for photovoltaic motion carriers is proposed in this paper. The model of the proposed algorithm is given by using Lambert W function and tangent error method. Moreover, by using matlab and experiment of photovoltaic system, the tracking performance of the proposed algorithm is tested. And the results demonstrate that the improved algorithm has fast tracking speed and high efficiency. Furthermore, the energy conversion efficiency by the improved method has increased by nearly 8.2%.
Desai, Neeraj R; French, Kim D; Diamond, Edward; Kovitz, Kevin L
2018-05-31
Value-based care is evolving with a focus on improving efficiency, reducing cost, and enhancing the patient experience. Interventional pulmonology has the opportunity to lead an effective value-based care model. This model is supported by the relatively low cost of pulmonary procedures and has the potential to improve efficiencies in thoracic care. We discuss key strategies to evaluate and improve efficiency in Interventional Pulmonology practice and describe our experience in developing an interventional pulmonology suite. Such a model can be adapted to other specialty areas and may encourage a more coordinated approach to specialty care. Copyright © 2018. Published by Elsevier Inc.
A Hybrid Converter for Improving Light Load Efficiency
NASA Astrophysics Data System (ADS)
Takahashi, Masaya; Nishijima, Kimihiro; Nagao, Michihiko; Sato, Terukazu; Nabeshima, Takashi
In order to reduce power consumption of electronic equipment in stand-by mode, idle-mode and sleep-mode, a simple efficiency improvement technique for switching regulator in light load region is proposed. In this technique, under the light load, the small switching elements in a MOSFET driver circuit are used instead of the switching elements in a main regulator circuit to reduce driving losses. Of course, under the load heavier than light load, the MOSFET driver drives the switching elements in the main regulator circuit. The efficiency of a 2.5V/5A prototype buck converter is improved from 47.1% to 72.7% by using the proposed technique.
Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D; Wehner, Gregory J; Grabau, Jonathan D; Andres, Kristin N; Vandsburger, Moriel H; Powell, David K; Sorrell, Vincent L; Fornwalt, Brandon K
2016-09-06
Advanced cardiovascular magnetic resonance (CMR) acquisitions often require long scan durations that necessitate respiratory navigator gating. The tradeoff of navigator gating is reduced scan efficiency, particularly when the patient's breathing patterns are inconsistent, as is commonly seen in children. We hypothesized that engaging pediatric participants with a navigator-controlled videogame to help control breathing patterns would improve navigator efficiency and maintain image quality. We developed custom software that processed the Siemens respiratory navigator image in real-time during CMR and represented diaphragm position using a cartoon avatar, which was projected to the participant in the scanner as visual feedback. The game incentivized children to breathe such that the avatar was positioned within the navigator acceptance window (±3 mm) throughout image acquisition. Using a 3T Siemens Tim Trio, 50 children (Age: 14 ± 3 years, 48 % female) with no significant past medical history underwent a respiratory navigator-gated 2D spiral cine displacement encoding with stimulated echoes (DENSE) CMR acquisition first with no feedback (NF) and then with the feedback game (FG). Thirty of the 50 children were randomized to undergo extensive off-scanner training with the FG using a MRI simulator, or no off-scanner training. Navigator efficiency, signal-to-noise ratio (SNR), and global left-ventricular strains were determined for each participant and compared. Using the FG improved average navigator efficiency from 33 ± 15 to 58 ± 13 % (p < 0.001) and improved SNR by 5 % (p = 0.01) compared to acquisitions with NF. There was no difference in navigator efficiency (p = 0.90) or SNR (p = 0.77) between untrained and trained participants for FG acquisitions. Circumferential and radial strains derived from FG acquisitions were slightly reduced compared to NF acquisitions (-16 ± 2 % vs -17 ± 2 %, p < 0.001; 40 ± 10 % vs 44 ± 11 %, p = 0.005, respectively). There were no differences in longitudinal strain (p = 0.38). Use of a respiratory navigator feedback game during navigator-gated CMR improved navigator efficiency in children from 33 to 58 %. This improved efficiency was associated with a 5 % increase in SNR for spiral cine DENSE. Extensive off-scanner training was not required to achieve the improvement in navigator efficiency.
NASA Astrophysics Data System (ADS)
Wang, Lei; Yan, Min
2017-11-01
Industrial ecology is the epitome of sustainable development in industry level, is one effective gateway to realizing green transformation. On the basis of industrial ecology development, including resource efficiency and environmental efficiency of ecological evaluation index system, this paper evaluates the level of industrial ecology development of resource-based industries in Xinjiang using entropy method. Research shows that the overall ecological development level of resource-based industries has remained at continuous improved trend with slow improvement in resource efficiency, and relative faster improvement in environmental efficiency. With economic development entering into the period of new normal at the end of the “twelfth five year plan”, the resource efficiency of ecological development of resource-based industries demonstrated a downward trend. The overall level of industrial ecology also faced with certain fluctuations, various ecological development level of resource-based industries also presented a downward trend. To promote ecological development of resource-based industries in Xinjiang, countermeasures and suggestions are initiated.
Kim, Kang-Pil; Hwang, Dae-Kue; Woo, Sung-Ho; Kim, Dae-Hwan
2018-09-01
The Ag nanowire (NW) + Au nanoparticle (NP)-embedded TiO2 photoelectrodes were adopted for conventional planar TiO2-based Sb2S3 hybrid solar cells to improve the cell efficiency. Compared to conventional planar TiO2-based Sb2S3 hybrid solar cells, the Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells exhibited an improvement of approximately 40% in the cell efficiency due to the significant increase in both Jsc and Voc. These enhanced Jsc and Voc were attributed to the increased surface area, charge-collection efficiency, and light absorption by embedding the Ag NWs + Au NPs composite. The Ag NW + Au NP/TiO2-based Sb2S3 hybrid solar cells showed the highest efficiency of 2.17%, demonstrating that the Ag NW + Au NP-embedded TiO2 photoelectrode was a suitable photoelectrode structure to improve the power conversion efficiency in the Sb2S3 hybrid solar cells.
Energy Efficient Image/Video Data Transmission on Commercial Multi-Core Processors
Lee, Sungju; Kim, Heegon; Chung, Yongwha; Park, Daihee
2012-01-01
In transmitting image/video data over Video Sensor Networks (VSNs), energy consumption must be minimized while maintaining high image/video quality. Although image/video compression is well known for its efficiency and usefulness in VSNs, the excessive costs associated with encoding computation and complexity still hinder its adoption for practical use. However, it is anticipated that high-performance handheld multi-core devices will be used as VSN processing nodes in the near future. In this paper, we propose a way to improve the energy efficiency of image and video compression with multi-core processors while maintaining the image/video quality. We improve the compression efficiency at the algorithmic level or derive the optimal parameters for the combination of a machine and compression based on the tradeoff between the energy consumption and the image/video quality. Based on experimental results, we confirm that the proposed approach can improve the energy efficiency of the straightforward approach by a factor of 2∼5 without compromising image/video quality. PMID:23202181
Application of porous medium for efficiency improvement of a concentrated solar air heating system
NASA Astrophysics Data System (ADS)
Prasartkaew, Boonrit
2018-01-01
The objective of this study is to evaluate the thermal efficiency of a concentrated solar collector for a high temperature air heating system. The proposed system consists of a 25-m2 focused multi-flat-mirror solar heliostat equipped with a porous medium solar collector/receiver which was installed on the top of a 3-m tower, called ‘tower receiver’. To know how the system efficiency cloud be improved by using porous medium, the proposed system with and without porous medium were tested and the comparative study was performed. The experimental results reveal that, for the proposed system, application of porous medium is promising, the efficiency can be increased about 2 times compared to the conventional one. In addition, due to the porous medium used in this study was the waste material with very low cost. It can be summarized that the substantial efficiency improvement with very low investment cost of the proposed system seem to be a vital measures for addressing the energy issues.
Hao, Yan; Yang, Wenxing; Zhang, Lei; Jiang, Roger; Mijangos, Edgar; Saygili, Yasemin; Hammarström, Leif; Hagfeldt, Anders; Boschloo, Gerrit
2016-01-01
Photoelectrochemical approach to solar energy conversion demands a kinetic optimization of various light-induced electron transfer processes. Of great importance are the redox mediator systems accomplishing the electron transfer processes at the semiconductor/electrolyte interface, therefore affecting profoundly the performance of various photoelectrochemical cells. Here, we develop a strategy—by addition of a small organic electron donor, tris(4-methoxyphenyl)amine, into state-of-art cobalt tris(bipyridine) redox electrolyte—to significantly improve the efficiency of dye-sensitized solar cells. The developed solar cells exhibit efficiency of 11.7 and 10.5%, at 0.46 and one-sun illumination, respectively, corresponding to a 26% efficiency improvement compared with the standard electrolyte. Preliminary stability tests showed the solar cell retained 90% of its initial efficiency after 250 h continuous one-sun light soaking. Detailed mechanistic studies reveal the crucial role of the electron transfer cascade processes within the new redox system. PMID:28000672
Qin, Yunpeng; Chen, Yu; Cui, Yong; Zhang, Shaoqing; Yao, Huifeng; Huang, Jiang; Li, Wanning; Zheng, Zhong; Hou, Jianhui
2017-06-01
Tandem organic solar cells (TOSCs), which integrate multiple organic photovoltaic layers with complementary absorption in series, have been proved to be a strong contender in organic photovoltaic depending on their advantages in harvesting a greater part of the solar spectrum and more efficient photon utilization than traditional single-junction organic solar cells. However, simultaneously improving open circuit voltage (V oc ) and short current density (J sc ) is a still particularly tricky issue for highly efficient TOSCs. In this work, by employing the low-bandgap nonfullerene acceptor, IEICO, into the rear cell to extend absorption, and meanwhile introducing PBDD4T-2F into the front cell for improving V oc , an impressive efficiency of 12.8% has been achieved in well-designed TOSC. This result is also one of the highest efficiencies reported in state-of-the-art organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Co-sensitization of natural dyes for improved efficiency in dye-sensitized solar cell application
NASA Astrophysics Data System (ADS)
Kumar, K. Ashok; Subalakshmi, K.; Senthilselvan, J.
2016-05-01
In this paper, a new approach of co-sensitized DSSC based on natural dyes is investigated to explore the possible way to improve the power conversion efficiency. To realize this purpose 10 DSSC devices were fabricated using mono-sensitization and co-sensitization of ethanolic extracts of natural dye sensitizers obtained from Cactus fruit, Jambolana fruit, Curcumin and Bermuda grass. The optical absorption spectrum of the mono and hybrid dye extracts were studied by UV-Visible absorption spectrum. It shows the characteristic absorption peaks in visible region corresponds to the presence of natural pigments of anthocyanin, betacyanin and chlorophylls. Absorption spectrum of hybrid dyes reveals a wide absorption band in visible region with improved extinction co-efficient and it is favorable for increased light harvesting nature. The power conversion efficiency of DSSC devices were calculated using J-V curve and the maximum efficiency achieved in the present work is noted to be ~0.61% for Cactus-Bermuda co-sensitized DSSC.
Assessing solar energy and water use efficiencies in winter wheat
NASA Technical Reports Server (NTRS)
Asrar, G.; Hipps, L. E.; Kanemasu, E. T.
1982-01-01
The water use and solar energy conversion efficiencies of two cultivars of winter wheat (Triticum aestivum L., vars, Centurk and Newton) planted at three densities, were examined during a growing season. Water use, based on soil moisture depletion, was the lowest under the light, and the highest under the heavy planting densities of both cultivars. Water use efficiency of medium and heavy planting densities were greater than the light planting densities in both cultivars. The canopy radiation extinction coefficients of both cultivars increased with increases in planting density. Efficiency of operation interception of photosynthetically active radiation by both cultivars improved from the time of jointing until anthesis, and then decreased during senescence. The efficiency of the conversion of intercepted radiation to dry matter (biochemical efficiency) decreased throughout the growing season both cultivars. The interception, biochemical, and photosynthetic efficiencies improved as planting density increased.
NASA Astrophysics Data System (ADS)
Wu, Jinxia; Hu, Zhangli; Wang, Chaogang; Li, Shuangfei; Lei, Anping
2008-08-01
To improve the expression efficiency of exogenous genes in Chlamydomonas reinhardtii, a high efficient expression vector was constructed. Green fluorescent protein (GFP) was expressed in C. reinhardtii under the control of promoters: RBCS2 and HSP70A-RBCS2. Efficiency of transformation and expression were compared between two transgenic algae: RBCS2 mediated strain Tran-I and HSP70A-RBCS2 mediated strain Tran-II. Results show that HSP70A-RBCS2 could improve greatly the transformation efficiency by approximately eightfold of RBCS2, and the expression efficiency of GFP in Tran-II was at least double of that in Tran-I. In addition, a threefold increase of GFP in Tran-II was induced by heat shock at 40°C. All of the results demonstrated that HSP70A-RBCS2 was more efficient than RBCS2 in expressing exogenous gene in C. reinhardtii.
Factors affecting the labor efficiency of hospital-based blood bank laboratories.
Lam, H C; Kominski, G F; Petz, L D; Sofaer, S
1994-09-01
A variety of financing mechanisms and managerial innovations have been developed in the past decade to control hospital costs. Some evidence suggests that those changes have not produced substantial improvements in labor efficiency among employees in the hospital's technical level, such as in the blood bank laboratories. This study measured labor efficiency in 40 hospital-based blood bank laboratories in Southern California during the year from July 1989 to June 1990 and explored the impact of financial, managerial, and operational factors on labor efficiency. With standardized output measures used in all blood bank laboratories, a wide variation of labor efficiency was found. Multivariate analyses indicate that the labor efficiency of blood bank employees was not influenced by organizational financial incentives, but was affected by the managerial styles of blood bank managers. Interpretation of the findings suggests that labor efficiency is affected by operational designs intended to improve responses to variable workloads and reduce slack time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, C.; Wilhelm, J.P.
1979-08-01
Measures that offer promise of efficiency improvements or economy in energy usage in rail passenger transportation are identified and described; the future of rail passenger transportation in the US is discussed; and possible future roles of Federal agencies are discussed.
7 CFR 4280.124 - Guaranteed loan funding.
Code of Federal Regulations, 2012 CFR
2012-01-01
... General Renewable Energy System and Energy Efficiency Improvement Guaranteed Loans § 4280.124 Guaranteed... section, as long as the items are an integral and necessary part of the renewable energy system or energy... Agency will pro-rate the energy efficiency improvement's total eligible project costs based on the...
7 CFR 4280.124 - Guaranteed loan funding.
Code of Federal Regulations, 2013 CFR
2013-01-01
... General Renewable Energy System and Energy Efficiency Improvement Guaranteed Loans § 4280.124 Guaranteed... section, as long as the items are an integral and necessary part of the renewable energy system or energy... Agency will pro-rate the energy efficiency improvement's total eligible project costs based on the...
7 CFR 4280.124 - Guaranteed loan funding.
Code of Federal Regulations, 2014 CFR
2014-01-01
... General Renewable Energy System and Energy Efficiency Improvement Guaranteed Loans § 4280.124 Guaranteed... section, as long as the items are an integral and necessary part of the renewable energy system or energy... Agency will pro-rate the energy efficiency improvement's total eligible project costs based on the...
Does Competition Improve Public School Efficiency? A Spatial Analysis
ERIC Educational Resources Information Center
Misra, Kaustav; Grimes, Paul W.; Rogers, Kevin E.
2012-01-01
Advocates for educational reform frequently call for policies to increase competition between schools because it is argued that market forces naturally lead to greater efficiencies, including improved student learning, when schools face competition. Researchers examining this issue are confronted with difficulties in defining reasonable measures…
Assessing UAS mounted imaging sensors for the evaluation of Zea mays nitrogen status.
USDA-ARS?s Scientific Manuscript database
Improved efficiency of Nitrogen (N) fertilizer applications is an important environmental and economic issue for the agricultural community. Considerable research for improving Nitrogen Use Efficiency (NUE) has focused on optimal timing and rate N applications. Remote sensing techniques can detect t...
NASA Astrophysics Data System (ADS)
Jayamani, E.; Perera, D. S.; Soon, K. H.; Bakri, M. K. B.
2017-04-01
A systematic method of material analysis aiming for fuel efficiency improvement with the utilization of natural fiber reinforced polymer matrix composites in the automobile industry is proposed. A multi-factor based decision criteria with Analytical Hierarchy Process (AHP) was used and executed through MATLAB to achieve improved fuel efficiency through the weight reduction of vehicular components by effective comparison between two engine hood designs. The reduction was simulated by utilizing natural fiber polymer composites with thermoplastic polypropylene (PP) as the matrix polymer and benchmarked against a synthetic based composite component. Results showed that PP with 35% of flax fiber loading achieved a 0.4% improvement in fuel efficiency, and it was the highest among the 27 candidate fibers.
Charge transfer efficiency improvement of 4T pixel for high speed CMOS image sensor
NASA Astrophysics Data System (ADS)
Jin, Xiangliang; Liu, Weihui; Yang, Hongjiao; Tang, Lizhen; Yang, Jia
2015-03-01
The charge transfer efficiency improvement method is proposed by optimizing the electrical potential distribution along the transfer path from the PPD to the FD. In this work, we present a non-uniform doped transfer transistor channel, with the adjustments to the overlap length between the CPIA layer and the transfer gate, and the overlap length between the SEN layer and transfer gate. Theory analysis and TCAD simulation results show that the density of the residual charge reduces from 1e11 /cm3 to 1e9 /cm3, and the transfer time reduces from 500 ns to 143 ns, and the charge transfer efficiency is about 77 e-/ns. This optimizing design effectively improves the charge transfer efficiency of 4T pixel and the performance of 4T high speed CMOS image sensor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, K. A.; Schoefer, V.; Tomizawa, M.
The new accelerator complex at J-PARC will operate with both high energy and very high intensity proton beams. With a design slow extraction efficiency of greater than 99% this facility will still be depositing significant beam power onto accelerator components [2]. To achieve even higher efficiencies requires some new ideas. The design of the extraction system and the accelerator lattice structure leaves little room for improvement using conventional techniques. In this report we will present one method for improving the slow extraction efficiency at J-PARC by adding duodecapoles or octupoles to the slow extraction system. We will review the theorymore » of resonant extraction, describe simulation methods, and present the results of detailed simulations. From our investigations we find that we can improve extraction efficiency and thereby reduce the level of residual activation in the accelerator components and surrounding shielding.« less
Colaux, Henri; Dawson, Daniel M; Ashbrook, Sharon E
2014-08-07
The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed "too challenging".
Efficient Amplitude-Modulated Pulses for Triple- to Single-Quantum Coherence Conversion in MQMAS NMR
2014-01-01
The conversion between multiple- and single-quantum coherences is integral to many nuclear magnetic resonance (NMR) experiments of quadrupolar nuclei. This conversion is relatively inefficient when effected by a single pulse, and many composite pulse schemes have been developed to improve this efficiency. To provide the maximum improvement, such schemes typically require time-consuming experimental optimization. Here, we demonstrate an approach for generating amplitude-modulated pulses to enhance the efficiency of the triple- to single-quantum conversion. The optimization is performed using the SIMPSON and MATLAB packages and results in efficient pulses that can be used without experimental reoptimisation. Most significant signal enhancements are obtained when good estimates of the inherent radio-frequency nutation rate and the magnitude of the quadrupolar coupling are used as input to the optimization, but the pulses appear robust to reasonable variations in either parameter, producing significant enhancements compared to a single-pulse conversion, and also comparable or improved efficiency over other commonly used approaches. In all cases, the ease of implementation of our method is advantageous, particularly for cases with low sensitivity, where the improvement is most needed (e.g., low gyromagnetic ratio or high quadrupolar coupling). Our approach offers the potential to routinely improve the sensitivity of high-resolution NMR spectra of nuclei and systems that would, perhaps, otherwise be deemed “too challenging”. PMID:25047226
Transmission and Distribution Efficiency Improvement Rearch and Development Survey.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, C.L.; Westinghouse Electric Corporation. Advanced Systems Technology.
Purpose of this study was to identify and quantify those technologies for improving transmission and distribution (T and D) system efficiency that could provide the greatest benefits for utility customers in the Pacific Northwest. Improving the efficiency of transmission and distribution systems offers a potential source of conservation within the utility sector. An extensive review of this field resulted in a list of 49 state-of-the-art technologies and 39 future technologies. Of these, 15 from the former list and 7 from the latter were chosen as the most promising and then submitted to an evaluative test - a modeled sample systemmore » for Benton County PUD, a utility with characteristics typical of a BPA customer system. Reducing end-use voltage on secondary distribution systems to decrease the energy consumption of electrical users when possible, called ''Conservation Voltage Reduction,'' was found to be the most cost effective state-of-the-art technology. Voltampere reactive (var) optimization is a similarly cost effective alternative. The most significant reduction in losses on the transmission and distribution system would be achieved through the replacement of standard transformers with high efficiency transformers, such as amorphous steel transformers. Of the future technologies assessed, the ''Distribution Static VAR Generator'' appears to have the greatest potential for technological breakthroughs and, therefore in time, commercialization. ''Improved Dielectric Materials,'' with a relatively low cost and high potential for efficiency improvement, warrant R and D consideration. ''Extruded Three-Conductor Cable'' and ''Six- and Twelve-Phase Transmission'' programs provide only limited gains in efficiency and applicability and are therefore the least cost effective.« less
Schreuder, Jan J; Castiglioni, Alessandro; Maisano, Francesco; Steendijk, Paul; Donelli, Andrea; Baan, Jan; Alfieri, Ottavio
2005-01-01
Surgical left ventricular restoration by means of endoventricular patch aneurysmectomy in patients with postinfarction aneurysm should result in acute improved left ventricular performance by decreasing mechanical dyssynchrony and increasing energy efficiency. Nine patients with left ventricular postinfarction aneurysm were studied intraoperatively before and after ventricular restoration with a conductance volume catheter to analyze pressure-volume relationships, energy efficiency, and mechanical dyssynchrony. The end-systolic elastance was used as a load-independent index of contractile state. Left ventricular energy efficiency was calculated from stroke work and total pressure-volume area. Segmental volume changes perpendicular to the long axis were used to calculate mechanical dyssynchrony. Statistical analysis was performed with the paired t test and least-squares linear regression. Endoventricular patch aneurysmectomy reduced end-diastolic volume by 37% (P < .001), with unchanged stroke volume. Systolic function improved, as derived from increased +dP/dt(max), by 42% (P < .03), peak ejection rate by 28% (P < .02), and ejection fraction by 16% (P < .0002). Early diastolic function improved, as shown by reduction of -dP/dt(max) by 34% (P < .006) and shortened tau by 30% (P < .001). Left ventricular end-systolic elastance increased from 1.2 +/- 0.6 to 2.2 +/- 1 mm Hg/mL (P < .001). Left ventricular energy efficiency increased by 36% (P < .002). Left ventricular mechanical dyssynchrony decreased during systole by 33% (P < .001) and during diastole by 20% (P < .005). Left ventricular restoration induced acute improvements in contractile state, energy efficiency, and relaxation, together with a decrease in left ventricular mechanical dyssynchrony.
Improving transmission efficiency of large sequence alignment/map (SAM) files.
Sakib, Muhammad Nazmus; Tang, Jijun; Zheng, W Jim; Huang, Chin-Tser
2011-01-01
Research in bioinformatics primarily involves collection and analysis of a large volume of genomic data. Naturally, it demands efficient storage and transfer of this huge amount of data. In recent years, some research has been done to find efficient compression algorithms to reduce the size of various sequencing data. One way to improve the transmission time of large files is to apply a maximum lossless compression on them. In this paper, we present SAMZIP, a specialized encoding scheme, for sequence alignment data in SAM (Sequence Alignment/Map) format, which improves the compression ratio of existing compression tools available. In order to achieve this, we exploit the prior knowledge of the file format and specifications. Our experimental results show that our encoding scheme improves compression ratio, thereby reducing overall transmission time significantly.
Strategies to improve energy efficiency in sewage treatment plants
NASA Astrophysics Data System (ADS)
Au, Mau Teng; Pasupuleti, Jagadeesh; Chua, Kok Hua
2013-06-01
This paper discusses on strategies to improve energy efficiency in Sewage Treatment Plant (STP). Four types of STP; conventional activated sludge, extended aeration, oxidation ditch, and sequence batch reactor are presented and strategized to reduce energy consumption based on their influent flow. Strategies to reduce energy consumption include the use of energy saving devices, energy efficient motors, automation/control and modification of processes. It is envisaged that 20-30% of energy could be saved from these initiatives.
Aperture efficiency of integrated-circuit horn antennas
NASA Technical Reports Server (NTRS)
Guo, Yong; Lee, Karen; Stimson, Philip; Potter, Kent; Rutledge, David
1991-01-01
The aperture efficiency of silicon integrated-circuit horn antennas has been improved by optimizing the length of the dipole probes and by coating the entire horn walls with gold. To make these measurements, a new thin-film power-density meter was developed for measuring power density with accuracies better than 5 percent. The measured aperture efficiency improved from 44 percent to 72 percent at 93 GHz. This is sufficient for use in many applications which now use machined waveguide horns.
Parallel AFSA algorithm accelerating based on MIC architecture
NASA Astrophysics Data System (ADS)
Zhou, Junhao; Xiao, Hong; Huang, Yifan; Li, Yongzhao; Xu, Yuanrui
2017-05-01
Analysis AFSA past for solving the traveling salesman problem, the algorithm efficiency is often a big problem, and the algorithm processing method, it does not fully responsive to the characteristics of the traveling salesman problem to deal with, and therefore proposes a parallel join improved AFSA process. The simulation with the current TSP known optimal solutions were analyzed, the results showed that the AFSA iterations improved less, on the MIC cards doubled operating efficiency, efficiency significantly.
Zhao, Huimin; Tan, Zilong; Wen, Xuejing; Wang, Yucheng
2017-02-14
Syringe infiltration is an important transient transformation method that is widely used in many molecular studies. Owing to the wide use of syringe agroinfiltration, it is important and necessary to improve its transformation efficiency. Here, we studied the factors influencing the transformation efficiency of syringe agroinfiltration. The pCAMBIA1301 was transformed into Nicotiana benthamiana leaves for investigation. The effects of 5-azacytidine (AzaC), Ascorbate acid (ASC) and Tween-20 on transformation were studied. The β-glucuronidase ( GUS ) expression and GUS activity were respectively measured to determine the transformation efficiency. AzaC, ASC and Tween-20 all significantly affected the transformation efficiency of agroinfiltration, and the optimal concentrations of AzaC, ASC and Tween-20 for the transgene expression were identified. Our results showed that 20 μM AzaC, 0.56 mM ASC and 0.03% ( v / v ) Tween-20 is the optimal concentration that could significantly improve the transformation efficiency of agroinfiltration. Furthermore, a combined supplement of 20 μM AzaC, 0.56 mM ASC and 0.03% Tween-20 improves the expression of transgene better than any one factor alone, increasing the transgene expression by more than 6-fold. Thus, an optimized syringe agroinfiltration was developed here, which might be a powerful method in transient transformation analysis.
Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine
NASA Astrophysics Data System (ADS)
Ma, Zheshu; Chen, Hua; Zhang, Yong
2017-09-01
The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.
Improving Engine Efficiency Through Core Developments
NASA Technical Reports Server (NTRS)
Heidmann, James D.
2011-01-01
The NASA Environmentally Responsible Aviation (ERA) Project and Fundamental Aeronautics Projects are supporting compressor and turbine research with the goal of reducing aircraft engine fuel burn and greenhouse gas emissions. The primary goals of this work are to increase aircraft propulsion system fuel efficiency for a given mission by increasing the overall pressure ratio (OPR) of the engine while maintaining or improving aerodynamic efficiency of these components. An additional area of work involves reducing the amount of cooling air required to cool the turbine blades while increasing the turbine inlet temperature. This is complicated by the fact that the cooling air is becoming hotter due to the increases in OPR. Various methods are being investigated to achieve these goals, ranging from improved compressor three-dimensional blade designs to improved turbine cooling hole shapes and methods. Finally, a complementary effort in improving the accuracy, range, and speed of computational fluid mechanics (CFD) methods is proceeding to better capture the physical mechanisms underlying all these problems, for the purpose of improving understanding and future designs.
NASA Technical Reports Server (NTRS)
Brown, W. C.
1977-01-01
Significant advancements were made in a number of areas: improved efficiency of basic receiving element at low power density levels, improved resolution and confidence in efficiency measurements mathematical modelling and computer simulation of the receiving element and the design, construction, and testing of an environmentally protected two-plane construction suitable for low cost, highly automated construction of large receiving arrays.
Improving Performance Of Industrial Enterprises With CGT
NASA Astrophysics Data System (ADS)
Dolgih, I. N.; Bannova, K. A.; Kuzmina, N. A.; Zdanova, A. B.
2016-04-01
At the present day, a falling in the overall level of efficiency production activities, especially in the machine-building companies makes it necessary to development various actions in the State support, including through the creation consolidated taxation system. Such support will help improve efficiency of activity not only the industrial companies, but also will allow improve economic and social situation in regions where often large engineering factories is city-forming.
NASA Technical Reports Server (NTRS)
Englander, Jacob; Englander, Arnold
2014-01-01
Trajectory optimization methods using MBH have become well developed during the past decade. An essential component of MBH is a controlled random search through the multi-dimensional space of possible solutions. Historically, the randomness has been generated by drawing RVs from a uniform probability distribution. Here, we investigate the generating the randomness by drawing the RVs from Cauchy and Pareto distributions, chosen because of their characteristic long tails. We demonstrate that using Cauchy distributions (as first suggested by Englander significantly improves MBH performance, and that Pareto distributions provide even greater improvements. Improved performance is defined in terms of efficiency and robustness, where efficiency is finding better solutions in less time, and robustness is efficiency that is undiminished by (a) the boundary conditions and internal constraints of the optimization problem being solved, and (b) by variations in the parameters of the probability distribution. Robustness is important for achieving performance improvements that are not problem specific. In this work we show that the performance improvements are the result of how these long-tailed distributions enable MBH to search the solution space faster and more thoroughly. In developing this explanation, we use the concepts of sub-diffusive, normally-diffusive, and super-diffusive RWs originally developed in the field of statistical physics.
Thermodynamic analysis of performance improvement by reheat on the CO2 transcritical power cycle
NASA Astrophysics Data System (ADS)
Tuo, Hanfei
2012-06-01
The CO2 transcritical rankine power cycle has been widely investigated recently, because of its better temperature glide matching between sensible heat source and working fluid in vapor generator, and its desirable qualities, such as moderate critical point, little environment impact and low cost. A reheat CO2 transcritical power cycle with two stage expansion is presented to improve baseline cycle performance in this paper. Energy and exergy analysis are carried out to investigate effects of important parameters on cycle performance. The main results show that reheat cycle performance is sensitive to the variation of medium pressures and the optimum medium pressures exist for maximizing work output and thermal efficiency, respectively. Reheat cycle is compared to baseline cycle under the same conditions. More significant improvements by reheat are obtained at lower turbine inlet temperatures and larger high cycle pressure. Work output improvement is much higher than thermal efficiency improvement, because extra waste heat is required to reheat CO2. Based on second law analysis, exergy efficiency of reheat cycle is also higher than that of baseline cycle, because more useful work is converted from waste heat. Reheat with two stage expansion has great potential to improve thermal efficiency and especially net work output of a CO2 transcritical power cycle using a low-grade heat source.
Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong
2016-01-01
Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (Gs) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved PN of lettuce plants in a high-temperature season by both improvement of Gs to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation. PMID:27047532
Saito, Hitomi; Cherasse, Yoan; Suzuki, Rina; Mitarai, Makoto; Ueda, Fumitaka; Urade, Yoshihiro
2017-05-01
Zinc is an essential mineral that plays an important role in the body. We previously reported that orally feeding zinc-enriched yeast to mice induces nonrapid-eye-movement sleep. In addition, astaxanthin, an antioxidant abundant in seafood such as salmon and krill, is able to chelate minerals and may promote zinc absorption, which in return may also improve sleep. The purpose of our study was to examine the effect of zinc-rich and astaxanthin-containing food on sleep in humans. We conducted a randomized, double-blinded, placebo-controlled parallel group trial of 120 healthy subjects and recorded their night activity by actigraphy for 12 weeks. These subjects were divided into four groups: placebo, zinc-rich food, zinc-, and astaxanthin-rich food, and placebo supplemented with zinc-enriched yeast and astaxanthin oil. Compared with the placebo group, the zinc-rich food group efficiently decreased the time necessary to fall asleep and improved sleep efficiency, whereas the group that ingested zinc-enriched yeast and astaxanthin oil significantly improved the sleep onset latency. Actigraphic sleep monitoring demonstrated that eating zinc-rich food improved sleep onset latency as well as improved the sleep efficiency in healthy individuals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Jin; Lu, Na; Xu, Hongjia; Maruo, Toru; Guo, Shirong
2016-01-01
Root zone high-temperature stress is a major factor limiting hydroponic plant growth during the high-temperature season. The effects of root zone cooling (RZC; at 25°C) and exogenous spermidine (Spd) root-pretreatment (SRP, 0.1 mM) on growth, leaf photosynthetic traits, and chlorophyll fluorescence characteristics of hydroponic Lactuca sativa L. grown in a high-temperature season (average temperature > 30°C) were examined. Both treatments significantly promoted plant growth and photosynthesis in the high-temperature season, but the mechanisms of photosynthesis improvement in the hydroponic grown lettuce plants were different between the RZC and SRP treatments. The former improved plant photosynthesis by increasing stoma conductance (G s) to enhance CO2 supply, thus promoting photosynthetic electron transport activity and phosphorylation, which improved the level of the photochemical efficiency of photosystem II (PSII), rather than enhancing CO2 assimilation efficiency. The latter improved plant photosynthesis by enhancing CO2 assimilation efficiency, rather than stomatal regulation. Combination of RZC and SRP significantly improved P N of lettuce plants in a high-temperature season by both improvement of G s to enhance CO2 supply and enhancement of CO2 assimilation. The enhancement of photosynthetic efficiency in both treatments was independent of altering light-harvesting or excessive energy dissipation.
High Efficiency, Clean Combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald Stanton
2010-03-31
Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast,more » the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using high-efficiency clean combustion (HECC) technologies. To demonstrate the technology is compatible with B20 (biodiesel). (5) To further improve the brake thermal efficiency of the engine as integrated into the vehicle. To demonstrate robustness and commercial viability of the HECC engine technology as integrated into the vehicles. The Cummins HECC program supported the Advanced Combustion Engine R&D and Fuels Technology initiatives of the DoE Vehicle Technologies Multi-Year Program Plan (MYPP). In particular, the HECC project goals enabled the DoE Vehicle Technologies Program (VTP) to meet energy-efficiency improvement targets for advanced combustion engines suitable for passenger and commercial vehicles, as well as addressing technology barriers and R&D needs that are common between passenger and commercial vehicle applications of advanced combustion engines.« less
Strategies to improve industrial energy efficiency
NASA Astrophysics Data System (ADS)
O'Rielly, Kristine M.
A lack of technical expertise, fueled by a lack of positive examples, can lead to companies opting not to implement energy reduction projects unless mandated by legislation. As a result, companies are missing out on exceptional opportunities to improve not only their environmental record but also save considerably on fuel costs. This study investigates the broad topic of energy efficiency within the context of the industrial sector by means of a thorough review of existing energy reduction strategies and a demonstration of their successful implementation. The study begins by discussing current industrial energy consumption trends around the globe and within the Canadian manufacturing sector. This is followed by a literature review which outlines 3 prominent energy efficiency improvement strategies currently available to companies: 1) Waste heat recovery, 2) Idle power loss reduction and production rate optimization, and lastly 3) Auxiliary equipment operational performance. Next, a broad overview of the resources and tools available to organizations looking to improve their industrial energy efficiency is provided. Following this, several case studies are presented which demonstrate the potential benefits that are available to Canadian organizations looking to improve their energy efficiency. Lastly, a discussion of a number of issues and barriers pertaining to the wide-scale implementation of industrial efficiency strategies is presented. It discusses a number of potential roadblocks, including a lack of energy consumption monitoring and data transparency. While this topic has been well researched in the past in terms of the losses encountered during various general manufacturing process streams, practically no literature exists which attempts to provide real data from companies who have implemented energy efficiency strategies. By obtaining original data directly from companies, this thesis demonstrates the potential for companies to save money and reduce GHG (greenhouse gas) emissions through the implementation of energy efficiency projects and publishes numbers which are almost impossible to find directly. By publishing success stories, it is hoped that other companies, especially SMEs (small and medium enterprises) will be able to learn from these case studies and be inspired to embark on energy efficiency projects of their own.
Li, Yonghai; Wang, Junyi; Liu, Yan; Qiu, Meng; Wen, Shuguang; Bao, Xichang; Wang, Ning; Sun, Mingliang; Yang, Renqiang
2016-10-05
It is known that fluorination on π-conjugated donor-acceptor (D-A) polymers can significantly affect the optoelectronic properties and fluorination on A moiety has been well established for design of efficient photovoltaic materials. For example, polymers based on 4,7-dithienyl-5,6-difluorobenzothiadiazole (DTffBT) have been intensively investigated and exhibited excellent performance, but the corresponding DTBT-based polymers without fluorine often display an unfavorable efficiency. With the purpose of improving photovoltaic efficiency of DTBT-based D-A polymers, we design three polymers PDTBT-TxfBT (x = 0, 1, 2) with fluorination on D moiety (TxfBT) and systematically investigate fluorination on the photophysical/electrochemical and photovoltaic properties. The results show that polymer solar cells (PSCs) based on PDTBT-TBT exhibit moderate power conversion efficiency (PCE) of 5.84%. However, the bis-fluorination on TffBT moiety (PDTBT-TffBT) can greatly enhance the molecular planarity and intermolecular interaction, improve the charge transport and heterojunction morphology, and further suppress the charge recombination losses. PSCs based on PDTBT-TffBT demonstrate obviously improved photovoltaic efficiency with the best PCE up to 7.53% without any processing additives, which ranks among the top DTBT-based PSCs. However, it should be noted that unsymmetrical fluorination on TfBT moiety (PDTBT-TfBT) impairs the regularity of polymer backbone and intermolecular interaction, increases the recombination losses, and seriously reduces the short-circuit current density and efficiency (5.44%). The results exhibit that fluorination on D moiety is a helpful strategy for design high-performance photovoltaic materials and the regularity of fluorination is crucial to improving efficiencies.
Reed, Grant W; Hantz, Scott; Cunningham, Rebecca; Krishnaswamy, Amar; Ellis, Stephen G; Khot, Umesh; Rak, Joe; Kapadia, Samir R
2018-02-26
This study sought to report outcomes from an efficiency improvement project in a large cardiac cath lab. Operational inefficiencies are common in the cath lab, yet solutions are challenging. A detailed report describing and providing solutions for these inefficiencies may be valuable in guiding improvements in productivity. In this observational study, the authors report metrics of efficiency before and after a cath lab quality improvement program in June 2014. Main outcomes included lab room start times, room turnaround times, laboratory use, and employee satisfaction. Time series analysis was used to assess trend over time. Chi-square testing and analysis of variance were used to assess change before and after the initiative. The principal changes included implementation of a pyramidal nursing schedule, increased use of an electronic scheduling system, and increased utilization of a preparation and recovery area. Comparing before with after the program, start times improved an average of 17 min, and on-time starts improved from 61.8% to 81.7% (p = 0.0024). Turnaround times improved from 20.5 min to 16.4 min (trend p < 0.0001), and the proportion of days at full lab utilization improved from 7.7% to 77.3% (p < 0.00001). There were no increases in overtime, night, or weekend cases. There was a reduction in full time employees from 36.1 in 2013 to 29.6 in 2016, with an improvement in employee satisfaction. A systematic approach to reducing inefficiencies can improve cath lab start times, turnaround times, and overall productivity. This knowledge may be helpful in assisting other cath labs in similar efficiency improvement initiatives. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
77 FR 54777 - Accelerating Investment in Industrial Energy Efficiency
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
...--Accelerating Investment in Industrial Energy Efficiency Executive Order 13625--Improving Access to Mental... Accelerating Investment in Industrial Energy Efficiency By the authority vested in me as President by the... helping to facilitate investments in energy efficiency at industrial facilities, it is hereby ordered as...
USDA-ARS?s Scientific Manuscript database
Reducing chlorophyll (chl) content may improve the conversion efficiency of absorbed radiation into biomass (ec) and therefore yield in dense monoculture crops by improving light penetration and distribution within the canopy. Modeling suggests that reducing chl content may also reduce leaf temperat...
Melis, Anastasios; Mitra, Mautusi
2010-06-29
The invention provides method and compositions to minimize the chlorophyll antenna size of photosynthesis by decreasing TLA1 gene expression, thereby improving solar conversion efficiencies and photosynthetic productivity in plants, e.g., green microalgae, under bright sunlight conditions.
Numerical Processing Efficiency Improved in Experienced Mental Abacus Children
ERIC Educational Resources Information Center
Wang, Yunqi; Geng, Fengji; Hu, Yuzheng; Du, Fenglei; Chen, Feiyan
2013-01-01
Experienced mental abacus (MA) users are able to perform mental arithmetic calculations with unusual speed and accuracy. However, it remains unclear whether their extraordinary gains in mental arithmetic ability are accompanied by an improvement in numerical processing efficiency. To address this question, the present study, using a numerical…
Superintendent Perspectives of Financial Survival Strategies in Small Schools
ERIC Educational Resources Information Center
Abshier, William Cody
2010-01-01
The purpose of this study was to investigate the perceptions of successful small-school superintendents in regard to maintaining or improving district efficiency and financial status. This investigation sought to reveal superintendent practices that serve to maximize district revenues and improve operating efficiency. Face-to-face interviews were…
7 CFR 4280.113 - Project eligibility.
Code of Federal Regulations, 2014 CFR
2014-01-01
... General Renewable Energy System and Energy Efficiency Improvement Grants § 4280.113 Project eligibility. For a renewable energy system or energy efficiency improvement project to be eligible to receive a RES... specified in paragraph (k) of this section. (a) The project must be for the purchase of a renewable energy...
7 CFR 4280.113 - Project eligibility.
Code of Federal Regulations, 2012 CFR
2012-01-01
... General Renewable Energy System and Energy Efficiency Improvement Grants § 4280.113 Project eligibility. For a renewable energy system or energy efficiency improvement project to be eligible to receive a RES... specified in paragraph (k) of this section. (a) The project must be for the purchase of a renewable energy...
7 CFR 4280.113 - Project eligibility.
Code of Federal Regulations, 2013 CFR
2013-01-01
... General Renewable Energy System and Energy Efficiency Improvement Grants § 4280.113 Project eligibility. For a renewable energy system or energy efficiency improvement project to be eligible to receive a RES... specified in paragraph (k) of this section. (a) The project must be for the purchase of a renewable energy...
Does Competition Improve Public School Efficiency? A Spatial Analysis
ERIC Educational Resources Information Center
Misra, Kaustav
2010-01-01
Proponents of educational reform often call for policies to increase competition between schools. It is argued that market forces naturally lead to greater efficiencies, including improved student learning, when schools face competition. In many parts of the country, public schools experience significant competition from private schools; however,…
7 CFR 4280.115 - Construction planning and performing development.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Renewable Energy Systems and Energy Efficiency Improvements Program Section A. Grants § 4280.115..., designing, bidding, contracting, and constructing renewable energy systems and energy efficiency improvement... accordance with Form RD 4280-2, “Grant Agreement,” and Form RD 1924-6, “Construction Contract,” or other...
Optimum outlier model for potential improvement of environmental cleaning and disinfection.
Rupp, Mark E; Huerta, Tomas; Cavalieri, R J; Lyden, Elizabeth; Van Schooneveld, Trevor; Carling, Philip; Smith, Philip W
2014-06-01
The effectiveness and efficiency of 17 housekeepers in terminal cleaning 292 hospital rooms was evaluated through adenosine triphosphate detection. A subgroup of housekeepers was identified who were significantly more effective and efficient than their coworkers. These optimum outliers may be used in performance improvement to optimize environmental cleaning.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-12
... COUNCIL ON ENVIRONMENTAL QUALITY 40 CFR Parts 1500, 1501, 1502, 1503, 1505, 1506, 1507, and 1508 Final Guidance on Improving the Process for Preparing Efficient and Timely Environmental Reviews Under the National Environmental Policy Act AGENCY: Council on Environmental Quality. ACTION: Notice of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-13
..., is a fundamental tool used to harmonize our environmental, economic, and social aspirations and is a... COUNCIL ON ENVIRONMENTAL QUALITY Draft Guidance on Improving the Process for Preparing Efficient and Timely Environmental Reviews under the National Environmental Policy Act AGENCY: Council on...
Wright, Gavin; Hatfield, Paul; Loughrey, Carmel; Reiner, Beatrice; Bownes, Peter
2014-12-01
A method for quantifying the efficiency of Gamma Knife treatment plans for metastases was previously implemented by the authors to retrospectively identify the least efficient plans and has provided insights into improved planning strategies. The aim of the current work was to ascertain whether those insights led to improved treatment plans. Following completion of the initial study, a 1-year audit of metastasis plans created at St. James's Institute of Oncology was carried out. Audited recent plans were compared with the earlier plans of the initial study, in terms of their efficiency and dosimetric quality. The statistical significance of any differences between relevant plan parameters was quantified by Mann-Whitney U-tests. Comparisons were made between all plans and repeated for a reduced set of plans from which the smallest lesions treated with a single 4-mm shot were excluded. The plan parameters compared were a plan efficiency index (PEI), the number of shots, Paddick conformity index (PCI), gradient index (GI), and percent coverage (of the lesion by the prescription isodose). A total of 157 metastatic lesions were included in the audit and were compared with 241 in the initial study. In a comparison of all cases, the audited plans achieved a higher median PEI score than did the earlier plans from the initial study (1.08 vs 1.02), indicating improved efficiency of the audited plans. When the smallest lesions (for which there was little scope for varying plan strategy) were discounted, the improvement in median PEI score was greater (1.23 vs 1.03, p < 0.001). This improvement in efficiency corresponds to an estimated mean (maximum) time saving of 15% (66%) per lesion (11 minutes [64 minutes] on the day of treatment). The modified planning strategy yielding these efficiency improvements did not rely on the use of significantly fewer shots (median 11 vs 11 shots, p = 0.924), nor did it result in significant detriment to dosimetric quality (median coverage 99% vs 99%, median PCI 0.84 vs 0.83, p = 0.449, and median GI 2.72 vs 2.67, p = 0.701, audited plans vs initial plans, respectively). Choice of planning strategy can substantially affect plan efficiency and thus strongly influence treatment time. Through increased emphasis on efficiency, resulting from the introduction of PEI combined with a modified planning strategy informed by previous work, it has been possible to reduce times for metastatic plans without compromising their dosimetric quality. Although the average time savings achieved per lesion are moderate, the potential benefits per patient are greater for those with multiple metastases. Reducing treatment times has clear benefits with regard to patient comfort and throughput. In addition, optimization of plan efficiency may potentially affect the biologically effective dose from Gamma Knife treatments and offers opportunity for further work.
BEST Winery Guidebook: Benchmarking and Energy and Water SavingsTool for the Wine Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony
2005-10-15
Not all industrial facilities have the staff or the opportunity to perform a detailed audit of their operations. The lack of knowledge of energy efficiency opportunities provides an important barrier to improving efficiency. Benchmarking has demonstrated to help energy users understand energy use and the potential for energy efficiency improvement, reducing the information barrier. In California, the wine making industry is not only one of the economic pillars of the economy; it is also a large energy consumer, with a considerable potential for energy-efficiency improvement. Lawrence Berkeley National Laboratory and Fetzer Vineyards developed an integrated benchmarking and self-assessment tool formore » the California wine industry called ''BEST''(Benchmarking and Energy and water Savings Tool) Winery. BEST Winery enables a winery to compare its energy efficiency to a best practice winery, accounting for differences in product mix and other characteristics of the winery. The tool enables the user to evaluate the impact of implementing energy and water efficiency measures. The tool facilitates strategic planning of efficiency measures, based on the estimated impact of the measures, their costs and savings. BEST Winery is available as a software tool in an Excel environment. This report serves as background material, documenting assumptions and information on the included energy and water efficiency measures. It also serves as a user guide for the software package.« less
NASA Astrophysics Data System (ADS)
Wang, Xingwei; Chen, Jiajun
2017-06-01
With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium.
Lopez-Delgado, R; Zhou, Y; Zazueta-Raynaud, A; Zhao, H; Pelayo, J E; Vomiero, A; Álvarez-Ramos, M E; Rosei, F; Ayon, A
2017-10-26
Silicon solar cells have captured a large portion of the total market of photovoltaic devices mostly due to their relatively high efficiency. However, Silicon exhibits limitations in ultraviolet absorption because high-energy photons are absorbed at the surface of the solar cell, in the heavily doped region, and the photo-generated electron-hole pairs need to diffuse into the junction region, resulting in significant carrier recombination. One of the alternatives to improve the absorption range involves the use of down-shifting nano-structures able to interact with the aforementioned high energy photons. Here, as a proof of concept, we use downshifting CdSe/CdS quantum dots to improve the performance of a silicon solar cell. The incorporation of these nanostructures triggered improvements in the short circuit current density (J sc , from 32.5 to 37.0 mA/cm 2 ). This improvement led to a ∼13% increase in the power conversion efficiency (PCE), from 12.0 to 13.5%. Our results demonstrate that the application of down-shifting materials is a viable strategy to improve the efficiency of Silicon solar cells with mass-compatible techniques that could serve to promote their widespread utilization.
NASA Astrophysics Data System (ADS)
Zhang, Shuying; Wu, Xuquan; Li, Deshan; Xu, Yadong; Song, Shulin
2017-06-01
Based on the input and output data of sandstone reservoir in Xinjiang oilfield, the SBM-Undesirable model is used to study the technical efficiency of each block. Results show that: the model of SBM-undesirable to evaluate its efficiency and to avoid defects caused by traditional DEA model radial angle, improve the accuracy of the efficiency evaluation. by analyzing the projection of the oil blocks, we find that each block is in the negative external effects of input redundancy and output deficiency benefit and undesirable output, and there are greater differences in the production efficiency of each block; the way to improve the input-output efficiency of oilfield is to optimize the allocation of resources, reduce the undesirable output and increase the expected output.
Efficient CsF interlayer for high and low bandgap polymer solar cell
NASA Astrophysics Data System (ADS)
Mitul, Abu Farzan; Sarker, Jith; Adhikari, Nirmal; Mohammad, Lal; Wang, Qi; Khatiwada, Devendra; Qiao, Qiquan
2018-02-01
Low bandgap polymer solar cells have a great deal of importance in flexible photovoltaic market to absorb sun light more efficiently. Efficient wide bandgap solar cells are always available in nature to absorb visible photons. The development and incorporation of infrared photovoltaics (IR PV) with wide bandgap solar cells can improve overall solar device performance. Here, we have developed an efficient low bandgap polymer solar cell with CsF as interfacial layer in regular structure. Polymer solar cell devices with CsF shows enhanced performance than Ca as interfacial layer. The power conversion efficiency of 4.5% has been obtained for PDPP3T based polymer solar cell with CsF as interlayer. Finally, an optimal thickness with CsF as interfacial layer has been found to improve the efficiency in low bandgap polymer solar cells.
Ullah, Asmat; Perret, Sylvain R
2014-08-01
Cotton cropping in Pakistan uses substantial quantities of resources and adversely affects the environment with pollutants from the inputs, particularly pesticides. A question remains regarding to what extent the reduction of such environmental impact is possible without compromising the farmers' income. This paper investigates the environmental, technical, and economic performances of selected irrigated cotton-cropping systems in Punjab to quantify the sustainability of cotton farming and reveal options for improvement. Using mostly primary data, our study quantifies the technical, cost, and environmental efficiencies of different farm sizes. A set of indicators has been computed to reflect these three domains of efficiency using the data envelopment analysis technique. The results indicate that farmers are broadly environmentally inefficient; which primarily results from poor technical inefficiency. Based on an improved input mix, the average potential environmental impact reduction for small, medium, and large farms is 9, 13, and 11 %, respectively, without compromising the economic return. Moreover, the differences in technical, cost, and environmental efficiencies between small and medium and small and large farm sizes were statistically significant. The second-stage regression analysis identifies that the entire farm size significantly affects the efficiencies, whereas exposure to extension and training has positive effects, and the sowing methods significantly affect the technical and environmental efficiencies. Paradoxically, the formal education level is determined to affect the efficiencies negatively. This paper discusses policy interventions that can improve the technical efficiency to ultimately increase the environmental efficiency and reduce the farmers' operating costs.
Hu, Yuxuan; Gurev, Viatcheslav; Constantino, Jason; Trayanova, Natalia
2013-01-01
Background The acute response to cardiac resynchronization therapy (CRT) has been shown to be due to three mechanisms: resynchronization of ventricular contraction, efficient preloading of the ventricles by a properly timed atrial contraction, and mitral regurgitation reduction. However, the contribution of each of the three mechanisms to the acute response of CRT, specifically stroke work improvement, has not been quantified. Objective The goal of this study was to use an MRI-based anatomically accurate 3D model of failing canine ventricular electromechanics to quantify the contribution of each of the three mechanisms to stroke work improvement and identify the predominant mechanisms. Methods An MRI-based electromechanical model of the failing canine ventricles assembled previously by our group was further developed and modified. Three different protocols were used to dissect the contribution of each of the three mechanisms to stroke work improvement. Results Resynchronization of ventricular contraction did not lead to significant stroke work improvement. Efficient preloading of the ventricles by a properly timed atrial contraction was the predominant mechanism underlying stroke work improvement. Stroke work improvement peaked at an intermediate AV delay, as it allowed ventricular filling by atrial contraction to occur at a low diastolic LV pressure but also provided adequate time for ventricular filling before ventricular contraction. Diminution of mitral regurgitation by CRT led to stroke work worsening instead of improvement. Conclusion Efficient preloading of the ventricles by a properly timed atrial contraction is responsible for significant stroke work improvement in the acute CRT response. PMID:23928177
Measuring the labeling efficiency of pseudocontinuous arterial spin labeling.
Chen, Zhensen; Zhang, Xingxing; Yuan, Chun; Zhao, Xihai; van Osch, Matthias J P
2017-05-01
Optimization and validation of a sequence for measuring the labeling efficiency of pseudocontinuous arterial spin labeling (pCASL) perfusion MRI. The proposed sequence consists of a labeling module and a single slice Look-Locker echo planar imaging readout. A model-based algorithm was used to calculate labeling efficiency from the signal acquired from the main brain-feeding arteries. Stability of the labeling efficiency measurement was evaluated with regard to the use of cardiac triggering, flow compensation and vein signal suppression. Accuracy of the measurement was assessed by comparing the measured labeling efficiency to mean brain pCASL signal intensity over a wide range of flip angles as applied in the pCASL labeling. Simulations show that the proposed algorithm can effectively calculate labeling efficiency when correcting for T1 relaxation of the blood spins. Use of cardiac triggering and vein signal suppression improved stability of the labeling efficiency measurement, while flow compensation resulted in little improvement. The measured labeling efficiency was found to be linearly (R = 0.973; P < 0.001) related to brain pCASL signal intensity over a wide range of pCASL flip angles. The optimized labeling efficiency sequence provides robust artery-specific labeling efficiency measurement within a short acquisition time (∼30 s), thereby enabling improved accuracy of pCASL CBF quantification. Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine Magn Reson Med 77:1841-1852, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Giorgio, Laura Di; Flaxman, Abraham D.; Moses, Mark W.; Fullman, Nancy; Hanlon, Michael; Conner, Ruben O.; Wollum, Alexandra; Murray, Christopher J. L.
2016-01-01
Low-resource countries can greatly benefit from even small increases in efficiency of health service provision, supporting a strong case to measure and pursue efficiency improvement in low- and middle-income countries (LMICs). However, the knowledge base concerning efficiency measurement remains scarce for these contexts. This study shows that current estimation approaches may not be well suited to measure technical efficiency in LMICs and offers an alternative approach for efficiency measurement in these settings. We developed a simulation environment which reproduces the characteristics of health service production in LMICs, and evaluated the performance of Data Envelopment Analysis (DEA) and Stochastic Distance Function (SDF) for assessing efficiency. We found that an ensemble approach (ENS) combining efficiency estimates from a restricted version of DEA (rDEA) and restricted SDF (rSDF) is the preferable method across a range of scenarios. This is the first study to analyze efficiency measurement in a simulation setting for LMICs. Our findings aim to heighten the validity and reliability of efficiency analyses in LMICs, and thus inform policy dialogues about improving the efficiency of health service production in these settings. PMID:26812685
2016-03-21
ORIGINAL PAPER Silicon solar cell efficiency improvement employing the photoluminescent, down-shifting effects of carbon and CdTe quantum dots Elias...smaller influence on solar cell performance, they are con- sidered to be a more attractive option due to their afford- ability and minimal impact in the...Photovoltaics Solar cells Introduction There is a generalized trend to demonstrate higher solar cell efficiency with more affordable devices to promote
The admissible portfolio selection problem with transaction costs and an improved PSO algorithm
NASA Astrophysics Data System (ADS)
Chen, Wei; Zhang, Wei-Guo
2010-05-01
In this paper, we discuss the portfolio selection problem with transaction costs under the assumption that there exist admissible errors on expected returns and risks of assets. We propose a new admissible efficient portfolio selection model and design an improved particle swarm optimization (PSO) algorithm because traditional optimization algorithms fail to work efficiently for our proposed problem. Finally, we offer a numerical example to illustrate the proposed effective approaches and compare the admissible portfolio efficient frontiers under different constraints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.
High efficiency solar cell processing
NASA Technical Reports Server (NTRS)
Ho, F.; Iles, P. A.
1985-01-01
At the time of writing, cells made by several groups are approaching 19% efficiency. General aspects of the processing required for such cells are discussed. Most processing used for high efficiency cells is derived from space-cell or concentrator cell technology, and recent advances have been obtained from improved techniques rather than from better understanding of the limiting mechanisms. Theory and modeling are fairly well developed, and adequate to guide further asymptotic increases in performance of near conventional cells. There are several competitive cell designs with promise of higher performance ( 20%) but for these designs further improvements are required. The available cell processing technology to fabricate high efficiency cells is examined.
Data Envelopment Analysis (DEA) Model in Operation Management
NASA Astrophysics Data System (ADS)
Malik, Meilisa; Efendi, Syahril; Zarlis, Muhammad
2018-01-01
Quality management is an effective system in operation management to develops, maintains, and improves quality from groups of companies that allow marketing, production, and service at the most economycal level as well as ensuring customer satisfication. Many companies are practicing quality management to improve their bussiness performance. One of performance measurement is through measurement of efficiency. One of the tools can be used to assess efficiency of companies performance is Data Envelopment Analysis (DEA). The aim of this paper is using Data Envelopment Analysis (DEA) model to assess efficiency of quality management. In this paper will be explained CCR, BCC, and SBM models to assess efficiency of quality management.
Jeon, Dae-Woo; Jang, Lee-Woon; Jeon, Ju-Won; Park, Jae-Woo; Song, Young Ho; Jeon, Seong-Ran; Ju, Jin-Woo; Baek, Jong Hyeob; Lee, In-Hwan
2013-05-01
In this study, we have fabricated 375-nm-wavelength InGaN/AlInGaN nanopillar light emitting diodes (LED) structures on c-plane sapphire. A uniform and highly vertical nanopillar structure was fabricated using self-organized Ni/SiO2 nano-size mask by dry etching method. To minimize the dry etching damage, the samples were subjected to high temperature annealing with subsequent chemical passivation in KOH solution. Prior to annealing and passivation the UV nanopillar LEDs showed the photoluminescence (PL) efficiency about 2.5 times higher than conventional UV LED structures which is attributed to better light extraction efficiency and possibly some improvement of internal quantum efficiency due to partially relieved strain. Annealing alone further increased the PL efficiency by about 4.5 times compared to the conventional UV LEDs, while KOH passivation led to the overall PL efficiency improvement by more than 7 times. Combined results of Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) suggest that annealing decreases the number of lattice defects and relieves the strain in the surface region of the nanopillars whereas KOH treatment removes the surface oxide from nanopillar surface.
Pisoni, Stefano; Weiss, Thomas P.; Feurer, Thomas; Wäckerlin, Aneliia; Fuchs, Peter; Nishiwaki, Shiro; Zortea, Lukas; Tiwari, Ayodhya N.
2018-01-01
Abstract Compositional grading has been widely exploited in highly efficient Cu(In,Ga)Se2, CdTe, GaAs, quantum dot solar cells, and this strategy has the potential to improve the performance of emerging perovskite solar cells. However, realizing and maintaining compositionally graded perovskite absorber from solution processing is challenging. Moreover, the operational stability of graded perovskite solar cells under long‐term heat/light soaking has not been demonstrated. In this study, a facile partial ion‐exchange approach is reported to achieve compositionally graded perovskite absorber layers. Incorporating compositional grading improves charge collection and suppresses interface recombination, enabling to fabricate near‐infrared‐transparent perovskite solar cells with power conversion efficiency of 16.8% in substrate configuration, and demonstrate 22.7% tandem efficiency with 3.3% absolute gain when mechanically stacked on a Cu(In,Ga)Se2 bottom cell. Non‐encapsulated graded perovskite device retains over 93% of its initial efficiency after 1000 h operation at maximum power point at 60 °C under equivalent 1 sun illumination. The results open an avenue in exploring partial ion‐exchange to design graded perovskite solar cells with improved efficiency and stability. PMID:29593970
Fu, Fan; Pisoni, Stefano; Weiss, Thomas P; Feurer, Thomas; Wäckerlin, Aneliia; Fuchs, Peter; Nishiwaki, Shiro; Zortea, Lukas; Tiwari, Ayodhya N; Buecheler, Stephan
2018-03-01
Compositional grading has been widely exploited in highly efficient Cu(In,Ga)Se 2 , CdTe, GaAs, quantum dot solar cells, and this strategy has the potential to improve the performance of emerging perovskite solar cells. However, realizing and maintaining compositionally graded perovskite absorber from solution processing is challenging. Moreover, the operational stability of graded perovskite solar cells under long-term heat/light soaking has not been demonstrated. In this study, a facile partial ion-exchange approach is reported to achieve compositionally graded perovskite absorber layers. Incorporating compositional grading improves charge collection and suppresses interface recombination, enabling to fabricate near-infrared-transparent perovskite solar cells with power conversion efficiency of 16.8% in substrate configuration, and demonstrate 22.7% tandem efficiency with 3.3% absolute gain when mechanically stacked on a Cu(In,Ga)Se 2 bottom cell. Non-encapsulated graded perovskite device retains over 93% of its initial efficiency after 1000 h operation at maximum power point at 60 °C under equivalent 1 sun illumination. The results open an avenue in exploring partial ion-exchange to design graded perovskite solar cells with improved efficiency and stability.
Decentralized energy studies: Compendium of international studies and research
NASA Astrophysics Data System (ADS)
Wallace, C.
1980-03-01
With efficient use of energy, renewable energy sources can supply the majority, if not the totality, of energy supplies in developed nations at real energy prices that double or triple by 2025 (1975 prices). This appears true even in harsh climates with oil dependent industrial economies. Large increases in end-use energy efficiency are cost effective at present prices. Some reports show that cost effective end-use efficiency improvements can reduce energy consumption (per capita, per unit of amenity, or per unit of output) to as much as 90 percent. This was demonstrated by highly disaggregated analyses of end-uses. Such analyses consistently show larger potential for efficiency improvements than can be detected from conventional analyses of more aggregated data. As energy use demands decline due to end use efficiency improvements, energy supply problems subsequently decrease. Lifestyle changes, influenced by social factors, and rising energy prices can substantially reduce demands for energy. Such changes are already discernible in end-use energy studies. When energy efficient capital stock is in place, many end-users of energy will be able to provide a substantial portion of their own energy needs from renewable energy sources that are directly available to them.
Wideband piezoelectric energy harvester for low-frequency application with plucking mechanism
NASA Astrophysics Data System (ADS)
Hiraki, Yasuhiro; Masuda, Arata; Ikeda, Naoto; Katsumura, Hidenori; Kagata, Hiroshi; Okumura, Hidenori
2015-04-01
Wireless sensor networks need energy harvesting from vibrational environment for their power supply. The conventional resonance type vibration energy harvesters, however, are not always effective for low frequency application. The purpose of this paper is to propose a high efficiency energy harvester for low frequency application by utilizing plucking and SSHI techniques, and to investigate the effects of applying those techniques in terms of the energy harvesting efficiency. First, we derived an approximate formulation of energy harvesting efficiency of the plucking device by theoretical analysis. Next, it was confirmed that the improved efficiency agreed with numerical and experimental results. Also, a parallel SSHI, a switching circuit technique to improve the performance of the harvester was introduced and examined by numerical simulations and experiments. Contrary to the simulated results in which the efficiency was improved from 13.1% to 22.6% by introducing the SSHI circuit, the efficiency obtained in the experiment was only 7.43%. This would due to the internal resistance of the inductors and photo MOS relays on the switching circuit and the simulation including this factor revealed large negative influence of it. This result suggested that the reduction of the switching resistance was significantly important to the implementation of SSHI.
[Eco-efficiency change and its driving factors in Tongling City of Anhui Province].
Wang, Yi-Chen; Wang, Yuan; Zhu, Xiao-Dong; Wu, Xiao-Qing; Wang, Ke; Ren, Ke-Xiu; Lu, Gen-Fa
2011-02-01
This paper first applied material flow analysis (MFA) to construct three levels of regional eco-efficiency indicators, i.e., regional direct eco-efficiency (RDE), regional total eco-efficiency (RTE), and holistic eco-efficiency (HE), and adopted the newly developed data envelopment analysis (DEA) to evaluate the eco-efficiency of Tongling City during the period of 1990-2008. We also applied Malmquist productivity index (MPI) to explore the eco-efficiency change between two following years and its driving factors. The main results were summarized as 1) though the RDE of Tongling City in 1990-2008 kept an increasing trend, its mean eco-efficiency was not high (close to 0.8 in 80% of the years), being lower than that of the RTE and HE, and 2) the RDE change was closely relevant to the improvement in resource management and the technical input in environmental protection in recent years. In order to further improve the RDE of the City, it would be necessary to raise its eco-efficiency via expanding raw material input, reducing domestic extraction, promoting resources productivity, and taking more measures on environmental protection facilities construction.
Efficiency of silicon solar cells containing chromium
Frosch, Robert A. Administrator of the National Aeronautics and Space; Salama, Amal M.
1982-01-01
Efficiency of silicon solar cells containing about 10.sup.15 atoms/cm.sup.3 of chromium is improved about 26% by thermal annealing of the silicon wafer at a temperature of 200.degree. C. to form chromium precipitates having a diameter of less than 1 Angstrom. Further improvement in efficiency is achieved by scribing laser lines onto the back surface of the wafer at a spacing of at least 0.5 mm and at a depth of less than 13 micrometers to preferentially precipitate chromium near the back surface and away from the junction region of the device. This provides an economical way to improve the deleterious effects of chromium, one of the impurities present in metallurgical grade silicon material.
Industrial energy-efficiency improvement program
NASA Astrophysics Data System (ADS)
1980-12-01
The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies is described. Practices which will improve energy efficiency, encourage substitution of more plentiful domestic fuels, and enhance recovery of energy and materials from industrial waste streams are enumerated. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. A summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix is presented.
A community detection algorithm based on structural similarity
NASA Astrophysics Data System (ADS)
Guo, Xuchao; Hao, Xia; Liu, Yaqiong; Zhang, Li; Wang, Lu
2017-09-01
In order to further improve the efficiency and accuracy of community detection algorithm, a new algorithm named SSTCA (the community detection algorithm based on structural similarity with threshold) is proposed. In this algorithm, the structural similarities are taken as the weights of edges, and the threshold k is considered to remove multiple edges whose weights are less than the threshold, and improve the computational efficiency. Tests were done on the Zachary’s network, Dolphins’ social network and Football dataset by the proposed algorithm, and compared with GN and SSNCA algorithm. The results show that the new algorithm is superior to other algorithms in accuracy for the dense networks and the operating efficiency is improved obviously.
An Efficient End-Pumped Ho:Tm:YLF Disk Amplifier
NASA Technical Reports Server (NTRS)
Yu, Ji-Rong; Petros, Mulugeta; Singh, Upendra N.; Barnes, Norman P.
2000-01-01
An efficient diode-pumped, room temperature Ho:Tm:YLF disk amplifier was realized by end-pump configuration. Compared to side pump configuration, about a factor three improvement in system efficiency has been demonstrated.
Detailed performance analysis of the A.A.D. - concept B
NASA Technical Reports Server (NTRS)
Sekar, R.; Tozzi, L.
1983-01-01
New concepts for engine performance improvement are seen through the adoption of heat regeneration techniques; advanced methods to enhance the combustion; and higher efficiency air handling machinery, such as the positive displacement helical screw expander and compressor. Each of these concepts plays a particular role in engine performance improvement. First regeneration has a great potential for achieving higher engine thermal efficiency through the recovery of waste energy. Although the concept itself is not new (this technique is used in the gas turbine), the application to reciprocating internal combustion engines is quite unusual and presents conceptual difficulties. The second important area is better control of the combustion process in terms of heat transfer characteristics, combustion products, and heat release rate. The third area for performance improvement is in the adoption of high efficiency air handling machinery. In particular, positive displacement helical expander and compressor exhibit an extremely high efficiency over a wide range of operating conditions.
Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating
2012-01-01
An efficient antireflection coating is critical for the improvement of silicon solar cell performance via increased light coupling. Here, we have grown well-aligned ZnO nanowhisker (NW) arrays on Czochralski silicon solar cells by a seeding-growth two-step process. It is found that the ZnO NWs have a great effect on the macroscopic antireflection effect and, therefore, improves the solar cell performance. The ZnO NW array-coated solar cells display a broadband reflection suppression from 500 to 1,100 nm, and the minimum reflectance smaller than 3% can easily be achieved. By optimizing the time of ZnO NW growth, it has been confirmed that an increase of 3% relatively in the solar cell efficiency can be obtained. These results are quite interesting for the application of ZnO nanostructure in the fabrication of high-efficiency silicon solar cells. PMID:22704578
Improving the sampling efficiency of Monte Carlo molecular simulations: an evolutionary approach
NASA Astrophysics Data System (ADS)
Leblanc, Benoit; Braunschweig, Bertrand; Toulhoat, Hervé; Lutton, Evelyne
We present a new approach in order to improve the convergence of Monte Carlo (MC) simulations of molecular systems belonging to complex energetic landscapes: the problem is redefined in terms of the dynamic allocation of MC move frequencies depending on their past efficiency, measured with respect to a relevant sampling criterion. We introduce various empirical criteria with the aim of accounting for the proper convergence in phase space sampling. The dynamic allocation is performed over parallel simulations by means of a new evolutionary algorithm involving 'immortal' individuals. The method is bench marked with respect to conventional procedures on a model for melt linear polyethylene. We record significant improvement in sampling efficiencies, thus in computational load, while the optimal sets of move frequencies are liable to allow interesting physical insights into the particular systems simulated. This last aspect should provide a new tool for designing more efficient new MC moves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, M.G.; Sauber, R.S.
Two models of a high-efficiency compressor were manufactured in a pilot production run. These compressors were for low back-pressure applications. While based on a production compressor, there were many changes that required production process changes. Some changes were performed within our company and others were made by outside vendors. The compressors were used in top mount refrigerator-freezers and sold in normal distribution channels. Forty units were placed in residences for a one-year field test. Additional compressors were built so that a life test program could be performed. The results of the field test reveal a 27.0% improvement in energy consumptionmore » for the 18 ft/sup 3/ high-efficiency model and a 15.6% improvement in the 21 ft/sup 3/ improvement in the 21 ft/sup 3/ high-efficiency model as compared to the standard production unit.« less
Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells
Choi, Hyosung; Mai, Cheng-Kang; Kim, Hak-Beom; Jeong, Jaeki; Song, Seyeong; Bazan, Guillermo C.; Kim, Jin Young; Heeger, Alan J.
2015-01-01
Organic–inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stability through development of novel materials and device architectures. Here we demonstrate that inverted-type perovskite solar cells with pH-neutral and low-temperature solution-processable conjugated polyelectrolyte as the hole transport layer (instead of acidic PEDOT:PSS) exhibit a device efficiency of over 12% and improved device stability in air. As an alternative to PEDOT:PSS, this work is the first report on the use of an organic hole transport material that enables the formation of uniform perovskite films with complete surface coverage and the demonstration of efficient, stable perovskite/fullerene planar heterojunction solar cells. PMID:26081865
Improving the efficiency of a chemotherapy day unit: applying a business approach to oncology.
van Lent, Wineke A M; Goedbloed, N; van Harten, W H
2009-03-01
To improve the efficiency of a hospital-based chemotherapy day unit (CDU). The CDU was benchmarked with two other CDUs to identify their attainable performance levels for efficiency, and causes for differences. Furthermore, an in-depth analysis using a business approach, called lean thinking, was performed. An integrated set of interventions was implemented, among them a new planning system. The results were evaluated using pre- and post-measurements. We observed 24% growth of treatments and bed utilisation, a 12% increase of staff member productivity and an 81% reduction of overtime. The used method improved process design and led to increased efficiency and a more timely delivery of care. Thus, the business approaches, which were adapted for healthcare, were successfully applied. The method may serve as an example for other oncology settings with problems concerning waiting times, patient flow or lack of beds.
Lawrence, Justin; Delaney, Conor P.
2013-01-01
Evaluation of health care outcomes has become increasingly important as we strive to improve quality and efficiency while controlling cost. Many groups feel that analysis of large datasets will be useful in optimizing resource utilization; however, the ideal blend of clinical and administrative data points has not been developed. Hospitals and health care systems have several tools to measure cost and resource utilization, but the data are often housed in disparate systems that are not integrated and do not permit multisystem analysis. Systems Outcomes and Clinical Resources AdministraTive Efficiency Software (SOCRATES) is a novel data merging, warehousing, analysis, and reporting technology, which brings together disparate hospital administrative systems generating automated or customizable risk-adjusted reports. Used in combination with standardized enhanced care pathways, SOCRATES offers a mechanism to improve the quality and efficiency of care, with the ability to measure real-time changes in outcomes. PMID:24436649
Lawrence, Justin; Delaney, Conor P
2013-03-01
Evaluation of health care outcomes has become increasingly important as we strive to improve quality and efficiency while controlling cost. Many groups feel that analysis of large datasets will be useful in optimizing resource utilization; however, the ideal blend of clinical and administrative data points has not been developed. Hospitals and health care systems have several tools to measure cost and resource utilization, but the data are often housed in disparate systems that are not integrated and do not permit multisystem analysis. Systems Outcomes and Clinical Resources AdministraTive Efficiency Software (SOCRATES) is a novel data merging, warehousing, analysis, and reporting technology, which brings together disparate hospital administrative systems generating automated or customizable risk-adjusted reports. Used in combination with standardized enhanced care pathways, SOCRATES offers a mechanism to improve the quality and efficiency of care, with the ability to measure real-time changes in outcomes.
NASA Astrophysics Data System (ADS)
Jimenez, Edward S.; Goodman, Eric L.; Park, Ryeojin; Orr, Laurel J.; Thompson, Kyle R.
2014-09-01
This paper will investigate energy-efficiency for various real-world industrial computed-tomography reconstruction algorithms, both CPU- and GPU-based implementations. This work shows that the energy required for a given reconstruction is based on performance and problem size. There are many ways to describe performance and energy efficiency, thus this work will investigate multiple metrics including performance-per-watt, energy-delay product, and energy consumption. This work found that irregular GPU-based approaches1 realized tremendous savings in energy consumption when compared to CPU implementations while also significantly improving the performance-per- watt and energy-delay product metrics. Additional energy savings and other metric improvement was realized on the GPU-based reconstructions by improving storage I/O by implementing a parallel MIMD-like modularization of the compute and I/O tasks.
NASA Astrophysics Data System (ADS)
Wu, Shufang; Liu, Qingwei; Zheng, Ya; Li, Renjie; Peng, Tianyou
2017-08-01
Solution processable planar heterojunction perovskite solar cell has drawn much attention as a promising low-cost photovoltaic device, and much effort has been made to improve its power conversion efficiency by choosing appropriate additives for the perovskite precursor solution. Different to those additives reported, a soluble and thermal stable tert-butyl substituted copper phthalocyanine (CuPc(tBu)4) as additive is first introduced into the perovskite precursor solution of a planar perovskite solar cell that is fabricated via the one-step solution process. It is found that the pristine device without CuPc(tBu)4 additive exhibits a power conversion efficiency of 15.3%, while an extremely low concentration (4.4 × 10-3 mM) of CuPc(tBu)4 in the precursor solution leads to the corresponding device achieving an enhanced power conversion efficiency of 17.3%. CuPc(tBu)4 as an additive can improve the quality of perovskite layer with higher crystallinity and surface coverage, then resulting in enhanced light absorption and reduced charge recombination, and thus the better power conversion efficiency. The finding presented here provides a new choice for improving the quality of perovskite layer and the photovoltaic performance of the planar heterojunction perovskite solar cells.
Tavakoli, Mohammad Mahdi; Lin, Qingfeng; Leung, Siu-Fung; Lui, Ga Ching; Lu, Hao; Li, Liang; Xiang, Bin; Fan, Zhiyong
2016-02-21
Utilization of nanostructures on photovoltaic devices can significantly improve the device energy conversion efficiency by enhancing the device light harvesting capability as well as carrier collection efficiency. However, improvements in device mechanical robustness and reliability, particularly for flexible devices, have rarely been reported with in-depth understanding. In this work, we fabricated efficient, flexible and mechanically robust organometallic perovskite solar cells on plastic substrates with inverted nanocone (i-cone) structures. Compared with the reference cell that was fabricated on a flat substrate, it was shown that the device power conversion efficiency could be improved by 37%, and reached up to 11.29% on i-cone substrates. More interestingly, it was discovered that the performance of an i-cone device remained more than 90% of the initial value even after 200 mechanical bending cycles, which is remarkably better than for the flat reference device, which degraded down to only 60% in the same test. Our experiments, coupled with mechanical simulation, demonstrated that a nanostructured template can greatly help in relaxing stress and strain upon device bending, which suppresses crack nucleation in different layers of a perovskite solar cell. This essentially leads to much improved device reliability and robustness and will have significant impact on practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurnik, Charles W; Jacobson, David; Metoyer, Jarred
The specific measure described here involves improving the overall efficiency in air-conditioning systems as a whole (compressor, evaporator, condenser, and supply fan). The efficiency rating is expressed as the energy efficiency ratio (EER), seasonal energy efficiency ratio (SEER), and integrated energy efficiency ratio (IEER). The higher the EER, SEER or IEER, the more efficient the unit is.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... have a public benefit of improved railroad safety and efficiency. The program makes available $50... projects * * * that have a public benefit of improved safety and network efficiency.'' To be eligible for... percent grantee, cost share (cash or in-kind) requirement. Applications that do not clearly indicate at...
ERIC Educational Resources Information Center
Saha, Dhanonjoy C.; Ahmed, Abrar; Hanumandla, Shailaja
2011-01-01
Conventional wisdom may support the presumed notion that higher expectations increase efficiency and improve quality. However, this claim may only be validated when workers are equipped with appropriate tools, training, and a conducive work environment. This study implements various interventions, observes outcomes, and analyzes data collected in…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
... funds a wide range of applied research projects that address barriers, challenges, and opportunities in... agricultural products and to encourage research and innovation aimed at improving the efficiency and... and to encourage research and innovation aimed at improving the efficiency and performance of the U.S...
Development of an improved high efficiency thin silicon solar cell
NASA Technical Reports Server (NTRS)
Lindmayer, J.
1978-01-01
Efforts were concerned with optimizing techniques for thinning silicon slices in NaOH etches, initial investigations of surface texturing, variation of furnace treatments to improve cell efficiency, initial efforts on optimization of gridline and cell sizes and Pilot Line fabrication of quantities of 2 cm x 2 cm 50 micron thick cells.
7 CFR 4280.165 - Combined funding for renewable energy systems and energy efficiency improvements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 15 2012-01-01 2012-01-01 false Combined funding for renewable energy systems and energy efficiency improvements. 4280.165 Section 4280.165 Agriculture Regulations of the Department of... AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Combined Funding for Renewable Energy...
7 CFR 4280.165 - Combined funding for renewable energy systems and energy efficiency improvements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 15 2013-01-01 2013-01-01 false Combined funding for renewable energy systems and energy efficiency improvements. 4280.165 Section 4280.165 Agriculture Regulations of the Department of... AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Combined Funding for Renewable Energy...
7 CFR 4280.165 - Combined funding for renewable energy systems and energy efficiency improvements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 15 2014-01-01 2014-01-01 false Combined funding for renewable energy systems and energy efficiency improvements. 4280.165 Section 4280.165 Agriculture Regulations of the Department of... AGRICULTURE LOANS AND GRANTS Rural Energy for America Program General Combined Funding for Renewable Energy...
NASA Astrophysics Data System (ADS)
Li, Jia; Wang, Qiang; Yan, Wenjie; Shen, Yi
2015-12-01
Cooperative spectrum sensing exploits the spatial diversity to improve the detection of occupied channels in cognitive radio networks (CRNs). Cooperative compressive spectrum sensing (CCSS) utilizing the sparsity of channel occupancy further improves the efficiency by reducing the number of reports without degrading detection performance. In this paper, we firstly and mainly propose the referred multi-candidate orthogonal matrix matching pursuit (MOMMP) algorithms to efficiently and effectively detect occupied channels at fusion center (FC), where multi-candidate identification and orthogonal projection are utilized to respectively reduce the number of required iterations and improve the probability of exact identification. Secondly, two common but different approaches based on threshold and Gaussian distribution are introduced to realize the multi-candidate identification. Moreover, to improve the detection accuracy and energy efficiency, we propose the matrix construction based on shrinkage and gradient descent (MCSGD) algorithm to provide a deterministic filter coefficient matrix of low t-average coherence. Finally, several numerical simulations validate that our proposals provide satisfactory performance with higher probability of detection, lower probability of false alarm and less detection time.
Improving crop nutrient efficiency through root architecture modifications.
Li, Xinxin; Zeng, Rensen; Liao, Hong
2016-03-01
Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. © 2015 Institute of Botany, Chinese Academy of Sciences.
Analysis of Technological Innovation and Environmental Performance Improvement in Aviation Sector
Lee, Joosung; Mo, Jeonghoon
2011-01-01
The past oil crises have caused dramatic improvements in fuel efficiency in all industrial sectors. The aviation sector—aircraft manufacturers and airlines—has also made significant efforts to improve the fuel efficiency through more advanced jet engines, high-lift wing designs, and lighter airframe materials. However, the innovations in energy-saving aircraft technologies do not coincide with the oil crisis periods. The largest improvement in aircraft fuel efficiency took place in the 1960s while the high oil prices in the 1970s and on did not induce manufacturers or airlines to achieve a faster rate of innovation. In this paper, we employ a historical analysis to examine the socio-economic reasons behind the relatively slow technological innovation in aircraft fuel efficiency over the last 40 years. Based on the industry and passenger behaviors studied and prospects for alternative fuel options, this paper offers insights for the aviation sector to shift toward more sustainable technological options in the medium term. Second-generation biofuels could be the feasible option with a meaningful reduction in aviation’s lifecycle environmental impact if they can achieve sufficient economies of scale. PMID:22016716
Analysis of technological innovation and environmental performance improvement in aviation sector.
Lee, Joosung; Mo, Jeonghoon
2011-09-01
The past oil crises have caused dramatic improvements in fuel efficiency in all industrial sectors. The aviation sector-aircraft manufacturers and airlines-has also made significant efforts to improve the fuel efficiency through more advanced jet engines, high-lift wing designs, and lighter airframe materials. However, the innovations in energy-saving aircraft technologies do not coincide with the oil crisis periods. The largest improvement in aircraft fuel efficiency took place in the 1960s while the high oil prices in the 1970s and on did not induce manufacturers or airlines to achieve a faster rate of innovation. In this paper, we employ a historical analysis to examine the socio-economic reasons behind the relatively slow technological innovation in aircraft fuel efficiency over the last 40 years. Based on the industry and passenger behaviors studied and prospects for alternative fuel options, this paper offers insights for the aviation sector to shift toward more sustainable technological options in the medium term. Second-generation biofuels could be the feasible option with a meaningful reduction in aviation's lifecycle environmental impact if they can achieve sufficient economies of scale.
Efficiency Analysis of Waveform Shape for Electrical Excitation of Nerve Fibers
Wongsarnpigoon, Amorn; Woock, John P.; Grill, Warren M.
2011-01-01
Stimulation efficiency is an important consideration in the stimulation parameters of implantable neural stimulators. The objective of this study was to analyze the effects of waveform shape and duration on the charge, power, and energy efficiency of neural stimulation. Using a population model of mammalian axons and in vivo experiments on cat sciatic nerve, we analyzed the stimulation efficiency of four waveform shapes: square, rising exponential, decaying exponential, and rising ramp. No waveform was simultaneously energy-, charge-, and power-optimal, and differences in efficiency among waveform shapes varied with pulse width (PW) For short PWs (≤ 0.1 ms), square waveforms were no less energy-efficient than exponential waveforms, and the most charge-efficient shape was the ramp. For long PWs (≥0.5 ms), the square was the least energy-efficient and charge-efficient shape, but across most PWs, the square was the most power-efficient shape. Rising exponentials provided no practical gains in efficiency over the other shapes, and our results refute previous claims that the rising exponential is the energy-optimal shape. An improved understanding of how stimulation parameters affect stimulation efficiency will help improve the design and programming of implantable stimulators to minimize tissue damage and extend battery life. PMID:20388602
Jia, Tongying; Yuan, Huiyun
2017-04-12
Many large-scaled public hospitals have established branched hospitals in China. This study is to provide evidence for strategy making on the management and development of multi-branched hospitals by evaluating and comparing the operational efficiencies of different hospitals before and after their establishment of branched hospitals. DEA (Data Envelopment Analysis) window analysis was performed on a 7-year data pool from five public hospitals provided by health authorities and institutional surveys. The operational efficiencies of sample hospitals measured in this study (including technical efficiency, pure technical efficiency and scale efficiency) had overall trends towards increase during this 7-year period of time, however, a temporary downturn occurred shortly after the establishment of branched hospitals; pure technical efficiency contributed more to the improvement of technical efficiency compared to scale efficiency. The establishment of branched-hospitals did not lead to a long-term negative effect on hospital operational efficiencies. Our data indicated the importance of improving scale efficiency via the optimization of organizational management, as well as the advantage of a different form of branch-establishment, merging and reorganization. This study brought an insight into the practical application of DEA window analysis on the assessment of hospital operational efficiencies.
Improving and Evaluating Nested Sampling Algorithm for Marginal Likelihood Estimation
NASA Astrophysics Data System (ADS)
Ye, M.; Zeng, X.; Wu, J.; Wang, D.; Liu, J.
2016-12-01
With the growing impacts of climate change and human activities on the cycle of water resources, an increasing number of researches focus on the quantification of modeling uncertainty. Bayesian model averaging (BMA) provides a popular framework for quantifying conceptual model and parameter uncertainty. The ensemble prediction is generated by combining each plausible model's prediction, and each model is attached with a model weight which is determined by model's prior weight and marginal likelihood. Thus, the estimation of model's marginal likelihood is crucial for reliable and accurate BMA prediction. Nested sampling estimator (NSE) is a new proposed method for marginal likelihood estimation. The process of NSE is accomplished by searching the parameters' space from low likelihood area to high likelihood area gradually, and this evolution is finished iteratively via local sampling procedure. Thus, the efficiency of NSE is dominated by the strength of local sampling procedure. Currently, Metropolis-Hasting (M-H) algorithm is often used for local sampling. However, M-H is not an efficient sampling algorithm for high-dimensional or complicated parameter space. For improving the efficiency of NSE, it could be ideal to incorporate the robust and efficient sampling algorithm - DREAMzs into the local sampling of NSE. The comparison results demonstrated that the improved NSE could improve the efficiency of marginal likelihood estimation significantly. However, both improved and original NSEs suffer from heavy instability. In addition, the heavy computation cost of huge number of model executions is overcome by using an adaptive sparse grid surrogates.
The ways of SOFC systems efficiency increasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demin, A.K.; Timofeyeva, N.
1996-04-01
The efficiency of solid oxide fuel cells (SOFCs) is described. This paper considers methods to lift the fuel utilization and/or the average cell voltage with the goal of increasing the cell efficiency by improved cell designs.
Motor Carrier Efficiency Study Phase I
DOT National Transportation Integrated Search
2009-02-01
The Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (SAFETEA-LU, Public Law 109-59), Section 5503, set aside funding to examine the application of wireless technology to improve the safety and efficiency of trucki...
Efficiency trends for new commercial jet aircraft 1960-2008
DOT National Transportation Integrated Search
2009-11-01
Concerns about aviations growing climate impact have revived interest in CO2 emission standards for new aircraft. To date, commercial aviation has been perceived to produce continuous improvements in efficiency by quickly adopting fuel-efficient t...
Improving Efficiency with Work Sampling.
ERIC Educational Resources Information Center
Friedman, Mark; Hertz, Paul
1982-01-01
Work sampling is a managerial accounting technique which provides information about the efficiency of an operation. This analysis determines what tasks are being performed durinq a period of time to ascertain if time and effort are being allocated efficiently. (SK)
Radiation Hardened, Modulator ASIC for High Data Rate Communications
NASA Technical Reports Server (NTRS)
McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene
2000-01-01
Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).
Zhou, Liang; Kwok, Chi-Chung; Cheng, Gang; Zhang, Hongjie; Che, Chi-Ming
2013-07-15
In this work, organic electroluminescent (EL) devices with double light-emitting layers (EMLs) having stepwise energy levels were designed to improve the EL performance of a red-light-emitting platinum(II) Schiff base complex. A series of devices with single or double EML(s) were fabricated and characterized. Compared with single-EML devices, double-EML devices showed improved EL efficiency and brightness, attributed to better balance in carriers. In addition, the stepwise distribution in energy levels of host materials is instrumental in broadening the recombination zone, thus delaying the roll-off of EL efficiency. The highest EL current efficiency and power efficiency of 17.36 cd/A and 14.73 lm/W, respectively, were achieved with the optimized double-EML devices. At high brightness of 1000 cd/m², EL efficiency as high as 8.89 cd/A was retained.
Omondi Aduda, Dickens S; Ouma, Collins; Onyango, Rosebella; Onyango, Mathews; Bertrand, Jane
2015-01-01
Voluntary medical male circumcision (VMMC) service delivery is complex and resource-intensive. In Kenya's context there is still paucity of information on resource use vis-à-vis outputs as programs scale up. Knowledge of technical efficiency, productivity and potential sources of constraints is desirable to improve decision-making. To evaluate technical efficiency and productivity of VMMC service delivery in Nyanza in 2011/2012 using data envelopment analysis. Comparative process evaluation of facilities providing VMMC in Nyanza in 2011/2012 using output orientated data envelopment analysis. Twenty one facilities were evaluated. Only 1 of 7 variables considered (total elapsed operation time) significantly improved from 32.8 minutes (SD 8.8) in 2011 to 30 minutes (SD 6.6) in 2012 (95%CI = 0.0350-5.2488; p = 0.047). Mean scale technical efficiency significantly improved from 91% (SD 19.8) in 2011 to 99% (SD 4.0) in 2012 particularly among outreach compared to fixed service delivery facilities (CI -31.47959-4.698508; p = 0.005). Increase in mean VRS technical efficiency from 84% (SD 25.3) in 2011 and 89% (SD 25.1) in 2012 was not statistically significant. Benchmark facilities were #119 and #125 in 2011 and #103 in 2012. Malmquist Productivity Index (MPI) at fixed facilities declined by 2.5% but gained by 4.9% at outreach ones by 2012. Total factor productivity improved by 83% (p = 0.032) in 2012, largely due to progress in technological efficiency by 79% (p = 0.008). Significant improvement in scale technical efficiency among outreach facilities in 2012 was attributable to accelerated activities. However, ongoing pure technical inefficiency requires concerted attention. Technological progress was the key driver of service productivity growth in Nyanza. Incorporating service-quality dimensions and using stepwise-multiple criteria in performance evaluation enhances comprehensiveness and validity. These findings highlight site-level resource use and sources of variations in VMMC service productivity, which are important for program planning.
Wu, Qiliang; Zhou, Pengcheng; Zhou, Weiran; Wei, Xiangfeng; Chen, Tao; Yang, Shangfeng
2016-06-22
A two-step method has been popularly adopted to fabricate a perovskite film of planar heterojunction organo-lead halide perovskite solar cells (PSCs). However, this method often generates uncontrollable film morphology with poor coverage. Herein, we report a facile method to improve perovskite film morphology by incorporating a small amount of acetate (CH3COO(-), Ac(-)) salts (NH4Ac, NaAc) as nonhalogen additives in CH3NH3I solution used for immersing PbI2 film, resulting in improved CH3NH3PbI3 film morphology. Under the optimized NH4Ac additive concentration of 10 wt %, the best power conversion efficiency (PCE) reaches 17.02%, which is enhanced by ∼23.2% relative to that of the pristine device without additive, whereas the NaAc additive does not lead to an efficiency enhancement despite the improvement of the CH3NH3PbI3 film morphology. SEM study reveals that NH4Ac and NaAc additives can both effectively improve perovskite film morphology by increasing the surface coverage via diminishing pinholes. The improvement on CH3NH3PbI3 film morphology is beneficial for increasing the optical absorption of perovskite film and improving the interfacial contact at the perovskite/spiro-OMeTAD interface, leading to the increase of short-circuit current and consequently efficiency enhancement of the PSC device for NH4Ac additive only.
Zhou, Fangzhou; Zeng, Fangqin; Liu, Xu; Liu, Fangyang; Song, Ning; Yan, Chang; Pu, Aobo; Park, Jongsung; Sun, Kaiwen; Hao, Xiaojing
2015-10-21
Back contact modification plays an important role in improving energy conversion efficiency of Cu2ZnSnS4 (CZTS) thin film solar cells. In this paper, an ultrathin carbon layer is introduced on molybdenum (Mo)-coated soda lime glass (SLG) prior to the deposition of CZTS precursor to improve the back contact and therefore enhance CZTS solar cell efficiency. By introducing this layer, the short circuit current (Jsc) and device conversion efficiency increase for both nonvacuum (sol-gel) and vacuum (sputtering) methods. Specifically, for the sol-gel based process, Jsc increases from 13.60 to 16.96 mA/cm(2) and efficiency from 4.47% to 5.52%, while for the sputtering based process, Jsc increases from 17.50 to 20.50 mA/cm(2) and efficiency from 4.10% to 5.20%. Furthermore, introduction of this layer does not lead to any deterioration of either open circuit voltage (Voc) or fill factor (FF).
Study on cold head structure of a 300 Hz thermoacoustically driven pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Yu, G. Y.; Wang, X. T.; Dai, W.; Luo, E. C.
2012-04-01
High reliability, compact size and potentially high thermal efficiency make the high frequency thermoacoustically-driven pulse tube cryocooler quite promising for space use. With continuous efforts, the lowest temperature and the thermal efficiency of the coupled system have been greatly improved. So far, a cold head temperature below 60 K has been achieved on such kind of cryocooler with the operation frequency of around 300 Hz. To further improve the thermal efficiency and expedite its practical application, this work focuses on studying the influence of cold head structure on the system performance. Substantial numerical simulations were firstly carried out, which revealed that the cold head structure would greatly influence the cooling power and the thermal efficiency. To validate the predictions, a lot of experiments have been done. The experiments and calculations are in reasonable agreement. With 500 W heating power input into the engine, a no-load temperature of 63 K and a cooling power of 1.16 W at 80 K have been obtained with parallel-plate cold head, indicating encouraging improvement of the thermal efficiency.
Kirby, Eric G; Keeffe, Michael J; Nicols, Kay M
2007-01-01
Due to changes in social norms, funding initiatives, and other environmental factors, the business of hospice care has significantly evolved over the past 40 years. There has been an influx of for-profit firms, increased consolidation, and significant funding changes. We have witnessed a growth in utilization rates, an increase in insurance coverage, and improved governmental funding. Hospice care organizations have responded to these pressures by pursuing more efficient and innovative business practices. Drawing upon institutional theory, this study seeks to address whether quality of care provided to hospice patients is affected as organizations respond to environmental pressures for innovative and efficient business practices. This study uses hierarchical regression to analyze data from 111 hospices in California. Innovative practices are positively related to quality of care. However, efficient practices have no significant relationship with quality of care. It appears that incorporating innovative practices is positively related to quality of care. Although cost containment may be necessary for continued survival, efficiency improvement efforts do not seem to lead to improved quality of care.
NASA Astrophysics Data System (ADS)
Ke, Chun-Ren; Guo, Jyun-Sheng; Su, Yen-Hsun; Ting, Jyh-Ming
2016-10-01
In this work, a novel configuration of the photoelectrochemical hydrogen production device is demonstrated. It is based on TiO2 beads as the primary photoanode material with the addition of a heterostructure of silver nanoparticles/graphene. The heterostructure not only caters to a great improvement in light harvesting efficiency (LHE) but also enhances the charge collection efficiency. For LHE, the optimized cell based on TiO2 beads/Ag/graphene shows a 47% gain as compared to the cell having a photoanode of commercial P25 TiO2 powders. For the charge collection efficiency, there is a pronounced improvement of an impressive value of 856%. The reason for the improvement in light absorption is attributed to either the light scattering of TiO2 beads or the surface plasmonic resonance on the Ag nanoparticles/graphene. The photoconversion efficiency (PCE) of the resulting cells is also presented and discussed. The PCE of the TiO2 beads/Ag/graphene cell is approximately 2.5 times than that of pure P25 cell.
Organizational change through Lean Thinking.
Tsasis, Peter; Bruce-Barrett, Cindy
2008-08-01
In production and manufacturing plants, Lean Thinking has been used to improve processes by eliminating waste and thus enhancing efficiency. In health care, Lean Thinking has emerged as a comprehensive approach towards improving processes embedded in the diagnostic, treatment and care activities of health-care organizations with cost containment results. This paper provides a case study example where Lean Thinking is not only used to improve efficiency and cost containment, but also as an approach to effective organizational change.
Electron linac for medical isotope production with improved energy efficiency and isotope recovery
Noonan, John; Walters, Dean; Virgo, Matt; Lewellen, John
2015-09-08
A method and isotope linac system are provided for producing radio-isotopes and for recovering isotopes. The isotope linac is an energy recovery linac (ERL) with an electron beam being transmitted through an isotope-producing target. The electron beam energy is recollected and re-injected into an accelerating structure. The ERL provides improved efficiency with reduced power requirements and provides improved thermal management of an isotope target and an electron-to-x-ray converter.
Lithography - Green and Getting Greener
NASA Astrophysics Data System (ADS)
Levinson, Harry J.
2011-06-01
Today, many energy-saving technologies and practices are enabled or made more effective through the use of nano-electronics. Such technologies include hybrid and all-electric cars, as well as controllers to increase the efficiency of photovoltaic panels. Telecommuting, which enables people to work without traveling from their homes, has been made possible by personal computers and the internet. Reducing the costs of nano-electronics will make possible increased opportunities for the use of products that reduce energy consumption. The most effective way to reduce costs is to improve efficiency. Increased efficiency also provides the benefit of reducing energy and material consumption in the manufacturing of nano-electronics. For example, reducing photochemical usage decreases costs but also reduces material consumption and the need for disposal. Reduction of scrap and rework are direct improvements in efficiency. Cycle time reduction enables greater responsiveness to demand, reducing the amount of material started in processing but never completed. Good process control reduces scrap and rework during manufacturing and results in circuits that have high performance, yet lower power consumption, when used. There are ready opportunities for making the most of the natural tendencies of businesses to innovate and improve efficiency. The semiconductor industry has historically adopted process improvements that have increased worker safety and reduced the consumption of hazardous materials. An early example was the transition from solvent to aqueous photoresist developers. Today, all types of development can be conducted in safer equipment that minimizes the release of hazardous chemicals to the air and water. Non-toxic solvents, such as ethyl lactate, have been widely adopted. There are many opportunities for further improvement. For example, over 90% of resist goes down the drain using conventional spin-coating process, so there is an opportunity for greatly improved efficiency in that operation. A lot of water is used to reduce defects when using chemically amplified resists, and the amount of water needed could be reduced by improved design of resists and substrate coatings. Thinking further into the future, directed self-assembly has the promise of a patterning technology that can be applied simply and with energy-efficiency. Once the fundamental challenges of creating high output extreme ultraviolet (EUV) light sources are overcome, there will be great opportunities for reducing electricity consumption.
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Englander, Arnold C.
2014-01-01
Trajectory optimization methods using monotonic basin hopping (MBH) have become well developed during the past decade [1, 2, 3, 4, 5, 6]. An essential component of MBH is a controlled random search through the multi-dimensional space of possible solutions. Historically, the randomness has been generated by drawing random variable (RV)s from a uniform probability distribution. Here, we investigate the generating the randomness by drawing the RVs from Cauchy and Pareto distributions, chosen because of their characteristic long tails. We demonstrate that using Cauchy distributions (as first suggested by J. Englander [3, 6]) significantly improves monotonic basin hopping (MBH) performance, and that Pareto distributions provide even greater improvements. Improved performance is defined in terms of efficiency and robustness. Efficiency is finding better solutions in less time. Robustness is efficiency that is undiminished by (a) the boundary conditions and internal constraints of the optimization problem being solved, and (b) by variations in the parameters of the probability distribution. Robustness is important for achieving performance improvements that are not problem specific. In this work we show that the performance improvements are the result of how these long-tailed distributions enable MBH to search the solution space faster and more thoroughly. In developing this explanation, we use the concepts of sub-diffusive, normally-diffusive, and super-diffusive random walks (RWs) originally developed in the field of statistical physics.
NASA Astrophysics Data System (ADS)
Liu, Yaoze; Engel, Bernard A.; Flanagan, Dennis C.; Gitau, Margaret W.; McMillan, Sara K.; Chaubey, Indrajeet; Singh, Shweta
2018-05-01
Best management practices (BMPs) are popular approaches used to improve hydrology and water quality. Uncertainties in BMP effectiveness over time may result in overestimating long-term efficiency in watershed planning strategies. To represent varying long-term BMP effectiveness in hydrologic/water quality models, a high level and forward-looking modeling framework was developed. The components in the framework consist of establishment period efficiency, starting efficiency, efficiency for each storm event, efficiency between maintenance, and efficiency over the life cycle. Combined, they represent long-term efficiency for a specific type of practice and specific environmental concern (runoff/pollutant). An approach for possible implementation of the framework was discussed. The long-term impacts of grass buffer strips (agricultural BMP) and bioretention systems (urban BMP) in reducing total phosphorus were simulated to demonstrate the framework. Data gaps were captured in estimating the long-term performance of the BMPs. A Bayesian method was used to match the simulated distribution of long-term BMP efficiencies with the observed distribution with the assumption that the observed data represented long-term BMP efficiencies. The simulated distribution matched the observed distribution well with only small total predictive uncertainties. With additional data, the same method can be used to further improve the simulation results. The modeling framework and results of this study, which can be adopted in hydrologic/water quality models to better represent long-term BMP effectiveness, can help improve decision support systems for creating long-term stormwater management strategies for watershed management projects.
Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenbauer, Ben
High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency watermore » heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less
Wang, Xingwei; Chen, Jiajun
2017-06-01
With an aim to investigate the influence of small-scale interlayer heterogeneity on DDT removal efficiency, batch test including surfactant-stabilized foam flushing and solution flushing were carried out. Two man-made heterogeneous patterns consisting of coarse and fine quartz sand were designed to reveal the influencing mechanism. Moreover, the removal mechanism and the corresponding contribution by foam flushing were quantitatively studied. Compared with surfactant solution flushing, the DDT removal efficiency by surfactant-stabilized foam flushing increased by 9.47% and 11.28% under heterogeneous patterns 1 and 2, respectively. The DDT removal contributions of improving sweep efficiency for heterogeneous patterns 1 and 2 by foam flushing were 40.82% and 45.98%, and the contribution of dissolving capacity were 59.18% and 54.02%, respectively. The dissolving capacity of DDT played a major role in DDT removal efficiency by foam flushing under laboratory conditions. And the DDT removal contribution of significant improving sweep efficiency was higher than that of removal decline caused by weak solubilizing ability of foam film compared with solution flushing. The obtained results indicated that the difference of DDT removal efficiency by foam flushing was decreased under two different heterogeneous patterns with the increase of the contribution of improving foam flushing sweep efficiency. It suggested that foam flushing can reduce the disturbance from interlayer heterogeneity in remediating DDT contaminated heterogeneous medium. Copyright © 2017 Elsevier B.V. All rights reserved.
Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooldridge, Margaret; Boehman, Andre; Lavoie, George
Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H 2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to trainmore » a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H 2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the combination of engine and fuel system is not knock limited, multiple fuel injection events maintain thermal efficiency while improving engine-out emissions (e.g. CO, UHC, and particulate number).« less
Improving maximum power point tracking of partially shaded photovoltaic system by using IPSO-BELBIC
NASA Astrophysics Data System (ADS)
Al-Alim El-Garhy, M. Abd; Mubarak, R. I.; El-Bably, M.
2017-08-01
Solar photovoltaic (PV) arrays in remote applications are often related to the rapid changes in the partial shading pattern. Rapid changes of the partial shading pattern make the tracking of maximum power point (MPP) of the global peak through the local ones too difficult. An essential need to make a fast and efficient algorithm to detect the peaks values which always vary as the sun irradiance changes. This paper presents two algorithms based on the improved particle swarm optimization technique one of them with PID controller (IPSO-PID), and the other one with Brain Emotional Learning Based Intelligent Controller (IPSO-BELBIC). These techniques improve the maximum power point (MPP) tracking capabilities for photovoltaic (PV) system under partial shading circumstances. The main aim of these improved algorithms is to accelerate the velocity of IPSO to reach to (MPP) and increase its efficiency. These algorithms also improve the tracking time under complex irradiance conditions. Based on these conditions, the tracking time of these presented techniques improves to 2 msec, with an efficiency of 100%.
Energy and Environment Guide to Action - Chapter 4.3: Building Codes for Energy Efficiency
Provides guidance and recommendations for establishing, implementing, and evaluating state building codes for energy efficiency, which improve energy efficiency in new construction and major renovations. State success stories are included for reference.
Zhang, Tianmu; Shi, Changsheng; Zhao, Chenyang; Wu, Zhongbin; Chen, Jiangshan; Xie, Zhiyuan; Ma, Dongge
2018-03-07
Phosphorescent organic light-emitting diodes (OLEDs) possess the property of high efficiency but have serious efficiency roll-off at high luminance. Herein, we manufactured high-efficiency phosphorescent OLEDs with extremely low roll-off by effectively locating the ultrathin emitting layer (UEML) away from the high-concentration exciton formation region. The strategic exciton management in this simple UEML architecture greatly suppressed the exciton annihilation due to the expansion of the exciton diffusion region; thus, this efficiency roll-off at high luminance was significantly improved. The resulting green phosphorescent OLEDs exhibited the maximum external quantum efficiency of 25.5%, current efficiency of 98.0 cd A -1 , and power efficiency of 85.4 lm W -1 and still had 25.1%, 94.9 cd A -1 , and 55.5 lm W -1 at 5000 cd m -2 luminance, and retained 24.3%, 92.7 cd A -1 , and 49.3 lm W -1 at 10 000 cd m -2 luminance, respectively. Compared with the usual structures, the improvement demonstrated in this work displays potential value in applications.
High-efficiency, radiation-resistant GaAs space cells
NASA Technical Reports Server (NTRS)
Bertness, K. A.; Ristow, M. Ladle; Grounner, M.; Kuryla, M. S.; Werthen, J. G.
1991-01-01
Although many GaAs solar cells are intended for space applicatons, few measurements of cell degradation after radiation are available, particularly for cells with efficiencies exceeding 20 percent (one-sun, AMO). Often the cell performance is optimized for the highest beginning-of-life (BOL) efficiency, despite the unknown effect of such design on end-of-life (EOL) efficiencies. The results of a study of the radiation effects on p-n GaAs cells are presented. The EOL efficiency of GaAs space cell can be increased by adjusting materials growth parameters, resulting in a demonstration of 16 percent EOL efficiency at one-sun, AMO. Reducing base doping levels to below 3 x 10(exp 17)/cu m and decreasing emitter thickness to 0.3 to 0.5 micron for p-n cells led to significant improvements in radiation hardness as measured by EOL/BOL efficiency ratios for irradiation of 10(exp -15)/sq cm electrons at 1 MeV. BOL efficiency was not affected by changes in emitter thickness but did improve with lower base doping.
The 25 percent-efficient GaAs Cassegrainian concentrator cell
NASA Technical Reports Server (NTRS)
Hamaker, H. C.; Grounner, M.; Kaminar, N. R.; Kuryla, M. S.; Ladle, M. J.; Liu, D. D.; Macmillan, H. F.; Partain, L. D.; Virshup, G. F.; Werthen, J. G.
1989-01-01
Very high-efficiency GaAs Cassegrainian solar cells have been fabricated in both the n-p and p-n configurations. The n-p configuration exhibits the highest efficiency at concentration, the best cells having an efficiency eta of 24.5 percent (100X, AM0, temperature T = 28 C). Although the cells are designed for operation at this concentration, peak efficiency is observed near 300 suns (eta = 25.1 percent). To our knowledge, this is the highest reported solar cell efficiency for space applications. The improvement in efficiency over that reported at the previous SPRAT conference is attributed primarily to lower series resistance and improved grid-line plating procedures. Using previously measured temperature coefficients, researchers estimate that the n-p GaAs cells should deliver approximately 22.5 percent efficiency at the operating conditions of 100 suns and T = 80 C. This performance exceeds the NASA program goal of 22 percent for the Cassegrainian cell. One hundred Cassegrainian cells have been sent to NASA as deliverables, sixty-eight in the n-p configuration and thirty-two in the p-n configuration.
Valuing Residential Energy Efficiency in Two Alaska Real Estate Markets: A Hedonic Approach
NASA Astrophysics Data System (ADS)
Pride, Dominique J.
Alaska households have high home energy consumption and expenditures. Improving the energy efficiency of the housing stock can reduce home energy consumption, thereby reducing home energy expenditures and CO2 emissions. Improving the energy efficiency of a home may also increase its transaction price if the energy efficiency improvements are capitalized into the value of the home. The relationship between energy efficiency and transaction prices in the Fairbanks and Anchorage, Alaska residential real estate markets is examined. Using a hedonic pricing framework and difference-in-differences analysis, the impact of the Alaska Home Energy Rebate program on the transaction prices of single-family homes in the Fairbanks and Anchorage housing markets from 2008 through 2015 is examined. The results indicate that compared to homes that did not complete the program, homes that completed the program sell for a statistically significant price premium between 15.1% and 15.5% in the Fairbanks market and between 5% and 11% in the Anchorage market. A hedonic pricing framework is used to relate energy efficiency ratings and transaction prices of homes in the Fairbanks and Anchorage residential real estate markets from 2008 through 2015. The results indicate that homes with above-average energy efficiency ratings sell for a statistically significant price premium between 6.9% and 17.5% in the Fairbanks market and between 1.8% and 6.0% in the Anchorage market.
Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon
2016-10-19
A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.
NASA Astrophysics Data System (ADS)
Yoo, Yang-Seok; Na, Jong-Ho; Son, Sung Jin; Cho, Yong-Hoon
2016-10-01
A critical issue in GaN-based high power light-emitting diodes (LEDs) is how to suppress the efficiency droop problem occurred at high current injection while improving overall quantum efficiency, especially in conventional c-plane InGaN/GaN quantum well (QW), without using complicated bandgap engineering or unconventional materials and structures. Although increasing thickness of each QW may decrease carrier density in QWs, formation of additional strain and defects as well as increased built-in field effect due to enlarged QW thickness are unavoidable. Here, we propose a facile and effective method for not only reducing efficiency droop but also improving quantum efficiency by utilizing c-plane InGaN/GaN QWs having thinner barriers and increased QW number while keeping the same single well thickness and total active layer thickness. As the barrier thickness decreases and the QW number increases, both internal electric field and carrier density within QWs are simultaneously reduced without degradation of material quality. Furthermore, we found overall improved efficiency and reduced efficiency droop, which was attributed to the decrease of the built-in field and to less influence by non-radiative recombination processes at high carrier density. This simple and effective approach can be extended further for high power ultraviolet, green, and red LEDs.
Tu, Hongjian; Cao, Nailong; Gu, Baojun; Si, Jiemin; Chen, Zhong; Andersson, Karl-Erik
2015-07-01
To examine the effects of the serotonin (5-HT)2A/2C receptor agonist (2,5-dimethoxy-4-idophenyl)-2-aminopropane hydrochloride (DOI) on micturition in rats with diabetes mellitus (DM). Female Sprague-Dawley rats (n = 16) were divided into two groups: rats with Type 1 DM and age-matched control rats. DM was induced by i.p. injection of streptozotocin (65 mg/kg) and detailed cystometrogram (CMG) studies were performed 8 weeks post-injection in all rats under urethane anaesthesia. The selective 5-HT2A antagonist ketanserin was administered after each DOI dose-response curve was plotted. All drugs were administered i.v. Compared with controls, comprehensive urodynamic studies showed that DM rats had a higher bladder capacity and post-void residual urine volume (PVR), and a markedly lower voiding efficiency. In DM rats, DOI (0.01-0.3 mg/kg) induced significant dose-dependent increases in micturition volume and reductions in PVR, resulting in greater voiding efficiency. CMG measurements showed a dose-dependent increase in high-frequency oscillation (HFO) activity, evidenced by an increased duration of HFOs per voiding. This correlated with the improved voiding efficiency. Ketanserin (0.1 mg/kg) partially or completely reversed the DOI-induced changes. The HFOs observed in the present study seem to correlate with external urethral sphincter bursting activity during voiding. Bladder voiding efficiency was reduced in DM rats. The 5-HT2A receptor agonist can enhance HFO activity and improves voiding efficiency, and so may represent a new strategy to improve voiding efficiency after DM in experimental studies. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.
Drive Cycle Powertrain Efficiencies and Trends Derived from EPA Vehicle Dynamometer Results
Thomas, John
2014-10-13
Vehicle manufacturers among others are putting great emphasis on improving fuel economy (FE) of light-duty vehicles in the U.S. market, with significant FE gains being realized in recent years. The U.S. Environmental Protection Agency (EPA) data indicates that the aggregate FE of vehicles produced for the U.S. market has improved by over 20% from model year (MY) 2005 to 2013. This steep climb in FE includes changes in vehicle choice, improvements in engine and transmission technology, and reducing aerodynamic drag, rolling resistance, and parasitic losses. The powertrain related improvements focus on optimizing in-use efficiency of the transmission and engine asmore » a system, and may make use of what is termed downsizing and/or downspeeding. This study explores quantifying recent improvements in powertrain efficiency, viewed separately from other vehicle alterations and attributes (noting that most vehicle changes are not completely independent). A methodology is outlined to estimate powertrain efficiency for the U.S city and highway cycle tests using data from the EPA vehicle database. Comparisons of common conventional gasoline powertrains for similar MY 2005 and 2013 vehicles are presented, along with results for late-model hybrid electric vehicles, the Nissan Leaf, Chevy Volt and other selected vehicles.« less
Zhu, Guanglong; Peng, Shaobing; Huang, Jianliang; Cui, Kehui; Nie, Lixiao; Wang, Fei
2016-01-01
The yield potential of rice (Oryza sativa L.) has experienced two significant growth periods that coincide with the introduction of semi-dwarfism and the utilization of heterosis. In present study, we determined the annual increase in the grain yield of rice varieties grown from 1936 to 2005 in Middle Reaches of Yangtze River and examined the contributions of RUE (radiation-use efficiency, the conversion efficiency of pre-anthesis intercepted global radiation to biomass) and NUE (nitrogen-use efficiency, the ratio of grain yield to aboveground N accumulation) to these improvements. An examination of the 70-year period showed that the annual gains of 61.9 and 75.3 kg ha−1 in 2013 and 2014, respectively, corresponded to an annual increase of 1.18 and 1.16% in grain yields, respectively. The improvements in grain yield resulted from increases in the harvest index and biomass, and the sink size (spikelets per panicle) was significantly enlarged because of breeding for larger panicles. Improvements were observed in RUE and NUE through advancements in breeding. Moreover, both RUE and NUE were significantly correlated with the grain yield. Thus, our study suggests that genetic improvements in rice grain yield are associated with increased RUE and NUE. PMID:26876641
Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction.
Wang, Guoqing; Yan, Zhijun; Yang, Lei; Zhang, Lin; Wang, Chao
2018-01-12
Most overlooked challenges in ultrafast optical time stretch imaging (OTSI) are sacrificed spatial resolution and higher optical loss. These challenges are originated from optical diffraction devices used in OTSI, which encode image into spectra of ultrashort optical pulses. Conventional free-space diffraction gratings, as widely used in existing OTSI systems, suffer from several inherent drawbacks: limited diffraction efficiency in a non-Littrow configuration due to inherent zeroth-order reflection, high coupling loss between free-space gratings and optical fibers, bulky footprint, and more importantly, sacrificed imaging resolution due to non-full-aperture illumination for individual wavelengths. Here we report resolution-improved and diffraction-efficient OTSI using in-fiber diffraction for the first time to our knowledge. The key to overcome the existing challenges is a 45° tilted fiber grating (TFG), which serves as a compact in-fiber diffraction device offering improved diffraction efficiency (up to 97%), inherent compatibility with optical fibers, and improved imaging resolution owning to almost full-aperture illumination for all illumination wavelengths. 50 million frames per second imaging of fast moving object at 46 m/s with improved imaging resolution has been demonstrated. This conceptually new in-fiber diffraction design opens the way towards cost-effective, compact and high-resolution OTSI systems for image-based high-throughput detection and measurement.
Large Efficient Intelligent Heating Relay Station System
NASA Astrophysics Data System (ADS)
Wu, C. Z.; Wei, X. G.; Wu, M. Q.
2017-12-01
The design of large efficient intelligent heating relay station system aims at the improvement of the existing heating system in our country, such as low heating efficiency, waste of energy and serious pollution, and the control still depends on the artificial problem. In this design, we first improve the existing plate heat exchanger. Secondly, the ATM89C51 is used to control the whole system and realize the intelligent control. The detection part is using the PT100 temperature sensor, pressure sensor, turbine flowmeter, heating temperature, detection of user end liquid flow, hydraulic, and real-time feedback, feedback signal to the microcontroller through the heating for users to adjust, realize the whole system more efficient, intelligent and energy-saving.
Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhaoying; Zheng, Xiantong; Li, Zhilong
2016-08-08
We report a 23.4% improvement of conversion efficiency in solar cells based on InGaN/GaN multiple quantum wells by using a patterned sapphire substrate in the fabrication process. The efficiency enhancement is due to the improvement of the crystalline quality, as proven by the reduction of the threading dislocation density. More importantly, the better crystalline quality leads to a positive photovoltaic efficiency temperature coefficient up to 423 K, which shows the property and advantage of wide gap semiconductors like InGaN, signifying the potential of III-nitride based solar cells for high temperature and concentrating solar power applications.
A Survey of Methods for Analyzing and Improving GPU Energy Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Sparsh; Vetter, Jeffrey S
2014-01-01
Recent years have witnessed a phenomenal growth in the computational capabilities and applications of GPUs. However, this trend has also led to dramatic increase in their power consumption. This paper surveys research works on analyzing and improving energy efficiency of GPUs. It also provides a classification of these techniques on the basis of their main research idea. Further, it attempts to synthesize research works which compare energy efficiency of GPUs with other computing systems, e.g. FPGAs and CPUs. The aim of this survey is to provide researchers with knowledge of state-of-the-art in GPU power management and motivate them to architectmore » highly energy-efficient GPUs of tomorrow.« less
Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari
2015-01-01
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC). PMID:26218470
Matsuzaki, Yoshio; Tachikawa, Yuya; Somekawa, Takaaki; Hatae, Toru; Matsumoto, Hiroshige; Taniguchi, Shunsuke; Sasaki, Kazunari
2015-07-28
Solid oxide fuel cells (SOFCs) are promising electrochemical devices that enable the highest fuel-to-electricity conversion efficiencies under high operating temperatures. The concept of multi-stage electrochemical oxidation using SOFCs has been proposed and studied over the past several decades for further improving the electrical efficiency. However, the improvement is limited by fuel dilution downstream of the fuel flow. Therefore, evolved technologies are required to achieve considerably higher electrical efficiencies. Here we present an innovative concept for a critically-high fuel-to-electricity conversion efficiency of up to 85% based on the lower heating value (LHV), in which a high-temperature multi-stage electrochemical oxidation is combined with a proton-conducting solid electrolyte. Switching a solid electrolyte material from a conventional oxide-ion conducting material to a proton-conducting material under the high-temperature multi-stage electrochemical oxidation mechanism has proven to be highly advantageous for the electrical efficiency. The DC efficiency of 85% (LHV) corresponds to a net AC efficiency of approximately 76% (LHV), where the net AC efficiency refers to the transmission-end AC efficiency. This evolved concept will yield a considerably higher efficiency with a much smaller generation capacity than the state-of-the-art several tens-of-MW-class most advanced combined cycle (MACC).
Efficiency of irrigation water application in sugarcane cultivation in Pakistan.
Watto, Muhammad Arif; Mugera, Amin W
2015-07-01
Diminishing irrigation water supplies are threatening the sustainability of irrigated agriculture in Pakistan. Within the context of dwindling water resources and low agricultural water productivity, it is imperative to improve efficiency in agricultural production and to make efficient use of available water resources. This study employs a non-parametric approach to estimate the extent of technical and irrigation water efficiency in sugarcane cultivation in Pakistan. The mean technical efficiency score is 0.96 for tube-well owners whereas it is 0.94 for water buyers. The mean irrigation water efficiency score is 0.86 for tube-well owners whereas it is 0.72 for water buyers. We find that across all farms, 59% of the tube-well owners and 45% of the water buyers are fully technically efficient, whereas only 36% of the tube-well owners and 30% of the water buyer are fully efficient in irrigation water use. This study finds that sugarcane growers are operating at fairly high technical efficiency levels. But, there is considerable potential to improve irrigation water efficiency. This study proposes expanding the role of agricultural extension services from merely agronomic grounds to guide farmers to undertake cost benefit analysis of the available production technology, would help achieve higher efficiency levels. © 2014 Society of Chemical Industry.
USDA-ARS?s Scientific Manuscript database
The solar corridor crop system (SCCS) is designed for improved crop productivity by using broad strips (corridors or skip rows) that promote highly efficient use of solar radiation and ambient carbon dioxide by C-4 plants including corn. Field trials in 2013 and 2014 showed that yields of selected c...
Heat Pipes Reduce Engine-Exhaust Emissions
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1986-01-01
Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This case study describes how the Shaw Industries plant #20 in Dalton, Georgia, achieved annual savings of $872,000 and 93,000 MMBtu after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.
ERIC Educational Resources Information Center
Bonometti, Patrizia
2012-01-01
Purpose: The aim of this contribution is to describe a new complexity-science-based approach for improving safety, quality and efficiency and the way it was implemented by TenarisDalmine. Design/methodology/approach: This methodology is called "a safety-building community". It consists of a safety-behaviour social self-construction…
Simplified Floor-Area-Based Energy-Moisture-Economic Model for Residential Buildings
ERIC Educational Resources Information Center
Martinez, Luis A.
2009-01-01
In the United States, 21% of all energy is used in residential buildings (40% of which is for heating and cooling homes). Promising improvements in residential building energy efficiency are underway such as the Building America Program and the Passive House Concept. The ability of improving energy efficiency in buildings is enhanced by building…
Quantum entanglement helps in improving economic efficiency
NASA Astrophysics Data System (ADS)
Du, Jiangfeng; Ju, Chenyong; Li, Hui
2005-02-01
We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character.
Enhanced photovoltaic performance of Sb2S3-sensitized solar cells through surface treatments
NASA Astrophysics Data System (ADS)
Ye, Qing; Xu, Yafeng; Chen, Wenyong; Yang, Shangfeng; Zhu, Jun; Weng, Jian
2018-05-01
Efficient antimony sulfide (Sb2S3)-sensitized solar cells were obtained by a sequential treatment with thioacetamide (TA) and 1-decylphosphonic acid (DPA). Compared with the untreated Sb2S3-sensitized solar cells, the power conversion efficiency of the treated Sb2S3 solar cells was improved by 1.80% to 3.23%. The TA treatment improved the Sb2S3 films by reducing impurities and decreasing the film's surface defects, which inhibited the emergence of recombination centers. The DPA treatment reduced the recombination between hole transport materials (HTMs) and the Sb2S3. Therefore, we have presented an efficient strategy to improve the performance of Sb2S3-sensitized solar cells.
An intelligent processing environment for real-time simulation
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Wells, Buren Earl, Jr.
1988-01-01
The development of a highly efficient and thus truly intelligent processing environment for real-time general purpose simulation of continuous systems is described. Such an environment can be created by mapping the simulation process directly onto the University of Alamba's OPERA architecture. To facilitate this effort, the field of continuous simulation is explored, highlighting areas in which efficiency can be improved. Areas in which parallel processing can be applied are also identified, and several general OPERA type hardware configurations that support improved simulation are investigated. Three direct execution parallel processing environments are introduced, each of which greatly improves efficiency by exploiting distinct areas of the simulation process. These suggested environments are candidate architectures around which a highly intelligent real-time simulation configuration can be developed.
High-temperature superconductor antenna investigations
NASA Technical Reports Server (NTRS)
Karasack, Vincent G.
1990-01-01
The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borm, B.; Gärtner, F.; Khaghani, D.
2016-09-15
We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by amore » larger drive laser energy.« less
NASA Astrophysics Data System (ADS)
Lee, Hansang; Jung, Seungmin; Cho, Yoonsung; Yoon, Donghee; Jang, Gilsoo
2013-11-01
This paper proposes an application of the 100 kWh superconducting flywheel energy storage systems to reduce the peak power of the electric railway system. The electric railway systems have high-power characteristics and large amount of regenerative energy during vehicles’ braking. The high-power characteristic makes operating cost high as the system should guarantee the secure capacity of electrical equipment and the low utilization rate of regenerative energy limits the significant energy efficiency improvement. In this paper, it had been proved that the peak power reduction and energy efficiency improvement can be achieved by using 100 kWh superconducting flywheel energy storage systems with the optimally controlled charging or discharging operations. Also, economic benefits had been assessed.
Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in mice.
Ono, Tetsuo; Li, Chong; Mizutani, Eiji; Terashita, Yukari; Yamagata, Kazuo; Wakayama, Teruhiko
2010-12-01
Since the first mouse clone was produced by somatic cell nuclear transfer, the success rate of cloning in mice has been extremely low. Some histone deacetylase inhibitors, such as trichostatin A and scriptaid, have improved the full-term development of mouse clones significantly, but the mechanisms allowing for this are unclear. Here, we found that two other specific inhibitors, suberoylanilide hydroxamic acid and oxamflatin, could also reduce the rate of apoptosis in blastocysts, improve the full-term development of cloned mice, and increase establishment of nuclear transfer-generated embryonic stem cell lines significantly without leading to obvious abnormalities. However, another inhibitor, valproic acid, could not improve cloning efficiency. Suberoylanilide hydroxamic acid, oxamflatin, trichostatin A, and scriptaid are inhibitors for classes I and IIa/b histone deacetylase, whereas valproic acid is an inhibitor for classes I and IIa, suggesting that inhibiting class IIb histone deacetylase is an important step for reprogramming mouse cloning efficiency.
Nonuniform depth grids in parabolic equation solutions.
Sanders, William M; Collins, Michael D
2013-04-01
The parabolic wave equation is solved using a finite-difference solution in depth that involves a nonuniform grid. The depth operator is discretized using Galerkin's method with asymmetric hat functions. Examples are presented to illustrate that this approach can be used to improve efficiency for problems in ocean acoustics and seismo-acoustics. For shallow water problems, accuracy is sensitive to the precise placement of the ocean bottom interface. This issue is often addressed with the inefficient approach of using a fine grid spacing over all depth. Efficiency may be improved by using a relatively coarse grid with nonuniform sampling to precisely position the interface. Efficiency may also be improved by reducing the sampling in the sediment and in an absorbing layer that is used to truncate the computational domain. Nonuniform sampling may also be used to improve the implementation of a single-scattering approximation for sloping fluid-solid interfaces.
Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari
2015-02-18
Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.
[TSA improve transgenic porcine cloned embryo development and transgene expression].
Kong, Qing-Ran; Zhu, Jiang; Huang, Bo; Huan, Yan-Jun; Wang, Feng; Shi, Yong-Qian; Liu, Zhong-Feng; Wu, Mei-Ling; Liu, Zhong-Hua
2011-07-01
Uncompleted epigenetic reprogramming is attributed to the low efficiency of producing transgenic cloned animals. Histone modification associated with epigenetics can directly influence the embryo development and transgene expression. Trichostatin A (TSA), as an inhibitor of histone deacetylase, can change the status of histone acetylation, improve somatic cell reprogramming, and enhance cloning efficiency. TSA prevents the chromatin structure from being condensed, so that transcription factor could binds to DNA sequence easily and enhance transgene expression. Our study established the optimal TSA treatment on porcine donor cells and cloned embryos, 250 nmol/L, 24 h and 40 nmol/L, 24 h, respectively. Furthermore, we found that both the cloned embryo and the donor cell treated by TSA resulted in the highest development efficiency. Meanwhile, TSA can improve transgene expression in donor cell and cloned embryo. In summary, TSA can significantly improve porcine reconstructed embryo development and transgene expression.
NASA Astrophysics Data System (ADS)
Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari
2015-02-01
Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.
2010-02-23
reflection, thus increasing the quantum efficiency by one order of magnitude and improving the light extraction from the nano-roughened device surface by...respectively. At a biased current of 400 A, the highest external quantum efficiency is over 0.2% to obtain the maximum EL power of >1 W. In...processing techniques for improving the internal and external quantum efficiencies of Si MOSLEDs via detuning the size and density of high-aspect-ratio Si
Hybrid Hydro Renewable Energy Storage Model
NASA Astrophysics Data System (ADS)
Dey, Asit Kr
2018-01-01
This paper aims at presenting wind & tidal turbine pumped-storage solutions for improving the energy efficiency and economic sustainability of renewable energy systems. Indicated a viable option to solve problems of energy production, as well as in the integration of intermittent renewable energies, providing system flexibility due to energy load’s fluctuation, as long as the storage of energy from intermittent sources. Sea water storage energy is one of the best and most efficient options in terms of renewable resources as an integrated solution allowing the improvement of the energy system elasticity and the global system efficiency.
Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning.
Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua
2015-01-01
Somatic cell nuclear transfer (SCNT) is an assisted reproductive technique that can produce multiple copies of excellent livestock. However, low cloning efficiency limits the application of SCNT. In this study, we systematically investigated the major influencing factors related to the overall cloning efficiency in pigs. Here, 13620 cloned embryos derived from excellent pigs were transferred into 79 surrogate gilts, and 119 live cloned piglets were eventually generated. During cloning, group of cloned embryos derived from excellent Landrace or Large white pigs presented no significant differences of cleavage and blastocyst rates, blastocyst cell numbers, surrogate pregnancy and delivery rates, average numbers of piglets born and alive and cloning efficiencies, and group of 101-150, 151-200 or 201-250 cloned embryos transferred per surrogate also displayed a similar developmental efficiency. When estrus stage of surrogate gilts was compared, group of embryo transfer on Day 2 of estrus showed significantly higher pregnancy rate, delivery rate, average number of piglets born, average alive piglet number or cloning efficiency than group on Day 1, Day 3, Day 4 or Day 5, respectively (P<0.05). And, in comparison with the preovulation and postovulation groups, group of surrogate gilts during periovulation displayed a significantly higher overall cloning efficiency (P<0.05). Further investigation of surrogate estrus stage and ovulation status displayed that ovulation status was the real factor underlying estrus stage to determine the overall cloning efficiency. And more, follicle puncture for preovulation, not transfer position shallowed for preovulation or deepened for postovulation, significantly improved the average number of piglets alive and cloning efficiency (P<0.05). In conclusion, our results demonstrated that ovulation status of surrogate gilts was the fundamental factor determining the overall cloning efficiency of excellent pigs, and follicle puncture, not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency.
Ovulation Statuses of Surrogate Gilts Are Associated with the Efficiency of Excellent Pig Cloning
Huan, Yanjun; Hu, Kui; Xie, Bingteng; Shi, Yongqian; Wang, Feng; Zhou, Yang; Liu, Shichao; Huang, Bo; Zhu, Jiang; Liu, Zhongfeng; He, Yilong; Li, Jingyu; Kong, Qingran; Liu, Zhonghua
2015-01-01
Somatic cell nuclear transfer (SCNT) is an assisted reproductive technique that can produce multiple copies of excellent livestock. However, low cloning efficiency limits the application of SCNT. In this study, we systematically investigated the major influencing factors related to the overall cloning efficiency in pigs. Here, 13620 cloned embryos derived from excellent pigs were transferred into 79 surrogate gilts, and 119 live cloned piglets were eventually generated. During cloning, group of cloned embryos derived from excellent Landrace or Large white pigs presented no significant differences of cleavage and blastocyst rates, blastocyst cell numbers, surrogate pregnancy and delivery rates, average numbers of piglets born and alive and cloning efficiencies, and group of 101–150, 151–200 or 201–250 cloned embryos transferred per surrogate also displayed a similar developmental efficiency. When estrus stage of surrogate gilts was compared, group of embryo transfer on Day 2 of estrus showed significantly higher pregnancy rate, delivery rate, average number of piglets born, average alive piglet number or cloning efficiency than group on Day 1, Day 3, Day 4 or Day 5, respectively (P<0.05). And, in comparison with the preovulation and postovulation groups, group of surrogate gilts during periovulation displayed a significantly higher overall cloning efficiency (P<0.05). Further investigation of surrogate estrus stage and ovulation status displayed that ovulation status was the real factor underlying estrus stage to determine the overall cloning efficiency. And more, follicle puncture for preovulation, not transfer position shallowed for preovulation or deepened for postovulation, significantly improved the average number of piglets alive and cloning efficiency (P<0.05). In conclusion, our results demonstrated that ovulation status of surrogate gilts was the fundamental factor determining the overall cloning efficiency of excellent pigs, and follicle puncture, not transfer position change, improved cloning efficiency. This work would have important implications in preserving and breeding excellent livestock and improving the overall cloning efficiency. PMID:26565717
A Metamaterial-Inspired Approach to RF Energy Harvesting
NASA Astrophysics Data System (ADS)
Fowler, Clayton; Zhou, Jiangfeng
2016-03-01
We demonstrate an RF energy harvesting rectenna design based on a metamaterial perfect absorber (MPA). With the embedded Schottky diodes, the rectenna converts captured RF energy to DC currents. The Fabry-Perot cavity resonance of the MPA greatly improves the amount of energy captured and hence improves the rectification efficiency. Furthermore, the FP resonance exhibits a high Q-factor and significantly increases the voltage across the Schottky diodes. This leads to a factor of 16 improvement of RF-DC conversion efficiency at ambient intensity level.
A Metamaterial-Inspired Approach to RF Energy Harvesting
NASA Astrophysics Data System (ADS)
Fowler, Clayton; Zhou, Jiangfeng
We demonstrate an RF energy harvesting rectenna design based on a metamaterial perfect absorber (MPA). With the embedded Schottky diodes, the rectenna converts captured RF energy to DC currents. The Fabry-Perot cavity resonance of the MPA greatly improves the amount of energy captured and hence improves the rectification efficiency. Furthermore, the FP resonance exhibits high Q-factor and significantly increases the voltage across the Schottky diodes. This leads to a factor of 16 improvement of RF-DC conversion efficiency at ambient intensity level.
An improved infrared technique for sorting pecans
NASA Astrophysics Data System (ADS)
Graeve, Thorsten; Dereniak, Eustace L.; Lamonica, John A., Jr.
1991-10-01
This paper presents the results of a study of pecan spectral reflectances. It describes an experiment for measuring the contrast between several components of raw pecan product to be sorted. An analysis of the experimental data reveals high contrast ratios in the infrared spectrum, suggesting a potential improvement in sorting efficiency when separating pecan meat from shells. It is believed that this technique has the potential to dramatically improve the efficiency of current sorting machinery, and to reduce the cost of processing pecans for the consumer market.
NASA Technical Reports Server (NTRS)
Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian
2009-01-01
This paper describes efforts to improve on typical packed beds of sorbent pellets by making use of structured sorbents and alternate bed configurations to improve system efficiency and reliability. The benefits of the alternate configurations include increased structural stability gained by eliminating clay bound zeolite pellets that tend to fluidize and erode, and better thermal control during sorption to increase process efficiency. Test results that demonstrate such improvements are described and presented.
Improving Palliative Care Team Meetings: Structure, Inclusion, and "Team Care".
Brennan, Caitlin W; Kelly, Brittany; Skarf, Lara Michal; Tellem, Rotem; Dunn, Kathleen M; Poswolsky, Sheila
2016-07-01
Increasing demands on palliative care teams point to the need for continuous improvement to ensure teams are working collaboratively and efficiently. This quality improvement initiative focused on improving interprofessional team meeting efficiency and subsequently patient care. Meeting start and end times improved from a mean of approximately 9 and 6 minutes late in the baseline period, respectively, to a mean of 4.4 minutes late (start time) and ending early in our sustainability phase. Mean team satisfaction improved from 2.4 to 4.5 on a 5-point Likert-type scale. The improvement initiative clarified communication about patients' plans of care, thus positively impacting team members' ability to articulate goals to other professionals, patients, and families. We propose several recommendations in the form of a team meeting "toolkit." © The Author(s) 2015.
A new precoding scheme for spectral efficient optical OFDM systems
NASA Astrophysics Data System (ADS)
Hardan, Saad Mshhain; Bayat, Oguz; Abdulkafi, Ayad Atiyah
2018-07-01
Achieving high spectral efficiency is the key requirement of 5G and optical wireless communication systems and has recently attracted much attention, aiming to satisfy the ever increasing demand for high data rates in communications systems. In this paper, we propose a new precoding/decoding algorithm for spectral efficient optical orthogonal frequency division multiplexing (OFDM) scheme based visible light communication (VLC) systems. The proposed coded modulated optical (CMO) based OFDM system can be applied for both single input single output (SISO) and multiple input multiple-output (MIMO) architectures. Firstly, the real OFDM time domain signal is obtained through invoking the precoding/decoding algorithm without the Hermitian symmetry. After that, the positive signal is achieved either by adding a DC-bias or by using the spatial multiplexing technique. The proposed CMO-OFDM scheme efficiently improves the spectral efficiency of the VLC system as it does not require the Hermitian symmetry constraint to yield real signals. A comparison of the performance improvement of the proposed scheme with other OFDM approaches is also presented in this work. Simulation results show that the proposed CMO-OFDM scheme can not only enhance the spectral efficiency of OFDM-based VLC systems but also improve bit error rate (BER) performance compared with other optical OFDM schemes.
Ito, Yoichiro; Clary, Robert
2016-01-01
High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1–2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate. PMID:27790621
Ito, Yoichiro; Clary, Robert
2016-12-01
High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1-2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate.
System and method for networking electrochemical devices
Williams, Mark C.; Wimer, John G.; Archer, David H.
1995-01-01
An improved electrochemically active system and method including a plurality of electrochemical devices, such as fuel cells and fluid separation devices, in which the anode and cathode process-fluid flow chambers are connected in fluid-flow arrangements so that the operating parameters of each of said plurality of electrochemical devices which are dependent upon process-fluid parameters may be individually controlled to provide improved operating efficiency. The improvements in operation include improved power efficiency and improved fuel utilization in fuel cell power generating systems and reduced power consumption in fluid separation devices and the like through interstage process fluid parameter control for series networked electrochemical devices. The improved networking method includes recycling of various process flows to enhance the overall control scheme.
Miyoshi, Kazuchika; Rzucidlo, S Jacek; Pratt, Scott L; Stice, Steven L
2003-04-01
The low efficiency of somatic cell cloning is the major obstacle to widespread use of this technology. Incomplete nuclear reprogramming following the transfer of donor nuclei into recipient oocytes has been implicated as a primary reason for the low efficiency of the cloning procedure. The mechanisms and factors that affect the progression of the nuclear reprogramming process have not been completely elucidated, but the identification of these factors and their subsequent manipulation would increase cloning efficiency. At present, many groups are studying donor nucleus reprogramming. Here, we present an approach in which the efficiency of producing viable offspring is improved by selecting recipient oocytes and donor cells that will produce cloned embryos with functionally reprogrammed nuclei. This approach will produce information useful in future studies aimed at further deciphering the nuclear reprogramming process.
How Can Health System Efficiency Be Improved in Canada?
Allin, Sara; Veillard, Jeremy; Wang, Li; Grignon, Michel
2015-01-01
Improving value for money in the health system is an often-stated policy goal. This study is the first to systematically measure the efficiency of health regions in Canada in producing health gains with their available resources, and to identify the factors that are associated with increased efficiency. Based on the objective elicited from decision-makers that the health system should ensure access to care for Canadians when they need it, we measured the efficiency with which regions reduce causes of death that are amenable to healthcare interventions using a linear programming approach (data envelopment analysis). Variations in efficiency were explained in part by public health factors, such as the prevalence of obesity and smoking in the population; in part by characteristics of the population, such as their average income; and in part by managerial factors, such as hospital readmissions. PMID:26571467
NASA Astrophysics Data System (ADS)
Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon-Hwa; Asadirad, Mojtaba; Kim, Seung-Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon Seop; Ryou, Jae-Hyun
2018-03-01
We report a new route to improve quantum efficiencies of AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency is enhanced higher than three times, when the DUV LEDs are moderately bent with concave curvatures. Furthermore, an efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.
Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H.; Gaaz, Tayser Sumer
2017-01-01
This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC. PMID:28763048
The Failure of Eco-Efficiency to Guarantee Sustainability: Future Challenges for Industrial Ecology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huesemann, Michael H.
Western industrialized societies are inherently unsustainable in their present form because they depend almost exclusively on a finite supply of non-renewable minerals and fossil fuels. In addition, the resulting wastes cause various environmental problems ranging from widespread ecosystem disruptions to global warming. The most common response to these problems has been to promote technological improvements in eco-efficiency, which may be defined as ''adding maximum value with minimum resource use and minimum pollution'' (Welford 1997). While constructive, improvements in eco-efficiency alone will not guarantee sustainability of industrialized societies because the limited supplies of non-renewable minerals cannot be extended indefinitely via recyclingmore » and substitution, and a transition to renewable and nuclear energy sources would result in significant negative environmental impacts, particularly if deployed on a large scale. In addition, according to the second law of thermodynamics, industrial production technologies have inherently unavoidable environmental impacts. Finally, any hard won improvements in eco-efficiency will soon be negated if growth in population and consumption is allowed to continue. Consequently, long-term industrial sustainability can only be achieved through a transition to a steady-state economy where the total throughput of matter-energy is kept at a constant and sustainable level. This requires not only improvements in eco-efficiency but also a reassessment of fundamental societal values that erroneously equate material consumption and economic growth with well-being and happiness.« less
Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A
2017-08-01
This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current I SC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.
Armstrong, Andrew M.; Bryant, Benjamin N.; Crawford, Mary H.; ...
2015-04-01
The influence of a dilute In xGa 1-xN (x~0.03) underlayer (UL) grown below a single In 0.16Ga 0.84N quantum well (SQW), within a light-emitting diode(LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than theLED without an UL, while the radiative recombination rates were nearly identical. This, then, suggests that themore » improved radiative efficiency resulted from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Furthermore, quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.« less
Nishioka, Shinta; Wakabayashi, Hidetaka; Nishioka, Emi; Yoshida, Tomomi; Mori, Natsumi; Watanabe, Riko
2016-05-01
Whether nutritional improvement correlates with functional recovery in convalescent stroke patients is unclear. This study was conducted to examine the relationship between nutritional improvement and recovery of activities of daily living among malnourished elderly stroke patients in the convalescent stage. This study used a cross-sectional study design. One hundred seventy-eight malnourished stroke patients aged 65 years and older from convalescent rehabilitation wards in Japan between April 2012 and December 2014 were included in the analyses. The participants were classified into three groups according to the Mini Nutritional Assessment Short-Form (MNA-SF) score at discharge (0 to 7 as no improvement, 8 to 11 as lesser improvement, and 12 to 14 as greater improvement). The primary outcome was functional independence measure (FIM) efficiency (FIM gain/length of hospital stay). The secondary outcomes were FIM gain and discharge outcome. One-way analysis of variance, χ(2) test, and Kruskal-Wallis test were performed for univariate analysis. Linear regression analysis was used to adjust for covariates such as age, sex, length of hospital stay, FIM (motor and cognitive) on admission, and lower-order items of MNA-SF. Binomial logistic analysis for discharge outcome (home/others) was performed to adjust for covariates such as age, sex, and FIM. Study participants included 85 men and 93 women with a mean age of 77 years. Based on MNA-SF, 16 were classified as no improvement, 113 as lesser improvement, and 49 as greater improvement. The median FIM efficiency and length of hospital stay were 0.27 points/day and 151.5 days, respectively. The greater improvement group had significantly higher FIM efficiency than the other groups (P<0.001). Home discharge rate was also higher in the GI group (P=0.014). Linear regression analysis for FIM efficiency indicated that mobility, neuropsychological problems, and weight loss, which were lower-order items of MNA-SF at discharge, were independent explanatory variables (R(2)=0.373; P<0.001). These findings suggest that nutritional improvement such as maintenance of body weight is associated with the efficient recovery of activities of daily living among malnourished elderly convalescent stroke patients. Copyright © 2016 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
A Case Study in Market Transformation for Residential Energy Efficiency Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Building Technologies Office
This case study describes how the Midwest Energy Efficiency Alliance (MEEA) partnered with gas and electric utilities in Iowa to establish the Iowa residential heating, ventilation, and air conditioning System Adjustment and Verified Efficiency (HVAC SAVE) program, taking it to scale improving the performance and energy efficiency of HVAC systems, growing businesses, and gaining consumer trust.
Assessing the Efficiency of Secondary Schools in Chile: A Data Envelopment Analysis
ERIC Educational Resources Information Center
Munoz, David Andres; Queupil, Juan Pablo
2016-01-01
Purpose: The purpose of this paper was to evaluate the efficiency of secondary education schools in Chile. Since the early 1980s, several educational reforms have been passed with the main objective of improving the quality, equity and efficiency of the Chilean education system. This has initiated a debate about the efficient use of public…
Effects of visual feedback-induced variability on motor learning of handrim wheelchair propulsion.
Leving, Marika T; Vegter, Riemer J K; Hartog, Johanneke; Lamoth, Claudine J C; de Groot, Sonja; van der Woude, Lucas H V
2015-01-01
It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability.
Effects of Visual Feedback-Induced Variability on Motor Learning of Handrim Wheelchair Propulsion
Leving, Marika T.; Vegter, Riemer J. K.; Hartog, Johanneke; Lamoth, Claudine J. C.; de Groot, Sonja; van der Woude, Lucas H. V.
2015-01-01
Background It has been suggested that a higher intra-individual variability benefits the motor learning of wheelchair propulsion. The present study evaluated whether feedback-induced variability on wheelchair propulsion technique variables would also enhance the motor learning process. Learning was operationalized as an improvement in mechanical efficiency and propulsion technique, which are thought to be closely related during the learning process. Methods 17 Participants received visual feedback-based practice (feedback group) and 15 participants received regular practice (natural learning group). Both groups received equal practice dose of 80 min, over 3 weeks, at 0.24 W/kg at a treadmill speed of 1.11 m/s. To compare both groups the pre- and post-test were performed without feedback. The feedback group received real-time visual feedback on seven propulsion variables with instruction to manipulate the presented variable to achieve the highest possible variability (1st 4-min block) and optimize it in the prescribed direction (2nd 4-min block). To increase motor exploration the participants were unaware of the exact variable they received feedback on. Energy consumption and the propulsion technique variables with their respective coefficient of variation were calculated to evaluate the amount of intra-individual variability. Results The feedback group, which practiced with higher intra-individual variability, improved the propulsion technique between pre- and post-test to the same extent as the natural learning group. Mechanical efficiency improved between pre- and post-test in the natural learning group but remained unchanged in the feedback group. Conclusion These results suggest that feedback-induced variability inhibited the improvement in mechanical efficiency. Moreover, since both groups improved propulsion technique but only the natural learning group improved mechanical efficiency, it can be concluded that the improvement in mechanical efficiency and propulsion technique do not always appear simultaneously during the motor learning process. Their relationship is most likely modified by other factors such as the amount of the intra-individual variability. PMID:25992626
Application of carbon nanotubes in perovskite solar cells: A review
NASA Astrophysics Data System (ADS)
Oo, Thet Tin; Debnath, Sujan
2017-11-01
Solar power, as alternative renewable energy source, has gained momentum in global energy generation in recent time. Solar photovoltaics (PV) systems now fulfill a significant portion of electricity demand and the capacity of solar PV capacity is growing every year. PV cells efficiency has improved significantly following decades of research, evolving into third generations of PV cells. These third generation PV cells are set out to provide low-cost and efficient PV systems, further improving the commercial competitiveness of solar energy generation. Among these latest generations of PV cells, perovskite solar cells have gained attraction due to the simple manufacturing process and the immense growth in PV efficiency in a short period of research and development. Despite these advantages, perovskite solar cells are known for the weak stability and decomposition in exposure to humidity and high temperature, hindering the possibility of commercialization. This paper will discuss the role of carbon nanotubes (CNTs) in improving the efficiency and stability of perovskite solar cells, in various components such as perovskite layer and hole transport layer, as well as the application of CNTs in unique aspects. These includes the use of CNTs fiber in making the perovskite solar cells flexible, as well as simplification of perovskite PV production by using CNT flash evaporation printing process. Despite these advances, challenges remain in incorporation CNTs into perovskite such as lower conversion efficiency compared to rare earth metals and improvements need to be made. Thus, the paper will be also highlighting the CNTs materials suggested for further research and improvement of perovskite solar cells.
Energy Efficiency in Libraries.
ERIC Educational Resources Information Center
Lewis, Eleanor J.; And Others
1993-01-01
Shows how libraries can save money and energy with energy-efficient technologies, improving maintenance, and encouraging staff efforts to conserve energy. Specific techniques such as life-cycle cost analysis and energy audits focusing on lighting, heating, ventilation, air conditioning, and water efficiency are described. Funding options and…
Sughimoto, Koichi; Takahara, Yoshiharu; Mogi, Kenji; Yamazaki, Kenji; Tsubota, Ken'ichi; Liang, Fuyou; Liu, Hao
2014-05-01
Aortic aneurysms may cause the turbulence of blood flow and result in the energy loss of the blood flow, while grafting of the dilated aorta may ameliorate these hemodynamic disturbances, contributing to the alleviation of the energy efficiency of blood flow delivery. However, evaluating of the energy efficiency of blood flow in an aortic aneurysm has been technically difficult to estimate and not comprehensively understood yet. We devised a multiscale computational biomechanical model, introducing novel flow indices, to investigate a single male patient with multiple aortic aneurysms. Preoperative levels of wall shear stress and oscillatory shear index (OSI) were elevated but declined after staged grafting procedures: OSI decreased from 0.280 to 0.257 (first operation) and 0.221 (second operation). Graftings may strategically counter the loss of efficient blood delivery to improve hemodynamics of the aorta. The energy efficiency of blood flow also improved postoperatively. Novel indices of pulsatile pressure index (PPI) and pulsatile energy loss index (PELI) were evaluated to characterize and quantify energy loss of pulsatile blood flow. Mean PPI decreased from 0.445 to 0.423 (first operation) and 0.359 (second operation), respectively; while the preoperative PELI of 0.986 dropped to 0.820 and 0.831. Graftings contributed not only to ameliorate wall shear stress or oscillatory shear index but also to improve efficient blood flow. This patient-specific modeling will help in analyzing the mechanism of aortic aneurysm formation and may play an important role in quantifying the energy efficiency or loss in blood delivery.
NASA Astrophysics Data System (ADS)
Lv, Xiaowei; Xiao, Xin; Cao, Minglei; Bu, Yi; Wang, Chuanqing; Wang, Mingkui; Shen, Yan
2018-05-01
Modification of semiconductor photoanodes with oxygen evolution catalyst (OEC) is an effective approach for improving photoelectrochemical (PEC) water splitting efficiency. In the configuration, how to increase the activity of OEC is crucial to further improve PEC performance. Herein, a ternary photoanode system was designed to enhance PEC efficiency of photoelectrodes through introducing carbon dots (CDs), NiFe-layered double hydroxide (NiFe-LDH) nanosheets on BiVO4 particles. Systematic research shows that NiFe-LDH serves as an OEC which accelerates oxygen evolution kinetics, while the introduction of CDs can further reduce charge transfer resistance and overpotential for oxygen evolution. Under the synergistic effect of NiFe-LDH and CDs, the photocurrent and incident photon to current conversion efficiency (IPCE) of the resulting CDs/NiFe-LDH/BiVO4 photoanode is improved significantly than those of the NiFe-LDH/BiVO4 electrode. Consequently, such a ternary heterostructure could be an alternative way to further enhance PEC water splitting performance.
Stirling Air Conditioner for Compact Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-09-01
BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry tomore » make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.« less
Design and Verification of Remote Sensing Image Data Center Storage Architecture Based on Hadoop
NASA Astrophysics Data System (ADS)
Tang, D.; Zhou, X.; Jing, Y.; Cong, W.; Li, C.
2018-04-01
The data center is a new concept of data processing and application proposed in recent years. It is a new method of processing technologies based on data, parallel computing, and compatibility with different hardware clusters. While optimizing the data storage management structure, it fully utilizes cluster resource computing nodes and improves the efficiency of data parallel application. This paper used mature Hadoop technology to build a large-scale distributed image management architecture for remote sensing imagery. Using MapReduce parallel processing technology, it called many computing nodes to process image storage blocks and pyramids in the background to improve the efficiency of image reading and application and sovled the need for concurrent multi-user high-speed access to remotely sensed data. It verified the rationality, reliability and superiority of the system design by testing the storage efficiency of different image data and multi-users and analyzing the distributed storage architecture to improve the application efficiency of remote sensing images through building an actual Hadoop service system.
NASA Technical Reports Server (NTRS)
Sah, C. T.
1983-01-01
The performance improvements obtainable from extending the traditionally thin back-surface-field (BSF) layer deep into the base of silicon solar cells under terrestrial solar illumination (AM1) are analyzed. This extended BSF cell is also known as the back-drift-field cell. About 100 silicon cells were analyzed, each with a different emitter or base dopant impurity distribution whose selection was based on physically anticipated improvements. The four principal performance parameters (the open-circuit voltage, the short-circuit current, the fill factor, and the maximum efficiency) are computed using a FORTRAN program, called Circuit Technique for Semiconductor-device Analysis, CTSA, which numerically solves the six Shockley Equations under AM1 solar illumination at 88.92 mW/cm, at an optimum cell thickness of 50 um. The results show that very significant performance improvements can be realized by extending the BSF layer thickness from 2 um (18% efficiency) to 40 um (20% efficiency).
Chiu, Ming-Chuan; Hsieh, Min-Chih
2016-05-01
The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Kanevce, A.; Reese, Matthew O.; Barnes, T. M.; ...
2017-06-06
CdTe devices have reached efficiencies of 22% due to continuing improvements in bulk material properties, including minority carrier lifetime. Device modeling has helped to guide these device improvements by quantifying the impacts of material properties and different device designs on device performance. One of the barriers to truly predictive device modeling is the interdependence of these material properties. For example, interfaces become more critical as bulk properties, particularly, hole density and carrier lifetime, increase. We present device-modeling analyses that describe the effects of recombination at the interfaces and grain boundaries as lifetime and doping of the CdTe layer change. Themore » doping and lifetime should be priorities for maximizing open-circuit voltage (V oc) and efficiency improvements. However, interface and grain boundary recombination become bottlenecks for device performance at increased lifetime and doping levels. In conclusion, this work quantifies and discusses these emerging challenges for next-generation CdTe device efficiency.« less
Improving Energy Efficiency for the Vehicle Assembly Industry: A Discrete Event Simulation Approach
NASA Astrophysics Data System (ADS)
Oumer, Abduaziz; Mekbib Atnaw, Samson; Kie Cheng, Jack; Singh, Lakveer
2016-11-01
This paper presented a Discrete Event Simulation (DES) model for investigating and improving energy efficiency in vehicle assembly line. The car manufacturing industry is one of the highest energy consuming industries. Using Rockwell Arena DES package; a detailed model was constructed for an actual vehicle assembly plant. The sources of energy considered in this research are electricity and fuel; which are the two main types of energy sources used in a typical vehicle assembly plant. The model depicts the performance measurement for process- specific energy measures of painting, welding, and assembling processes. Sound energy efficiency model within this industry has two-fold advantage: reducing CO2 emission and cost reduction associated with fuel and electricity consumption. The paper starts with an overview of challenges in energy consumption within the facilities of automotive assembly line and highlights the parameters for energy efficiency. The results of the simulation model indicated improvements for energy saving objectives and reduced costs.
Emergency Preparedness in the Workplace: The Flulapalooza Model for Mass Vaccination.
Swift, Melanie D; Aliyu, Muktar H; Byrne, Daniel W; Qian, Keqin; McGown, Paula; Kinman, Patricia O; Hanson, Katherine Louise; Culpepper, Demoyne; Cooley, Tamara J; Yarbrough, Mary I
2017-09-01
To explore whether an emergency preparedness structure is a feasible, efficient, and sustainable way for health care organizations to manage mass vaccination events. We used the Hospital Incident Command System to conduct a 1-day annual mass influenza vaccination event at Vanderbilt University Medical Center over 5 successive years (2011-2015). Using continuous quality improvement principles, we assessed whether changes in layout, supply management, staffing, and documentation systems improved efficiency. A total of 66 591 influenza vaccines were administered at 5 annual Flulapalooza events; 13 318 vaccines per event on average. Changes to the physical layout, staffing mix, and documentation processes improved vaccination efficiency 74%, from approximately 38 to 67 vaccines per hour per vaccinator, while reducing overall staffing needs by 38%. An unexpected finding was the role of social media in facilitating active engagement. Health care organizations can use a closed point-of-dispensing model and Hospital Incident Command System to conduct mass vaccination events, and can adopt the "Flulapalooza method" as a best practice model to enhance efficiency.
NASA Astrophysics Data System (ADS)
Panda, Satyasen
2018-05-01
This paper proposes a modified artificial bee colony optimization (ABC) algorithm based on levy flight swarm intelligence referred as artificial bee colony levy flight stochastic walk (ABC-LFSW) optimization for optical code division multiple access (OCDMA) network. The ABC-LFSW algorithm is used to solve asset assignment problem based on signal to noise ratio (SNR) optimization in OCDM networks with quality of service constraints. The proposed optimization using ABC-LFSW algorithm provides methods for minimizing various noises and interferences, regulating the transmitted power and optimizing the network design for improving the power efficiency of the optical code path (OCP) from source node to destination node. In this regard, an optical system model is proposed for improving the network performance with optimized input parameters. The detailed discussion and simulation results based on transmitted power allocation and power efficiency of OCPs are included. The experimental results prove the superiority of the proposed network in terms of power efficiency and spectral efficiency in comparison to networks without any power allocation approach.
Axial inlet conversion to a centrifugal compressor with magnetic bearings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novecosky, T.
1994-01-01
NOVA's Alberta Gas Transmission Division transports natural gas via pipeline throughout the province of Alberta, Canada, exporting it to eastern Canada, US, and British Columbia. There is a continuing effort to operate the facilities and pipeline at the highest possible efficiency. One area being addressed to improve efficiency is compression of the gas. By improving compressor efficiency, fuel consumption and hence operating costs can be reduced. One method of improving compressor efficiency is by converting the compressor to an axial inlet configuration, a conversion that has been carried out more frequently in the past years. Concurrently, conventional hydrodynamic bearings havemore » been replaced with magnetic bearings on many centrifugal compressors. This paper discusses the design and installation for converting a radial overhung unit to an axial inlet configuration, having both magnetic bearings and a thrust reducer. The thrust reducer is required to reduce axial compressor shaft loads, to a level that allows the practical installation of magnetic bearings within the space limitations of the compressor (Bear and Gibson, 1992).« less
Efficiency improvement of a concentrated solar receiver for water heating system using porous medium
NASA Astrophysics Data System (ADS)
Prasartkaew, Boonrit
2018-01-01
This experimental study aims at investigating on the performance of a high temperature solar water heating system. To approach the high temperature, a porous-medium concentrated solar collector equipped with a focused solar heliostat were proposed. The proposed system comprised of two parts: a 0.7x0.7-m2 porous medium receiver, was installed on a 3-m tower, and a focused multi-flat-mirror solar heliostat with 25-m2 aperture area. The porous medium used in this study was the metal swarf or metal waste from lathing process. To know how the system efficiency could be improved by using such porous medium, the proposed system with- and without-porous medium were tested and the comparative study was performed. The experimental results show that, using porous medium for enhancing the heat transfer mechanism, the system thermal efficiency was increased about 25%. It can be concluded that the efficiency of the proposed system can be substantially improved by using the porous medium.
NASA Astrophysics Data System (ADS)
Szwedzka, K.; Gruszka, J.; Szafer, P.
2016-08-01
Improving energy efficiency is one of the strategic objectives of the European Union for rational energy economy. To make efforts to improve energy efficiency have been obliged both small and large end-users. This article aims to show the possibilities of improving energy efficiency by introducing technical and technological process changes of pine lumber drying. The object of the research is process of drying lumber implemented in a production company, which is a key supplier of large furniture manufacturer. Pine lumber drying chamber consume about 45% of total electricity in sawmill. According to various sources, drying of 1m3 of lumber uses about 3060kWh and is dependent of inter alia: the drying process itself, the factors affecting the processing time and the desired output moisture content of the timber. The article proposals for changes in the process of drying lumber pine have been positively validated in the company, and as a result their energy consumption per 1 m3 of product declined by 18%.
ERIC Educational Resources Information Center
Hemmings, Philip
2006-01-01
This paper looks at ways of ensuring Czech regions and municipalities are fully motivated to make efficiency improvements in public service provision and so help achieve countrywide fiscal sustainability. The very large number of small municipalities in the Czech Republic means that scale economies are difficult to exploit and the policy options…
ERIC Educational Resources Information Center
Foley, John P., Jr.
An overview of the Air Force's Research and Development Program for the Improvement of Maintenance Efficiency is provided. First described are the steps found in any detailed task analysis, a process which results in the complete specification of each task involved in an overall maintenance effort. The factors influencing maintenance effectiveness…
ERIC Educational Resources Information Center
Belfield, Clive; Crosta, Peter; Jenkins, Davis
2014-01-01
Community colleges are under pressure to improve completion rates and efficiency despite limited economic evidence on how to do so and the consequences of different reform strategies. Here, we set out an economic model of student course pathways linked to college expenditures and revenues. Using detailed data from a single college, we calculate…
2012-02-09
Investment (ROI) and Break Even Point ( BEP ). These metrics are essential for determining whether an initiative would be worth pursuing. Balanced...is Unlimited Energy Decision Framework Identify Inefficiencies 2. Perform Analyses 3. Examine Technology Candidates 1. Improve Energy...Unlimited Energy Decision Framework Identify Inefficiencies 2. Perform Analyses 3. Examine Technology Candidates 1. Improve Energy Efficiency 4
ERIC Educational Resources Information Center
Hejmadi, Momna V.
2007-01-01
This paper describes the development and evaluation of a blended learning resource in the biosciences, created by combining online learning with formal face-face lectures and supported by formative assessments. In order to improve the effectiveness and efficiency of teaching large classes with mixed student cohorts, teaching was delivered through…
USDA-ARS?s Scientific Manuscript database
Shortening the period of recording individual feed intake may improve selection response for feed efficiency by increasing the number of cattle that can be recorded given facilities of fixed capacity. Individual DMI and ADG records of 3,462 steers and 2,869 heifers over the entire intake recording p...
Bio-Defense Now: 56 Suggestions for Immediate Improvements
2005-05-01
Air Education and Training Command HVAC Heating, Ventilation and Air Conditioning ICAM Improved Chemical Agent Monitor ICD-9-CM Internal...conditioning ( HVAC ) system capabilities, making a big difference in removal of many BW agents. High Efficiency Particulate Air (HEPA) filters are also...agents. This program has developed biological sensor-activated heating, ventilation, and air conditioning ( HVAC ) control sys- tems, high efficiency
Building Energy Efficiency in Rural China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Meredydd; Yu, Sha; Song, Bo
2014-04-01
Rural buildings in China now account for more than half of China’s total building energy use. Forty percent of the floorspace in China is in rural villages and towns. Most of these buildings are very energy inefficient, and may struggle to meet basic needs. They are cold in the winter, and often experience indoor air pollution from fuel use. The Chinese government plans to adopt a voluntary building energy code, or design standard, for rural homes. The goal is to build on China’s success with codes in urban areas to improve efficiency and comfort in rural homes. The Chinese governmentmore » recognizes rural buildings represent a major opportunity for improving national building energy efficiency. The challenges of rural China are also greater than those of urban areas in many ways because of the limited local capacity and low income levels. The Chinese government wants to expand on new programs to subsidize energy efficiency improvements in rural homes to build capacity for larger-scale improvement. This article summarizes the trends and status of rural building energy use in China. It then provides an overview of the new rural building design standard, and describes options and issues to move forward with implementation.« less
Wu, Tsung-Ta; Hu, Fan; Huang, Jyun-Hong; Chang, Chia-ho; Lai, Chih-chung; Yen, Yu-Ting; Huang, Hou-Ying; Hong, Hwen-Fen; Wang, Zhiming M; Shen, Chang-Hong; Shieh, Jia-Min; Chueh, Yu-Lun
2014-04-09
A nontoxic hydrogen-assisted solid Se vapor selenization process (HASVS) technique to achieve a large-area (40 × 30 cm(2)) Cu(In,Ga)Se2 (CIGS) solar panel with enhanced efficiencies from 7.1 to 10.8% (12.0% for active area) was demonstrated. The remarkable improvement of efficiency and fill factor comes from improved open circuit voltage (Voc) and reduced dark current due to (1) decreased interface recombination raised from the formation of a widened buried homojunction with n-type Cd(Cu) participation and (2) enhanced separation of electron and hole carriers resulting from the accumulation of Na atoms on the surface of the CIGS film. The effects of microstructural, compositional, and electrical characteristics with hydrogen-assisted Se vapor selenization, including interdiffusion of atoms and formation of buried homojunction, were examined in detail. This methodology can be also applied to CIS (CuInSe2) thin film solar cells with enhanced efficiencies from 5.3% to 8.5% (9.4% for active area) and provides a facile approach to improve quality of CIGS and stimulate the nontoxic progress in the large scale CIGS PV industry.
Utilization of Portable Radios to Improve Ophthalmology Clinic Efficiency in an Academic Setting.
Davis, Alexander S; Elkeeb, Ahmed M; Vizzeri, Gianmarco; Godley, Bernard F
2016-03-01
Improvement in clinic efficiency in the ambulatory setting is often looked at as an area for development of lean management strategies to deliver a higher quality of healthcare while reducing errors, costs, and delays. To examine the benefits of improving team communication and its impact on clinic flow and efficiency, we describe a time-motion study performed in an academic outpatient Ophthalmology clinic and its objective and subjective results. Compared to clinic encounters without the use of the portable radios, objective data demonstrated an overall significant decreases in mean workup time (15.18 vs. 13.10), room wait (13.10 vs. 10.47), and decreased the total time needed with an MD per encounter (9.45 vs. 6.63). Subjectively, significant improvements were seen in careprovider scores for patient flow (60.78 vs. 84.29), getting assistance (61.89 vs. 88.57), moving patient charts (54.44 vs. 85.71), teamwork (69.56 vs. 91.0), communications (62.33 vs. 90.43), providing quality patient care (76.22 vs. 89.57), and receiving input on the ability to see walk-in patients (80.11 vs. 90.43). For academic purposes, an improvement in engagement in patient care and learning opportunities was noted by the clinic resident-in-training during the pilot study. Portable radios in our pilot study were preferred over the previous method of communication and demonstrates significant improvements in certain areas of clinical efficiency, subjective perception of teamwork and communications, and academic learning.